@@ -772,38 +772,31 @@ detail(brA([ksc('x^2-ny^2=1')+'('+gM2('Pell Equation')+'①)',
772772
773773
774774
775-
776- detail ( ksc ( 'a^4+b^4+c^4=d^4' ) + ' (Euler曾错误猜测无非平凡解:' + ksc ( ' a_1^k+a_2^k+⋯+a_n^k=b^k ⇒ n ≥ k') + '其中整数n,k都>1)' ,
775+ detail ( 'Euler幂和猜想(已被否证)Euler曾错误猜测无非平凡解:' + br +
776+ ksc ( 'a_1^k+a_2^k+⋯+a_n^k=b^k ⇒ n ≥ k' ) + '( 其中整数n,k都>1)' ,
777777
778778
779779 ksc ( [
780-
781- '2682440^4 + 15365639^4 + 18796760^4 = 20615673^4(Noam ~ Elkies 1986)' ,
782- '(85v^2 + 484v − 313)^4 + (68v^2 − 586v + 10)^4 + (2u)^4 = (357v^2 − 204v + 363)^4' ,
783- '其中u^2=22030 + 28849v − 56158v^2 + 36941v^3 − 31790v^4(可令v=-\\frac{31}{467},代入上式化简)' ,
784- '95800^4 + 217519^4 + 414560^4 = 422481^4 (Roger Frye 1988)' ,
785-
786780
787- 'a_1^k+a_2^k+⋯+a_n^k=b^k ⇒ n ≥ k (其中整数n,k>1,更一般的Euler幂和猜想,已被否证)' ,
788781 'k=3时成立(因为费马大定理FLT成立,则可以用反证法得知此结论)' ,
789782 'k=4、5时,不成立' ,
790- 'k=5时的一些反例:' ,
791-
792- '27^5 + 84^5 + 110^5 + 133^5 = 144^5 (Lander,Parkin, 1966)' ,
793- '(−220)^5 + 5027^5 + 6237^5 + 14068^5 = 14132^5 (Scher, Seidl 1996)' ,
794- '55^5 + 3183^5 + 28969^5 + 85282^5 = 85359^5 (Frye 2004)' ,
795783
796784 'k>5时,是否成立未知unknown' ,
797785
798786 '其它非反例的例子:' ,
799- '30^4 + 120^4 + 272^4 + 315^4 = 353^4 (Norrie 1911,最小例子)' ,
800- '19^5 + 43^5 + 46^5 + 47^5 + 67^5 = 72^5 (Lander, Parkin, Selfridge, 1967 最小例子)' ,
787+ 'k=4时' ,
788+ '30^4 + 120^4 + 272^4 + 315^4 = 353^4 (\\text{Norrie 1911},最小例子)' ,
789+
790+ 'k=5时' ,
791+ '19^5 + 43^5 + 46^5 + 47^5 + 67^5 = 72^5 (\\text{Lander, Parkin, Selfridge, 1967} 最小例子)' ,
801792
802- '7^5 + 43^5 + 57^5 + 80^5 + 100^5 = 107^5(Sastry 1934,第三小的例子)' ,
793+ '7^5 + 43^5 + 57^5 + 80^5 + 100^5 = 107^5(\\text{ Sastry 1934} ,第三小的例子)' ,
803794
804- '127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7 = 568^7 (Dodrill 1999)' ,
795+ 'k=7时' ,
796+ '127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7 = 568^7 (\\text{Dodrill 1999})' ,
805797
806- '90^8 + 223^8 + 478^8 + 524^8 + 748^8 + 1088^8 + 1190^8 + 1324^8 = 1409^8 (Chase 2000)' ,
798+ 'k=8时' ,
799+ '90^8 + 223^8 + 478^8 + 524^8 + 748^8 + 1088^8 + 1190^8 + 1324^8 = 1409^8 (\\text{Chase 2000})' ,
807800
808801 ] ) . join ( br ) +
809802 refer ( [
@@ -814,23 +807,51 @@ detail(ksc('a^4+b^4+c^4=d^4')+' (Euler曾错误猜测无非平凡解:'+ksc('a_
814807) ,
815808
816809
810+ detail ( 'Euler幂和猜想的反例' ,
811+
812+
813+ ksc ( [
814+ 'k=4时的一些反例:' ,
815+ '(参见方程a^3+b^3+c^3=d^4)' ,
816+
817+ 'k=5时的一些反例:' ,
818+
819+ '27^5 + 84^5 + 110^5 + 133^5 = 144^5 (\\text{Lander,Parkin, 1966})' ,
820+ '(−220)^5 + 5027^5 + 6237^5 + 14068^5 = 14132^5 (\\text{Scher, Seidl 1996})' ,
821+ '55^5 + 3183^5 + 28969^5 + 85282^5 = 85359^5 (\\text{Frye 2004})' ,
822+
823+ 'k>5时,是否成立未知unknown' ,
824+
825+
826+ ] ) . join ( br ) +
