|
| 1 | +"""Python diagnostic for plotting boxplots.""" |
| 2 | +import logging |
| 3 | +from pathlib import Path |
| 4 | + |
| 5 | +import iris |
| 6 | +import matplotlib.pyplot as plt |
| 7 | +import pandas as pd |
| 8 | +import seaborn as sns |
| 9 | + |
| 10 | +from esmvaltool.diag_scripts.shared import ( |
| 11 | + ProvenanceLogger, |
| 12 | + get_diagnostic_filename, |
| 13 | + get_plot_filename, |
| 14 | + group_metadata, |
| 15 | + run_diagnostic, |
| 16 | + select_metadata, |
| 17 | +) |
| 18 | + |
| 19 | +logger = logging.getLogger(Path(__file__).stem) |
| 20 | + |
| 21 | +VAR_NAMES = { |
| 22 | + 'cl': 'cloud_fraction', |
| 23 | + 'cli': 'ice_water_content', |
| 24 | + 'clw': 'liquid_water_content', |
| 25 | +} |
| 26 | +PALETTE = { |
| 27 | + 'high ECS': 'royalblue', |
| 28 | + 'med ECS': 'green', |
| 29 | + 'low ECS': 'orange', |
| 30 | +} |
| 31 | + |
| 32 | + |
| 33 | +def get_provenance_record(ancestor_files): |
| 34 | + """Create a provenance record describing the diagnostic data and plot.""" |
| 35 | + caption = ("Relative change per degree of warming averaged over the" |
| 36 | + "chosen region.") |
| 37 | + |
| 38 | + record = { |
| 39 | + 'caption': caption, |
| 40 | + 'statistics': ['mean'], |
| 41 | + 'domains': ['global'], |
| 42 | + 'plot_types': ['zonal'], |
| 43 | + 'authors': [ |
| 44 | + 'bock_lisa', |
| 45 | + ], |
| 46 | + 'references': [ |
| 47 | + 'bock24acp', |
| 48 | + ], |
| 49 | + 'ancestors': ancestor_files, |
| 50 | + } |
| 51 | + return record |
| 52 | + |
| 53 | + |
| 54 | +def read_data(filename): |
| 55 | + """Compute an example diagnostic.""" |
| 56 | + logger.debug("Loading %s", filename) |
| 57 | + cube = iris.load_cube(filename) |
| 58 | + |
| 59 | + if cube.var_name == 'cli': |
| 60 | + cube.convert_units('g/kg') |
| 61 | + elif cube.var_name == 'clw': |
| 62 | + cube.convert_units('g/kg') |
| 63 | + |
| 64 | + cube = iris.util.squeeze(cube) |
| 65 | + return cube |
| 66 | + |
| 67 | + |
| 68 | +def compute_diff(filename1, filename2): |
| 69 | + """Compute difference between two cubes.""" |
| 70 | + logger.debug("Loading %s", filename1) |
| 71 | + cube1 = iris.load_cube(filename1) |
| 72 | + cube2 = iris.load_cube(filename2) |
| 73 | + |
| 74 | + if cube1.var_name == 'cli': |
| 75 | + cube1.convert_units('g/kg') |
| 76 | + cube2.convert_units('g/kg') |
| 77 | + elif cube1.var_name == 'clw': |
| 78 | + cube1.convert_units('g/kg') |
| 79 | + cube2.convert_units('g/kg') |
| 80 | + |
| 81 | + cube = cube2 - cube1 |
| 82 | + cube.metadata = cube1.metadata |
| 83 | + return cube |
| 84 | + |
| 85 | + |
| 86 | +def compute_diff_temp(input_data, group, var, dataset): |
| 87 | + """Compute relative change per temperture change.""" |
| 88 | + dataset_name = dataset['dataset'] |
| 89 | + var = dataset['short_name'] |
| 90 | + |
| 91 | + input_file_1 = dataset['filename'] |
| 92 | + |
| 93 | + var_data_2 = select_metadata(input_data, |
| 94 | + short_name=var, |
| 95 | + dataset=dataset_name, |
| 96 | + variable_group=var + "_" + group[1]) |
| 97 | + if not var_data_2: |
| 98 | + raise ValueError( |
| 99 | + f"No '{var}' data for '{dataset_name}' in '{group[1]}' available") |
| 100 | + |
| 101 | + input_file_2 = var_data_2[0]['filename'] |
| 102 | + |
| 103 | + tas_data_1 = select_metadata(input_data, |
| 104 | + short_name='tas', |
| 105 | + dataset=dataset_name, |
| 106 | + variable_group='tas_' + group[0]) |
| 107 | + tas_data_2 = select_metadata(input_data, |
| 108 | + short_name='tas', |
| 109 | + dataset=dataset_name, |
| 110 | + variable_group='tas_' + group[1]) |
| 111 | + if not tas_data_1: |
| 112 | + raise ValueError( |
| 113 | + f"No 'tas' data for '{dataset_name}' in '{group[0]}' available") |
| 114 | + if not tas_data_2: |
| 115 | + raise ValueError( |
| 116 | + f"No 'tas' data for '{dataset_name}' in '{group[1]}' available") |
| 117 | + input_file_tas_1 = tas_data_1[0]['filename'] |
