|
| 1 | +""" |
| 2 | +Finite differences approximation |
| 3 | +================================ |
| 4 | +
|
| 5 | +This example displays various finite difference (FD) approximations of derivatives of |
| 6 | +simple harmonic function. |
| 7 | +""" |
| 8 | + |
| 9 | +import matplotlib.pyplot as plt |
| 10 | +import numpy as np |
| 11 | + |
| 12 | +from pde import CartesianGrid, ScalarField |
| 13 | +from pde.tools.expressions import evaluate |
| 14 | + |
| 15 | +# create two grids with different resolution to emphasize finite difference approximation |
| 16 | +grid_fine = CartesianGrid([(0, 2 * np.pi)], 256, periodic=True) |
| 17 | +grid_coarse = CartesianGrid([(0, 2 * np.pi)], 10, periodic=True) |
| 18 | + |
| 19 | +# create figure to present plots of the derivative |
| 20 | +fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True) |
| 21 | + |
| 22 | +# plot first derivatives of sin(x) |
| 23 | +f = ScalarField.from_expression(grid_coarse, "sin(x)") |
| 24 | +f_grad = f.gradient("periodic") # first derivative (from gradient vector field) |
| 25 | +ScalarField.from_expression(grid_fine, "cos(x)").plot( |
| 26 | + ax=axes[0, 0], label="Expected f'" |
| 27 | +) |
| 28 | +f_grad.plot(ax=axes[0, 0], label="FD grad(f)", ls="", marker="o") |
| 29 | +plt.legend(frameon=True) |
| 30 | +plt.ylabel("") |
| 31 | +plt.xlabel("") |
| 32 | +plt.title(r"First derivative of $f(x) = \sin(x)$") |
| 33 | + |
| 34 | +# plot second derivatives of sin(x) |
| 35 | +f_laplace = f.laplace("periodic") # second derivative |
| 36 | +f_grad2 = f_grad.divergence("periodic") # second derivative using composition |
| 37 | +ScalarField.from_expression(grid_fine, "-sin(x)").plot( |
| 38 | + ax=axes[0, 1], label="Expected f''" |
| 39 | +) |
| 40 | +f_laplace.plot(ax=axes[0, 1], label="FD laplace(f)", ls="", marker="o") |
| 41 | +f_grad2.plot(ax=axes[0, 1], label="FD div(grad(f))", ls="", marker="o") |
| 42 | +plt.legend(frameon=True) |
| 43 | +plt.xlabel("") |
| 44 | +plt.title(r"Second derivative of $f(x) = \sin(x)$") |
| 45 | + |
| 46 | +# plot first derivatives of sin(x)**2 |
| 47 | +g_fine = ScalarField.from_expression(grid_fine, "sin(x)**2") |
| 48 | +g = g_fine.interpolate_to_grid(grid_coarse) |
| 49 | +expected = evaluate("2 * cos(x) * sin(x)", {"g": g_fine}) |
| 50 | +fd_1 = evaluate("d_dx(g)", {"g": g}) # first derivative (from directional derivative) |
| 51 | +expected.plot(ax=axes[1, 0], label="Expected g'") |
| 52 | +fd_1.plot(ax=axes[1, 0], label="FD grad(g)", ls="", marker="o") |
| 53 | +plt.legend(frameon=True) |
| 54 | +plt.title(r"First derivative of $g(x) = \sin(x)^2$") |
| 55 | + |
| 56 | +# plot second derivatives of sin(x)**2 |
| 57 | +expected = evaluate("2 * cos(2 * x)", {"g": g_fine}) |
| 58 | +fd_2 = evaluate("d2_dx2(g)", {"g": g}) # second derivative |
| 59 | +fd_11 = evaluate("d_dx(d_dx(g))", {"g": g}) # composition of first derivatives |
| 60 | +expected.plot(ax=axes[1, 1], label="Expected g''") |
| 61 | +fd_2.plot(ax=axes[1, 1], label="FD laplace(g)", ls="", marker="o") |
| 62 | +fd_11.plot(ax=axes[1, 1], label="FD div(grad(g))", ls="", marker="o") |
| 63 | +plt.legend(frameon=True) |
| 64 | +plt.title(r"Second derivative of $g(x) = \sin(x)^2$") |
| 65 | + |
| 66 | +# finalize plot |
| 67 | +plt.tight_layout() |
| 68 | +plt.show() |
0 commit comments