forked from hli1221/densefuse-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
188 lines (155 loc) · 5.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
from os import listdir, mkdir, sep
from os.path import join, exists, splitext
import random
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable
from torch.utils.serialization import load_lua
from args_fusion import args
from scipy.misc import imread, imsave, imresize
import matplotlib as mpl
import cv2
from torchvision import datasets, transforms
def list_images(directory):
images = []
names = []
dir = listdir(directory)
dir.sort()
for file in dir:
name = file.lower()
if name.endswith('.png'):
images.append(join(directory, file))
elif name.endswith('.jpg'):
images.append(join(directory, file))
elif name.endswith('.jpeg'):
images.append(join(directory, file))
name1 = name.split('.')
names.append(name1[0])
return images
def tensor_load_rgbimage(filename, size=None, scale=None, keep_asp=False):
img = Image.open(filename).convert('RGB')
if size is not None:
if keep_asp:
size2 = int(size * 1.0 / img.size[0] * img.size[1])
img = img.resize((size, size2), Image.ANTIALIAS)
else:
img = img.resize((size, size), Image.ANTIALIAS)
elif scale is not None:
img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS)
img = np.array(img).transpose(2, 0, 1)
img = torch.from_numpy(img).float()
return img
def tensor_save_rgbimage(tensor, filename, cuda=True):
if cuda:
# img = tensor.clone().cpu().clamp(0, 255).numpy()
img = tensor.cpu().clamp(0, 255).data[0].numpy()
else:
# img = tensor.clone().clamp(0, 255).numpy()
img = tensor.clamp(0, 255).numpy()
img = img.transpose(1, 2, 0).astype('uint8')
img = Image.fromarray(img)
img.save(filename)
def tensor_save_bgrimage(tensor, filename, cuda=False):
(b, g, r) = torch.chunk(tensor, 3)
tensor = torch.cat((r, g, b))
tensor_save_rgbimage(tensor, filename, cuda)
def gram_matrix(y):
(b, ch, h, w) = y.size()
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
def matSqrt(x):
U,D,V = torch.svd(x)
return U * (D.pow(0.5).diag()) * V.t()
# load training images
def load_dataset(image_path, BATCH_SIZE, num_imgs=None):
if num_imgs is None:
num_imgs = len(image_path)
original_imgs_path = image_path[:num_imgs]
# random
random.shuffle(original_imgs_path)
mod = num_imgs % BATCH_SIZE
print('BATCH SIZE %d.' % BATCH_SIZE)
print('Train images number %d.' % num_imgs)
print('Train images samples %s.' % str(num_imgs / BATCH_SIZE))
if mod > 0:
print('Train set has been trimmed %d samples...\n' % mod)
original_imgs_path = original_imgs_path[:-mod]
batches = int(len(original_imgs_path) // BATCH_SIZE)
return original_imgs_path, batches
def get_image(path, height=256, width=256, mode='L'):
if mode == 'L':
image = imread(path, mode=mode)
elif mode == 'RGB':
image = Image.open(path).convert('RGB')
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
return image
def get_train_images_auto(paths, height=256, width=256, mode='RGB'):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height, width, mode=mode)
if mode == 'L':
image = np.reshape(image, [1, image.shape[0], image.shape[1]])
else:
image = np.reshape(image, [image.shape[2], image.shape[0], image.shape[1]])
images.append(image)
images = np.stack(images, axis=0)
images = torch.from_numpy(images).float()
return images
def get_test_images(paths, height=None, width=None, mode='RGB'):
ImageToTensor = transforms.Compose([transforms.ToTensor()])
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height, width, mode=mode)
if mode == 'L':
image = np.reshape(image, [1, image.shape[0], image.shape[1]])
else:
# test = ImageToTensor(image).numpy()
# shape = ImageToTensor(image).size()
image = ImageToTensor(image).float().numpy()*255
images.append(image)
images = np.stack(images, axis=0)
images = torch.from_numpy(images).float()
return images
# colormap
def colormap():
return mpl.colors.LinearSegmentedColormap.from_list('cmap', ['#FFFFFF', '#98F5FF', '#00FF00', '#FFFF00','#FF0000', '#8B0000'], 256)
def save_images(path, data):
# if isinstance(paths, str):
# paths = [paths]
#
# t1 = len(paths)
# t2 = len(datas)
# assert (len(paths) == len(datas))
# if prefix is None:
# prefix = ''
# if suffix is None:
# suffix = ''
if data.shape[2] == 1:
data = data.reshape([data.shape[0], data.shape[1]])
imsave(path, data)
# for i, path in enumerate(paths):
# data = datas[i]
# # print('data ==>>\n', data)
# if data.shape[2] == 1:
# data = data.reshape([data.shape[0], data.shape[1]])
# # print('data reshape==>>\n', data)
#
# name, ext = splitext(path)
# name = name.split(sep)[-1]
#
# path = join(save_path, prefix + suffix + ext)
# print('data path==>>', path)
#
# # new_im = Image.fromarray(data)
# # new_im.show()
#
# imsave(path, data)