diff --git a/FLiESANN/process_FLiES_ANN.py b/FLiESANN/process_FLiES_ANN.py index dfb572a..1f09b00 100644 --- a/FLiESANN/process_FLiES_ANN.py +++ b/FLiESANN/process_FLiES_ANN.py @@ -94,7 +94,7 @@ def FLiESANN( raise ValueError("no time given between time_UTC, day_of_year, and hour_of_day") if GEOS5FP_connection is None: - GEOS5FP_connection = GEOS5FP(working_directory=DEFAULT_WORKING_DIRECTORY, download_directory=GEOS5FP_DIRECTORY) + GEOS5FP_connection = GEOS5FP() ## FIXME need to fetch default values for parameters: COT, AOT, vapor_gccm, ozone_cm, elevation_km, SZA, KG_climate diff --git a/FLiESANN/version.txt b/FLiESANN/version.txt index 13175fd..c9929e3 100644 --- a/FLiESANN/version.txt +++ b/FLiESANN/version.txt @@ -1 +1 @@ -1.4.1 \ No newline at end of file +1.4.2 \ No newline at end of file diff --git a/Processing FLiES with a raster and default parameters.ipynb b/Processing FLiES with a raster and default parameters.ipynb index 746342d..a4a53f2 100644 --- a/Processing FLiES with a raster and default parameters.ipynb +++ b/Processing FLiES with a raster and default parameters.ipynb @@ -11,9 +11,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2025-04-01 16:33:08 INFO] checking URL: \u001b[34mhttps://e4ftl01.cr.usgs.gov\u001b[0m\n", + "[2025-04-01 16:33:08 INFO] remote verified with status \u001b[36m200\u001b[0m in \u001b[32m0.39\u001b[0m seconds: \u001b[34mhttps://e4ftl01.cr.usgs.gov\u001b[0m\n", + "[2025-04-01 16:33:08 INFO] SRTM working directory: \u001b[34m/Users/gregoryhalverson/data/NASADEM\u001b[0m\n", + "[2025-04-01 16:33:08 INFO] SRTM download directory: \u001b[34m/Users/gregoryhalverson/data/NASADEM\u001b[0m\n" + ] + } + ], "source": [ "from os.path import join\n", "from datetime import datetime, date, time\n", @@ -23,7 +34,7 @@ "from koppengeiger import load_koppen_geiger\n", "from solar_apparent_time import UTC_to_solar\n", "import sun_angles\n", - "from FLiESANN import process_FLiES_ANN\n", + "from FLiESANN import FLiESANN\n", "from matplotlib.colors import LinearSegmentedColormap\n", "import logging\n", "logging.disable(logging.CRITICAL)" @@ -38,9 +49,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs/Xnwv+1Z1/d/XPprrbWL1K0YlpCVLUAIyg6ylAoqm0IXi1QBZxSsdah0tB39o0NbtUJLhRaUpVorDkJZFKZqggbBsCYhC0nIgo0LtRZK627zm+f7N4/v75WL733nvu/kJnzzPY+Z97y36zqvcznO87qO1/E6jvPn3N3dvenuyJEjR44cOXLkyJEjR44cOXLkyJEjR448cPJz394VOHLkyJEjR44cOXLkyJEjR44cOXLkyJEjT0wOwHvkyJEjR44cOXLkyJEjR44cOXLkyJEjD6gcgPfIkSNHjhw5cuTIkSNHjhw5cuTIkSNHHlA5AO+RI0eOHDly5MiRI0eOHDly5MiRI0eOPKByAN4jR44cOXLkyJEjR44cOXLkyJEjR44ceUDlALxHjhw5cuTIkSNHjhw5cuTIkSNHjhw58oDKAXiPHDly5MiRI0eOHDly5MiRI0eOHDly5AGVA/AeOXLkyJEjR44cOXLkyJEjR44cOXLkyAMqB+A9cuTIkSNHjhw5cuTIkSNHjhw5cuTIkQdUDsB75MiRI0eOHDly5MiRI0eOHDly5MiRIw+oHID3yJEjR44cOXLkyJEjR44cOXLkyJEjRx5QOQDvkSNHjhw5cuTIkSNHjhw5cuTIkSNHjjygcgDeI0eOHDly5MiRI0eOHDly5MiRI0eOHHlA5QC8R44cOXLkyJEjR44cOXLkyJEjR44cOfKAygF4jxw5cuTIkSNHjhw5cuTIkSNHjhw5cuQBlQPwHjly5MiRI0eOHDly5MiRI0eOHDly5MgDKgfgPXLkyJEjR44cOXLkyJEjR44cOXLkyJEHVA7Ae+TIkSNHjhw5cuTIkSNHjhw5cuTIkSMPqByA98iRI0eOHDly5MiRI0eOHDly5MiRI0ceUDkA75EjR44cOXLkyJEjR44cOXLkyJEjR448oHIA3iNHjhw5cuTIkSNHjhw5cuTIkSNHjhx5QOUAvEeOHDly5MiRI0eOHDly5MiRI0eOHDnygMoBeI8cOXLkyJEjR44cOXLkyJEjR44cOXLkAZUD8B45cuTIkSNHjhw5cuTIkSNHjhw5cuTIAyoH4D1y5MiRI0eOHDly5MiRI0eOHDly5MiRB1QOwHvkyJEjR44cOXLkyJEjR44cOXLkyJEjD6gcgPfIkSNHjhw5cuTIkSNHjhw5cuTIkSNHHlA5AO+RI0eOHDly5MiRI0eOHDly5MiRI0eOPKByAN4jR44cOXLkyJEjR44cOXLkyJEjR44ceUDlALxHjjzk8vznP//uTW960+39yJEjR44cOXLkyJEjR44cOXLkyIMlB+A98sDLL/pFv+juMz7jM+7+8B/+w3cveMEL7l796lff/cRP/MTdP/pH/+ju7/ydv3MDLr/wC7/w7hf/4l/8qOUEcj7e16PJz/t5P+/u8z7v8+7+yl/5K3c//uM/fvf3//7fv3vNa15z9xVf8RV37/me7/mY2/dO7/ROd3/wD/7Buxe/+MV3P/mTP3l79bnf3lKbjhw5cuTIkSNHjhw5cuTIkSNHjrzjSyjVeZ3XA/v6mI/5mDc9FvnxH//xN338x3/8I5bzeOWVr3zlI5b1Tu/0Tm/663/9rz/iuf/gH/yDN/3W3/pb32LbPuiDPuhNf/Nv/s1HLOeNb3zjm573vOe9Vf33/Oc//1ZW72/vsTyv8zqv8zqv8zqv8zqv8zqv8zqv8zqv8zqvu8f1+vlvb3T5yJG3hfzYj/3Yjan7/d///Xd/42/8jbu/9bf+1t3P/bk/9+5X/spfeffpn/7pd5/6qZ9690t+yS+5++Zv/ua7D/qgD7p7yUte8tPKeO/3fu+3eJ3P+qzPurGBk6/92q+97zFd9xu/8Rtv10m+4Ru+4e4rv/Ir7/7e3/t7d7/qV/2qu9//+3//3S/7Zb/s7r//7//7uze+8Y133/7t337fcqr7t3zLt9z90l/6S+/+yT/5J3f/9X/9X99967d+6+2/T/qkT7r7j/6j/+ju3/g3/o3bMc997nNvZR05cuTIkSNHjhw5cuTIkSNHjhx5+OTtjjKf13m9Na+f+3N/7ls85jf8ht9wj/X6Dd/wDU/4Wt/zPd9zK+Of/bN/9qanPOUp9z3msz/7s+9d68u+7Mt+2v/v8R7v8aaf+ImfuP3/qle96k0/7+f9vPuW87Vf+7X3yvn0T//0n/b/b/yNv/He/1/91V/9hNt0GLzndV7ndV7ndV7ndV7ndV7ndV7ndV7ndV53D/Lr7V6B8zqvn5HXK17xinupGp7I+c94xjPuAap/6S/9pUc87mUve9ntmL/7d//um37BL/gF9z3m9/7e3/uo4O0v+2W/7E3/9J/+09v/f+Ev/IVHvFb/JR3bOU+kXQfgPa/zOq/zOq/zOq/zOq/zOq/zOq/zOq/zuntgX2eTtSMPjfzUT/3U7f1f+Bf+hSd0/r//7//79z4/UnqGpz/96fc2UPv6r//6u3/wD/7BfY/7mq/5mnufP+VTPuWn/f/rf/2vv23Slnz1V3/1I9ZJOR3bOU+W/Hv/3r9394//8T++bSz3whe+8O5f+Vf+lXv/lRqj33tP3uM93uPuy7/8y+9+9Ed/9Lax3Ote97q7r/qqr7p7l3d5lzcr873e673u/sSf+BO34+qn0mz8sT/2x26pNI4cOXLkyJEjR44cOXLkyJEjR448dnm7o8zndV5P9iv27T/+x//4xlR90Yte9ITKeP3rX387/6d+6qfe9At/4S98i+kZPuMzPuNRy2uTtqRyHy09w6Mxc3/5L//l9477mq/5mieFwfsFX/AFt5QU2MRXVvKe34Z3P/mTP3nfDeH+9t/+22965jOfeTvnMz/zM9/0D//hP7zvca973eve9Ct+xa94u+vMeZ3XeZ3XeZ3XeZ3XeZ3XeZ3XeZ3XeZ3X3QPwOgzeI++w8gt+wS+4e9rTnnb3u3/37777zu/8zrt/7p/7526/f8mXfMnjLuujPuqj7t71Xd/19vnP/bk/d/f//D//z32Pw95NXvnKVz5qmf5/ylOecvcv/ov/4n3L+Ymf+Im7v/N3/s4jlvG3//bfvvvJn/zJ2+dnP/vZd29r+QN/4A/cfemXfult47g/82f+zI0l/Eis5DZ8i7VcnX/n7/ydt03mPuzDPuzuj/7RP3r3//6//+9tY7mYvB/4gR9493Vf93U35u5v/a2/9e55z3verX/7LXm3d3u324ZyR44cOXLkyJEjR44cOXLkyJEjR96y/PzHcMyRIw+MfNZnfdabpT+4yhd/8Rff/U//0//0VqVnAETeT37lr/yV9z7/b//b//aoZf6Nv/E3bu+Bp533qle96qeV85bKUE4pEwKK35by3/w3/83d53/+598+/w//w/9w99t/+2+/pWJ4JHnGM55xa8OHfuiH3v3dv/t37/3+Xd/1XXf/9J/+07sv/MIvvAG+3/Zt33b3ohe96O7jPu7j3gwsDoQvfcZv+k2/6e7TPu3T7v71f/1ff7Ny3pK88zu/86P+///5//x/biD4j//4j99e/+yf/bPHXPaRI0eOHDly5MiRI0ceDCl93S/9pb/09vklL3nJLdXcIx33y3/5L7/72SwReo7dcuTIkcciB+A98lDID/7gD9597ud+7t33fd/3PSEmcIAjMPUv/+W//IjH/qJf9Ivuff6//+//+1HLXRbwv/Qv/Uv3LectlbHlXMt4otKDTiB5eXeT//K//C/vvuiLvugxnfsFX/AF9wVly60bwJsE3H7kR37kfZnA5e4N4I1t/cEf/MF33/It3/KY6/1YwPAjR44cOXLkyJEjR448PFK04CPZgIG7P9ttiIg/b3zjG9/e1Thy5MgDICdFw5F3KPmmb/qmu/d+7/e+vbqZf+ZnfuYtpcL7v//73/3pP/2n7z7xEz/xcZf5yZ/8yXf/8r/8L98+/8k/+ScflcW6G7g9kqeY/KN/9I/eDES+XzlvqYwt51rGE5Gu+43f+I33wN3/+D/+jx8zuPt//p//5913fMd33Pe/17/+9Xf/1//1f93zoj9S+ooXv/jF9z4/9alPfQItOHLkyJEjR44cOXLkyJEjR44cebjkMHiPvENJ+WjlpE3y1pY7NsDya7/2a+/+l//lf7nlfe3zE0nP8JbO+4f/8B++WUqABXGv8s//8//8vc9XNmvl/MJf+AtvZbwlUc4j5cZ9rBJr+Nu//dtv7NrCgErJUM7cxyqvfvWrH/X/cvMGlG8qivsds/V5PLLpMR7p/+/5nu+5fQ78/1t/62/dvbXyc37Oz7n7V//Vf/VW70cD/p8sielcnulyNj/96U+/e5d3eZcb0N/4/dRP/dQ9/eu46lqqjJwGsbRLDdJxMcDTt36LBd7r5//8/9+tQZs6rv8ru3J6pXf91rF973PH995/XadX53RM4WWNaTpQTuZeziPVqbr+k3/yT2516r050Hl9//t//+/f6tvcqG30pevUtsqsjN6TflNun2tHjobKSTruX/vX/rVbfeuv6tn1+t713umd3ulW/1J6/B//x/9xr8zKqR21t/LSgepQGdWp8iv3V/yKX3FrH4eNfuy42lYbul6/x3zv98awMTCfjd1rXvOaWzkd30ub64v6pGtVXnXve2V2Df1TGVj+1aFjq3vlK7N6q1Ntqpz6zhpTREFl9L3f9SF96ficOb2XV7zy9FXfO6f+1G/1lWv3W2V3bm3vuMagdml3v9Xm//1//99vr37r2l2jdb9UNX1vbvfe987hKKuu6dJ7vMd73P3iX/yLb7/XXv1UOV2rc/uvelef+q7611cdT9fqo8pr3OhPx9RubTa/+q06x8DpfH1tPhRG2lyunJhE6V591Lpav1Wf6qc97g9dv3r0ueOqQ9ekC/1Xm8wrc86YVbf6u2N7de3qUr93Tv3aeeas+dVvvTq38jq29tY2Y/n3/t7fu7fuWDc613ikTz7XnurUsZVXW/ufnlVm5VeG+6J6VAe/q2PnV15lWZv6vfa65q5fSe2vrzrW2keHlaUdu973f/V3/+9Y/ev4vm8fWoMbp+rT517aYt4T4+t6xsE6uv9Zh/usP/ttr6OeXUdZ6tzn6tX56l6/pHu7vva/MdCf9Zd69aJ77hmdU9n93ru1sGOrq7mlvepNh/zWSz21YX/XjtWX1UHjZzz6rh19T9ecv/fDXs2vju33xtwx1iK64hxrvGMqv7ldu/Rtr34zb9L9yu1+UL/V9x1Tf+0YmsPN085rTW1NaP6+4Q1vuNc+r/5bPe8386xr91t9mh7WB+4L9XH3tM5rLPa5obZ1j9SnrtXa01pSX3W854fK71zj0PWrd+X7v5dxMQ/qi/qr8lqn6r/q6JnFM0n1rZ/ofr/r++4Jtcm60WftaW2uHn3vv65Pf/R39Wquq1ttr0+rh+t37e4v1asxpfPV132/MvpeP5hHvVc/c6vjrN/6y5plfqlbn6tzda8u9I8eN350cPXYfaXyK0vb3OM9b/WqX+uP3vWdZ6LKdS/b5z7z2nxxvDlhftgjxZqjzvVtbakd9UPl7DpWva0Nzu/euTr0e37P77n9l44eOXLkyMMgB+A98lBIzNtP+qRPuvuMz/iMuy/7si+7++Zv/uYb4/QtSWE7H/uxH3v7XN7YH/mRH3nU43uwIz3cPRrA2wMTuaZiqJz+fyxpF5TzWNI5PJo897nPvff5K77iKx4XuJsAzR5JGF2PdtwazQv8PRZ5PKFLAUBvi1An4EUPjtr3ZMuCC66fDmQc9WALwK2fGdsMxAVPgZ8LjKRDDAFGgIfnHq6BHYAWD+XqkfSbh/wFOapfes3IcBzArDJ7+a/jGD7AB0YDw7T/MzQWAKjtQKZ9+a+yAKDA0c7PEAMkVmb1ao3oO2CB0aB/K4Mx2SaDgMDOT786FkisnP7TD51buW2k2FyvjzLUlQ0Q7lzOqwy+ys6YyhgMGO63xo5RWJuA+R3XmHed2seoBEoCf4w1Q7b/OhcobowygK052699/pt/82/e6s54q630BrgYCAHgARq04WLj2nHNzcrKsAMOdM36sPowZgHUGdKAm/oA6FL9Ae0J0CLQo2t8xEd8xJvpTNfsPIB9dWMwu2b1sMYDxqtf12HcB+J2rcbFHOi/6ll6msrJWdDv9UXlAIY6vv9ra9duXalPGemApcpLX7pex/S9TSz9ngAKuxb96HN92nELLjO+O6b2d1661e+dY771DmDpZYzrByBEv9FX7aHH1gmAHgCYM8G9Qd8DkPpe+Qs4rvMCiFX9d87XTnUHAFSec+mwe41rLSi8QAGgEriwICEwSR8AlDoHaGntAirT4+ppvsqxCDypTL9zhphf6mJu7VpHb/faHWdtBDKbO5UJdE6sPz67j1gjrb97ze1j49KYcO64JzW3ObAqk+OkczqeY2mdP9b4K8C1db0Cw8ZHH/jNfOOs8wIOL6i34HD/N6+ra20ABDaP3EO1peNdo3lvTNV5x6w297KmuS9wMAGDf8kv+SU/DTRTj+Zb6xMHmX7kKKfDQDtrgHsqPd9nA/2iH4Bx1ghOmM4BtlW37g89O3eN1o+u555E58xZfdXnnFnmZmVUN+3JQV/7ukbO4saB089zQ2t9fdeaae2oDq1lnW/trZzqDeyuXf1eueaheixxguOvulm3qzvnXtcxB9zP6iugJKdrbXZPrH3WGY755hj97hmkegJ3AckchBym5qM569lPZJ81mmMVOK3c2sPJRhd3HTUW7hccBPtsySnfMX3uRWfWyW4+ma/r+FCm5zDzpfG2/jqXniacm9YJ518dcUeOHDnyMMgBeI88NBJ7N4A3A/gTPuETbikb3pL8u//uv3sPpHq0zdXI5nDqgRLr735iU7QeVK65n/reA/JbYqVuOTZte6Lywz/8w7e2PutZz7r7vM/7vLu/8lf+yt3Xf/3Xv1VlvqML1kLG1VvLoH4scmWP9d61MwKwxxiVPQz3oAzc85+HbSCNB2MPyx7sARwMCIYvww5w038MEkCO6+9DOJClYwGdgOAMiwVZqhe2D2MBu6jfai/2KaZNn9WTsaPPAARYistadU3juWAFI60666dl3mPtdq3Xve51N8MofWDQAzsZgp27jLJ+D9xlpGLRJBmbgYLY0AmguPLrox/7sR+7ldc1q0dlaLN6a2vnBqQxDAG62gyYAFJg61Un4DpgX9/SK+MJAErWuHQsHVEvICCwEXMO6xk4DFQCcnZ8x3UuUAPz1nFYzgz4XoGvjMU+p3cYxoA9oK26dq3KTf/6rzEBGO1cBFyllwCu1TmATut1G0I2Xsqgg/QYY7ey6AU9N4/7Xl30UW1KL4A49LS6WhsARTHhzEdzMgHUYO0a687BslowDcioHxzLyXS/46wZmOIYYxyUACDXr0+Bk9YDACbd5uShY8uY5YSi44Ab9eH0oaNAGOCQ+Vv55oyx2rFzTWD8guL+WwadfvK7sceup8McaZ3jHgOUIViky/xVv2WSrvPOb1iz6ZD1zbu+WycbsKr/1HfZjOqx9w0OhI611tMj62LzC1BauYH/2OH9XnmVA6BVL7Lr/9XxtECluQ20VL9r5Ic10vyvjtdj6Yd1HSvZfTPAr2fAnDCdlxPQWmDvBP244HvzeteB5kBldS7HD2ANkAZ0ax6JxuHAce9YML61wP/N943IcA8GEgJbPZsCn+uXHJjGZO/1SXVpHO3L4D640QOeB7TTvHZvrB2lXOv3okOqq3XK/aDngcDvvmOZ0mPPI+Ya4JuuiPjrPPdf4KXIF2Ok7qvXxg5IWj+5r1QvzwBbZw6P6sIBYBxFuVwjfOjKPie5FnCYvpuvG2nTf5zL1nOgvTHrf2xefacfOAw5xumfa1j7PUNaL80nz57GfokC1lS66jz3Yuume4D1ewFfAHHluBduBMTjkbdHNN6jyRNtx5EjRx5eOQDvkYdGGPfJu77ruz6mc37zb/7N9x5YHgsg/PKXv/ze54DSzSl7lf4HzF5ZrZXzgR/4gTdAJmZWD7r3k0BgIV2veMUr7t4a6aHo3/l3/p27F7zgBXfPeMYzbqznHqy+4Ru+4a0q9x1ZGJ9Ym0+2LCuJMHCEqjLuAbw90C8AkyzoAYRdUILhteyzBRQ89Fce9hnjFIAirDNhAGHhYaIAAX3GCPKgz7BaZmPAJ+ajEE0hltdwVHW61jlDElMEiLsP0pWdAZzRCMDGgGXEMv4ZEoxIbQF8ZEAKrW+u9nvXZ2gm1QFLdY00rNCOBfYI6a0PACMYb4ydPgcSADEaT/qxbDn19Lmy6EHHYd8ZQ2O3fbVhrBhcxr3ypNkACtUf2IXYxTmygNYJnZOSo/8wno01cJARHZDS99ZMDOHKCwwB4NYnXb92xRr+1b/6V9/r6/o1dmv3iQ3hrt6NW9cJoPFbZWNbbXh95zHYGZyMX+Ah1nH9U70CTYSvOwfwDazAdO96tVNILmAOIFydMMk6ts/Yy4BIY7bzmj73H6C4vjCPAKbWoAVugejrBAJS6kdtAzD2uXZ0LL3hKADAdH+rzxu/wB1lAnOBoVcwVboIIOqyvhyz+e0XuAEULtBh7hmP7QeMUs6ARD8DugEpQAzz0pwyXzbdDdDGWq5eQsuxFpPWjWX0cXYAVQCcjqdLrkUfOsaaBIxZUMn8pG+ut2sTEHalY7F3RSYZEw4I7EFrUJ+bq+lzjPt0LIbmsmDXwUT/9PHezzCy1V1bzEkMcWNqLLUXmGd9x4g3NxqPZXQa400z5T5gHaTvnDULRnLCVociDlof65/uER1TWdYda8UCkO6z9SVQ231dezhR6PyCcPSlciqja4vGyDlFT4CxmKd9b22r3vWPtEMb8eHY6iD8HoBofaCD9XPX00+Bya1n6RHnIH1KDzf1kTlofAH7nA1S6ZhjHVv52KuVWX9b38wTzmzpgpTHodZxonfo5gKggPKu47mD3ukna4cxtqYB3pfdLnWBsXVv5xgzzl3P/YLz3BpgnXKfsdZY79SRvnG+0rmNWuDUuwL+CxZ7tnENeu+5QHo76whnByA4vdAvnFv2San8ngVicacrIniOHDly5GGSA/AeeWikB0XyWNIZPOc5z7m9kj//5//8DVB5S/LCF77w3udy2Zb/934SaPvMZz7z9vm7vuu77luO3L+V80hM2v4j9yvn8UqG1K/5Nb/mBvKWDzJQ+zf+xt94Yz8f+enSg2cPmxk16cfbw/MP8MB28yC8xp+QzCvIy+DZ8FoPzhtmiunFENjclstiS1wDE4bBDXQBCgEuGdN+8w6gY/hgiCaAAAZthphQ8TUEEkySXgBCdVuWGxCL4QPA2hx3GQyBaACEymsuJ5i36hww1W+xbDMyKqN6AokxcBhYxjFQOUMV+Hd1/gCdMEMzZjpnWYJy5Wo/sMu4K0cfAI4Yo/pLOCggHxDguAX0fBaqqS8rh8EuBULHcowEImJuLSvNeyAfwIKjQEhyZWElST+RLr3bu73bLZ2OtmKrMWL7Xk7j7gnv/u7vfq//16EAmANIaAvAm1ErnUL/bYiy8HtAhLla3TglGqfqkA4Fhuj3XUcYutjq5li6uEa3sON+B4hXt8oFMkvrYf4uwAvACBBvPQNKAiSWGQbA2ry0AKJlt+mza0j9sq9qkzmDma/85lCO0OZPv6frnQfgtxYs+3xZnLsOOhaQCyxZpwg9dv3N7bipKbRnw4oX2KNL/Wb+AhZdP0nvORww9YGzdN76tXN1AVfOFSx+bFy5U611QBtrFead9i4zWZgzMFkfc2S4ZmLc9fOCxbVLdFKbpnL4XFnrW5a1v7mEuXvVp3XikXU80G33onW4LbApLYV+oQcLxC+gv84qDi1tB15ZYwGqfQ44BIA15iJUpDqwbnN2cgKuvjUv+x8zV3od9Uwqo+cRjmdAmf+1U5oXOom5Wdn1ffOrendfka4IEG+MMHylGpDvvO/SX21/qat76gK75s/eF+szDiBriGeW+qa6YVpXr9YG67tr6b/yERuXyuz89NI8BTRiwwImpcFZB/l1LfNcg+FdXa7OZuMt5ZO2FM2xjjf3H/muG0N7DWAIW+dqg7QJu04vUNraIm2M+zMQedMx0dedm57TzAvPl57HavOy4bsOp/7m+5Uqg55z0OirZUq7btJ9v+PTZ3Oi9lQ2h63x5SijW+nGS1/60ns5rY8cOXLkYZMD8B55aCSgknTzf1turkbKIRb7tk2vftNv+k235P73Y3b+lt/yW+59/sZv/Maf9n85gr/8y7/89lDz2Z/92Y8I8CqnB5vOeVtID+dA3oyyrv3pn/7pd9/yLd/yNin/HUmwBTxkv72kB2vpAXoozvjDsBE2jOEg/yyDImGQY7xd0xd46F4gwwM849b/GDMMJ2ApoJAxsXkclxVb+QtIAgoxY10TiMhIsNGK0McFHRgPGzoIKMGEE4Jvk7L+w+bMeAUsyUOLNaX85nlGSeV07VhXQLwcJxlzNsgCKmBaLsMHcwogrQ/Vl8G8xp2yMP8wWIV6ynUqx6AwS+POEAdkLBhFB9SZsQdoSYS60ik5aY09Q3CN2+rXMUDeDHr5obUz6bcAPmwxG7wY8+qAtZvU1iI0gILatzkVMQ5Lq9GxCwgwhNfoVo9lPGEN+R9IYu4AUDKKMZGFI1dWdQ58bUwWjFmDFwjHSUM3lLMgpnnVMfUnlmG6ar6mIx0PEOdgSMznZWw2NnRpASU659jNrXg/cMD7ArzVFRAirDbQhY7Vb7Gs65cAcExlIdibG3nDyOn7MvPok2N3XIH7jlsHGFb2joU5s2CnNmsTFioWdWPQf0Kzl/kLyHNNaxhAZAH0nYebuxfj0Hjtxnfqu+Bt19t0LvTHOryOMjq2zFz9uaAvncBy7L/0rf4QVo8NSuiwNWWB39rAqV5dbcClr/d8952rgwRwzTnJKcHZaX1aPXUM585uNmf9MgeMB8Czdgqbr73ptNzyNvNSp9Wx5qprbF7cWIjmojXVfSInzt6j6YH0QFjW/pfaZiNErDcYkdb+6itFD6eBOm/qA3MqHeassEZZr40rcHJTHKiLMs3n3czP2rkpm6SUUR/589dxma7t8w+HqegX98p1VnEiG0P3Tev/RirssxNd4ZS2lmz0grXAPO6c+l2uc4x+emJtkgbM9SsDuIpVTa/2eYfzQZ/QKesUPbY2OPaaRmPBXWuKdSexNtCzdR7q/312sC4a535fx6X7YNfIGQrU56Dc9VOf6DvOqMa65wn5/h+vvD2f5e8ndPDIkSNHHqscgPfIAy+f9Vmfdfc//8//86PeyP/D//A/vPvET/zE2+fXvva1d3/1r/7VRy2zh4jSFSQ9pH/bt33bY67PH/7Df/juT/yJP3F7wPiv/qv/6u7zP//z3+z/QNP/5D/5T+4BwvcDeEvJ8Kf+1J+6gczlC/60T/u0n5YqIdC1/5L/8X/8Hx8xjcMTkdJGfPRHf/Tdd37nd94esv7sn/2zd5/6qZ96YzIf+f9LOhcT8GciPcOjSdfPyGHcbAhrD9EZxz2gY6dglWFG2GgMexHQ6OF8GUBCBJfZxNBcFuSGz8qVucblhvsuwAbw7XyM3QVaKidmH7AYGBDQvqkiGJdrTC6bRDsA0XarxvLDzNlcir0ATJVpo5b+zxCujAxs4EFMyOZ7hrrwUUYcIFn/dC6DfA1q/QuI7riYQFilsZOwUxlPDO/KkMKg9chGJY5L1EGfZBQBo3YDF2O5QIz3NeYZkNhPXZ9hXf0znBlmDEmgUP2LSdYx1dcYVla/YzlisLbuYTwK1wQI1O+MTHrBuAUWv+pVr7o55Big+pEBDOiqTwHqgbLAZfkv+84Ax8bGPkywKQHhjVl6HPhfGbGOYulxWOxcYzhjp0lXQfqvOS4EV1vk7AT81r9+XzaXNtYn2NSAF8Z1Ym5emY7YU0BA/bwpGgDXxntThABx6NLm2wbybXivObCbu/UbgCbddf6CJtYtawLAA7AG7NjcrNYN80obr6zXZbZuipuuIay8tshfqc8cg7kIqFT3xDWsCUBFjrJdr/1G76V3qUxAnHQOy8w1b3dtsF6b2/pkQV/3mGUvc4Z0futOus4BYo1bcHaBcmAtwLo5IafmAqFkAVr95negJ5BP37rO5gNdkFo/VwYgXHmOWecmAHnXQH0OSAVautayqrUJMNe7dBT6v35M3HOwJOvr7v17P3dNESNAwGVseqePew+2iVh9LxWFeWFO6EN5h23cJR2Htd0acs0Ta7yuKZiaK8tct8Gn9Up7OZzqi/SLA4ij1kZ19UnzrnXWMwWnFYeP8fJ8ICoDa37TZqh39WtMbFxmbdMv1tONqOJE6bXrbG1ZdjEnvXuOZxJrI1AbM1i0i7QynjPokz7nTACoc6janJQDY1PyEGv+Pjtd1x0gq3u0ebROpmXyLrvecxDHffpER+sLTHS6wqnIGe7erb9t5LiOxyNHjhx5WOQAvEceePkDf+AP3P2RP/JHbgBoqQ1i/XgIfp/3eZ/bRmkf9mEfdju2h4TP/dzPfbMHl/vJv/lv/ps3Nl5SmgIPKo9FYvv+B//Bf3C75u/8nb/zVs5XfuVX3gzSD/qgD7r7T//T//TeQ+wXfMEXPOIDyO/7fb/vBuCWF7I61MZv/dZvvf33SZ/0STd2cNJD+O///b//7m0thZYDeduUp/795E/+5Lvv+I7veJtf60GWHj7f3gKgwKBhXHvwFkLIOGPMJUA3xmcPzD0Y2wQN4wYIkQCKl4ULtMQm8sCN9UEwizYsFpCYYKcxWupfoNzWRUgiowp7zW9XBu8ao8JDgWXYNWuYCesPeAO8AMYyGHeDpPoKg9aGdzYQ6dj6MVZlRrtNcNQbM2nHBUN128tIAghUNwayPgV4q6fPclx27Q3lNG7a1v9A9j7v5nePBsjQIRuN0bnGrjZXRp8xjTGpGZ+1RXmVIQS5vsiI7r90G/MW6wd4wyDWB9V9ma70qbZVHsO6a5XKoTQJrbMLqK4hC0igt0KVsdKAiI6Vf9cxxha7F+O5+qVf6czq44bJM8Y7DzN9WWPGojKEcC/TkfFLh7s20CAHhDHlnGmtl2ICGKyfpVLZubrhynu9+x2zzCss08o01ukMoDe9AfTbbIihb550bIAF4Cm9qU8b4+5f1kEMWGCTeb5h38a2YwHF1q0F/xY0TxYAVz5gbgFZDhqsSWvHgiXGetcxuZ43pYL5an3e/M3mwwJo5rnfjZV85wteWXPcRzBfMevo+jLI5aDd+xH9p3tA902BYWwWlNVf6pyDmQ7oc2uSclbnrE/6ot/pl7moDgDZxIZZgGxAnJykyzDdegLtsLN7YYZa4+mWdco8EoFC3+lJ79ZqfQbcxFKUSxVItwxka4N7VMfuvXhZ09puvjanRD64Z9LT6lDZgW/0gzMBqNq6Bqzt2t333F85j81nICAme/XbTSoxqIGY5pPUHUWb5bTqXClOOIJ7F96fgwCLtfa31mur9E8ca1i4+4xD3zivV2/pP1BRuhWA55UNynFnLDkMO6dIhfSAA9N9TzSWZyMRHXTN/a66itJIlL+5/zmEzGPOd/VKzG96u/ctaUf0C0BYah3PgKJQjPmmmLmunwscW0dFPgHvuwbg3XHL/nY+nen3zt1c60eOHDnysMgBeI+8Q0gGXcBtr0djpQa8/qW/9JceV3qGr/u6r3tcdemBJSA0tmuAbkzbXis9JAX+fvu3f/sjllO46q/7db/u7pu+6ZtuLL0v+qIvur1WegDqWnKeva2ljW2AvIWcxzb+9b/+19/9xb/4F5+U6x15YoJBE2Mx0AY4gbmBtcu43Py7+6DP6PbgjnWzoa97bsJw9aCeeNgG9u55gCNgz6YFwMaVVw8rdpmQG44O9GSIYYZia2GjAgwYiYALBrz0FQxzTBIGEpCDscuQx8LV16Vnqc5tUtiaBNSMxdv4dD0AJ0BhWdPaqD/0q/ZmjPoPoAL8M2ZdB1BmsxVs4+re/+rAwAdEACXkV1SXBXSXrQgwZCDWj9iLxh9wiZVpEy2b79gxHtCHidWxNp3rZbdzbGDsXowhIPMa28DYysl4lgO4/mk9CxwwB+jV7ly+zLo+xyJc9lrlYHpXrvB8+ZEBZQzbrl97GcpyDAt5da0FsjDs6aLxsHt94yofIf3dDX8CkG2yh+3KmVGZmIXrBBHejF21AKf5zbED3LQeONa6sToNGJFGoGPpZeIcG1lZszoP6JzIxSgFCuAGENerfsXurs/Tl+1jfd77AmD9xjEAIF5Gtfm2KTvWmbSA0DLBMboB3L2w2hOpM6x11jTOGs4LzMMFUYEsjgFGJhwTy2BXP04ifW+8jZf7grQv2r73AoAKUGX7TVkb3i5dBQa+65t/yx4GZnPWABoBWNqo/tqw7bAJnDyk23d7LXq+4+3+4Dh9sGDy5isGwNFz7GbHYzFunaubaACAlYgYbazu6bycrMaFPmL0W7tFNCS7Ad4C21jzjQM9WoeDfqh9XZejsHsqB5HnDNeQPkDfcUwsUx47mZOsc/vedd0j+16/9cxOr6WCkGohCfx378R4tS70ufVabl2Aozm3YKRc5XQVcGpd2qgP42merQPPM4H7kecOwKOoltYsezY0DtXFpqjdR4DlrfHdp77v+77v5sCT+sUctMa4x3V89Q4w9pzQsQBtz0rW8E3h0YvOWLd3LdvxXGYzp/AybLXdMxQdtkaYI+vUtjauIwZ733oGhL/feuF+tQ488+XxyhWUP3LkyJEHTQ7Ae+SBl9i2pV/40A/90NvGYBnyPej0YNEDwg/90A/dmK/lkn0sofQ9RAZiJgE2PVw9Xgk4+JAP+ZC7z/mcz7mlenj2s599e8gMgAtg/tIv/dJb2W9JXvSiF91YyL/rd/2uG5DbA21S7sg2PvuSL/mSx7T521sjpbQI5C0nb0y3rhuD+PnPf/6Tet0jj116yA6Mf8UrXnHL9Rqok+EG6MHGxRphaGwYKwBuH9ABGYAXxjVQYo00xgMmyTINPezvhk3YRAs4MII7J+aP3KSMd6DChj8CExNGNeNNztsNO5aqAgggPyLGDYOyY3KcdJ2ML2GMcg0CynsH7jUXP+ADPuB2TO2tDn1ubKRokJdSzt5+Z5gDzYQUMywXTBR62XHVKyCMUSPvY6H/6mB8MhAzeDOeWxcxEY1F5WHd6tMrAzpZMDDZ8Eqsq9bf+ogBKG1F9ake2m68qgtWmDzSAD4ssP7vt2TBpP7DaKRr2KDAbSCpNBjaTL/kNARWMJqTBTmxYzuvMe/aDOPqVLsxt4H7jMx+b7w6z/zEVgWSqYO5gbUqxBf4B1wAQADD6RVWndyaNpqhJ+vcwDbb/Mgr5uQ6ZhbgWmfJOnjWKbQs4aR61nfY+TZoMn7STTSfbOKUTu/O7Umfa5s5LVQdiCPvtTER5WANw9ZcMNJctHap9zoBNp+vtUabF1w0r4AtysS+XIDFeuY6PmvnMvgXQN+UNgkgy7qxqSiMnTXStXderyPHHNfeZfRZk4HbGI90U93WWQbAil3dc1rPRFIxAHnUYx16e8/ASHWfuIK2QGFgqvUpneg8IeD6pBdn0+aCVYcN5cd+3N+Wba3PaiOm7G7+aR0RMUOXNupmdWXB4GXEGzfXtF4DF607zX+M2mseYLn21ZEjLhHts3Op/3etBfSJSLluMNerOhibTc1h3idY+o1L42ONBRZ7ZgfKchIYL+PKuclxEqjZS+qyjVDa+b3OYkxVa38it/c1+mHHo/XKc9Nu2Cm6x7OAdVL6CHPdfag62IBTqgXs7cppDexeykldX9nEE0tdP60jq7KkzuA8WIa3dV/7VziGRNvsRr7Yw9Y5+g0I1o/uydZg+rFRKPTNGtY4iXKp/ZtrWJ2tuyIudmzd99xjjxw5cuRhkgPwHnngpRyKvf7oH/2jb5PyPOy/tdKDy1d8xVfcXm+NBBb/Z//Zf3Z7PRkSePuWpDyzMQme6PlJu9U/FmFgHnns0kNvYOT3fu/33mNHZJR4AMYiYUhLYbIARL8t6wNjglHIcBEuaJOsBR4w0xj5fe48m5QBpBjvgIk1ZDG9AH0YSVi02MHAgN3UhJGEUeI3RgXjR+oBG3ZhxiUdI/9e/dX863OGldyVpPMCVBkzz3ve8+6FBQqpf+UrX3kP3ACE2kSu9nd+QBR2HYOTQSiUdQFuoAjginEUsLC5HoHqwIjqnzG64BDWGdA+kFIY5oIrC/wYQ4CEcaMzxrR6BWpKDyG8uDossHkNHw4Erh+rC6bZMmKri3QQQHK6x/CrvAxi9e34AA/5QAMrYlo3rpW3m7sxapNl+Rmf1rKcdUVQNBbmCfawkHnghfBkoaxS9BifXsLlgTbaKRwXwI/t1fEAESBp1/J7Uvu1BXgvvQlAEoP/CuQve40O6I9lTgIh9BFW6wJ0dIGuxTADRisTOA6oad6pJwDImkAAIvJs2sjL/KlPAhL1e+PWtXOQSg9Bt5V7jVTQBnrgP+uZNRMAsSC48xf8S+TZ1H/WVkCLPu1zfbS5VaVyMP+AXgu2LjM2odPC14GD5qP2LSi8YOk6wzbtxIL39TvHmbGhVwtYY+M2f0oHwpHD8aFfNqpgQf2NpFCHBdvVecdymYgAvNrRurQMdPcDLNF1UgKYOU2Vjw3PEWqDLm2mE66BHb5OMestHbjmb6XnXRvYt4xwOmhsgNato82l1tvKxtg21gBIERbqCNDjNOu4nIKdhy0vwsd9FOhmvbGe2Bxux8l6D4xuzUrkh63c5m71Xpas+7o8u/pGbvbmlQ0h3TeLfmutqf70EgCpjzu3NdV6Lf8rp9OOF8ataAiO300z1THVP6m+nNXLGjbW5qJnHMDubiRa2d3nek5wLw245iTlwK8tfRbpI7++1Bkb0XVdt/WNtYze9x1IWrl9Xn31DEk8G2LMbyTSOrIAzNYH51qfpD1JJ6R/8mwJ9KWDyhelwomWPhw5cuTIwygH4D1y5MiRdwDp4TcGb4ZKhjOQg9EOiMXczMgBqCxgI8QWEIddBDSSH024HENuQYFr+DLjUuoEho3rbHoChptQT6/dcI3BEiAgzHzzyGGHYIxx2CxziKGhvsAUjMwNLWeIZGyUOoURAnjq2Gc+85k3g0IKgK4p5BoAi3VUOR2f5JxirOl/LEpt2HB4AMcyBvVLY8+IC3xcoMk5QqQZXwkdqF6AGoatOgGggQ76xrsxw9Sy2ZewUsCLDYOktljGJLBKKo3qENBXnTsuI702Yj/a9Mx4qRdAwyY4lSGvNMM/YDcjfDfWo5tXNuMyUDGuGOKdU19jjAlfNbfS0/qgOnEy2Ayt+gXCALGuYKM0JVin2Ft0jBG7LNsFuOwWn2Doa6M80wu6XVm6wMIF7QC2gJ1dN65M32X0YpPliKpejHBpOoB7/dcxtb321teV2xjKvVnZrXXmQylQ0oeOwbiXeuENb3jDm7El03HAmg18gFYLDC6AuWsc8f81jJszbB029Hr7ZQFLoO6yiHccAdHW9GXy1qbGccOm9av+t+7v2Ji7uw6oZ7JMd9/VdfVjx1gdku4R1Vt/O6Y5VyRQ/b5zUioJ9xtgmD5doHXnpjG55s+9ssat2ZjCnH7LjuagWSeVtdK5NrTUr9Zp+oPpq89cH1C3eer7r7UNqOxazndca4R1bsPoAfY5CaUhsAY0n2w2aS3l/FL2sp7pgM2/tJ3jjJNBv7rWMqk3CsI9EyhIVz2ruDcYwwVT1aF5jCmKmS6VBGc1ALr6p1uijlpvO76oPn29EQNAXNJ58tpy9K0TjoNumdYiQziDrZcilda5zNGqHRyi2mGTtOaNZwCAthQLHLq9iuarnzqmZwdM5gWaOR2BuesYMn82tQmWtznGmY0d3ntrrHWIc4OzhX5pM/DX/MXyv66BG/kl/3PAfA65juma3Rc8S/RZfn9A+vYbh846nB6PrHPsyJEjRx5EOQDvkSNHjryDSA/Kgbuf8imfcjOihXoGQLX5YIL9CpgEQHgg31BUBiSji5EAzMggYPwA6dRjAUgP+UAVTCIGD2YUsG/BDuDhgg0b0rjhuMuOWoYT0GHzmDKygG02halfMEwBvhkdNqRKMFhsphbAxMCL6Z5RGxCcYZIB0gv7F2Mp0C7DLZCvsen8AC2sMUaQMdmwT4bkMl627xaY23MBQNqxAI2d0/WLVBhAIeAsEIiBpj+xh7BVOw6rdJnbwAD5Rcuz2HkBEkB0obaYqhhHgDlOAfkxuw4jGZACiOrYxkG6DCHaXa+6bnj+gl4rVyazUNXqGTjfNQFZgP+Yo8ZoDXjszd0ErnKWDQ1kxtYWrhqYkOErLBfgmwQCBYCbS8aBTmPmc5wAj/UNNiOgGwiwTK8F1kQFmN8bpkvnrgBxda2/MtClC8FG3/lpXJy/G7LFSm49qy/6LXZc6YLkda5/q2Pju/lAMaA3HcuGzms7hixAyvqSLMuZ/i8IqI8AWQuCbpqETavg/HUqYXDqf+Oo/1dPze1lwy2QdE0/Y33ZqAXnbDs42qxZ9FodAEXaZx0QrQCIlmMZyNt/rXuNj/osU3UBb20yDleHlpc8rJwq6yzSR/oNi3A33DMfOex2kzTRGeavdch6sAzmdQ4B+pYdz3mzjhgOMUxQ9XE/7HdArbED4vddyhv3xE3/YL3DLAZgiyCwNtWm1hTOUDq6LOx+243HdqO4vR8l0kI4hoOBU3idR87rnNbMHWss3ub45nhVv3VKWfP73hqxmxla7wGW1nNAf8dJtyTcX99IC2NvAJFOvSqze1Rs9H0earywXkXhJO4P9KsyWvtFBPTdWmi9kmO8OtVH5kW/FY3guaSxM8/lD9ZngFv3gV2bd/46j45vruuutykw6nNMePOqc7Hg9e/OcWvbpkfhWHBta2Xl1d5NMeIeId0EoN866d7Z8frKeUeOHDnyMMkBeI8cOXLkHUR64A4wE+IIjGFULBjIgAciATo3nC7xIM7YY6RkUGZAYqj28N9rwTHG6IYuYtkKs1t214IjmxNwQ3GT6oi9cr0GQwMQDSjBygI8LIAkVywmC8YK41HopDLVLSMiYO9d3/Vd7zGI+j9GVWXFsqlvMwDrJywbgJN2dp1Yi7UdIyXZ+mmHdjISNy2FTcqEpmOHagcwc0MqgQnSbejDhDGe7HWux/guzUHXa3yqcwAi9pj+T/q//wqXT5cqO8O8czNWhdkyBjEt0zGGqnEFsMjZCIjQ3voiJufmEF2W97JWtcU8oJuJfhSSqw1yIRNMdY6P6iMXJLYikBVIumlKlgnWWC4zD7AbmGv+1GYbFC371PwF4NRHnZN+0rnquhudbfjwstjVC/vuynLyfZmuPgOzMOTqr77nhBI+LQTXBoDGGeAkbBnzM51JvysnAKh+kS6jHK+1KWZbYGJtqrzWRgA4YA3IAVzYkOxl2Xq/glPWmC1jgT+g3bLijDVH1qbJMKd3nm0O0Nq3URauv+DzvgOY1hkjjBuQsmCd+YedZ92WG3WB8W3r6q+1FoBMB62hO3+2r4BXC3QBwu4XtQCoworfDR6N16Yu8Nuebw0EGq7z05ioS8c0dwCFm+ddblb92G/6GIhVWdXT/DOfCCcox0TXaX3RN7tmdZxoEvO7uZPDUJ93fexfbZTyw1qyKRiM/5WhzUm3G7kB7d0715Hr/HUg6F/90P+dhxnKESesnuOudbX/a5d7XH0N9DOXK7O25mDVBqz+xkhqHvfejsW0BaRyJJkTGOkYyHSgelSe8eq4jqmM6it1wG5oVtkLSG5eXnXYPqQD7mdAbNEsUgC19ukLzuOO37QKUnDoZ3WzHhmbvZevU2qjqRoH6xQgeNclAjBfRxP2+jpQFnD2vzQ9jTVHFJ2xZnFWaotUYL03tjbPDYQ/cuTIkYdNDsB75MiRI+8g0oPyi1/84hujLVYpkBebZoErD+/LmFoAx0M0oGyZm4z0jAch1P2fUbEAEADC9ROMWMBWBgMDQV7EZZYuYHzdbGjZXcsWWnZcRikDgcEpDLdzMwAwUxgQm4cxYZjKWSm8PUP9wz/8w2+s6c7NSA40C8AKVMRIBKAC/Ww6lGSYywPcudq/gAzgQLsBh/pjGaZSDmArCis1xsuUY1htO6/h6MJQhc36bcXxm/uvdnX9GKeNAWPNeNS/ga7SQcTKrB+vjEn16hqBpNIq2EDlyhxuTKordmtlp6OYYAF+gE7Al/5bMGJzPF71UJu7ppzHckAaY2XLYRhrtbQc1cOmbphGdBlrzHwBqADbKle+SuxoTPJk05hUhnzAGF+V2YZ/mOcYcNVP/YEz2r1G/zJMlx25+qevFnDse+Bq/c9x0ivwxTwEhmHmYQk2nsa894x3KSs2jyPd3zBk0Qp0bK9PFwNk6D3HzoJUV4BwxXq6oPqV7bwsuAWX6axzAT767ZpSwZoN0Os4ERHW5etYOG9D5wGX2Irq5Bxtqt9dR/i/kHoAqHYac7oK+ANCW/u2X+TO5FgCXtLnzQu+LFQA3LVf5GEV7o3VSyeuANbO9et6Zh1bJ8aypZuDrrWpfrBUgaucatbe7hkcdp3DqdFxchB3/OYrt/kkh6bUJoBeQF7XLaTdvYNToLVPDvNlQrqvCLuv/N1scu8/jt+NAAHE/vffRnlsOpi9d6++uOfXphip8uP2v7D8HH8cY91bq6961leNMadgIpqmsruvYCw7FugIGF8n5joYOAukouG4q2+rFwY1fbdZqLHyTEM/PCdZ5z1ncJLTQ5tfWusB09Wv9lvHOLzc4/q932pTdZJzvnsecBzgr73q01gAp2uv8aK/Hde9y9iIKliWrnvJzn166D6+TFu6uiliOMLNy2ufAHatc55bpffZtXsjBx6PXJ2XR44cOfKgyQF4jxw5cuQdSGKL/tk/+2dv7NFP+IRPeDO2jtDcfbBnaDLaPXQ7ZkORGW1CmBcwxDjaUOMFEpNlGAJ8d/fojsMm9NAO5PDA7nhGEjAYSCKsktGQKIOhrw1AhAwboZfLWlR//zMOsZmqcwaXPK82OcPmxahhiGZgdUwGYEZtbXjWs551Kz/jJOOr8cugZcRjGS27B9CwzD25ZZOMTGzjZS2TZShu+PACVvvfAsBAph3fBGNPn2YMYuDuxm/GMAncl88W8zyQFzszgx8z9pougj4LZa2/+i7NhXQVDPLqs2kbMKmMtT72nUMAw2r/W/C7sbJ5mfEALizQrg84Hcwveuk/zo6uk5OgPsFG4pjYzZQa661vwvDvHGCpsVv2vtBvgKPUKcbY3CfAKf2xhjCQcVnQQLWYhi972cvu5Vk1T3u5JgNe9EH9lk6oi5DzQAxgSvrTuMq/uClcAtM7NkBbnldzw1qz88CalvQ/FmqyDMx1gliLNhflggvOv19KA/Pf3AGieF3TH1jfXNdv1vGt5wLTzgdeA00AlDuvFyxNR4GkHCzrEFrHmr7pNyCtuWbeJpsf1BwGHGov4FLZm8Khcd6oj12rMN6Vzwm5rGuA9kZC7Jqor+jEgplAU+CedWCdigmnqrEwhq1n1V8+bptHcogmQE4Om9ay2mETya6TU6xy+q+1J7b6FShuXhgj7MuEDlhPAZzSNux65JlAGxoLdVi2NwcwdijQeCMBPDuY542DVCqJuXDt764vHL/nGTns22ystuWEsHlY58bezQm49wrAO/C3+wkW884b7cIi777OQbvObXn/bZbZWGLZ6gd5lUUYSN8hTcLWi3NwdSaxz8Gm2ukZo+sVMdTaZg3glKo/RNFUt+raPSSdLWd5/9Xv9WfXrU+AoJjTteu6nu/8r01AVc4jaYCkBlqWOWcpRzGhJ0Ddvsu5XB1EqiQiWDxfWmeB8O4p1jHPPMo6cuTIkYdNDsB75MiRI+9A0oPvD/7gD959+Zd/+e0B92M/9mPv/S6nYobSggk96DNQpBnwUL15X5fpKAwVg4RhlKGwbL8FFn3fB/EMBmxZBuCygcjV4AaIAVwwZZf5IR/kMhqT3dRIXTImMswCWvcaGRExYAKKbDQk9DmWdO2tDRkvGZgZ6MvCzdh+9atffQ8wyuDSVoBcRptwxgxWoPGCIwAkhqB3xntlY9jFWmLkACuu4ZdApAVCrvmP9TtADDiiPgQwAgxlyGImMdSBbPVVfVR9GcOY3TbQk3pgmXqYh/RR+Gj1F3Jb3y0Ipv/kvBWers47bxaIACoy7hesAnwANKpDwALWFLBiDfl+B6phomJH7RwTzttv6QrDtnmG3cfIxiAE4Klz5QvJjRVeqoLtD0C8jdowo9NDDoVl6OqDzfG87FT9g4W8DGCgVWXbkGjBExsTCnvuN/3rupjatZ2jpetUjnBf/dR1A4DoBL01d5dNRgc23zSQESPNuRu2fAV+l+0IPN85oi+tNRxc61BZwBY4tSH0+hPgiim782/zu1o/ORp2/fOf62qrtrgPLKDHIbGgkjIcI7JAPlT9AgCV+3aZr9f1xrruXXt33dr5v2DszmVl0fte8kxvFMOuEXt9v+lj3/c+qNxlIZsDUrMAvTs/AC5nR6lJ3Hv0fbq/wJmUD+mydTeAj07LN97cbk60ViyQ3THNu+4//df60Tly/S7z3z1ffzRngXfGdO+ddMAYetE3v2/qC6xtm6ImGJmcwkBHerPO5e6hmMw228JotbnnOpA5HKtL4959ZucMlmn9Ln8tZ4XnpHUo+911MGgBjBvxsTrVcZxzwHxrCEeBdcB84Bxeh5x0Pu6xwFKpDwJ8PbeIWMJOzhGQDlg/bHJpPZKiyzw0Z6pP/c1pC+Sn//R3AWDOZM8NnErVKV3kULg+M3IqAMW7XvrrntZ79Ux/u346RKetlxxF0r/UpubMkSNHjjxscgDeI0eOHHkHkx6a/+pf/as3IyCj8v3e7/3ebEMRholNWBJGPLaJjcA23JNhbSMSBhxWSoZU/wWIesDGMFxmWuI7Q8tmIkIEl+HIUF/wAlCzQB1jcFlbCdYk4xuzZME7dav9QCNAsU1KGC5YS/Xrj/zIj9w+xzxlvNYPGJQxcgElazgx9mwEwmCUM1RbFjwhC2aQbXvGnGMYpJg6C1AwHrFrAgOrRwbhMjeXsbuAz9ZnQWugGdAX+GZcuhaDMGMWyxmw4Xx9LmQUw7trYKcCbOhsQOrm1l0Wn9ca7dq1oA0BYgAOlnFYPfVF9ZOTGqAtFYWw3ozbzrWhmrmD2UtHzIkNUw3k6XOGuY18MFyFxErDoDwgtZyE6QSQAKN1N6gJeIolB8zf8TY/gHEL2l1Zvsvu67/Nfc34Nh+VD0QAwqWHwHJAcPVqLpnDwqaldlBnbcF6rAzrBdDEXLrmx+VUcD11outX54j1CANPnlpsQcfSuwUqe6ULNtGzvq1jajdGko5BiD7W8jorbDyHpblOLKDJzlnh1erW+RyAXct19cGyzeWYBbrYnK5ryq1q/cTkTxaU3bXcWnxlIau/Ndc83VQCO2+Npb7fKBSgI3azsaEH6rBs8GVQu285lqNtHRp0Xf8CqeUQl+6i/zFvORJ91ifdf23KaANFACo2f9dqDNYxa967d7ufACOxev2Gzcq5ZK5YxzYVkHuG7wBNzjfzaR1i2sQZhukpzRMQ1toS4EpP5ETG+A6wqy/pijUaCJmjtj6T955TAejX9d3na1vXWueQMbymafG84V4KyFwmq2gRDF/33I1gqi02+OTQlqbKeCy7WZ9Uh0Bc49E1lpHNGcppXB/V1uoBBOYko98AWWljNvc3kNgxAGXOyGXicxi4L8iLa4yNUX1OfxPpGJLOqX2ctruJmvtCbdnnAs4fzzBSVUiV1HnSXDweubL7jxw5cuRBkwPwHjly5Mg7oPTw+33f9333DLJyoSYLZHnY3tBWD8oe/IEpznOOEMpldGRceaBn1ACRGSALTjIqhBVuPkmA4DVEUhuujC1G8Ro96rlGsf8AM8CDXjbqkvfQ+YzrwCJ57j7u4z7uVvdCzz/kQz7kHuiSwRLAlEGSgW5juWXbVscMJpuBCMUHzMq/t7laV5Z9tuC2sOraUhsCizcf3qZjkDpBGwMP+24MGeb6d9l+gJZlHgLBgH6b85fI/xiQCGSRW5HRnhFXHycZvtVHzsXNf1xfGW/1xeCOLQqIXVAaAA28WpBmQeAVxj0wXvsZyoz6Qqc5A4CkADJMsYS+LYudfvebcoW9xlAD7jVGHWdTt9ryqle96l4YKtAIWFi/Bvx0vdhQcgZLAUF36MluAEbnlom/ANg6HFaWWblASX3HeZRuAhLldhWyHvhRW20m1JjWhtjyr33ta++FbCeAanWhexjgNma6H9PTO4CbrsgxqVxr1Dot9AWQcvVmU80sm1Bf0CmCeW0OAYrpByAIw801OEKWkY4xD+xfAJsOrxNmQVB5kOU4rs8rA/glskJdOje96xzzeo/ZHLocS9YSOuYepP0LmvnfmFm/d/0yfteIjr2X0d1dr6yF9GYZiRjCwE5Al/b4DMACLu26vNfWf9Vf6o/+ay73WaQDp5c8qABWcxvYJU0FfawezfOu25jtBnH0IXEPtg5hlJrfdIYDVz8u83/vAyvmN7COvgFmdy01p5cZLRXBPltwLBjXvcevc7c50f3CnHEPp1v9X//YbKvv3Ts8BzQO6/BJjLl78eaNtecAp7d1TH+a0+5t5krnNsb6k+NS6hU6Xl2AzdbMyhLl03k26XP/Syesc9redQH3OcysZXI7G1vXXEedcaKT7p07J0WZ1A/m4ALim1pKmZyRHLCblqb7k753Lc8n6mtcPAcoV1tFoGDyyuF+5MiRIw+bHID3yJEjR95BpYfp7/7u7757yUtecg/cCcyJbfq0pz3t9gpskweNASBdAPCCLHONoQK49T8jXZgoWQYu0BVzEXvOBitYIlgjHvoZGwv2uS72CdCNYYidcmXTAUucD2zr2Iw4LDTM537/0R/90dt/pb3IoMh4qP+qZ0aaXLoAi4AS44Bpsjktk8DLvgvH73rlDy0kFVtHeP6mymDkMoY6tvpo3274xeBJ9IkdwpOO7/qBCcvuAkot4HJlbOpnv2urccL2ru1yLwImMAhrd8ZZ/wWYG6/6pnyDmLHAgOpRGgrAFtC194DBzbcrdBYIsSkpFqxY4Ilo7+YLlEKivu46nZMD4AUveMFNFz7+4z/+HhDUsYzy7TuszNU/xvpunBWTuvra4K5wbHkW5aWsT1/5ylfe23QOgKW/hccCHZZJbhf2/gsAYdgz1vWB+tGLdSp4N9f16ZX5aB5W7+phczPAcmAsp0cAdvXIUdLvz3jGM27jWj+bx4BNc82mhR1v88f3fM/3vJ1XGwEc6igsfFmHy/zUT42xzbGwZ82HjlvmOTG2C+CbRz4DiziA1GNzQ2PkKm93jQeqYm9v6gO/rZ5vGoprmhxzFaBlnLA7AZAAVutI5WKv93Lv2HWFvlvHdz523OYv5mDAXl7mrXVmzwXicVzt79b6BXetVwtEmZ90f3XYvczasjmArwz2XRf3fogVvWA7Z8Y6CoB/7jm7JkjjIu87J5wN5Or75jKgVyqG6tr5rZX6zTmAZqkgAInNF3pHV9fxsc7CBcz7r3XRfVlqB/2pvwGmyyyme1LoYGxyLBh7THB1wpYN2OZMA4pvDujWDWBqx9c3mK0JRq757D5mvqh37wBSa7Cx3rQuxkZfrPMZ6LoOxZ4ZpJsRBYWdbcwrKyd9OZet67tPgmcr86x1yxhUrs08rWPmOocUfdYHO4c8s7ivW9M3hZF2A4030uPqHBChYF1I5wC+Nhb17HFlipvP5j1WeNeVu7c+5HjaSKMjR44ceVjkALxHjhw58g4sPRD34IsJlLEX4GFTo4yG3X1+2U+AAaG2wgIZuMnuXr5GKebKgmiMEAbrNd3C1nlZNdhBC3YwSMjmtHQO4AlQwUBbg5MBn8gHB4jF4KrPAtae/vSn314Yz8BXxlcGS8Z3BmRG8m7kwkjGatIvmIbYp4y1QPjXve