| 118 | + input_file_tas_2 = tas_data_2[0]['filename'] |
| 119 | + |
| 120 | + cube = read_data(input_file_1) |
| 121 | + |
| 122 | + cube_diff = compute_diff(input_file_1, input_file_2) |
| 123 | + cube_tas_diff = compute_diff(input_file_tas_1, input_file_tas_2) |
| 124 | + |
| 125 | + cube_diff = (100. * (cube_diff / iris.analysis.maths.abs(cube)) / |
| 126 | + cube_tas_diff) |
| 127 | + |
| 128 | + return cube_diff |
| 129 | + |
| 130 | + |
| 131 | +def create_data_frame(input_data, cfg): |
| 132 | + """Create data frame.""" |
| 133 | + data_frame = pd.DataFrame(columns=['Variable', 'Group', 'Dataset', 'Data']) |
| 134 | + |
| 135 | + ifile = 0 |
| 136 | + |
| 137 | + all_vars = group_metadata(input_data, 'short_name') |
| 138 | + groups = group_metadata(input_data, 'variable_group', sort='dataset') |
| 139 | + |
| 140 | + for var in all_vars: |
| 141 | + if var != 'tas': |
| 142 | + logger.info("Processing variable %s", var) |
| 143 | + |
| 144 | + if var == 'clivi': |
| 145 | + varname = 'iwp' |
| 146 | + else: |
| 147 | + varname = var |
| 148 | + |
| 149 | + for group_names in cfg['group_by']: |
| 150 | + logger.info("Processing group %s of variable %s", |
| 151 | + group_names[0], var) |
| 152 | + |
| 153 | + for dataset in groups[var + "_" + group_names[0]]: |
| 154 | + dataset_name = dataset['dataset'] |
| 155 | + |
| 156 | + if dataset_name not in cfg['exclude_datasets']: |
| 157 | + cube_diff = compute_diff_temp(input_data, group_names, |
| 158 | + var, dataset) |
| 159 | + |
| 160 | + group_name = group_names[0].split('_')[1] + " ECS" |
| 161 | + |
| 162 | + data_frame.loc[ifile] = [ |
| 163 | + varname, group_name, dataset_name, cube_diff.data |
| 164 | + ] |
| 165 | + ifile = ifile + 1 |
| 166 | + |
| 167 | + data_frame['Data'] = data_frame['Data'].astype(str).astype(float) |
| 168 | + |
| 169 | + return data_frame |
| 170 | + |
| 171 | + |
| 172 | +def plot_boxplot(data_frame, input_data, cfg): |
| 173 | + """Create boxplot.""" |
| 174 | + sns.set_style('darkgrid') |
| 175 | + sns.set(font_scale=2) |
| 176 | + sns.boxplot(data=data_frame, |
| 177 | + x='Variable', |
| 178 | + y='Data', |
| 179 | + hue='Group', |
| 180 | + palette=PALETTE) |
| 181 | + plt.ylabel('Relative change (%/K)') |
| 182 | + if 'y_range' in cfg: |
| 183 | + plt.ylim(cfg.get('y_range')) |
| 184 | + plt.title(cfg['title']) |
| 185 | + |
| 186 | + provenance_record = get_provenance_record( |
| 187 | + ancestor_files=[d['filename'] for d in input_data]) |
| 188 | + |
| 189 | + # Save plot |
| 190 | + plot_path = get_plot_filename('boxplot' + '_' + cfg['filename_attach'], |
| 191 | + cfg) |
| 192 | + plt.savefig(plot_path) |
| 193 | + logger.info("Wrote %s", plot_path) |
| 194 | + plt.close() |
| 195 | + |
| 196 | + with ProvenanceLogger(cfg) as provenance_logger: |
| 197 | + provenance_logger.log(plot_path, provenance_record) |
| 198 | + |
| 199 | + |
| 200 | +def main(cfg): |
| 201 | + """Run diagnostic.""" |
| 202 | + cfg.setdefault('exclude_datasets', |
| 203 | + ['MultiModelMean', 'MultiModelP5', 'MultiModelP95']) |
| 204 | + cfg.setdefault('title', 'Test') |
| 205 | + |
| 206 | + plt.figure(constrained_layout=True, figsize=(12, 8)) |
| 207 | + |
| 208 | + # Get input data |
| 209 | + input_data = list(cfg['input_data'].values()) |
| 210 | + |
| 211 | + # Create data frame |
| 212 | + data_frame = create_data_frame(input_data, cfg) |
| 213 | + |
| 214 | + # Create plot |
| 215 | + plot_boxplot(data_frame, input_data, cfg) |
| 216 | + |
| 217 | + # Save file |
| 218 | + basename = "boxplot_region_" + cfg['filename_attach'] |
| 219 | + csv_path = get_diagnostic_filename(basename, cfg).replace('.nc', '.csv') |
| 220 | + data_frame.to_csv(csv_path) |
| 221 | + logger.info("Wrote %s", csv_path) |
| 222 | + |
| 223 | + |
| 224 | +if __name__ == '__main__': |
| 225 | + |
| 226 | + with run_diagnostic() as config: |
| 227 | + main(config) |
0 commit comments