Skip to content

Commit 98ab9bf

Browse files
committed
cleaned up gapminder library annotation
1 parent 5f547c2 commit 98ab9bf

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

inst/tutorials/statistical_models_ws/statistical_models_ws.Rmd

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -622,12 +622,12 @@ Unlike the fruit fly data set, no pre-manipulation is needed so let's view the d
622622

623623
```{r gapminder-package, exercise = TRUE}
624624
# load and check the data
625-
library(<package>) # not installed on this machine
625+
library(<package>)
626626
<function>(gapminder)
627627
```
628628

629629
```{r gapminder-package-solution}
630-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
630+
library(gapminder) # Data from Gapminder
631631
head(gapminder)
632632
```
633633

@@ -650,7 +650,7 @@ gapminder %>%
650650
```
651651

652652
```{r setup-gapminder-plot, include = FALSE}
653-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
653+
library(gapminder) # Data from Gapminder
654654
```
655655

656656
Although there is very high variance, we do see a certain trend with mean life expectancy increasing over time. Similarly, we can naively hypothesize that life expectancy is higher where the per-capita GDP is higher. In R, this is represented with the formula: `lifeExp ~ gdpPercap`.
@@ -673,7 +673,7 @@ gapminder %>%
673673
```
674674

675675
```{r setup-gapminder-plot2, include = FALSE}
676-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
676+
library(gapminder) # Data from Gapminder
677677
```
678678

679679
In the cases above, we plotted a relationship between a continuous *dependent variable* and a continuous *explanatory* variable.
@@ -713,7 +713,7 @@ lifeExp_model1 <- lm(lifeExp ~ year,
713713
```
714714

715715
```{r setup-gapminder-model1, include = FALSE}
716-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
716+
library(gapminder) # Data from Gapminder
717717
```
718718

719719
Now, use the function `summary()` to see all the relevant results.
@@ -727,7 +727,7 @@ summary(lifeExp_model1)
727727
```
728728

729729
```{r setup-gapminder-model1-sum, include = FALSE}
730-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
730+
library(gapminder) # Data from Gapminder
731731
lifeExp_model1 <- lm(lifeExp ~ year,
732732
data = gapminder)
733733
```
@@ -763,7 +763,7 @@ gapminder %>%
763763
```
764764

765765
```{r setup-gapminder-line1, include = FALSE}
766-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
766+
library(gapminder) # Data from Gapminder
767767
```
768768

769769
### Residuals
@@ -782,7 +782,7 @@ plot(lifeExp_model1)
782782
```
783783

784784
```{r setup-gapminder-res, include = FALSE}
785-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
785+
library(gapminder) # Data from Gapminder
786786
lifeExp_model1 <- lm(lifeExp ~ year,
787787
data = gapminder)
788788
```
@@ -875,7 +875,7 @@ par(mfrow=c(2,2))
875875
```
876876

877877
```{r setup-ex2, include = FALSE}
878-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
878+
library(gapminder) # Data from Gapminder
879879
```
880880

881881
```{r ex2-hint-1}
@@ -963,7 +963,7 @@ plot(lifeExp_model2)
963963
```
964964

965965
```{r setup-mlr-one-res, include = FALSE}
966-
library(gapminder) # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder # Data from Gapminder
966+
library(gapminder) # Data from Gapminder
967967
lifeExp_model2 <- lm(lifeExp ~ year + gdpPercap,
968968
data = gapminder)
969969
```

0 commit comments

Comments
 (0)