51t7EKfLMhzxpBDOuuV/0YycbHruuby0+II4PJu02rruO/Rh7AZEEoDNhlCWLvJpUr53OGLD3YENiOqY2b99D4FmpbX8TwqY1YWcI7gfsYVL3L6wyk6F3fYYpfw7GXbUm2L+h2AqjGCG/sn/3sZ98bO7rktYxr/69RvizZZVY15gCMJCAHi5eB3m87R4V704sNiQVeSGvQdQJasb21ecGdZRwDJNao35yc9GP7D7NUGH91a6xt8ERXhPRL91K9+h7A39iXjsJ4AFeAkaIEhGM3J827933f970HTn7P93zPPcBBftTqJfev+ve/ndo3H7e0Ksu6BqBg5KWTHFZ0XJqOHV/OHOsqoGvz/TZONp2kt0Ct1aNdz8w51+MsMR4caAvAYJgS4w+Mr1zgoX41H5Rv40jOBA7CBWtdb5mu1xDvDXc3Dxa8BQh7LXhEP61N9HIZ/MsItS7S2T3G2kYwQ60nC066lwr/tyam340f8AsQG+segCgVQ9eUnqffmvPWrfpVX0nHAAh2HYC+9SbnUOWXX7s+E6ouLUQ6tGkvakPzxP2ysltr6Lq86XSDvuh39wn3JOv/sterpzZ0LPZzx9v8kG4DXTtu55d1X99wTHP29Bm4jQmLcaotXSupTpio7gN7X9v6m3d+79zuR4Dc1YV97lB3ay4dc58UwbIbw2oXgNe6Ya3oc+Oh3pxLjrfGdx/cTTnXGWt96YU9i3nbf/R2n+k4Bn0GIHPgmq8cGtY3aYuSTa8gNRMdr95AWddpzqwD2dzTHgxmesA5le5uRMrjkStD/ciRI0ceNDkA75EjR448RNIDsFyrsTzaGEyKAEYbdmsPzfLyMko83C+QhU0DWGDkrSFmg6XdoAo4w2BhGC4gwThXHnbNNRXE1Zjf3ZYdD5gM7BZCmMh/61yhiRk+sXYzvH/Nr/k194wN18SyEQreu03nsIHr465fmYAm9cpQt3s5o6syY+lkoAdu2QCv44C7QNvK6X+ALwMLSFV5wuIZr5umgTG7fbyA3eZcXWB/QVCyIf3at6ygdM4GaK65IGHHZZRhrNpILBZnbZDjGHgXu7fxlMMUOAcs2TyH9A1LCHDgd8AAWdBsGYQY6ukBPRIiHZBYShRh6wCu3XQLCLLg1oJVDPANa+V4cT7gBgAkpyVDW78LUaULQM1k2fdy8W5ILSNdWQswAC0BZNtXe+1lK2qr8+mjtBzmL8Cpz41jaRlqZ3NwmVvAWef2W7qlTuZ+KR2ql/Q0lZXeGP/aavM75WkH8GXTAgA0zBHAkXEGlFlTqodNg4CqO9exqzEXgX6b55IDbecUkAOYswAbwBXzfJnJy2hdJu8yCpfxDZisjMaqtaz+Wkdd/zdWnQcA7PfNj80BqM50bcPt1dF8pBP6a9NbOGbn0joSd+4uIARYWkbqtZ/2fXX7mrrkOjeW3eo+KJe7eVi/cFJtFIT7XsAjNqqIhn7j/Nh3bM/uUa2bjUtjFFu1ewjHz4Kx1iTrlvr1ubKw1Xvv/MpJf9ep6t7jXttn89gY2cyu89ON6nYF6fvuvHTcXBP1sMxzG2oZY8Dpsv2lnqj+9GwdH5wuy7Lufw4ldbs6m5eFus4uILuol2WZAm2XccpZ7P6yTPXGhZNdn3qGkapi1wabnSWYvJ6t3G/TCxvW0fPddHUdnDuvpAHhMHAtzw3WCuvlpqHYZzPgK4cCp7KIHv3eM1FjmM4B8fcaHF4AcIzc6l/7gNGt8Z1fu/UZx/uRI0eOPGxyAN4jR44cecgEcNaD9Xu8x3vcffAHf/A9IxNIZLfijDXh/oDaZfoK7wRQeMiXp1SuUAAE4ABQgXW5bKwNr2UgYeWoJ5CFYYYVLOQUizdZw0QbGT3Ah+qYcVG4O0MzkPCDPuiDbqzcxPkJwz1wvDoALbCesHaAuoyTDFE5fRP/L+M44zHDsfcMFMZtRhDwxqYkGMRyCjLwMJYdvyDlNX/lgiMLcjD+GFkAumvOSeUwWjfM3wYttcX47TgDAOu32rNM8foQ+6yxqO+k8UiARdqGGUZPpZtYcBLTCGhjrK7h4Mv62764guAAn8D9UijUjt53jijPda79v7kwgRfJAh3mohzEQKraLKR7N5uR0kFouRDwBTLNw47b/LLbLwtgmZP+XybVtneBA4Bt6wAGn1zVmL3aXVswE/vevKsPWqdEIFSe/LKAT8y6DV2unFi/6UvOhXd/93e/rWPCyLG7ACbGxtwyZ3etAnCZA73oXHWR71juzAR7t7o5FsCG9YmJqa+tBTvH+h0zDsAmZQOQDiiCSbzMauO3gBVRnusuC3yZptjEwuQ53VoDraPARPML+LTsfGlI6AyQ1rxcluP2td83KgJw6j/is3Y6fwHh+7HpnbPOoS3b3F1W/xUYBnwZS+ty3wMltcF85Wypj9LV5ooUNukvwBZwuE6m9LkXPZDDW1oR0SsA9wXQKr/vnIZJ11bf7j3WIjqyQLn2XftA+XQES3br0Fxwz5DeY9mx1zW3z7VN+gm5uTePLNC4eruH7PobWG6dAV4vCCv/rXuBMVwgWGqLjpUv+bpBpnWMo1gKlWUsYyZbt6T78btrcvpi1FY+J7myeuU4sE45nnOo8oHQHJzmpecl/ZhIIWReAaY9M2kTfbCWbUSVe4c1Ze+XnB+7UWP6Kn+0+ej61j9zpeNcn77LMb9pQbqG+8aRI0eOPExyAN4jR44ceQilB/vXv/71twfjBSmAchtqyMhf9p4HeKAdMG1DcLFKsNmwQYCMCxQwkK4sN2Vu2O+ySJdltZstCffz2xqejCD1T2L2vfCFL7x97rznPve5t3QMjJNleekXLBegsc3BOi7QLONDjkohpxgsQiz1aaL/MzwTbKrKBxxjDWXU69tlKWNY6Z8FLTdfJdFXjEN96n03mkquobmOuzKBjLG8iDYGWtAkfajfA4gAUzbgwq6s7NoegPrO7/zO93IpApt6MVJ7x3Lb/KdYXFiZxnLTUGjXMriuwNgC2Qz9ZZWV01puzTVW13mx4abGnE4nWFwAoGWJ0hsAwzIGMcU5Guqn+lxuarpjLm1KB6G6G7a/AJy6bV/oH+K41QsgH8CgdQZ42vhhfS4QYL1pvIHyuy4E+tZ2+abpZu3vBdxMzBt6AUzgVFg2++o9vcIiX/baOgfUC4C9wDj9sN5UT3kwd23DRJdmApu3edD/clYDVq2fgIxlPm7+bPN6nQzauuOp/uusMW+U73cgLfCrNgWoyTNqLBZU1l56ufcP4J9yrafWYA419V3wmFjXds3atY8+mft0iq5ew9axRncduK6nq/O7zuy61nu6Vv/YwKx0M91vOSnUW3oRTo/0uKiRjs8xEWu/cjj/OBZK4eO+3P87j/Z+4l7FIdL9qPml7v3eHOm39Di9V7/qIf3P3jsTjiOROu7Lm/8co3zTR/QqdQQ2slB80S/p8jJr6emG9++aw2HQe3nJO24jkqzP0iw0tzZFzD6XrNPY+mpcsVE7x/re/BRZIl8/Xd1ND82JjbgwlxrvdX7beNY6VR9Xn+rdb+kAx5E8xfTZ5m+cSpu6yn3QfV8uaKDv5ma+On6u94Etjw6tk2qf0xbYXocmB2X14MSWssHmg+q+z2Cec6wXyzAX2eTaJ0XDkSNHHkY5AO+RI0eOPKQS+NFL/rMesjFxAQ0Ypj1MZ/gBSoArDHUP+4yZDb31sC5FwubAY3h1HTvPLwCwjKvOA3gQgIo6+p6RwNi1QQoDQnir3L4BpjGn+u3DP/zDb/XMsNVGAJkyFviyARimDGZPxrnryNGIsVo/7+Y5iXBGxqVd7WNaAwuwXoACgGVtFAa+oZLGgDG54NuVeQXsWeCSccewAignywLcsVI+nWLU6rte1b/2xLbKYAViAqHpGTCwvqlf+63xMr5CiOVY7Hod3zVdl2BsGjtG6urYMoa2LX6rHgEh2HNrQKYLARW1q80NpT9Zp8UyERmyy+paBmpiTgGohSYDvZP6j3MBOJBwYsjLTI/ljkzHm3vA3Q1/3Q0M78dS3HaYq3usfgbUNb/rj3VM1K4A2+Ze58kDjOFXW9P/2lp5Nrcz3+kLVqO+knsYaNHn2Lyl+dDHyzTfeU3HFxA1nwDVGNPpWgJQBuhYd4TBL8NQSoPOb/xsUNYYAnByFPS5VC1yDW+eUM4YYD8gxDgAOcwlwBhRn11Dl+lKp839azg5p0S/1/cYigvG7Xqya4T+pPP0BOgDjKy+8mi7HqB28/XuOF2v4/913iyTd50Suw67tjVyHRuup4/ut2ZUz8aucZYT2rxtrNIjgK06uR81H+rT5kJjn6OQk4cDA5vamrlA+q7duwkXwLB2dT4wlUMXo5NuOGfZmvKbAt36vCxo19bn5pg5sbrL8WQcjSFHh/shNiwnsvqI3DAOIo46tn7GeE04UES7uA+vs9a46U+OHHoBBOaU3vspHXLPogf1p2OtR+5BnSdSgTMNAxYje5nvHJ/u6djBohboN4YrXdLf0vpYB9bR1zlAZGucNVDOX/N/HXjA9Y16MaevjkypN0Q20LmO6d7FAY5BjRSwIDIQ2Bi5lnWWkw143H8c+EeOHDnyMMkBeI8cOXLkIZUezl/+8pffffVXf/UtBB5QYkOZXoyzHqxt3JEITxTeKdUCdgtjYxlkmCKdi6UJ3BCmLORuDT/GYuI/Rn7X8u46G1p5NeYYhv0GLI5F9yM/8iM3YzoQao3/a/oErGTtDWzMkPKb0Ob6CtuQIcNgrr21v7bXHwCpjsHw2h3pMXTlxuu8ymdAAf+AMUBDxo4xWLbesq0XqF12pjBHwNnm+F2g2HnL/lNneTp3TBN9yeALxMNm6vjG5nnPe97dS1/60hvIx+ir7UBCZXZu4xkoIuzTZnnLosT8WYa4tjBON0zca4GdDOHq2Fhc8+su2JSeyT+5Rv2WyTi+MmI7Pt1xHJac63PEVAdjDwQB9gEM0kn5m9PzNgyUW3t3kQe6XIHmZZj7Tx39tsy3Bc+BHn1uvLp+8wsYTc/VQR9iffd/640NBptrjHfMMtex0Q4QCUAizP01r3nN7bgcCuaMsbNmmQv60iZnQBr5fQEfXcOGe401AIpuLdN2GeBAICw7jojqFiszEDtdrk6cGXSFHvdSDoZ8/23Khs3fuRsrAnfWAbSODnqxbE3ALaa4tmHwmjv3c/L47L9lsxtzQLxxx8LEvgTyWmPpybIT91ob6u2+QFf32B0rerFpP9x7zAF9B5hbQFX/JlIQuD8BpwL1mwf6fkFO10tne68MID0HTbqR0wjDnH62LprvyxD2Wt1preRcSQBo3XsA6O4fQEjO3cS64z5svADzrcfNc2DrRjJos+iZ6mYzuiI0ODalSvIc0ZhzFNfWyqt/9BEglpPV+DR/RA+YR6IfFgzddW5B1PoKiGhtAXLT++pijd2+M/c9axFronWXjkphUXm1F8t5GcbWRu0zt+W53ee1ZDcj5VBYh4V2Y/9rz7KC3ff3XurcxPv+x+GqndW7McB4Nget0xxinEaevTw/WNOvrPtdezZFxH4+cuTIkYdNDsB75MiRIw+p9LAcsPlVX/VVd895znPunvWsZ9095SlPuQGdQLbdJCMjoAfqcsjK7deLAcn4TYBRgAEGXefbdAXrBkOVAcKYZ1xgzAnpFWrO4GdUAD6wWtfoZjyon5BYwEPGQyB35WLiARcAUQy+TUcBRGFUCttkNGMcZfRWBkNcHtCMtcpTNoYRwGbBKO0OpANgLrPUNTdU/xpKDuhZAB4TZplvWD+9qgtmj7G9AipXcOUKIPvNtegXFhKDsOu2uVZ9Vjv7P0BDeovGKIAQE63fMuIBu4Uz91/gxbIRKwcz9srIW4Dyyga8glP6NcCm3LDm0YKffW/TtU1zIh/1At2AsmUQM2x75ywAsOuf2gagtbFf4x9rUHoFc6BrAjB6VWb17hjOFPXcejCa79cvC87pnwWp7QIPlADQ1o7qWp0at8YLsI/ly8lkPmPIM+7p8W722Kty9E3n1S/SdzTnOj59AsQYe9epX7ZN2PL6MJ0D9mGMdW7gFEBfXZR7DQ/ePk7Mwa4jOqE1JEbzy172sntrWb8DboE8csQus3YZy8A3Y3+9vj4AoiwrWxsAK8oCwNp003oreoETY9nA+mL1yO90m26px6Y9APhiM0rboBxg3bKudy5p06agWRaiPhBNogzgdb9Ji7DjqE+3/uYAQNe9qu82Aeve2Ximr3K4c4BI1SAKQPvSPymAgLT6ZdeqDZvf+xq2pDkBnLWxqHQp2PC9zNn+7zz3GOxfzPPdPNB9p3eh/0DYgF6AvHuwe58NyICVtbdnkTZJtHHYzhvzvnOkdqh+uxeA8pLOrY3mQnVLOGmuDOw+u++vc3gZ//qQA8SzjfXUPbPrYV5zSmAjG8u+Y3ebN9jZu3kaR1bOn85XN/PJM5jPxq//6yeRU+6B2LyiPjbChB5zai0Y7Dzl7zGY4Jxj7mec6TkoNsXGOvCtX8Dl3RTUmgBY3wgM4L7Nc7feJ0XDkSNHHkY5AO+RI0eOPMTSQ3qsMQ/MQIVlL0nJ4KE5gMiDdb8zTj189wLaAb6E+jHUl6kBrMHkzdiRrxJTZdkqQIVldyxLErDIIABYMhIZQV3DDt5YeAwdgEdlAk8xhxio8uFlMGJZBjCtMVRbpV4QWm/DMJvcYARmtAmjXOAAkMzoidkjPYQw2d00ZZl02posG02eugUE9rpANAb7sqjJAr1XIIdRvpu3LHvOhiiMV2BnAG36Vkg98Ay4YUMxuiAf8RpkytgUAoxgINDu6g3c1f5t27ZxQc7NRQgUcizwb5mQXS/ALkYy43qZzMmOCVYyoBdzTU5GumCTuSSgKAMeiJJu2FFemDjABZOt7x2XIW5OL3ihXvRoQXF1BwYvoOb4pLrLkQz46rrVN10P/HjDG97wZqAiACTRPmsPAGfXGjktgX3SPdhsD8u2+RfIG1PwynD3eV/N0865AoDGWpoVQDJwEDhJBxccB6z4DUPPxkiVUx3T/eZBfWRN3rQT0nbsGgvktS5KA7BA6zLNAU7KMn4bSm8DJGuAOeseseCs9nEE3W+tWKDXWNMz6wLnnXUEWMo5Zo5YXzYVhnoss1b5V+BZHRLrtTrQCf2zAPLmp5breIExTjhrjPsVhr0UDeYDRrq1yXytzYGdrQWNQfMksLVjmutSdNBFwLAxXkYvZqwNGkXniAhJ37TPxmt0CRBbGZxpm1c2tm7sX3XoP5uE9p0O7njTP2NprrrHd+02gK1c6SisvX12X6pvzInq3H1DhIuypJ3YVAfWpk3/0FxfJ4A6Ay7p06Z5SFekQPFb9WucWj+aPzaStD6tvthcjINS+ZtP1/1uU0UB1Dk6nUNnvS+L2NzkvDafAa6iF6wHmxLDvcc9TYol/cdp7XkOwzq2uhzDgbvYyBxX1iDz1nwnni2tNZzrAHzzq37sPI6F+hJYfOTIkSMPmxyA98iRI0ceculBuQ3XemiW+4zR1EP6shwBRhkfPaAToIDNOwAimG6MYqGegGNMQ6ANICeDs3egik1yEoxWTJUNGdw0BIyTBaUAGAyQDL5ejOBl6TAmE8Y7I9x1hYAnGeNAVscyMHt1HTuB60tpHvpefzKyGIwLxDIE9aswfuAolqcwyL4D0RegXRbO/VI5XBlLwqKvAM2CoAAhRvuCKcsIujJBE/2NBcVw7LiMQ3mS9SUGm3OAa13rXd/1XX8a6GxsAd/LmtUPm15BPfc45cXAqy/q+8YyMGHZoAveulZtiRWf7hsPY7DXcJ7rYeZihgvNlcPZMfqkEP9yP9OvAJbOWyYxoILDheOhOtQWfbzpCxa8V7creHb9vBsQ+k9OTZvn5agICGljpFIoYM1umLHcjQtoNp7yagKygGgBCkLDgX99BrikR4G/GGEcINYT46KPOh5gRIwxp1B6UF9LlQBsqZ/onDWDI2j7FFjimoAea548pOb/MtFtcqlexm0BTYAPoMucV7/duG1ZzLUDe3YB/CtIfXUILBt45+Ey5+n9Amreldc1sPCsm/XFAvlY1tpNT+RF3r5QnyvIeAWo6URrOwauVDW7nu082Lalszmkmo8BlIBYQD3gfdnKAMvGXwqA2ip3bnotX3blVb55W1vVzUZf7p0dIx1Ra1AC9DKG6bjUM5j9wLO9j9IX/e2+UN1qk4gM6Wn2vp1Dh6Ngw+05iuUE5iB1PkePFCidh+m+a3Rz9FWvetU9x4g84xtZUbvcazkENqe8Zwg6oA+lcXCPXYY157dnEQAssBrLWYoc+lxbq6vUS9KOcFZJrWBzVfcYG2ICuTcKYEHWdbqZ1/Vt7df2qyM7aR3zzNTvjYv7if7WH9rNKeh5ECO7/1t3K7t2AKI5ynf8OJCqm/RHO984ZW3SSTcAvdXT2KmveXXkyJEjD5scgPfIkSNHjtwenANZGJE9rGfwecBeZh42D2MPQ3WBLowa7BfgwAKuDIvrJmYMR2HPy6xMGDqbI9cDv9yTwMYrm2zDC4ErQKPAwUSdEsafujF8gQByd2KaKk+u374LI61cuTUDt6pvBterX/3qu2c/+9n3AClslWvuPWw9RlNGbMzLzqt8Bj72dH0EwFn2rbYxSPXxFbxQLiBCf1yBT8eujmxKAcahazJGe2X0Zni2ARZGW6CEsGjsH2G5ic3WOr73gAsOBQbdFUSmr8ZNXW3Yo44L+tGVK5uXQQu42XQXGHT6qf+67jOe8Yw3A+HorvEGGi4jsrJtvtXxgSS7GU59FXsOCMiJUp/aqGfD7F1nN7BijJfnOAC0662eL6N7+2FzVnqnS3Sg4wLEhYZ3XG1oTGuTHJnVpblXuhjzuP9rG8Ne+Z0rTNwO8kLQrS27ppi7tdP4A1SAbsAK6yCABVgo96g+2LBxTGlh66Q21W6gQ/1AD80zc4E+AXiAO/0Wi7F+6JpY7fpS2676ycEEqK+tHEXLWHXM5q+kk5szGrgHgLFZ0nV9BdhwtOmza5j0OgSsJXRndU3bAGLmjOgSzkSOiwQATW+u4eS7bgGQrFHbh+Yw0N08AthfGcmOl1qmMksx0Fj0G3Cy8eNc0XapWACgRSB0rRwfAKu+Bxi39qVLUgkB/DnJNsWJOQBs65zmT+urlEmiVjqv7yIFRJJIoQL4c0/vnUMOEEpn+t965D5budK2bL5rfVbftG51P+t/Y7j5l6Xx4fABUkqB1GcbdhpXKSA4a+lZZQOk3dulCFkHl3VznwcAhz7v5pSYr5Whn+vz+ipQXh8Dad3n6fQ19Y3+A4hzKKqL8V9A3PrNEUQ/ur5ysGg5EcwhTkig9KbZsq4vs3mdp5yJ19z01h5t32gNa5m80K3NSAbuz54ndyNG6yBnhTWK/mElX6OOHqvo47e3WNuPHDly5PHIAXiPHDly5MhNepiPBZMREdhTPt5lZzEqgSAAA2F9QB1hthkbV0AXAxFILC8eNitjhpEhTx7wckNZpT8AODAyGQKMSCABMA7zLZH/srJrL6NKexkhymXYBdAK3RUqWbnyCndOwO0aR/WpsMGMrRe96EU3EOj93//97xnem88QeL27kGNFaWP1CAAK5MSsAZAviKANjC1lLRjjt2Xzatvm11xAyTuQBgiDmbXg2QL8gI9+yzgHCAMN5IEMzKhv6FDlBgJkyHdedSvknr6sQbdOB6AMYGD/Sw+x5h7NsLMzOdZkdaDXjE1tT7bv9zjjuw6R1dkFw+lj9U5XAP3YvEAurHtgHqBvNyyr37D7Fjg2P+pPBvn2z/anOl0BugXE/F59yqcsN2b16LrNETmp5RjtuOafDag4FugXEIFOA9KxX4VKL3MVaKEPA9Aw1YxLY0lHjcEyXTdaYPVdFAJWZG2iV9YOOUuXTZ8uY2VuTuttK+DExpf1ifQt1hjzfB1OygBoAYw2JckCNJur91oPY4nJuKHVABRrmbJXT/aa6riOol1j7ucgUJ8Fh3fsrCfyhwJNAdbrxALicaxY14C11vTashv1OX8Bfu2+MoIXrMzxlq5JW1CZjaE1xIZT2KHuc+5HHWus6GN6yoEpnU/SPWOZzb3b/M890z1a9AwWatfZ8H55h/W9tQxzku6YH5wa2t+cBuRW5oK6+v66aRqRqoRDSKoHIC+mbMdgwWPCdy05bGt/9Wit84zAKeA5wny+bojGAWZNUC96YE6YnztfPP9gnvZZ7uxyaifYyelGDk33d86pngkA6bt5oTYknUsv1I1Tu3PrV6mN+lw/ujeJmLIxrnv6NbXVpnYBAnOqcQ6ukxToXr+b45XjeoBnYyJX8zrqEAX0qzaKZuKgs1Zbu1pP6XrXXaC566dLR44cOfKwyQF4jxw5cuQhljVSkgylmEcBLoDCDVu0q3QP7TaRWaMPmMaIkuphmYsMCqF4jCPHMR42h2nCwFQ2ZpLjgDKACWAE4EXZri+nZUBKhoY0ABlmy9zZnZ6TgLH64f3e7/3ejHmZYeX65UvM0A98xfTE4JJLtPIDiBjfu/kIAwbbaI1K9bABVYZhzEibQTFy9KN8isvqWsb0lWUHsAW2AFbUbQHdDeMFdmAJOX6N4epSf/zQD/3Q7ViMW2xjTEbABt3CNE1nbLaUodnYYZo7b0FIfQAs2nZrG31Zdl+y4OaGvOozwM/90mlsiLN6XNNBLDiqr+gSJqeQ4oz3xq5+6B37jnHcZzkzASyJjaKwtDL49WEAT30o3YF5gQ21Y6dftj2bfmGB/8QmjNYKAFH1bzO4UknoJwzHgPoY7tYWgKt2AeHSk9iMQDFhyMAZelSZgGLrE9YjgG83YgIQLGvehmIL3GIyLqhQHeX9XOYrB5R2NkcrW70AqMuappfVo/NtwMbRYlwwsBdsXMDWunll17uu46+6r7xd/+i69ZPjjYNrQ9R3zTKHAWSAI+1Y8HcdHldHx9XhsE4TOrwAbr9vagTOP2uH+WFeArMWYMbItHaqDyeWvth7j7bbQK3zYl6rq7zTwvNFAtANAK2IBjna3SOAdfQG+xuAjXkJjDMXzDVttiGVzSvdx0SC0H/9bO5UltzU1bu2BdxhpeobAHTlYUpLL2Qd2HuUNWpz90tnoW0bRbOgurGxHgCxdx3B4gcUcz6YR137uqnk5um1hvlffTaFAH2wvnOo0iO5izv25S9/+W0jzsqxwWr1k/YnsLT12fNWv2Fye75yr1RPG0pWp3SpZ4vqYQNKALZ1hDOVk8wzB6eJudQxWOYLaBtLKYI805n3dAAZIGe0dRNDd6NYOg+bXNnSLaRfe191n+MwsQ4bV6kwavuRI0eOPGxyAN4jR44ceYhlgaekh+kAmO/6ru+6Z8hj1DCM16gF9i0TRjglg2nZZBij/lswkYHhwZ4BuuDBblKyoc2Me0DbhjICOuTcA16oU4ZQwOgP//AP333gB37gvfMw7dbwYWwDKRiOWCTLhsuAkpeX8VPdAmwysN/rvd7rdkysJcahUF0AybYbsAOAAfRVz1e+8pV37/7u735rS3VhGDMoAb2MzgVhAQFXhi7QY8OwGbfLpltwCchJNmwXKJHRZTMUIExGpzBNYKNwTUyd3kslUPsCAjtOv1zZgOoGXGIIL1htvBbgootXhp5zAdILRG0/ArF62UhuGUeOV/6V/eo34dp9D0CRw7Hwb4BLYg5sCLrxEt7MoAbIya3IyDYHckZgut2PTel9mWx+3/6ygSDjXSqOwCBOFeA1EKb/OjdQrHo1toHA9EefAx/SB6CL9msPIKPv9Vey+XqXVQ3YAIAu8Lc5m7UbkOQ4YLHNGjd/sNByGyM2V7FEgR+bXxjQQfpPfnDsQxtOcTAANps7dA2AtfkqgSI7X9cRIsXJFUA1h1zTmmOzMICt+aAPsRPVc+cgvdr7wHUO7Od13qwDB5hqjViHIAcQNuuyrhP3C468+nH/d511DF4dW+43CUdl31vTAKjApj7L3dqx1sCuCwg2NzvOZmh7j27Odg3h6a2B0lBg4mJH1vYFuDk8NwImneFwWODS/UJ7lU2XN8euVDHAwnUe1o7ubesE0CapIHat8tywYfiY+nvfdn8BnOo7ES1ytrs3utdou7m+a1av+kIUjLUOiLv3PwzYZagv4O45CBDftUWc0Pc+t/GmYzmmmu/91zwH+m5KAvNNmgsRVbtXQOWkV3ufFfUiAgQgSmc5EDlgAfUibtR7nTjWSJFa6WPPij0/mp8Yuljx+xyYeNaxeWr9ANzl3Kh8z06u3XGcOJs+w3zuuPrsmqLrscg+Txw5cuTIgygH4D1y5MiRh1gWjCM9rAcY9pDbg/Uzn/nMW47MjAS5TwG6jEMsqWW4MXAdxyBznN97GGdgbM7PZXcBhrCKpCDAQCGMdcaA1AkdsyBDx2GTlPOw789//vNv7OWAV4Ykw3ZzXTLK1CfBMsSYqb4xEpdBmmQQFboLaMR4wUbZEMyt67KWEm0D3ARgVW5tz1AFsElxsOkm9OUCdAvQrB4sa3iZqH5jsK0+bT8rfwEVgBbdwBqjW/WRNAIZo64hNyTjmhPgkQDXBbEWmLmya6/AEuNUu5x/vc4auhwLzgVYLLC9u5UveGq8lclx4PrKymDNEZFg3Wbg1geNOQZYfZMe9z9GeeXVd0LtO6ZzzOMYsc1v37edibFf0HuBUp/lTwQGVp9ClGP8Nb7NDc4HYLD2pKvVr3lT+THgl7HN+K/NATkYuAtEbWqFyuTkwA4zR1c/hd1jlQK4NqJg9Ub/WDuX6YslmtRWTFxMs9oDIKPDzfnGYpmw1jmh7lLKuCYWJH3hRFIG8BTIC1CxBmj/lc1LP3ddWFY9sLe+lapknVMLwlrfl227a8zOU/+tA8T8uY7X/XRxHRCJtAXGSuqcjVqQQoPOW8ev5fq8zP9d081luiQFUXOqMWjOYiJWp+YCPek3edQD9yqj9VrKj8L60/Vrzl2A/t6ngGiVydnRcVio1s1ezS19upuhSvvinsqh4X5jbmHrJqJIbHqlP6UWqdz0uzZxNulX88L6z4GB1e9ZY1nugFTAbiLNEiBSWppNLUHnpPHYe7m8u1cW+N4LAJrmkf/6LWCzY8xrbdt0BL2wsGtbTq3OkVNfP+98tB6lI5x+UrR0rpy2omFcs76Xq741tvraPE+f7H3ItThypNRx723N5bCWl5fOYD9zkvRf7exazQVpFq5Ma+vpplfyDGSMO8a80C+eAaQYMracbcbJWB05cuTIwyYH4D1y5MiRIz9NetBu0yN5bvseyFt4ZoYeQAObRQhsIr9mzCSbGQmjxjLbnKuJUFhgwQKDmCa7SQpWCKMdK4RhC8RitAll3/BrrEfsrvd5n/e5e8UrXnFjMtbORNsWrKh9GeEMJCxQLN0MntqewZUxVP2EPAKbY7vINbrhxZuzlkEEPEmAJYyX6l1ZjLtAspiPbc4kfx4DC0jYb8mCtAlDdkEYgMf+BvBZ0HtBGSyi3WhF/fWhsPH6C/BVvTJGM3gxbxjLUmgAgzIgMVuvQMuGrq5+7DH+u7J39ctV1pmxDGagGqCCgbntbny3TL8zcOmk81zPO5YnwKHzOAKAIDbHwVIVNt3vWMAZ5wCfyopplW5jdxkTc2adCcti3VDdHX/h4QD8xuwHfuAH7oUOY4oB22xyBPwTBpyjwnzdjYf0ZXWLyY35BrQGUGHvd30sQ+AYkBiom2DTYtBWL3Nh3/V9Uhs6rndAD1DM2HGs9L31oLlXnbzbiBHwDqTZNCDXjaE2jYO5hB0uD6v6AKo2ksGc3/Vl9QpYuGxcawId3E0zlbPsvo2kWEeKc3zeOXctR712vqyDzfHrjFi2bZ+xZRd4Upd+x0Ku3VLbpDuN664ZysX0Xgb0rpmAyOYT54T1NzCq/m+sm7scjkn/AfiB8tY9Ot2a2DwS1WBzNM4bYwUo3JRJu1HXsnmNkfnKGQE43M3g3L+AvO4h1mSgnfrTA+thfVob5fhNgMSdb53Ccq4+HE61uT6onzCIKy8BMpq7AGr3rc0F7V7hfmjDN/3umGU+iw6wvgEd3eM2Smmva76IUOjlWWCZsZXdemcs09WdE9alrt16Yt0S5eS+Y/5KyWGupm+J8vUJB9E6x9a5ZCz3Pun5ja7I7+76HAmYz+mNfQeA9u51WLcbSbV5nZVhHro32QTUPWIditbifpOqQluOHDly5GGSA/AeOXLkyJH7Sg/hr3vd6+4ZOxuya4MdxvimL7CZSAKoAfRuDrzrRia7SRHDFbOGobpGNubNspjkCsyYFHIoVzBDZcGKBTAyKIXHYh/bjCQBDJdf92lPe9qbsaqwxGzEJUyYUdN1MtAKyywcvmOql41oGIEMatdWV9/VW2ilOtTeQIWOabMqAGvgL6Ya4GCN1CvzbYFYhqUxWQB0WbELrhifHUeAT59jc8p1vCzZ6pjR9pznPOeeEec6/dexwMnOD2AINAPobE5C11/2oTYvgKV8YOYCmds3V7A4MCLDFZC26UEwkegZw/TK8tsw473mjoW+wwCWT7IybZLW+AIXkt05HZsMi0ueWPOn94CSmIYYUwvOaYO6qBswyzUBI+khFrkcwTaDq79ilUlnoB+M/6Y16Px0FdgmTYocnZ1f+el7eg/gwsbjOKp/GP99FrLd+HFScSjZfA/Y0Fxe5p6+EHrNMWF9C7xZxwkwU+g1Jm1sTMCz9QHwQ8eMkf7YuUV2rIyPkH/gjTlgnQTUAU6W+QfAWcCFjtJHur3MdMctS/e62Zz5BdDe9UX/Wk92HgD//G6dIQseL9PWerybKe59xjUBuTalA/alb63Pohwcv3P1yijeekqTU5lYq5WV/jdGHdcavX2XLnd9ziCgZXrTfYkzAqOxtjW/uqe4R9F/ukQPOeK0T6qGrtF1l72eyJsvFYB7qnuIMeZIqU3Gq3bbIO26SRh9r86b1xlw2/+cUBxE2LGbC/fqUOmc+sjvQMQFZa0LqwPmDsCUbGTIsoA3qmGdTkB3z0Sbuso4AF8xyxP3AekWpK6xZi5LelMmbHSBMqtX9wSb8QF2jY0cvnTAeq9+9EHKjWUhaw9dldYDE7trLHAsgoHzHjC8G94B4j03Wl+M9d7Xzb2tPz1eFrn7Tvpj7TSOj0eu68yRI0eOPGhyAN4jR44cOfKI0oN0IO/ml+vBOgMio8HDNmaJMM0e+gFfjCGhxAnDGYiyTEYGKSMzsfmGh/yOxQoENgCF+42B3btQ9DVSAKbABEyrjv/BH/zBe8DR5qat/rFja1vtl1sQczfgKGAAiApglov19a9//a2fSgHR7xkzWEQMaexWhjlDBtsGKC21Q8ZPjGLHA9AB20JEjSWwmpGn3xasWTbfNSWDvlgDNgEKLhgCmFqgqBcAHQBpl26s0ysLb9muQEq73Qt1ZihuCPYy2/pfnuQrkOTYK3N3AVeGffodQLEG7abUWGAsWfZlAkgTxnw/tvCVNbopG9J5zhLjGshbmelsfQrMwP4LXMX6xrDq+9Of/vR7LDTzDJihzdqw/bUpM7S1MQFayqfcf/RR7tDGEUjLQMeSt4keBh1guzIAY8vcxpAXcm3OAXN3/KRksWkd5rM5tgY9VuAVWARQ6aPqYld6bQF8q7/NExdwTIC6gDyARM6jIiXUH2C56+WCTEBnelP7rLOAH7qwkRTrfDCGC+BaI4BkdBdAo+7L5N11YXUFM3QB26uTZR1M9CjZfKjmsvHYMVsHhJQmfbZ+0A/9vRsB9t74uWd1zgKQO/5kmf8794GQ67zCWO8/IK56tHanz0VeSGOw65z7WQzj3citNahzrY102drCwSfShs65x1pTaifGuvEB0DW/gH6YkABk8x3IK5yfviqbMwYw7Nkgad5g71oPOp/jBcCOxQ4YNp9cF2iKJUpPzHvvu57V1s0jv5vvmas+00Hid+MkV79r00Htc//h2HRNbQN0cmJqH9CYrtTXIn42XzOG87Wfa2PlBeLnDDXO1u/Nw0+ntNs4WocaM2uNZwp1N7fdd+SbtlbSOcBtY2WDWM4n4+ieoX/M3a5lg1rjZKM39/8cK9ab6itS5ciRI0ceNjkA75EjR44ceVTpAfo1r3nNPcOxB/Q29AqgzDhbdlnGh12aMywYEj3IC+/ckE8GRg/8DIheGTKBpRkKQittDpIBwJjbUF9gLAMMoAlUTtYABqAwoBg0GU9tzpTBw9hUbv2woZkM6+orJBdQkgHe/xk8/Rc4/NznPvceyGGTMAY1pkwvBlLsytrYsdJUVOf+73NgVvUMHEgY2XIsGpvqF9CHYQO8IFdWbuVuuKbj10Dc0O7kCgxiOAFA+j8jLEBD/jx9Vh7kfhd6u+zQ6hAzdJljNi4CpGwuYKAUAGx34PYbgx9Is4agPmZoYhCn70AIurRMV2XufNAfgBFgzP0Ysequb4H2vWywBvQEKGGI14cMaMZ50u/LRl8AHpCxwBUAT/2vIJwxlvcZOx4z9F3e5V3eTJ8xchu/ZZ/bNAe4od86FqMtEdq+IfO7Oz0gw5zcTXz6r99KuSIEvPI2d6+x89m6ZC4sO9MYSychugC4tHMKs1HofzpkLVXnTZeiPrWpudr5HEgLxF6B1XW6LNuPI8j8qA9tfLnHG/tlnK9TZ9dXunXdAHIdJQuGLsCO7We93f+vsoDpAmzXVA3Kc22/LUBcH2r7gvWAT9dZBnu6IgcusHjHdcHo6/zWl/LQY6N3jda3zgEk5ySkB9Wv9aZ7XutMehPbW/oQIGHHNp+xwDuv9d96VLk2vdp7onsIRq31jW5hsbsWUM49FPjofr731erc+qSdAPLKlsqkPpKXXyobegrc5LTEvNRXvYxPZdU+G4ZyrgLp64v6qHIwYAGZANXENRfsBQZLHWO+clBg4l/XTHOTMxY7VdopczCdW2cSRxNwfOcux6UIBJE+7mHq0H89I3A6b1SEFApJfQIsBr6b1xsVZW3rfw4i+do9n7jvJemh5zLjARB233RPw+Dve3PMvZXTUdoU6+rO7X6rXhjOnvGA//0n9ck6Fq/g/JEjR448DHIA3iNHjhw58hYlI6qcvD1IB9IlPfQzZuX968EakCucPsEmWSMd2Ls5chlavQuDBpwA5+ThY1RhdAAnGGEdw2gHFBLghryUwK4MxPLXvupVr7p76lOf+mYhnRlJAVVtOgdoYfxWx5h3ayB3fGBkn9tQpbBcxq6NRbB/1H/B5s6tPgx3BlCC1VUu0ozr2JgZerWjMruWPtdWBhomIXASoMgYY/xtPlUA3LKirqze+4U1MqIZzEAbGwj1oi8MwAXfjBXW0IacL8OHcQkEw5RapjbQa0FoQOEC1jHWA1lsIhWony5+1Ed91L2+AJIwdgE/C/osW3r1Tr8kV2ag8VFG/2XkA/36XH9lQMtVKQx8QVgASHOUgW3Mdxzpr+vtBnhX0Ex/bxhzOrrAvr7AKKvvc3QAu9QdkKmP0oPKAERoB32Rd5RTZBluxmAdDQs8d12buQFpAnpbxzDB6Q3W17ZXfyxb1bgKka5Ny5Az/nJB9r/QZyxnYBPnQ33fegnsq34ARiDMFUhcZwDHBL3ZNCzyG+9YA++AgfR52+6auwav48b1r4xca47vdGmZlFcGLkDad+UvSLmOk+TKstb+LRt7FxCVLqZLAWLGFqjUe/2efsgvu1EnVwD76gDoGhybjfmG4cstXnmVXR1ap4FcCX0UdUIvAZzpbrrRms9B1rX7bfOAA3R3IzZ9sYzKrlFdVm+keNHnG33DUaFd1ovN7y3NRYC29UmZQFAOBuVZ8wB7ta/50meROzZcBHZy8FTv7svNNc8C2iWV0ZW1qy/XsdP4VBbnqXut+/Om+9n7irnj2aXfbSRpbOjeOrX3XrzOQnNXWevU0U+uuRvzbVoJ6Wzqn8bGfdO81yfun82F2p8T0bq8LOV1glhXMNbdC+k/MJwzPmlO9F/XWXZwTmfPQ80Hz2lAeXqnLRycldHxXYMDU2RXYqPbde4/VrmuH0eOHDnyoMkBeI8cOXLkyGOSDKxXvvKVtwfzGLyBMkDR3SkaQ2nDcXeDDiLfIEOPIcGo6HoAESF8GV/AO6GjG3YPEF5Q0gP7GlTAjGW6AaoCSl/60pfejMYYiTZ1euELX3gPyGWQAUiqq7b1uXMZvoVdJ/VZbQbs1E9YvoDc+rHfALxJv2cAybGZBBjXZ1imGVCxYIGFwARgxrJxAdKMbgYmMAYbsmsBlzd0GkCrrESqDn1w7fcr201uxWUuYSwCj7CdGJedAxjfnKUMvAUtGckdDyhZ4zhRLyw+Y9fmY+/8zu98z1nQ9+osTYBztHuBT/2wwDegag1Hv28/bmgw45jRXvuF0DKsK6v61o/0HyCT3kl9seOm3th96i3k1RzQPzuGC8xtWgoMM+c7R4iyFArqDGjomuooXYfNp67s8JwZQswZ8a7TsYW4V4d0lt5i3mE16m9pUTbvrrEC2rg2wFM/WSeAwYAyDinOCmLzw8YOQMbRtXMFWCyFRcd0XY4G7QUSLRPQ2GAD+k+96Sen1+b19a7tm7JhnTnm9uqTeQtwd86+q/fW07GrV8sOp5+7Ju/6rb507arXy7Ilu05IpwFUl/JE+gD6AKBtLjlGva1nVydXOiAViTzQ2KQYrFfQGlDZ71L9BHzRKSBn5XTvcR/s+O4Dy7alj8u+TaT5EflSeVjVHSfiA3i2oKJQeM4U96Q9HwAn1cX2tTkMbMVwdR+isxiv2y8A9oBB6QmkYematUPu2f4XsdC6LQ0KUFJ/dH7gr/WI/ugzqSmAwgBpbFbA7aaF2LQN+m9Zv5yrHCaA2V23d33tmtWxNnRfNwfcR+ozTGnPL5VpzTF3OQHM/2Xgmuf6lCNuN3AVheE5YddGERf1fddoDa6+rVmNi7zT5iZmeedLK1UZ6TJ2Ml3Ze8SymX1urOUZ7jjpL/YZx/34yJEjRx42OQDvkSNHjhx5zBLQ8vznP/+ewfwBH/ABtxygSQaGcFPGmU1/GIbAEA/jjBagImNH2LUNYITmAWWBLwkgjnEP4MD8cQywgPHl2gmgl1EWI/ZFL3rRvY0/aldSWzNaAnABUdeQUAaxkNyMJqkJGJdYKfKRVufy5DHeNgdnvzFeXUv+UeGrge0ZWNq3DD3gBQBiwRFtXwDP2GLrJVhRDNJlCC4bLLmGNC9DlcHMMMVcu47dsmJ7D/AQzk4nFnRWR+1hZO+u5sskZvAy7I19eZKB3NpY31efxo1uAoeuLMQFdxdEo39XZtACwHtdn4Hw5W0OaG7+AY8w1NNzDC0MJxtILQsaWIelt2N5TRGyssxK9bwC/At66Yfd2EjeSGCgesnNC9itTcZXuRhiQrAX3Ojc5mcvod2bVzidEToOQK+sd3u3d7sHKrjWleW8fXedM5sqw5wC8uxYaG/9guFLpzAtjYvUKcti1KeAaKkhADULPhvTTRWhXnRBFIDoCG1M5Ezl/HI+h9mONfDF/L+y6pf5vI4A/bt65r+VnftXlu4ymK3je43VS2O6854e9Fvrb+3Wr8t6lce4OReYhAm583ZZyvSjcqTm6DzjjGnZMdLOACFFIcjpLEXEbjK2a0jX7l4UMIs5uW1esLGyWi96ASOtXwD/TWcAlMSKpJMiGtRfKhVOKcCtcH795L5uTXCv5UyQY3XTJ7Xed7xnitraOfVnY1X/tla7L1e+6IDa3jiu03l1gG5zqgDLtb/jule7F5vH2ihaaddP+mlzQ8DkFUSufCDqOgY4bl2f47oy5GmWy7/y6pfqxhHbcdYUrHob8LWOVIb+pYuAbDoi1YFnqQQTGIBvbbKeiBDq3tir8wDx7ptyBa9+eoZTbulIPI/RN+tTbes66YQIltqW0z1nSHqJgW+s16F35MiRIw+bHID3yJEjR448LskAePGLX3z37Gc/+/bQndHFoMrgBHL6DeiwRiEmHgMQmIbJtAwe4a4AiH6zmRDjeFlrm8qBMbMgY8bCgiMYwoyxyi1vZ+woTJ8MpNrZ7zbJYRwLHy3HbuV2XMxfhk/98LSnPe32PRAWAJbhJYzdRlMZrJ0r9yjWImMVgMv4Y9hVbmOBDSPsumsLy63MjmE4dR6DtT7Bjk02hx0WzLJdGWvLDNbvQAD/M6zXyF6WtbKVuaBQ73ZIJ0CBK6jrnc5gWy3ICmDaMHyGZd+Fqm5oZ9dPAtEdr1/UNVnW+oLz2r7AN93eEOjtK+UwcIU7Ax3UVwoGetgx6ScHCga9sunNlWkJwATS7X8+rzPm+j8gk2H+2te+9l5+RCy8zdEIoN08mtqW8Y61mjT3gDvyLDZPOC+aI83L5gCHjpD8ZagBfaWRwWBeEBFoD2BZoHHXFaxD+V3V3VgTgHJ1qI2Nl0gF7DZAE1BfnuJlsgPlmqfyfBs3Y2pc+k0kw4KpGNLymC5zWFg3HaKrACUh8XTpCugra3V4Gf1X4PW6Npgvy4jdtXydJkBxddm1/8oIXua1a+4atWlU6CJmOcAd8IcJbg24HyiNfYk52fE57hpra1fltA6Lrui35veuWek6IN7aDyzuvfMa4xyHzQnzbqMLsK17DwgTMbNsaWO76RIA50BAIDQ9Bs65l/duveTANe47xwCf0ixghu5mX6uDgN7uqz1XdO03vvGN91ijzaX6tboG+Pbd/Y6TC3CMrS8dA+fO1blAh6yDu06lE91fu2Z1WFbwPme4FzVOCyYDizeiofHdDTgxZRNOOqkm3He7vs0bbRQIlHVfr33uDUWjtKZ2TtfqmpzlnIM2IDUXRRBUDr3outZNkSVdl7OovvFs4vnKPbzrc0I0Hzy3mDeeQRpXerLrayKKx/NLetkzDX2z7tHRXWsej9xvbh85cuTIgyQH4D1y5MiRI49bYlx893d/941Z08N+jLgesnuQ78F9DXOh0xkDckx6KGfwys0nx2CGhId7xlHvjObdYGtZIdcUDFh2Gzq/RtYCCtgfmCAZaBmOyqltga/AE0BQxxVG2TXtbB4AzojKwJKTt/9qW8cxSDfvnlQNHZPxgn3IwPOZUYi1VxoIIFrnMniEh9Zn1RNTzLkLWJUPkhFWP8uZB2AFIjLagDLLnlvgIFmAbPNnXtNiAE2XpYbNg/lEp4zpAkTLpmIgLhi9ddV234Gr8iTuZoDGqz7AYLumCcASu4aTa+8yVve7Md/wcrqIQX0FH9VpwdXqon/MtWQBqwXN9rVs7AXwtvx1jgARjWOyuW/7HJBggyg6yekjXy2nT0Y9cMh4CXvelAHLCDNmnEZ0vPkUEGQzKOG8AIndZKxyAo4CkBboN27rzEiA6sa+/7pObaGnndMcb97mJFjHEzC660obsuxwQOuCPMASTh7t6Lq1ddmzuxki4I0TYAG2hNPJ2gO83Nyo+oEO7npB7xcc37m+TGjOFPpyBXCvToQtZ8Hf/W2/Lyt7ow0WeFYXc23ru0zjdfTQH7oKmEwPl5m895r6Pd3vWkBdLHPsx4TjcfOmyh9bucB3IBamZvWx6WZivTJPlh1fvczV1q/Wc/c/beHUrNzWeWO3zit9BWyT9mfnhzRF5iVwbhnpC5hit5qTNhBdcJzTtHrVZjlcm1eY1/1ef0t90bzDON/8q9rU+0b6eP7wX/NiIw3obtdr7ZdixVpGp+iQ+7M+pv+eeWxWVp2b99d8xstwp9+Y19YsoO46zvqs7eas3/pfCil7JFgjur61wNw3jt5FA+gj+ut/+fobJ+lN5CDe3Pd0tut3zRxy9UlOucqWn303pTNu9jLou9zy+l6f7Tw35p4zjxw5cuRhkwPwHjly5MiRxy09XL/kJS95M/ZP+QGFywEIN9eeh+3NfwmoXebdsskWoBDaSWy6sQ/5DEXMIEbmGqKbTxBAJJyfgcRIxebNwBQCyagCjGAbds3AXCyTF7zgBbcwXKwsYd1tZNL5GauJPLrYUAnjWhhlsgw34BEDPIZwUp3KHxy7OlCScbR9BNBjsAFupHiQzzBDFHsLUKdf1AczOONMiP8CZsZuDWZjCpBZpp1ygQALvG9+WtcBOixIr3zscUbfgtHqtca40E7gTb8F0nAq2EgL83xBrGU6A4cBIBhqC3xf+2BBr93MR72T+jng9Id/+Idv9TDfzK9egOFNX7LA2KavwIQE3vhdva5joj0AQL8Dg6QlEG7beGEXbjhuIAfGIYAAGEOn0z+M8oCw9KsUFfoKAGDs01UOk8ap63Ye4AsY0DoVGIE9x9lzBc6xpZfRZ52j65sSA2AtbyumG7BTlELrSM4w864+0XfGTd9hrDWHsdvkhtbnjTcQhz4C1l3XmrJ6Z153DABw5+ICVtZnumUMNiR6GfGus/MsuYK0jwbiXmVZ8fvuGvTWmg4sNIesGwvk02NMdyA8Z5M82CIpgGhyXu/6tqx09RFtIqdu6zFnpTyp0hlYdwDt/d+16W7ltj5XprW4iILWJ6Dijp+cpdpBZ+XFtsYY2/TEfYw+0m/9ZgM3UR+d23t1r1x1BxwDqpdZvk7HZZ/WFkzjrt89q7nc99oXYF5ETWtLv/d/x73P+7zPzbkpjJ9OYKS691nf6K97kXbpe7nAMZjrk90gsWvsum+ObTTHtrfj05vKUWc60zrkOUcdNhXSgvfu7SKA5PYG3JofQGC6aY0DmteW1f1e60Tod2lunHdlhgPDd53rf9FIdM/zn8/u6e7jlZdT2aaEIi2qy65dveQh3jQV1hjOt/7zbOf57omyeI8cOXLkQZYD8B45cuTIkSckGQ9/7a/9tdt7RsKHfuiH3j3jGc+4F27KsGJUYBf2P8ODsZuhIISx4wFsyyLb0MkFFAB4C8wtsAA8kQPT75tz129dr+uX3y2j06ZbQKWMyfLzAsiATJsXk1GmnQE6HZuhF7ibUR9Qs+HO2oPNxPgW6qtNygci6xNtAfDIhZwh1rUA6V1783BmQPcO6ACuS7WRAWYcOgZYvgCXshcMIFcWKgOccWzs9twFWwC2wi6XlQvEXEYd1iZjcw28q5Ngw2sZidqzqQPky/yBH/iBu4/8yI98MwA74VhYsAmwssChMVzmH6M+YbBuflw61fGN5ate9ap7feAYIcn0QNmO2bEASOovILlw+gXXFgzbsOsrW3ABA+G/Qm3NfSxUY6Auzfsraw3oqR/S2dquX4GBAKWOxwa2kc/m/Jbj07h2br9j2V7bSh93XcCkpWNApwAn4G31tOnVOpaANkAtbL7Ox/gE8BkPzrDd3A/YAUQBuJovQtvpp3r2DpDb3KdYyFiCmz/UPDReC0xuGpQEALTsaLps/l9Z/lv2VeceDfClzwvWLtN6N9HjmKG3V4bw5vLdje/ons3Kdm4p1waY5n9lYJ5jqgKDAegbWaCfrMXuURiWxq3vreVy0BcZEnMV43Y3LzTfehkX+gQcA16ab9WnuknRA3S0YRfgUzutvcbOPd5nuoXNKeUS/TD3hOTTKeNi00UbrAaMA4xrtw1Im3eBrvVvv7c+S6thPvS/vmxuYswCzD1bSHtRuZ1jfrrnWSM6n65zVtFturPOHL/TQek25Nzv3Xq15Rg3YCWd1p5epeboWUQfeh7pv55beu9Zw7PJRpz0ufOsUXRCtENtq0yRLMZPP/qfk9uayGnnniWqACBdXTg0Gq/KeOpTn3pbB0U3pTdSaPUuKmydiEgDO4/rK87K5qb7nHY/Htl7+5EjR448iHIA3iNHjhw58oSlh/0f/MEfvH3OQOwBvrQNPZQnGSU2DgF2YP32oM8oxsDACAR+9ZsNQAA8axwBXgA+u8kIdg5QIJAIoCCkXb2w+DIgMz5qg03NXv3qV98M3ja66r8YvYDWBKC4m24FCrcJTOW8+7u/++28yrfZSAZqfbWbmdU+BhKArP6xAQ5Qc9MzYF/KDam9/V4IegASA8vGXMIgGUyNETCoYzongLd2MjA3z92yHvdzArggCzBsKDTQYJnEAJi+AwMYy4CczenZ9wXotLvrC2tV7pVBqz4AQrqTcYxR1LHpA/BTXmSgAIPc52UnA6awd5dVy1hVb5+XvassumtzpAD3dKt61ka6u2zWzYW6r823CkQUoq8/lm25Y7qhrgvYJ1iAzUO5Mjum9CbbPxw8mIBSiSyTHtgp7Nr8qvxlCgqZFjEgXUNzXFvN94ROxngUZq7vFkQEUGnjMiI3TQgAFevMWlc9muPqu2PD4eNandexrQV9ri0LOnJAYOgClgK1hLcDp6yf9Mu8Ej1g7vodyNo5NnD0HUDp/HUE9BvQzGvnHf3f+UzHl0G/umOMrrLzdWV1e50sG7YOjN20BAs+L3hs3XP85o8V3o5t2j3uCljrV5tR7T2utVS9Kqfzbba5OUvlGa2s7p3W+o1KcS3pT7Ame+86rU+cBKvH6/hMzHvjsXmGrYmcm1icC6hVvg3N3IOxOjvHRn0Y89Y0L/3oGCkKXLv6dW9ML+uDANwFvM3Hrh+ImQOzaIbWRQ4+QCYQHYsZu5dDc6MRODk2fzWGtHkh1UbH7LgscI+5a93znCTvsKgEDmLlczTsfRNIWlub91IV1MaeKYD61sT6NcDUvZE+A4J3bu6mpeaGvOnuq9Y0baPj10gZ88181yfa5nmt56naVVtiI1d3aSCsdRwUnAOccnuPkMJH6pLNw2092XvrkSNHjjxMcgDeI0eOHDnyVkkP26VryBiIYfi5n/u5N5Zrcs2l5uE7Y5SBs3nT1kDF+BMWn9johsHKeOvamyIg2fBJBom0EAwWjLKOiX1XvTIWhUcGngTQ/uiP/ug9AzJDJmZRUjk2wAICZYBnfFXv933f973HDOqYzhPKzdgRritsesEJ7KzaDDBgZAJXN2WEjegYlDZSARZ0js1NGNBAHKGelVcfVNcFchYwBdJhBy2omAAXCMNywSDjfmXDbij4grsLni74ueBtZctx6j/vW4dEGKq8qYWBdn7jnP5WZgBvr/r/Pd7jPW5GtDDdBV2um5PRa9dcVi2Q0LFeG55L1rCWzzkDHmiIocUQ1qf3A8Ho9Ia4Cg9mxO+cXPbqMo83RYB21Uf1Ye8BPc0JO7wH+iyjdfO9aquwXtcC0gJqzYGOsZETQDN9txmUdaNrA1M5KPoccNS17EJff7rmphBZ4LfxxsBc/Vl2Z2Vx9BgHc8/4y3VpY6NSqXBe7YZ4tccGUViDQPgN95azHKMUaCZUHSgC3KQrIiUwQ60Jnb/sOGsuwF5ovbm3bHvrwDL0d01ffb/OWeCefvX71Smza8nVgbFM0mt6my1rdXbBLukYMEAd6/6hf7AE6zvg5oLVNt9yn7EhFxY6UNF6rt70dNP50GOblVr/sakb/+rVZ+mDrM1AMwDmRqsA8BawvUZeiCQA3pmL7vccLOZyIjUTkHNZ6ERZC7qrs9z9XbM25xxVf3pGp2x4JjKg/wNNgbDuT/UNp2pic7WuZYM7rOLGCGPes4TzNqVD7za8MwfoHietPNjWdPd5dXIP2YgCoKjz1vnWOtXcL7Koz/pXyg5ALrbwOvzkKd5nKwD11WFKFxxDbKSXPnMSdb+01mnDgq3ux9aX7g391vOUNDk5BK0p5hvHmBQU1kD3j45tjLrHyL1svkgzYk3lJDxy5MiRh0kOwHvkyJEjR95qCYx4+ctffnuI/7AP+7DbA3zCcAWgAHp6QI/hGmjG2GVErvFnEzOGNiNzWVSALvnolmmqDgx+zE6GWpJhUrhj1ypkcA25Xhhu5T4N9MRg6RiMI79VRoYmJhmQFYOFod05AEXGtg1c5MDD0MxABXTVF/KWMhAZnLGZhOEmC8IxJOvz+qayqhPW4Br9Qj0rN0PbxjOAMQAgwwxD+GrYJZvewbGM7wTgQEcWjFPWhjQz8IwPI5UuVJ4Ni65Mu9UFhq00FVjTsU4XOEw/21hPCD4QPNn0C5u2YBlzW3djtuL/BdGv4HRttHkfIxgAs4b8MoH1z/1YYvIiml/6fJnXy2I1VjvvgENYX73SDU6LdFkexK6NtWhuqWPHxOQCbmHX2URM2cDHzov91Xk2XKr92IS1SzoHbD2Mvo5pnvSyQVpjbr4C1+iUUG5gzDodpEtI5H7EqsMsBopgZNI7QHT6VTs5rLQlYKu+qh3mBIay1AHpaUB/0jnCyqVLkdbB+AGhrAN0pWtUh8rss03cMONWjwFlHC0cTMDB64ZGyxheYNf7FeRd4PjKvFtwfee1ubgOoHUCrRPhqrv0d+fNpju4OjjqU6xBaQQ4C4GYGM6uZS02dvTcvUw6kcYgfZAnHpuWzknLwUETMGYj0s5pLtBXbFNjvX2KYYy1uY4//1uPrRHGZp0y1vCuV106Nr2N+csZtbmtjbF+rS93szDzr/ZKl5FcU4JI7+D+qC9zzqafUle4J2MUbwj/ruFSA3g2kaqh+m86IqkjOHWwaPcetBE4rgl8rB6cCKuX+so9E2ueY8j6DeitTkXmiICQA7d7mLRANovzvNH7G9/4xntOVeCztaE6YGSbB50nB/qy3zkuOLR6HrJZG2C23+kZxxDwvvMCifVh/ZLe7JxqTKRyELFE1zltOHKBve7dnVe56WTHYSk/Htm5f+TIkSMPohyA98iRI0eOvM0kgyYQsVDyHsAZOoy0DTPu4fxHfuRHbiCaB3jGKGOE0cnAW6OcwcioTuRSvYJdDBlgCZCza8bO7bhYqwkmjToAfjIeMq7KqZtRcmX4LCi5OT+F42KZCOFNADGMuvouQ6X+qI8Ah9JYMNRrQ0ZdbZCnsPOFFS+A5jxAXcbWMq0YZsIeGZ/ACAAUdlQGHRbwldGqPza3LQEoABkZu1cm4BXkwU5ephnwEojAIGPgGUc6AvSRczCpDo09wKC+x9rN0K+sckozdDef57Jzl/m6bL6t/6ZtuAJQyaZk2H7sc8aqnIdAWODPghXbz0ApgIHxAEBoQ32wINXmJ76G2u98Ag5gbwOGAnKNld3jgTT6HShN5wg2MUBBOK7d1ZtDnWM8bDC2eTfVi/5suPRunNTcCmjQVx0PZNgNGp17P4O/czes37wC1Njka8OGMfjkAG3uCs0G8JqHAI8FyqR+6D0gRJoLYAkwBAhHB5ZdCqQEMgLe1QnI2zmbE5yTQJnWM+llFkxcNv/9GLiAH7q5QO+u9Xv+AsH7nc7Szyvr11zd9WPn14LNe/8xxlLh1N+Ar426oMdygVrnNl/0bqJVm+XKraz6QWRGEhjnftY6BAiUooCOcGRUbsd1vXR65/GVmb7tXxBY/mXzXl5rrHB9xVlEMNalYtqNrjDfK8M8cZ8CjLoXW0f09+bzvuZRFv1iben/5nN9WB2A5YHNm2bA2iM/K0eMCIPW/dJB5HgtCgcY7D5jQzjrijKv4y0n7jpzgc7GYdNl7P1Jf4pAMH6eAcxj16oPGvPEc4q11Dzs99oEaLWecRQnG+2Q1L9dr36VRsGcwuSvj6R92PQKObRsSipCobI9J9TP64zddA/uxf1OJ/QVcgAdqXwpKzbViHoC7Y8cOXLkYZMD8B45cuTIkbeZ9OD/yle+8mYYBJgWTtjDvtyva9hngPVejts2DcFIY+gtW2iBMNdZkJBxgknqWGCEUNiMC4ZQBkchj4xBhtqGq/a5tsTwzXAMbMuwKcwQQzEBwNTWQGDAy27EwqDGKpG2Qb9Ur/d8z/e8F5oYGxBQ5Fq1tTZ3bgY+ZgwjtOMCn4HijO4Fl/0mVyJQzCZVCw4DLzYvMoCXoaX8ygX4+G/DjxnyQDQAzoayriNAOcKaAZGb/3aBJH0OcMKgA1YsoCGUVF5X7K7+q+9f+9rX3nRXWPaCqfqHAb1A7xrkV5BrQ9C9/E6vOS6MZ0ZsBvyCLJuWQX0WPGek+8938wiQJKR2Q7AZyQtwreNigUqhzDbwkrMToAGsEKJMR8w/IIaxWpANiKAvO074dv8DdulZv7eGLPtxQWY6329YesZ0nQbyai74uWvIzvXWAyCUvM0BDlj7wvjTr9aXdAmAWdsxdM0HcxnLFyMXwIrR1jEiBugmJ4xN7YBEfV+H2ILgogw2TyrmNR3vu3UisQYte/ea7kAf0e0FZJe1ay5ar4GVzl92p7XAGrJsYQD7rifXubURIst4N65X1t7VaQKww75e9ry5woEijciyNgFRAEr6n0MU4GnzqtbvXWPkizbG6mKDKw