827+ refer ( [
828+ enwiki ( "Euler%27s_sum_of_powers_conjecture" ) ,
829+
830+
831+ ] )
832+ ) ,
833+
817834
818835
819- detail ( ksc ( 'a^3+b^3+c^3=d^3' ) + ' 有无穷多组非平凡解,如(3,4,5,6)' ,
836+ detail ( ksc ( 'a^3+b^3+c^3=d^3' ) + ' 有无穷多组非平凡解,如(3,4,5,6)=216(柏拉图数) ' ,
820837
821838
822839 ksc ( [
823840 '3^3+4^3+5^3=6^3(令下式a=1,b=0即得)' ,
824- '(3a^{2}+5ab-5b^{2})^{3}+(4a^{2}-4ab+6b^{2})^{3}+(5a^{2}-5ab-3b^{2})^{3}=(6a^{2}-4ab+4b^{2})^{3}(拉马努金公式)' ,
841+ '【1】 (3a^{2}+5ab-5b^{2})^{3}+(4a^{2}-4ab+6b^{2})^{3}+(5a^{2}-5ab-3b^{2})^{3}=(6a^{2}-4ab+4b^{2})^{3}(拉马努金公式)' ,
825842 '同一个二次项系数依次为(3,4,5,6),(5,-4,-5,-4),(-5,6,-3,4)' ,
826- '(3a^{2}-5ab-5b^{2})^{3}+(4a^{2}+4ab+6b^{2})^{3}+(5a^{2}+5ab-3b^{2})^{3}=(6a^{2}+4ab+4b^{2})^{3}(变体b→-b 或 a↔b)' ,
843+ '' ,
844+ '【2】(3a^{2}-5ab-5b^{2})^{3}+(4a^{2}+4ab+6b^{2})^{3}+(5a^{2}+5ab-3b^{2})^{3}=(6a^{2}+4ab+4b^{2})^{3}(变体b→-b 或 a↔b)' ,
827845 '同一个二次项系数依次为(3,4,5,6),(-5,4,5,4),(-5,6,-3,4)' ,
828-
829- 'b^{3}(a^{3}+b^{3})^{3}+a^{3}(a^{3}-2b^{3})^{3}+b^{3}(2a^{3}-b^{3})^{3}=a^{3}(a^{3}+b^{3})^{3}' ,
846+ '' ,
847+ '【3】 b^{3}(a^{3}+b^{3})^{3}+a^{3}(a^{3}-2b^{3})^{3}+b^{3}(2a^{3}-b^{3})^{3}=a^{3}(a^{3}+b^{3})^{3}' ,
830848 '括号中三次项系数,及括号外的项的底分别为(1,1,2,1;1,-2,-1,1;b,a,b,a)' ,
831- 'a^{3}(a^{3}-b^{3})^{3}+b^{3}(a^{3}-b^{3})^{3}+b^{3}(2a^{3}+b^{3})^{3}=a^{3}(a^{3}+2b^{3})^{3}(变体b→-b或 a↔b)' ,
849+
850+ '' ,
851+ '【4】a^{3}(a^{3}-b^{3})^{3}+b^{3}(a^{3}-b^{3})^{3}+b^{3}(2a^{3}+b^{3})^{3}=a^{3}(a^{3}+2b^{3})^{3}(变体b→-b或 a↔b)' ,
832852 '括号中三次项系数,及括号外的项的底分别为(1,1,2,1;-1,-1,1,2;a,b,b,a)' ,
833853
854+ '' ,
834855 '2100000可以用9种方法表示成3个立方数之和' ,
835856
836857
@@ -843,6 +864,21 @@ detail(ksc('a^3+b^3+c^3=d^3')+' 有无穷多组非平凡解,如(3,4,5,6)' ,
843864 ] )
844865) ,
845866
867+ detail ( ksc ( 'a^4+b^4+c^4=d^4' ) + ' 有无穷多组非平凡解' ,
868+ ksc ( [
869+ '2682440^4 + 15365639^4 + 18796760^4 = 20615673^4(\\text{Noam ~ Elkies 1986})' ,
870+ '(85v^2 + 484v − 313)^4 + (68v^2 − 586v + 10)^4 + (2u)^4 = (357v^2 − 204v + 363)^4' ,
871+ '其中u^2=22030 + 28849v − 56158v^2 + 36941v^3 − 31790v^4(可令v=-\\frac{31}{467},代入上式化简)' ,
872+ '95800^4 + 217519^4 + 414560^4 = 422481^4 (\\text{Roger Frye 1988})' ,
873+ ] ) . join ( br ) +
874+ refer ( [
875+ enwiki ( "Euler%27s_sum_of_powers_conjecture" ) ,
876+
877+
878+ ] )
879+ ) ,
880+
881+
846882detail ( ksc ( 'a^4=b^4+c^2' ) + '无正整数解' + br +
847883 ' (Fermat直角三角形定理,使用无限递降法证明) ' ,
848884 refer ( [
@@ -1345,7 +1381,7 @@ detail(ksc('ax+by=c,其中(a,b)=1 有通解'),
13451381 ] )
13461382) ,
13471383
1348- detail ( 'ax^2+by^2+cxy+dx+ey+f=0' , [
1384+ detail ( ksc ( 'ax^2+by^2+cxy+dx+ey+f=0' ) , [
13491385 detail ( ksc ( piece ( [ 'x^2+1=kx 只有平凡整数解x=±1,即(1,2),(-1,-2)' ,
13501386 'x^2-1=kx 只有平凡整数解x=±1,即(1,0),(-1,0)'
13511387 ] ) ) ,
0 commit comments