-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasicAutoEncoder.py
81 lines (56 loc) · 2.03 KB
/
basicAutoEncoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from keras.layers import Input, Dense
from keras.models import Model
from scipy.misc import imread, imresize
encoding_dim =32;
input_img = Input(shape =(784,))
#input_img = Input(shape =(1585,))
encoded = Dense(encoding_dim, activation='relu')(input_img)
decoded = Dense(784, activation='sigmoid')(encoded)
#decoded = Dense(1585, activation='sigmoid')(encoded)
autoencoder = Model(input_img, decoded)
encoder = Model(input_img,encoded)
encoded_input = Input(shape=(encoding_dim,))
decode_layer = autoencoder.layers[-1]
decoder = Model(encoded_input, decode_layer(encoded_input))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
from keras.datasets import mnist
import pandas
import numpy as np
import os, os.path
(x_train, _), (x_test, _) = mnist.load_data()
image_data=imresize(imread('./images/1.jpg'),(28,28)).astype(np.float32)
image_data=np.expand_dims(image_data,axis=0)
for img in os.listdir('./images'):
resized_img = imresize(imread('./images/'+img),(28,28)).astype(np.float32)
resized_img = np.expand_dims(resized_img, axis=0)
image_data = np.vstack((image_data, resized_img))
print(image_data.shape)
print('shape')
print(x_train.shape)
x_train = image_data
x_test = image_data
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)
autoencoder.fit(x_train, x_train, epochs=50, batch_size=256, shuffle=True,
validation_data=(x_test, x_test))
encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)
import matplotlib.pyplot as plt
n=10
plt.figure(figsize=(20,4))
for i in range(n):
ax = plt.subplot(2,n,i+1)
plt.imshow(x_test[i].reshape(28,28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2,n, i+1+n)
plt.imshow(decoded_imgs[i].reshape(28,28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()