4CIJvfXZuTTT9sn20kirm5Do1+s1aa1/rDWoCJ7ppSQbj3cdJIf8AhQ5+B/IBs9yK5as1nESY9J8hP231Z7ll5/5PmlnK1YR1uy9wGgFd/rFQbzWEEdw6GNecqZu8+lywrmsPF/a26V69ds+l5ZUr5oc47XtZPaz4nVOdgTWMs52RzH9P3/bbznP5UnyIo6IM10PhUhvVgIxDcK3ZDU8xlm2xa56zT+rw2d83q/t7v/d73gN3uufIvc45JEWK+Vt/d04Ge0Ffrbt8bv8o6cuTIkYdNDsB75MiRI0feZtLDejt9YxpldAWQ2qQGCywjIbA1wzdQMyZvRgPQFwCA4dcDPTaHh3s7iNuYBIi4IMHm12TkB6RUrwwAu5xjMC6gwMAGDGHVFQ76rGc9655B6bzOqUzhkdhXwgqFwwNeEzlBsZkY74zzDKEYvYC9rplx2X/1WwzU2mSHcUAoJgyDDoClD43DAjoM/gw0aQDWOAN6YLFtm/R91zU2dkLHPmUEAnIZZfpXXTetgzBvoaj0AcjLcAb8AXU3t7B6A72E7NevNtUJNACyLdisD4T4Lhi0aRe0BwC1bOsFoxe8pdcLBC+ALBRbSK2+W4MXgIXtpO4bTtwx8q4CUuj3Ol0WGFvW7tYNgIFtCzSr3EAEOUGx9YAVdIDB7ZqAqwU2Kx+jETNO6gFsx+bthiE3jq973evuAQ+dW3363jhvKLoUJDG2mzf0fkHMZRZfmdheHQcsxoDDhjfHm5NYZ7Ux8EEblmlOl4Fezgeu9Vnqln6z07x1AlC64d/VCbPa2Cq7fqYf5tjWe/WyV+v0At/0DphsLdiUILuOKs+6fO3bZZrej+m+68WVoXtlwa8zxXEb/YFhvUD3sioXhPZdqHv6zaFB97C9pe1YANNabh1MHwBgWLfanW4AsTaVQ/oLILYuX51KUgrE1LThZ9fi9ASSWleu/c1xaG3cXMwcEMDgBXeXaS2/szpZE+gM1nN9aJzcB/eeZ4yAdAGuzZfufdLLYBc3FvWPeWNMPRu0rpsf2MLmur6nU313vTYYpcdY/ObIOrq0mx6575o7nJ7JMvV33nHuuge6LscHgNg91j3TM1LPTD0nyFW7kUpSvaRb2NDupXvf6T4DlG6cOsbYe97Qd+7le7/mzLaGWH8a/z5XvhQc5nZ1rd59zmnemmS8dmw4LLS/8oy9NUzb6Xpl1S+cmY9Hrs6eI0eOHHnQ5AC8R44cOXLkbSoBoDFrCm8HBjAIGDdAXOzEANPOaYOrHvKFGi54yCgXBpmhKG9twnDfkGZslPLTxizuOjGkNgcuYexg9zGmgC9JBtJrXvOa26ZyMTwDrAKbgDNAic0dyPC9piBgyGA7LgCBidVxgITOyyASYt21bDYjXJRxA2QQ7ghcSKoblmHXCWjA9BHCyVAyVtvvy8ZeIFZeVAAgdg2AG3NNuOmGZwP4GL0byoqZK1chABPog+UDfHD+luU4wE3/BQxs7la7qNcf6a5rMrA5AYCEy2YVynvNN2xMyQIzC1gRdavswAaMTAIAuIJdztGHm1oE+Mvo3zQP6m/Mt44r2FhCchdoB2BhAO7cSzBsl9VMvzve5kbmCj3ut8amcpqr2MxywQZapK8Z8nJkykeJedcmhz/0Qz90m/9C0TunNYBjBfilH4BO9SedIFiIXRt4bUykW7HRIfC3/82Hzgv4aI2s3Pqh9tQH1keAvrzD9UFsfmOGOQvYDsChc8beOG2fYzsLUQfEA4o4h5aBh0WeSJGx4N8CIbtmrjNInczdDUtfpq4yF3Rc3TYPAXTm3zosFiC+ss/32N0szhjpgz1+AWJAvfkImMOEbCzkDpXHmI5Vto39sFsxvm12WT9v7lFAVr8B5Ftfl9UNXJOaCGteNIb7hbXLda+pLrTLer9APvDTusFxuekaNkLEGrL3bOzwQNraVH9Z29YxsPq9TNfmOEdfxwUIVteeFQDrNgNcJn73vK5XHwMYbcblftJ/67zonKIBAnmrc8e27miveYN1bc2z3un7xqnxxdRf3bd2WrPcqzm/dx7pa2u4NCDmcteTDsuaKs2K9YEO6udNZWDDvNYYutC9sT6wMW59Yo1dvem7TTC7RoCulBycGPUvB2nHuOdWf07prlO5m0vYvUCaGo6+yrQuSN9TfemptFW7H8GRI0eOPExyAN4jR44cOXJf2TDRxyM94PcQ3kM8MJLht2yuDFcsnb6X0qEH9XIQ2ngjYZwkjGvAyxqV3hnxQI7KybBssywGDkYgw47RAzhhLPgPszgjqPK/8zu/8wYWf/RHf/Q942PZbhg6yxIDEDBCrwypzWcJeM6gv4KHAARgbEaO0GAM5cqRPxHQw/CzYZNz5d4EtgpFZSzZXAy4syH+yqk9GIfavIYsI1VeVaH7C/Qsc+uaaxaAsP0kn65QUexQfSyUm+6kZ41NY9ixDNXaU19hVwr5TYDLHBLbLu1xvWU+OmaZofR/AS512FD2zhFuu4xrrD59ufk0lx0JeKKDgIxluC/4vCxLbfQ7IGBZg35zXuUvG7dj6+MFpulT+iJPMoY+QNK8BCarnxB2eiMsGkgQEGPnesxW49R5pVPpe+NfnQE41h/to8+7hmCI0VubPGFGA4MBUQCjpGsENKRXwroBGHLb7oZS1i/OF7qNPde5gSPNSWy52lVKmOqEhV47d9PDXTc5QThVOCu0r2tJBcAxUx1qE3AJaAuUNVeBea5DALM7B5aVa74vk/bKxF2Hit+WZbvHrX5f59UCVMvYtSHeAtKusfMXmEcX6A2wjV4ry1q1eWAb8+6PUjgsiN678tJzjpfGhXMAkxvAyFmW2DAL47rPgbzGwPjrC0Ay/aAXUhLsPMRSlj5kAe9lEq8erA7YTHUZ4ULuN7XLrq/AP/OeTpgTnhvkHsbOX2dqfQjktfa457on7uZynivcizsGYH+dU9tm917rGmY3YBLrdqMl9K/2AfvXiaEdgHVjli5IAyH9C6CVTlmLzLfKtJmieznmcOtVKatq66Zu4TC2vrtnbrQBx1hrqygKkRhynfcsg22Nyc3JIYUHMLnnrX5vnCvDM98+0yVSeHQs5zaWsueSI0eOHHnY5AC8R44cOXLkvsJAfbySQfbCF77w7qUvfenN+GoTtac+9am394/92I+9x8DAsmF4Cr3MCIvJ6zPjCbttc/Zhg0o5wKBijGD4Sn+Q4WDTHEbtGv6AX8aX9jPEMFexPz/wAz/wxi4EdGHcMqAAQADCRG5PIoQUK6t2yH0HAANkB94EaGUs1RcZZP32tKc97WbkdAwjU5i8DVe6DiO58jO8ABn6E4DomonyGjd9AghYg3x3WRcuLK8kY0taDv0DDBB+n2z/+x1AbeMref9cs3ZdmbBA5M55+ctffqvLs5/97Lsf+IEfuHvuc59709Ok8Sr/3zLUyLLJ1G0BqAVMkgXuF8AmzlPGAivLUMT8c84VUFkW7xXgxTbccGQg9/3Cz4Emm08VkHE9lj76vnmgAZ6b29i89J85r184M/QDQPMKegGEsBMrM/1qPm+4POBLH2ONt/bE+uuVHjRvYmk3j7Dv9DeAxpzb9gLcMMDpx24khSGLgW+necxc7eh3IH715HwBXtisqbbbJMncoANe6XL1rZ0YnQuy+WzH+WuKFmO9+W2lm+nc3gHbq3sbak/v6NyCtFcgdvXuChRfQd4N677O8QXblrG7jow9Zh0uWyf/mYNAqwWy/aaf6PIykXe+Al71m/tWoFTv0sGYL5jp0kCYUzbplAu51CJywPdq7NchI09wbErszJym5q71AKNf/bcfN/phc2ano3vP2PVrx3JBOLpF/+XZbZ1d0M61dp3QB80T60hlSG/BqViqFczTzun4dDunR8fkMJZqYR2mXaM1wEariXy2HdNYYRD3fTfTw9jHGPaMoY+1Y+eh/hXRY+xt4LaOYnN8Hb02XsMk9mxh/QMyXxnpnLIcLfRdju1+t/ZyLusrawVnbs9k1jrH9Z/nOs6pPsuna9w9i9Dv674My/Snx9ZSDkB6WZk9T9jsjZ7VV+r1eMkJ13XlyJEjRx5EOQDvkSNHjhy5r2weyscjQMWMrYCUXrGI+u3DPuzD7hlnG5q5eWD7Hju282MC9p8chMBYqQKEqy57Uth0guVUORlpGWyOB/4xKhkqyQIJjHsALiM3Q+pVr3rVvbBTBj2QCXC0oe/aByzARhTmuJuxYDPaUTpjrM/Cyzf8MMOsemAfea3RBJwRLts4FLouvBOosjle9QkDbQ33DU/HOsIw7j3jLsNTaHL/BzrYlAfTGFtKv7t+5yUAp+qGoSOtQtfajeFWnwD9f/kv/+VbXuj3eZ/3uaXXABzXZ/VDuVvrh/qPsZzUXsa8fLCMxmVSAQswc7HRAB0MTzoAIPPbpiMRds+Axu7a/IUbhr4s8AWJr4bqbkrlP30OPGf0AyiWjQzcBXoBgJpXUh5wAtRX/SZMOACKngNHq6MNeXa8bP63GyFi46/jJuAm4751peNjn2E29j0QDGNbPvCOMfb6t7rJD77gDyAHwGL+mx/YwMsaXMZjzpPmsDQlHCf1T/NGvlXA8BWwXR0pf2X9i+W2jHfz2dxvrW2d0/cLpgMhgckLyJoLwKf6Qxi7eW5TudoA1FJX/bopURJzg/7SPfN5IxquuZA3nHzXzWXo7hp9P2bvFezFwlznxwKzQCsA2aYmAOZhf1obdw3glGjspUzove+A2s7t3pa0HsqZ6p4hVUA6EljVuNA77em6WKwdgwnLKds4AXfTDZu+uT+s7FqyILr1zvqxOroA2IL2m7ZhAV+fsTutbXKnexaQlmJZwJtKpf6V1mQdRHSweVI765Pq03F7f6j9UvpsCgjXk2aJbvdeGR0jrUTf9Y86W3+lrFndpJ90RB/TJZuUbtqQXcvpUcdw/MpVvsxn/dH56ZfUOIDgZcm7b9Yn+rR+z+mkfI5oDiMOrt7TKfPU/R7zPJFn2Rpno8sFaW3SCeDHfOcgl9vcurA6rz5FL2BIb9onc8XcPXLkyJGHSQ7Ae+TIkSNHnjTpQTwQJtAhUASrNQOAkcLQk1sOkIOhV4heYA6mHgNwQzsx55Jl52QcAzMBuQlgzPcFsBghQBCGIbZNDNoYURlRAUkZ6QFO103i5O5keCUYsEKfhb1qGxBDaGRti6ECTHjKU55yO6c+7f8M2l4ZZsJgGfgYUn0WCtl1O1ddMtQAtEAEfQJ00wYAr7D1NTAZ8Qz1rgNgq78CvAKq9GnHBFhJRbAATLLpJ4yJMOp+A8gJVTeGDP3Kw1As32k6g80Zq7z/YvPG7E2/qjsjNDYXp0LnxpbbTWbo2OqRz8s8VCfGerKs3YTBjanEebE5aYE/C7AsuLvXWICFgQvE87/zljlLZzG3l7W479tO+ScxSKt3uli/aVPjbn4CBs217U+5eHulNzZOpLeNWWBy32PrpTNSMkgJkTQ/Kqtr0VkAvc/Cg23QFPAL2L0fk9xnOb/VP51IAAs2XTQm8l63PgAtsGHrj8oyH4RVdx5GNAa/zZ/SYXNlgU55iq2xQtHNX4ChNae2VA7WOwAV4G6jJvOsd4CPNDAYfwBJY2Xu72ZL+o9zY4HaKxirPol5bUzMhS33CvL6TZuu5V/DtpfVq13LHjVfdq4u+7x+qS85GDmy6vfGAbMS+7K1vHHElJaqqDUoALGX9AhATQ4/ESaus7lyOfA2x3tzUsoheeKlIACQadc61sjm0142v364prLYft2yzfndQAyr05ro/rhzz3hvzlUOCuu7vq5NzUfPEdaNriPNQf95BrH2qUPrS86/riF3rU0jlWUdoVvuCepuLdp7oc3vNhKga7r3Y8/SS+mMNnVD39MPzreuY/0Dinpm4qShP/djqyuDo8JaXln6MIenCCBAK93ZFFly4G6E1eb65SSVOsZ9hk7INwyQ5SCXFmZ1vOPSaSxlG1pyzPQM5r6xm0seOXLkyMMmB+A9cuTIkSNPqjBIhD4G+vQSWpqBklEBIEkYtxkugZdyrcnRKzxVvkrMlc4DxNjU5d3e7d3uMfLW0GdUyPHGMGJYCkllIGZodk4AKSM5o7A2BCwxdDpejkUGIYCCsSw/KtaOjaaAv4ze2lL95OjrmoFZGUsB4M985jNvZWDJVmZtBuwCwxleQtEZt4FlNvhZZuCykIEpG/IIyFkmIXCDAZdUhyTjC0jB8FsDHoM5EV4uNHPZQbVNblDGoD6nA5hUfQ6Ar/8CvwJu68OYvOlUxwfydm4ASOfUH1JZ2GSmY5dprM0Lel7zhi7oC/BaJiHDE9glb6Scmpu3WJt8J9fw82VfM4r9Bqh3PIMcWO+z8xbY0r5tc+Wlhxh5QMEATQDx5jUFvGMQLmMXI74ySpWxbHB93XohT3KsrdW/+i396TqdLzcv5wVmLsCjstLHNkls48X0AxAEYAIIYbBWfnPMda01wCQgiLUiQKi+ADgsSNj1zFVAn00R5YDm0AFg1G+du7mgl2m9zFtpH1pT6AWQH1sYyKwtwKfdtAgwj0FID7GuN2etNvpuTabfQJjVa/q7qRowGJXn2I162Hm2IN2CubvWLxsdoOu4LXs3N/Naxv06UpTbGAeGdYwUCtZX5Yl6aDzS387l7ABi2VDQ3ACaJ9ZBURvAQcxo9zEgp6gJIBhmOdAfq35B3isj1xhcow2WDQ4Utv5v/1/H8NFSc4hw4bBVhnXE9btGa0BttH6Yt71apzF3OWF2jcUmlfvafQrQWo7+HHrGYUFpOoUNvVE9wF7z1Tl0VxSIftJ/ztNGm5Mafw4hkS6AUvca/UlPr7orp7zogtrseaM2di2s2itDvn5qnV2HrtzL+xyz44j1vM9Yfceo7hmJ00E9pGuSS7i6Vq+Os6ZzeCIG1BYRIZtGx3pMR69M88cjT/S8t7UcgPrIkSNPRA7Ae+TIkSNHnlRZBgbAMuAtgKgH8x7+MygCLIVTAiIwdDzI2yit/zGeNkctMCJwjhGIGYuFAtDALs4wztDIQATqAEQxgpz3ile84h5gVxkZhDFTgYiMQIYQFmnlxQjSH4wkqSaAwAxZIIxQbuGmXYdxmnT9/q/NGfBAmz5Xbn1cn2Ez2xVbiCtG4IZGM1J3c7sN8QbSMQY3VBvg5hz93mepJWwkA6RqrOq7gDeb2WBSAQ+B5sZ4jfNlt9I17GfgpRyl6Zpcjgz18kMbXwCd8QsI7F1I/wIUy9S6MtGufUaugCzwDeBvk7CE4a1tmzrjCjgtgLVhwMLMgUxAXGOjzeq6wO8yFrUd4LqAMfBOvZqT9XdzmhOGU2PDheUhZaxjUNtIClgA7LJp0LKUbSQoFBkQSQc39YhQ4eaVVBK7kQ9GLn0yFliau8mS9jTXOZOkRZBCQlvoBqYtPbFhG+Zu15GqprKqE1BP6g6sNaHNwGHHYEdKIWJeixCwYZRQdboJVDKOrYXAR2xkjF1h2JUBkOFwM7YbRaE/l2m/7OhHcnpsaoQFIoFLywgmCzIu+AuA2vzK1xD91cOdU8A+TkHrTPWrDzGcGy9AWL+lYx3TfJBXOr3ApOYYMBbuSUA5ThHpPbCA09mOa3z6jHm5KWuAxzZ321zlnHebOkffbn/tukUWiN9UA+bpgu/WBUDpRgtghlpnRcwA8tZpsO1Xz35rPpuH1vXNMYuhrn7GkUN081/bqKxoE+uPdZ/jJgHUNqbWJc5jjhmRBVju1ou97wMjd/117zEOy1zP4WKOy9nPiYVJjhm+88LzBb1SrnHUf0nHYO1jIxtnALIIpX5fcHodRhzExk9/1bfV2Qac+gPb2FzreapnAWNt3PXF9hvm8qbB2v60ydyRI0eOPExyAN4jR44cOfKkC+ChB+6MlTa6CiztIf/pT3/6LUSSMSasdfMgCs3MUMBICcTcsMdlhDEiY1glwhD7DfsV0AEEYSB2Tr8zcvze9drEyOZDcvIx2KpXbK4AS8YMw0rOYaAzACEQQLgk49jvcipmvNpArc8M74yaDC4btAjlX0O76xcWXJ3q+37DhpZyATMQC2ZZy0nHLVCzjKZ+Z5ALu10GbvVrvGtjfd659RG2lnQSAR9SOQDEgfU2A8I4A3Yvw0++1kRYc21JT2JwN1ZJfZDufczHfMw9gIxTYcEegC8Wo7BtINgar+qxqQyAG48UJqo/5fxljANcruDushWvAOwa9Fc2pWP384KzxpBhvmAPHdp0FEDDdGoZ2fLf0rEEYCldArarsOT61Hze3MOJMGUgWHNSCgDjkg4EatC55gZgzDX7r3nbOV2rstK1Xl0zcL9zzcMF7dOjQDsAPgdRx+7mQPQFoy+nUUxwoGnHy3PdNasHp9HmnzQeQN/aVx8aA8B8zOPahG2sbvVRfYARirFMLwCPnBu1t3opZxn6jSdWuzyYm18XSG2tvR/zfwFm+kmX6ZQxXebfskCvIDCdXNBsAUXnAYCX0bhs1HVSmX9AN7lJ/bYMQaCk+ipbGo3GhV639nEM0CeAsPVhWbz915hXzuY9bdwqN3H9jjNf3AOsz+baOhdtoMUJYl1JZzbyYvuNLADvfaMJds0xpsuQ3s/rbHHORiy4F6nfskt3rU84j7qfcWoojxMAo5yDQcqazmleXlnv/VfdAPj91/0LgAiIttknoNX9zz23a8lZvQ42fcYpu/rqPmP+WOsDPG24aE21JwEHj/nbmLdmbS5aoPnqq/7Tr5uWR75/EQXuw551dg3YnNXLIt5Ikb6n0/3XPb66Y/IqE2AsxYT2Y6m7R5gzgF33sk2nZU0ABh85cuTIwyYH4D1y5MiRI0+qACt6ZczGOn3pS196993f/d33gNc2XwM4rkHI2PY7I5NhwTDd0LwNm28Drc4R5giElFOPkQI0zmDI6JXnL2MPM7djY+EGsAQSKiuw6BM/8RPvnva0p93bUA6oKpRZaOzmpLPhlPDsDQ3NAMoo6hjsrM7J2AsoFUrN6GEQA06Bp7FmSyPx6le/+h7oisGmP5e9CpDZDcMWoGT0Sa2xrNFraCOgtfrWLwz7znvDG95wa6PxwqAE2CUZ4AxSO4MvowdrO8mQ1p6uC9yoj37tr/21tzIK3+/1nOc851548bIYF4gCYAEP9cXmJGYYr8F5Td2wxjoBHlU+ViWwUPkbGqw+yQJePjvWHFk2O0AFSAUoBDYs4w6ocQXHjC+gAvs2HWwMl5EqZ7J26buuJY8rZ0/nNkcaKzm2N1c2hh4Gm9QL+qR6NB84X7B3bTiYVG5j3HVijpl79GbbZw4Zi3QS2Nr3QpYBt9qJnamfq79QfDmFbTaIyWwTI2z/+jXHBlausa1MbD3zVYobOVXtNN9x+rC6ceDQD+smAAkLFCi74J01GVu4NU8dAJ1AXW0yJzixdl3ZXM8b2r+g7er2yrJKl3V4ZfSus2fXKuPitcxH6VDkVK2+jRtgiJPR/cV6LSKB0wcTHKjmmtLO6OP6U8SD/K0cRli8wMXNn9r5ja31cVP+bO5oa8oC5Bxh2MvASOten6Vr2Hun9x2b/XwdF+9XdrZ1R9l+d75+V76Ii3WyLcC7Dtz64sr031z8ztH+a75gYD5daF65jwAs1cHmavS76/abXK/WDY4uTiL3KuPCcSXyQHvM+Y1Ccd/zzKB8c6vfekbQxtaEzu/eil1uDd15Zu2r3I5PTzl4gcSdK3rIswAnJAebPrDWmOueCzhPsdAro/r2TMKpzXnc+uz+tA5H6+9GF4lw8NykT5xjDnVsffJ4ZdeXt7f8bKnHkSNHHiw5AO+RI0eOHHlSpQfx2LrJ937v994Ax1ic2HoveclL7r7pm77p7ju+4ztu4K8w7ICFNrgqZ2q5ZjO+ABRSJ2ChrIG/RqSwd0azkPCOBdLIDZyhsxvf9D+WDanO1Z1R1DUqszZ2TmCwndSF2mJfBTBlRFaucHUbiQHOGG0MUrtbYxYD1jCJ1qjCcrXBz4IrP/ZjP3Zjsu6GdAzcZegSxyxjdxkzyxRmpAtLFWrb/wFzGXQAPvlSGfS7qRpgtLZjGQMzhMwKMZafT5g/ox/bcgESjLX0KAa2XdQxrhy3qRASAC6jE8i2hnkCuFjQQ3n6Cti0oAjDF+gDcFqgyrlXJvCGkPu8gPwV6FF/QPQCxMCINa63XEDUsrIah8bARmtJ18T2bB7Uv32v/wv5b273GUOseSGvLrA3Nj8WbGwv/2G8pa85Tzhckn7rXE4kYIV8ttWz36VrSITDY6gSwDEgAzCbjrUeYT3KmZ1OdxxGWscCRvW1fKvSjdCf+q7Iha4VUG3NAhDW5s3hC5SyXskVrY87p/UFI1ZIP4DGuxQ06zDZtB3Vs/J3IyOgYMcta3k3C1PebmAFyDV3lmV+1d0FuvQFWcb6zrVr5Mbmg3UN4OIy4Tk4sButZViunFMLEtIPIe9SBAH1amvncR6677jX7BzGqrceVu90SfoQjNLqp98XHMeWBHQl1rVdI1yHI/Caa9VclyOfE+fR2Lz7ut+YATt3/VlZJxWmsb64pn1YUS/RO/rBmgeMBLBy3LgnXtvB2aQdchQ3DpiknBmcWqvrm1ZB/vTGzx4ACxDT3V1/OFw6Xr5yTtrNY66uwG/j6VmIzgE3c6h23937WteuTpvHWX2WDe9e0Vpn40ppIaSNqX/6Xjn2URAJYO7Lr86pwTlqA0gODnXjLLFmqgeQV3odeowpvazuZdMbu41yOHLkyJGHRQ7Ae+TIkSNHnlTpYTzg4fu///vvGRprvPegHvjTMTFuPbgH8mVACI8ExAhlzRDuPSMi2dBAgBlGpg08gKidmxHjWhkCdiaPpZeBoPxluFVWBkqbcwVCdQ7wKGMuYCswi+HM+Ot8aR96r102DMPCAghsHkasRQZn175uiqVNy8CsbV0jI63yA3crs/phKgMJhPTqozUME2GOGDvLlMV+FtKJ9Qx03VyP1RFbrHpWl4CtjqsvAAodb9OafpOyAzCDtdTvQjwZkYAQ9QesAAf8xyBcBh9jHYOLHiVYVQsiARYWuFIP+ngNU14Q+bpB0m7wtWCW85bBvuDYgkbLPqMjm2bCd2U6ZoGdK2i2emU+L0imLGCQuQVIaD40DgGjyta3OXuWJaYfhLqbL5XZvKxtHDMAU4CB/JHYkPoZWFZ90mX5MwElAFbjzyHAebQs+hhhtROQAzDBejPnsZitKVLBGG/MRhu81V/pNSfIjslu5IQNKremXMLqHFNeDlHrBKD7CoAuq1HKCI4ZDN0FkWpv81S0xLICF5jbtR0gZQ4BcPy2AOqV6a7svc7OYToJRLsCVZtGIT0CXmu/OgB5MS6thfWjtBb0yVrJOaO9/bb5lnf+bBSKc+gF0F6e0uqZjslpysG0G1sB1c0ZkRy7frjehtMvaLpg965JQN516Gz/PxKr15jcz8m1egF8655JlzZNzJa1ZVvX65d02fqrbl7q4IWtvvcFjGLnYo5Wr8o3xp5N3IvMdfee9KJnFn0p8sC8Wkaz3MjrYFlHiLVDOb3nSDZGgM6+d3/tmBxdUk5giDf2OVRbV/Y+KMKGHvRfum1TOusWYNZ6IDrAPRi4S1/U3XPR5t6W39h9wLpSO+SoXta2ftInGPEdIxJkn1d2gz1t4qyW034dHkeOHDnysMhZ+Y4cOXLkyM+ICBm+Sg/hgQexTJexFiAUiBobpc9YcoEhGTG9So+QkbKAzoYi2phr8/ZlWAYu9qpO0hYwfuSxzJABnJDKi3WX4SE/px24F+hNFnxLYtZgB2b4yHfrWKGO2C7A5YCf2h5QJuTRhikAms0LC1widp2uHECH/sgYAhwtc2oZXAARnxP5KOUiFDJanTN6lSWMUi5WG6xh9G1OSjldMxQbc2H2+tFu8l3PJlYAqN0Iqc/GQcoHxjPDkGEPlAQyuh4AYdMa6NsFXZMryHk/lu0y4bDVGNCcC8C3K2N32bgL7u4xC2gsMOLzhnEny4QE6FzTm8gRa7yw5YAjxmdZW/2GsW3zsUKGm2tYahwq6QK9Baimo80r8xhTOz3pP2BF46r/sNcAIAvoA4PlxcSWx9bHfru2e0EHTgcsY/meK792Ya6XuqXfAC/qgM0J5Kme2gJYqc8w5ACOnWsDKA4Im2r1P9avXLn9txEEwODNJb4MdHOgcxuL5qf6yqtN56XGqN/qe86RK5hHt3bdMCZA7Q1Bd561d9cdc2uBsutnjjHrj+sD/9Rhc3G6tpd0N9Y0m2ptTnPOQnMUyEQvrYnaDVwyZ4Bb5prN3jb/cPWQFgQA1jhY6/UbsC2hK9aUBbjpwKZq2XUJyN367x5pznPe3W89ux+Iu2UbM2VenVS1LV29lrHjDrxbsNYasYCl6+291n1Rbl9CZ9QVgJg0lpumReoZY1w/p/uiizgylymMESyShDPDPZDDSr9a06trfULHjGvj3zX7Tb5l66x0N9IgVEb3zBzknbNrrbllHXE/dv/kzLEG9Jvnjcq0FiWcXfTbs8OmV7CmmXOcSZwWnVt7W7fUyfpMr+k0HVgHNqc3wD0BTtO5rgFAfryyzoa3t/xsqceRI0ceLDkA75EjR44cebtLxgVggmB0ZBS9+MUvvhkbPdgHhhS+/ZSnPOXGTM04yBgRdo/5CgiR2oHx3YN/QEhgFOYfZhFmFuPvCtJKt2ADJKkOKstmL8meQ6pTKQJqa+CMDVhqjzQEnRdAmpHW/9WtY23QtAxIjDzsH30lhYENZDDQMkhtbCftg93Mlw23obX6jdGPnQiQBAjUdkZ915NjT53tKA9IYaxhHi2g0G+xlwJxGfzSYXROYw1UAH4aPyw0+U0ZiJsj0WcGvXKugC1gE+Du+ptX8iqPBH4s2AoE0CZsroQBbpwx95Z9t+DugsoLpi1AJl2B/lngi2G+YewLEAEusLIAVnSj+bCpRnaX+ICv5llzzMZR2OpSG3A2SIUCeO1aOXfSDSx9LHBh7ZWdpFOBBR3f3Gk+CuGWnzfAIp2SnxHrCwNyGenO1Ud2Yu/35mLvAECpC2pL//UubUU6EyDcC4u0dlZe9aEHrWFCrjumtr3qVa+6B95ULh30W/WqvcAXYIb5h2mPbdr1ACXauw4dYwZ8NzbLOlbWMv4du0DKAlfreFiW/AJ0mLvrrPDfrncL4F3B4SvD/Tonriz3ZSBfWeqYgNVXmwGBu9YYv45/4xvfeBvb9JATD7Asd692Y0nuOiLliZzG+l/O3c5tTK27WL/WKWu9sVi29jIc9dGuRQvAm18LUi7D9ZHYuc7BJr6Cs8Yf8Lf3MKLe1mIgLVCY3jpv9cK4bX219ep40G/0gQ6uHsgVvznXGxspaK6MY8C9yIx1DiWiCOiRaCLrModR/dQaxjFpPRZJwuGiPT43v1sn0kE56EXjeEZYx+oyebuOiID+43AULdRzl89AbSlhrNWtaT3HbH73RHttBih1Rcd1H+fodu9XL4At1ra6mov6Q/oM+nV1YC3Af+TRJZLCF3zBF9z2k+jZOj340R/90buv//qvv/vv/rv/7hEJGo9F0q1P+IRPuPu4j/u4uw/8wA+87VdhzeteV3q2r/iKr7g5Rx9Nnv/859991Ed91GO65v2ewa/yXu/1Xnef//mff/exH/uxNwJG8/SVr3zl3Z/6U3/q7qu+6qvebK04cuRBkgPwHjly5MiRt6v04LghhaQHdIBcoccZMUlpB2L79kAWyGFjlIwOYBDgsN+FnSbAJGGONgu5MsYe6QFRnsPOZ3xiGGKTPNKDJYANSJxx08ZNPUgHDNSOvscExGTsu7x6mEK7QVriIdRGZLUXWJ4RFdAJcI19HNAVCxrDiGEJ0Ol84apYMdXBdQFh2DZCxjsfC3dZNF27c4EGC7rYqMrxwjq7dhvDZXTYcT0BIgKmMYmwhWzOJZ/ighAdr876bP9nXAICFuBdYOcqC2gBcjbcfIEIRjGGGtb2hpVfgebVR2Plf0axcdpragcQcDf8AaAAJvTHhkcve3nBDHXA7DRHe9fHtSlgE3CaDjQ3HQMgAUIwxvVP1+14zo/AC04K/9GnzsEO74XNBljtOJuZ2UTLeALNMMxbZzDrOQDSz9e//vX3UrbICdl3QLU+lDLEWiB9Q3rc/JZfW7sBHMKqq1PGddeVk7m6dp6+BxQK5a7NgF+6J4c1sMc4ehc5QHfkEDXPq9+uMwBreoBxpx10U9uUfWXjmm+bRoC+rhNjGboLWjrW9RZcXtBN/wO4rgCy+W3dA7C7jrmFwS6lwgLHNkvb3KjmEfAXU59TrN9aw7DXjU3l2BRS6Lw1XA5rusjhsCBqdRSNsuuZdWnn/95nN7WGfpDLXS7YK5t320a/hdJfx8KaCPxVh11LjLX/rmug8nf8gafG8bre7nrlfrTrfiJayLprbay/tQcL1th1XwHKctqIyOGwrD7No4DaBBgJ9DVv9au8z3SoMrG0W28CvQCd/Vb5UknI12zDUn1eveX616Z0x/wE5mOJd23tdm+vTLmLrc1SSi3bnbNv04not37ncAPY21TT/by1Xf96vjC26wCwxl3vp7uBYOukiAk5qo+8ZfmkT/qkuz/5J//kTR9I+tBz4vOe97y73/bbftsN+A3wfbzS3gff9V3f9WbPcaR17oM/+INvr9/9u3/33ed+7ufeAOWfCalNX/ZlX3bvfpWkL621H/7hH3732Z/92bc2m8dHjjxIcgDeI0eOHDnydhUhgVfJuAmkAVLalbwHd2kbhDr3oAgEBTox+mzWlQADGcKMhDUkHg2gTTb/4f7+WBgDjgEQVf8eIDNuAq4ZXxk+AbG1odyjDN3O3/BMIOEynuTrrXwbAvXCvqn/GGiVj3VmYxbh9djQgFjvu9lMAqBkpG5YqHBQAMQabcqqPZhPy0YErAVKZ9htvsZl7CojI7LPm7Ijcfw1fH/Bpk1ZAVha8FOdF1RhsDve/zvO+31Zf4AxfefYBbOA4AuaKGd17srw3fap/4IYDPYNH19AxPuV1bgAjjrI99pcbUPEzsFyTX9tyKXMzambvjSHKz8Qoz7ZdAkJtmvlNA8qH1ve2iFdCiAS8Nx79QP+S1MCwOT02LQdgavmiLDsjsvQ1R/YsFj1ta+21Kba3TU4FKpT87q+qbyM5hi7z3nOc25MIeH9clhyhBShUJk/9EM/dC9dS9fT746tfon1czdbXBac9gLYATZAHeNrrbSJJNBynShAFSDz6jtGuvURKLqsuk27sDq7Oqad5uHm/Fw9va6tgF/9uKlWFryVdsGctJYA4IBydH/Xt9YaqRQa18Ymp5wNpzp/1x8bC3J0SJlTOek/oJfDgJ7Rq+rQ+teYdwwQzjq0qTTUO7k6fDhftu99NjbGnNNO1AaQfDcxs25e2dTW9uokxdHWw3HK3Fzk/nePAhReQWn/a4Oytwy6pM7LfsVqBXR2XGsFRvqycDenrPqa21KmLBO2cbP+tAZ63misRc1IoeQa267GWX20Y/Pidpznh8pK76w7nNmtV8axV9emk3IKc4RjJ8utC7B2P95oD/29aYNEBEkdJTWSdQN7GEuYMyXpXuH+j+WsP/StexCA29xwH9UPC17XFtFCj1fWQfD2lp+Jerzf+73f3Z/5M3/mXl75L/7iL74xZRurz/zMz7yBrm1y/G3f9m039u1uSvpYpHEE7r7whS+8+9Zv/da77/u+77s99/Zs/6mf+ql3n/M5n3Mbx5iz3Xu+/du//VHLbLPmANgnKv/Wv/Vv3RjD6VH35//8P//P7/76X//rt3lTXT7t0z7t7lf9ql91943f+I03xvD97jdHjvxslgPwHjly5MiRt7tcQ+l6sA+wzXAuVD9DOiMFoJH0oB8wVHhsL3ksATRCH4EWjLNlwi6TE1iY8Z0sK8X/G/a4gAWwVb2AgxuK7FivHm47rrx5GYIdIy2B3KC1aZkrG/q5YaUACCy7zSsJMAb0BJq//OUvv9cXPWhnHAJ9sH8YeFhBy5zD9NM3NmvpYVl4aZLB4OEYmJgs8w+Y1thlqHYMxmJAXhvwBe4Bm9dwrB+7Rv8Jp2aoPpJRugAoJprfgBfG3tgxdLcvlvW6zFbt2tDx1RNg4nVDnk0bAARbcCRZZh7Z/xe4ocPJpmZY0GpDYwEZygMOamNlyI1o3M2Ffm+cKl9u6oAH41y/ZsCZk4zExsrma8ZUDtjEJojSl8hPugBeZWkPBi/gAgBNFzDvOUOwChdE6po2QlRXY4b1q9/1XXrbcV23UOQ+25yozzlP9JsQ9da2jm+e6w//1cbq2lytXc2vymudA6jI5yv1Sf1ePfq9NstNCyhbJjW9qC36PAHsXhnldBRouGH2q6fWVsD7lcG7DPHV5WXyAl3vp9v7P0Bs0ydYZ+jzhm7TWXUBmFeGPMpX4Nm6Lu0C9nPjqf9EhGi3Pqt+HGkdR48WBLQuY7OLQtEvcjCn18AxKW2Uo+3W1wU8N63B9rP67bhtaoPNw2ueAXQX1L2uQ+5HvbsXL4vaHFonoPMct5tB7nrtvrpjrd77Xd8uExggvAxaukyP+o3TZnXxylDXDu0EaOp7dZIrdpnou5mkDdz22cD6Kld9deWA5eTVTsxDjoFNtZNURvOZY9h90zG7meSu7ZveqPuw5wAb3jrfuuk+ai7eL5JBf26e4uYcBxdwmBNYnY2TdFlAyL2PSkEjlQOndmWLljryyPKlX/ql96K1Pv7jP/7ue77ne+79F9BbJNUf+kN/6Aby/p7f83vu/uAf/IOPq/zGMwC580oRdpX/9X/9X+/+wl/4CzcwtbH+b//b//bu6U9/+qOWmX697GUvu3si4hrpSnrzoR/6oXevfe1r7/1fuoiYvb/jd/yOG5P3N//m33z3tV/7tU/oWkeOvL3kALxHjhw5cuRnnfSw+ZrXvOaewdEDmNDUlR7kC//qobSH+YDgZzzjGXfv+Z7veTMAekAt7Nru9AGm/d8DbeFmGFR9D0zpwTLWQr/1MPrDP/zDN1Alo6EH3Pd///e/sU4CMoGwhV933V4ZgIG11bfcYp0r52KAbgBuL8zkPmfoBM4w/DLKMr56+Aw0e9/3fd97jEBAFoMKoOJ3BhsDnOEo5580CoHnlS1XKqAKk2cNwY7fMGJlrGEbeMEIwzpjsDK8GKGM/K4FyFvgGsCQ1M7GLCC/OtVfgMDNDarewNlrH7jG/QB9wJHvm3N2GXL3CxNPFuy/sroJ4EEqD4ARQB64u8zc60sdtw7qt8eoBzBiwWL9s7l3lYUJvMD1AtrL9PMfo904CnuuHOG/mKPpQc6EdK/fG1OsbIAAPQUy0M3KA4QC4zZPNlB22Xf0sDQugSTmgs3MMNi0H+DT8dUHkNnn6tG7VBC1473f+71vjB/gbWtC18GUbz3q/9aY7//+77+tDzZ4bG6nr302jwG2+qy6PvWpT731F+dDAJQ0Epii0jjIcdl41FdYu4AbYLN+ApT3XXoGGyjdDwTb8X4kkI8jgJ5akzZvrf62Hi2L9hqWvQzH1XE6T1+W8b6h3q51dfAAY23I2Lhy+i1Aqv4793q1Jq1eNK4A0E3Bki51H9vcyfrP/ATkdT+obr1rC8Z5+tp1GiNrBSBr1wIAqf4COhqvdW5xOGAXWxf8Z25q10Yv7Pqw79bb3aTQ+K5TbeuyLFllW4d23bmuwdZe9dbHQFBr7KbocN1N4bGblfVd2hU5jTF79dWuqdtf6dHV+SelC0dVAgTliMTIdZ/l4JUnf4HnPnMAiIboM7C/l1Q02LjpCSeXvqNH1zHAdu4a/V4drQ/0ZFOtVI4olL5zSHBedXxrYGMkrzVwP93mCDD+nL2c09Z+azFdBsq7//fSj9rByX7kkaX0Cx/xER9x+/zH//gffzNwl/yRP/JHbmzZnql/1+/6XTe26+Pp1+/+7u++vR5Nvvmbv/nuz/25P3f36Z/+6bf8vD1n/+AP/uDdkyGf8imfctsLI4mtvOAu+cIv/MK7f/vf/rdvutvnA/AeedDkALxHjhw5cuRnpWAFZiwEqDxSuBpDPOAVQwTAkZcfyJpxUE5bOTb7T+66jJFA144LkOk9APiv/bW/dgN5gVUZfRnsgbcBPdXtuc997s0QKpVARkx17dweaguxtglZ/wODAWEBloVjZ5iswZaBwkiyQRkDEbAFiAQSACGczyBmMPYZ46+2ZowFRtuFu37rgbZ+w15c5tXuuA2AqB8rBzC14c8MTiy4jsf6wfLFRmQw16f1V2NZuzPcsNrShepTHzKyu2bG7zLFNm/nAgKMEoAPIx84ULsZmZuXdvUMSLHgbrLganIFIjZvZcfWlxhyCxhsWQsiK/MK0lxZeP5nAPvNi9G8bL3kfnmdrzl4XcM4Y0c6f0F37WegS6sSANpYBlJiifdZHkoblAH5ewWmAU5jE6WvvQBkHCPL7sSm5dwQji8vLcCZ7pHqi9lZGfS5OZ1uNj86r7mRjkofYmMkrM0cRVhqXav6qyvmXp87t7lmjmME2khO3k/AR+tIbZFHWyhyx3acTdz0Y/MHKI7pWn36H8tYf0n1Ql/15W4OtXNJ6pUFEHeuLEgHTHTeldm7Or5l7FxSt+tn9QHs+52TZxnFG7a/qSKWpbkOFMxG11RG/d2Yy6vcGFpP6tPGAujLoSN1Tv9vyqAAfE4L+Ue1Jb0Qco5NCcBcx90C3O6H1pLd1I6OW9+WXSt6xbzZtWMdTxyKV2fXptDZdU99rH/Ad+UsgL5RI9bGreNed6MupHnY62mzNmw0B0avNu541+fumRyp67iQB3cdFlj0rQGVYzMxDhNrrzXUmMhhKxoGwOx6WLrWFcdKoQF0rRz3cPWxKdo6fxOOrc6T89kabpNW66fNKzkSjMVGowDZ5QAHjusjbF/X4OiQGsI8pfdds7qvU8B4Nc/MZZEIzcVlDzsGQ/7xyq4Bb295suvxyZ/8yfc+f/VXf/Uj1uHrvu7r7v6L/+K/uK1pH/3RH31j3b6tJTJGAG8SAPtkAbzb5q/5mq+57zHdH8sF/Nt/+2+/bcTW/bxnjyNHHhQ5AO+RI0eOHPlZK8vceSzSw34GCWM4luDuhN3DfykR/EcyCN7whjfcDDIGT0ZOZQVMZeDEogrcjeXw0pe+9GYM9eAX46p3rMnO77wf+ZEfuaVCEDIeKBPYDKzO+AikAXoBuDCw5NwLsGEwCtMErjHKGI/6zOZKfgf6CUmvf6q3MHqb/WRw2ayq86ojhtQyhIB/DMtl9gGFgFuYVJWFcbMGXsd3LEMtwK/vsRexqio3oM9YYf1gmC1rlWFozFd39KHQZYahc2wsBAhdhtqVWXgFn66pGfY4BjHACWMOoLch6Y+k7wsaX0Ev12TMA8+WMbWgzrLMNgevd+0Hbm16isYSmKM/sfKAJEBF4J/8yPrRRkR2bg8srQz5GBuf5gkjHXiJAbvpCYCmHWu3d3lw9QmwAbO3euXk0K4FsnqVJxd4YsO2ym6ucsR0jf5vHhkLqVaa151T/fpfv2HfAaA4ODhEehcybaPA2lNf5JySz7A1TPoJgCWgGHBZPYE8zS3gNTC+vu6YzgG+YQPSSeAMVp11AGBlDeo4wM3OE6ALPVk9p+PrRFrdvh8j/qqnQLbNN2sM6TVnzhUYvoLSGIDmvLyhzjNXOWc4ReQfpWs5osqv3Lg/+9nPvudAM6+A3JW1aRByLNrsbvOC9906SSe1k8No09+or7m3bFOMXv9Ji2PO7ZwxFso0/3c+YfquI0pfcZTZ8FQ9Mae3Xjbv0vdY/Js//7p+Gddde67AtvvephS4ro3rYDDGrit3/TqPAPZS02xO685tnQLUm2ucReoIZLVBLGeJ+/muydpDFzle+w5Ql8LJmi1NS++Ysq0dGOvY6vRKP9g4jWOidQzgzEns3mnO7VhKM4IxbCx3ztMpALixdU9pPXL/Wd1yb9+5ad55VXepVNbheuT+8mEf9mG39/qtKJNHku/8zu+897mUBk8GwLubnV2d609Gm1uj1wa4X5sDeLX5ALxHHiQ5AO+RI0eOHPlZKT3MB+YEqgSWMHweTXr4x2zBlLyKXHJX6ZyAJgYT1m0GdkZweWADcAJu7QINXL3m2rWTNKZMxxTCLUdoZdl4aQ1VjJstq3IwixlUHZPBBsgAGsiRlxG3OV0xxxjqgJnC4WIbV5bct8Am4BLAloEFlABIY28xuKpzhmFlVQbDUMirkFUAtp3hd4MWoDwD0OYzsZ0DUNp8LZbHghKYPXRngQqg6QISyypjsANvsIDpD4BqgaVlliUMXgDHglaYXwmA4wp6LcC1RqtyNoepOqmLOgBB+m4sACsAKSAJRitDGEgB6FbetgV4LCRYG4D3NhHC8vVbfYyRK00AQKe50PgLDW7OZ3hJz9F1MW9jb2Nsu75ct66VTgSu5UwBvtGJrtscr1ygjznBOZN+YOl27gd90AfdPrduVP/0b/u7tUle1NUtbQRm5/QJmC3lSm2uPEBKkk5XduCy9S6pb6xJQKbO04/y8TaPbIyIhYn1B0SmL4k1sHrQdQBWvwnTrr8da11V5wWiMPyBaJi/y05fZjpw0tq5bE7HX3V+56DyvK9jxBpMzO8ryLRpB66AFMDKmmcdA65Zs5Wd7tjsCTjZ/aL7SP8BaDnM9p7BCbCAuHUI4C+ftX5ftq97EGeMMQLgAeSsUXRo16XVjQU9ra3rkBIuv2MKeHWv4JzBOnW/0LfG2X1yIwusV+uM2nQIxnfXNs5Pbdw6AQxde9PhLMPV2kcHXHtT6OiLTY9hvll/a7eNH+UN341NOWA4PLGGgfnapr4YuX3mxNHuzZXOyeX5ROqIrtPvu+42v93zRD5Z84w/UFmfyi0sjYX7tDVaRIT1nk7S903dYr7vBmtS53g2WOC+9W3XA2kZ3H86lpNL6hljdOT+kgMqibjwaKBqYOj1nLe1fORHfuS9z/fL1bvyrGc960a0KG1aetA9PYD6G77hG+7+9J/+049oJ/Ss0DPEtU1vrzYfOfJkyQF4jxw5cuTIzzrJUAkE6QGuB7Ie7jNEpFh4NBHGapdlQMnKMo5WMhKEVAd+9qDYe78FvOTVV16GSUBmhhJgp+vZVf05z3nOzfjI2JJjd5lEyy5Z9tmVucYAFFbddfv8Yz/2Y7e+sNu0MGiMI7k3gbvLAOuYjLTOrw2BSHL2MfYyCIGmQGTnYFgpGwNHyGmfl5XMKAVKAKIbV8AJthnGJgNQuGf/15eV1xgEhsWcBmQxtBcguvbrhrACswCfgADgLoNnQ18XCNqxu58+Xdm7C5Sr7wIuxv3KPNpQ4CuTcQEqbNZrW6+s3mU3M7oBKIljN91DsmGzC4jQZ4w2DHiOi94zwABY0o4IsW1OA5rliTWvEow4DFhzCvgFlHUdx2EQAgyAGXLfbuh676VdySnRf095ylPu5a/lSLHZUY4arFHzrvlUnTsnBnqAXSBt5wZWd7xwe+WaA123OmVQpts5fpoDQEXsdoxcqSWA7L3vxmpdc8FrqRcwpIFj/ecc83wBHmknOs4GefRr5w8doRPGXCoGQk+BkMpY9u3q8pUFvyz6+8056ysB7plby/bb+XK/ObbXBqABpesX96DNf67OnHSt+UlrWddpjd0+kucZk90YLCPY+FtvrZOAvD5bl3e9WOeOc6wvu9boJ22+X/9pH4ATO3eBXWVYL5cRumzn1T1rhzZwHlhfNsXMpo0wJpyj7pFXh8GCl/0n//mufcsI3hQKC/orZ0HmBV/3HOk0Ek4uc06/9RmgibEq575zlL3t0xcAZH1KpzgZKq/1Jz0FiG46GvfJpGOw0uX4Ni7L4ncvsBGaNUefa5tNB93n6ZQoHPcQTngOCuk5PNuYW0DcJEeJlBc7p7HoMZI7T2TIOioeq+w68/aWrUfPw29Jcmo+VuEITbpnPZp0X0xn04/ujW9ryen5iZ/4ibfPL3nJS94i+Nq9tRfJ8d/rN/yG33D3e3/v772lerhfGR1D3lKbe74kT0abjxx5MuUAvEeOHDly5EkTrBobYTGkeojPGLjfg3QPnoGpbYaWpz7Ag5GRURHT7X6grXPl7MwYKMw/IHQ37ephLQMk4+Z6bvkQM5wrA8tFyGK/y8dbeeXPDfztHABIbQwgil3ad+B0D4tYkZ0XMziDZcPSVq7gRW3ZEH85SWPfArgAUQl2D4CUsYpRDDBn1AHDqnvAhDyPQB/MY+xTbGNlFsZemX2vn4x7bbShFPCY4Sp1BeMU0CGfqnyEdqnvc/0YE7L+7T1dqI+FuTL4kgUglgnLEMc6YjAuSINNtvq5IMa1XGN2BaEAHdiEVxbX/cZ7wX/nX9ly/vMubHXrpB3aRXcWQNGuBQkW9FgWMkBu+6T/5azF6gYoSeGwx6cTjRcGamOafmwfusZuaJYsOI7NKqUAXbWhUHVtXgJ4nUuXqgdgU7oWqVvS2fS562fYAlSwEs0NrDHgtN+3nlji5gFQO2anjd+aN4DYxiQjPeO1vkvHgWS9m3OV13GAGnUT4g2koQM2S+Jk4djYzeoWaDM/9I95CMRPsPGuYJA2J8u42/B4fQTwuYbKO47eArpWlsGu/J2PmKnLDN7/AY3quQ4Z64R5BbQqjU9OBAAvtrq52bGNsVQjjW1j3b3MhpbpPcHKxYzEGF5QjP5ynG2kAKciRwcQWtu0a1mrC8ruOreM1gW89YdjrSELknPO0TVryaYWuoK0Cwxe192OA5RuSL95oG+Wqb3RCNa4nCeNV/fc5k739c3VvEzddeJp2wLe9ND6dO277duOCTyT27o1rHVp0xls+pzOka6BU2XX2B2LpLUEk1ze/usmeYDb3ltrsJDpEpC256F0Ryoq9eNMcj19b32wRlvnzHt6pV/MD+B1jjBzwD2CQ4ujTpoH5TnWRm2cHNIAXVMCYdg/0vPVgyjf+73f+xaPeSTiwv0kPSO7Jj2SpCON0xPJa/xo0jh91Vd91b31+vf9vt/3iMemC3/xL/7Fuz//5//83Ytf/OJ7TsgP+IAPuPu8z/u820Zw5cwtn2+RNwvSPt42r9Psbd3mI0eebDkA75EjR44ceVIk40Auygys3nuIz+ACzmG2rmQ0dLzNNjIoes84A4IE2jIcrg9wnZ9x0Hss2oCeHvixpWLXZqhXBwZoRlDld07hYRk7Ng5jqDCgagcgOaClB9SMmxgDQtAz7Htg7VpdP8NGvloMr4ymjH85Z5fVibUrxBYwDqwDisVI6CG39tSGjEoGM0Mfk9d7ZQGbdtO0Uk/EEpFr0zswWP2At4za+hG4i1kISKsP66P+u7Zx8xUm6o2BLdffhrp3fgYphncP4e2CHNC+YbKbmmFZpmtQL3MY0LDsvgUikgUPruDnAkiOY1Avs2z7cQGDK0jl8/53PxDG3FFmsozIZaltWK/3ZekusOQaylvwI1GWMPCdf8vmFT5urIGi2FkcB8uMxmoDAhuPTSMibL2yKlP6h9Yc8yW947jAQFSHypOuoesEBHV+161s+W1bvzA2W5PM6X7jZGGY9h1YiylfXTu3tUJbKhMzzTyyPsn5G9jcOTZHs8Zg/XbNriecXEqV+qM+BejuplDAEyCUEGv6qYzmc/kG5Y/tv+YZcFu4vSgJTESgLv1acHfBU78BixYY27qsfl/LWSfKzrvrOVdw+MrO2/l9nVf0kr42FjkCet8ctIDM+htbEkuydqQD9WmOrxxo6ZEQfc4DoNpu/rUh7Oq+fbvtokuNC6a36+tb664y1yF1jXi4RpEsmLlrDqedtcZaAPi2RnIgGH/961pSU2B0X8vecZK/eCMUrikV1K9jOGD17TrLts361ppJX90f1ME6jkW8aUqWBQ7Utg51Dufwpn2ozziSrGvuG52zm4hyBJnTIo7WGWDTR/fBrtkzS+dyqm+6HhEIHV9kxOqDjTPTJylqpIuQuoXTAgvdfbVy5OLdDVg9xxgL93apnzg9KlOamE0r5Pjrfb66Nb+2f448snBIJm8pKi7xnHa/9GZvjXzZl33Z3fOe97x7m55967d+6yMe+6mf+qk3PbzKC1/4wrs/9sf+2N1XfuVX3v2W3/Jbbvr+JV/yJXef9mmf9oTbvPbF27rNR4482XIA3iNHjhw58qRIhib2Zw/mASPyrGXw9qB2PwYvwDC27BoAjCuhrveTAJse9gJOM+wydBgF2GK7QQoDofLz9ge2loZhjWsb0QQsft/3fd89z38gc/XMaKpN5QSLUZvB07nSPMRYjFEQoI3ZFXgT2yCGce0MXBXG3vUCL2MgxF7OQMxIy6BiAGLddWwgb/UN5O38QF7gaNJ/jcNu5CJcE8CTYVed6i/GcO0QQol51HhhE2MPYR1VrwwyuUCFXApHbyyrY+NezrfaFtui9rkWgxQAVn8Z8/q9Y4Vhdq3qXIh/fVg6D4AUwCAB4gIbFqwAlGyuvuumY1fQY439K3C0TGEALZYSA3brdQVqyIJc1/L97ztQYgFhYIDrGWtA8BrGWJK+72vzmC5LeHPH6hc5HTeEt7r0vmzexrL5lJ7IH6uN2Fu9SoVA3zo3PU930gmb7wmFX/ASMALgTKerm02HsEx97nzjD4wR7ozxB6jtc8ajdrWmBdh2vrlSHWpbQK38q5UpzQp2mY3aclCofzpS/5hDGyLdemYt1NaOMQ8xQDkRMBXlB16ng//p4m6YZ2PH6lb7gbtYwr1EYFxZqNamaz7HKzC7ofoLqlZPa9zOr01FsvqobHNunS5b9srOo2TXAvN/jwMeWfc5MORWdW8BRGESGr/ObYzT45i8oh+Whb5rwQLL2y6vZTerjz4SJePeC/QzVwFtQMRlTS9zVbnLdF1Gq7WFY0KZm3cVMLh5fheosy5bVzhh9C2QfO/Fm5vW2N+vfzjour8ax13/rqD+spr9D9g1Hv0HwLSurj4vYL6/iZDx3FIbpURyfXOodcp1HcORtcD4psDQVikTOBo4j7rPihxoPbLG2DhxI336vTW2NU1fyu1Pp23atnMNi1YKHc8YlclZbj5otzWo56SuyTnScfVTdZXvV75rTgNlcByYgzbWw2q+3/PlW5LrOvP2lK1HIGjPtW8r2Wce68OjCTa0FBpvC/miL/qiu8/5nM+5fX7Ri1509zt+x+941OPvB+6SdOa3/bbfdverf/WvvkX+BQZ3z+z58Im0ednfb8s2HznyMyEH4D1y5MiRI0+q9FD2spe97PZgngERCwqb9ZEEI++JSA9jAaaBtTa3AUhh5WGiXAXIQDJCMpQDQHu43v96oKwdtS+jJwA34FL6CDnwegUGZ+gQuT0z+gOWKxuwYCfrygkYCOztJfVEQFEpHuT7xZqsTQGogUMBp4xShhFjTSi2a/XZBmyMI+GNAAGsY8CLHIKdkwGrzb3Hoqk8dQLQNRb1U2Bs5fQdSNKxtWXBQAycDLdAuI4Fru0O6D3EBwa2yUahetpyZZ8a3w0jF9q6Rv6VEZis8b4MQcATY3c/L/sLa+oaXrz12msBfe5XF8er74J3AKIFcF1nN05bxluyzM49v/mCxb71xLJVj93wCNC/jGBMVCwuDLMFiYEwUnzsZkB2c99w5GWgLksak7D35k/nLliDlQ5wAKTkiOlarRvVoXkt/YTcwl2n8gALUrnok0CJDEpzt3na3AGyc4xg0mlT7xjBHVPfYsbS4f7T7uYE1jynSuXJNVzd6Rh9wmwD/Bir7Rf6tBswGTP5t0UWADMToAxgbzdlWh2j3wvGcU5sPk+665jr//qTXMG5ZSGSBSvXgXJlr2599UfrlggEug80q7zWHCkZGl9rmrqkY8a8tVz968f6To70+607y7pPNkfrAuDrpJHWwRh1HKcgoNLaZe249re+8L/vIlusY5vCwXXc96wr6kAcD3AFmi6rdjd/22usbESGNRY71fVsSAfIdF9ZR5fv6r2Os33thmZ7D1pGtLnkOp1nrcT8xR60JtY/HKfy8QJp9fP13rNRJuZculfqFoz91rFNSWEeuZaULx0vZzQ9aT3k6LIWGWNOOU4ejq2eCzidpF1QV5ETnAPO4xwzv3fDPf27+xAYK6xfzOG9x2I2r4PyQZeeER9Pjt23JK1JjycFgZQpjyWdw2ORz/3cz7374i/+4tvnouZ+7a/9tY+Yeu2xSjrzx//4H7/7Q3/oD93buK1N155Im7X3bdnmI0d+puQAvEeOHDly5EmXHtwKg7YRx5MtGKg+A4szIAIDlwn1WISRugK4kks00GrzCvcw2bWAU9f6AXfuBzb3PeC38wONAjEDizK6YhLHUIidBEgFIr30pS+9AUyBRR0LWGXwMawABtVxUxRknGHw2CSN4Vg7pUtgKDKwbbTWeTZUE37fOEhhEdCNjVkIeAZarOjqG/MYQMkQBDIBVjB7GLuOr28C0Gt/zGhMqGV3bfoBdQe4AggWyCTLiL0Crvdj+mwqCGMJxNiw8QWgFpRaQOUKUl1B5g0V33QLAArggHbq273mgnzJpjSg5/oNmLH5I9UTsAQwAC7JYY1Vrm47NoCPAAn5gBnqgagAM5v42UzMBoPA9s0RueCv6wXACTFOL9Pn5m061RzK+bSASMdc84baJA74q1/6nA73f/OhuuYY6vfKzkDv1TGBDx1THbHUOj62Xb93XQz46o1dtyDIMvCxliu3tlUeAKjztal5vDorn3HXpufAv44FnHCacHhh9G0fLJi7qQDo0Oow9uZ1Tq2jYcuUJmHzlyoXMHdl9y5QuWDo6ru5AvDdFALrlMIqrR+lx6Hn5oP5jUmpDsDw6lB5rYFFa8T+To84z5aNuuuCturTZdhve6/rg/6oTTampAvLkF4wDeC4ZSi79nHsGQOgnzm7gO8C5so1R6vPArGuhY15nXNeO+b0cSMytm+ArMDUjVQAMl7X7+3jBVP3vrDr3joItEX7gf9Yv/0ndZTnCU7GKyO2/pHmiJ7uGC94rb7GjUMGwG8Nqx4ijoBbnEw2nFw2ddfHBMfibQ2qLXRcXTCQE4x/ALk0ExxRxluOXU5i19WHfe54zvlNXyKf8abjWIDf+r9z6cibi3RpOeR387H7SfdlOnPNa/tE5DM/8zNvKRWSiBEf93Ef99P2xHii8vKXv/ze59bYlQXI31Kbd2O1t0Wbjxz5mZQD8B45cuTIkZ8R6WH97S3LHnlbCANowZC9VgZR/12ZJAztXlir15xxDNhApx5+A24DMTOyC0OTbxSjpvDfvsde7qG5B3g56TCBGNWYuUBe1+63DLEMTOBZzJ5lWOm/ZfR0HUBFZQZMV98MA+BMZX3wB3/wDQTu964bm7eHbobp5lZk2GJ69rsUF5iODHIpG/oegBL4XZ0YjPozARZsmO0VsFWfK7DLmPZ5/1P2hsL7X/8t640h63p7jQU0lHs18AEXm8phw8uxBDHYjB1QfMsC/Pq8sszIZcxd26s/GPXY7cBAx+/8kyqF4d7ndCOdM2ewwtJxzNb7OUV2c6nKSucDU4EfvQNOzbnqlZ7Y0E3OaLmr5f7VHgB0OizfZSCuPqrMnC+dn153PUx2TGFsZmkb9E06vRueSeUAqAKK2Ugup0gGOsB3c2T3/4ZMA9nozIKd/R+YA4hapnnXts4sqLLg1wKEfpN3eXVm5wNm7M53+qC9QETzdHNLuxawdnUUsLMM2p3/13lkruzcsba37tKXxs8aqq/pdmNTWfIi6z/zQmi8dBrAdnUJiFiW6vbljpf6LQh9XYeugOCC3AvAK3fBcUxN8wjolh7bXHPXQeO8KR8WiDX2y0Su3cqSw1hfbTqHXVO3TOuE+bnMYwCf+8YC/VeG7a5f255rTt0rU3rX63UU7Njot/2tlzbLLXvNRSsnfWuXyJwFPq3fq4PGbyMtPFt0zXTY5mnyM0utYc3D7Oc0ko9X7lGgqXuEsWgdtAHbptOonM7fPOnVres2R4yxnLvNj9ar1Y0EE9ixHLzW801ZZe63Rsvh/Fhyy15lnSNvb3my6xEY+hEf8RG3VGKeB+8n3dNIbNu3Rn7dr/t1d1/3dV93u17PiB/zMR/zNmUmP1qfpWM9H0Z+2DY92W0+cuRnWg7Ae+TIkSNHfkbk8TBmHxQRbr3h5iuAKxvMCafPyGmzncCl2Ll2sd68wCuVL7VFRln5eQN0A7ASrJby0HbNwsM7HjBmd3fGbcYjwIFRvsBIn8uFvDn6GG4MaA/SGWC1r/ZnTGbY2XRF+GTnxMSsDhmE/Vao8od8yIfcveAFL7g94DMO5f9bIxo7LOMNWCpMtPOqA1C6emQ4dEz9ewV3ARf7u3Ics+kFrsdgcS3o6jygFDBlwawr4LFpGBjqV9A3WYYXA5uhT7TJcbvT/W4epA5bNoAOS5qOAnkAEbvZk813uhYgTzmdjzGI4Ymptsyy3QANIEtf5eBM0uOksQWgyWepzpi9AFjjIVRdWTbASgfl+o1Vm9GHeQu0W4AyUKFzNg2G/pdLUt80J2t3vzWH0vMcHtKeLPjR8c1FDOItD+NZrmAgp3DmrsE5s3okPLn+B6DQe2xuDiXlCoNeRiz9pM/A3sZGPl46AZS6pk1YgJVuW0sW3PPbzgllbMRAcmWg02Pi+CsAuvP0/8venX/rtl1lvV//xv1BGyoJpIQQImAoIipcBBUBAQWpAkjDRiGIFVwVC8AiCk0UC2oTKSUQKYSAQDAEElKHKhHitfmH3PZ9bZ99n8yzdnXOPjl77zV7a6uttd53zjFH0ceYoz/96X34veuazyu/8Qk8NzZ0ND1zkCSAFjAOqKssQDnQUwoGOd05DfoB/AfyLiv2uv5bZ9Kya9fhZKzMOXU8OnV2XfW766UjkZJgHXt0BSBrTNQDsKod1hzrAxZ2euQ9Q982pcNxbV4w9XjAmWesk+pYhr5afdt1etf5XeeOYJ91dwHh4/v6Oged8tIZjPxty46VwxL1o/4BaPe9lBf7TliHnvY1J5uv3vk5zgDHUuE4/FH/O7Qth7xxaR3jlKquPb/3dOW2JrdGi+5RVuX23eYF1wf9tn54N7pXHTDm9b91btPVWHPkOu+Z1iYH3J1ye+m8igDe3iUvfvGLL3lwr5NSHZDXv/71T/p5H//xH3/1wz/8w5exbn2Nudte9UFKEVxk8+9um//SX/pLFwC3Pbj9xdPV5lNOeSbkBHhPOeWUUx5BaVO7gGIb5TbED5KdesrdBaCVBCa2oVzWCPaKtAHC1QOBnvWsZ11SCzB2AnidVN1njWeb4JWMmFId/Lf/9t8u9770pS+9dVI1sC2gIGMo4CqDrjpmjB0ZXv2doQQsWxacz/usv9UbiAGMqW0ZWW2SgaYMS3kpKyOQK2MLY9i9/f9H/sgfuXrrW9969d73vvcCXGM5MTgZfpWJNYmh02fq5MCj/i68LnZw7XJq/YJgC46s8b9ACTB0WbwLtuxvY63ODO1lcy1b7FgGkOmYkuFY5623uh8ZfHu6+OakXBCGcewz9QP66f9lU2JuNq5SMQAAPKt7G9/Kl99Rf+hPqRuEMQMRAxzSk3RWn9BB4NIa9BwF2LXNP0BJ8zB9kC5kwXUHQTWXml+AW+1qPjdf6PLmcaaH1a37mqPLiKMvXQ+M7vucGzu3HWTY/dibm8O237XFeg70OaZBkK8T43gP2+u5no8JTL8w8rSJrmHay3XZvG7dAmgZfykL+nvZdoAlDq8F3ABQgM5NiXAMnzcvVu/XqbFz8zifjukadg4vOKpN69CpTa3DtaUxS4c5SbQt2fQZm9NXKL40G/p/HV4bQt/99W/XYpwr2zw2D3ecsCWPa9IysxfAxL7mcHSNtUA7FrDmmAHCCZVfp84y/txvvXbYl3HkbNDXUoEsu3b3L9s+DirrGbBwGbTrwNp1/eiUW6b0rpWbFsf1ylrQVNnLZl39O67Xq6/+r49aa6RTwdanZyJW5M3u85ynvcvsN45MdH1tXXWNdcGa2+9lFGubtc/6o63OMegz475OGqC9+ngHcyy7rjVvgXhpe6pPZzSIyll9kkKma5QX8EwnOU6aXw5o7BkcXA9D1NjDLD/+4z9+9Xf+zt+5/P2FX/iF1wK8jd/nfd7nXf7u3dyBwU9Git76iZ/4iVvpkT7xEz/xfdIpPAhJF77oi77o1v+ve93rrm1zAG/yBV/wBVf/5J/8kydck/585md+5uXvdPM973nPA63nKac83XICvKeccsopj6C0EcbAwHZ7lE56PYagPpVynklmcP3ewWbJdexbeUIDYaor1mBgVABQ4wdkylBqTPu8FAOBK//lv/yX9znYLcno+amf+qlLXrCP/uiPvvqQD/mQS4hdOcUqtw10z8QKXvBXeLi8kJXV84VBMlK7P4m5k1HpcCjGp5x9GxYK2GXEZYxVbm1aAx6rEiMpUO8FL3jBhcnxK7/yK5frC6EDQMgfqEzMXQdLJUJJl3X5whe+8Or3fu/3Lp/rF+yixIFdQIoFX4V3yiW44JBxJwvQLgsN2LqpO4AG+6x99jJ4j3p2ZBN79uZaXebf8WAgwC1gJdkw4mUAbnoKh5YBHYE8gCbAsHL6TF9rGzbaERDq3sDaANUANc8JzNhwaWU2LnLGdm26AixSJ0DSglFAbvXZ/K/pep/1/ECIjM89nV556dDqMR3G1gXmCxkG3NWX3S//pTrKAVi7MCeVAVg8gu6ALsCbkG7MQKHS6qmfgKrLogYKmWfq3VjIt9kaVISBflYn4K13D8YxtvjqkvVgGbiet/lWFyhdh8XRyXKcg9cxeZcR7PfxXmX23MalNdj6yFlgHVBfoDk9dqCUNdG8aax3Dphr9Fl90reeWXlyknKM6YdlwB6dQv5eJuoyojcn6Yay7/y2ZolGoa/0TZ5nn290wzqyKtchf+tMMvZ7eNauAQTguo6sZfsDBo/A7T5r234E9XddPH4mZ/KuS8pex5v67lp8dER45s4Bwklq3nDuiq6xn2v+93kHPva79dBYbqTGOjnUbfvKegGw7TrnEaTvnuu90Pf9lnO7Z6unZ1k/6bMDqADEHMYOtBJlVBmeIZe1dVqqD6liEBh6nnnU/Ghe9fyeWR26f8fOWiJ6wr7gfuS4zjyT8nTX401vetMFBI3F+/KXv/zq+77v+65+7dd+7X2u+dqv/dpbrNhv+7ZvewKJJKZrUVjJ937v916A4qO0R23P2ruysfvkT/7kq7e85S33VdeXvexlFyJAenOdpA//4T/8h1t1fc1rXnOZP0d59atffdkXRiz423/7b1/9yI/8yBNYxB3SxsnrwLZTTnmU5AR4TznllFMeQWmTXthv8rBsRu9HHgQo2+Y+MDSm6jPZBxlkHSB3u3a1If31X//1W2ySNrkBP1iL73jHOy4pCrCkSnfAsLoO7EsyxLtvDX9GtAOc+inUWMqEDD/ABSApcMHBcNVFP2b09X9SvQIiHNLmJwFsMKowhISACgfdFAEOwHPIVdcErvV/oPVP//RPX05YDlgKoAYeAgfkIsXsqV6MQIZs1/Z9jODypzVXAGqMb2wfgJnyjyDMgp/XAUoMbQBaoowFNNbQPzJ5F5BKjmAUUHHBMN8twLCsrj1ckAENvAC27XOAFpsDcZlvyyTVXtdgYKrjpnTwGYBA6LpDhJoPjVV/p4vyQ3cf9indkl9RGgWfJ30WCzxgoTm04BidBvD0HKDepieofdXH4YL0jQOk6zCaMV2BQAuW9n/gSeB16R+AXhi8/bR2AUrXMbCMY/WqTca5Om4/A40qC/hoLeBg6B665v7Kko5DX7kuVnEHFu746jugiTDqRH5iIdUiGwCC1rHV+QV0d16t848+L+B2nCN0z7UcFDuf9pkL/PU7HQCip4MAVvNHnerTxrM1J/DINUCy+iKdWpDa5/IrA9Ma13QKaNr/60RbQHbfKUdwddnPx3Vg2ZNdI6WEfMqcHFjwxnTZzMf3yjqM9nnGY5m1+s6z6OyuXcvoXMcgp425ttf7m16tw2AdMNdFS+w6vHmdlyFt/NzD0XRcq48/q7veywvAqg+n4Y4lYBxrV/3kBjcG/eyao084BKRjsBZ7F1tfjLN3MqZ2fwNPOW2bB31WGTtfjmsogNWaAnz1nTVG7nzgNgeZHM4ct57DeVXZnGuBxesAWiZ830vVwxl4u5yyp/z/8lVf9VWXFAT1/8/93M9dfdM3fdOFpdu87TC0v/JX/srlus52eMUrXnHf5UdW+Nmf/dlb6TK+4Ru+4bLmPu95z7vtPa2v7f1WPv/zP/8C2vYToFx90k/pJdozKjPHZO26TtKXr/iKr7iQJ5pftf0f/aN/dGEvV8cv+ZIvufqMz/iMy7URDv7jf/yP993mU055puUEeE855ZRTHlF5FIHdByUZBQF2heJnMBQ69kzKdcAu4zpDow0rYcRntGTAFk6OBSO1QoBnDIIMlQys6yQDqhC3jKY2qgENbXb7v/sY9rETKv8DPuADrp7znOdcnit1AwC1jTLWTpIhiFm2h0h1fZ/FsMUQk5dXSGSGAaOte6UocEBajOEAV8zcZThnDGTUtUGv/Q5eSRz4JjS8Nmb8ZvQGBgNshYgyoEtl8fa3v/3yrOrt+2U8unYP5mFIMvTXgN+/N+T8OsBi2VZHMGuBXaDCdaDrEdBNNkQYoOB59fkCBUA8IAJwb5m1R9YaAegtUAfMXtARgISpjiGOaZX0vHQVuAU4w1gN5E+HMHblVZaaQ9uAF1iQgYs9w6FjDudZEKq/HYiYLvY3EFqqEYxB9e86gDdHAkbkniR/DNeWK7Nyut5hc5Unz68+Bb65f1mv+oeTpftXL/bgsdW/PXBu16M9TJF+GPM90K17SyHj4MRNuSDtgD4w/up1ZIAD4/STa/pRH2ule7Rb/XdeXTdnAf4LAhr7Y8oG//fsHErpaOPf/VJ6OAxtQ/k5laxx6tMaxyHS2ALV5bK1ziX0qHJ2TuxBW0DS9BOwCky23q7jSK5lc1PZOz8BxtaHraP5uf3pc/e7dsvcNUp9FhTt2qNDaPOBb9qFZarrkz2I7ehcW/aqz5e5u2v33rug/87XBakXIDYf6dves/dZExcs9p5RhjbuOwaISaett8uQp3f1JUetOYKNvM6P/W0t2BQK2yeVBQzdPqjc1lLrE0eTseh7B6Jt2hEHtjl8tn1M966ucOBZ1xx4aU5K3UAXjUVlO3CzNgTGyUFeHSuHc649FefCKXeWt73tbVef9VmfdfXKV77ysv598zd/8xOuCUyNdWufej/yMR/zMZcoMPKt3/qtd73n7//9v3/1jd/4jU/4vPfR53zO51x+bicRHwKmO2j4dvIzP/MzV1/2ZV929e3f/u0XZ3C/jxIp48//+T//QMgop5zy/pYT4D3llFNOOeWepY02Y1oI3jMhgT6xzALsAgszpJ/MiclPt2BSHSVjJUPE4TwrwDlpOAIUbpdbOeAohmrMln4CResTIIJ8oTGEAzPa/AIZgBSBzz2vQyd6ZteVMkHexq7ps4Dnyo8lwZjDfguQbQyAraVdcPL6gjoZfYXm1fZYF8Lp3vzmN1+uD7R/0YtedCm/Z8qXmuHWMzLcekblJ0JK+ylNBeNvgb2uD+QVct69fY+9tPlVgUxrNK/xvOkXgFKAyk33YOx33Jbtu8wuP9rjWctQZFxjSQF6fI9Vpa5YWMAGYBrwDfi6YJfPNyR5mbjadAQ71DmRD3pBw2U3Ay/0YQBHRmW/kwzB/T79B6z2TKxtQADwASs+ox9zy6E/+nwPvcLKM949p7+bawCI7sHOBEC7X30AD1hsR6AJMF2ZzZ/EPAWY0b1E3Vbn+iygJCBx55JxXTAe+LKMQelUAIjGeA9wop8LElongGyAOHNCH9yOJQnApIeetzk4leu5yoF0KvMAAQAASURBVFugl/6YTwsmJ6IdFsDaaAHMx61r3zUeGGDSyagvcIjetLalX9YIKTeAdgEf0h9gNh8BQeHo2pL0P+eE9prn6XG6Lp/1zknlmgeAxX5yglmXzDuRFsvqN76AdGlJrFlAuB1berXMXfctc9h4clxgr2/KBbq3rOpltXIUGq8ju3sdBrsOrf5bkxfcXYfdgsoLHGu/te/ofDv2w/EdQbdd4z2/OX9FAADXFyTuf2tRc7H1sXeXtUHd9mAzZQPnG9/0svVV3+zabM0CBANp1WWdTOuA1A7OB869/u7Z9izdi4HefdjF1gIANdCwvQSHnT0RoL95UNk9gzPGGHDIAXOteV3nvXK/ctPIEz/5kz95SWkV6zUgt31YY/A//sf/uKQwCAB9plPAlSs3MLpcvu0b9z3a3PiN3/iNqx/90R+9pGC4F1D2O7/zO6/e8IY3XH3lV37l1Z/4E3/i1mHH7adf9apXXb4/GeCnPKpyArynnHLKKY+5HBk39yrLkEnalLepcohXYOEzsREGvMRErT6FOgfyPgiAt75ywvUyMZ+MCFe8jvUgZyXwYfPsZpxkeEtd0KYTE/a6Z9T2UkS0KQ+8XNCrfqp/MroCNMpJlgFV2UmM3g4jK8dfBlx5zgJWq7M0DwEGGV/1y7Of/exLv2fQOYCpv9OJwFd1DFCtTpujFwgg9YOQTKw17DesXOHPXZdxAewDPAAM+ql/akMAH4NZXeQ2TlcKl4/1DMzWh8sY3DyLdGJBgITBuwb/GsQM52VaMpAXRGaoHplly35MNhx3QdhjTspEWOvmrNT/woMBOfKMAoqAA8vsBY5h4y7YsaC2/gQ0yC2L7Qm4ADg1rkcQJ92svHSg7+Q/daCaMVAP7LbGPt3mUNiUEKR51P+x0LveoT3Ckys/3U4PF8znNGjOWBsSociec8yZCgjOCK3+GZDN1YBC4AOA0DjRbTkxl31cfyzTd4EefbEsVnq0P+qrzg4rWoAV4O0wq/qmv/sM63tz5y5L0RxasHvrtNcsY3nZxQuM7fjp0wVH6dvOpZ2jngFY7N50qzWtslqnpC9ZsH3b1k/j13i5N9E/G3Kvjg6UNJcSAIn/pQFJFzg+lmkv+iN9qd5dt+A+ZwOwTm5zYJj5Dsgzl7C7d75u2h3vpWUKLxPadcok+sMapC83//XOX6AyvbWWAHeXcbw662dBS+1YFuoyuI/g/q6Px3X96LBw7TKdyVE/j8xp7af3m7N8gc9dH+nMRj80BwGw/V//6P89LE97rOdbz11Ldv5bu5Z5bP3fdArm7TLSrT39WM+wzzlvKsN+Jx1V177rHocDc8ZyVgCprXvd016mPYE0Fa5vvtWmrpOChu6fcm/S3qh8u/3cj/zyL//yE5jtK+X17eepSocL91Me4AclHaAmBcUppzxOcgK8p5xyyimPqWCABpoEajiR/l5FSDEJ4IgdGsjXRrqwLWygO4mNOvYdo+HJCuZfwEkb/tpXXTFAnopU19irC85m0Pf7dn2nnzNqj9dlmAUmbd3rh4BYaRgCR485ePvpGsy7jJrKAhII3UwyfApH67C3Do7IOKo/Gq9AzUCMPssICgTD2o0p23NKi1AZgaQxaRljDg+qbf2kQ9VPWGQCAAxcrvxA38Y45geDc3O/1sbqWrsBOD3HIU7VIUOj8PCu6Z7K69mlmIhdUVn1zYIyQEThyoEhmFPLqASAA9k2VH6vxdwSFr3M2mOI7zK4/AaYGIsFgv3eNAfXhT4fDXKgwBHs2LBg9QVKXMegPLJrARBy3i5osmAbkOIIfukPAhDt94JF/WAwAmC3vUCOxj3dbT6np9XH4VfYXMps/jeOpSFJtwNom1fmjXY3d5rH0qX0GUZm9wA0HawC3HLAUfPN+tnaUzmu0Wfas+zE7pdbON2Tl7Z6yR/desBZsUy87Zt1NiwLDyBUmXKmYrA6xEwY9ToENjR7w+eFU/sMmAWQqa5Hhq26bV5u+nxdPuujvtC1BRA3HciCZKv7nCmbpuI4J5cRKuy8fk9nem9g7h7Hbtvf3znCWoM6lGgPw2u9N4ab+kT9sbe1CWubM6W6xEpLj3M6cS5Yy6qbNTH96X/zmjNGlAZ9EDJvfQSkmmP6BxPTetGzgeb6y7VAyT1QbdmeQvyx75dNuoCisvTfMknJAt07ngvILoC6axrRxztfVh93bdUvCwJzsqwucS7uuuuHnuz36tv3+tV708Fi6i31wEY4eG/oRylkpEXR//625u3/5qV1XP8tkL3M3s2nzyGwY+09ARhWN+21T+BgNl83VYLc4NrJAU6XPK/yKqNnyf8M8OWg2dQQ2MXGs3X3TsDjKaeccsrjKifAe8opp5zyGErGQoBYYesBHoEf73nPey5A4nVM0KO0cW5zDeDt/8DCygx8ayPdITydRnun8troB/4Vet1PYElAZEbAgsf3I23yM4irT+AMkGcNOYYvduLt5AiqZeAUqibXYiCTnLH9nbG9rKX6pTzAgd4ZObWtPma0ZHxkjAC8ALp/6A/9oQsYm0HUCcP1jXDNxqs+DkyvXQGngVHSUNS2mAyBqKTvY+hie/W87q2s2pfxXj0zjur7/g7czQgK4G1camPga31afaRwqB8DiSun76tzfU6A7N1XWbW3cDlsTEYuIKprhHDvgVbd/xEf8RGXMgFoXVfdGZDVV+69ZBms9K3P6v9NNeDapH5NJ2Ly9tzGYplIxhUws7qxzM5lkW1eSUYwAAaLCBikjAWTj+G/x7DhBSQwrFzLEJd24QgSL0PR/wt6A7SAj+mZcPVl1wJ3N2x+QTQggtyswN3ttwV1j8a3Nspbaw4HyAIcmouYYMJvK7O56jT69DNwDNsOsIHZlf5UTs9KnwLOtu7Y4123zFeOHkxJDHSh0MtOXVAdC73vsepbB9Jh+rI5Q+nhsnLpuTEG/lhX9rA0jhS6svq74OSGXQN29DugE9Oz7+RG1qcOdjNnjmUsCHYE4czLBY52rgL/zA0gIN05MjL14zpEVr/SByljWmcA39YF7V3GJ/A8HWnMRFGkO+nGESiU3xk7G+jPAUM/rYecY+lOjrE+e/7zn3/R+a6tPMzv9Kfn11+VwangPWNNMLb6lt6sbu2aRu+113rNYbZOqwR4DBzuWo5Az1wHk/HfSIJdc4B5wDvzb+/bOhj3/fw4Dli0qy/bhv18HVbbJ5u2ZNeqTY+x9TF/r2MEL+iK6b3zAShvrQGIYvdaEzdFwr7vvCv1m/Qg2uKZ5s3O7S2/35xPywYmxso7S5vkd5ZHuPcHB/Pm0vXusW7ugZV7sKax3THBxuX44Di2FlvXOPPkDn8yYmweBnlY6nHKKac8WnICvKeccsopj6G0+Q1ECJgLzOt/bNJ7AXiFjmZ4Jm225TANoMzADbgVcnw7adOeQRqoFwvKYV6FRgmzu18BeGTYAGGXSQxEDAAuTUB1vt1zjoYgg4/R2d+BpPVhgOWP/diPXdrsemkrAmTrWyzXI7NtgTxgoPIBUknl1i8OPwtM0Lb6vGsDpDJgahegs2sDfAPd+2lshJQHYFZ/IIf2VjYAp2sDpp2kzVjqOiy/gIYAbAZ947oHBDFO07sA7+rnc8ZaY18OteoFaOx3fSsvcONXPR3ABjSq3wJnezamrjF0TXVzMB0G0DKUjG3/V8dA8VjBgT710YJJmyOUIQx4MCeWncgglj+z/7GtGM/L2l0w7zqwYp9nzm5/eqbrNvUCYAKAsOCZcFtlAE9XN4FbjO1lM26YP1ABkF0bAVTLTt5x8rc+TDYdivYBDys7kLefxiHd9hxsWgAqdhiAuXKwCwPDpDvp2nS+snpec7p5LmekUOLNI1n7Wms4NRa4AR4DtbRDnuPWPvkw07kcKDvvlzkJXFuAbsdI+Zur+MhYTDiDNvclZj5WfWX4nj4CjI2P9RZ732noCxQf2djq2merL3vNgr90lo4tKGjd3LZvOwFMygYmuR8DGzC6z1uw88hMr0y5PQH1WK6tT41laz+mZ2u2+eD7+sxBa927h6j1vXGTJqQ1OCdqY1DZIjs42XqGw9+sM8rfOb9tkrO4eh3TpQDgdl0EwC3jdhmq1Qeb17q0jOAFU4GCxHd++7u+WWDVGO1au2zyI6OdGItdI697nneBtSfBhF7HlzKPTrd1bO1ewvtg+44DYddlfXIs27yTd7z3Uu9RdV3wmo7qc04L68A6eYCo+mrXDexXoOhGWG3fmk/0jxNQO+hC65oxbb3EPNY37R/tDdzrnQN8XlDaOuyAOXl+uyeHs7br/+5rXbWWnnLKKafcNDkB3lNOOeWUx1DaDAf4Bba1yc0wDCC5V9YsYIW0mQ6YECodaBhAeLdTdXteOV0zVDJcu7/7qs+TZVhkYBSymoFROW984xsvBgOjJKO3ulZ+z7rTc44sla6N2ZmB3g+wKFD1gz7og94np2wiTLdn1t+lrQDaEAaclA+NQ6BDZdc/sXELMccQA4oLRez+jKUAqPq976pPhlLPY3CWA7eTf7umg9Dq74Akh1gxDmtDz+951bu6dV31ySDruoCF+jTAAjsaANdn9W/6UdkLmgFeF0BZI3FBuK4N1Oh+IBamcs+qnQkQqnpL58DgX9Cc0SrVALBygcw19Ls3wBizvFzEcvNeZ9zvoWQAMwAtQJeRjZG2YNcaoUCsZXMtMEhvtt+X5QtQ8bn8l5tOgm4vw3YBLOwrIh9i/b7Xqsuy6xKnlm9uymXfLQC+IJF5RlyjrsAmoH7lt47J1aheDqaSWkFUAHBE2d2XLjfGzSmM834qr/koIiD927YDrYFX6Wt6SzcrvzkKHAGWGVPARfVrjnDQNFebz9YzYen6cFmpfjalArAWW0/4+K5r6gFg3TUOm9dYYtEn1glg0eYIdzCklCrAPiDikaG46RqWGUcfd43sO6x3YJ/xpRerR+bMlsExoCy5uetra4J6Hpmt63hZx4MDMVu7e4/1O2Cpce9/awr2JEBr03j0OVbmrgl9lt7RV33dPX3XWq4t/U7P0j/vmMD2ZU7TQYenbdi7+bUOF3OPni+rlP5t30pD5N2n3RtFAHw8grTHFDO7rvhZHTUHj46DZcfumrmMdGXsGB/fyfsczret89ZTv6jPAqA776zX/t6UEK7zbmysj/mNRQ8AgNOBdJdjVv7ZI5Ctjg5la4y8B+szTq5jPYy5CIB1zBzb5P22a/iCzdbt6uh9ZC/DiWEMvU/XoWitP/azqBdzYnNKc1a1b+HAaE54VzzZPeYpp5xyyqMsJ8B7yimnnPKYSsZtwGHATSAGI+FexOFfR2nj3GY6A0KI8d1EagPpDgJb7iV37+0EcBs7N+bdgruktgIf7kcqJ+O9/mIUZXxkzAM9rqtPxkbXHE8aBs5i2iaYuQEPgUy1oZ8tG6tGu+q7wCuM4cDdWMO13aE/1SMw/Vd/9VdvGdrCLYVgYnz17H4HijncLJahHHc/+7M/e0npUZ7evg+Q+tAP/dALoNfYd00ge+UFJJfuIUOre+o7hvfmYOz72iu8uTZVbmUEsGHeyBnK0AYAO52+vtrxMkaM+4w8qQGqi5BXxjDjeAHMmJzV4e1vf/sldQbW3rIQGamYRBuqbh5UV4alsGlA2Z5If2QdLmt3wbhl0Pof6AXMNcZSMeizBTEWdPNcY7RgNOABiK2uAFV1C0QItHRC+wIhRwDm+LNzdf9mxANAgJYYx0l1Sx97ft/nHMEWw9I9sj71VaBkgBm9dIBYEnC2egRc7vN1HvRM+bCrI93sp8/9fWRFAolzjFT35mnXyfkLGAWkLAhvfJp71rStq2ctgxcIrC+PTEf9raxNtbDAGGZe9fe7tbxnSTegjZ6v/taf61i52nxkeesz4JA5fR1TctmdCyLLyel90xhizu7zjmDjMoPpv3r0u7XS+iRlQ+s6QKs1o/EB+Hdtv90PjOrzntHv9KfP0wOHT3qHVJZ5DCzUBvPD3MT2xsreSIGdj8f2HwFRrNBluxq/6ll7gZbE+metMq/pxerhpgzZKIAFa62fdFhdtk7Ww63Llr2pgXYe0TGHSwJ2rX9H1viyfLef9LG2LuN3HWw7j+jtXrtr/XG/pe9EJ9C1BXTpg3YBeK1h1noRT63Xu7brZ3opzcK+i8yLdT7uXmX7C2hs3yPSYvM390627vi8PYFD17wr973bD8awsvu/dbj9R/tcKWRqW3Oxd8GTOXh332HPtDws9TjllFMeLTkB3lNOOeWUx1Ta6AagZTgG6B2ZpXeSBQaObI7jZv9uskyvjO5+niqzoraULoAxcpQ+u5/2bp8Jg93P5A7ecNPE4XHL+lzJ0IjltaCkMoVuHnO9bhv27wy86pEh00FwAbwBRu94xztuGTIO7em5mC/y3tXn3e+nNgZS9Lv0C+UCZqgF2FZ+Pw5NK5VBYcKBFrUno0yYsvYvQMU4X9Yr4CzjS59koAmHFsIu93D1qn/q+9oAwNg8j8sSE4Jdmx3GJR8rEIsR2jMqp37tGf3/3Oc+9wLyxpqSCgArsGdhOi0wob0LvjFMa6eDkzac/Qh4AjY2THyZ0AztBTmMLeBHeVhuyzoj5p06A4a0b5mvgGUAAN2oPfJep2favPctoLgsuv3suJZo1x4eRY/T+cANOarlx6XzgWoxsfs8AGGZpNoL/AjokFqmz7qvZ6QHAG0HjtFfIDEWaPc3d8xvY7Qh7zuHsXibQxjylRHg3PzB4uT4WiZvQt82965x3vQGG+auztpjjmKZr05tWpJd95dVvIBna6S0A55zBAfpl/lwHeN+men0QT3N6wXZjozbBY4ToL2oitYT4PoyNPWpObGAsXXF8zhpcqalP5Uj/3DfB8JyfvR9//eO69npSJ+lYwvGL2tabunuc3AovbZ2+H9lAfVl7ko1cNQ/Y+kzgOIC7PQG+Oba3hFSeey4bc7UBYSNByBwU8JwKBzZ2LtOrINg15XbpWHY8lf/6I33TmOxh3x5PqDRun1cM9Wr394JR/bsrq+79h6ZyXRvwV/pcLRldVtufmNrrVJn7/b+dgifd5bx8H7onl1X6KAUMAtk0411pGwaourl0EXt0YZlMWPz9pzmBQBWH0lVwongHai/Hcy7jPO+6z3QvFlAt/W8db19g7l1yimnnHLT5AR4TznllFMeY8kQiJHaBvl+NrttoAPy2ny3KbexDmSRPoCRdjeWAaMd4PVkD1c7ivDZBym3Y/wCWBeYrj3AGSHfDHzfZ2gEFMZ27X6GYn2LiQggvtv41N7KzogJCKicwKzAlso3DoG3pW4IKMgYxMqp/JiDAahSRGDC1O73vve9t8JAAU9Cszv8p1QYpTSoHHlu9xAmhjCGU3LM/woU6Lew++rZPYWuA/h6dt8zpvtd/wklDhSmT4EoXZMjY8PbASqNC2O07+t7J3MzaPu+PqgvAs/ri35K2bAHz3Tt6j6wiBMjkbJgc91KHbCgJr1aQOLIIATKHFlsy5hjTAPXAH50eRmOwmAZ/l0v5+ayzACdCxoCsDKs60MgzHUOoOPc8d0CeQv4LEC0J67THWlGAtkCcfs8nZefsnHr3oDe9DKdAizk5KrsnBaNUePab0BiZQMIlCMFAqZ241cZUhRUd+lMMPi7Zg8Q6lp9308gX8/uYEp6nt41h6tL64Q6AV4w2buu7yq3emLcAYbMkWU96/ONsqB7GxJtvACP5u6CzQmd5tRo3UnowubiXt0HAprL+mOdQJsOYJm1y4ZevbGGqDsAEhhkni+7MTnet/NDvenNgov9LU9sa1PPaRzMJQ4n8yhdMOc4BvSHOmGdL+tY9EN6KP2J94L3qPZshEG/gc+rEzuvjz/riNlwe+8aDif5zI/Mxs05veN2BHetH6tnxzXC/fv8BfTpKhbo1lt5CxJvWxa4tEZuXyoDuAsEPzJxrcXX9ZN1YqMy9t13ZO5uNIn2+X8Zv0Bw+lTkTgBmupMjw3Vy1juEjB7ol03XsgcMemY/HGvqs/26bfa33NDu2/XGM3tnp5etY+nzHhCqr1tHOV2l+vFutrYCsaV3aN1vX9t1fdac1Mcc172npNI55ZRTTrlJcgK8p5xyyo2TBZwed7EZvp+wszbeGRKBeW28hdG3mQ+w7DCqQBZA2d2AyTbnrhfe/rDKdUzaBCgLOMsQCVCsP2K1Bh7VX/I+1td9X7h/YGSf1Y+MIjl0M0L6nQEXow9IeDthGNafGUxSXggXdk0MwQygwCvgQwZhTNgA3sYMi6Z6ZhQF/tb+7umQOoBohlbtyIgsT+2LX/ziy7N7hvyzR9bbGrTLvqr/sDLl02W413ZGXXUOQAIKFYLZPfUzNiMwS2jq5vljyG9odn0l1F0uQ/2y7K3aH7BbuokOAyyf8TIkF8hexnJGN0O9NgLI5EkFvGDGJkcgF4i8IMayohjWy14my+jdUOzto2RZfMuKAlQtELWMtvQhtirgacHl41xZx8+RBba6rA+ObM7tH/Xop7nW/wD59IcOATYCUvVbjozqXNldlw5LvUKa1xhvngPsk8sRqFFfyMfa9RhpmKzYzgtYan//Yxj3TDmnE7l1q2PldE061GfpY2LtOIblL9B+BKCANMtwBCKpJ+BW+wCcGOp9X3uBTQtSOagRKI/hu0ARvZS7GNt1mcfLeF7G5DqOFojUZ/Vf5VoTjMUynRf82zFZ0Ne8IfIam3MAVG1PxxxuBvj3vMaptVhfiDhIrD+bJmXZtdY04NfRSXPstyOYuIxe47DzSB/teqx86wzmrnFbMNP4bBoF+YZ3vKyDywhf9vKO97Kq14F1BHGPESHXOQt2zTwykdMLz9Qv+jHZKBT1opsLuvquvpHrtnuVT3ZNOzpZFty9Ti/Vj16qW++qyuQcTv+B8Pqvz60N6rHrvnUEu37TemBXiw4A9Lr2yEJfsFd79Hfzo/n+MR/zMZffRQEZ29qx71AplJRpTeo51gv3aQfHCUf15uYXFbXOwnuV+9krP93ysNTjlFNOebTkBHhPOeWUGyfPfvazb+WQvR2g9zgJI0N+MwdWXSdtpgP3yrdaTlaHF8lXF1gSyJIRkJGbsRq4eDtpsw3MDJy7DhA6ChDoYdncCq/ukDWGB4ZY/RHzrp+Mj8AYeT37W7sbA/3YvfoxpmHj0dg42Ezo+BppRGoBoFaMxcrtvg6Ho88ZV/Iud4+D55z0nuFT/bu+a/qsMoAagcMxWYGUXfeBH/iBFxDYYVG1QV7KZXwtECMXLqMVm4vh5cAYjDg61vc9p77kVKhu9Zf+NTY9D2NzQ1eXCciArL/qm57roKhNi7DMwUDejNJSXpS6oX5nkGI8AWMW7N38kP3ve32JpbQs3GVubXjvHnrDeNbPwo6XgQgQYixjWC8L8DqmFWDFWAEq/a3v5UHc3Jfqdh1T1/cLWO81+6MPHeK1odJHFnI/1UW7gCAAUIZ+ekPP0v/0F/hHJwNE0j8M4OYrnQRcAXorX1gy4FNf7xq7YJhxqMzWkXSpedMaW/3lRg+M7v7//b//99Vv/MZvXOZOut88NI7m0+a83LQIfqqjeQLcNRacVDsWCwob2+OhW0fAy/UxqVvjF0ReYHnB5PoLoLRpbdRlQ9Pp8f6ddH9jg0GsPyoLU3bL3JQMgKLV/f3bdUfnlDXN3GvtbD2sH9Mrc6z1B4iLta/f60/5Ub0frO8B/9jf5p7nb59amzZf685bbd65w0ECjKUDOwfNvXWyAOqWXa8PFgw+MmqtSfsuIMe1Itlc4se14sikNc5HvVnQGviKrV35nJU73g4G3GfsmkbXrc/qw1mhfDnfF6jesbCWL9BKB3y/Y6vOxo+jh+RU8u6Ru7mfPm/9ku95D6lc/dV272HPl/ohaR3SRrqjHRy6u3ZwZrjOniJmbfvt/m9OtI62vuYYMpfM19q0ufKbH8bL2Dnw8HiIpn1EQPIeOPlkAN5TTjnllEddToD3lFNOuXHymZ/5mZeN56//+q9fGI1rgDzOYsN/p/a2sQ+U7Ke/sSoZL22kAw76Hfh1tzy33RdQV1hyG/BAjEdRnB7ugDlh4ZhtGSC1MaZp12ToBIgB7WLvBtwIr87gYQD2Wf/XN8IVbycZYIFU3/3d330Zgwy6yu2zoyFdXTK8YhY7SE0u2s0lCRTMWAyoZqjFYBWCDlR5yUtecgEuMigBnt3fPAKcMsaOOR4XpMD66/6Msoy5BX0YdX3fdTGIsYIy8IRt0r+uF7ZZGelc3wEml8mGZac/EuDz8cCo+qOy3vnOd1592Id92C1WIwBZOyu35y2owXjdcPkN48X6Y+Au2LKhzoCBPZl8D9pa4OvIyt1Ddny2LEkCiDZWAEUgfbphvF2z/XmdU2bBEuK5x/sB/0C6I/v1CELKXW08jiHRyxoU2tscDJhzoE9/OxQvSacx0fo8fUov5QOu/VjCQoYdfKZtC3xtmgLzpDrmQMPgDRjtM8y06t135gbgN1CE/nDCLCAEvNEnldFacQRL6cyGuid7AJk2GB86bT63RqmDFDNSmEjfIh3JAo9dByjvd30nTcHqzI75jr021Ff1CWDtCGguy9d7qzKwEpfBvNess+GYHsB1C3TSh/Smsh1cKYWR1DcOYNu+0DfpIscBXVlmrvYcnSW+X1brrjHbdwC+BUwX/AZ4+7w2Hdn19Jkjj/4tMO96rFjOGnNUPy8T1rM3HcBx/Vh2+cqCu/rJ/5uHnJ6sI09/afcCluvsW90zlpxB3hmbi337ftuya9S+Izio9I01zvuK80L7gKJ9BtSsfSJ6cmg17wNQpW2gH4Dp5lz3Akm1Ux95bxn3Pcht3zHqhUFcuT2L/lgbOL4rs7+tmZsuSdna377GvNHX1aOIJw5w5fS5fY05Vz/13q/8U0455ZSbJifAe8opp9w4CfCKVRBwk7F6JwbqURhpDPaHhWV6N8E8uZsI489ozVgt7ypWiPD1WGVt4gMA7waO931M0sqN6XUvff2w9anQwEDUDCenoNcfQnVr51ve8pYLyAswzbgRqvvWt771wtAFNkgR0LXvfve7LzlzK/tu/Zm+xiiNrYtJo5yj9Lm8urGFq2u/MW4Zq0L+sWM+6qM+6sKiDThmGGImYgZhy9bG2pVUfyHrDNMN+e8ZGVzl99V/OVoY6vo6YbhKo8BIZXD+9//+3y+pE+QqzcDljFiW5x5gJ90Ig1Qe3dra+Hb9Gr3Ao+7Dhu5aaUaWlcUoXyNd+cCChPFcGT2z/jiCwOq/QC9AExNyc1ICMjZMHLCDXaVOx/BmRjzQ4ci0loqkn63fEYjTtmXXJXvdAmhHJ8bes/qw5QM46jeH6wjfXXCS/uhXYF36398OR6vva3tjkR5KwRIjM93vGd0jz2P6bu6nlwuCcoT0vO5rnQzw617OlXQPWA5gpn/mTM8PxMiR0lqyKVCMCSDYeg6w1VbzQD+o1zo5pGIwDpwp9ACbzrP6GyjTD11znQgPAEvrAPYcnTc+GHh0b3OhLjB2TNvQe6g52D2BN8a3//cQJjpnPdmUA4BH7/AjoxRIT2rfdUCdg7pqI8clJwCRW733A/As/XFNbZG3ffsZOLlzYIF89dBGaWyUscCkv5VhTdHOBfA23czqdt+vo3cZwAt+q6Nxs2dYcHrXQnuond/Llqbjy0Ilm15jQdoFouVCt0aYO9rJIWds9PWRNb6OIv0gPzfwGPC6jqXVF59vOxYk9mxj4vPVae/dXauN7c6ddKr1uvY1D0W1cGbttaKHzOOeBzQFXDfvjuktju0VGba5wa1X2pS+94zSHm1kQ325Bz8Cc6s7J620Dd0nF3bPteZspMwe0smBez9yfIc9k/Kw1OOUU055tOQEeE855ZQbJ0LnYwXG0pKD83aCsZVhnjHe3xg7gQEBBI+L1A8BmbW5tv7O7/zOLYOzDXX9VWgs4OBeJaM+0ORR3rBmcAALgBv1ReBQxkvAzgKtwogDiYQkJt27LJsMqMq+1/50qNh1fcnY3HBrZQeCvvCFL7w8m2MDiwj7L7A2APkjPuIjLvNkD1IBSGEAVUafZWBVZvqi3cvAPLI+GdUMWGG+wJ4FC4AwQu8ZmwHiMZQrJ4eN9B+MZwDShrL3vwO6AtirR0ZvbcBoBoZ5tpyeMXmb7923z9nckMALLOY19JXttzFxPQbVEWAwhjsHjS/ARujqAlcLcC6gSxYE3xBu9wFHAgrqs2O96J7/j6Csa/bvNZyP1y9wdASldr61VsvfSIcIRqAUJJsnGNCTU6py0u30tv5qDgL4W8vT33Sx9wPwTf/RK+BV16vz1oVeAEN6T7R2tlb0XOH6dCOnmVymfd+aUTsqvzFYYF7+6u5Pj5aNCIhq3Vk9XeYdvVvgEEADtKJTGHBY3fWdelffPVBygZX+7jvgN0AK047ubcg4HVyAUeqD3knSlXSd1BgLkAF7zRHAsTVgHTacWhwyC7KZG9aBDXHXZxwh+lX4eWugVBsYy8Bn41O9uh4LWr0AWAvaHecQ3TKXjwChn00RYPx3zIGg6saRJhpB32xu4nW2mGsLfu7cNVbKtq6sPm7fLxPZGKrHsf3asnptjXA94HAjRpaRal0wv3ed2X7zDAApVilnoP46OqKMk37TzgXF16GmblI4af8ypvURZw7na7psbdIu60R1zWHEQdWPgyI5eo79b/5JMcJRK2phc+Vvv5tTdEKE0TqCalt7DKzj1mGHFgKX6aF0LonIld6/xtb6v/sGjjfj+jCf93DKKaec8nTJCfCecsopN07aXMqBmjHWpjcDfMEQobBtQAOPMrhjDbUpdbBDG9AOnXrDG97wWG0kMwBKvxBIsLl6ARuxGTeH3L3KowzuHvOOkqMBdpQ1zFYYb4zj++2b664PjMlxEZCUYUWAVhlB5Y0MzOpAN4c5YehmFGXUBcRXTqATVoywS2HfgaqM2v5OX5or1WGBmG0nYcAzZBmoGH/LQO2z5lwGXWBWTpZAOqy96ld7pcRgXAIo+x/zqc/2QC1gePdnOC5QgjUZENM11UEKiiMrdtmxWJg+B5j5DCgI2AFuH3NLApEwphnRgHBGPOAIQ/OY/3KBh81Nar0yjxn2G6Jbn+ivZWwtE3j1cf9fnT5+vp/tervA1QIcwJX6ov5PAIIbWg0EcFr7rlGVC6AILKxdzYPGBhDJIYMVFvDAASK3av3gGiHJAPvmS8/sb/OJw8whaoD6ntvfwFth5TtXmk/AVuOMsd7f6TuAGdC3AN46ABbAuY7R6X66BPClO81RQIp20AnlYu7V9vq3/80TYNTmEt51sPI3J6q5U1/mCOv/5v6CrwsIAraknHFQ1OoA3aH/O3c3zNv32r5pWRYcpeO1efNBS69hTldu+mNO9515rR1Y3HRVPXdu7bwzfxZ8dg+ADthmTdCvhB4APEUHqNcCnsf5egRWN0WDOQF0s75rm7ESJWEtUu+d+8ZIuzeqQR5ajPIFlTclg7UFGCq/dmN2rLe1cBm4HBkcNnQFoHpk+7pvQfi9Ztdo+kmXOBpdD/RdFrO+uy6tiL7CiDXGtbU+6T2W1B6A7/Zvc3fnt5Qr+84h63TyvrZ21M991nPaI5eKpn2Fdsrxy2Hb51jH1cnYScHkXX5Ma2RdsrZj9Tpb4JjW45RTTjnlJsgJ8J5yyik3UgIvYuU5gTejPYO/DS1gqWsyKgN4M8AyWoWqAzszwgPJNjT/cZDacrt8uYzc95cAKJ5puS50T1huBkb6kVGxxjfQsx/GSZIRkn4BQ/r9VFJ+1EcBPuX3dFiKMcoIaiz7nS73LKHqy3JjwHVvuWy7Lv0HmgSQYNEUbp5BJhz9Az7gAy6hl4G9zR15CgEtgAyAzxrwjHygj2v6jWkLMKlOQGFGe86Z2h5ovTkRGe3L9tS/nltfNWZY+JtHMakdDtuqL7oH+2nD2xdQwSA7MlyXIQz4Efa8eRkXQNkQ80Q6EEYuoMozgNcLXAA9FnRdQx3rbtlu9BLos4DFcS4cgd79fvt7QZQFoa9jFtIXAMceGHQ8QEobm4cBGEC6hN62RqdL6UnPTWf6Lt0F3uc46HtrPYAi3WjsG/ecAdqR3mCz+0wamySnByBKvYwvdmdzsOuFHtdWfbAsd6AW0BL7sXrqF0Dt0WlEF5cZicW6bPDayaFBhzaFQusCoEgqBqzfyqhN2IG1SeqGZah79jp41InzBMDa+9ghd0A5TEEsRgCruUg3lk0N+Nu+WNDWfJZfnr7eLmxfffzo1/okwKo1pb4E2PV7WZOVVd/UR/Wpe+Ut3rm5gKe5aey3D322LFntoBs79pueByAI0Lvu2bsmXTfPF4BdhjjGN4DueO/xXIAFzjdkf+vQs+rf6ksPGzcsVuO1kQDmDkfYpm7Yg+LMM/3duAEZ9xoHEK7sfAOaqoPv9b30J9uvO06r594VWLXWcn3GmbWgtvLM7wWVk97dnDDqZa5a71uPvGP7DtCM/CCSQBswpjlezZUYuyIl6Hr7Ee2ULgl7l2PTu4dzrOsrWx/YQ2H5S/Vgvtemu50Rca/7vGdKHpZ6nHLKKY+WnADvKaeccuMEqy5WQZtYOWXbOG64W4ZJG8iM8zbEx8M6bHZjaCWPG8j7TG8uN0S8kPxnuj4Mv4Sh0qEmsV0Lgyy3rByhGKUBn33fd33mkLWuj0GeDmIfZQg5GOV+pbLrq3S5egVEBWIl1dkBbl2TDqfvgVb9yNMHDKhtfSYsuvaUtiGHSPWWg3aBq55fX/T/5hNdoDUB+gS4MYIZlxhN6lG5WD8Ar343Tz/kQz7kVnhp9wTKCYfGhtOvwGRsTX3StdUH2KYfgRFAgUAbYaG1GdAEZATc0QuG67LPNgyW7nhGdZD7F7iXANaVrR/0r2sBIctMJgCaNVoBxoBBfYj5Vt3oyYYTu+cI6B7DqIEx+/+yEMmynJUN0FhmvHs2zHvr0LhwyB1BcuBEDrxEaob0GHDQfa3dzb3mIzClsS4feUAIPRXiXT0w2+gLBwhmYP2XngNWetdI82J8AUoL1tOrZe4u83mZeelu9d40GwtO6kv9vWCcZ6yzYh0vy45VlwDp1rXaqAwA9+bBbM5sPlo5PTdPZr+BbMqqf4DcDoPUZmDyXi+tAcesNQZ4q10biq8f1AGYxxFE3/W9MQaeqwPwzG9pjRyyWdRPZbYW00n5TR0E6cDKdGkPuDwyY7vfGrEHcB0Bx6MzdJ071i5ryM7/1aujvi1DWF2SZYyuA8daZH+09Vywcf/e8HzPtW7uWtJ19mpYm/u+OLKXjTn94aC3tsmp7QBJYKPcyXRR+Qngkw4afwCj996OnbkhTcmup8v6tT5vVMaus1juwPjN1bupCjiWlEO2T7XHmq5d9EZZDiytHCkeOFbkl/aszbtrjtD7fYdvnmTz1/vfXKOHHKzq5ZrmufVDH2EOL1B+yimnnHLT5AR4TznllBsL8GbsZ5AxYoV7YejIk9iPgx02rC5po/riF7/4lgEQCwxYdMr7ypHBcycJVImNGkDaOD0M4DlDrnEufDu2aiDts571rEs9A1oCOAG8gad9n+GeAeNAtnQlkCTQt+/kDO36WKgBAgsE3Ys4vKlnVLfA3epDFzOSgMscF1g8GVIBYPLgYRJmzAWwvuAFL7j603/6T98ykrF2Kl8Yej+Ya80P7E8sJIZc/dNz5BFmHG54/QILzSd5/GIfA2ECspPKrR21ofpIubBsaYdc9X/9Kow0kI9ByOgFAACw+0zeVYwgofSB5oHaAIzN+bphq4x04AP2GAOXkbogMSCRgZxIJQDcPQJ1R0BkWZz6cxmbwBfAw4bXq596J8eUIguW7ZxekObI4CW+2xQmDHN9DSwCYCxomai7XJMLKpmv6thnsc3pTNfFQndAT7+bqw6Tkz+S4+TIjtQeJ7o3D5ZZXp2ajx0sKfQfeN499bFQ/T0MqDpjwpFNRbFh5JyRALbKWYBHP5lby2pdnVA+UKr/Meh2XLCa+87hcc13egXE8lxpYeg8lnzXA2Gxs6tj12P/yXOKYah+mwIFUObAPflCF3TdexLpWrT/qFP6GIjL2QtIXjB1dQGYVJ80xtVbruLeDRxmQKj6gq70dzrR2r3g9XXl+83RDMja8P116phbnF/L9N70DvpkGbQLnC3Qu06D/f44v5fxr2xzcp1ix7XAPuvIZrb21F/rLFCed9CCytqzB6KpF91qvOSMXtASGK48LFW6sXoktcKmhVB/TsZ+S9+xbbXGunaB8wXD9YG0WdIp6D/pJ8zHnVtykm95ItU2NRmwf529ctRvqpfKlTplHboOAgXIdm163Vq60THWJ6C0Ovh+mfbmrb6x9nD+7PvW/bvun3LKKafcNDkB3lNOOeXGSZu/QMNAomW7HYFHm0ZGLUMXmNL/H/zBH3wBy/odIPm6173u6h3veMetg4A2h+1NlwVe7iYZow61eliYGOot/3IGTsZGAFD1LCS7HwyunAcMl3e/+90XsKf7MpwCFxk46Yucx8Ig7zclRf31xje+8XJ/AG/A7DKB+7vnvOIVr7joPcDFYUUYP1IqMJKALZXZ+AW078nmGFBAFf3TPRnOGYeB1r7v+r5jUGICAWywBs3Lvtu8hAxModXJAkFdGzDNeK1f6+tN/yDH5OYPXWYhtiaRQ7M+xkQEsrgHu25B0WWbrtG5IArwC0hu7DHHGNCANP8vGwpYtsb+ln9MV+EzDGh9K/esXMhbb3VmmG95+9kCykfQ7AjkuE5/LasvATxvePky+zjVuq65FVN+WWmeWd81fsptrvY5517fp9+Y7HQbgzSnRGMPfOXIqHwpTKpfjoWcPuZ861d/V7bcuQAd+ndMp7H9AGTVPzsm1SudX8adOi8L3L3CtTelBcBlHQXAddcDNoFonrcsZukHAsaw7zD2PCsA06FigTNJ1zu4CgDnQD+h4QsmAtCWLaiPAFicM/RE/wKfrFc7jxYU2rBu6ShcuwzpBdzUVz9ynPU8+4Y+25D0UuD0N2AsfQIsGjNlm2vGhWODrmwuVPfVdw5Ow2QHfu78xFDe+bzP3Ta6z3U7J1e3yPGaIzPY752rtwOI9TkW7kY8AE93TVjAsN8cQIk+oBOb27sx2Lyt+tdatE40YOimUlmQcdfFdV7pw53XdGOv2X3PvlcArYDN1gLEBA5YLOD+5rAFsPd/PwBtZe44akd/Vz7Q+TjeyuFskT7BNaKwpPtaMHZ1bPvEHDBmHCfa5f1kzI9pMDaf/dHJcC9yfHc9k/Kw1OOUU055tOQEeE855ZQbJw7TadMY+LN5y44bK8CXnGE2+Zi9bUZjY8bElB8zpqGcp4W2Z9w+DADlo7RZzTiQsiBA5mHqv+oSGCR0EAP3d37ndy4h3YyxdIDR9tu//duXcG3tiMHKUOu+2F33C+oe6xRIEJBcvarfsbxYvb/4i7949fznP/8C8i5wwTBe0FEuPMZfv2PjdI9UB8socy/gZU8Y93vnELA1waKXh3PbxYBbg7D7sfwATUK4Eyy5ADcMoeqMHbRMIQCGvzcclEEq1yMWV3ophy/mpHQAXbtrChADq3BBoQ1F1UdCleX3lLuTo4mRrs76eQEUdV9w1/OTTR2xuaSljljAZUFpoMWCQQvK7j3+3+sWHFu2G8HqXibygkQLYmE/7zOPQHNjXvkBhzlk9GE/xjBnH6ACG7T/OSmaS/Jpd0+f58Cr79eB0fj3XvF98x1DGFhJ9wCiwJPVRwAp3ac7m+sZaKtcc7CfPRzN7yO7cMdrQSzAzLLqjH11rS8cLoV12jX9DYAxHwDN6or5WBn0EXNZSiTgGga1A5g2XQX9Va9dLxbcXUCq8gC36oL1K5R8Iwl6LrDa8xZsXX1d0JReeidwBvZd+wIOhfqq90N/Y5YCrhdg5PixZprv2rdt5zAUZbDr86YV2DE1Rkdwdduz5Vw3D5c1v4A8fdcOn7lvHVhb5oKkq6P0ms6oT30p2ioBZgIdd53ldPOu4FCsHEz8PSQMwI+R7f1ijVrdMLeVtYeJ6odjVMS+53b9tk4aU325B/0BmRNpk7z3rYutWfaltbn1SqqifefLxwzQxayV03idIJvWRySCMU7v2tuk2+ZXa2/Ot5xw69w7Og02UsTeWhqOBW2Xsb7grvv1zXFPf8opp5xyU+QEeE855ZQbJwy+GFdtAh2edATL+hHa7tRlxqPTz+XwzNBlBBeS6Z7KLX9sAN7782Cyh1HuF6TFvhPa+7BJRlAgROBGzD9hiISxk9F1BPkdsJRz4DowVp65+z0kJGApXas+R6k+AcDSEGScLdMNs9bhggAPoIfDk4AjAJsFoIARANWeUxsdmJQAVIBBiXDYBQWArQuELZiFgYWNuqeCL0iF9YZ5DDRxMAswFFsRy5ohvYyppNB+TD0sXqkpAEabm3XDbtc4BVAzSAEJwIL6TL/2GYeCZ1yX/5Jhe134c+L7BVGlDhDy674FeY35dQze47VHBtQCu9qv7tpNL46gLoB9mXNAHjmRhSbrF3W0PgM3gAYBDXtQD2Z241m/Nx/VQ37bWLiVCXBY4KrnYnbTK2CKvvNdz8Ao3LQcC0yaj0DjZWcvmETUFbNT32+/LjjiZ3XIc3ouwGzTPQAUq3d9Ujvqw5xw/d37T0qYTUmh7cbAnLPeAMyAuP1uDjtEa8cyAZYD87Yd2rmpUvwGtlkTgHu+x3blvJU2Rd8emYfHebLs0PqFo0QKmZ7X59aTAK8Y5L0zRBwskA3Yq14AXakiNjJg81TTF30GiAOIqu9ev3PsCPIuwHt03LieI0+dN/phnUu7Duwz9vfq2RFc3jJ9b1w5KbU/vdp0KtYbOi59Qf+vwwuz3z3GoPWl96G5sg4m9fE8wDWAmJPg6Jw01vrluF5uu+ma96n3bnpT33MkcyQAbNPj9Mu7X6SRdbx3eXXrPnnm/V95dNa+wPtMW7RdP4sASk855V2bQ7nfOdCUTZ+98/rhWLNWbw56TOt1bgDUlwltHIzFKaeccspNkxPgPeWUU26cAM/aFMZqbCMYy4Bx0mZYKHobXCzeBVv6jQ2BIdbmuM/kXG2jHEiDPVNY5k3ecD6O4WZHxuD9ypHBSBxedr8Ab3onHPI6ySgMlMlgxf5hoAOIEjkiq5+UBpunViqHBajWaMWMwqxiVC8ogUFUnfpM3t5lYC2TCyDH+GPYARbk5POZa9TDNQA67VowWb0D+boWoO3a2Jp9V/5kxibGJdCq51sXNtQakAwYWObaglkAKCCCsHFA9zKEt/7LdDoCrguKbLix/nRgTQJ0XjB3D6w6MmVvB/Duz5E5fQQHjmCPujLiV68w4pYhKj/sPm8BrMY2R0PgbszaIjewepddWB9UViB+zwqocACTHNaVhfXbOAeObHixd0mfO4htU6EYe+OnLUCiZboDr5fxB5xX7+q8gPUy/cybI9NTH9HR6ik9CXBW+oP6IOGU6N6co33eXOieAPB+6AdwJsHop2/WndUv9eh9ma47yNBc115lLrteeeb1Ajz6GOBJV81bYJM10Jq0gPKykD17dZU+u8c8co/9gnWzZ9bXOfhEDey8Tjgu3IfhrN0L5nLeAAPlz97+3f5e4BtTnBPr6GDZtUW/2ictsL7sy01RsM/V5+ogxcz243Hs9N+ejaCt0l9w4sj/6n6gONBd+9IxAD8Wee/DZazLo195HD+rF6uDm/dWv5pD6wBVf33h/l1DrVmchMbBu7Z6eY+1znhXpSP02Huod5U2t141X7G77Ve7tzKxbftJL72zu0b6CmPTmilfe88C/NJ3fXWcKz3TuHVd/zsQddOfrPPP3sIhb5u2YcF+820dLcd1717lqeznHrQ8LPU45ZRTHi05Ad5TTjnlxgkgK6O7zWuGqU144NgaoAwAB3H4/2iYtKFsEy28DSgTUIA14v9THg8BLPWTfjhgjWHr4LP0IiMxUITOZKh0fd8FPGWAAlQdMJchdJ2+YK3cLyM66Z7CyNPznl+9GbcOoepvoGu6Huu3e8yD2tf3DHIAJ4MY8FnbkgzNPo/FwwDMkKwOzYnKqn8C3foco7l51MFXQAMHq9SGysa6E8pZ2QGv+qXn9IzqzuB/6UtfemlX4/TWt771sgYwnjOAC6PeU84bC2BrdY2l+IEf+IG3cgEGlnfdG97whkvqi8atNggtPzKeNpfwsmu1V5j2MgsBC/XRgjxH5wKj+Mi6OwJp8ndiUFXmsl/1B7Bhc7ouaOr/lQWI1gjfNBv7vb/10YbVbj7SBT4XEFfPBdLVr/mGRc+ZF7jb9/LBAob7veBL87GxTheBPOrXONG/DXVf1i52NnAQUGk8llG97W7OAzgAhcvc9T9A5dinWHgrwM0FTjZsXJ5r5dJdc6i2YvPK6YnNnDNz00dIf8A5umkP6N22B0gpmgDzf/MVC6+Xc3MZ60A0zNh1kACTjs8FBJofezib0PMNO9eve/Caft3Qde0UHr9sVEzaXVtab9JHYLi6yfcM2OV80Qe1ic6vE0SUg3VjnVzqtzqB/ZoscK7O1zlM6C/wT3/53Drkf+vYOrs2ckL/LlN10xiYy6vzGxEB0HQImneo/vBuwqptTtdW72qH4nE+Vg6mrHZYJ5e1uuA3xizdkxPa//pAuoNlaBuLbaM+AvB6H5pDlZnzqO84Abq3dpgrrXWA0+YWcLcye99Xl9qPucu54P1j7msjJxKd6XmcwLW18qUNMkZ0wfzsmb1f15GwOeDtHwDv6wRuLFuDpb4wB8wDERD7/jjllFNOualyArynnHLKjRMb9Ta+QnYLa8dKlBcPA6RNJ5ZbYBRD4BhSzHBmyLcpLgdoZbaZDqwLbLKxP+XehHH9MEm6ETBbOo4/8Af+wMVwCfhLN/aQtT/yR/7I5ftnPetZF70Q/l9Ic2Bg+iGcUph/93V9enldX1RehmrA1d1kw8CJdBJ93hyoHT3z7W9/+y0jcBlc5QiuHHVyuFNhxrWlPsj4yqjMeMwQfNe73nX1whe+8GKoYSPL+ws8Nl/6PwMROMwIrY5YkF1buQ50wqSv3tUlA3VzWgI0lk0l3UpAcofQNU7SEwDAer6ct/Vx9RS623x+3vOed2t+V+9A8UDejFtAuZQimxt3Q++lqtgQ42UnMp4Z7QAmhrNDvTZkWH8uuzZZIxgYb12T+9MBVcew9v0NUFvH1jq4/L+6tgDkfr5ArWuOZR7BS/cdnW+Me+CsZzU33vnOd170srHhzOt/63hztr4UNtw4NxeED2McYjc2R+W8dcBfOoSJ2Q8G7QIXPT/d9C7pGRvCbT5pa98Zd+kf9A3d8IztwwUoXb+6A+zRPgelySe/7OLuDdht7mLT65/ua/2S9mIZ/vKk9r7bebBgnfVzx1WaCIxlgJ1rpTty/aY88fcC5EBDKU3MhY3CWcfDRh8swLjpXXy2zhLlymHaenS7PcECpp6XDtaH7QswzXtm4y/qQL/s/Xtg2rLARRsYm50T+y7YlBPG+8h2PM5/Za1zwj3Y37seAaSxbLesBfE4ZjyT7i7jeNcGdQFm9lP5HAN0vmfUnw7ItFbQBwB435tP1hL/L/i/oO/OKzonOuI6AoB3mM+27detoZwkosDkAE/PrPve081RecWlqOhd1G99IDd4+uldyBm9wDAnir0wR079txEr1l9Olv52rkDPdsggx4UIgV2nALWA3WNamiOorh8dSsoRaf3xvH13HZ1dp5xyyik3Qc6V75RTTrlx0oY2YSS0wZcjVW7S3WwKRRPmt0yo68JMbeQrO3Zwm+kM/ACu97znPZdnnXJ3qR8DZP6v/+v/uhxS9rCEqwFoA2eBtNXxOc95zkW3hHdmeMVAjeWWcQT87P6Aktim3Vc7fYdN2OcOhdp2B7IEGsdOvNvhfcLN02GOiWM6gp4b4JlkoAVWrmGe/goDrbwP+qAPunrta197C2Do3q7vuurEYOsZHThXf1Tn2paR2XXLUGteBYxvuHWGKCAX8Cu/J5Zc/aftPUOIOoNPmDcwVdtLk+KAOIcgrcG9B8t0Tww7hq1Q4H5+67d+6zLOzec/+Sf/5GWMsbQAMhuWu2AURrDrNr2B+wCKC7gxiOngAlvYi8cf4BlACQABPKrvsBmBQ2sgL0t2wRfgzn4OqDkCu8tk3h/3LFi293uW/xn66rVzY9fi+jBdBCQAKHJOBJJgcLYmNy/qg+ZJ+phDwffNQble5dU1Zp6TLgHd+6x1IamsdF1d/sf/+B8XnU2H+hwgLRWB9wVd2fETdk6AVj0DoIvBeuz//sa4BeYKT5dXtO8qr77ZVBStXxwtQuC9+4BIzQFsUew/gFrS9diMq+fLgq3vu6++tDYAhen1MnePLPBlA2MUWuMw/Txr86Fu6oAFnQCV+tN42xNsHRY0xq5XJqCQY0ZdgYfmnTVHeceQdf3luQ7Asm4tMI1Jvvqi7zlE/O/Axp3LADH9s/PbM8xJjqtj+gZrnLVHbnOAoHb6LAHe03tl7/PWkbVsUzoNRDe3ep9ZL0m6IX909/nNQcMJop6b93vBTXNOmghAJx2xPi1ovmvWRkj4bscrfendA2Tm4GyONr9qb/UEgiq3NUZ5vTP1Q46E2u06DglpMprj8vMCUPuxV8YipqdY0P04T8DBhPUJ5/Myc+ml8u111olvLcGCBuTSefrP4eqdrd+kMlqm8f3KOkifaXlY6nHKKac8WnICvKeccsqNE+yeDYHOmMfYY2jb7AqVtcHv/sCqfreh7O82oTEr5Stc5kn3t/l1uNUp9yb1IUblwyTpSGzsDLB+O0G+kP8AP+kLMrb6LoPjLW95ywVcxNYLGA1I6btSIPz+7//+BQhy2NjtNvgZYjETj0b8dSI8+lhG/wd29dxYuDFzY/ZUbrqcCN0H4nRPxtxLXvKSC6O3+zPiMhqTjLj0vzZkFNa+AF6GZZ9lJPaTNOcCupoTtddBKwDS+qq59tznPvdyPeYgqf0AOifQA2Hk6Wucfv3Xf/1Sh0B4xiwGcWOzoeCb/3KZfV0LhMaICtivPgHeACWsJwcPAUwY/ECRZcZtyK4ysJmASMssBgr1P2M7WTD1yIoDLAAgrGMOIwJAYUItoOv/Zc8tSLEMW4CYunjuphQBwByZvsCvI7hrTLApF3gCsmydmpOxx/dwr67v8/S469KH2p6uy6Vb+elzzO4P/uAPvsVik/vVAX5CuuXixXhP6G5zIGde75TmQM/tHqH4DuxcIIxDRSoHgDX2I6cEUIR+V2/AqPlzTIuBDdsz5aP2bqvPagdwkpNJHejcsoK9M+lW9Wktq//oFOC2/qrfjK8xxUwFUnPGYPlxfPQ93VzG+hHkpQPmoEgA9VyGNzBaPaUMADbS2QUkzV1lrTNpc5Dq7w01BwI6XM716t3zjSmA2737bO1Xj031Ya6aG8ZvUyB4HqYwtubO4SMQv/VUF/XwvT7xNxaysPwF080TaxrAz7hspEH/Axqtu8aGk3zzL1tnOF440qwdxgpDNL1MX6UWMJ+woRfYBdT6jLOHM5I+bPqBTTmxuke0jR5iA7dWccD2nPaUdK61pfr2mTnRtc1t87v7m48OOrMvXca2fLbpSc/o3d7eQp2VbX3Vvz7LoZnOmrfAZkzf1jyRL9IuSZdyBHs905rrHXV0YG4fH+en+m1+fvp9yimnnHLT5Fz5TjnllBsnbZA3LyfDE1uLAQy0auOcMbBhtN0rDLWN5h50wbDo2u5b8GlPtD7l7pJRENj3sDEZMB7LL+uwkA7m6391zfjBzuq7PfwsAycDq+8Cgd773vc+gW10naRXGXn3U8/rpGf1zNjAsYwZjdhW9BgDOB3uu4DbD//wD7+Aw9U9/U60EzO065oftS1WI2MSKBFgm/H1pje96QKGcYzIk4jhWpmBzD0HWF05pVTpb+xEgIZ8ivVR4Hu/sZoAYAFRCxCaqwxLRmzCmBTaCxDetmDGLuMVeywQG1Bo/BakZMDuoW/LtAMQabv6bX5W9VxwdhmSAGP5i4FQCwIt4+k69u6ygje8fp+lHkfG7rJ0tX2Zjsf8wUcW74KVO15bhnJ/93d/99Jf9Q/mm7ymWLVAkT53mF46iDGfrmKT5ZwA/jbPu6ff0n8saI0J2/89a/VOm9bpAmTdg4k2f+tRBxco0if937qCRby5XvcenwNuWpvkIQakyqnZHJK+Y9nKygMqAqetJ0nA2rKFMemlC6CvyutZnBf0omebn4BY/avddM86oY3VqbGi21jwgC39aiySDdk3v9cxRr+OKQi0k45uSg9AuDJFPGC8mhOblmWfaT66fsPyj+s6XVqAl6PaOrVzmGOBc8d7ah0vx3lvrh3/pt+bLoK+Ay73OkDlArf0mNBv76AFfjk0pFJoLtIXkSqchRtp5X5zuzLS+Rw8dGP7c/M2rxNO6oSe57kA5GVBr3PNGnFk7nqn+q5ye2cByKVzkiIkfWq+VGf70+rTZ+qXg6o+aJ1r7VoGMKcgvaxvWjvau0j9ACzetdahdA5qw67t8/rRGMq5vQ4jjjCAdfsJ9cbO3fctEoT5qwzz1md0fVON0F16JyXSKaeccspNkxPgPeWUU26cYBEI97a5bqPJIGT0tqGVP6yNM+PSQU3YRV1fDtI25ViamHFYGnIYOgDjlHuTh6WvjqfTJ4zFjCZ5U7fenADyURJ5meXYux+W8pMFu4/1D9AKKA2UzshzUEq6HPCV8RxYQodj+NamwNvSSwB4sI5qBzZTei7Xr9O8Y71m0Abg1t7ajtkoRyKQRCi9kPll1WIrSq+yqQzkPzZPX/SiF12eW9vM8YzT2g5gEPq5jp3EZ927TEBGPNAJcxMTs+uxOzGZumfrDfjxO5FHEAizICvQYQ++OTJpjywz4MqymrH7AO7qvODwgsXL3KN7DOkFMXy3QNiyLI/gbQJsBIgA3qzJ7l3momdteYm8wgG1gRzqXH8ZA30A3Gs8cvQBOBxohd1cvwApAY7mkDEAjEgxwEmYfuWYwAzFcOu61n/XAmaAJutgWTB0+3vXgHXG9HdzSl2Bg1hy9F+dAdLVTaqF5jxWvX6trt5h6tNnUi8sKx3QA6iR57r5ICeosGpgm7E65vg0vste1Q/08HgImnWkNSaQa8O6N2fupkEh+uy4xpv3y2JeUHNZreq7uglk1Vb9Yf1ZEHcPOPSZcoCLGIraAfj1DIAopxMQjpjfxkL5+hLzedehdbJwPAHSdn67dueveb1gm+usgUSbty173oF3bbJ5iOtPdeU8sK72jrHOSmFhP2bMrOt72NuCz9psfVNW/x+dbdqxzqcVui7CANDZXOT06b1b+6pja0lOUk6Xo/MjsY+of4pW6f25ETb2H96fldO7tTlYffqeQ0Tfb0RKdZKuSS58gDF2teicyqjPOZxE3kjJ5D2o3/V17dIHnLVY7/s+AY7r/41YcJ05t1Eu9yMPG6HglFNOOeV+5AR4TznllBsnbTCx4hiHDh1KGGdtIJ2O7GRlucu6xibTZruNLbYCI4VB5ICLgLHAsGV6nvJgZUGkBwUOpxsZTgGiDMwESwSD5yiMxON3y8JjlDyd+lD5GYkZgf0k6WntiTUUi1dItTytgAMGWXobcBKr/cM+7MNugWJAjYzK5gADuLJ6VtdkQMZiro3VI2CNgWYuALw4Xvq/lBfAi2UpYhUtaypwijGOKQTgrC59Bthk0DI+GZJCxpWdAMQ4ehaUkR+VoQzw6NqMawBcxnb3MtLlNgTOYbQtwLoMJgAJHQG+LNBH15fdKeUDgKT21a/GF9C1z970CUeweAEd9Vim7X7nfnXd743Zsm/NhWXFLXsOgLNhtwAgIMuCf8CtfgJbOSSkBKHX6WMpR3p2KUvob4AFcNN4pGPS8/SMnB3pbwL0wUCn+/K6e+4CecYPUxhQC+g/hocvuM5pAAz0eWPeszHfFjTXJ8KpgUt97jBE/WocHMqEsSgHMDAqAdoK2QYO0Str3BEU3XyZrtuDFPXP5l7FpNTu+n0PdFpG6lE3AfsOTd05o0/1Jd1SzjpVjo4IYweAVSfzw1jvuwCjGggNnFwnsmebo/oa29L+w2GUIg0Af9isRPuWodr19izLuLU+yWtMl3Zt3PlsLVVf9fQ8+6RlbO6aue/ATa+g3uaMMbGG0kfzb9cZbFApFYwDJurxuUBx3+2Yb5RBz7SvW6fggt70VBs9m+PQPE9EqLivvSL9C1ilu5xM+kFKBvtOzN2e2brGQeMMAAerAZZ7Z6c7Uq1wBjkwUV/Jid3aZ6/DIeYAy+6V8oIeiAqoDM4yuYHtseUxxzb2Pq2+u27pQ2u3zzlbRW3s3D1Top1yyik3UU6A95RTTrlx0iYXk0046x4uAnjA9LL5bjNpwyrcT+687mmjigGFSZUAVsrJWE7Ryn79619/Cxg45c4CFLgbWIuB0hjI/9bhRphTZEN270XSkwDQ5z3veZf/A0UZbjFVGVVYq4zXjI0MtQyVfjBZE+Hi0jtk9AQoLbj2ICVdDZjNmKObwNUOVqvegVW1ozo5eBCYuQeZMJaT2IhJeUuxgzLA0nWsKoekda/cgAzDZW3uqe+etYb9Hl62BwQtEwjra0NH+0zovFQQGb99honYdcYHKGEt2LymSc9dViRAp3vkQWSsYyLV7xueDdzeMORNiQBkVBeMpAV4fWcsFtC6zoEgZBu46/kATA4pgMTWd8HIoywA7PlHlq+xcO3xngXYju1YkJjsvbUHYFV+Xfk5sW2BAAAm7Pna3ry0xqdTjVMOj5jAQEwOA/2WDqW76YV0DYU6B+IHmAiZLj1I32/OS6CGdgFBsdKAOQCc7atjfyRAQUAfYAM7c0F8YJ+xlK8SY7m/rV3rOOAoALo6gE2/1hdy79YH2x4h4ULR16Hgf45UAG7l0Qeh+Mvgda9rure1k94Ae5bxm2AdVib2MQfVMuO1fZ12gD76uTqur835vne4GzCz8lvz5aTlRNo8z3ST3lp3rHvaC9wFygLJOY/6LW80wP86oJLQNfq0a4O8qdYC+rdr9PHHOqxfNg+5spedTHfJgsNJ44t93vXrSKyc5ns60xzdqID6u2sWDKwcbNh0tXKk3jk6IRbI5rD33tHP25Z14q6TwHOPqRuKNOBU5GixRgTathZUv9pXH0hrtP0oBUqf54Bep473Q/+3x6D/zY3mC2azMTLHqoc84d7TfdffzXtzo7JbLyvXGRPq1efGtT1F7ZCnW19iMq+Tpf5oDde3m8LBe7y6A7e9BwHQDnWVV/06p/spp5xyyuMuJ8B7yimn3DhhcAnHtfG2ORXeiH1ko9j/No5tVhlY3Se81qbTye1YOJiRfR6Q1sb1DW94wyX87pTbS30WuFp/ZRDdDgAVQtjhHxlwGTTux7rt7wyAvmtMAmAyFrC0byfdEzhavtruCxTKqO7vjK4P+IAPuHzfgVuYf+lFz+kAs+ofAMTI6Zrq2MFdGWUYqwGMDmW7Lkz4yUq6Xd/0rIytACws3p4VK8dhLn2PsQNc4dAAxsSq3QNUAAsMy4y4ys8YrK/KwyuHHxDDPfWL+YXdiPljfjEctaWfgHtzE+sPmAwg2FyGDtgpnzOgIhBPzsM+MxcbUyypNfC1EZCzbEEGK8AmnaneAKXAB2Hq1adn1dfXgSMYavoTWwygsXkHd92yjjGKl9m6/zOGF9xdYGND4+nhAq7HOu93y1T0XGOabEj4dWDPsu+2bGvxpsgAdCxYlV49+9nPvuhVY2PMgAUYd5XR+DdHAyMAc/Ktv+51r7uMT2sOQLP5GvhQHfuucWxONxd6nlPfpXQApgPc/AZoBOL0PT1o7juQc/PObiSIvlnwRh/3w0myYdZYvv2PuXrUOfOFHFmV3n07tgv8A2aT+sN4LdC6gBn2omcCkAHMgHtg6h5MRjf7G7ipDebj6tM6UhxuR+/ok/mgr5c5vWA3XVrA3SFpQDysTGVj7AO9raub9kGkhDlp7KXDsNYCulxTfb3bODit693bmrvOoB1bzgHrxtFpRE+V7Vr9sukYNqWL/PLWqnUc7PppPds1QL8e+4WjsX4GyGqnftef6qgu9DBdkxcbi9tY0pc9I2GBfCC7tXwB8WNkhf6wLmEje07leO9Vn41ekBKh93XPaf2xt7G/7Mfhhb1rMX5rj34w3xMHFUrH0v6Ew4njYHN0y6FbuZUP7DXP7ZekJ0vHpB2pDPO4OvT+797GqXcex4Z57GwLh662zlpHzSNrmX5TNjCbrnCsWCcwjO9Xdn4/0/Kw1OOUU055tOQEeE855ZQbJxtGvsbcGrtYGphz2AibR657bWqFpzEGhKliR8gnFqiArdHz3vjGN14M/VOeKPV3gEqATYZAm3unyROgWozRAMx+Y80C4DBSsX8CgRurgN8Avw4b27QLRwGMZTB0L2OxcQ2cKay7cX3Oc55zGefATaGNfReY+/znP/9SL6fUV4++w/xNTzLEMr66HyvNIWbEYVkYXPci3ZNToZ/0U87NpP89E0tnmTgJNhiAKAEeAZUY0cCLdBpQXLvlpq6f6seeISfphnJjDwU6177AcQCY563TZUFPAN4y57DzlsGJTScUHODAKYBVzFA+HrgEjOLYAVBsbsakMrHwAAE9s76u7bVzdb0fACxwbUGoIzuXoZxo3zJglUOHsS8x646sXcD4hhIvCLt1WPbirp3LOAW0LNvvyNLF9DuWsfdjPB/Zg0eGsvutxZvf1RgvGNOcB6IkgNVlDG7e2re97W2XOds9mIEYaun6AhLmHXZx5QTgYow2H3xW27D1OHtWZ6UTObKfgRw937ro3WNd1NZl/+m3Hdcjm/o6YHl1ACCeLre+iWzBxA8Y2sPqjCeHQevkOheMjzQanK/rKFBP9/U8qSOEegOmzEvryjJipRzYfcAC3ss2PzJ4tx+MJaeO9YUOci5IcQFA1C/KA6phMzqsUsQQ4BaYvXsXjF+ArT3JHqKn7/y4bqMIdr3TZ57L2W1d9GMNwTTfaARrkTXIeuywrXUGYR+vHppznOTL0udQw7x3WNk6o6ThoTsOWez7dLb5Zq4tc9ecWmcToNjYWD+t+cScWSeWdRIg3LvWAb+9C7tHujBpEtq79H/7EwDp6mP6U9/koK7tlaN/6HJtl2vdO56OdG9rhvHqc2kVFizvOykdqscxj7w9Uc/Sh86fkIvee9YhxCIndo/d/gygvcxxKU6Atu0p5A82xvp/9ca6sHuYU0455ZSbJCfAe8opp9w4sVneHJALajBuHJ7EcGCErEGFTSLcnFGVADIY222q28RmNGE5tBH9tV/7tfcBe075P1I/lj5gD9A5Sn2cARBQGxtTyCUwCyOWAdV4dOhWbLyA3dildwJ3kwypX/zFX7z6/d///Vv5/oAIgRuxdBvL6vDud7/7YsABEgNWYv4qJ0MHMNt3lfGbv/mbt+pHB5cltCIP7f1Idalu1fVNb3rTpR7bf7/7u797YZMHcMayAdRs6H6iPtW5XNIxjjFnOS3klMTArfwMPaHw2EdYR+YNEMF8y+ADlArrXEYVkMN9gBTXVEdMwu6VmqE6VYf0omsyjmuzw6CwoBjL6Ueg/jp3MObUe+f5rh/AIe0C5lSXAP4+A+BUPjb0ApbCb5cV5v9lGG4+SakY1IEx7nNG9IbjX5eCYYHZxHMBQvv8Y5uX6bjpGgB99HLLASy6ZkPyF5QEKC1QfAQiAb/VtTFsri2TUGoNzDAASeOPtQvI6fvu79pSkvQjxQoAOD1KhxZgkrc0AWoA9jeFj7HwfgHi7btmAWx9CTQTmSC/dm3I0aXu1bXvMeaWHbqg6z5DH6qjvl+AXaoWzhvjBuhyiBPRfkAzEGbHyxq9KUm2TM/l4FB/IGBl5shadij2PlCz/pCWZZmjGOHHtWYZ5kAx8x7IhGXLKUx/AdGieOic5/S9tDbG0jrrvcShpL98tszeBbqxe+V5Xcaz+bWOHdcDd81f+iDlzB5Ypf/1kXuAcdbk1TXz7OjI0aaNTJArWl8vaGj9F5mxLH7tUC+Otd6niVQH3s/W7QVQpQQyf40J8Frb1sG4OYWPqU6sb60PvTO7p/mZ5LT23uEABNJX5+P6pkxsWHnzrR1Y7epvDTCvRA0ArUWkrZ4aC+tZa1tzCuu4e3p/YjNzjDbfgbN93jvOGFZu91h/REV0r3bqx+rlPjpffdoHOC/Du7h7umZTdmwqjPvdK61ePgzysNTjlFNOebTkBHhPOeWUGyfLEPL/sneTY8jwEVxagHjZPW1+hZ/amCZtehlkWBLC+wMmC3u/15ywN0nqy5gsDNTbyRqR5AiKJBkQlddYBHQyxO4mGRGBtwuEYazIxVm5gcbLus0QyzDqWgaQdgReB7zIGUqc8N3v7nkQm3xpAZx0vVKdMjwDgRnZGLYMQcAgozdnBWChegZ+99mmdpCqItApna+8jD7pKALe5IdsLgDiM9Y2TBn4hdUjbUeCucsQXybUAoy13dzzjOoQWMfYxEAG4DaOwkWNNwZZ0vXKAkD0jNrISAd+AX44IHzfOC8bbAFPAA+2nDowXjc8dQGHZS5JHcOoBjrpFwC+/3eeAZSNgfuTZTwusEyWxeZ34hrlLcOX6OcN3961ms4uMLOsXkBHfd/9RQFgTSpv2XlJ85CzSNnSFjRGUmWokwgNdXWIUCBEzozqC6zH4DQOnBzNbbrT382BTeMAtDzWVXu9e+gZFr15Cxg/si83vN04JN5jxn9D8HdslO3/5mRzvN/NO4c2mZMLUJlPC8JtihU6AoSkI8BETiSA+aZSArxhvx4B64Tjb5+hv82dBWe11VxvThpXcx+709qwTHO5WrFtF1AUPSDNAoZv1zjM1V5Dbnf6YA7Sde3iKKYD67wxt9VDP24Ugn5cndCXOwetDdYOc08fL8BbOzA4yYKVR50D/mOX0gFAYJ872OtYR2vepgjZ9YjjkAP/qNtdl4MWi3oPDAOY09l1gm5qCOVvxIMUBX0mRRTAVLlY+LWtenA2Kscc77vWK3mwjTWAuP5exq31VroKjGblG295jJcBvOms+lz0T99ZFzGlE7l9W3Oxr7VpWeyi2aqDuYLwUPmV4/72Fd5vxmXXEICv+UZfqnfv4lNOOeWUmyYnwHvKKafcOHE6724SF6hNbLrXqF4DmNGtHOFownyTNqsZGzbdbVgdWtL9bdDL3RqbNGDgTNVwvRwPSbtXuR0w2jgE7N0JML5OjgB85Tv0I+NMaoXjPcuYXUlvjuBuImwxXfpf/+t/3ZVhfC+SUS/33lFqR2Dnb//2b18MOoBV16aXcsACTGrT29/+9lthyhnN9QMAs/nV/In5Wp/80A/90OW6l73sZReD681vfvOl/7GKSq0Ru7j2BpJvPkeMIKBHP13XnBHuCZTA4JN7EmhT/YB2cilmNP7CL/zChT1fmz/90z/9wrQGZjPW93Ct5mf1Vr8AuUL2MdwwRo2tsPVEKKt8gtaAIwhGJwGN1QMLCRsMkJIsQAp4WnCs8VB/zNdkw7U3fNtzXHddCOxeuyHby9QFfAI8ABGeveH3x7Lo2fGZQBV1xihcwAvQBgxpLBun5mAAC0BV6DAQo/krLLz6psMADWAsBx2QTc5cYdCBGl2HgWo8ADHqlY71TEAj9pxDyZp7gOV0juNk1zMAoYgAzwI2YiFWp/qzui4r2dhiIC+L0m9j5MDCHbNl/QJJHeC0QK31xjuz/jWfsfWlZTEnOOuUYVylNzGPjYOICNEC9dUecqiOy9Rdh4Z5to6CZbti0tNpzwXG2xdsCgEMYfMRAxaQ5cfaVXsDxjb9gPQLGJg7D+kLJrHDHTFij6ktNg8sUN7+xLoDmNw1xfXrjFnHi++sq3TMIYScoBiXywQ/zvtloAJ3zSN9WR2bx8Zjo1yWAQwwpxPAWn3OEa+NHAbrINPPqwcY5XTQPFIPY0AA+wD63ku1Zw8PNDbYyHLgSjeyOfCNbWsCXeOM0h+tN+ugqNzWie4BfutX+lMd5dmtPGtifS2yJBavudbzHEJpbXfOQOzk5mlrjrQz7SNqr5zlrcnYw9bz6tV9Dm6TSoWzzryuXoBcaZv6vvKMuXQp1zm0TznllFMedzkB3lNOOeXGCVYMY2aBAUZFYnOfLMNlgRYGAQOFYQ4QkhcUYMNAbTPtwLVYvG2k2zA/CDDvlLvL/YK7t5N1AGyo6JMVxpvQxQzCB6ET6bfcwNdJxlmpGpKenbGEKYWVu6wyRnD1zaB7wQtecAuw6V56HXAcwBor6rd+67euXvSiF10MUMZnkuEXmzlAuJ9Y0MuKX8CBMRhjuM97Tv3F8BPSyWGzrLQFD/sdSIx1K+QUc9pzGP39ri0ZqgxywIO2SLMg/crmpBQmrl3yv/as6g0s8iyA8YamJwsEL9i7OT+VI+wXwIuNuP1yDEc9OjG0U52Xrbf9iRW4jjJ9o37W0NWfZcRp1zEFhXzPnrXAzJHdamwbR+zoxqND+eprB/1hh/U7nQPctwYDCgCBgRHpm1QK2G7S87S2F4WRk6L/Ayh6jvnj9Pl0HGgM8MO8W+AtJ0f9ETjb53JQ79oiryWgsWcARoA2+hnTXg5gbNQNIzc/FshK9mAthwQqGyi2oGy/9/l9RgfNCbpNh4DrgKf0VsoUOtg40T/gKGa0zyoT0GmeWK/MHaxOwLL6E21ftreUPPSCbpurGITaXB02XUx1kKfcWqRdIgZW7/UTkBsozkEiVJ2zwRphzdqUBsvSlxojcbjVHhamTvrjuvV31wxtP+6H7KGwba0J6yzavde+S9IFa+462PcdRsc5xujCvoPNKfmy+70s/2Vnr4PIGNjL0S/1oNv6U7t2Xdr1KD2m89IZAOcdRrcMcPm/W0swac1xh5W1luz6pz/XGbJOnPaWHB+tEcgI1dchbVKiyLdbPfrOGtc73JqzqV0252/X1J4ic6wT0tFIrdCa5lC2dQoC9jlygLtdU53Nhdrjfu87jjzOsb43b5/MPu/4Tnwm5WGpxymnnPJoyQnwnnLKKTdOGAEMLYANNgFAa0OUl7UmDJTxxJCxQc4gL/yM4W8zy5ADhgAiurY8rm2eAyLuxFhVt3Pj93BIRkgGBVZKv59sWoV0JOMqVmg/ld3/OQoeBCANqLhO5BfNSJN+gZGO5bZhsEIgA41iwf7O7/zO5b7q+0Ef9EEX4BUb+CM/8iOv3vKWt1yMc8DsGv3ApgDUQOHAZofCOJANwNQzMhIzWuWmZCADC/YwsWRZcJvf8qM/+qMvrGLhqtWnsXNADwCH4Q8sAAwBfKR22HQBfV/7Kw/IB2DCgmI875qw7MIj8IRF6X+ABiYokKm/GceuVa41CuvyyNpdANznm5dzQ4ZXl7BprV0AqB3rBYLUR7uOddh1d4HNBeqPwP8yMAEW/V9/p4/ATUy3xv1d73rXJSd3YyVNDv0BTskTnQ5h/wHXgPHqzzmAbdo87jnCsdNf/d61GHIYqcA9rNneC0eW4jJeE6kjOIK2L8yx9EFKBnqzTMwNL9/UDuu0OjoG1gEicoXDot+Y/w5jEnbvfbnOAroZiLW5Zr1j/fZcnzlQDojX94DoTb8ADDR/vN/du2zyZbpiXLcu1q7Gb8Pn6ZS2+HydyP04XHP3ElIzWB825QadAgZuahNzxloHbMRqXdBMH+w82Tb1uf0PJu6uAfULsHTXps1DnABVt37me886Mvb3PdK1dMMhbED29ArLvD6Uoxb4b/z9Bq6L5uidJ/+uftfG+qEypWdRJ44xKQMS4wNEp8MYtPpaX+jXZdG2NwC6mxe9P/sfCaDvHb6WUzSRZqBnVlfPWAawtd97wzuIg9Z61v0OOLSvqH+849Pn+qx6YfKak1IxbBomel+de6Z0WpUjF3DSOthY1rf6S7oV5xoYQ23zrk0wsKXpEAUgnZWDYTnVzA9g+CmnnHLKTZIT4D3llFNunCwzV441hz/43uZ12SqAgTVu1/BZY7jfgV1tNmNC+BwwDJRqYx9gtWHHMRivC93v3mc/+9kXIMzm/3EXBiZQ7GGS6pXhUpqNxlBIfiBmgM6RDXk7STcyfGLtxCYM5Ax0Sp/6v0OfAovupa8YxJuLmGCr3k42TzSwZhmSm9t1w4+BTTkzArlrS/WuP/rJSMSyDdDqmgWgAFOMtow4LNhk2VOMXKBV90o9sSACvQEkAbX6vPsqq3lZXfufgRwQ2LM3FyuQcIFXY7ug7jJ/sLVqd+kBrA3KdMCM0NnaIVfxEcwH/GDiLjCFGbVOK4BZok+ACgC8rf8+b9e8BQv6HyCN/Qo0W/2yRrp3oxv8vTq45QPi3Lv1WuDKfVvWcVyAn/I3Nz+BBf3fnP293/u9WwCIMaEfy1R3EB62Yn2gH4TsYxACaxtXYc+9B1oT+huIDygUtbGAGqZedejZDggEMgN/l2HYM9I5fbJ9JTRaaLgUAt277EGOS/1k/i0zU1/TFQBW5QGC6CyArvoD+cxz4NcCgUBK4FHXAd+sZ/QEuG68OYGWHS7FgVB2DooF5fd9vWsS9j2nUvc1X4HVdGZZt90rb7c0DgtCY34DVNMRKT0Acj7HfPaZPuJg6HnGcMFSOmRPAggHlhmfdH1Bwb12HSXKpAscENZb12yfcnIAUdWV7ux6mehnenXdmur9Z33pd22h7+lX75Vtp/pw3nWNCIzGp//Tzcpy6KKD8OjARkmou++3n5ZtbCzllQYi60OOFgzTyq99AEwOoZ7fe3T7Y5ninG1A3mX0JvX9suWBw33fs70jd+yqQ8Cv6BjpaTBiRfYAWjk6+z4HsXefeVzfFynT+qTNgF1jInWRtdRaYa4HcHv3WQuwmiuXnnF0aEdyr3uwU0455ZTHSU6A95RTTrlxwvhLGEJrFDGkGBg2o1gdDDJg7zLe+ixwlgHSJrQNL0PnyODtsKj+jvVY+Hqb6de+9rVXP/ADP/AEJi/Gwh6O8ThLG/uAzlIA1CdPNhfv0yGNXeOa8Z+RmPEUQJsBw9jKSLsb8xaQmqGS0V2bKxfTBePmXgDeGFnPfe5zLwZS+XSP+ee2LpuLc7+vzrFwqo/QUgAR8AOrjOEJUBFaHYibHpeSIYZkEjjCuD4a8Jwl/fRshiXg13WbagCwCfRNzOF+C9OUmxcorA2YtxjCgEXsyT0cyYFzwt2BWoAWzwR8dG/Pc/gVILb+SbSZIQtkwXo0FtYbBj3AWlsdVrMAEUDX+rSOKkxpbK3VZcDxEUQFSit/81Qu0IftaiwWbPfdps1YNq8yNpSebNi0fllQTplAmwWTXWvNFdpNl1pXsNYKKxZRAUhtfIWyN3aYj8aeI3D1LyA55xvAqp/WBfNJO0rX0Hzv8+Zc5WGG7oFBgMueDRjFRk/Hm/PNte3z2rOgcULX1+EhnQhQ0Dhry96feD/qUwAMoHMP+cK6xP40vvRvUz/QowUz9z3sHv3JEWQNsRYc69w9raWrp3RBvmO6Qp88jxMDcCu//q5Bu24BoL2bfaY+5q41ovF0GB1WeT/dA+De/QjdB8BjDXOquGbnO5B164Ohfh2IaT3aXN36RvkOLgSaHlnJlYu5aQ+0a/g6D/UfXZHDV1+Yh9okokQExTJqew83H3pPem/UtpilXdc8DoBUjr5ywJyUAHSCHgCru6d9Xb+BinTK81Yv0lFOeE7XY15241g9qj9Gv4PKemcC8K0D+kg/eV8cyQUOE8WcxwLuvvoIy9Y7Hru3scPurj+qD/a0+x1YKZd4dcoJbU2y3lRG6yn9y9EpFRJGsVQ3G8WxTspNw0AH64vqUJ8lnNLeB/3GjH4ye+R11D7T8rDU45RTTnm05AR4TznllBsnjKyEUcWQOjLtjmwxhjEDq83zGqZCf/u+jfRupuUYE/6akdTBThtGJjTvVa961RPq3bPe9ra33RU0fFwEM60++pVf+ZWHCuAF4Eq70bg7qKyD0Rgdd5J0LQOochrbjKTCxGMXpgN9V17cez18Twgl1ttRlmV0HbOl76tDTFy57CqLsQfMkCNPvt3q/rznPe/yf/UNvOqn9gViNAeaD//zf/7PS1n1U4bjc57znAuYu7kj67f6o2d0bays+kJewq6T048hXBlAi4zIyugeAEcsKIdrbWoIhiUgs2vq68avsio33QOgAPaWpWqcF4zCGt11BZABIHJgnHuAawAM4DLQCWMRUCYM+RhOnQCUAA7AEiDDkSm34A/dPqZNUO4CTvs9RuNeeyxrQ7wX4N0QcvXaa7YN5s0CvfuMrYO6Be40TguwJ+lT7c4JoQ761PhhwDk1noODA4b+6OvamM6mm4EM6WEgyAd/8Adf5gRgH0gDjOUQUA8On57rVHlsQKBz86N6dG+pfeiIFAfVszoAJgHHmIXCoLfPgW5HwMiBdHRk88gaW2ARgAngAmzy97LPK5NTTAQLtvymBrD2r4OAHmy+ayxmZS1gbR5qP0DSfNEuqTiS+rfxA7z7vHsCDHueEHh5XjmAzEnA9jp49bF1W3oE/aBd1oB1jpiHmMHqtGkcRGusM8m+RFmiBexl1gG2un3cN4lCokObuid94+TatDjqro70SDuNxeY+7tn1O/AVa33nP92uXMxn6wxnTe8T+ecdilg5WKhAxr6v/kBu6X+qg3QPOYXW0bEpGxZYz5nZ5w4Z8+zukXMaM1WfOKi1ejuUszJaB7q/9u3e00Fy6zA1/vacDmyjgxjk2PLroOn+nl8bvXc9x9yqPu5rXvRbGjJRAtV3HS5dU1m999dpKDJiU43ICbw6A2AXEbMpW+x57E92DOpPeatPOeWUU26SnADvKaeccuNkDWmG44YPL5PJd4wmrCkshs3TxmCTny0DISCra9owL7uNYbX5FW3iM9avA+AeJmbB+0P0rX7PwHrYJOPHAWGBgxn9jI67SW3KaMkATYSiOqTEwUz3ykKpr3o+w+4oq9N3EiCqk7wDnNNfgFdl9yNEvfou2ygjuZ8Y6Zg+AceFxDeGsdZrV6BwKUc4Prq2PhGeHpu3tmPjuq6fADB5X4W6An3lGl4WLIcNgxGQwSgNJOvzd7/73bfuL/0GRp6QVmDKgpIAF4AHdn2GOhDXWqM/rA/YSlhzQGhG94IH2NTAQc9ecFcdFvj1XOCJz9UZAAHg8XmyLMsNR/bMI2t4QeLtmwWbsHIXXFzd3DHyv3UZS9czgPVHoJI+1deNHYBz13tgS987+A8A2E/gUbrXXASOY6kC9OiC9AbmcO2TrqX6pK89KzCk+5ofUizIk6ofzP3+5rCoLnJVYh1LH4F56J1EdzAXm0fpcvXr2QEt+tZhSAu20wnAin4FBh0BdH3ge8Ah3QPULNta6gTleGfqS3qvb0TOLMDqXgerbRs2nYlQcfVY8BKDtnZy1lkXjLEULsoGUtenQGi/j461BXyBY1ISAOPNEcCyvtMXRB/J+Y0pWvv1BzB955J2AdXN083dCqg0r605y4BXt6S6Anq1TU5bjpQFD5UN0LNO7F5r620+GC/MTn2FVS/1gXQ72udwUrldG0Opf/pctMwygRN6aU8HeOecO+qudnrXVH7P5MAHqjssre84dqR56f3PKVR7RK8AqTlBODExo+nuOuP2LAj9tCxlkQULTtc2EQY9z987ZvUVHei++q/61+8OJvUu5VhRdnXvfU8f+l4KGwemVc/2ysvO371u+4vY2Jj12MzW8tZcTi06tWztU0455ZSbJCfAe8opp9w42Vxzx/xqjDCMkQVxEgyQDRtmCDGKhb22KZV3DJPD823OjwBvh1XF4jzl/2zcGeLHU5cfFgHKx1TFkroXoR85CxrvbVdGcqBMenMvqRm2LgFH8l8+FWFYZ7zFdKyuwsQdBsPYi53Tc0sPEfs1AClginEb6ybwu7YCO/rNoGts60OGXtdvnsKe33MAr0JrHVoDzAYACD1NNn1B12FqJc1JB7QIQ60On/RJn3QLQK5t1btxALgsU0hfWQP2gDc5SBdYtT4smLUswg2n7ZmA2WTTMSxzawHSTZOw7EbMtjWcN+XCjruxvy6EfkHoDYldcDdZcHb1M9E/CzYv03L7dvt4n3sEGpXh3j0sLCa26wBbAPP61Finj8BuuoRlqlxA6obx0x9/B+L2HGHCgbwOHozFTl9EeABg/tAf+kO3DgpLD+Qu9V6pnhh1gR3GBMsP8xXzsb+bs5XVvARW9xuwuOxF+qHf6NX28+Zv3rzP9dMy0YHN6iBP5z7nePCjNV7ZQCZs4F2XFjT0jsBgdviZ+pgzC0YCfqTBAD5tmozGIsCNU0HZ0tMYt2WxLvDsmcBpAJs8ygvoSmtgTi5rl76LDkp2/dg817u3SayNm1PdGADi6Lr+N+b6WIoVoHTfOcTRs6oX/bOeWAuxV3ed4SA0TguCA+/o8LK2iQgGzF1jI3piU+1w3nHSSVeCbczZbu3EgAfA91zvJCDrrk19zjEpBUF1d65DZThA0SFwlR2wm27LF8vxIB1CwnmhHXTctbtH5ZjxLrQO65d1hK7Ds3egcWuN6rdDIb0n6Z20QNVZ2rH+d6Bqf4scUJfWQ44IrGrpU/qNidw1nC3mQteU9iZ9y3nd70Dlym7NAwzbO9gPiJJ4MoSIh4lI8bDU45RTTnm05AR4TznllBspR2AjYawI97Lh3xC4ZTLJ5Wcjy1Bwon3XZJQX8iZEkEGetHndOghRexiZqu9vqV/koxUufR24+zCAvnKtbj7Ou0n6EXAYeFk7M4gWSJG24X7blu7cjqnL0LvOaDgyZhj8GWR7yJMw4gXz0vlY5y972csuhl+GXGWlyxl+tS+GUkZXgCngM+avQ8YaRwdeZbg5xbt7gB9CkgE3co8uwMm4W5CusrC7gKn9cLDQoepdKH2/hXoLVU0YxwCIZewtaxIb0Fg6ZCrp+8quTdUBC7TvAY7C9ls7AsuxQ5e9Zt2wZhlb+ge42XBtIJyxBKao5zKsrFPA5X32pk04Mne3XmQZvIDD/fw4Z/bavXdZukdwGyC2eYaBwvpiU+ks6655CLSTa5dTCQs2fXWdA8Dko7SOq7OT6LtnwXZgZuWmuxyBzQ/vnSR9DZBtzDH46H7rhb7Y8GV9tay7/g4I7l7pImrD6ie9Mb5AvE1dYqz33WW+YTRzoPQ/kEd4vfqYM8aR42HLoqvqvyCWsduD04CI62ToO3q7dfcOMe/di0kvZzXn64K7+qjvpaUpKsGhkA7nsjZYU/xtzeo+zivpBoCmyTJpjTvHD93iSMRiXeDZ2gycdXjYruuA4e3TdXbTpfS1sjgZMNc5BOiGdUI6hgXBr3PI1P7eDQDBBXflvN1UBOpkbI2deYThLuS/cZN/fnWOw7Kfru2aymr+eY6oFM4PawDnzab9sIZazwHGnBMYvf0sACq1k7y73Rt4iQkrcimwVbvp6h6UCihegoEx0d+A6+oGaKY7Xe/dm/S+kWtYn9EX703rIgdR99gftMft3k0Hop/0c23aMyrqG7l/qwtddVhhB7RxtHpXNOaiK1on6Xjj2TUOhSu90imnnHLKTZQT4D3llFNunCzzjGD52MAyVhawECLZZpMRuUxJxorrhA8qS8gqVpFNM+lZgcEZ8TdZnFhe2oP6IwNiWS3H6wLBnklhSAemBAhKAXIncYhK7Yu5B+xcAO7JAP1YVNdJ/XjMP91PIEHGVYAF6fOMqD5Pr2PgpvcZbhsGiUnlNOw/+kf/6NUv/MIvXL7L4HMgjQPpMm7pfO195zvfefXhH/7ht4xhuTq7vmdk4HF6bEiq+aQtCwZisq1RLiQWO2ivdbgQxiQGGKZw11TX6rQ5WY8HlTkECOPsGNJe+6QCWMeOPN1J7aq9iRQDy34Dyqhfwgm1QLf2b/8AjhZoPTL4FogDaKn/gjXb5wvuHtlPR5bugsN7z/bHAhTL3luwbyMrFtA09vp+wbllRC4A3TxMv4EO3ZuuYi5iqqXLDkTETHXwmXrVh0K/AW2NX/oTGIFpizlK17FI0/PShASCCHtu3soF2/zRD0K/rY2rG3QTGFr51aH29TygFBDIYYDpPsYwwE1fGddl0wqLNj+1Xcg5AAdoDIQCbAEBPXPzTwO0lgULJFtnq7I3Z+2yYek+hy02K92mz+bGvvu7r3UPcC1MXyi5dE3m6+qs9BJS5jSmxm9TFGBtple7NmCMH9NlAMU5FLFr6b05TZe9FzYKZsdi5zPdqj4Yq5isUoNwRKnjsobtgazV9lWk9Qy788jQXRa//qeH6qyvvT9ql4gHa+KCuj3HoaXbhyJGHL6JRd01fdYaLL+v9Xf3jCK9nK1Qm4CtAHAAPyeefq196U3P6J7Wf2k2jC2mr6gTc2HHaR0um+faXtXYYo3LG973mPzK6O/aGzgKXLWWrLPUoWn93oiO7ku3gfXqiCFcG9rP1e+tNT2j+rZOdE/pTnpmZfRdeyKOsiKcemb7YnouVz0Gces3sLrnts6ma+uIPuWUU065KXICvKeccsqNk83txhDbnHzYSIxJ7DwAbZvUDRlc5uYyttb4bZOPTXddyGFS+W1s//Af/sNXN1UyQgJK/+Af/IOXXK31RZv1I5O1vi03bNc+WYAX8Iild6+5bq+TdOQDPuADbo1vjJzblYf5Epslo+cFL3jBxcDqnsAEoflPRm5n0GQsVb+eK+w0o9EhZULL9XPXByhlVPW31AuYaECHBAgcWFtbGjOgDiZyfZyhV95dgELlZhgGLANPgQndl4GLnVP95AROH4RfLoNJXsjNj109MvQAu8CF7heyqpyM7/qivMBYZP3OIA2Ar53C6BnUR3CncrueMc5IFyqNmSsPYfdJB1N9sAwx4oCGUrxUdm3SV32+zEWG+DItAVfH9UYo/oLH9HeBmQVeVoc33B5Qu9cfwV3XLCt0f+jv/o9le92hl1tvgMqydBdMdg05gtTpZv3qEB/9I80CMEpouhy4jbfxlcuXYw/o02c77zDS++l5Pbsw4+Y+UAbA4sR4c2lZhesg3LQOR6a+OQto7h66DZTj6KCLmwMVwLNsyu1HzN9CqaU3kgqjv7ESVz+wd+mZOmMqSkegP7xPOXaMNQBbVEAiR656K89zN+UIEBBoKzWDwxQxr6trayGGqT7E1nQt4Fed3N/4ts4JyceU7kf6CkCclCC7lvjMmgH0M0fUCfClfOuGg8U2RB+YfGTEA4fte6SUWLa+9m2UALDZb2uZA7eI/qKDq0vWcTq+4C7g1LMB1NZSIKw52bWcGVIXNde6lp5zyMmL3tzts+br5q5tjgBIzTlsUm3QTjlz+x4r1T3eB+lCfUo3pS4AUjtYzTO954zVrn/SY+zY0AuRZuvYqm39ts/ofS2VhANRN92HedL8TleNN6C/dakf47YHfGKA177SNrXHsb+29+IEa/8hTzincfdsJEl1rA7V05xuDHpvV3bXtc+p3PL+PplD1s4UDaeccsqjLifAe8opN1ze+973XjZE3/u933v1hV/4hVc3RWyCbc7lcVumQ5tQG0lMxT0pm4HkUBEHeDiYxQETmEnLmHE/4yXBkAj0exhSD7y/BaAO0AlQzAgC2K10TewP+TWfjGDkLIvryQgj0AnVCcDiOln21R42hQ1zBEQehDB+MYN6LhZxQHnG6U//9E/fAibpOHYyFu2y7XzvsBPh45VXf2bcNjcywIBnjW/ltOZsCGfj3HhWfnlKf+M3fuNyT4Bx98V4al4xnAFtDlEDMKQPQnebiz2n8hqb/seWZVALm3cQXLlSn/Oc59zqI2PVd6WhSGJdM6YBIOqwBrh+STCfel5sIyzhPgesJkBBAI1y5KoE+Mj7CiRalu0xvQHADuCVAE7WOeV55gRwDJuSji77GdCwurps2mXu+s7zl0G5AOwCwctEu46562/9sKkZNg3FAhbqvGzr+jMWWWODEdY1fQ7UwPBODwMaOBqAWQApqQmwFbEAsSG7H2hf2YEjv/3bv31pC7ADi49+cXykFzm+0m+s2z5Lj8xFhzZJbcN5ZR7KfSoEvv+7vu+tEQ6Ak3bB2CxA73/6WHsAvOYVxwfQEwBpXV8WIsCWk2JD9zc9g3f2HjoFbF0dXnDRPMIuBZAn5mkAkWgGOt59vY/p64aqL6NTO/rcWgPINGelLQCMKsfatYBrz26t2rB7Y7KpYDZ1gX5SD+Du5hhW52V4a6trqi9mN50yNpjMxkMeaqxQuovx61rrvHm7+Xk5E6yDC9rTHakp9AXw3NxT9oLn2NrpdXVrXB16yyGx+tczzHVpAxyYunnD6UzvRHXXnzlqzRmguJzdnDCiBcwJTjr93Ltu012on/Hb9ZJzYvcw1gS6Sv+qR+2qDpxN3sNSh3iv7jutcuqrPVRSXeURt+6Zg9qnX9pf1/fmamX2m8OBXvSc6h4423v2Wc961uVeBwWuU6Q6d1ZB+41ELmB7CGvpKaeccspNkxPgPeWRlzYdf/pP/+mrl7zkJZdQ34w0YXMZV7/1W791AS6+67u+61bo671I5X3BF3zB1R//43/8UmabnrzJHYJVCPJ//I//8bJhuZ185Ed+5NWXfMmXXL30pS+93C/09h3veMfVj/7oj1593/d93z2x9GIyfuVXfuXVJ3/yJ182Mm2sOo3+h3/4h6/+9b/+1/d8qNMp/78s8JGeZAC06W7T6DuMPwwk+fIwno6HrCXL4gFk9ZkNfptPBjhD6Qgs2vDLDXiTpL5rLJyIzLgHcqwA3zd/5P1K98rV91SkZ8dwre79YGverZ3ApLe97W2XMMSnM/cyYyjQHMCRvgde9PcxLUh1aZ0B2gKmqu/mG2SYpq8BXjGqgRZO2gZ+OyCm/zO2MX70CXDbelufVp7wzkCs5lDrLrAKsKTfsVv7W97DGEvNuZ3DCwQCGjDp5GFkqAoD7m8HyrUWyz0I5JHbcPP81kYAC3C1sah/qx+QzQFMgCDvBn3MiMcs3PQKjHtrEofBAmVA4D2kjSzo5DkcAscQ9s0Reh3rdtmE6rFr3AJnyjymjjiCicmG5R/rvgy3BXR9r05blyNQDEgDgAAd0lP5JuVZdQhX+t2cSLek8ADOA3qaK/VD7LT2DulM+5PmQ3sTYEfzDFCG5bsHpWFwyoXa79Y/KUjUN70CMAaQVKacmH3O2YgR2fXdm057b21fbd/p211rfZ8u07/qhdUs5Ym5AFwzDsu8Fm5Np9aRABje8adf3q/K29QY9GDTTGxOWv0tDL91JLZ+a1BtooN0TF2kWnE/ULFx61C91gl92f2Nr/y+gGpg5jpNgH7y9JobIg7MTSlnlkUvP6s1yNoAHFtwNAGKA4XTYyxZTm3s5WXaGxNAoby85igAcNcLB4+Zc8BKdQQIdq01EXiK9dr/nHzGszLlM8f6Vr/+b162/nuW3LjNm91jVX8HHPbT+G06E4x6/bnpTXqPqzdHvqgVkSzNPREk1YGzU7nqUV2B7PTPc9dRxmG1jkDf63s6Ux8AmuX+rv2VL32Id2NCP6Q6EHFCzytPGzkcaqfnaldj03dy4HPc17c5lBI5irONujfCCZ1pzeR87NmBvnSg+jRP6RtyQOV3nX30/RxSe8opp5zyuMgJ8J7yyEs5H3/wB3/w2u9ic/XT4T9f93Vfd/W5n/u5Vz/3cz93x/LahHz7t3/71ctf/vIngG9tYkrcH9jaJv4nfuInri3j277t2y6g7FEyuPr5xE/8xKuv+qqvugDTgS63k0/5lE+5euUrX3krx1jSxqwNVwD0F3/xF1/qEhBzyr3LnriLUQBUAvhgCTImbZCFZGLbbDiXjTYjv3LSP8acENQ22ZWPKXyUntPPTQN4CZbG/n8ULKBNrfFMSgYZts+9iJDg7slxdD/3Plk5srwcppIRh7mzknGU4RWrxtwAUNB1LByOp4AMhhYHCkNrc1sT80k6BocWxSzKUAN4OviqupZCIXBMeKxQWkBX8yzHmPlqHm1oO5ZTkqFbOx2axcAXst4zqk9tAKIFyvdZQC/wIuBOW7W35zhMZsFFjD3rQiCBnJlH4Lm/9wAfOWCBTcAxoOoy+haE2pyJQOhjKC6Detc29x5BUgL08WPNXHau/1dcewRb1RcYD7jYUHL1WOBt26o8fbyhy75zLZY6wMbYYFMLz28tx+RtDNK/xqzvgPiBH5x7GK3pQk6JGOABO1Kh9J2T5dsXBACnh8Yn/cPGrbyu5ygxhxYQ7Ef4ec9rHgG5qou81j2/NuU8wbJzuJwDBRdM2nfdEcwHunIcALjoUnUB7Fir6deCe8vWpsfAyF23fL7pALA5OZOwQwHWeyhU9SkkvWc3LgtQlT6m/sZ0TFa3PAsAb+62JiEAxPTPiVbZ8hxbl3bt3MNb6SBQDhDpM3sVgDDgLFlHkOt3bQFi6h/i72XFctSZdxjcm3bCeIkmUD9jKyrCHsr623cARw6r6seZlmw0k/XauFeug9TUgUNO2oH6umduqhH1qC2isDCEpTXQ5j5rrjisS3qUfTdyztH/1u3asXm55QDufozhdAGrO33xjvRuosvmaHt+/Xl0mG1KiR3XXQuB1ZzG2NT6oTVLZJR357LeAehLcLAGcUaKaABSG+PmDid279bGpX6iYxwLe4jfkfGrLdJLbCqRymhv0BxrPbVH4GCx7vT9k4nM2j39My0PSz1OOeWUR0tOgPeUx0Jiev3iL/7i1Zvf/OYLYFqondC6z/iMz7j6tE/7tIvx/ZrXvOYCCMeivU7anLz61a++AK9JTN1XvepVF8OrDU0G0R/7Y3/sUubt5G/9rb91C9xtg/Ev/sW/uHr9619/2fgV/vu1X/u1l7Dj5z//+Vc/9VM/dfWiF73oWnDqQz/0Q69+6Id+6LKZbyP0zd/8zZc2tnH57M/+7Ksv/dIvvZRXGTGX3x8A0eMibZqArG02hchhsmGv2FhvKCCWHnCIwZXYkDLSMDj6vnLbfDKWsF6uE/neAhhO+T/9cQS7+8zBIECtR0mWnfag0zFcJ+lzxlCG0Uo62frCAFz2sVDq6ta9UlAAaZfBmQQcYVxhsgdeZWxi3AJ0+43xhLXHKdL8+OAP/uBLmob6BksrEAwzjuGHrQiU6N5C2BnH2JXAuQ1VrgwspurmQLjeJ0JcsZ2EOwfiNC/7jRmZYEDX3mXsciABbSoHs49hqhw6AXAQgh7otwcrOfjqmOJgmbobJrtMWj8JvQPSLaNPyogFhpV1BGKWHXkEa4+f+059jmxesikZ9vot3/3A6WW6qTeG27IEk80Bu/losQ79Xd9b3+WnxEIz9umYMU03KvMtb3nLRefSfWCINB2ce3S2uVFbsNocDtT3ASPmi4OhAlm6lmOkurQW9qz2KJUn326fO6jP9fLBx5ZL560NDl2SzxQb7xglsQ6EyrYW+B6TfqMwVi8X0DyygenWpi06ssbNAeu+ucAJ6z2OxWndqo3Vq/WB88qBUQAurOfWxPqn+wDfPU8fYa7WP5Wbg7j9p7GrLPmbu65xtM8AZC0gt2x5h+YdGdP2EwA0c4vObN7sdaStY85837zW3cdxsCC2tcnccT1w1jrk+x0/axdnuAM+sZA31cbRiaPtQE35gL2LgLub4mAPA0sHgLrmNiatOm5Khv6vbDnmgfnmqX4DRutz49ecA5QD7/upzD6v7Q4V4zDEYt2cyV3HIaEs47dRGXJ40xf6b56JDNt3++a7laZJ2db2TYEg9QN2NEZywmGgPhjCCAxy+9am2g8wt9468E4/Y/bTxcrAYN/3m/QZ/S06gD7qK3vq1uTVp1NOOeWUmyQnwHvKIy+Bnm3Ybyc/8iM/cvXn/tyfu/rxH//xy8bn7/29v3f16Z/+6dde+w3f8A0XcLfNy5d/+Zdf/bt/9+/e5/u3vvWtF0D167/+69+HDUH67G/8jb9x+btNy8d+7Mdevf3tb7/1/a/92q9dGLn//b//90sKh4DeT/3UT736z//5P1/LArZx/YRP+ITLvdvmQrr/2T/7Z7dA42/8xm+8xx47ZXO+LVNoDy05MsNsrBmRNtVt1GM4YtIta2UBXIwlOX0zFJchvJKeOlX5pnjwb5eztr7KgCqn2vZF/ZeBxGi/n/QrD4MAB9KRDLvqvylb6Obt8vjer8gffZ3Bg3mTPm7KCkBfBldM1UIihYfTd/c3NhlVMdgCO+QhZczFWsKoag70nTzVa3Qz3Brz8u8JJQWq1g4H1PRdBmz1y5kn7QV2d88FqmL1ADqcbo653xh0T0BHTkKGM8aug4n6DjtLmD6WZIBQKXn6bo36hMPHGrG5E4X3WoP21PbqucxmqTUc0IMFV7mBdQB6oCDQhxG/4eYM4GPaig0HVk+st2X5Lgt2gdUjU3av80z3HK9dg/4IpiwQpA5H1q5yMG+3vQv8AqKAREA+jgkgW/dIs5Cku/V3OilPp7QZzQ85dfu8Nav/A/9zMKe3PbtnYRlKtZD+FB2UrnrfAHnTs+5Z4LJ5mJ4AlIWRY7Eti1nofNfVttoZmCUUvLlTndMfuamxU+noOqQWcPf+5DDhEOkH6OV9aryS6qm/N58q1vqmKTmOF0DZO4M+GOM9oFC6AA6M+vI3f/M3L3Xrc+H7ANJ1IhSREFlgdRLQax5iNDaG2Ju7ZnOaWZPMWTm417mxcxCQdczLDHCU39c9HC903PqHbYkpuXOCMw3j1L4GwEePNv82IoFx1SYpRLRT3zvg0jhsnuGj48X6BJzuGqCqtQC4DWDeHNHr+LPPkv/aGs3BuLnPe/duu4wJ8BcAS/e0td/AXXq6doE5avyB0l3P4ejdwsG474l1NFnnAOarM7uWendU5+a09aP3VP1fu/tZ8HhB1srDQMcE1l7vaO9C+xN5j/V3cwQILC2MubpA8rZTXeR990z1O0arGG/z3fWrs8f3yymnnHLKTZET4D3lkRebjjtJqRRi4cYK+5iP+Zhrr+l09Ni3yb/5N//mCeDuUa4DXjqcp41U8pM/+ZPvA+6SNijf9E3fdGETJx/1UR/1BIC39AuBw0m5gxfcJa94xSsuh6I997nPvaR7+Mf/+B8/MDDocRfhlww6IaUMpAydBFOgzWKbWIaoax0c0Sa2kHCHnsjlyzBqQy+1RsCkk5I3F+BKz+/aDVl7nKV+FvJ8bG/9BVwEWtSvASZSsMS6ko/3UZB0JGC6n9qd7qRT2i+fbdcFMjwIkJ9up4dAx8ShQvVzz5RP0D2AgeqZnqfv9HeNz+qaQfuud73rfeYCQ73yMbF6/rvf/e7LMwCIwKbuC3RtzFvbhNJypgRGATikbQBOMPi6Tk7BnC9y9Ao3XdAqsAegYp5mtAMhsPULrw/Uy6FWHwEnAnWBCUVd9J1TvLEt5RwVXsr4BXJ4VuUnAFfGfo4M7dwUCsCUJKCvsQGaHcHddRoADrDoFnBdQFW/OKhKXZW1zEyfLcNWPZeJdR1rd5m+G7J/rLfx8PfWeQEIAKV2AJCWCQkAkEtSCgMgh/QG+hNolF7Ggu/zxkufNKbvfOc7b6U0CaxdZjygF2CEMUrn+s1J1XM8l1MQuCSvLEByQfuuA1x1f8/j4KAn+g3o2XcinirbQYeB0deBh8YJqN5zgEF0AXs3WaZ/70tzzzgtMLth/ntN4tBD9T6mW1lADAiEkeqzwJ/G2nOFcbfumY/9rk9ar5rPOZUaR2sLMD+RFgOgjam96618x1jgIhbUWT9x9tlj7HzzbPcA1+g7gNZzjbMUQMAwerzh+IBDgDDHg0O4jCGweA987Dcn9XEuYrxWTn25h3cuwLuRF7v2cIIRTjV5Z7Ufk3sdXViw5rl+wCznRNFf6aU1h6NPGUn3SstS3zdPHWrIwVK5ogLUo/eqNdzBhljDzu9onQH80lnlbAovTgvv2tVX15jDyAhY2e2R0vPGoR99553Xdfp/07R0rRQfxsr7nM7QTWuO/TBAVu5eqVNqh/aZszvv6ZrxN383BzL2/DqHOK/Ma2v7dQSKu8m+B59peVjqccoppzxacgK8p9wYkYvqdmHxpTywyS0dwpORBezK0Xs72Zy514F8sXrJ93zP99z2xf/93//9V9/yLd9yMVA6DO61r33t1dMhf/tv/+0LKJ382I/92NVf/It/8dbmO4AjQON7v/d7L4BzKSdiFAdQZwBnDAdmd3+MAhKw/df+2l+7+oiP+IjLBrTrOnzuH/2jf/S0p5tYYGRzfq3RsuwhG/E29dhdDBg509pABwxhFDhxeg8hYeTdTboukKCN/01I09BYlBexOdq8wYhps16fBuoxKhb07fP6Kf3LEL/ToYcPk2T4BYIGZNaGmPwBK0DqdCUAO8MTwPBURY7RnFy/+7u/ewu0qN9zbtXP1Sdgx/OAgOl9/d28FB7q9PQF45or1Vd+vO5hlDEMG2tM4cBQYFb/A4lK9cDYbawZ60nl12cLUgrLldO09bB6VjZjFTC0gCvjD+i2wC/QAejuULTKT88Y7Akgr5QSgUKleGhN65oFGonnbEj0svZdq085DRnHm1MWgJS+OEgOY9n9C/RiRVnXlgnr2YxmdTyCdUKhjRfgVZ1dA6ReBiS92t9kwd39Hgi0eRiX7Qj4WPbhgkYLFGMX6mMHAiXd6xA1jDeHIjnVvWe03nRNQI9w8HRNO9M5ThwAvdQhwFTtWRardugLrNDmn1yulWUcvB8a++rtYDdgcPXDsOSsXGcKZ4/DkoAwPW8dIYCZo+hXfZpwokjdAFCWSqXvAaHmsDkIOAb8LKOcfm0akb6vDYl3xpGJbu2ROxUg2O/Gxxx1nxQW/d962P7kV37lV27NM/1rzlhb1IfeYYCbe0LWAaKAP+AUh0zjyRG04exAT88CeC3THdOxHwdR9jlQb5mxXSNNQNe4tnKF5W9+Y/0DGAY8m7PLHlYHYf3SZGAMc/5tJJU2LvAMzJXWBtAK7NVu+gRMlApBpIM+5vzA4t154HAzeqaO3csB4IAxz2ispKLAxvUuqExjJQqDvslLD7DmaJDaB/OXI4JeS0W0Dq7j/+vI6PN02HvxCO5ar+iSfXd1Ay5zlkn7oL85XMxdDgSpFazboh8A18Dw3vHei8DiY15q+wVM+eqxTqL+N3YbfSfy4P2R+uqUU0455WGUE+A95UZIh/JkeCcxea+Tv/AX/sLld7nzbD6SAKQ2QAELbTLuJKVN4FEPOLmdxO4hgS1H+eiP/ujL7zZc5XW7nfzyL//yrb8LDX46AN7SQPz1v/7XL39/93d/99WXfMmX3JY13SF23/md33krp2bygR/4gVdf8zVfczkM7uM+7uMu/RgA/E//6T99H9CjPvmbf/NvXv3JP/knL9cxkJ4OAWYsU5FxhLlhs2xDDNQFPGE91AYnDQfqAI4BwDFPuyY9AlT6/naSoZIxcFPy8DIIGRFEeDEAhjQWpUsplPDDPuzDbsuGXhbgwyQLamQQ5vAJQOIMANhcd/DZk5X01mFuAI2eH6Cb0VR/OtTsWNf0MEC6+pkHAVUO2QEWJgEFRS90fWCy+gMHABVFO7T2yUsN0MAoamxbQwEEnlEdHDi2/QMk615h4/VjRm1AlzBb4ZycOADF7umzrsdG8lnPrg8CTcxrThjht33ec2Imx5yUAmINzw1hZvQDaTG4sP/VC3CkDzH4NnxeOQ4aYvQzcBnLm4sXKGDuAU6XEZboy10vF0zVdwvwAGuwrNZoX3D1CPDu/8CEHZ8da783ryZQSL3J5ibdz7euWzfMWKBb/RsQpu859LQPYw4Aw4kQoCtHuGdhsWOcCZ8HwnIGApK610nwcndWbu9V7FHjjV3oeUKWHTilDzZk3GfVvflYGTl7jHFivbCWbvqDPQTtyHzzHm1NSN+BVsZgUykYf7nWAa901fthx1H/AH8AfObJpikAWPauBj67NsdIbQZmAwa7PsZ+f3eoIvCKYwdzlC5pE+BrGbrmuP83XB3De0PXjY155V4pc9Tdc5RVW9OB+rzr20dwTNuvbN7vygOcriNtnQ7WK8/DqFxnWN+bo/3vUDt7QeuB9Yqze9cn85jTjlOydVSofz8BhNIxcDxwSFirpUHhpPLsZfp737ZeWze3LfpYOg9rWe8I6zud9F5KRDzQob7rXSRCpc+lIEnvOBvsL6u/dx7nIwDf2KjrOlj1m/dcDlaHqtFZ65dn9YzWmk0Hoe+sR5wo3dfnzSH366s9e2L1sedXHr3Z1CS75u37ijNKVM46WYH3xlQ0nvWKI2adgaeccsopN01OgPeUx1baBOS9/jN/5s9c8uIytL/1W7/1CdfGzAK6FmbZtbFWv+zLvuzC2knatPz6r//61T//5//8chDbdZIh9gM/8ANXn/M5n3P1KZ/yKRdmXuWttPGo7KQNYdcfJfAjKSx4wZOjLFjtngclbYz+w3/4D1df9EVfdPm/w+ICZm8nH/IhH3Jh9lbn+qh2twHu/r/8l//yxVDq8xjA/X7DG95w9a/+1b+6GJX1fwfTBQK/+MUvvuRC1kdPhwCGhNa2wcUGaDPs0AjhjPIRMnoCUpYB14a3DTyGCMFWCFgDBDPkGPpYfMkar5jEN0Hq04BwDFHCuAJIEMZpYEcGQfcvO5w8jOCudSInUj/pWilYqj9jnrGH0fMgpLJjzGYkLXCTHgZcxjo9Pqv/W6Pk1Ww+O6DFwWcLjGGJNVcay9oUEJWO99wF11pXA4FjbAubTgBf1bU1eUN+E4BXZcrvyJhszuwBMPVtfZljpTlbfwOChDBXX+ts8zcnTYzmnhPIXNuE7pd/t/5oXnZIZgD0b//2b98CrvoJ+A747f6AlsA4hnACtFmwzG/rC6ab75YVyxkFsN7cuD2zdjYvauOuKwsE7N90Doh6zIu4wMuC+YBq9QTSaAeAZJm7/j7WZ8W1y6JecNJ3wBx96e9lgS0orN/3x+fLBNYGZerf5kg6Lzxd2gwABV2Uy1qKHTmaAWmVKcQ8vd8xVldzp3KE0wNysc+7F2u1z7reoVLyBJtL6mlu0LHmb/MDg9B835QAC96sLgG7u74ysFQ9BwizLP1N43B0JuzasGOzesEBZP4ugAs41jZMYuD0ptMADNGD5veC7M0f416/dzBvIFMgrzph0gPEzG/vbgIAbhxc37PNG9f3GQLBAlMLhtJvbE46rS/7rDWrutX+dLQ+kscWsxionY4Cx9cpoG2c2RspQP/N22MamGX90mVO2h0z8xb7exn/UhoAv/sMYIyZC8xefWzMajNdBMYvKxewyjFTv+/YaTOQ0YFhHMiNhRQEXaNfODuB8639GLrpXjrGoVt5vWewWvucDnkWh6cxwXbeNZWTAENXnfs+cFeaiMrDcrZWSPOxB+Vt33dd+mEcN30Hti/Q/zpHYW2X/sR4WOdcx4lhXdpUIH2HFew9J30MdrR6WUM39Rk9fbIA78O6dzzllFNOuRc5Ad5THiv5/M///EuqgNtJqRf+03/6T0/4vFyPpM1SzNhSCKy0sfhjf+yPXQDKcvT+1b/6V699RmzVmGsBlYX2lSv3V3/1Vy8bokDO0hLEJm6j/Xmf93lPOByqTU1gYRK77k6ScVW5be7a0D0oaYMU8Pxpn/Zpl///n//n/7mkTriTlJrh9a9//dWf+lN/6pbhmfzSL/3SZbMVQ/qzP/uzrz7pkz7pkorhsz7rs96HCfzzP//zl8Pn6vcv/uIvvoC89wNuBebfSQD1CUMOC8SmkDFr05qskWET32ZciC52BcOVwZEssNG1GV8McAZ1m9Xq3hgK36weGQQbWvm4SwDKsZ1r6DKGVgBqGDGPitSOwEfhhk5b39Bs+VT7eVApS+jodaJ/j30stFooKoCVkbiGlEMhk0CSN77xjZe1MB3H4mOwdl9Ooa7blAVJ12UI1y9ACsZ880IZzUNMtdrWPU4tZwwzlDdcVSoPThRtr54ANSyqjEsHWDXXm6eB1v1u/Lo3INpp4dif3d+zYvS29ixjcA8aAkJkiAslB5AtwxSA7FR44fTWH+X1mXzWXQdYuw4cMFbLsjsedrhrtMiHnrFsXuPv+wVljyG3ya6R5Ph/skwsABSQcEPHAcpAueP6u+zSI8C7YOICQ+YJICjnQGMiNzYgGUDSGoRRuPlEAUOtU+l6dV9HVvU2jkCwbS8ADaORE6Py0ndAERYeZ1j6xPFV+a4H2qSfdKcypWzpuspornAQVB9rwAKBCR3icBDa7l4sYw7S7XvAkP4CfANtvAsTc1mfbkqR7tNX+qj7anvPzmHTNdYHjrPu5QipzPrMmG875TNuHQDYAiC7btfvwDyRBHSjv5vXrWVY3lKftFYBuuRu3UPKpG6xbmi3fqfjDkXDKsXyxWIFvGJhNv7pW/sS83PBWYApxqV0HjtfjDVni/2UFD9dCxC055Iqx491wThac4G/xh+w512/OoYdzjkvbcqyXP1vfm+6jp6lnnQNux6o6V51S4D0PpfugHOl5zS+wNfq6YBdwKy1Huhtfu/+c1OWaMcC4ptPuB9pjfQrnW0+iAyQP1du4p4rNcS+QzdnLrAfo5kOLuvbfpp4p9GFni3nMYcH3eAwls6sdxhmtTzlnFHmxkZZbASYtfhe06KdcsoppzxOcgK8p9wIKfy4HLvlSLxOMnrIy1/+8ssmIrZuh67FrmvjEDAZ8zTD58u//Msv7NkYqEeJsdJBbqUyiIX6D/7BP3if79voxIwN+L0uPUMbdHIvwE4boDaQQpWeqrSR+vEf//FLqoTq+hVf8RUXQPtu0rUBswvuku4P4HXoQmNxTPPQ///+3//7C8CbkRTofmQ/30nuBoavMPTlmrPBZvAum2uBEIZqBp3wxwyFymDk9RnAhKFQ6DuWglA9BnWfZVT3OzCMwZkedG0b1AeRg/Vhl+tA7AV9MGeOElj3qByutoKBh326Qv/kg8wwexCMEod+HctKz1vX0umALCHh6sloA4gCdQEC/U6XX/jCF17u/a3f+q3LZ43X//yf//Oix5hBjGFGW/PcYUXaXn2c3t3fQoi7r+cI2d2QzfoosKK6VVbXmdNYQIx07LTKqKzS23St3IgYxfKRYvE/73nPuxUeDEyU63QZrPJv1+7mfQx+Dhtgh/urV58H/jDQ+wwrS3g6oIZRD9StLo1Z4GHX9S4DCmUgA+aBZf5ecAJQxgGwDOPVyb0OKARwAmAnQJVjaoZ1gF0H6B7Z4AvWmuOAwq0foGYB3XW4LVt0WeYAdO8BER3LDEzqqwC+RMTFpq3o7xjw/R2Y3+eBijG5+zvHXof5YRqmt42xNgOyloUq763xxoDHjAPqVveeuexjIA1gR2qI9B3IIrd2eiIcekPAa0+5hrFlAUXyrirX+6vrHMoE8FvdEZatz5INy+4zugrIBV6tMwQrd1nWxhtw3vXpvkiP9hOYkwmWp9yuewDdMhLXUVC0QX3S+4ajx1qWbGQPkL0531iZy4Bp7ZPrVJ9uOgTgcPfpB+zkTTFl3nEK97mcyoBg92FiixyyhkuFIT+ydXbZ2Na3fldnY0K3gGsYr/1d3TG/sa99p5/99CzvFX3OYeUds44cOgyE7zqHEcpbTBfpkv2YvmlOYwMnDu0U2QFwp8u79nBy1e7Wf32qP7pG7m3nNjhMLUmP+qw6GGOsZOsLEBX4rs99vqmLjLV38QLoSXVsvegedadT2sghYLw2hQrH56aUkY7B3Nl0G+vo2rHmqAKoi0qwTng/1cZsqb7HthfZoh8q21hyhJl71tqbQI445ZRTTjnKCfCe8lhJwGShs0kbiJhVn/mZn3lhosZI/eqv/uqrn/qpn3rCfXJMuS9gsUPLNgTyB3/wBy8AcWBxG46/9/f+3iXf7HWA5sd//Mdf8tFm4B2ljcmf+3N/7gJI/N2/+3efwJi7LrzvTsJYeBDh/BkoP/3TP305WKR6xYi+LoXEdfKOd7zjtvmN3/72t9/6uzzBGV93u67w5/sBeO9HGPKMhP4WumhzuKFpy/LYUFXMFqGPgbwZkliH6Y0QUGJjntGJBQO8qV9iZDHWAoi6zknYN00wQhi018mjCO4mDO/GOr1a8BqIGQDTnMSqeyrSc9InJ96T+jV9jZXK8DMX1JPRKR9f17Z+BSouYy+DTA7QfmI7mhMMPfOp9lRW6/UxjBIAIzohHajc/q685oscqPJiYuYBOhniUkkscGguye3nUC25AoEcG3Janfq+H2Bzz6w+OQOBFv1UljymwvTrL4Zy9TSeQHxGceK5QD1gD6B3gRNAVc8JSO4a/Sd/Yc/vnmXZYlwv0Gm+LTN2Qc7E/QswbT5U9zDCV9eOKRoWNHK/644sPyDeAs30evVnwYoj4Jwsi3eB2vQJg7bxAD66B7C7bGDANnZrY46dFyDYd+mjXPmeAzTFfPbO55AAgvXD+dG1lY+1hnWHNclZCMQLzEnnqk9/BzhzTuov4wNY7DosfHla1Q3L2PtrwaM+W5YiR4LURABAfen3AuR0wXzIaUHfATvWRu9pLEl/W09bLzlu+yyHU/UTebNrAibgpg2wni0AlQOsn+7Bim5u9Qx5Vb2rgH3SHbQPpGucQpUD9AVGrb6b1/rUWmJuqRu9UcYye5cBbR3h3AhgBGxvzt/WXECrfLCAP+3ybGzOnVucgZv3+bo2bt3WCWONsbbQz8qTUoFzah0Y9K4x3mgfIOTu+VoP6bX1Tt9hEHO00euNpAJuiviSEoNu9Iwc/fI9t45baytTTmTveHWT7sGcAvguk7lr2BzaKfoDcLrza99V2sDJ6X3IAaNt+hMIDPzvHmkZNgWPtVv/chr423wSUcK5wJGFQb/pOhAnqo/9sz316tqRHe67p5qe4WHZbz8s9TjllFMeLTkB3lMeKxH2TAJkf+iHfugCtn7f933f1U/8xE9cGLr9vXIETwJerwNuy9X4Hd/xHVdf93VfdzGiY7n+l//yX97nmnLJ/st/+S8vm4sMu3/4D//hJVS5ZwQ4l5O2NA2xgztM7f/+v//v98k7unW57uCoozCcrqvv/UgsoNe97nUXlloGWYzbwN57lUKRbyd7UNi9Xreg6L1IeTbv1r43velNTzg0Zg+OWuYuA4lh6/AVIWf9yMkI+BX+J+wR0wL7cUMzsSNsvNc4kA84dkdG5b0c8Pc4CiNrjZrHRRjlGXjlaY3lLcQ5XS3lSr9bzwJO+/7I9L0fyQgMdJKDD2DQ5wG2pY8xB2PD0zcG4TK2AgfSz+5NNwFSWIyAm8CtHBbyXzIIA536cRiMkNSdgwxURjzQqrkqx57cjoFBmIhHZhHQzrMw9hi7/d8ckxc5w7L/rQHdjyF5ZBBuCHBjWL9hfy5ogAlc+c961rNugTfWO+xijGRGd2J9YIwDhQALQOPKNU5YTL2jpMaQAzI5pjFQjv+PxvumK9hD44A17jNmm57hdqzd61jkfo6nqS9Lc4Gr47OXYecznzP+9aM+b/xzomBuC5v2fADsslbbV/RdqZb6rvnAqdEYNta1Ifb6L/7iL150q7kipQ+AVzh9gqmYjm8bml/VP5CQE8OhhMBk6QiSvg+ka82oDHOve/obwAtMbT7RO+HRmJHaAvQB5NBP/VW5C+Bg6wupTjYHp7YJOefccPghgA0IBdj07uy+xosOCo83JwGCxheY612N6bkMaUCT+onqMU7y+uYk6/PmFQan+3b/QAd6h3Mm0D8gNpBx01dg+RojTGyOtOrrXcgJZD7qV99Zs9wL7OM4Mp5AZ2cP2MsYO0AaZuiuA+YTQFyOXfOOTnHCraPEs47MaQCy9BAYuZyM2guAXKa+a/Ur3dUmEVL2X3tI3jqQONk91/zH3DZ2mLmcgkljH7jbdX0PgJQao8/WuXZ0ONlHbroRc2hT8vTb+8C7proYEyCq1GL6aJ+r7YBk/WINxyBex5nvj2lkdk3e57NjMNNrO8fNOg3SS+9ujgYAuP5AyHDdpj6if+ss0HennHLKKTdJToD3lBshr3zlKy+HnpX39du//duvXvOa17wPi3RD4NsYlA/2dvKzP/uzF4A3eclLXvI+AG+HqnUYWRuMmKqBtwvKxHDtwLcO5vnu7/7uC8D7jd/4jVd//a//9Wvrci9pF7CPn2qezk/8xE+89Xfs5PsBd5M7AZBrzN/puu2r+92YBYDdq2AGMGyFnfnOxnEZSWtQ2AgzYhgRjDeGQ4bkMvt6Xt8HvCQ2qUBgh2B1TwZCIF+gQEZ+zoWb5s2vvRmdHW51LwxWoM6jIAzYgJvSksQ6M4czLAEz6Zx8sE82z3CGeuHWAbn91Kf0OD0L0Oz7dK2fdM08XdBC+Gf6G3DRemaO+L0sNSHTgSJH4GZDSRmCHCFEnkKAmDByDhqGNcb8HlRED9Rlmae+0/8L7gBN1K/+6TfQD1Nv2aHdH5jd9wF5tTFHFvAPcJ8e97tnVmfgXWMNWASI6Cdhwl2P9b15YtcYl6PXutPvdAkLFFjgPr+1Y+UYcruOL/17ZNgukLsgzs7Jfc6OBcBgGX4L7C54vICacqzHyxBdMNFndBUAmGCwYs47/Ey/LmvNQVb1bQ6T/i/V0rJbHaxXeifpdyq7/sfoS08AHRwh6/hzkJD3C1AOOxbwlW7J4y8NSPO78ugQgBBDXw5N6Uy84zBiAYzeZVI+ALq9z3pudQDgmM/NewdRAX+Aqd6jwCZjA/jZcG16tDk+samBl+YlINThTELRvceJnKOtX4Cg5iiGb+/gyjCWQv6rQ/cA85epWhn1e/UB5nPUJhzD9DnRb5xjGzEExLQ/2D6SQkTOVCkAXH9kg+sHaW6sJ7sW9n36ZXyri7XVXmnzwi6D3v1YvsaZLmHEqtMyPrcOGxWw6VkAdvSQHpjvq7eNQfek/+rkvcUpt2vT0YHkmgWrjQ2WqXpwcKiztFpyugMk9Y9ILo5GKb7W0cBxAAQHRlvbrfveTaJBuq95rE+Sxss7hdNQ33OIGNdl2Ped9mNQm2/7DlhW/TrT9r0gAsJz6KLoA44UTOWul5+3+SFNk3RKtZV+Sje1ILV5KuWMtfKUU0455abJCfCecmMk9m4Abxv5gNdNPZDhfTy47Hay1zoMjXzhF37hLWMkkPR2jLvv+Z7vuTB4n/3sZ199wRd8wfsAvG10MiIy+u/GSm2DCATeej0Z6YCzwJ/Ah7//9//+Jey4Q+IeR8FySpZxuJtTxvSCagymNqdO9LU5X0NKvjJAhA02YxVw43sGd8LYro7pQGG5jUnsyEfpILEHJRk8b37zm+8JuH0mwd3j4VR3k3QgY2ZDMPsboP3e9773Yqg07nvo05OR7gfyBeTGWKRjAZgBF7FU09t0bh1LjGk6nhGdTgbuBAo0PkAUYOEyeWpnc8VBTpg7y+xz7YIx5qD/GYR9lmEnBLz6yMmL8eX+BWH7H7iXdH8gWJ/X1637DGugQGX2ef2T8QiIXcM+MO/TP/3TL2NVShnRGJUlvBlwVV/3uz7LIVVe1o/8yI+81QeAA4Y8IxsogOmoTUcQU1i4k+Ex5hxGByywzh3BleuYtvpxgVcgw4K/14G7C+C61t/LxPWjXfRiU0QIMaeT2r3pOHaOLOi8LDO5Rbff6NnmplXWMk+7t3fup37qp17GOQfHe97znlspELoG8z69kQ8WY13O1g0177OubT40r+TjBNR3f7+rkwOyAEbppznQGMTixTblaAhgbp5zfnCarJ7qX2sQ4AhQdQRqjX3fyTPa3xsZIKRfqDegbNng+97dw6MAR5jq9lF9bl4qwzsZ2As4rY1SR1g3Flw7sr3Nl8oXBSb9EmdY+6PmUeMBbAL4YUk2Fn3OMdXf1ibgK4fUAp0O78KgFrmClSk3LyeZtE6bUx0QZ94CzYGDoiW8E6zpcjMDzNZJ7VBHdVigXhlHFuoexrdrPPBzgdR1CGqT8oCI3pGb9spcTiorfa+uzaVNPcERYG7TKWsWfdi5teuEcugIJjCmPbDV+mUN3tQQ1Q3Yy3lYf9YfHIbAWHXftd04r34DeI1H5Vh3vT82Oobov8RBv0BWziVrCB0wnvrJPMSW5nBN6pf2F3TPIbHVXz/QAfPHfFa35hCHsPXX+mBsRNJslIUxwPQGrt+vHN8lz6Q8LPU45ZRTHi05Ad5TbozEkiEZ5SsZabuRuZPs90dA5znPec6tv9/ylrfcsZy+D+Btsx/QEHOElDPuYz/2Yy8Gxeb+OkqHcpFYwU9FYu39lb/yVy4hpdWnXMUB4b/6q7969bjJssaSDRfcPF82kcvy2AN9Mh6BVn0GRAOmYB5itnR9m2dGLHYaIzTQrA25vG9COYFuTwfAeyf9eljkYd/k1oeB8PJG3oukVzlyuqefQMbWAKezA8Dud2zo1dYj3QsolhNXKGsGF92lg5h7yyoDRDi8K8PQ4TuYawCdZV92XetKkQqJkHIsNQy3Be/0TWXKlYhxVHmt41Ki9BvAzOHCWMU2AkIsOw2Lvuulm3Byd4ZoQFVzrmsyWB0i1fVd0/X6UV7i5umf+BN/4hYbqf5oLajNGbAAjMB7LMBS9sjHuAwxAET/C0XH7Ne3C8QCuo4OJwauPqktDm47MvHIAr/G3hi55zrG1rLvFjhbJvACxfuzDGTlaCPdW6aw8jdv6soRxF6gWJsWkF4g+Mj6pVMEqIP5yXHRu7g1gJ6lM93XT/rROBtTh6S13jf3e1Z/50gAbCzAD8ihW5wc+kvo9jJlAWPNIWAwti4Q17uJowdTXX8Cg7HoNhS/z60V1b31BYAXwLN7I/day3ZN86yucUjYHiho3fHOBHwC/4DoR4DQ+iJKB0ApZYv+3TXSvOx5/bTW1E+1p+c2F0thVVmdF8A5u2xyOboxgK0bgEZ5dQGJ+sCYcAgv07fPMRyru/Vx12af01FrdX9LUUHXrVvGkn4BZYHJ3gOJ90N6BDRTFgAVuL9pFoBv5pK1jTPvOBbm87Ixzf0Fl6V9kEIDkOi9tREAHO76S9QUHcNy33Vmmcf7zL5r7a9/pC/hEPRc639ldo35wnGDXZqTz1yWPqj3BQGCy32Lke55wE/zAXOcU2UBfU6TdQxYS1Y/1X9ztS+jH9t3x0PfcVKoW+203myaCd9b39YRlO3ReDq0GICuHzbfvnejdhrnHceHfe94yimnnPJ0yAnwnnJjpDBkcmTotml4wxvecPVxH/dxt040l9PuKBnlt0sLsEYNA+t2soDGESiOTRvA26b6xS9+8SWH73VSfcnrX//6q6cqAcuBFP/tv/23Czv5Z37mZy6pGwo1fZwEY6oxxnBg2GFcMVg2pyBWA6PDoUy7mcTwaCPc38uiwdrYDf2yIxh26tLf6WKssBhi6e2DBnkBdudG+MlL4xvbPrBx82nfSRiKhXv/v//v/3vJ37qHKj7Z8TiGxJN0LhA54KkxD8B0wFDgDr06MjgXpAO8YZIx5tYYBOAmDNLf//3fvzzDaey1s/ykjNH6jAHtkKfK2BBMLLpAtK7PCMygNSe6tv5s7gIH1oiUs1eoqXy+1au/u7+ytUV4MtZvP9W5vsNyAqQ6wAyo2Ji2liaxMsuPC0SRP7V6yf3K6F3AcoEK64/+tDYt8xUrMUALO9S4A/ySwDiH8qg/EMd7aMHO6/Jjuoaerg4c2bzKWKCYniyQqt0LDmv7ArsJ/bquLgu2rS7v+Cz4u9e5f1l/6u0+17b2v+xlL7ukZ2iMS9dgzQ4YzOHa/oD+NO6ts60TXa/f0z8gpBQfsXJFEu2hRABaoegLwNRPGOKcCxtqDYzsWYBf7L3aAgBdlh7gzZh5B2I7ApzT9/SqurbPkgZh1w2MVeO470x6k4OLM7P51bzEFlygSg5a8wDIaS6ZF7VtGZ3HucTxU1/Jm1/5vXMxTh0wiU1Y+zsAtr/L6S99CEeUMVl2KQcMUH11nW7QMWvOgux93zw2Nvue2FD6BAs5AQxWpvvN+WUgbwoUZS6LdR2OALfNs0tfjsx/KTuU4Z2xcxLT1Xtl5xqnIWDRO0V52qFf5BjetBpk1wXPW0eDdxPwfetpH3g8KMx4YkebM+lTn4uUaT0Q/WJ97H2/AHmfpfPGu+uXDazf6bt5YHzl4kUmcOivg+IAyRyIdEy/OPRUmoRlXa+OeQcBd9WPM6U2Jw5A1V77Xuza1gh2Vs+R098c9p71LPPQwXQ9CyFjiRdY0959dyPsnHLKKac8jnICvKfcGOnQMFIo7VH+83/+z7cA00Iwv+u7vuvacj7t0z7t1t/HFAYBKORjPuZjrv7rf/2v15bRRqW8m0mbMDn0yI//+I9f/Z2/83dupX24DuBt0/R5n/d5l78DlmLePgh517vedTk8LpC3DVht+FN/6k/dOqDscRDsRUA/RgcjzDXL0LF5ZIzasO7mNaM5YxdABUjAMLFJt0E/ghxdx/gEFgO6GG4BRwEFD0rU85QnL42/vLStAffan41jYE46s0b7U5HrGI2kdabvA1HSx+bAsqc29HaBLeyc5ktlZLD229olR6ncsZv3sGtf/epXX338x3/8rQPG0mUpERzy5KT6+hHgxLDTphh2fVdoPHACc7ry+skRYu6uEd9njVNlBnIDWrEAq3vzr+tqk/QZUjZUxwUzk00PAYxIOHbkDF6DtDViT7FnyHMcMVCXhcyQbh3A/lqmnDFiEAMGE2AYEKRrgSDKWfbZplEw/huGjXV71JkFbXxubbsO3N0yFrzVFnVQBh04Aq8LKu3/132+oPmRoazMPYDoCAQDyLShccsBu+3unkCLAJzGI33CWMtpmi7ItyvcOvYrULkxlr/9CJYBVhvjgBSAU+XQq/SsugOLqgsgTIg9ZrjcmJiI14WlY3rqE8BQ9ZBz1oFjfd5aRr+ay0Ah9T6On/mJHdoa2nWtUd1jTmLpAn1rT/Ov5wNemxvCwYGuCfYj4HOd68pqnWp8WhMdsAZQk/9zgW5AI9ATm9Caswe41b99z1kCjOKA4mhzH6cGfd3wfQ7EdSjre2NLX1rHrN3qIrJoAdpl9tIpLF/gNLbogn2bMmbfO5sLWNoPgL95bix2b7Xri/vlED+uKQ7YNB57lgEgfx1O+ku/6guOri3bd8o+srABi30vt/EC+n439/rd3Kw8DkjEggXK5ZtFDpAmxjxL6sP0kyPJONUP+ovjWB5shxUDgwHq5rN+wvTeXMfNLWxwfbr9a73Cqqdb+tMhwxuF0prQM1oD7T2A0xsp4R1gX0HXMIjVcZ8lTUtty4lWefd7WPPOrYdBHpZ6nHLKKY+WvG9s3imnPILy+Z//+bde9reTr/7qr7765E/+5Mvfscmuyy3boWeBLUkHn5VH7yixav/yX/7Lt0DiI2t2D1z7lm/5lttuLiq/DUhy3WFmgamve93rLn+//OUvv+RpPMrXfu3XXj33uc+9/P1t3/Zt95X/827yjne84wLyZiC0If25n/u5W4bs4yBOuGbU2uQ7YIYB2AYRCyOxAXZoShtpIWNtLDMS+90m3GnGcnFiCgl53cNghNbuwS42p22EY43X/7GpS9vxIOVeGaePg2z43hEAeirCwI/Fh9V9L5LeBDY+yDE4hh4fv2NQY8sCPhewWNDfHMlYDJQsxUCAVGy7DNV0vu/WYF8mpBQngbAABXNGGGcG8B7qA1QRds6gtp6qIwZ892Y4xo5kmC8Il2w4a4YrwEH4aPNcCK75KmVC42N9rbyeI6dp7wyhpPq4cqsPkNrBTQz4ro2VX7n6eQ/ywqTURqB4P+oNSFoABviIwajf+hyzNxCLsb3jBFxh7CeApmUTLoCrn5P9e3VgQbANDV/2mOuM2RGQoTMAsX3+sg5d52f1GCCifkJ7hWdjACpT/60+aee2fVnUniPPpj5sDD/ogz7o6vnPf/7l3bAgd9+nC+lc75N0k/71I187ljp95FgMCJVLOqBV3TkU9/3S+Aeg5hTpWc1JYEl90v31AZCTMyAmcvUCfNJDDgnP8R1HguswK0WuLGN016rNncsxIsVF+xBtyhFUmq3SYpQyoXYJz1+AFjNWuPweTgisxn6u/I2c6frWm9amZQd2b/Wpr+izcHHMeaAZNqh1UIg5nVeuubVM3mXkcyBhTbsGe1HbgJebz3jXySNYtGMhdQL2rPvth/bALfNPXZbNKg3JgsYLuALeOZWuixJQvr4DoPrMGNcf7VGlA9r5Zr7ufLdGbM5za9OuRRxs1tp1Ouk3kSeY8hya1nB1lQqo+Va9OeyNUSJFkFy8AGVzR52lKjDmjYl8ufra+kDflqm7kQnauuuw9xzHM8C0/zl0OUb7nW7aE/f+zGbSd57DodFn2imioPa0drWG1Q7rMcend7v+AALrD85hEQsIG1KTrA6ccsopp9wkORm8pzzy0oFgr3jFKy4M3FIb/N7v/d4tz/ULXvCCq8/5nM+5lQOyjcmXfumXXguAtEH4yq/8ysvhaxkQgazf/M3ffDlsrI1I+Wi/5mu+5hYb58u+7MueUMZrX/vaq1/4hV+4pDn4kA/5kKu3ve1tF/A1Bm4bosC5L/qiL7r6pE/6pMv11TOw9zr5qq/6qguAnOEQwPpN3/RNF5ZuG5zP/uzPvuTLTQoRrf0PWqp7zN2f//mfvxg51aF29fmjLgwNeS8xNjb0NzCLcSk3IdAgkVMRs46x1kY3YzHgC9slyUjG4otl6DnAgsrv+90ES++AcdwBWeWL7nCmB5Wq4WFjCNjIYyQ9qPzAQDe5JgPdOHQehKQrhe5m+McwvZfxafxjpL2/xgDTOEApkDKDLAMrnd3DnYA71S9d7rvWx3S6dBKFnzN6AaHmkbY4CMb4BWRbdxl3C5zJoShUHfNPPyXNA4Bs63vtaF4JXY892BwBBDK0+y4DFYuudjMOu6c+wOLrM+DEhrP2d3NwQYRE2oXN/ws0Eq6qP7GtGMHVRz5W7WXQW5tECQip1ieVBQDfyAJgCOCEQYw9Kfy33xwLC1JuCHBlYpYvoAO8uo6le0zHoB4A02M5fi9TGOBs7Jf1uY6ZI1t9geNlFO//R/B3wbDbzcOt3zFkff/HuAs4rczmWM65xm6ZgHJWWucxbruGsyNdDFAh2iDUGxhbOY0jFiPnI2BYVAr2N0dDz2zudG1zQ75g70Gs+urQ/9KQYBHTfTnj6bS2ATJ3jbPGAKLoGOdJc4HOLSBV+6pz5WCoc5Z6N9Zf6tja7r1sjLD/gEZAYI4RjNoEkGou+bv+kMbJmmBeb8oD4fPL/FxnzOqbtgLszGspZFZ/rY10ccv1XM6mBXv7vcxfe1j6s+uNVDjGyFouHzM2JhYsB6A0O/Y7cioDLc0PzHXvx2WpLjt31x/1A8b2HJFVy0pv7uiXla6TissY7zp6ZJUvAMvJg4HuvUJXORE3b7q1T12bX3JhO2uj79JjBIDKqg/T5QW2pe3CuKfDC15av73r6NmmjzBXlxluTKzxgO8Ft+1J+6w2WzvMJ/sq69eC9XRTuesA4UxdB9wegClSZqN4zAXzjEO4vtWH2+93cnafcsoppzzOcgK8pzwW0gYj4Laf20nMs8DVANjbyQ//8A9fvMn/4l/8iwvI++3f/u1PuKYNz+d+7ufe9vCxz/iMz7iAzYUkB/gE8F4nbfT+0l/6S1fvfve7r/0+IPWzPuuzrl75yldeDLrA5qME7sZMPuYUflDSQXCxRgOuAysCe2tXDN9HWQCHDAEbZMBT0t/YGTa9WAUJpoU8oRg53d9GmNGASZHjIUAqWaZYG1NsoDbJ/fQ3w3WZOP2kFzkyYlE+jpKeBbg5NCfjCNhwndRffX8nqZ8zLgLl+90z6tMHBfBiAzVerR9yN96LPKjUDHeT6vaSl7zk6tM//dNvOSH0B4CmNXLz5qX7gaHpIkA81i7mKQYhI3nZ7wxzLHUhqV1bGVh/5g7gxWnbxxBSP4y6vsOwrz7VI3Zic49xu7kZuydd6f6cN+Y39pFchl1TO50Qbl5vqO8CBcA/YKw0EM1pfYuJuCAsnQzIqW8BTgzZ+kLZtUefVG6gW2VyPAFptp82n3dtdsho5TjsrnkjhJbh7h5tNA6M6wXlEwb6sm4XDMVkdY82Lgi85QHnrbnLWHTPArYLtirPNQvSL1txWZPLMFxGsOsWYFu2sWcvKNwzcu7U36UjSa+AiDGnMeEAuwHB9MRhTP2U3qF3+oZEYwimn32e3siv2dhypsRs7VnYdUCV6lC51bcy5N5u76Qf5InuGgzdpOurV/UFxolQEZ5Nb6x9C/CaO0BM8+AItgGDapv3nkPUNr1A7euaflqfsI6x4utjdWoMus7z9Vn9bS7pIzrPcQKkXXa+9a3oqZjQpbSyFpnPXSfvvnkPQO3z+hzobC1VtjrKOevdby2gc5tWRX21QUoMbEjXGZ91yKyzZdMWdN8eZifaYoHfhDNp1wjs1X0PcDBt6oQFp7WVUwqo2DzgFKMT5vIyhEXOWAf1Kab2RgLY41lbd63jYAaiYrECvxsvDHMMWv2WSCHCaS+dR9I6rw7Gpna6vvloHdmIDhFCHDzWL2Nufnjf1T75jo3xMpf1h37CyFW++zl2l33duuL5lSu3/joqNpJjnXy73hp3+tdcFLXg3up1TKHBAQF8V67r9AGn0JPJwXsnZ9/7Wx6WepxyyimPlpwA7ymPvARABnK+9KUvvTBkM/LbQLexakMVIPaTP/mTF/AW8+RO8m/+zb+5+qVf+qWrv/pX/+qFwRrQ20ak1A7lo/3Wb/3WC+vrdpLBENP1z/7ZP3sBcANVMgTk4Ip92eFl3/md33nZ1NxJqvcLX/jCC5u3NsYIagPVyfQ/8iM/cgGg76VNT0ViMtfHMXjrVyBvhs2jKsse2bA6hhSWm408dp0x9P2mU8gQCTiRi6x75SPr/tjkQmvlWGPQJQx5hl+fA15WMmLTc+G8j5vULkC78EBAwFEaswz7uwG8DBMsJsbSgxKMl9abfh7GtBf1QfpZSHOgh7BiDNz6ufzBDmITWpkBlb52wFgAsNBNfV7/twZhXmEP9b+yMwIbw7e+9a1XL3rRi24Z+90ntJph3rOdJA4gktuXHjCqA3KEwXomQHYBEAzKZZkC3XImZMj63trAaGZkMoAxsHouRj7DueutD703KhsogknJ6NwQ7vQl8K1xqf2BdIAcTMUEKNt7o9+9VzyXIQvQ2bynDr/SnwsuYAs6OAiQdExZoOwNoz7KGvP+3/DsBXcXBF4w1hgtq+4I7C5AtWDDMscAxdb0BX6FVG+Y9IK2yl1W8QLZRxYvEM77ImcD1pm9iNQDXZ/OOyW+MQdkNVbNQylPgFHpEGdE0r3CnBdsk4c2XQImVn7PxnoFNIpmWBBo86kew+bTkZ67aQywLwFSwCpsXuHoe1jUjgUAme7pc6koEky96luaC3lycxJJBVB/Nxe8W4G+8qMuWAc8rT0OhnLgE0dUsrlP61PRNMZebuCuKaqhdtefQubri8pd3e2+1hosaP0mskAfeX9gqu56Ruwb6J15L1cztuWyNel87V+HkHGm98f1CSgJPKOb5jvd3nkDRLWGmHecBX70sfcTZ599kHWPkw1gq00JxyGd9NPnWKVY+5v+Bpua7JrQ/Y2ftFmJcZEvl8PNvO4HGJ2eWYerR+t6ddE/Uk1g3APYpTnZFBKeD7zVVmMPYDZOC4YCa5fl3bObP+niArrr2PWO7b7qaU1IV6Vy4CjaQx33YD1rkneuvkZ62HVbP9s/H9m32gygphPrjNh3KyfRcf98yimnnHIT5AR4T3nkJQZsP//yX/7LB1ZmB1kF8D4Vec1rXnP5eaoSU7N8u/08HSJdwJ2kNBVAlydzf3IvgFqG0oME3m4nmwMQsIOBIZRvwxaxctvwY4vYiGPyYkAJExSu7XOA5eZGSzAf9tRkYd+YL9snGeyF/QY0xRZjID0uUttjWN6LyM0Y8Hg3WTDkboDwk5H0ICOnut8OkH4mJV0N+ImVzwlW3wF6+z7HVQDu9g9AyuFkGU4MUHkhMXUwjbBqiHlQ2THZpR3pc8DMOkX67eTxjNANLQXGdE+Ak9PPhb6bk8tQAnapa2UyuFtzKicwtrKb56Xj2esz4p1KzuEHZOt3ZQFxgVHlB9UP2iSVS88C+NQ2aTAan1iS6XNphTiI5CPF6gRScXBcx6jV7wxowIJ+YiTXzqRxBVwtE1cbAL9HRpE+XhatexnbC+ou23sZeNeBucpX7pav3G2nNXWBgW33hrfr/+QIbnmG77fN29d7nWsby3Sl9dkYqa9UCuu06v2ZoyLHSsA+xwqHQgLMxeoGTHE6pjtd37Plyi7HP4YtgCcdEjUijF9u5sYDs96cBzptrmjA0fa7ugEAhWDvOqh/AFLrPAJIthbUfsxHYy5tSvWo7oDhBei6x6FOQt3VWaTAMkbV09oIuJZuBQhaO+wFtH1TIdRuOT9bs1pbm0ONP+Y4hiMwLAGIKZ+zGfDMcbRh/zvfvM/WwW/s6ClHjb8XnFt9XiB/UyQZN+xWfbZMWPNYepCth+gm6xggFLi39agPHY6pXO8U6w4AcueEPZq93K5Hq5+Ywcvk944y15bBrm85yHbcgcscnXtIWPeZO83HnlsqFE4bTjv6zxmyjhRAKccmBrF8ypx0nrdRZua01Dyr67VzDy5sfDj+9Iv1zf6z8npv50QRRbBOTakqulc/AWod5keHrf3ez+pk7nEmSO1hj2CeexdsZMVGVehfOqJvTjnllFNumpwr3ymnnHLjhCGYHMNygSHJMmpt7OUaa2O7pwQDojLWsS4yqIVB2xgzDBk3NtLL9gBE2sSvZLi2Kc+AD/x/HFm89yKYmXc7YPH9IQCKjPq7sfKfKUmXikIoj3d5aosGCIhMb7F1AjsDeTfvapJxKpyZkS73YbKh8MsQlbuT7jc/hKS7Xwg0Q6wxBZRjOjH8MY77DhjH0Md2DxyVcxAoCdDiiAFeBMZUtxyEjFPh2ljGTgmXd9OhPoxHDCXPYuzWp33vwBs5B7G9gS9y8PZ/jpsYiqVgKc/xh37oh94CYzHhpGSorQ7mYSDv+rWs2AUtOZ8cyGV8AWvyhi4ouoywDb+9DnxdI3ydKspaMBS4cQR2F5zfZx3B5WUCAnFcuwcPbXQGObKIt5177eZZPcqx3vUPYK8+bmwD7IFN3hPVJz2qvwN0yquernR9Drz02/tAeg/jUz3SLaCPUG6pEYx5ZdDN3kE9p3cHAN87B5DSNQuuYlcCeRYUTneAzd6NAC9MXn1q3NVt0zHI+8uhBGjFcO3v+ssBpa1fXdu8DYyu7g5B9V5tjeKAWhboMvw4Wf3fM1xrrHPCyPm7eXRFClhfamupuHouNm7fGSOgnP6ROiHZvrA2LsAJ5Fxwa+ePdQmTeFNIAOOsa4DcYxRDsrll9Yn9CQb1ptvZubYOak46zq7qFTCYpNvaqa7KlzKDjmgznQM+Cv/3PDq67Gf1s/5tJMJ+L3ICQLzRVIlrl4Fq7eRYqY7pCSCWXnmncfh5nv2iNWDTVuy9xgGrtuuV0Vq9eYcdkqg/vX/k9pX/mP72I2WJtdKcS1qXNhcuHQUUA4vNMwD45n0/rvecvpVpTnBiHaNBal/lYboD4tXHOPrbvgEz3VrJOfBkZNf1Z1oelnqccsopj5acAO8pp5xy48RGl6Fg87g5JxmzjF15YDcELmGcYH8sE2LDURkkyyTaHJjLQgDcZBRt6HSSQZnRFDjX348SwLtA+lOVY57IZ1IySgJyAkcfhvrcTmKY/fIv//IFBA1MTI/SPWHFAZ2xdRYESPcynDL8MJ0YT0fQjK4DW7HS5Rxl4JkLidQmmxrB/JQbELAAcPX8NcqBekCUNV4xmdSPgdj8yVFSu4V695MBjF0YqNT/GfJ/8A/+wVt6ByDa/JwAxT0gqGdi38q/25xlfGu3NsbiDIgrDU8i9Lp71qjFZOzzyt/QZvUxhn4DRFwX87j704dSyMhhXHmbK3HBT329DFpgHjBkmbXrQNPvZHNv+n3d2nAdwxdosYDwhjobl3XWLStxn+vvjexYpt724bG+ysPMi60nAgMbDwO+fjUvkvRPvlZAIwcAZqgxD8jkEJDDs7oBctSteSpvZmuSnJZyw0ofYJ70jA37lmMUcxYwCMBLXx1CBbQC2uh3KYx2zPSR+eC9Kq0EkFVqA/q0KY9aX42jQ0u7T5h7P7XTQVRAP/26IKexk0vYM4WtJ5y23QNoB64d9aXPvJOrZ3VrXduDprCL+wxzXr8Au4B91iwA8zoxVn8XJNa/R6YxMNDc2LpvigIpKDjqgPcJ0K3f9bE9iegK65Syu86BfsZ61wL6KsReH8gx3b10zVw/OvXohu+P+VrVBQDMwae/NvrDWqFcfeUa12uHd02faR8WMFBcihARIJXvjAWpe5J1kgDkm+euB1rqC+Ph/aCM6m3dsM4v+5ouW3elGerZmMHONJCGApHB3ME+5nh03bKszf91tFjvjaNDITf3+7Lavf83PYU5a05gxRtPn+tfzPFTTjnllJsmJ8B7yimn3DjBmmiTyXhMME+wT2z427AyejcfKPYQo2gBpf6XZ3HZYvJeYndgfgh728M1hPkG+tis9jvDUVj3dcy2h1UedD0B4M+0pEeFWD/M4G6CfVcKGsBq+pdOllokUHFDftPBQM2uCfgFDjlNPdAzMAObEPtrWdXCdhlgGEqMSiylZMN6l6ElzJdBvcBi0j3NISAqUO7IDmLMM0a7PnATezIQp/zWzbvaEvAbYNYzpZXICFVn6wW24TqONk9lv+sH9+3BSrWL44guBxT1fUCKXN0Ai55ljRBKL0TX6fMLlgvVBYzLV5gR3yGdte/DP/zDbzGXrXfL3j32p3UxWZYmIMTYLHhk/XTNAjH04wgCbfjtgoQLFCQLLB+ZuUeG8IYyLyC2wPGC9db3ox4dwV0Mx9IMdAgp8AMglZhbXeM9gO1pbNKN5iKQq/kK9JCDWb5a+gjYwIzs2sYdICSHrPdU5RT9scB4etAcANQm5ipWqXrIkQvIWZa5CJSuWeZzeuwgua6TT5Qu+N+7N92X43rTG1UGVn26v89dZiznily8MeMXaDW2gCLOVYC7qAJnOcjZTTeMeb9jEwc4l/vX/ACyGWP1p69AN2k05NkGmC6jduec/nN2ACBMW8yjZf4C4ulrskx/jM9lryvHGlafAF2te8bX+q/P92A6DF/zsu92j7Oh9Zzlywa3bniv6H8/cg573oLkOz/NGfpN38xnzzEmUp9YS4Dl5n3l7GG6xmmjwzgcMLsdbinlDuYsZrN3qznq4DgHh8rvawzXiaFNnuNAx3XqICnob+8e+rVOS+XRDXPEs81L9cHwFXGGcS3twrKMfU9/9FPf52TUp/RD/mVpheiy8Vnwnp5JlXbm4L13aa/3lV/5lZfzXjrro34upVbn1/zrf/2vn9J5L+lFqa8616b9Rvusxi89bZ/1sz/7s1f/9t/+27sefJwt9Gf+zJ+5etnLXnY5n6Zoxsa7iJXf+I3fuPrBH/zBqx/90R+9tae8XRmdKXEv8r3f+71XX/iFX3jf7T3llGdaToD3lFNOuXGCeSJUehlma5DYVAJtgEjC8xioyw46hlEyklzrmRhRQN7N8WfjKydqm/ZC6gG8AQKx/BgJj1se3nsVRtbDIAz0R0HaqMfeDJhwKnZpG44b+PSsjXSHo2EGxQJmWHJOLMDHoKSXXROYlPH37Gc/+zJ/eo4DmcyPZeAeQ/eXARbg1XzIYNgDENvoV0aGIp0QTuqgqp3rfaf9sZkzLD1TaHH5UeuD5hx2m/m7zor9H6DXugGY3LBsfeaQJakb5PwEYOc8il0sv7T29znmknWp72oLQ16uUpEFnt8z5AGWbqODqxr7NYQ3xcWCuxuKD6TasXftkeG6qSv8v2DJEZhdANh4Lehr7dyUCtexixfI8zlGJUbjEVj2vTX++PxlpC7QhzHZOh2w0k/9nr42ZkB+IePSfTSnAvTTQ/MPsId5qQ1Jbcd0847Z8GwH+WEBahuwVi759KE5Uz06SBWIxpkCeHIfwAaYAvDhWFgQZ6NXgD/AaSBVurm5VhfoxSLs3dc19ZFDk2p7/SgNCsdLghHYNd0PTKzM2iwdhPf/pliRgqXrgIQAQIfROTCuNYCTBnO4tQKLm27KubxrEbBw1wJAtfc+pzOH2c4pwBtQE9jlvtV7aRi0WTm7di2bkz5vSoT6uHvlQ6VrQFPrHFASI9y477pobpl/QGg6DljnUMfK1XcAXQzjfY71SB/t2qV/fOdZ+mrHhCNkAWrjuesfVm5lcW5aw4DOUo9wxCMH1Keb7sDYG0t58fU1Rvfqj3zCnCvmq8PKKqP5Yy3zPq/c6p5eNgelktAPGPm9Hzh0MLE5H5oPzceEgwXID/i1HmwOZTnkrSNYxsB+DqvmGYCWfspZvM4LdfYdZ0llBHIf05vdqxznyDMp7696fMqnfMrVK1/5yvc5a6Vx793VQeFf/MVffAF+A3zvV4oOev3rX3/Rv6P07vuoj/qoy89f+2t/7epLv/RLL4DydfIP/sE/uPr6r//6a9Ml9d7t51M/9VOv3vjGN159xmd8xj2dzXHKKY+rnADvKaeccuMEA2Xz1gkLs4m0KW2zyICx8QPCYLptnrI1agJd1tiyObeptvllgDJUgUFtsIScMvj6LMM8YCYvdKxLm+2no582/JGh44ehlSw48mQEYNd4yFt3L3KnEDyG1pOt0+MsjHX66oTwlTb2jXsMNgcFYZ73/4ZSC7VN5MkDKCWMTOHgAE2/zRGsMsZ+3zngjIFb3QGVy1Dr/oBZrOG+2/yFm0IiULO29H1GzbL1u6+5u6HB/q7+ALuEkalP5DCN0d31HZy2hw31k+FfewANMUpizFRGTp2Av67/o3/0j16A50B1YBOAL/A3A76/Gd7lUI5F2PMypqpnn2O6AxGqe99hlHFMOTTKmrc5Djf1zAINm6IC8Llgv3FYQHdB0gVQj3+7zs+yggFFy9QxRgv20qsFmpYF5zNrF8BmWcpbZ209sonVF8DTuNVnjXOACl0F3Bj/fjBnN0y5caoM4IX8pLHm19Egj23fA1SA9wAPDovN34z1BIQEYgJjAX4Aaf9v3td1gPZdn20EzKZwcbBSZdWGng88TMxxgE316f/WmH7UDVi54BwQGjC9eYSBcAnwUfoja5Z3v0MWsaABadYsOgDEcmiVdUEkQM+t/kfgznwA2lr/MD7tB9YZtCkF1um1Ob3loudk3tylDlWzRjuIbA9kk3oC0Ac8lj5jHdjmgkP1AIjqs4zjZQurEyDQHsj19Nw64se+6whgbyorQC/Q3jvIHPCMPZyQLi5ze9nM2ntkC3d/87nrc7KvE8NzE+mjtD196J3iDAc6IF0H56Z2c0jQO3W0jmAiA+QBu/pQrl/6X12qd3Vu7LyLlgXe59ZkLHSODboWKGxMtHOZsubBso2BuPTIHhu5YVPOdG+gn/Gy7lvX9RXWu/1H7ew5tdHeml6ccmcp1/8P/dAP3crF/s3f/M2Xsxoaw8/+7M++gK7ZGz/1Uz91Yd+mm/cj6Qxwt/MFfvInf/LCtm0+FBXxaZ/2aVdf8iVfctmPvOpVr7qsof/1v/7XJ5TT3qbx7vmvfvWrr37hF37hkr8+XXjOc55zYR+3Z+rn53/+568+7MM+7Np97UqA8U/8xE/c9vuH9UyNU065m5wA7ymnnHLjpE2MzTFGBiAQ+4DxYQMNoNmNK0PveFiaTT5DYY3/ZJlrNvCYMHuohzBbjKRAmQyFF7/4xZdNWRuevNS/+qu/+rR4+ndzzIh4uuRO4V93SkNxp80mw/qUu/db4OBKuhWrQz7bAMUk3Q9YNGeAAIyzPYyFwQVIAYZ0bRt7QFFGZ5t9rDigU9c6DKxr0/3AIYZhwKhUKhwOOT8cdCSMGIBnLgJwajNwLKOi+j/vec+7PLu522fVrb8Dmyq37wLLGPRCXIF02q0NDt9bUMbBa11XntSu63eh+7FQeiawqjr1f8/vd/dkbJkvG5JdOxj0xhdI4tBHB1jtAUbYrBjFnF/WvyPIemT2Et/7mywwdWQ+79wG3B1B2yMwvGVuPQBoy5A8gsZ73zLIsZEX+FLH7WdAxTFSY9uPnbv5JFvHzSXgIdALKNMcAE5m7BbG2nfNNwczpW+NY++CPm8+9HlOvoxojhDOQkxurDtt4ETgNFxAX5vV14FhQCntp+/7XsOsA256x+n36l86g/QRu1keXMz35gxgbsEkzwTOOiCy+dn7saiETZWCJa+vAYAALQfPWTsw3AHxUkoAl+wNpIegF5uKpXu7rnphUK7eAjd3fdJWereh6dt3nmWMqldrEXCQPltbzGN7iXXA2M8A9OWN9nxOb+Ny1HcA6vbLtmEjJQDH8vbaPzV+CefxsuGXjSpaAfitvQs8Hxn1UtJ4N5njCzCukwZwb82zH1O++zzfvk//2ifuflK/yLvbHKR/ngNwNj6bdx4IutfXrk2nI83YpqXoWZvz1xg13ypfn3C0euamT+IIowvy8XZvjiH9sKlDNgXTgrvLDNbf+o4zq3Wg6+ojukXnvNOMX9+JkKgeHGGAXRE3m4bjlNvLt33bt93qr0/4hE+4+rVf+7Vb3wX0BqL+s3/2zy77jq/92q+9+sZv/Mb7Kr8xDEDuvg6PPcprX/vaq5/5mZ+5gLaN37/6V//q6lnPetYTruv9+Df+xt+4+o7v+I4n7F/f8pa3XP3AD/zA1X/6T//p6rM+67Mu0WJf8zVfc/UP/+E/vGPdehf95m/+5n2155RTHgU5Ad5TTjnlxkmGlzyHybI5GGibg4zBx2iWU43hxPDEaF32CiMJmAGc2jBALB/sOnk3GRmVHUgktNUGupxZhYbmDX+cwcz3Z7jcMtNuqqSzhbgFlpaeIQOq8LzAo5gVjPScC+mrEFSHSSV0HkMRy0eKhvRbXzffsIeAUeZSDPXqExDT9ctc23D67hf62u+MWeknAsE29Jpxm1HZvbFt+14dKjfAtbYFuAZux6LlGFr2lHD3BQcADPIvbv5GIFvCcZSxWn3rp57RvNanCZBXegrAhtzACxapS9cDSZahzCjfXJMbSiuPogPchKpbc5YNu2vdAsDL5L8OIE6uA0iX5bvXeOYReF3g7MjM1TYAsb5YIFc9fbahn+uQ8z9Qad8bC3pjMNbfjRWAo340Rg4UDJjD1sWQy4B14Fhzrnubc/LIAvgX+HdgmWgFDFlgNwZ64CdW5rJwm0/Vw7xyMJL8nN5D2I9AOe9Ln+tLuWErR0g6QA2YiG1Z+f2uHdiKzcEAJOHr/UiLtGzxyuo+DMLmkBQKm4vXOHa9w9a0k0MIsGa8OFYru3HqOYDH7mtM2kOYQzEOhcz3fAfVyXkKQNwDsYwVcHjzw1aPjWih03ICA8mqF5DO3kSZIgWwPwF19iH0t8+lF7I2Wiewd5cJD0jEeJYSpP+BlOtMWQa4FDTabI4uW9w8MUc3bcMyoVfnPFPKiOq1B27pL/OWs8I6ATDW9s3xDcAFmO/ahnW6UQPqWV364djk7DeO2/90XDt2HHymjpUH/AXccvxY56z1G3HRM3uvWpcSe1fphzxPP4pK6bPmJF2QugNr1n3bh5yI5n5rYOubffQ6H3oPcyIA9bWFLvqdFBUjygQwzXGy7PC9537k6Ih8JuXprkdRWh/7sR97+fu7vuu73gfcJa94xSsueWif+9znXn3VV33V1T/+x//4vtLCveENb7j83Ele85rXXP3Yj/3YZd+ZY/NFL3rRZe+58rf+1t+6Yxnpy5d/+Zdf0jSkw5V1N4D3lFMeVzkB3lNOOeXGSUZ2BmGG8DGEy4Z0jURGtY03owMLxiae8SL3nw3xnpgNhGEU9L1TkhObU8BVxqPcg0K1bchjQf7hP/yHbx1+8v4UBtbjJI2b0P3Ay5sI8qafH/3RH331iZ/4iReAADgV2zUdZ6QnQJf0AHNH+CmjVFhl5Tqxu+8DSRin6XXS3+ly9wU6VHYpC7AIGa4bUrvPAj5UXvOlH+HSgKoEmIBp21pQ3cx9cy2GcAwPB8nJW4gFi1G37CWsxtKn7CFQcoYCmzC9hPRXXuBvv3t2IG9zG8AEdKqum24h4M7zMb7qw8atdU66ikR49pGJ2+eYnJiR/Qhlr2/20EmM020LWbBjwZdj2oUFc29nxC4z9AgMk/0OYIzdtqHM2F3AjgVDAFj7e0GqZXEuo9fz/QD8cgg09gEaAD7PkrahcTWG1pvVY++KWN3Yrt5JfW9MjA8wozGXzzd9AZ5t3krpVjAC6XzPTwcX2PNMYErtag5g5nkH0GeGP1AagHY8AK1ne8+pIxBbH3Noum7D0KWYAL7tgaXqkz4D17omJ2l/Y1LSX4czdk3jYj4dWZIOgqITPUNeYeMo/YXcqIn2b4qGdUQAoeipNi1zFyBpTbWm7HoLqD4Clsqnv37vOrqHYx11cOen+SQnskPRdk0w9zaSo7Fo7QKaAruX6btzaJm+HO2uX0DcZ+bghvXvIWr6cdcHY6GcTbXi/eZwWxFam5pH/xhH6UkcCgYgTadbT6VV0VfG01pjTKVXoCO+lzN33znGfNN62CM2p5dlb9zq+/aO2LP6FLuXvnP6cMz0fH28bHjO2wXqe4fFouToEOpOv803DpXNs7wkiAXpld/1wGrvNfsSOZs9S7+ccr0EhpLv+Z7vufaa+v77v//7r77lW77l0u9//I//8Qvr9kFLbOFA2aRzEY4A771Ia0yHnAZcV8Ypp9xUOQHeU0455caJ0+oz7DBLGBw294wD7DZ5GfeAiASI5BAZzN9kwyIZ74zmzc1rQ7vGlM1tIhxbvr4FhmMgZZS2sXl/yvsT3H1/gcn1p3C/+jhg7245vB4nSadiTnzBF3zBRRcDKQOj0r823/InMsQddpR0feDSsrYCuDB0S/nQ56VA6LrKbP5JZRD4CRwxJ7CosGMZ0YCc7mGQurY5Io9mzzM/gEGJOm+u1QULgK7VIQBV6HKfH3MQdl1OgQDwZRXv4TfAwWVoYaFhejHGASjYg5VT2bGcpIgQWr5lapsxCTCsHuWmA1pg6GIYA3YAMQDqxJrVc6tLeiA0mCwz7hiKvkCpa62Fq2/7+bLtlvW8QK++BHJYt+Wn3OduWpnNweyZm45gwV2yABvAzP1H9nH1im0eKI8Z2xhJOwIwwaKVMkDYOjY7FnvOx8YSeLsAvfZ27TpNMAoXOJXz1zhre/8DdTEAq5+D+bzTgNz6k3OystPDTW2076XmYGCA8cHGBJRp7x7iBqjkoADqAKIWwKVzG3lDZ4BhwCFzzLgBQX2WE1V6Ew5WqZiAR+uM6u/Gp7oHMu36ATBfhvyyiOk4xw8WJTDY3sRat84SADBwz/rjfaUPlU0H6PmCptt/nGfLcD+mZTgCscZ8HTfGzz3LWDW/NhcrnV0wk97pO+Nl3tGn69IzWJs43fXdrmnGAovXvXTX/LBWJJtnWjqLTcux6x79qW96z5lT2N/7fjEmnm/+2nsaT6nB6M3RoblOFUCplC7Wj8owppytAFGMfczn6i03tbMhWsusXd3rOfQ1Hdr9bfvR3kHVg7OWQ4JzyBy1H0ak0G5jqM7m1RIiHAJ3PAyy9aO1pnqfcnvJmZ80zm9+85tve90v//Iv3/r7pS996dMC8G46jaey39/5c8opN1VOgPeUU065cYKpE6MnAIMB4wcbbsP4bMT3cAqbYKw7gI5DYtr0ApsqAxAlzC4BBC2DbA1Zm+q+EzaKSZG0ud2Tb58JES7OEHEKM8CLMGaT+0mDgKHFUK9v7pSz96m0ozEL5E3q90L1HRT2uEtAx8tf/vJLiFwsCCeFA2EZZ+k2455OC+fOGDT25gJGTyAvdlk/lbshlAHqhT4HygI5GeSMYwBRYr5hGWPOC/Vubge+AgmAg9KhMAirMyOY8QkQFDq+8xY4AQBy6jfApmsZ9Uc2K3DAWgJoaj3iSAImdWI1tmVrVboJKMuA7rty1QEm+h4oVPvk083I3vBvYBhAS4RA481gPx4qmVR3fWWd8vky33a9PMrtAN9l1CWAu/1/WY/HHJjWbMCP+7GdAZHAMOVa5xfcXdAFmHxMTbEMZPWOMQR4iXlbKLH8uxvCLm0DIFXqBWsNZm667rA8YE3jZK7RtwUNgUQAF04DYFk/wqeB3/pOpIkcl0n3yeNZHeTIlN+WHvRMbaJfy/DTrzvPzKsFx5LmbjqL0YhRfGS0AoLoI2Cy/gIWtaYBJbH4zUvpMZp75r1891K+YMBLjRCw21pWW7Hc+5xDCkjGGWM94DBS1366H9iIPUnH6fsyxIHc3oMiifSxPrK29DwpWHYMzHHzGXjfM7rWfPf5CmDP2C+ofDyo1rqAdapdux46aE/91qlwXLOWHbxOdmuC8o3l9qWy1W3fQ55NpzC++86c2nVlwWWAIiddY5rOSPeTfmHbG4d17mO0OjRsGeo7dnQAs3wFsK4+mxJkQVfsdXtO89mc6p2VUxbov+k0RHD0f+uVd64D1Tj/OEcqs7lgDe8zecmlDUrs6/Ydo43mtjG3L66fMP05ODhrOGNJ7btfWcD+mZanux45gJOck3cCRH/nd37nCfc8aPm4j/u4W39fl6v3XiRmuvrdSxlf8RVfcfUN3/ANl1RczYne2b/yK79y9e///b9/UgziU055WOQEeE855ZQbJwAYufL2QBFG5RpOjGabLXkDgQyxAxnN8gImch0eD/Nh9C04oV42237bNDsFOxDGyd7yeTLyrwNUnm6pXzKiCylvc+W09jZKDhYSzlfoMpCrvi/8PTDwbptYRmnAa4ZT/Xov7Nr7Zf7Knxko6KCOfmKyYmo9ztLpwx3eF9CUMRZzNB1jaKZ/gRuNRyBsv+sXBiBDmnFK74EvH/mRH/k+xivjGQsJIJFeYDtiQQFHGLlJDKE+z4DOwGxO939/YwhWVtJn6cxP//RP3zLqX/CCF1z9gT/wBy655TJY+8nQ6TOMx/S551grgNULfEhlAfjq3sBsuQzVmf7sQYq7tghPFTJe3y9bq/lUGxPss+YEMEydlqWHrWssjtLzMU6B5ACPBWqWpbhrjTYxwpNl9JHjvcvM2jHFZNNPy9K0lu5zl+WHrWj9XnYuEGTlCO4ueAQo2/VD3TcPp88Bl75LJzDdMNS1EVjY95sDOVB4w7Mbl/6WsxrYom/cm2DFyuOLaZ7IwbzjUfmV7TCmdWSot3QdWJPeQRw6xgU4QzeBmA664rDYUG5lAYnobfUJlOld0XwF2HFIAMSwU7ULwORzQDiWIDDXe9pckuICCAmUlNvXu1qeWqAVQLPfrQdy+q8TwPyzvgEvOaGsf9jdC9R6/jpRNs+3ftwUDZxmCQDvmKZg151NTyK3N7BVHy871gF0y0Clz1LD6EPRRhslsYCwfdD2x0Y6HJ1RdFefeI94x+szbV026zE6YJm7+nevA+6aP9tv5to6CXbcvQutXfWJNpkTwPxde8zlnYueueQDumDdBrZj9lovRYUtA7u6pPM5Ub1XpB6hz0Bt4LR3hOd1nxQ+vfuNb3/Xtz1DeZtrv3kjfdnqSs+Ry5nzaMfSXAJU94z2Jq2nnKJ7Vgaw3J5+UxQ96tKe4m5iv3Mvkr61Z0/ar99J2qc3To17+6MHLS984Qsv5zwkkQsWUL4f+bqv+7pb79kf/uEfvuv1HVhN0pfelUWZfdmXfdnVv/23//aSc/hM83HKoygnwHvKKafcOGFYBcYG3rRxsslmKNlM2oTaKAJRMPccfOI7m+A+y9hqQ81wWQN72SdH445BuGHEDFubeQchdU0b48qwIb8XYVwcGTr3K22m2mgH8AaMtvmrHsJsAVj1Q17y2pmBEYiIkXw3Ni5AEPOLoSDM/ChYjj03Y+NeBNDu8B1gb4wtdXw6WMMPizSGn/RJn3QrBUDzIt3AsHGYE2C2sS19QeB3pytjY0udUP9hHAIl0o9SQLzrXe+69R3j2KnI0jdgLsk72Nh0GBrDuO+av/397ne/+/L8rgU+cNgw2vs/R0T/ZwTVtkAkrEu5e7UZ00/OVKHp0rAwOrFkN41K7ekefWYOYOy6F9PuCKhiYS1jD2jS9c0f+UoZ7RtxsGAAVqGDkJYF53R64MPm/azcADZAI5B3GW8M6mW3Lqi6YOkxBDrZe4AvR5YacMkzN8x6Q92XEXpk+229gL8Ajq2nOi3L0PMX0F5W2TKSF5yQt7nnNbcALOmFd0nXSeHg/dO7CEhtzAI0hDG3bgKD9lAq7x6MdLog/6n5qFwOGPmp16koNDvJoPfO2fyWQFrzaxm2ni2fq/43n/q8dgcubOoCYJY50xoj56/34M4RwK4DyZZVDPDisLW+AwSFzNfW+rcxAgZj4wKpzFHAL8Zhf3evfNzd2/rlEKxlgpsTy3Z3KNs6f7FP9RkHAQfbRgJZkwjQ1JzAED7OA+uRiAEAfrK5zc0T+ugz4wqc1ScLrFpf9N2mrqmPjmApB8YCz3R0GfkLlNMD/bnOIk7xZRqrByfSdXMaaxVwrj8WcDWe2mo9bz3mmOQY2zMcdl3fA+mIMW5u9Lec7dZGzkOOUONk3gD1e1bvcP3Qd8D5ygT+7qGKfU6vANTq5/29c6pyWzsw3umAPNWbbmnBe6kX7BUc+ohhDPg1RtYSv0Wp0AvOMXWNbNG1sfjN38dF3vSmN931mqMT805SXxLr/Z0EQ91Bmw9K0ofv/M7vvPXO//qv//onTVD46q/+6svf7V+/4zu+47bX5pB49atfffVLv/RLV+95z3suOti79xM+4RMuUWz1TSBvvz/3cz/3SbbslFOeOTkB3lNOOeVGSpuVAB+5QG2cbWaXacLAFQLKINvwSmF52CgM7sRmekPLlzECvGV0MEoJ5k6yBmqfxaQMNAv0ectb3nJP3uY2gYFbgbJtzt/5znc+aXZqzwvkU8c2/QFoncYbYFZd2yR1YBWWU2yB3/zN37x8fy/PrU8CRoC1d7unvrnftAo943/9r/91YcBVdzpQ+9KVp3LgGtbKwyoZSX/hL/yFS7j/7/7u795KN+JgFUCL8GPGGxC9zTLjlLHrOmzU+rONdHPE/AAY9H9MVMAAA7/yA4F6vhD49ED+3zbkgb5CsZf9xeBMABIBC+WPe9WrXnUrNBiYyMgFBKljv7uPUZ0ABoA+wqUZ8ECa2r4AJVY4oIhx7QAe6Rs8S/mbZ7E5UFszZPtp3ldO/STkf4GDzWW4bLAEeAAUwTauLGuetBz1gTED5qzxrl82nPYIhh7/XiA22cOPNix7y16wRX2OB35tmUcAd0Hd/c73C8DtO0Adth4r2LV9XzoNYMmG1GOEekfIG4khR0/Td8BHn6Xz3Ve59KA5x+kF/Kpcoc9A/XRF3/5/7N35r65bVtb9/Y9I6KrqVN9XUQgFggiIqJEYNAaNMegPmhgxsYuJmhiJMSYaUWNMDCoRCMSORlEQKIGiiupbqgAV9d94kzffJ+9nvVfdrL3P3tVwzqk1R7Ky1nqe+573bMac9xzXuMaY/8//l/NWH256lHUmcGwBRheoxwgHTG8uUGxGgE/3ylGvjOYt/ZO6YlMWeZ5USNKw1J/duyk7OFh2fIz9gkfY3fWhuYCBfGVs7mGRtaPvvOO1acHKgGGgIN2qzc3zvktaT7vXeK5zZ/Xp2o+Yw5sTV7g/5qI6b27bfnOy7ZwEmBn/DYHXh3Q+sR8xDwGfm+qg37V/AUu6VR04hqSyAEha+/XbMvUXVMTwdt/ON+8Kz11G8n1rhnJ3Hl8dP1jk+4zNv1v/twZzMG8u2t6Ve+Despz1I100pt5X+iGR6mrXJ/1uzll7d40zRuYk8LP1hJMg3SlSAHO9tm5ZnOO7trSWeOdWNoaxQ0TtbRx61tqBvWtMqnfvuUBwa6X1xZplvHf810Hhp/LlDwae0+8FHzfS5Fnls90Pv5REqpbkaewGe2ARG58v+b7v+77boWjJ93//9z/68R//8WcuI5340R/90bu15E/8iT/xWHA/J2l20/X7D33oQ4/+03/6T4/+8T/+x49++qd/+maz/LE/9sce/fAP//CjH/uxH/ssW3fkyAsjB+A9cuTIgxQbyDz9bdiXHbSbxmWXrPHAsBHWjOmT2Ny2cWW4+71hgDbGNu+Mxs1bCGhwzx5s0v+xYgt9ry4Bp88XapVUt1iX5bzqeYGtn8uBBA6jyqBrAx/gG/BmQ5gxUX3lYA2UeprUDGT74gstcs5+vqT2Sh3wYpTq9/t+3+979A3f8A03Nlr6E5BUn6db6UcbX/nzGP8Zt5jV/d33Afhy0abLzav0ChDRNQ7rakMudJPOd3061DVCVTF6MNfSr36w9YSONhcCPIEPjO4Nce66QgHf/e533zb5DOCdW8DVPRwGg1i5Pd9awFljPgtxrS2YfcqWhxFLkBPCPRnc9BxYsAf6bJoHeRA3jzjwZ0OYl5nuWVh1myNxIxYqR3uBMK1lQmmtT342fJYxzkm1c3ZZuNdUCxs2bb1zresWEAZ0AA+W2bdAkXsBPOqx313TTagHXd82bFi37wCGQJ/WNwBu4sCjTSMhdU363ZgtgNj6A3DkZPF3ggHbXOk7h5kFsKQPy+TuM8BRrOJARwxf4BjWPgHuyN2M2WhsMCPND0xw86P/haJ7huuMFaBt024AAYFJlSff/K6f5oOUBFj98kPLLQowBeZpS/OlNUZaiwUYje3m+gZQctA42K73GbbgpiNK1iHY9603qyvmMgBU36mreq9Om8PGc+urL6+gO70HIq4jbgFQ19QOh+Ql9BUzHaAOcPe9tthD6e/9sVdah4T62ftc88bunmvB5+v8db0Q/euc1ZZ1VNBL5TgEcEHhXcOxWI0hB17zEEDMocFBqK+trVi0GMoOMfW+867gkBEFwKm6KSE2ssD7wXovd7u+7X1h/bG/5YBvTZA2ZvP7StPAmet59p7AX2PTOyKH0q5jzZU+7/49iK1y5LC25lydEUgNrjcfgd89oz2FtGXNMynSNirhi0UCQdtnf75k19Rl8T9OOOE+n6zov/JX/sqj7/7u7779/d73vvfRn/2zf/aZy0iPfuInfuIudURldijw42QPX71PStMVa7dcvPL0HoD3yEtNDsB75MiRByfA2TZ/bVocbIPxI+yOEcwY2HBABlj3Ye7KTbhAhrBMQLGNxYYIymvIyEsWPGEgYCH1d8Z6LNw2tK95zWtugNm///f//qkA3jbasSFj/qrj5yL1B7ApQ7ZN6Bq4PSNDACDg9PXPVRhLv12HoC0T8Gnlc2GRfCEFm/Abv/EbH/3RP/pH74x04BMQAUOW4bdht42xvHmAD4B2Yw3QrP0ZkW95y1tuLOEMSyAEoAeDnqHKYFSecPVNbZJO9fzmAOO8eSHE22E5gDfgRmD2P//n//xWBiN4D54BeC77ldHe507tFqK74OMyxQC3dGYPL1rWFBYTAAELWjnycBujgGz90LxvvgHXFyRdQE2EwDJThfD2d3NS2+urygWuGe/mGfB78ysDRIBR17m9hjaQ4r60DYCgKxjrPtf43NoFLEmWBW7ebXnuvY+Bm9yXTocsmKRd6oGRJlczXcpJAmxbJlr9HYvIuAAmvD+kxdjrgdjKA5oZJ6AQ8MS8oT8OH6PT+gYbTkh592Ot6q89aKprgL/+9u5M0h+Om57JQSDVyTI3veP6v+8rv74okgLjWBurD8B6x1t/0y2g+TqkOEFqd3UWqu7wRukSMBqXUQ2s50wCIHVt88RcxtiUk5ZjEyhqL1G5+o9e7TxaYNk91pHuo4fWTWsnpvMyOxcAXpbuOnbsb8x1urAMUs/nyMKav+6LtuxlbsvxyhmwaR8WpNRuQLW27rXmkbZs5EPlcyBIi9A4eA/smrB94yBBIPH2/zp+9Gm62vPSa+vrjtOu7dZVkWLVq+c1p60L6ZWzFXZNEkljXnvvYrNLBcEZIO87HZZr2vwxR9JbeefNwXRHCL45BoTl5KTL6X73eadWd3sBUTZ91jyungG/2PHaQ0+W/LB7Dfq0h/WtntU/0rNwELd2iLiRpuSLRXrPP0uO3ecTDuXkafpJaqGnSefwNPKn//SffvS93/u9dwei/d7f+3ufKc1ckv79h//wH257y+Tv/b2/d/v5XOUXfuEXbsSX8vF+zdd8zWe19z9y5IWUA/AeOXLkwQkWGkOjjQvGgM2iDfqyKZZJsCGEa6Da2DI0gDnLeGOw7HN40DE/lnXG0FmGBdZw4dQZB22uX/7yl9/ydC0Idp/Y+C+b5PlkWTWPK7PNfBtQoXorNvbAg+tm6UkbqMd9Xp/JtQaYebGxNtTtxST19Zve9KZH3/md33lL04HNxtgXMhlzV+7NDekFCjaeGVTSZzT2GQ2xZM2P9LIxKjVC1zpsxSFIwlxj4qTHUgF0b0Bw18u1KTxa/mvAI0YsAKr6VG+nkqfj1YtxVP2/8iu/8nZNbQQeVK/qyqA1X3OGmI99nrHa30DRPSE9IBvj8ZpyonuADX3/5V/+5Z+R+gV4BAjo8Dd5Dj/xiU/crREOscFy7L6cKwAtIePKXrAC+Mo455zBHJNPGEsHsw4zzYFsVwbuAi5+Ngx6GXdX0GaBIevAdU3a8hJsQeCJdWXT6FzX3ScBtdtW+Ztdu2v2fr6MQmvb5pkNRLF2y4sKlIj9SUcSqYIaC6fSVxdh/ZUPyOMAMMfSd+BI+lcdsSv1Z/c3t+jI5qoF5mCg9r1DA73rNhql+UQHOBL8Ld1EAmRzcFp1kwdYfy8QlugngKdDFAFfUkeoq5Qn9MLcF9LfusKZtflLK7Nrcwj13ioc19qj3hitG6rfwZPd01hhQtcXlQfs7ZkcPPvexnzlRNnIgMYLY3NTLXivyY3qQEX9AWh2X99ZF9a5Yx9h7mweW+UAsruvMjbvtlQtyuXUuDpOEuk1FpCs/q2tm3JBu/QVnVlW/u6Zdi3j7KAzCzpvnwEx66+eb/23ZzO/u9eeyDy/sp85A1t/pU3hRLyysdepu0xyERz2QPZfzhfQNu/Idfo1/hwsm5t4Af/a5dBAgJy5Tc+w3jkVsX27rj7yXgCiGrN9J4jy4Uzh3Nj1vbrIkS29gz7VR7uX3r3y5v8Hjot080z7eGX3fXPZO0y0zbOKNrwY5AtZj/QqZ3Hrco7IJ0n9CAQuv+3nKn/kj/yRR//kn/yT299F/H3TN33TbeyeRRrfDlLLYZ/ktP9Lf+kvPfp8SXuuAN70V1qsI0deKnIA3iNHjjw4sRkWzoYBtWHaNvkMsw0ds+FsY9nvNsWYtUAoRhgGgo07oGUNF38vILHhzruhZ5BnMMtnCGyLHVlbMjCfJNX5wx/+8A2IC2TKyHjSPZXPEMEku0p1BaJd0xE4rbd+yrjYMMC9/3HyuPy3DGf5BgEXwmX19+dLsFWEMDNS5OHL6Lnvec8HuP92S7rT6cFt7NtcYyIBlOq7mOBCLRd020N0uu5//I//cduYa6OQU0aiPLz/8T/+xxtjMRCE3q6hB6Ss7MCvdKmcyOlzunMNzzXfdl4l6dcv/uIv3pwM5q22AXwZhQ4rY8B2bcBvxk595P7mCECpn0Bx6SYql0NjwT5h3Ms86tlyamYsATasEekxYA7QhO23awMDdvNyB4b3XX3VuEnxACiw1kmp4f8N6yaeL5dyZQhDXuAIoLNs122PcH33JAtaLdNwwQrA7RUUBhwvs1F51uXN+6js/dvav8AU4BiLc+VahwW43Lsh2cDFdL1xs5brT9+v/qYrmHr1Mya2OSXdj/yY2p2uAOUX0MGO3fUJYEWvvKf6vjU9fQEqAwWBLNrQtXL/ajNwqDIrI10rsqR1YR1BPaPcn/QXa1i/c3rUTnNH6gVAnQOWAGLuX6BU2VjLDgbqf6w+h38CqTHYq7cc8t3Xutb6QN/1PadC15SzPPBDagFOK+8sILUDjfbwK/rTd3Lq0jPPpJu1SU7f2km3MN4c4Ldg36Zo4NABfLsG87P6q5N5Tm82NQSglWNi3wvGyrrlf8xn7cXk9Bzs2w0TXyfPgn7LqFX2pq7RX8bBsznczQ/zF3B+ZR8n2i8CZKNAHAjWfEhn6sN0vvsB/ev84JCji3sOwzoYpR1K7/SNeWZds8bR+y3H3tN7Qw5r71hjjFFtb9k713uB81LqEY4MeiOnr/eX/lK2sZMWiUNo11zrybLsd12W0947hFPXe7jx1Z/VRw7k1fPmZ3PiyJNBzHe+8523fY85eZ8899xzd3/Htv1c5Nu//dsf/at/9a9uzyviryiyZ2UmN87/+l//60e///f//tv/P/RDP/Toz/yZP/Po8ykvFpD/yJHPRg7Ae+TIkQcnNsF7KBRWAKNnD9vxorfRTDBTEiHnAK0N8UyWKcJAuS808b5QfhtejC0Gt3IYRtUtAzAD+fkA3u4rz1Q5pirrla985aOPfexjd4b1Vdqg58GWguI+wJIR1oZauzFGAszK+RtLKi84b/iW8yQG7+M2nZtTsbYzeh0OlfH1G7/xG3eGGwE6PS4c7L66ZIhU/8A9rJ1rOo3ydD1riNlvt1RPToDC0DgNMlI5JNrsNz4AgowAodHLtGNQrjSmGYcdmpZk7AYit5FPj770S7/0jgkCWMVSrW5AJmMEJAKsLdi8YfvmU/oZMNM4LPieMNCFoQN9tRMQbE2gn2vgVs/6ouvkvAUCJcvMB5qq3wKiy/iSugF7TqhrAHTGa8a3uccg3wPkKjeQCeOrOQcQqC3AG6ABoFn9sCCXGbph8AxxIBJgccNtAX57gJg1YcOijdnmSAQYKk//LHOW7jJCOR+AApiUV0D3PnB3wSNMOixZ+n3VafVb9rEyl43Gsed/fbx9ve8IeTyXCY65tuxna5s8yMKlMX+bZ/pYOwCz6RGdkdLA4YdAw/pBbkvjY2xbr1tjP/KRj9y9J3PGLOs6MXerlzQLDlJTT31At4DbQrhblwBDAK7WDY5NrFrzCXgFZMR0rq3Y/w4NxHYG5FfH2lUd+i6QoXJ6nzfHW7MSLEpM942iwaDt+s1LblzlnXVQpDEVMk+P3Us2Fz9w1zwWsVC5PddY7/tIv+xBa1cWfPXus00NYL8DGFtHw85h7Ml11i5orU7W1mWJWvsWJLZeLcjteeb/rhn9KHudrQviGuvKbU3dOlgbORIai3W4e653lDQEAM10SioSc7eye44IDExdKX1ExnAw0G/zzhzZ8QJY2ptai7yLnRdgvmLVyq+ubZXhEFFtve5xzTPvX/mI9a2+63fzVZoKTqF0zf7YPOgz6Se8B8zTjXBbZ6LrFvzFSu+Z6t760u/6nP7rG/3BsXDkfmkPGMDb2p3Tvzy490nndZAc6J+txLaNddv4tMeMuZtj5Fnln/2zf3ZLLZZEHihn7ucbkC2CKrGnPHLkpSQH4D1y5MiDE0Yp46S/secYocvcch02xbJpF/jBzGrjv+GCWINbxhVosMmWCiFZFi/gEkDSMzD1GIZtdDM8AtSeb7PT/W3u2jALC94TkbevnAK/+dGuIKiTlTclgc19m8fNx5pgrCgLg+lZRD8wYoXjV5eeF7CBUcyQMEaPSzXRNfLYLdgtBL+ygJEOIsKWdLjQi1nqs+oc4M4AzfAMKHBgSToU266+aGML1H+ak5YT+oiRiD1X/2Ai0mWAa2MP5AE8VM/qBDBYfWMg3sfWxJZcoMT4AQawLbGcAEOM/gVlr6HJ9UljjokHjMamSrpnQ4fNY0Y8QGUB82UuYekug8uasifZA3z66fuY14Hoy8Bb1mHjG6AVuLUMY98Dyla0y0E93Z+eYyUCtIFU21/r7NF/C+BYP/XzsoSVvUw+AIA5b05vGpHVh2TZepxrGJKAw3UiuHcdCgtWL6i7YeP1d0arNVDI/4LQ1lDrLqBHagWh1PpxWbYOFgTgN08AOfSh9Q4rHZNQTm3vNmtWdQUYJ65bAA5Q5eC41gYsOnNMvwGSKrPyA0rpobkIULcOYzIDxr0HsFOlCpDzeuf/puRwCGTMaXOoe61B8nsbm/o0Z13lStHEMUoHuk9dsDwBYN6DnCUbyk4v6L7fxts7ngO06+UCXkDNNZtH2Vq1B8oB2DZFgPFZwN5a5RqAGuax+bns2g39p2P12R5Gtk4aex7OAQd7cX5c2fzL4rR+X+eL+eCZ1oDN42zuS8FhHq1jWvqPXRcc4iklx+5P1LV+w442fhwX3m21UToADv30v89ycANf0wF1aJ54N+Qw2XX6ClbrX2zV3U/aS+m/vsfcvbLbtyys+Z1T5ummWKB7m1demd5jdKM5U98DYlsHMO+toX5f11rvNZ/ZcxqHzbdLn/ue03FJG8sif1bZ99MLLV/oenRux1/7a3/t9vef/JN/8l6At7H443/8j9/+bv/wpAPMniTveMc7bvly08/G7Ju/+Ztv5IFnlb//9//+3cFsP/3TP/3oD//hP/x5T4P21V/91bezTZLspBeLPhw58rRyAN4jR448ONmN+zJfFni1kWzzLjQTQLBhwVi7NsGM6GWeMF7WeLOBZkgDcRz6po5YuskyxvZgNiBRzMs3vOENt8MBMDueJFic97F2CUMlgAGLw+crnrfsF4cGdS/GUfm7AqA37QJA4Vml+gQ89LsDKBwmklEVEOFgt2tdn3QKMGP7KrXv05/+9C0kdw0TB/bEBNuT6F/M0sFpH/zgBx+9/vWvv4FAwhmx2t797nff2AvYdZsrVA7QJ0lzpb7v2pi8HVIR6Fgu2/oqHZCb92pUL3Di4Ladd4xYc2ABIfMW0x34syGwCz4wgM1lhzmZU9hf13m8AF79tqlXhB+vAwcwZJ4C3bCm5N3tM8CN9jF8GdLLRF8HUdc0rhs+vaCJegQkLEANVCPyxy7Ys6CvvNcOVXQyOoAF0xRAAaB1/9YZiLJGOAOd7HppPQRoquMC8vcxcF2XaOsefPk4wMG9V/a4a9QdcLLgsfdK65K8lsLFsVDlkMWWw6ReEMr4Y8hJ7RGQLy9y4HDtakzoptzW6mQeAN0qJ1AkkDeGOPDTnLLWA1ax/7rOwUzWBe8yDNzqpa76AgOPXgjHF9LftZWFTasf5JYG9C5z1zhwKGCeG9PaVb0B5PIQyxMsTB2YDOwGOAJfzXkMeOV4fwOT9dUCVd0vXy8HTSAJ56zr6S5dcC99xkbdtUl5C4bSaXsJ645ydo4Iccc03oiMjWbataT/9yBI11+BYUCssaHT5pP5ug4eumv8rMsA2JwXnMYchdJpWXelUrAm0IvKjpHdvfW7fOd9x6F4Ze/unDKHzHepoMwV/eE779PmplRDgHH7RKlXRE5xWpkXVydSdet66SY2ZcU6mqSQAsZat9Mz+t6z7Vf2MLvaSw+A796VnufZAF2OHmX0DGte7ebYtx5Z26RTWWYywFpO3QXeu7bnAX4ry3uxPsSGtg5c0+0c+a3SmR3vete7bizeP/Wn/tSjf/kv/+WjX/7lX/6Ma/7iX/yLd2zWf/gP/+FvcQDH7v25n/u529/f//3ffwOKr9Je8yd+4idu6026/23f9m2PPvCBDzxzff/G3/gbj77ne77njkn8B/7AH3hq4gHpnoDmx0n71H/zb/7N3f9yBR858lKSA/AeOXLkQQrjCdgi1BobR8hdm0gh2K7f0+gTm9JllV0PMVkwAmhr47uMAYaC6xljgGQGtTA7AFiA2e/4Hb/j0dd//dffvOJt0p4m9+vzgXWuuTJ7Hyc213vSbvcKe3XK/OdL1L8xCawIvGLgbm6+z+ezCOCuH0zTl4Kk44XFlXMygxFol8FffrX0spQdsXix4uTCDUQUuvw4wZptTmTc9pw1nIE5mNXYXUKnGzvzbdk8yYID1Q1ziHEuFx+gYMNWGZMAEmwjjKh+BwrJlWqObbguZhBWcOUCAczLa35Kz9zDqDgRpH/QXsDlfqaPACVALPotRLhDFuv7QMXWA7mppX6obo1l7G1lcXQBcK4AKeeLQ+uAa/2d7tQOORbdC8xh1G+6h2u6lAWfk02DAHS65mgELC3wiUWtTNdf11F1uEZQbHsX0KVzmw9VHYE76/Q8WWjCAAEAAElEQVTTFgBL/ZSTAxjR99Ib5FwBLgL2K6d+9QzvGPl1KxcD3PUxBM1j6QDkNOxvDFiAbGXXdxxw/d2c7HfPwVKtbgGLvWNiQnZfdccu77dDBZPW3nWceB/2v/L9X9+Yd0AxjqEFrTbVgMgLn2HfYhrS1epsXTCW1oqM9/ob4Cu3Z07H9BiA53vv3aRnGGNgHnAWk9RcBLBb25JNsbCOC2uKfQH2qbWyejhILWnse59yKC37kQ6Yf/SOg1W5uxfBzLQ2bY5mc8KaZy2SVmCBxWXra4NxMN7rEJHmyL36QnlScVT33q/SXNQn6bsoJoeoYemmr9XNoWrpiHW639JjWPt2LcBABvACQTHOK1sbMbv1e2X0f7qQo7Sf5kv7Hix589HhY6JjFkzXF96F2rH9bY3tudVJah2RNvRT++qryuEc81n94AwK7yT7WfuayjUuHTBY32vPRpwB9b3TvKOVt9EE9M66qY85+KxTGMZ0CcCM/c6Bby3hhFHndV4euV/+/J//8zewtHH7L//lvzz6O3/n79xYuvV9h6HJbRu5Ifbss0pnGPzUT/3UbU+S/PW//tdv86oDzB4nzZvWuJU/9+f+3KO/+Tf/5u3vHJwdqPZlX/ZlT3x2db7aQbGWf+3Xfu3Rv/23//bGWK6sdL29X6zigG7RST/8wz/86N/9u3/3zG0+cuSFlrPyHTly5MHJgkfCUNscZhhmSDFElvXkPobT5h/EdBBGhs3U307xTgAoDJ4FkPof8wkjYtl3gIMFfYA2gWgBN212fufv/J23TXjPDaz77Qwtql6BgskCvIkwXBv19br3WcaQnKifC1DKaHtWr/7nKi8VcHdZ2W2iA1/rewc7yfUYSBjIKw2FXHYZg333OL1yPwA1YKhrK5/RyNCLEZ0R68R1IbTArIxhB4yRPTRmWa6ktnTwRs8KxG5uYPtkaGCJMTSBDdU1IC79xT7u8xjiXeskcEw94fHpawYCp0/XYoiZq4xbTL/avIAXkMOhUMCfPQUdKI3BmWSwM5J7XoBhZZYrtdzTHboIHFe+dWojEszH/mZgL9jRs1tTamd1qm/qy8Y08ALYsMC2tdIaCpgGIu2Y+XvDt5dJfAViAZtAgmvu3WSB1w37Vt6yQY0TkGsB5y3LzwLO3g/Gkk45pE+ahECY9GJTetBnoBBGW7IRIst0XhagNBnpBKdE1zfnKrP3GYCxuYTVVhkBmtZooBuWMVYk8Mx7ykF79R1gv3vSgcBdQL/0Cd5PPb+yAJ4bho5FiRGM1ZpI30KPNpyfQ3UPWtucngBsgGX9D1Dsx4GfrmfQN9/l9BQJANTDUMXctU8wvzhBPVcb19lhPU2W4e56ji/znmOFTgATW2eF+2MjA01zdGLopweuM/7GAYC6KU7Izn9rsz43rpixgLRtpzGR1/0aNbU/6zDT5sYGQ7axFAWUkxEju+9F8FROOgikpIetVz1X/uTGufde9zQOnIzeJwuucmDUnu4X0WI9aG431/rO4aHdU52sXYDwTQPRZ5iM9MaaApDkcHXomvfJrpfWIGVyHhgXOlA/1Z/A6H56fuuDcQeMB97KxVsbzAvvpN0be/7qjXWKM+maJqH7r4fl7TvQu2nZt9c9sLlg3q5TVFokRI37IjqeT5Zw8ULLb0c9PvShDz36zu/8zkc/8AM/cBv/7/3e770XKI11e93XP4187dd+7d2ZDMk/+Af/4HnvCcj9W3/rb33GZ9/xHd9x93dOzafJBVzk2G/+5m/+ls/bG/3lv/yXn3hvzN2/8Bf+wvM+48iRF6McgPfIkSMPTpYpYfPNeAv4avPAuGiTzGBzvQ3lGpXKzcBgJDAu9yAdTA33Lshrs76gw4K5uyHezW6b7TbnbZwD7GLxBp4FyGR8fKEFiJQHvBQRGfwZOWuoAr2qewb0bv4zokovUV90H6D9aRjILxZZ5uGLVQATSTrJIE5HM5ylB8l4junWz/vf//4b24Gh+KT2Nc6NfT9J8yjAtP/Ty3JeMpCx7KpDcy7DIv144xvfeAd2yR/okJnq3mYd48lc3FQKfZYepmOBu+lT7QGuOvSm5wJYHDgWOIylC3SOrVyfdH2flZet+/Rd9fS3Q4/6O8N/w6UBKeYAAE9/CoHdHN3C2pfFv84laR2sIXJpBzbk3OnvWL1YgfV59zfWy/4C0vS3kPZNo9A6UjhlnwfsNkZybnd9bd5T2VcWdNVm5S77bx1nm0vUZwsCG3cHvT0OkAU++G5TRyxbGbi7a+067xbg3VB16/yySjcXOxZZ36dbGKrWZOMmVQKW9z5fWPim2wicyWAOBHIAGhCvfnFIX+O2offVLUegw0IBNt2LNZx+aoP0AXu41abokQdYyhU5Mjd9QlLbFyg0z3qGyABgW30B3Nu0Dns4lvobQ6Bn+usgLGOUzgOCRQ4A6zg0sPtbLwCK2r76u0xuddp3OrDuvnyzmzsXc35z9vrM+miOb+5gAHrft8ZZxwB4fW+M0jNzeXNxK9t8la919xcL+OoLgBong1QIfV9d+g5Y6l2wbNMFd4H2y6Clu9J0ALOlxgDcWl+wzHtmc6A1qPeI+aEvlxnfPqNyGv+infZQuHXYayeQUAqR3iOcSn2fHleO+qY/APA+0wfNDfPP2tB81wf2k+oibYs9qP7C5F6H30YNcMrsIYZd1/pQXeWqra8cskjM/c3Py7EkYsMYOTRtIxzolLXGurXRJ/sOw/w1V91jTnrvLZt/973ark+xk7untUxufUzjI0+WH//xH3/0ute97sbmDcht79b86DDmH/mRH3n0fd/3fU9MbfZSkm//9m+/5QN++9vffjs4uXUBwz9SQIdP/4t/8S9uqe6OHHmpygF4jxw58uAEiyXZMMI2hZgxGUdtPoWjARsZ8+5lxMkDCmhi7C2LzQE5DuywYd3Q4t002+AmDErGpE0xA6Q2BGZlcGT8F/6U4fX5AniXobMhjfVZIF7AQeBP4d+BcBkwGVzVMSO+jVTXCY914nqGQp8HRNWWmIIZrfVR18kLqaynFf36LPc8qd2M1C0fyNSYBqrFbK3dL0apvhnC+lEos3BORhGDEqOv/Lm17X3ve9/ts3QqA7F2bn9gam1/B/zQifTRwTTGtH4DYqQHGRUZokLI18CrXrHSsdMYz8ve2bkHJGQAAy127gJ+GIrAGWkF9FPtzmDHQqRXQmLpQu0BJpubdIeR6/CZDem+ziu/6Z7xs071N5b6ApMM/D5vLGPxYpmpLwZWAkTBngP0ZMADUITyBvY3RjFiAEkA7Mpt7XGInnHVJiDBOreMwTq3gIDWQ3/vPN5oCv0BfHLPfYzdBWWTBZd9v4Ccvxf4Upddg4G6xqhrAXFATCH4nCp0tHvT5fq3vg6kUEe6DWy5Mosx4gGS0jY0f/qstUiO3j3c0tgCkyuz55v7DsrDRpeD25gBGx1gBnBq3Ps8duTqVs/YMG5lcHr0vnVIZVK/AZXNoc0juilNrlEgrR/0Us5RzOY9zMwhdPJ8SgkDkN/0CoAv47hz0tzb9/KmH1qHQfeJFNpUBldHRO1vrdkIoqR+7qf+ylkmh3LP1uf9372iBPZQMXMQ+Gsv0l7BHshaitEpWmIZm8u+5iCwfjqIax0SQH3lbm5fTFMRBH0mKmLBQekpgMhS+Zi/Pb99Q9cB8bHme560DJWVww6gbM9mbydtlrKrQ+86DNrmnDY2Du1p1pkN8G4eSxPBuVHdGn9OQP3qB/guQoPTjSNt2dHeW497B0gbkl70eY7V6l/aFp9JowVUN8e8m/wthYk1ltN19cTaIDewH++31fNk59CuK97bnt2PcRdlwMHD8Stajv7SdQcInhQNTy85KMq328+zyM///M9/xvp+lfL69vO5yu/6Xb/r0ecLzO7nyJEvZjkr35EjRx6cMELWCLfJbkMeQIl1ATRJgEo2ngsK+JvB5zRnZS9YwHDP6NhcdZUBCEkWoAL67EZ+mXYZEBkOrslQCNgBSHy2Ur1iWGUIAsaxOdpEZ1Rn6PTbTwBH1wTIYU4GDAYSMVyEdjcGlR9wVN27Tt5HLLOu//CHP3wDRxiAjwNuAW288uWMZegDLp+GidD16UB1a/wC7rDkKqexq3/TFyy6DpqoXZ8rqPyFkNoQ2Ff/YZRvTsf0pbYAmADa6VVt+4N/8A/epf2QA7Kfymi85DWUYoAe9/lrX/vazwjtbW7IQVj/Vq++c3ARoKlypTppzICwQm0BGAsY9NyYF427Q8CSNTY3P6j8hgvwAuCAVFIlJBhGgLL6omcIAV6wcpmEya4lCxpeD69jQC+ra+9JNopgfzCYGO0Zbf0PKNhDxYy9coFbe5hQ9ap9OXAY0vrGGlD5wOuAlvq0awF7y8K19mnDRj8s2Lth0/cxa4kxWlB3+921C5xfnwnsoydb/o7DluUHEI5Z2Dq5aS5cly4C7jxPDtk+x2rVL9oNUNn20uMFGoFHldOYexcA59JPOViBgPpOOgPvwOY5xqj3SXO9sj1TXmFpIoTBb2h2fdC6yWmTrokU2JB1TFuMO2Cxsey6ZWIuEKwNPucIka/VXJKSQEqmdLS/qx+nbWXtwZIA2U0tBBQDjmMtAsPucxzTY+8F7VpHwTV1CYak9aF27NoHxK0czqfNJb7gPKDYeGwaGJEC3QNAS4DBmwqGs1j+bymlvCt2fnhP7nzxzHTTGixVTfVMxzhL+syBYs5HkIqCY8O8l9eWI0K/O8jMHiS9XjbpdV0VbdFPZbYXqdz2HfaLPS8neu/8nI2BpgBzc7M2tA/yHuQETjiAlWXcvQ+1jZNs1x5O110TgOfaYn+aVCZQu3vSE+9qcz1wmpNH6hhrE0crpr31hMPKHPUeXCfJRqPYr67DluPFnLBmryNznbXWD593HcY+MLd5IYWAtCafzd531/wXWl4s9Thy5MhLSw7Ae+TIkQcnmwcQ4MLQxxKyscK2FeJokysUVNg3sIOB5KApG+bKB5DK4SkET51sbHfD7m/l2izb5LrGd1goDl374Ac/+DmHVnV/jDB1aCNdeFPpGGKHYA1nUPTsjB4MXkyhDaPDCsGylP8tQypjBPul+7CDM/bKA9bPk9pT/2V8vfnNb74ZJViq+niBlycJdkrGqJDJ6gL8wDIyDnJRvlhTNFSvGLVA3YTRz3gNFF9Ga0ARkL6xbpwD4sv1XA5PeTwZ1Y0N5mACCBHmC9hwoAX2UJ8DBZNraG+6VZmNZc8HypgzGzrvkLFA3p4jXB1QA9ACKgiTxkZMNlSXwYqN3z3pV2Jum/fYktr0OLDQ5xueiqnkkJpl7zPGAasM3w1/FcYMuHaCe3Ox+RrgsKDBGtGur20OrVGv+sSJ9XQeYAtU0raeB0iTv3HzLy7AZczops8WlNW/m/5E+5dFfQWQ7pvbC8ou6LYsr/tYSMq6Mq3pJwBE3TZFBd1cxwEAENM2nV5WY39bTzgt7gO8tx83fUFAcmsvhwF2pHyi3QOYA4xuGH/lcWqZt8rfvNWt1es8tCZurk/1B0x6b/aM9HXTQfSZNtMtZdznJNV+DkPPALY7JLX1qzXAOPV8+ZHldQUGmXP6oeerh5ysq8cAR/2nrn7TL9cKTafL1mLzG4AlT7K8welK62X1jL3LebL907uuOjRXE+uVQ9iSPZSw++kDZrO60iVpa+Qr5sjS9w6tFF5fv26EDpblzgX61++ul4rA2gswTgfri96pO8elCqr8yjB3AI8Ol6TXwFcs+WV91uZlUPdT+9q3cODVj9YMOakbg8YmZ5YxtBcEXJqbUrVIibCRWfRGjvtd6ziCrDv0aVm/SwBwKKB3WgL4rA8Bp9VRf/a3Q8kWEKd/3Qt4llKs7xorbTNvOQ7pjbzfG2FxjajoM++sTUFjX6XNyuY4sB7K0S0nuMggILk+OnLkyJGHJgfgPXLkyIOTNvrLFLPBxRTsd5tdRvgykpaFuyGyG4687KrEJpcB67RnOSmX5bCb4GTB3uQKTmrDAgFtcgMjn3vuuUe//Mu/fO8hA08rbagDIVYwhANe+xG+iOEVSPue97znZlwzaoVGdm8s0IwjoY8BhwFQsS6rKxZhRl65eYFv8rs+KTevcHqARbKs6OcTYyFENcOpOgbqZdhJH5FgvzSu1T9w5cVqUGBOrQA9ARZCQoFUtTUjLfCgPLxvetObbsZ+eWhLu9B39QUWU/OgMWesC+MOCA6gyPA2F7oG4FUfpk/VsWdi4MltmJOCMcs43JPYGeBYQ42XcG3G4bJqhZTLQdl1UhkAJTGkqteyt3bOKptzQ7lCbRc8ZnTLh7uHGlV2jhIGs/Dr5ggm+zJmF2SsTj1T3RoPoFQ/tac8el1vLi0rkJMFw706BJADWjDQGOHVJz3fg/eAIIk+aA6nEw7JWyASmLGRCVfDX1nG7XqdMb/vf2ukcpL9/prm4SpbRrLr+a4jQpGFVAMy6AfnVY4S+auB2sBIfQjcTYC8266txwI+yzhvrQJ09DwHsvV9ZTYujZ9Ilf6WH3idMv0vr7KD4ThyXAOUpEf6QM5ROVqBNRx6wCAAo7XZIXD9XgeI98c6fYBlgCRpTzhO++3wJQcXKrN5VV9Un+YXEFw7pGSobzayps/TZUBhdeAoBvzJlVrdmkfAR8AwluOVOWpeaB+9AfY6QLG/RUpwQBrX6oNxbH1JNjppWfXm8zpaNucyxmkOtSJ0ct5hgnq3eka6ks4I/+fQtdYDM6Xh0BfmRP3XvbVHO9cJD4zkdNjDyuoP+p8+tRY7fE1aBAcFcmJ1jT2bvvT+wMivTOkZpHTo3vSK/sjB7mAyqb2kaKldAGlzBUhq3bb2irrYdW7T+HAGGi/9rx83bcpGTGyqnepd3cwJqUe8J/rfIaHK4Aw1ZqJXrPvecd5vQHRz0HVSQWmb9/C+Bx+31mnTpoOwvu5BiT5bx+GLMZrqyJEjR77QcgDeI0eOPDhh2DOmhKf63IEtUjgw2oSL7cYRA4mxo9xlAQEo5LRbxtoaMstAWwbgbnoXQFzmovIwVvs/gDTQKoDh8wk8VscMPoZNzwn4A3Jl6GyqguoTKybwrnrEJA0I7O+uA3p1wMHmDMa6Yjxhpj2fZPA4MGrDZJ9GFmwn1TOjpnYGfq3Qn0DOFyu4+zhZNuD1s+ZAeZGdKl9/BiKkT4CLjHEH1nziE5+4AQCBwOl0DoauCxTvf7lHsRkDfbEMmzsdCMUBUO5Y6RP6LpABM8nJ4/3tEDcpPbCJOgTsVa961R2AvAcGGd/Kxz7dMFfsU/M04AKIkC7WjoC0BNAq7y7WXDpXnzHw+wxYkN7Xp0Lc66OeUV9Wn54FrApUb+4CieQE31DuntW8E44rXyXgqnIrrznXmAbWLBiuvkn/9/yAkuZaZWBzalt/AyZqC7Cv8Us35Lvst7QagCfhz9bLPU19nWOAUHVb1i0w+cq2ZdQvu5NcWb3L7Nq14T62tc+v/wN9ONbWgbBriNBy6Tt8D5g0l6TR2LQRGHGetxEb3h2NQc9InzgApC1wUKX81ulUzxTuv1Eh+qDnBrYZ7+ZX47jAEVZ/9WuNbc4BcdJlQEx1FEVhnmtv9zW/029M0Z6LKdp9zRkOGDqiH4BriRB4cyEBKAFCOXSqd2t1c7A1gyOm8jEOq0t9hn26OuGQNnPSmOlrbZRiAciGEel9hOWpn6uHNQQL1NjpB+sQ0Lf7GgtsXuMH0Aeo0j/sa06B6lG/YN1zVnIidW1rcXnUe3bvcA4DIL29DaZsDt8FlYGElQXwa30xlzgTzQ/veo6h9M87o/HiuOg7kTXVLf33zudoUBbwG4jZs1rf+g47G0jKyc5RLiWCdSRHZb/lsue80B7rGKcHnQHwSunD2W9t4szE4t49n77cVBh01n7VIZ1yNbt/D9CUtoSDon70nuqnd8XmO+4aa2XXAqal89BHGwXCoQOIr7+9m/SVdZJ+LpnBu23B7Z7lM/vkRDoG+kB3d83+bGTX+hdaXiz1OHLkyEtLDsB75MiRByk2yzaoDJwEcwebdwEAG/INw2a02dxuOBogAINt2Tv3hXFfgYtr+LANMLDXZpcBjema0YOh+Llsdpd5tIfatLnO+IsljDW4+RCvz7Op7zognX6QGy8jZCVDI0M84LDxedr8tk7i7jnAu6eV+8pvXAMQAiTWcF95qZ0wTG+BA1egl8GWMSo/LXbmhlC7LyA3YDV96xRieYqxebo+UFd6BuyfwJQEIJSOxeTumsBIJ5cvs7rxEBqrngxebClzWOjuMvaNX78ZnMCcZdmZ7wtuarPwXuHqDHu6wvBm5ANtpB8BAAKd5UQFxtDDBQuvbNYdR8YxAHUPpxG6G7AFwAVkXKMH9Kt0NRxUwA/AIrYi8OZXf/VXb6B6gDD2JYO8eSh8Wf0Z4leHlvXSWrKOMNeuka/ftX+BXuPoc/cuW3jnw33AsT5a5mWiPskygtUL+xk4sX2o/7FFgWUOONMGfbT5KVcvE0AfNmpl53ChcxwlATlylQKC+v5lL3vZ7V7r96YpkeZAug3MWczc5m4AXPdwsCyA3U/P7XnVKwC338A+Otz96eWywr1HHeJW3/W81gMMZMBcZUkP1DtiQXt6yBHX+wR4CSjT/5VjXQNE0/+e0zwPGARseb9sju7q5T1f3YFQcsQu41wfNWeMNxCuHyxoDsty2GNG+h6zWv8CmM2dZf5bx4CL1j+s8ytTujo7UDMdKhJA/3Lm9nffydUtCsp8sD7tmid8n1OLY8hcxZK2LnKEtc+QmsE9ojlyvPa7Mksh1D05naqLOYzB3LjUpj0Urr/1vTb0TGxfe0EM8KQxSW+vzG1j72A360O6oR6eiWWOYb1MVP0mgqM+xrKlwxi03jN0jfMhkWqiupv/9UP7rl1XvDOkcOkHc3r3qtZCn1/ZswvMej/vAYUYv+sM23m66+xGte37znyiZ/LDa//VKXfkyJEjD0kOwHvkyJEHJ4BYTJQ2h/LwMRjaLMbSaINvw2pTa3MNRFp21fXAEd8ta2Y3xFgR+xnZMMjd7Kpn4lkMM+HRTtz+fGxysVGkPiAOPAMCeA62hz5NMhSwpa5s2v6/poEgPRPAy1h+Pqku3Zcxim32tHJfX2EJZcjWvxue/FIVAI6xWjYfXaRvARCNTwYVhlmyhxNVFpbzN37jNz76oR/6odu4ZYgHOPXTeKSXTngH6mBqM67piNBVhh9R1wAXAAWgCyCz80SKhavjwTOAiomwbww7ZSzwByzhsBBerG7pemCMXJCAv9pamoSYuQxc7Dmhplit6ufZ9Zmw8EQ71JXTpGdgcAlXl8+xOgWEdF3AGyYtAx+40lgDugPUHNDme3m+tw6l7GitFEYdkNbYO3leqDB2+OapXGfPgqbXuagfXLf3AUEBDNtPV2YuHSfLmLuPrbtgMSCHjmF7LxCxER4OZlRWOl9/OsRsAXr6Y0wWrND/m1Kgz4GGfba5WQNuMfOkbJAmAWPYu07uyo248JzKbrz2kMNANM4e4FbvSqBnbUxvGvu+a92U+7M2tzZ7T9EDgL65zkmpfz1HX3I0baok7ybtqc+EzXfvsqmrmzkLZHOgI8Z5bQ0IxMJNqjN2+pU1XjutJYC0fnr+goB0xVoDKK0OzRmOTnXGzO+7GLJASsA8nRM9RKf3cCrOWU4cY6wNXdNPz6bn5lLPka93QXBRTpXXutIajxW7ThtpbtbJm344TK/valvruXdEddBnANCuqT/qg0210X2twTkZe+5//a//9XadVA/q0nN7ZnsC42j9twZIG+Echp7ddXIRAz2rZ+0HXlq7sUg5Suh399gv7vj3LOD2pitY3eIMtSYY865pXLpHPmnMf33d98YIMYEzFKNduhjRZNanzRPc9ZyH+mUdFQBcdd7yRa7ZPyAd7Dq8pIV1qu3aDSze8dqc0rs+yO17dVwfOXLkyEOQA/AeOXLkwckeJpJgRNhwJxgjmFZYYwwkAMSCvowYjC3GxebyI9fN7X6+edjU8woYkwUfbLYztjNACpd3qvuybz8bYfQKT9dHbdZtpNUrQyz2ZSCPQ9bKMZoBJjR+geInSe2Rr/dpgWr58zAtPxcRxpqh1E/M0oCHjMSXgjCUrn2HgQdwEioLEOjz7u23wwAdZgKE2sOUhMcC8d7ylrfcPivtBmM+gBFTRxguY818kSdQ+oTkyqpkPC6IsLlpF2ADzqjn9gkQAajMODYHzU+g2IbNAjGAG5tjVT5F+TKdTi9nZGHpGbqe1d/pkzYB8hjWnr1OImCivgMy1h4GvTL0T3UoVD8mb9856R3QrE3AX4AYdp4y1JlRXdub87Wvse5nIxzSM2H6ywjWn8vmNdaes2O+TC713jG99gsQxPpMl676dHWsXQUwt0zhBfG2Honxq82b47N+AGBipWLeAS+MQf/Xj10TsOSZmObasTmou0b6AMBn/weAYQdyTvRZ5QJfHHjFOdbv5qc0KpizV8AWC71523snfZGio/t6Tmu/PvLuldKhPpLGhdPEeC1wkwCG9DEH0LJh5Ynu+67HxJUKyNpVXTcFBmdI5QXqAn3pEJY/1qh3MhC6z60jQNzdMzgErh9OKU62/pb3v76Vh9hYSfHAySk6hYONfmEir8NinVXL6sf8BeBLbdE8FwXhvsBTTlb9T3cXVHagnfQK6/Tg2OFk2OgA86R1tL7veXS8/sihUP96L/Uexkrt+n76v+d+4AMfuK1v9J0TXZ/Il7wpurC5rZnGr3pY2wKvY6t3jTz85qJIKWNvzdmc8At+Lmt4U0Jcnf9yAltzzHV/05ukfukZjeumi9HX7VukEuJUlV5m13IOSnXHnLdv6xnSZHG2qeuuTxshsu9iTg170o1Wcf06Or3XzWfrsLmuL3d9tyaJinlWeTExf18s9Thy5MhLSw7Ae+TIkQcnGyJm4wrgsKH2f5t5DCDGyoZqA11sPJP938bTJnUBBte5ZoFkP1eWkA0vEGCZh57PUE1+z+/5PTcDqIOqGBRXBu3ziVBJG2zsl0IhM3oyGLBYKjuGTQBfz5WHretilSWBzlg6V8G2ZMxgoT1rnTPiFiR8kuyJy1ewprHHQM1IKh+s0M8Fj3sWALu2PStz+AshjQuAVqqDbVdjkgGNYZYwxIEp8hACNxpLzKfKc9iMFBuM2cBcgIRwWcaocG4HKwFlGZCF+m9+VkAawCcJ9AcMYV4lmwKFE+HKAuKEWeajQ8USZTH8GaGM9+rgZPH6F5NR/9WfjH1AQ9dg1WEKrmNInTfXIgMewCtfJIcUvQVcAeB9FzCxwIH+roycL/0tp6RnWoP6rrZJHbBswA3xl3sTQCJdi1ycoiECfpoTwIRNv7As2V0fl8FlLd011vgtMLyG/uYSXT3YZy1o7/Ot096T7Hp/jVxYQL2/AxEBMbUfAOcALwxXrOr0xkGVmL9ypAI0tKNnB1rSIWk4jF3lpQvAM6DkziNh53JdS7eB6QjUrMzqmmDgA6z6H7uvHwxQOThrJwYxB0HP8Bz92/fpR+2n++rKeYIN273VGbAmr7DyHR7HuShlj0OlGhfzckFPTsz6vvvkA+bY9I7D5pVHWX93zfYHJjGQWeoUrEMgtYMUMTGN3TqMq2/flRYJyOxd3nUOzdrDIAGa1VGeVtE4VyAYY1kKomWKA5x3zjQmvT9Esxgja4n5Z3yND5a2dwGWrTr3XWuH+qhD7ZImqWdYYx0sKCqEI2kPLNvUCr03jIuD16yh9K66NLf24EBOqY985CO3dxmmcfoqt3CC+cvJJufvHg6265U9jrlrjqe/UqEkreXmqPfuEgzosPVdOhZAvnW3Nd0cXKBdqhP5ttUPSKx+lbfsbvuFa1QE56dxp3PY7/SD7qmTeWEsrLftZfZ6++/r+0AKMBEKV2fekSNHjjwEOQDvkSNHHpwsA28NkSuI24Y3kJLRtCwQ/wN7E4De5ibd8Nxlb/ltEwssBKJcjQBlMBKXqcjgx1Qsh2kb4hgo3/AN33ADVP/RP/pHjz70oQ99BgP3aaUNc6zDbU/1rrxPf/rTj37wB3/wBhR1GEsHc2HJ9HyHS3X9u971rpshkYH9OMAWIANwui9U+2mk52SIPY0sKHh9VuPy8Y9//Nan/+2//bdb3WvblREtdLPvgGwvtABZrqkJkgw9h/Bh8SYAbroGcMdgxs5aVl1GNSZU3y2LJ0A8Blb5dz/5yU/eMe6aWzlPGG3YRBhIXdP3PQcAuwdD7aFEmK8JQzERsgk8kWfUj1DtBVCxZruHkbxAsLZjzDW3vuM7vuMO0GU05xCojliNCeCruQLowAJs7nrehluvkYrtJ1WKsG75FZcpVT9gnDUHEwBYfd+Y/OZv/uZtnsSwdP+GRFc+cAro0zUcXlJDANoDT+RjTZ+6F3Oxvxt7DNMFUZfleh+4qw82fy4H3M4zoADQgT4vQ3cBXGVf5coCvjrpKnMPq6LrxstBk8K6lam+5pBoi+5tPIBrADUMd4w5fdC9pfkIGO6eALHuB9bQocqvDPrLCcB5JvwfkGWOYGtr/zpzAG1AvXSrdQTLtOf1t5/KspYL0W4OAGAcfsUhh/nrYCx5bFt7OBmwTTFGq3/vtfSwv3vv7OFZHFJALaAe3cCw966pXpWnPpXRWNLnRB8DxoCW+qFy5AXGWsTa9+x9r3una6e+5wjAKK7N/W7dAT5au5bVbo55F22qAixS+gT83XrI9cqR4V3gvvrD+saRxNnDAZRe0BVOwP6vjd4ZmKR0tc85luQW1jZ7A05moHL93t/lCOaA0BaOaflwAZbXdFnyOPd366KUORwJQMmeJ4KLs7O/OeLMERFh3m/LzF2gvN/0U/mcJOvkS9qL1g7vXQBubdp8uznveneKzKGHuw7ULnu5rb/UHf3PqaTe2P77TuJEu76v1tHo3b5rifmunyobiHx11m3/3EeeWBb+5n+2zhw5cuTIQ5MD8B45cuTBCcDieojQHlaB7QKM3dxja/AnNptb7oIYC5C4D6hk0824wMJQJgCBYbLGGcYL5sMCMHLmdn3GYIDT//k//+ezAngXZEiqa5vuwjbbqAfsFIpfaCSmVocuBQo/a4qEZV5+LvIs5RiP+6S+zbBKAowfF75XP3ziE5+4F0x9oYQxdJX0LeM74EDo6zop6CtQoO8ztLFQVxaQAwIAM+q77u1Zffae97zn9jtAMVCq8tIZoZ2MRfke1SXDLb2tvIxvRm9GbM8rHYhcs4zHgBDjLwclcMQY9Rw5JQmWUmC0a7GLM4oZ/AxadQHg6W+5moVTb8g8xtYy9IVic2pUnvzWifUCY9N6oC3AZetMfwsFN67WDmCdEPmuj42/jKjVYyC7kF1MsoC0wOrG52Mf+9jt+gUalx0r7DuAQh/oEwb6tv1xOna9Zg+T2qgHuuD57r9vnnv2faIfto8xUDcdz4YFAy3Se/cuC3zBVdcZF7nIgXULCEmLAMTjTAEAJkAOgKr3Cb1Zx1Rl9bx0Va5RUQ/m8LLEsQMBZem29w5HZ2k/HN6EaWcONvYBgvqs8gDC6Yc+qk7pyAK0O37qA2BXNqdNgGP3cwABhIGVHA595321zllttMaY1/pC33MQYfliGu6clNbAWmidtDZJA8Hhcz0ciy7Yj1hnONPokIO/alM6oJ4cBcqhT8BafbTAf2UBazkl1uEhb7t+dEAdJqZ1aQHt6ouxzhncOOcgkIKkdvedsHuM5taZdLTy2msACbtfPl37rk1jUD17N3AiSLllDeiz5l5tAQQCoQHFxqh+CDjFlMfu7j6HiFZnDrFrFBYHkP8Bxhi+WObqh/FqzNNn60jXWYP73Zpb29LVnD7eV6tD2lLd+1t96RMwV65tDGHz09rGsUmH6JW1yBzD2qUz9tgcSt4J2mh+beSFub158jdaAkDefetA0M/XQ3ufVh63x3sh5MVSjyNHjry05AC8R44ceXCCabBMrqSNqTBOYa0ONxIauDkdbTB302mTy4hYkM09/sfuIAyyDVET8odhBThRvz1YBiPKYWaYQ1Is2OQ/jWj7gl/qnBHf7wBe0vMY5lJbPAu4q09fzBva52PlvtApGZ5W0oUM6QDOgBHM1AUO0/kMWofLbUh9Yt40Zxy+tOy4TXlQuRnm1wPZpDnAEt6ckP1myDKogWuAHvMvnQMKqId5p84LTiXLJlpHTQLI2zyCyxDG+AJ6AoGAQ6vLm35hGf/LWAWmM2AXILLmqAcj1nMYo/eB9PvcXY+MifFrnsYIDXgHUBEGNPCJ0Vw9YusnhY0H3gBTgJdC/vsu0E16h8aKzgC6jd+CeNt2dVH/zfu94G6ybK8+k79UH15Zv6vPa9xf1+MFeDeygOOPDgDflu0NSFMn6QM4EROgiggO+uAke7pUGQ4frG31ZWU0T3NGYUrX50DGxqS/Y15uO+hf44rRCVghrgP4Ycc1BzhEvCv6DCizTso+996qDguAec9ZewL9qjNQC0hlzprTPdfcxOQ33pikQMU98KlnXfOfYoWbY9jM6qbdPV9O0utc9xlWcD/a3Tq6zhcM9HWaYF+r70bz0G1gs7mFKV07saP3OXRGBIT+WR0zvuabMff9Ri8B8jaKCPvSwWKYzFju/Ths0TjRHfomRYb1oLHt2li5PSNd3jpwJu+6YG32Wfc4GK0yWt8Af9Upx3dzi5MPAEmvKrO/rU1S3Bj/6ir3uJRT5rL3yTqHtHcdj+ZIQLUy7fnopj6Xk1n+Zbps3IHI5qf1SJqSpHtFyXB2qOM6LR2Cuqk8Nq/xspCT6rFEiZ7HQbTRAJV/PYOBs4dTxftgy980HuboRs/pb2VVvnQcR44cOfLQ5AC8R44ceXCyobQ2qwBUwCjWU5vcNoob6mvDnVzBHJtQYZaEEbmgsk1/oi5AXKAP1i7mhE3sgmEMcoyIGB0OxlJnhtjTSM/OIIvdUmg91lfPCBgsv2r1irG6oOaCJI8r1+Z/P8s4wASUt/dpxWb+yNNJ/d24xqDtt/QMAA3MW8YYEENYKgMOmzCjN9aQvJf9dkJ97Kuuq8yuARL2rEBROVkxh+g+Rs+CuMt+WnCkawKElu0GxAUYbkip+bJpGQAbC+Saq/7f0+o3BHpZhMmWmz7vCeJOX19mKXBwcz8vi9qcYcgykAEyDHqMLWwnADX21QLa1gZj2vUY+YEelbX5DrtnWV3yagckdk9j+fa3v/3mMGj+xt6vP1/zmtfchbgHHDv0Cqh8ZSADezZE9wrAXfviyvbd9XgjHPb7BYqVf2UsX505ABFj5TrfYbthsC04AYA0n/rcQXa+XxBldQgA4znNr1jsnlffNrfq51JyNK8D6zka9XPj5EBBuWuBOv0O5FpGtXy3QCNsdGx14+RdB8jtWmMMfKZHgWGebZywDb0vOYfkDQVieUfvOoCtKlS/z2un/OhA475rrcO+rJxYoZtrXH+vY9X4bQqHBUCTTbUCpHRf65+8uNYDawrwyxzeyB39T9cxOs1FALExwMS2TtIxOZylptAOewhro751X/PZ/FE3DrvK652B+d/1+pSuYnsCEPWVsP3WCddVr8YCiFt9Am/7Xo5/oHZrC2ATCCkyQL9gvkqZBOQ2d+Skz3nZnqPx6W96tY5LetF+ytiJ5Ki86kPXsVb3nbGOSIC6d409pnWl39YPOYWvaUOseZwbfVYdpL2xJnVffUkXOAMAxHuoXP2EWY6BjlXsmRxz+25aZvfuwTx/1wTOL3tqLN1rGq7mS/ULQF8n6EYy0Envuo2QU773deVd3w9Hjhw58hDkALxHjhx5cMI4AFRhgmBhYOaR/hdKeM37uMDMbkAZUQy2BVjIAk8LKAEyGBzXMGF/+5xRI5xOiCHGjN8YUc8nPTNDrjDKyhI2nMEvvLLyMpodJlYfZVQITa+vHMCVCEXu88J0AXrVWQqJNuSlkchowdh8Un17TsZiAMfjvn+psGp/uyRjvLy4sbABvEClxqt+d4AWwKcxcHL4pz71qdt3Gd8Zvo1XQH9j11gAkbo+w73nVE7XNk5CXeWdrWys+U3xAHzyv3EExAB4pRnAEJZGgdCfZbWug2UZwYk5BUTZMny/jDdrhnm5oGvtwnzUxg3b3ZQO+3x1BNRuDkr9i0G3AKj8usKjAbLJpprRn4CQPm8epwfyPDpUS1usc0CunuMwwTe/+c13h4GlD4FsdCAdw4QTah9gAPyTp1UY9zKVkwWBhWDrY2Oz0Ri7ni6Td9ftTd9A7luHVx8W3L2CON2Lqbmh9MsABswDIIA9wOplvmEn97NzEdCerifNL/qzuW4BWw6nlNNz22Luc1zsoaOcgaI4sLo5gQCG9BhwtOmN0gvMx+re+lAdhbBj06dnlSPEGkiqHkBlKQ4Akeah98jqtj6tv60PUlf0Hu/79BGovaH9HI5SH2zUAqCOg2Tfy3KWcvb0LqzN5ot1dd/x3S81gCgGEQnSOgDE6N4y3TG4e586BFMf9L9UD8sit4aItljHs3EEmEv7YEztRxy6WR86/M27vO8D6Cor/azNQEPMXekSalP91HrRutNYtw/YVC/d2+f0DFjcd/ZjdG/bbi+ijT2jMoHrr3zlK+9AUOO/h+KlJ85aqG71rUP47Id6Psem/tXn5vgyV73T1rFoj9N9QHjvCmNn7VtnngM1l5ywBxlyeGL2ejbgWHoH7xGH0KkvR0XPr1z1s4bSB+9iaxfnrLln3mgLXWxs6I1y0htOhnWeEXXdQwIB5d4HG9WxqWueRXZ9f6HlxVKPI0eOvLTkALxHjhx5cAIkYNQyWhij/b85B9uMZqxkeMlDegVklq3BWNzN5n0b1gQI7PcaAwvwXsOK/WwetGSNXCkTbLSfFuxUbuyZwhrbiAsfDMTrszb9r3rVq279Ity4Q24C9KrLV37lV94MBqG/9Vv3tenOIHWISfdleAUcV982+X3f304lr95OF18JoKhMeeO2T2t/z9IX2F4L3D80aVwC51/xilfc+i2QB8ihj7FqMUf73EF5ff8TP/ETNz14xzvecRvr2FYf/vCHb8ZXBnN6gkWXAZweBex2QF2/3/rWt97Kf+655z6DFZ+epi8M10D/5l9sRTkaE4axueb+9HHBQoBAsnN7WUYM3i0v6b70lZEMyNEf1TUxBx3gA1Cr/PqIsQ1ww7q8AtdALWw0QBdDf1mC2kqvsb6wPz03EZLtGZsSRt9vZIC2Nk593/zH0AQ+JMLym085C4QJB4Q4uA1rO0ap9TRgv76ob/vd2mAMAI8OR9MmIp+ssdAXyyJbBrY+BrrswXsLvOw4kmXzAlCW7Xy9Z1nBC6YtSLwH9Pnumk/XurU5KP0PwKrPN5+vsjH1gLPppDpi4zoUDfse0x5AJSze/DePuq/fXd+6fAVTgEFYmXSmeleP2tDagO0o9UDPwc7dFCtYjN3vELV+qkflAYkrV/5TzlOHN/Z885cDq8/lDa6cTemCAd/v1kWOyea6d1h1bi3CdgeIYmd7x2MdA8U4sow9EBAwBVzrb+k2OIY4Z813TMn6pXIC+6XsoEccKQvoYT8veEcPe/amMAHOeSZAWTnNawep0RFrD+eEnM4OhLMnanzqT3rUM+ldfd77p2u6t8/bX7TGNXbpLkBfXyXSlfR8oK69m/XSupgDqgik9ioO8EswWa3t9a+DEqsv57jUD/Vd65kc/dXRfsOavellvD/08UZ9AS7pHwa7tSWpT3r/GhO6Y1/EubS5c1dvzC9rVP3UGNivpgP0dFmwojmQC7w71nmz5APt4iBQH223rpnDe64Eh4K1ZNm6nHoO+BQVs+8KTGjjzqFw5MiRIw9NDsB75MiRBye7AQd+YAZgvmAHtVHss4yUjKmuwZJbIGA3ptfw3P17Q8ExGhgC96U4WDB3QZj9DoPDd9pnM43tkgGyIeKevWCE/skACHjFcswgLsdmzM1YNgF7hQIz4tpM10cBwIVmv/Od77wZTxkgGUeMsT5jfGVIZ2gFAnVf5fQ9sA5TrDL+9t/+2zcjb6Vx6pkO1ene2peRyHARkrzg2UOVDNvv+Z7vuYHpTuPOOGXcd1CeQ2wYXH333ve+92YYCwVtTLoPw67+xxhsnDPK5T9sDnU43ebyBciZRxg8wkgZvXSyzzO0AaHLzKTvHejX2PYcQP6Co4BsxqfQ5gBJOgFsw0YH6gFD5SYWnlwZtan/Nw9i5aaXGGr9XX9VTr8dupY+d33jIdy477DwpTzgXLF2AGo2FLvru7byhKMnezK535WvPthQDPCk9qcHwqmlemDoY0UCEbDzAJY5EAI/3IMxtiHDDsOSv9U61lx3EBAnw66ZC7xaBzc09wqWChG/5sddQB/QtOtiYu3jCFywYVmdu0Zz0C2QvMy1BIvPswC3QuE3l6bDrHbsgNVyVmLe5Rhrnsg3K+S5n3QNCNfa3tjpY/Mv/Wue7EF4G6bNaYbFCPS0JrRGADf7uc7v6uMdqx+E81tDHDLWZzvGAJsdL2uKnKrYfLXNu1b7AIDeu96PtbF3kPE2zuq79e/5tRH4JPcqABo4ClTvGofHSQ+xTgu6BDgzB8yPdYBhkGO1ioSwNtIxawLB/l32pXWOw8e7eXPoAjsBZtJMrLNZHQHK8vVXv9aX6t3alh6UtiXxTgD41oZ+2xe07vS8QOT0tHr3/kh/AfZykDvgDcCcbnofmJ+9F0QUpbO1rX2Mw9vM18YJKN963XPbl1hPHRxIb80pkS89Iz3Cat/5v3ljvYN6/vYp1qu5Rh+Mp3lmnLHvjbEyMNAB+vaG3pfSLdBh5Tisrs/q366vPo1V39e3gFp6o5+1jfPGu9favAcTA6YxzpeZvqSJPsOi7roFqTkurdnb59ppLtrnHDly5MhDkgPwHjly5MHJMv+WjQTstPHdMNs2mDHaGC5OS19W2YKwyvR7Q68XHFhZgIExsb83DHzDkuX3w2iwscdgaFMdKBvwivniO4BYBhaAqs18IE3f/dIv/dLtoJPujf2Z8ZOBlCHW4UoBvQ5LymipLt/6rd/66LWvfe1t856hVlh/LM9+f/CDH7w9K6A4oysDsGdlHGHvXSUD7+/+3b/7Wz7PwPqf//N/3hnuGSgZKg6CEgJoXK/s6Yck9UEG69d8zdfcxtn49Xf9F6P3p37qp+5A3j7/ju/4jtu4CElOXwJiMuAb967tXnl8sd3q68rAyMmID4QQdtsYNfbpoDyAXZsxLl8ggx145RoGNRCLOLQrEUbOkSBs+Dq3XLvsO+xDZWDZLji3RuUecgjUWeamHMOVo9wFlDHhls3ru/qCoY69t6G7ysfY3DVLO5YBijUPBJCmAbDI6JeCobWuMQngkJNRG1sHpF5o3K0l6ZgUAI1R37VuSk+wKQmqg7D7yq4u8lvuIViY0xvNsAxTQMMyezdNAoBY/wFdrvpwZfQC/LwTFsQ1p4AXyyjelBl0Zd8NnomFCuAAxiWATuAh3eSgA3YEgnVd/Salg0OUKhfDs+cE1nOSmM8ANICu8eXwBNxsaHm/u1c/YN06rMpnwvYT7OIF9OkC4H0Breb49i2HDN3u/SvHLcBzDx9Ud8Bd/QIQ5DwytyoHEARUFMlQua2NrWs7d6Uo0EYgLnZ70mfmR31v/bLvqLzG09huXvPNUWo8pQ+QoqU+taYCd62XHBlJbQv83/62btA/zisO7F2z6L85uEBn17S+Y0oGmvY+r661o7r27K6p7HL6AxAbm/oeK9ea3Z6h6+Wpru8duMkBJ+JBn0gNZd3Qvj0LofoUddLnUlEAK+mVNVS6CePOMQF073lFKQHe6bO93jUya1MR0OllmXPEWZ/oML23hnDw9Ns7z7yXEggDvvpKHaOtfV4bzW99zzFEN6wfu55Zc6yR1z101+27rbKt+8v2lT7MYYu7Vkulon+sofTfnPG+S/SztR6AbL38bGQJD0eOHDnyUpMD8B45cuTBCeOd8WzziYGAtYKhuKeNB1zIIQs0ehxg6zssomsosO9tTNfov7KXrqAuQ3Fzk24YMSYYwz9Q9m1ve9sNbGkTbfPv0BEAb2X2WWBu99bGQL4MGgZA5WUsBfw6oAQbSyhwgvlXHxbS+tGPfvTRxz/+8btw/8p9+ctffgcQPE4APlep7FjEwCEA2vXehwzsksYuw7rxyujJ0I69mi43zo3PRz7ykbv8j/VZrKt+ACKNM9AWu4teMqrpd/87cK3vhVau0e1ah+2kYwH+PSeApWcAFwEZ0ncIld7QUMb2suJ6DqD0mo8Pa/WaQuXKwk/WgWONWIYgw5whiqUGQMCQZOQvy54BjK3J6Ae0clC4f8FW7ClMuq27tWSBBn0lNF4bAUILMGBSA+cwzAL5t++A8tUrICtHDlZmbcJO7Xo5i4HTwDehwPpLOH/rEr3b/tUe9dUfxkrYPXbphkRv/tj71hU6tT8+p+9XnQDGXUGwDXleZ906AVyzByEZt2Wr9xOALmWGvMdCruUtr0xAMEBXHl3vBjrYPAvIT/ot1YW80dixQq2Bu/LkYvkC4nt3bK7c7hcJUB3prrno/btM6U3ZYRwxCivPu1nOzn6kXOg5gCHzZlOLyD1rHra+mM/6KJ2rX/pef9dO6QXSbSk3gKCbFoVjpfZWligUIF5lOADKeO2PdYBjQ59gMeoHTlFztz5rzfSeVq9lN0rhICVO91pn6ZQ1wR4BexrALuIDCElHRW5wPKQD9Wl9oK7r6K5MUQDGozrs/JFWRHQGAHEdeOa59BZ9Z08D+O79UQSLCIqcw9JiSD9ifQSG208Zo56/Bw/uIW7A7nXiXPd1CeezPLr6eVNdmBvWb+sF8FVqhZz2geEcFVKVcJgBO82NPseAFdXlnS3XN2cSABx7GEMeKxn4u3tV93p/abf52nX2evre9cZh00ZYJ7b/Gjt7d3pivfd+0O/pzUnRcOTIkYcoB+A9cuTIgxR5YwGhGGzLpFsja8GQDMuMogwaYeeJshgpyz5igK2Bc2X3bgjlAmDkGgq8uQ4xloTk9b/TqatfBlYb7YBeBqhQWOkoGMJtvjPUKiNDKKZK7cygwPQA0i5jQzqGZXToxwy5wOVYo23i9S1w5kmy/XYVgK6ciUd+qwCAGu9CjAN5A3j72+E/MTWTxp3hunlSN7UCAwqosSAYfV8mpZQOsT4BIoH95W/FWmTcAjIcZsS43jQJjL7GfNmb6rEpURjjQj03nPPKtt+5uIxQ117XAUY5tt3mTVzgd4Es+s4QXdBRagjMLmlFXA/IWQCmOSn/ZoC9vKXLKF3Qvf+xwISTm68b1u56obnNfwb8Ri0I4/U7XcqRpDzXYxALwwcS9n9rAxYc0IMOSOmQsY65R882/+PqHpDVb2Ow7DMAAb0y7vrI2grIuC8CwNpK93cO+H5DibeO6q3dWLYYk0BEZfV562bj2zzCTLWOLpOQw8T/GIDXd9GnP/3pO8deP631AGFAFmZn/3OS6IvV5cpzqBEwDNNUmDbwmDMA27VnYGwCFM0pz+lHvlFzIr3xruMYAY4H0olSwZDHGOfE6n/vIGCecHWHfYmOMdf3kLPur/70doFu60Ftso7JBUtPzCOsXPmEu0eYPoal673r61/gNQY/pmbXpT/e6cu4XdYoRjPnjfZ6l+tffYU1LRcqh0z3Y+s6zNU6ZLxaozZPemU3p62J0sRYw3MUYX9iPlc+UFxe6a7jgND+nk/vrFsOpLNPAIZWplzU3gPSGOw7wnPTK32MPc4Bpo93/gMuOTH0pSgw7wx6Q48B4JtbHCsZQzznQ3uq3uXeyRwM1cszpRGpXeYQ50t1x/w17/RP5ch5vWkPvIe9m621+kwqH/oNRF5nCP12ECFHoHG15m0UhLzNrX8cxp69kS7WG46mI0eOHHlocgDeI0eOPDhhMNqYM44Zq9hLyRrj2D/YOcLN/Z2sUbrMgw3x3bDhK3N1GWBXkMYmeUEYm3/lCEnPCGBUtdkPONqT1pcNJAzXs4XDbxhhhlAsH6y8ZdmQK2gmH2LsmcI25UbMSCpUMkaNw3eu7MpruUc+e8Fwqx8D2ANTYv5kCGfcln6jlAsbDskYBoYABzb3IRYgXV4QyQ92JhF63v3NHbl1GbwYcpUlH21GOkYgJnK6au5tLtHVFQY2Y/Q6txijjNe9d9MvuBZIlO4CHAA3gOwFpDYcF8Bg7gJhgGaVJSQfsFx5G369eTnlAM3A73dgyZZR+Yx87TbHl0HMINZeDiLgEfDrk5/85M2wDlTQPwnwsOvTlf5O1zBRfcdpllPhqjdAke4Helgv5T5lrAM5hXkvE5YerdNp1xXjuDkugcT+XyalelvT71vXFwzWLxvRAeTY9dJa7XO6bYyAMfscOcY5YIB9GM2Ytt5f1vkN7648DMvWgeZm74R+5CnHtPVe2LQh2JjL5sPglYcVS7N+ba4EwPXsnuGgNExbTp2A5dYBwJc5Sd/Nbf25h855Dv3pB7tfqDe9B94Bc5szlSOdiDWnOVR9Wl+WWSzHtbQygF99u4ep0dWus14B4gHZ1qT6G6i1wDYWfH2F+bmgGfYrnbIu071dAznRAGJdBxTlNPEcbMgFXaV32SiOZYl2jxy4HAC1vwgdESI5EUt3wTmHLd11wMjaTL+rg9QOWN3YqFIN2MdURv0YYOgwvp7b/xwdtU2EEYCWMxOICYBVR6kO7BF3Xptjy+rffdtGRfgOW9e6JzIBkGuN8T+w3NkQmLLSNViXehZ9kAaldtY+B9UaYwcYWhuluVhHuvV1czcDdo0Rndw1lc4BVj3DOqLfERCsARjDq6/6aNN9SCuBbb86vusslvJnI/dF2r1Q8mKpx5EjR15acgDeI0eOPDjB3rApZUjaVO+hNgyLhOHCsOm7DMEMxQUdACfJsgttWBPGkr8XSF5mn58ro3CBY3k+l2Ehf6gDddbIuII7QJFl3DGy1VP7GCTYhgzgvu//+sPGGtgTe7jvA4eqi9OpM/b6jqH2JLkv/cWR55d0tHEB4JRyYQ+re+655+5YQJveoLHKQMZ+Wwa6XJsZWqVUAKRITUBv+r+ye4ZDmAL3gbkBKwHN6QBgKsFUknogg7X7GNnAEvmj6V/1ypkgJzSjdo3MTWGwrMydd9pYGetQESq9h25ZM/odmCWEFJizeXn7Sf8xx9L/PVDJIUf1CwDXfO9axrw0B30ecALMrZxyrmY4m+f1f4b4rgldF0jtgCsMYKfWm//ApO5NFwJbsPuX9VqfBIbRGyCxtku1IB9iz06A5Pq4coTCG68FzDH/hNBXF8xF42pN1T8LwFjrlG3cgMMbBbDM3fvYt4CyNcCX3e161/p+HXUiLmo3QHxDtF0jdDkBrAAOpR/Z9BTAJ+WqB0DLwVbylhrvxq4x6hogC6Cx9br+F1pNX71LtddBYpXZOFfvnoeBK00B5qCDONPvTcNBV/VpZVcHzhptXODI+8xakACTMSMByD3TvBGloI3LqLduLmtX2iZja0zXcQIkVHch/xw9cuaLiAG4WsvkAM+pko6rL1b3sie7rvUxh6m1SRqmZHPYmtMcF0BQQCCAvv/tkTi/OQQ47ICJzcXeA/1gnm7IvyihxPqnX+iYMcPMNLc4pzGVPd+4A7p3DyHCqDr0Puj+1sEY61IASBtQ/euDxqK1r98bkbAH7QHGN8+x/PTeM/Zmm1YDS9x40AcHJHIycbA1L7vGoYTW2erU9dUrMN3zrd+914G3mPebMmRTZ/msPjRWPXvz40uJwdGoXetsdXimdYeOWctdyylgjuYskYeXcypZtjoGOSfSEi3k4V9dAT4bIw7GI0eOHHlocgDeI0eOPDjBIHSacLJgEONqcwlunjuHzmwOuoAW7Byb0Q1nXRYSIILhsEb/GoqbOw9QsmDBsmWWFcIgCCjCeFHPDRVfuY/t0HUZSAuKJf2dURErF9hXnwbUFXa/DJ824ZXRxpsx5mCv+sqhXU8SYNWRp5f6K+PJ4T5y0jmNvL5vDAMGnFzeONE3IAe2KoONIQeUAMAw9oTuAml6Vswt80yOx4CLxr1n/+Iv/uLNuHag0Td90zfdnuEU80984hO3A920Sx1LN1LeYGwwoA/QkHEIcNpQa3Okz7CN1BHbmc5jU0qf0FxnODfHzOHaFoAgrDpjmSG960EGLXBTXsTuw5JzCA5jmsG8eQyX1W+9CSyvn6wzzemegZV4zXXNGMci1jfAT2sGYKNULYH0HFtSu0j5kP6kBzkLFsgH+HdfY1o/lk4CoLMAAdACq3BTHFhHhQ13XUBBzwCG6+dlkyf6ExiZAC6kOViwAJhOLzY9wxXktY67Zhniq1e+47zoXqxu4c1Ai81PWdsw3wlGplQMgEztFObfmNP75lu628GUDr5LR5PGs/sWTJNnvh9hzwCsvgO87DsOgAcEo0eYkRwfwNbq2BzqfrmAu3+jYnwmFy6Au7UCcCvth3QegVQ9DyhoPM0n6ZSMnX4CggPhltFJHzHDgdnKXla197XnGHcpKbBR7TM4MLCxha2rR3XYnLnWNX3EgVYZ8u7bt2xY/KaacD+A0P4B8Gh9ENFjXbDucJA05q1fjWPP7jsH/1m/a/srX/nKu3UDw9c66FAs75bAzXU6WKNds4619L7+SH+wPBPra++Y3kHWzfoo/XcIa+PQvMC4ThqD3pWbMsUavCmJMNeNsf2hvtt16Bo54XDAzXFtntl3AljpWuXUr6JbrC/SYNE362nX99mmnLCmJ74DwEuR4vn2k0gK9LrvpCfb9BZLSOCo2D1C99fP2OP6lz7LpyyKRwTR7ncrv8/ND+u79+w6mM++8ciRIw9RDsB75MiRByfLgBWWaXNqA2kjC1xxsAhDiJEC6Iq9UjlyRwqjZPwtsLCbUoah0E/1YDhv6LgN+rKubGoXkFG3jDKnVAvxW7ZVwiBZYZhveOFVylH4rd/6rbfNOgPSgWy1o8PU9J1nMmozRDBEGM/qc58wfgONjjxZ6qsM9sYn47g+lgNX+C2jDOOzewLnuoeOAaDMDeMDoHSAjXyB3R9YxOjisGjexOBj3HKOANZinZUeoh9MU6xAThXADuBZXQCMm6sWiCHEO3E945pR6bprmhRg1R4IVnv2YBzt0Vd7QOOCkfpB3QKlA0CBrZh0y1TEkFuQefPNWocWZOnZOVcCJZqTDN0+x4oD+gARAW/LQBQGTJfoSu3D6K7+gb0JxliAPZCGwybABxiw0QEJMCqgpcMa1TmHRGsptqS67RrCeA/ExObKQbDh3caRANXoEMBwgW3rNrBlHWi7Bm9Khysr3DXLKjZv6PIyT5UFbMbopjf9TVc2vyfGHdaxd0/3iOLo+/qj+tfPldk8k08XAFn5/QB0sBLlAQbKSqGxcwmbFFjd/41L17a20DNt6tl91/3ATuDTgkV7uNrm55R/1DjWzuqLrYm9CWxOr/SL9zUQCTi7411/Wp+EtkubALiUXmHZmoBLY9t7t/tbi+kKRxmnqzYB8/UnEDrp7+pbn1Y3rEzAtXWpOjr8tWcuI1O+bYCh9cgBh9KeSPECiMeYri+kisBcVr/6sPeGfLrGOQEwO0yxslvj+75n2nfQn4266HnYtIDW9hYY4Mbcei6Kqutbp2pjegYc5TQxZnI193djZe/lnbUOAVEj1cl805/r4DCfrymspMHw7vKewBznoGxu9ewFX42991HSuNd/mLh0uHI5J6XsABbTV+k2pMLZ98u+D+U9Nsew5jfFBEa6PuWI2M/oqnnSWO77xhpK/+0lu9+85Kzd51lTlUXvMISXrf+soswXg7xY6nHkyJGXlhyA98iRIw9OloWLPZDY6AJyGHeAEcy7ZAEHAG4bcadNC1/cnJnKxl4pXH6N8T7POAGK2ri3KX7zm99825QvY89mXHgaRiXgoh8GcWXFeFoADjgSe2VzSDp8zUE594GvsXH6ubLTkr/6V//qo3/6T//p7f5YvrFAMa0yugGQL3vZy26gVIDOsqQeN15Hnl8C1b7ru77r7vCZ9AuAyjjvs9e97nV3bDHGbD+BJECXxisj+ZoaAZC1TC7frSHJmAUGLTC2IMBb3vKWmw7Gxu0ndieArN+BwIzcxPMXpLkaQubHAmpAPgcECpnd+z0XMNq1dDOwJGN8gTvAlPYzNDk8hNhLb9K8j00mBYTnrsNFuzcHoWcAc13HAO4nQL8wZAfpAHH60Q/NP2H+2HLV+ZpfEhMM2ytQoLUi/ervANov//IvvwG7V7Zq99Z2oAXA7f/+3/97+yyg5PWvf/2tDjGOG3ugSv2b7sqhaL1cZ9eC532mbyuj/nUY2zrKjOk6rujOAhgARc/cvKra5/eC7EAK5XtPqOsC6buWaR9wy3tGqoD6IOfMOtroBJAMAKlePYuTDzDWeAQAek+oV/dZA6Q12HeIOQJk1lZ9Sj+ASP7XL70D5LxtnDCGAUicSI1deuF6eaWVCWhb9mHS+zK9cvhXZQVmb2qEK6vfmFqTGoPWuepWHZZxLm0JZurmNpY3tP+FkwMl9YFD2LBgMdrdB+hOehcCorGw+6nN1aEf6Za6V+5va0LlSivQeO9apT/WEbzjyxmgnkBIzuHGob7BHt4ysYYrA+gqR2rOoP7eA+mkdaDj1mr7FWxZeZArp3Wnvuj69LgfDgkOG/rRZ9KQVEfAqDnkvQdYrV8TY6q99mHW8MqpfsZg013sGOyaLiXHgsDAZHOpcjnFlhks3QDHqENFOcetmQ62W9Y3XWwOLdtbOgbzf9OJ2aNZC/ddb93xmf0AXVq27KYJwTTetcLeeR2i2i7XvDWIA8n5DZvre51tgF912HfokSNHjjw0OQDvkSNHHpxg2gCk2jC3CcVGFHYsjDFD2mnjctEuuy2xgccMAxDbENsAM2gq76Mf/ejNcNnDmLqWAdEGOXA3QCjjz6YW00T4nufYSPe9NAkM8z2FXpsybCoDC5d0byCskF0hpCsLcF2lOmdwyOmnXj3PYSwBjIzr2stYu0/0yW7oj9wvgebf/M3ffDsUK6AU+6rxTO8DAd/whjfc+jEjWFqAJMZdhjOQc3PAApAYc1fjr+uleKCXAABOkuYPkNUc6e/0IRC3+gT2ZdTv4VBXo9Ac2jDMZZ2uYbesV+1kQMq16Dq/gYa1f8FSc1sblzEEjGNgd6+cmL7rnv/+3//7HZje3AQ6XdMKaMMyXxc48P+yqzGgtQ9zFnOQkb3jt+MIFNgxN1Z9l24In69fWjekkwCGORiqOV99WgewQj/1qU/dwLfuxxZuDcR+xihrXAKOgdDGFyCyerHrEICy+xwwhJG8gMUCMwtYWoMCmKs3xhi9oGPLvN4x2rVwQWHfGW+OAP0u5y2mLCAFK48uCL33vsKEBeB4X9T/+rI52fzyftBubEGgGHZn/cXpaL5jspsrQFO6BxDXP8YNG1bb+wHaYgn6vp9SjKQftWEPFvNcYJl3rrQzvRukP+g+7zrjJFScUyed7Tc2YgIA7rd+zAlZn+eIpQsYsYHmm46pOljPAG/Luu/7ygJ+AXoD731PH9V3czH3XEAjfZJ6AyvZWHDk+Y1dvDmepUG4RugsC3SZ68rru/4Wep+0bnNOO7SsetQ2ZVR/etz4bF7fxplTvR8pg1onel81rsDdru15PcvaIv+u1DiA5M0jvexkerNpfHpu5ZhTDpPbVD5yfttDLZsZELkOJPOcQ2fBdrrhEFJsW2uwfVf1oLt02X7KOiZ/ce0XXSO1Sj+b0kdUizlP1+iBVDDpMDZu47B51fXpOhqNq1zO3vXabb2zrixYLHWO9GHWduOz6z+Hjz7ctBHu2zQ3G8Vx5MiRIw9FDsB75MiRBydtloX/Aks2tI2hwHASVpYRJl/cHoCTYG9gAwsRrMw22dgyNqlAWJ9hfmBGOCTExtamVdmJ7/bQC2X4jjHjIBT57DK++ky9F3jbA66E3D6OyXufLBDi9OP+DuCt72OTOuClOmXU66P7BBMMS+cLKcCGl6Jh0Pi/6U1vugET9XtpMoBlgY3AogxogGMCvMyok2YhXcjINE82nJ1RtfrQd3JdAjkSobdYtJ4pDByoFss7RmgGKvameiyAAVTy/IxPoAlgdtm/y/YVzlq5ckIzeJfBKzwdwwtYA8gC2tKRBVoBrMrlaDG/HFK2eScZtn6knHBA3ubf3QNvzHEgU78D+J1Uv+wxxi7wTDQAg32ZZ54FlAPSLOBY2bF43VM9c1ZdWckf/OAHbyBjIBkAs/lPhxywI6cjhl7ADsaztWFZp+rhOfoegI3NmT4DdzZEetMkLJiOfetgIDmMpSrBsAOwLMCxa8eyzYHWgA7ABqaqMiqvdbn1VsqFfgNcm1/0HkjrALvme2Pbd3LIBlQvO0/0xKY/oCfWj/4G3ktFwHmJJa3PpHhIzPHKE6kBpOw+16Un8pvWVg4CqTzSDc4lIBNAFADmcMf0z9pR+7FP9xDEvq8/k/Sr91/XYo9icnZNesfhBUCX11Td+t57NZA3Pa0ty4i3tnCoYLzaEyQOsNoUS8a6uhlvwLw1CVuaM1q0TddXR3ldG8P6TxoHz8cWBhza0yRANnMJK9Tc50hYh1D9WY7ddK17m2+bDqR+qc+kicDulaZJOfI8B942DpUX4F8/9TdWc9fm7AaYV0fps+zVpNawr+HQqn5dX994F9BZzrvKrw4cJ8bIOo2pbT33966361Cy7prz1gb7LA5Cjk7RIgDq2mIfac2XN968UV79VNvW6dLfrcvSm6yzElN638XGad/XWyf9Rk8Awtje65gF3gLVNxWDdnNKbjTF1ZFvvfO3+ec5nFa7NipziQtPK9bjF4O8WOpx5MiRl5YcgPfIkSMPTmy8GdFAkGX2ZnA4pAOwJY+tDf0CIlf2YPdk6GTEtkFnyO4mdMMtGf/CubEqGOGbKxRQsswFYK1cfP3dxr7vYs61+Qe4MhAqtz4QsregrpBXYBUj6WlA3r1GyF99nEEs1DDjL0MKoLdht1dhAO5p3F8oEeqHJfZSksCGb/u2b7tjAWJB9SNnLrYMMJTRzVgExKxDAmjpb0YWYxFotekJMLkyHjGjGLIMSeC//K4Bk+lBwE3l9pk8rQFDwDnPzyB2yB/guLL39HMHPtFfOXvlnFRnjNoEg6rPn3vuuZve9neHU5VSIGb0MpoAFcuyBYg1BwshDwip3C/7si+7AdnWmNre3MXUdzhZUrulyAAy1N7y+FbmzrPGvrZ/+MMfvjNwa1tAWOVXX3k0K7/UKYk2q7N1BWOXLsiDzBCvbQG31UNaGQe5Md67tmfG0u2ZORnkhARUWXM3pyfwK0mPGsvWL2w7YM7mpQVmbDoGOUTlLa0sTohlmBs7650xxRqUKgfAsqzwKzt8HQXEO2VBYHNNmwBqHC9S5WBF1xbtrC6BXwuGAFWrd9837n0mN6p0Dt3felAf913XBpB639TXsejpNwBSeLUQdofDuUau2GWWA46NMRBzUxUl61wEpCfeefpFftUcVtW9n3Swd4j3YHNGmLe6er/Vh80z/y8oam00VsD05sAy5r1z66dXv/rVN/3uHY/hSScrM4emPk/okOfRAWkasIqr5+41+pGDnn7oa2Nwzd3cswFzHCjmu7mSDlj/1dneiOPFvKjf+lu0TYJ9G+Aq974+zbmI4c9RASR1mJx9zuZS7xm9B6xH0hIsWIit3rPTVekgmq/2WfYdHIjYstYHvx3mx5HQWumQx/qosa2+lcupwdGzDpJNa0MPluVubdqoiO5Jnzkw6W3P4HjA8NUf1hnr6zp7/JaHfPeMlWssNs2YNUV7usaan4hk651Vv5RyY51XWNHmifpybFhPAd2Ab+vqgrocc36vQ8172bt6nat7L1B/03EcOXLkyEOTA/AeOXLkwQkjHYMrQ3FZetg92BMYRMJVN7TXpnXB2KRyAiUy1gIyAzQzum2chYoCTAAVbYjbRGNoMO78v8AB5gbQTD43Ie616+d+7ududRM23fXCjxl0e4oydoaNszyDba4fx7B9EuuAQdnzM2YyWgLwGN4LGj5O+r6+xNh5Ehj8ucoXsuwvtLzjHe+49WvGff3dQViBknKvpn8A380ZSG8xKwEa5oY8tFi5m4+acYoxZk5xNgBoMH0ACrGIKwM7DuBX3QJQ05PmXOMeuIBFD9gIlOr5v/ALv3BnoPa765sv8r0CiuuP9ByTEsArt2bfNXcAPIEMWMyBslI6BPA64IYs+BNTteeWn9ohR5wlPdNBPeYzsKc+qo83jUV9wQGyoFT/YxpqI4AL69j6pM3yYwJI+3udVa5niF/Z2cnqRT/1c8BOYxO4Ir9jAlCPTV5//dqv/drdKfVyOkvNQKcwEa2zHAcJnU4AKfTXGpzsgVWAxuomIqIfANM1j+PmOV7AbFm7yYILu9YBH67grjpvfmqAkDnDUZFDwKFUUgaIXhBqDshwEj22aPrCodL/wN3GvneQ9DjYfcB0Ye6Vk5Oh39iEUm/0t7UcSAPUpC8A6/1snTzAQs4U/eDdZ+4JgXcPNi0gji73f/Xsvs1rKp9pf6ebHAqVK60CR+aCRkAn+W8D9xbcpX+1qb5O9zedgUPoFsTHlKergHC6UV2xsKVcSBygZ05zmui/PsfGdU11An5pK6DM8zZE37rZui8vfuV4LqcEkHkPm7W2B7Z3TWX0vqk97V/6v7Zs6gERCdY5+xYpEhyIJlpEfc0/Tvb6vHdEoKI1a0FxbNzWXvPX3odTvXuw2Tn+llWrHI5+axFwm640b0VUOBwPME536Puy5Tke5Se2LlSGw/I2/YZ3gnHZCKMFs+m19VtEmrWNM8h6V72wvPX5gsqV27pt34vRvulH6L+UK56xqRXMgWX4bnoW+gj8lYbCPDam1zRl1hkOTWuI9mrHkSNHjjwkOQDvkSNHHpwwqq5heMBWh6QIT00ybDARsDswFJbFZVPPQADcJLFNMuCBHDbUQIbCmQuxbkPd8xgOu6lepptw5M2HhiGX8Vc55WL9pm/6pjsGTbKb521Lm/g+D1QS3otds/n7nkVswjPsXv7yl9/qG8uqfogVwuB7Urm1rXv6Cahg2H4h5KUK8NaH3/It33J3yA2jkg5nfHdQ33/+z//5M0IYtTdjWD5IRhmWLUasOSHXKUOt7+k443aNtz2ACTjhM6y5RPhn7FKgMKYlMIKzhSGKIWcOqSuHRdelMxh9wjuVBwTESsQy639MYgeJdU9zCkC8DDqg29bTaefN5cqwXsS2FVoMsMag1EccLRjJ1guAhfyWiXD82IyAxIQBrl/VD8iwIa6uB7xKC9BPdd88scvCqo2tFwGDMYv1DUa33wHuDtKSggLAVv0c6ghQrH2B+EnX6C+H7NCJlXVWLPhKJ+WSrKy+q8+Ep5NNacAZBoy6ssbo3TKHr44qoMUVHBYGvQcs1X7goXHub4AscAkLtvsDcZXXs7ueM4YTT1+kY+mIw7Qw9NUfmxIIxoEDWARALqMZGLRM32WtiiSxzvfMdMFYAZ2bJwCzysvx0v+Y6sDCntNaxTmoXxwS1t/NfwdKiUYBIm2ouzzE6l27qwe9dMCYFCHy5f/Gb/zGXe7i9BQoau2x/vZ9OuaZdAqbFGuzvxu3+qTx7Hm1F/hIh4DOWNPLUJUKozGsLGzpdWAAL60Ju/71jK6n03to1TJeN4Kj/qj/andAukNlWw+qQ8xe60TjCVi3PnF61Q/6mi6lL9bUne+Y7hjPrrWP2XzAO/9EjzQGDpkEXktd0N+Bq80RaaUccietxDoydj8lcmHTDSTVFTCpL81V6yjWNWccvbVP9N1GsOjX/m4+cPLYsxkrwKezEIDhUgFt+hTO/D3Y0loQYC9ljTXOutHY99s8XGbu1ncZ5QtCex9hHANxrTX6bkF/axp97PP6TlQapvnTRJxd5aRoOHLkyEtdDsB75MiRBycOV9lcYsuIw7bAKmnDa9MslyNjgbG1rC25Q4VGC21sg5sBIiw9dmUb2jbcsYG+7uu+7nZPxlFgSRvnDL7Nj8kwBoxh+W4IsAPUMk4CVTNmegbGVxvqjDMnW2OdyOFr4y7Mrr7BCnsauW6qAXlJ4F3ATUZWgG2C2SeU3o+yGJwMwC8kwPtSla/92q+9GdT1TfqVQeYAu/r1rW99641V+t73vvcGQjB4N7fp5uVsvDOSgWrr3Kg812IDAUcJINc8wiRbw3OZpusYkZJD6DUgFQtow16TdaxglmHwACMYmgz+BNCsLozx6oB1+uu//uu3uVQf5KC5jxW09QEMeBagN2dGzLa+q2+x7dWjetffQCDAaGtBcxDICLBZtnSfYekyphf0XoNVn++6kVhPsPkB/BxK2/+eaU2s3qUMaG1r3LDP6sNAcrlW5bbcA8b0W22M/Qzs7vr6rWe0jslLSzc5KRbENg7qrL3WRoxBQISDnxycpH+tkUDPq2w+yV3rFly2Rrt+Q4+Vjc0pz7X8rACMTXsCxHOIUvc7+DMdoYetqeZrZQOL0+HGZoGPnaPy4soRrVwpH+hqwlGiz8xJAPTqIDAYYFj9HFzIuQrgDFzrPuAuxyXgxztbW6WwyAGBlY31WF/KMbvsP8zn2qevsfc5ZujXrlkiH9Jp+vH+97//ziEKXPLe7JocOT2fwzgBzIogAI7p19rBaQIMtrZiIvd99W2cApDTY843a4l5LP+p53FuSKvh+traPK1M88xaqN7Af3USEcD5zQnoQM/SxXDcSN/S2HK+WUfov/bpD0CwPrU+S+VQme2bMD7ltJbb1d6regJIraX7rqI3tbG6t9ZYJ+Xcte7JDU0HOcWt48ZpmbrWFOlArI/Kdi/dEumEMe9dvbnHzd2k/gXeWrO7hjPM4baVz8koB7w9n7VfCozKM6dEV3D2eF/I2Y+hv6x8+4klIGinddnavHnlOTbk0jYOIhWsg65fcNihjJw9HI5Hjhw58tDkALxHjhx5cALUaHOYMdPGUFguppbTioFTy0JY9gOAd9lkcoB1D2MaEJFBElCUMeQUa8aTTfHm12OcKW8ZefJlLtNFWok23v189Vd/9Z3RJjQ/IxvbB9gsfBITQ5qHDSdfEPtJsqy46hvIk3FRLs7a7wCjcgO3Ec+gCpxsQx57pvotu67nv+c973n0gQ984A4EOfL/S7qRc6C+dlhNfRqQ/u3f/u23cc2YDExoXBes73eGPeCJwU+/yjPZ3x/5yEdu/+cYcCDRhn1mRGJpAdrMic2ZBxBjRCbSdawxzLhmuDLK+7z5yuhfsE25AA4GN71dZpXnCPdeJqM5BZzsd30IjGZcArf0o1Qocn/W36WiUBdpJz70oQ/dHSjmIEVsTCBCvxunxhOYtyfBlzaCsZsEctXugGTXaI+ULBs+blwWKAVkYO9i4gJfXL/pZKyLzduYjemFw6QqK4C8uscgr5yA4P6WBke9Wh+wF8vVy3BvnU3v+q71qzUzkRd8GYoLlsh1yRFh/dL2zRPZOAFWsGXJgr4LsOsv/bjOBrIM5QV5Mb5rA2dBbawuGJ+Yd8rGXqs/6gNgfuMs52Zzs/LkagXgOPirH4CrMZV7Vd5d4Jx7pD8AVgP+OOM2eqVrvNPSk+pTuem9PK7Nj3S1upXuRAi5uZzOV7b0D601sXiNC5axdCoOIiv9jPQ9rQ/auM5R80wUAObl6sbmB/Ue9k6sX2tfc6/y5RXH8JS3tudJfcFJgEXaOplO9I7b/POVD5SXumPZlSJ6pF6Sv5fTljN6Ge7mcSJ1C3AZUMpZJx82YLh2O4xs8+7Sb44H5TiIsOtK9ZAzx9yVwqV53bhJxSIlAqAPez/BsKWb9E0/WSPtxSq/NnafnMjA+8aNM4UDUf94NkeOnLj2W6IQ6H/X1f/WV6lcksZxc5jTHQAm1j7mtsPJlGMvKAJFXl1rfGVKt7ApRewztZlO9Bz6DezGmOYgsX/gXOCctD5yQF1ZtknP47yxPmp7dZeegyN410zv742CAPRzAOy7yh4ceYIebUoowLbx6J2CRHDkyJEjD0kOwHvkyJEHJ0CVa6ipTSrWD8PTZhf7DBtk0wrY5NrQbxga4xEIlAGUBMBhUy6bCsjseQvuXkOFGQBCY4FJrqkNDi3qu4zTrg3o2w30pmQQ9ir03kEknv98YW+VtTlbE8yzcucBkYAQGWeBPrF7YxwDRLRLaDzW1ZHPlAAT/SkMPWCxPnXoEL1M6OHmc2TUdV/lpJuVEwsNixzjLn0GoCiP04FOYnzuD72hnz5j0DlkhkFd/QNRhIcuYJdOd+0ePgUQWMDEPARYEYDC5kp0SBUWbtJzAS0AgT30RrlYjfQVUBYwDhBtrguRB6gAoDbfo3kp52f1Mif0vXzejPK+a5yAvta1QLbA/2VL9ezmU8CLOQaokNajz3aMl/mHCfvGN77xrs0Yhd0LKE1e+9rX3tpUm3teYEtrQWBPYxPI13MD0WtTaUQqEysxAW73O73sfgCx9W/XWLoF0DfG9GTBWHmh6xNpLxbo1efyctYn+mXLVh49NMfo1jJ7MaTNEX83Vhu5sLq6LNb+T1fqj+ott3b/N3+7Lj3Dwq4tOdb6P1a6sGvvsGVGG196KLJFPYw3Rh1d6V65poXHm4fWh3QuPZL7HaDHEeHQL+9XETZSpNSmvpdGwdwBtMpjXJ8AiRPAVmlEAN7pe23I4WDdxIROV/ve4V3Vp37dd5I1JSDTmugQMNEo8rrqM2sf3XKAVeXWhspuDgMCgbbSWwAhAfD9bm3smvSBPi5LXP5ua+E6hx1uuY4PTpt+2qfIq83ZQ2flIQfeA6fbX/TOCcjmwKHP/UhHgm257Pp1FkjRQ48Aks29+ryxrs1J37V+pH8O39tUAqKQrM2ipCoLeN3v7gtMtheUn71yjLkUSFjL5vPOc44PuiMtBKcO5xQ9MC+stZjEvsdYXUfLNQpln8+Rsbl265vmV7qkTGvb6iSAdKMagK72t5woWOt0YvfEwGXMav1irbVflQbCHgUwTWfMoU35xNEjj7H3knzO3oHp4NOSElY24uWFlhdLPY4cOfLSkgPwHjly5MEJ0FVOSRvcxEZRKOSyaRmqWHw2Xww8G+zNx7jh3K7v8wCONq+xWrF45Dxt8/yqV73qthnPqN3DV2ywbWJt1ts0Z6xiggEU2uQGijA+2xRnFDKsel7AAmYkEBBztzKEjFaHjKo1CO+TDPKMw8CEKxsOg4rxkWRUxdLqN6aS1AJCjDckceXK4PxilGWXXqXPhTRjidaXv/Irv3IDy+vnxi49yAjub8w+ZTP2MkLTtcZYaLYckwxO4e3GhIGHbcjQ77cQ6QCoZSx2HRbiNV9fUjvT/fJHd18Og/QJ45zu9YznnnvuMw7iwTAs3J+uYdgB8NQZOLbh5En90Cnw9Wus8k2F0ndACjlOM4Y5jZa5F+scmNI87/MAkPoX++kKIjJiqzOgCejN0A8UzVHS/7UfUFQZAWb1sUPw6rsAF31cH4paYCQ7nMd64JAvDhrh9Jxcif4CZgDCOcUY4hipffb1X//1t/WsZzgMMtDN97H4ATRAsvpOPtnu6Xd5yqWWWSfadV5YbzbU/3HAKx02V7SzugAdOL+s7ZsKYlONbPqJBOixY4t9t+zpa1qRDW1ecKU+bE3uupxj6XDzqXW9/hf6L3f7pz/96dv36V1931zuXjmmAVwALGPJ0QfQrv0OfMMqr3+7pu+aX9VXagcAHUDM+MknXVlAntrjHeyZ2g8Aql1d1xxqfifq1HVSytBzOVqtiQ6L632HOe79Tgcqq3b0PQCxeouAwRztGZi0HKP1hTXKfRxRomzkPRaRsCDeRijIaS6dBGAZ+zRHibzdlSE6Z3NHN+acs/YX2JT91h4OJu8RZXSPqAFs0wWOOZhEWPR3e42e43DF3uk7J+WYFb2gjxPh+etM4lys/1sv+r8+aa/j+VIlrAN4HYr2a9i+2Mmeof8bK/3NUemdl044oFDKB2Do5jU2Ppx/vq9Pams/0gLJRV677Ls4Ia336qH+wHRrhv2ez6Tu0W5sdes6dqt1he7LKQ3Ytd4k9Uf3G6v6rvHwzrm+F7wTANKAX2C3NcO6tn1KxzcyZqM06Pum5PGOdT394og4cuTIkYcmB+A9cuTIgxOAKEbBMhXWuN5QPeHJjAIbUHnRGG5tNDM6sG+6Z0NAAXV9Jl2DEHl1S6qTU9+TDTXFyGG0YWxm6ANnMvBdG2CREREb0yFRbdC7Vgi4QzpcDyCqvsJKM9oKAV+j7D4JUCrfa8ZY9z6f9JyuDVSr7wKIK0NqAczM2lW9jBNjvbbflyvzi0UY//cJdlp9F8DT3/Vl4/szP/MzN2Ax3QoQSABTwCKGfQZzhhu2X0ah9ASYSlg56WTlbfh4Y8UgFzrJaGRoYxYlOzcYgYnDjQJk0uG+b+wDAquLfLabQxhgoj/oLACq79Mp6QM2fQrnBlEP6VlcCxzZ+c/AB5Yvi0mYOMNd+x1aaD77vY4QQI88vcuMBjbuGCobWIGtZ81aMFP9MBmte1dW2TVv7QIZjHiswwTDC7gYUNCPA2/qC4cXBdxjYWLypjcdMtk9Ab3qAwzxnO5LNwKSKju9AxbQLWOxLHL9oBy6qz36seenv+lKTEHMVuOOXUl3Nwpi/76mKVkHxKY2UAYdXFYdsIjTIl1wYGDlBZ5jnQJc9DVwpznd3HbIHwBrQ6sdXgakBHBxbIq06DpgamsDsM87DbAJEHbomXZi5i/LEEuydjRnHLKFWa2fpR6SJmnTI1WGeV5dpRdy2Fg6U9nAzQWle3bfyd1a3QHD5sIyLwGa5c93zYafA0P1jfFcsNBhWtWrOsr/i42/60LXADKrb23rs57h8Dcgm7rJC7uA6TWfNrY0faSj0nYA3htDB8BhY/ZcugSga253H3Zs+ih3ubWgfu5dvbneOXSly3KInDUJyA+8BGRySjlQT8oMa/GmtJDapTmdw65nJA7i23Qj7Tuw9DkzHGrYDyfFOti95zalivWov/stLRbmNNAYQCtyzD7SvbUdSxWTWtv2/acu9q7Lit4cufpu1xhOueZRerXzoTF0UDCdNAbSCVnXNqKMQ+I618xRbeTo4lTwnqVX+07VNnsLbSDyTPddc6T/08sjR44ceWhyAN4jR448OFlDnAG74YvXTXpyZYjZWDKkgSpYdrtBB8j6YYy2ac7wdugFQzljJONdDlwb5Ix7oI6NduXH6Av8cjJ35baxDWjp8xhcGQ8OQEqwmeQzxTTa8MIEEN6zAlYArUI575OeHQM5w6CDaOTNfD6p/hnOsRIxdRjJcizWJnnsMpoCI6tT+T+/2FI4bJ7RPeRoRQ5F4NsVbHHwivx8y7hhRCcLgm2+wmXOrAA+Foh0uBODeNlBdB/jbZmQ5gkjzgFYwJF0FNimjguIbi7eddKos/KBnhveuu1aIHqZvoxQdQR2qouyzP9rGgDfJ+7TJ9YVRvqGh1o75PVk6Jp/6mkcFlzcnIh7+BKxjnBKCbd1EBfwRJ82tg4vYmS37mC1AopyIjUvc1y1pvSdnLD9HSBbaofAhkD7ZRFXzwD3rmutUecFbvs70CHQpnpmyAds6etly+rHBR5Wb+ig7wlwq7W5OlkjF7BcEN3v+1i8wLIFKTzzCu5a6+j3pn+oP2trba6PsOwWtKyvAOfVtX5pjMyF3gUcQK2jlQN06Xt5VKtn/Z9Dj8MAsCvnqpQk1on+l+N5daL6rq73XtPWdRjsu4ReA3jNK2sFoFXeUgcypa+cH4Cr1iXpADCS+w0I2nUPgNgcCBQ3Zupp7gOBzTXrhIgfLOr+x66XMmLz3HIcyCW886jf2OOeaxySzZ9qXeQ4kgv32p/GeVOoAPU3HyoHTiKaqc+qI1DXusFJjv3b5zkatRvwW1uqP2dRn0sngmUt/673BsBu83/73HgAtB04CLjelCqAxK5zMJvD1Mx1qTGA6dL0iCCQfqa/6SLgnx5c127vZv9zrtQHDhC1tjnIrPLo5bK2gfRY6hzaor+wVqVF8B71XhR5dY1aoEv6q/VDfmf9grXeGHDemBeJ59kv2HNYo7DxORStI/rLYYCcmau3HLHqasyvhAng9/5dvT6bHLw7ji+0vFjqceTIkZeWHID3yJEjD06WecDIt4EEEso5x7jZsHOGDGFMyqsnZK7PMyKWOYNJY+MWE82BWBtWbPMPHHjve997F4K7B6n0PGGMgWJ9X97Lcll2inUgSsbMV33VV90MG0AxQxHzxPPaaGMw1WYMsAz+gNc2zBvqd59kDHWtNA/lIWVkP0lqe22RbxdTrrqUbqB6AZ2A2NUH0yYgW1i5U6Ir76UotS+man3SuN4H8GKoyL+YkStnZmO+bLxNcQE8Ev7MYDPumK4cDwBjc0GOS8xe80n4a8Yoxq/Q3QVqFsz0N+BZGXs4FtaTHLGAsAXo1ii7plzYNBQM6mXsAw72M9fsXL8CwsqWExCQAGQCaurzLde4qK9+XMBNjsFlgjVGGfnpRnphvViAV7/og2XyAiY3byJATBnLLk0AUkC1ZVcBRgEH2G2tac09YBfm30Y7CB/u+oDI7sGqE0JtfPRT0v+tYZXpAEkgwDoNtG3HUD/sXKDXftLfZbZWr+rksC/gjbzAQG/zSNnaqH+2f5ehm+whZgv8dl1grNQbjb31HxAnLYL1EjDV97GhsS2xeytLlEnX5DxrnLy3amNrvtzJwE85LgFMrbt0QR8m5ilwGxC4a4/6ttY31htZsGPhILDGAPgJPDIGGPOcBTvWfbb5TTdVgf4D2htz89dcrXzzu9/VuTUSAMwBKh+3tDgY7NbkAE0AorXVYVqVsfsGep9+d31tALKqe2PmwCz7D7opf7f3aJ/3tzm4fXSdZ9W9OmFxVn+HOorgoJvmJB2PleqQ18D8nimipDLTX/mOq7sD0XI+aEs/cuxKVdHcqx3psMPfVh96TmX3A+SUtxYjtZ/q5gBXUSQAbns7TGts/ephbwI05Wiw/nO261vOwHQFoGl+9xzzw3qCvcv5sGNUe+tPzj1OCyCrMeSMt+7Qbwz3q2OUSI+S40wEWOVhzG9kiFQLu5YlyAWckY23tcEc6feyge2rlSPFj7X++q621mEk+06/yum9TtyX6v7vyJEjRz4XOQDvkSNHHpzYlDNsGHwMNuyCK+NOKNmySRZgWZaRjfaCP8n18KfNb+uwpt2MA6awOIWDAlMWlALEtInOSPi2b/u2m3HAaN0T2Dd0ziE1CTCxz7ouUPkDH/jAHYuI8dEBWI9L1ZAxHgCF2dxzpQogaxystMEPvMmAri4ZJxk/f+gP/aHb5h27Bbunuv6v//W/buUxHOr36lbfds+Gyb8QIrXB00ptkQ6j/qcP1/6qfbHw6u/+ls5Cnts9JGtD7BOg1wKcQMn6vfo6kKXnL0gCoFyjFRPHSeYcEYBbTFKG3oI4xLOEU2O7yQ96day4fuuVMK4ZeZwYGza/LN8F3cxdrCSiff3GTNrcvMARjpJl8i+Yt3kt9/CYrWvCweIeYCr2YroeUAHc3PnJ2BUBELBkzgDI+9kQeIDyMo+FuKdfmJoAF6CSVA/Los2plGAF54RJF6TuWHZ1wG7PSeccZlnfAw3lf7SuWoMBadoo9Fcd6KbclYnPlv1ljaZPGIqcRkCbnteaEiDloMhALznC90CtBRM9e3VvWeaeu2zddYDQOQeX0bEdp9bKALLqHOv413/9129/V5/qB6BqrQhwqq/pFSbm6gXdt15j9jb22oDtuIxpc2/nxTVMXtvkx97UIJw7+r8ypGMwLt0D1E0vHKzmEC3OJ3qzKZR2veJ8BFID/s1LaxeA2TzpWfUfHbWWLAjFCaaNQCnOAvnn6QYHa2LttkYAxwDB1Q3Y7ZmYy4DmdIBTBWu4vticw/Yw1jagrfeqPmkt7qdnej62ZnMhfbIGeD6WcGVilAPwNydx61fXp7/VkSOlPq48uYXXKb7vM/uL2imlR2VxUpvXnl3aKMzq+rV+4zg0xzGb7bekggBYrmPburzONWAtVrL5zUniGd7VC7qaN6KjMHMDKTlvaqP5KC+1dA17oJ+5gzVrzdjIq64FtNdvlSlFDVBatAgd4VyyXmH865fVqV3jjMG+x+0DNo1QetN4mp/6xb7GvAIMr0Non6uOhwF75MiRhygH4D1y5MiDE8bnMqiSBWbX+GaAJwxaxhuG6RUMUt4yhmzCF9QCxkhHIGRwAWFGt422cm2ubYAZsFi9GfbCjOWnAzAxJIFTXR+wKjVCgEHAqbxtsbwwybBaHgfw2sBnDAQqxE4uxFje1u0jsky2DOgYZP048CtG8obxkoDjmMof+9jHPgPIlWfyhQZ3k2c1MhjQ9fcnPvGJ35J6YoHZxmfz1mFuMmD7PJYvPV1mWj9YYwwt+SABkz5fhwZDbcEsv9dZIC3DglpX58imUSBAHHOsv2NwZ2xiyMppuWCdudvf5VrUFiBJOrxpEfpcvkWGurrLy5g0JzDHA70zipeV3/0BGXuoTAb861//+juWPZYYoAmA1djGnBJCy0kDMLHGXNMoYMpuXX7hF37hNs+2v5tz6RD2nzWjdSHgN+k5tS8gts+FRGOY1WZAAgO8sjHzhD1zBHS4YnVu7gcO9bnDnuhV7cuB0RjV/p5VWel8cxnw6lCuBXj77bC7yuq3g9nWCbDXAwKMsfV4mXJyYwL9VifNyVJQ1JaA6dLC1DeAE8AKUNa82OctwLFAxM4h4K7+TL8qs3YC+zZ0uzGun0QvAHZaRzF0AUeBaA4eAu7U59XFGGLDOgTLusFRtQxm75B1jnSdscHMM1e9T4XZ9wMEFjnAqeO9ap1TX/mI1aux11+iZNIPbD7vKeMEXMPKrN+6RmqkBeXd13N7P6bTctJiKAJod60zr4CinCMYm9IRWEfNS2uvddL8Sic52by/E2xVTg3OGE4yrFuHkWFoukffArE5pxx8ZQ0uP3ZrQ8+vj+w5jP+y5r1XFnim8605/X7FK15x00PAvdyvcqtixjtPoH7E1udcSICeDukSlg+c1y9Afk4m7HK/a9OyaL37lhHKGWJ/SOe9X8wHOZDNZUBo5fd86/6m8cLs5ah2SKEDzbwbvIs5zvsxL7B4d/2+pi66Mtf1O4a1g+HoI1burjkcM7uvsc4ZF/NinWaez/GjP70TzSl6uQ64JVnU3mWO2ytv6iXr/jXi5mlkHQkvtLxY6nHkyJGXlhyA98iRIw9ONpx0w2V3w77fYbz0HcDF5vM+ZuUytTZU2nOWPZMIjwsIBQi5ZvMCO01e2HYGQ0aPHJHC+Psck28ZbjbIWEo9s+8ChWy6A3UDWDLA+izDR+qHjA0smycBpxmiQi/b9AcclDaiMMvYfYCIlZ4jD6EDZbCHGPf3iX65hh4yMl+Km3QghbyCV2mcAiTWSJKPkq4CQxs7IY0MLgAPVijjN72pvxvnfl9Zv8AxQJG5siy5noN9C5xNz1afKwcA1N+AWIc5bW7MhNHsWkahtCalAAF+ZqT2PKCtOS1nKDCCQRpDuv5YYCZ9fd3rXneXbiXAsjK7P1Cy7zd3sVzX9K3rmpfya2+eS2AYw3lTTjCejT2WPlBUf+yas4fPNOecWm9tkluR3mBJMqitacmmelAnz10WHacTEB6wYG1cQLN2llc7RrqylB3wmPzSL/3SrY+BxvVn64H2LiDvN1AgULB+bn1o3enzddItg5rBvwxiIBAwpHIAUtZuc1Kb0vHWx/q79VKKEmkrjPemvtj3waZrSAAw2rrvGo4/DH1tayybp8LKXb+HFW1eTyzo/s/hI0VI7fb/ssV7njD9xrZ+kWsX8I6515zse2uVHKPrzOw+eVY5nbD4mivq02fNyXSDkwXL0nxzoJwDGTEtdw4ngC/h9p4vRUVgo35xaJu2LFvVgYL0l/4A9TZHLyCTngO65IkljeXuC6S1WCcY4HDzrPqfLlYmINnYADoBedJsdL13L4DPGOxBZ4DN+kt6DHnRsT05ojdHMT21FogAoNPd05zJSVL5zXVrnNQI0j9hD7vXnEw4YNL/2tZ1xiIHlHXe+HF0d59xcSidNUFfc9jpc0Ap58WyUjmxORccAKvO+qUfjmpzB3hOj1anvD+916tL/QW89W7Tdw429Z4DgPdM0TMOVbT22EN0PQcbHUike7AG209aL5EVgMTeGf2k29ZXqbn6zDuG/u1csqZzzFsn/cj/rg/Xuawfpe6SEmXZvEeOHDnykOQAvEeOHHlwYuO+IXYbMn5lcSxbJNkQXAYMMMEP1u+V4bhMF5tQBgRjcXO2Jf39mte85o5d1z3ve9/7bhvZmIoYwICxDdWurAy0NvIxkAKzpGD41Kc+dTN62uD3W17G/gYEObG79sRekjPzSRvnyovhhqUSWNPG+2Uve9kd25YxpE++5Eu+5AacBe4kGS2VExDQ/f1+3DM3vJksUP9Cy7MaGfVZY3UFrUmGc7k1hSqmhxndDKA9mKsf7EnAQCAgYDjpu4xugK48k9h4e7AKcG9TNjD0HJCVLCuSMcu4ZcSmH0LbGYjqrW7KAyz7DEABUK6+mHJSoCRbx2UNKgco6XPGuvr67D7W8X7vWdYQIIK0F0J/pYC579mb6uEq+maBW8b41sGaYm3atWqZlgCQBS4XANU+aRLoDoOc80iKEPUIwNlcx13f/THtS+uyTM7KaM15wxvecBu3QODGsVzagUkJxpvnWXt+9Vd/9c7xA3yUE1d+RgC2nwVVrfuJEHMgyYZOLzDsMykKYgpW/0BeIEv/y1XsHaD+xmfXA+3hgFjwor7od6AVfTfmwFr5gs3jfrqv71o3zbXAHHNKTk7vreYnxqy6KtOBi9WDHvQZBnV16n+AP+YkEN8cr07SBGCSAqz7rHXfXAEQpUtAWt8BFhOAptykAG91tF61LjY+2ihdws53YOU6PMyTTVth3tJrc7u+7vrqy+HoGrmyXauPAGrahJXrGdJsALmwLTGoAZHSC4jaMBY9F3gIOG0MnAtgTssJjHkK3LRmcv7Wf8LnrWEAcOtMdZYjmdNRLlcAdWtG3+XwbU+DLZrINSw9TeMGKL7qfX0E8KxuX/EVX3EX0dKz5NCW2gnblSNkc3Z77+nTXb8817hjs2sT1vOmwpJCQR04Rzjw6PO+ozgGjPnqJFZ7/dZvIKa+6jqO/T0A0H5ygfY+Mw/TkY1A4LBtHOkHx5W+3aiIzZu7ztPabx9rrnHimAPrALmygXfdN1/sze1tzV1z3XyvH9T1ce/TI0eOHPlilheH9XvkyJEjv40iDJThzlCxUQbw7N8LArex3PxmwN0ra5cBsfdtfl+GvM1pLMAMEAzMZX6V77EwdQbNz/3cz92MuQWblo0CoGUQAXbLHxl4iNVRGzL4hGp2fUZXIEDMKobgXisP7+Mkwy0gF4uknwDa7hOmGIgTgCuUO/BXXr8YXNVVSDim332yz8gY1A/9X7mBL3K5vVAiN+TTSm0QNn1fewOWAsT3dOrGZfM7Z2A1fsChrnVSOAfHhptKMUAYj/TJZ8kyGxfcxDhaABUgDMBywjUDmxGLXVada5/w3e0DrCYMSbkXN6QTQx1otnIF17T9vv7XxmXN+m5BngXWlhl7zccNSGjO6pcFk5elu6xRTKcrO3HZS+rIkL9e59kbPbAM3o0u8KwFMzmV6I65L5XE9dAv47wgfyzevo/Jnzjdvn6Lid361pzHMPz4xz9+xzQzTsASeTrpQalc5KEWWr6H9ywLz1huHbV19dxaqu/UYw9ZAqDE5m3NKvdtdcpRZd1cFusC2ws2V0Z1TzdqT/2J/Q5EpUf6zmfWd++vBPC4Dsb+bk3kvHPI05V1jRWJRSmXdu0OVANoYUNi6PVda03XczRWHgdiz5NaQNnWLu9ATid1r+2N+aZZ4Jjopz4DxAFAMYSXWSsaBKAMaPXerSwOreqLXQtk9Fx1Bn4p3zoJQKzOmOjAWI421y/QBeyt3PpXhEzvPeMHKAfmAo8Bz/Yu1mDrLLAdQKe/9ZP9zzrI6OCC2JyG2LHGWY5awGefAabdbx72fHMjPbOPEJ2xaWwqQwTFRm5w5Cw4n3NSGhlrYOWnM5s+Yt85AZv0QR9LR2U/aC3d+dsPPQPgNq4iUnpOf2+EjfcfIJROWe/pofX4+r7pGXJNN8848N3v+sa2fsjZa11ZhrM1x/MdGre5tK311gO/RQVcCQubz5nzc98p65Da962UD/TRO1XajHUmppt0fA9ANHfVe3VUBNNJ0XDkyJGHKAfgPXLkyIMTm9YFYG1OGQFXNhtDgZHfRptRCUwAgDDqbdIZFZujEygFRGlDGvCKRWbj7Trsqk0fwUBvA4wR63OsS+kcMg4CTwND5N+zMV/gB5tlwQFAhg22PIKPk9oRQJPhExAZ+JLhEciboZLx1ufVxaEwsftilmZ0BMoyUDPe+u5xG93Gq7Kqe+1jBHYfplqgNiDgt1vqN6eJPyub5NrmxibQOtZ2bQaCbmgnQ04KgMYCcMIYoq+Mrw0PXbZqIt8i5s4ygq6gWP2+YeN0JIOzscHUwfDs82Umds8b3/jGm/HsAJwNYZYH1pxsDqZDy0asnNIoVIcAt2Xpq+f26wK8V5alPgE+WRfWSN5ogGXmbkTAhr4vC7jPpVdZgNe1UiMsW5pO6V/AiBQXxnSdTWtcG79loQGm12inf9q+66AIB2B7QBYwZMOH1QFYFNCXPnIoLTMWMKsO3YOJ2+fA49aQ/gccpROVJT+4/KrVAwhFd4SvW0+rR9f0O/awOl/nHAB/10N65B0QSN1aW77j0k00TzkariDvsoqva0VrIGdY66e12rhWdwdHViaw0npde1obAOHeT5VZn27Kh+vfXY8hikGMTWid0RccKFL2eE8tCLTgDrBUfeUXbo2WYxlrr8/knOW0cg025q6P1pDaLtR8mcXKpG/YlJwV+ggwCsS3Tmnbrg2Yi8BO70frH+cZoB9Ybp3bvLQAYPqxbGmH220KgZ5Pt80jB6uaD9aDjUAQPm9dXfC08tM3oHPXpDOu7adn7uGHnId9J6WPvhGSL72HtaR3vXRPzgcQfq/+9SOHtLRBu/72/PROTm8HONZX0g8BXLE65TLeyBa6AkjelDAbaeA6ayAAup/KrI96l5kH8lMn3p3A43Xa25OsU8O6wgHfNXSt5/bu7zuH2xlvc50+eJebA/ue5uRIZ+wHgPHqvXvDa1SNMbCv1b/WB+8Z93M6c0DQE+uDfuAc1gfdx0kLSNeX7jFXzTk6sU6PI0eOHHlocla+I0eOPEhhcG/4HKOqDStDBvgk9BEA22bS5nk37236sRpschkTGAYM7T3Vu+cAcvoeYIfRdg1zjwkT4zfQhCEOSPKMDV+PYQYMwzxakFb9FxDafG2uuQLf9wmjBmjQ86pLoEeAYcZZhgo2oxPr5fbDsI4JLP/v46Sx63TsGDP1n7DBjEdlBipt/sPfLsnAKJXCc889d6tfOR+xZlYWqHsckN01GdyvetWrbkzu+q92Bpwy9oGLDEW5GJcxxDhbpnlyDQF3zYKeyleGcQIebL5T4GgiZHoNaA6QNTi7J10w1+in+xiMtbv2dsjVj/3Yj93Y3wu89n0/zQGsN+Hjm7oBIApY1Pd9Ltdf92JqMWAXmEyEhQIiAQIAnSvzl1NG/wHoFhgHLpmv2z7jIkc147pD3dI1bbMepHf6Tj7S5mEADTBBvkZrxzJngR2APuHRgarpcw6UXfMSRj3AJSdNjMTGrPnaOAMgjAvjvPp9wzd8w82gX8CMji7YAIwCCPV3bcFKlGMVA1T/1X55UbHh1imnvdeUOcB16+cyfFvfYvPmoKrPA43ry9qw85ieXQFeQOwewsfBoH4b8rxh/UDQ2iKXKgdgfdx7AhCTXraGOACv/6WYsG72ub42d5ch33PluwSmm2PrBAIQCx8HRvW5yJLabO3u2a1pnDX0oTKtndYgz1iHAxYu8NW7JxBbyghA6aZEqRx5WrWh5zR2e5DhAsnmZ/foZ3U3H4B+3sUcE5uLmzOOE9ia2LONAV0E9GGrYn83lht+33j7Xnu1cx1Ocp5XHscJx0pt6V1tzpj/nLIY3wBCax1dXEDWHgfI2v3pT/XkNKA/wGeHc/V/DmLj0ngAWLHe5f3v2upM76qT/UPXcgDJ+8xxL6pCRIL3h+84rqz1UqM0zx2CRr+Bo8BJ67O1yjqz0QX62DN6XucVSJ+h3J5dnTnVvBd3PyvyKuk6rNjdh/rfOr8RHus0BOLSHe8y65X1UGoODh4H/amHde/6v/ebeWmP632wRIeut05o684151Ns/vLHnd1w5MiRI1/McgDeI0eOPDgBvNooAm0YAkIf+6wNtpA87IFlH2CGLVh6ZZvYvC6jwSbYRrtyAgiEFvrcZvv973//DahcJmWb2YyAZeH2XOGDPTNGWD8ZP8CWZe8CSxjXCwa6llHIwKiulRXAvOzLDMTqnyHehr92BOoIwQ7wqN79vXlSq3N1jP1W+TbzgbMf+MAHbvd/9Vd/9d3nC0JnRHRd9WlsgIWN27bnhRChouUL3UNVrizSDdm+D+Ctz2Lllas0AC9wt75tzCpfnky5Jf3Iy6ifG7cNpweUAFHkJwRQAusYbgvgNU7L9HXIDUBgDdfY1AAO7XRavcOdAIsO3Am0deBKn5t7e4J8ZQRq+h6jE2M0NvDm3l12VI6DnoNRns5iWXddhjsgvr4IoJReBDCsnekeNjX9s2YAXoBPzYHmTDoLhABsxHrfE9Ab8+Z8dVtm69d93dfdfgMSM3pbC975znfexlA/dU+Onfe85z13oGwSsAu0Fe7OIMYKtYYt+88aYdwd8COMu8+FuLvOoU2V11pQP9XOt771rXfgFeZv38V+DQAOANIPCwb324nvgKTG0OcYmLW/OSJnaCkiarfcsbUXQ3DnnfVi5yndWuDP9Rv1kDQOrVUBVzHIN9rhyuLd+a+PagvACABjDIBR9Ydr+sFoW9AS67N7vbP0RX1d/nXvAP0QMCSHLWdl4r2RLnN20CVAUGX2PRYoh1rvnQXAak86iWEJfFx2an1QOfqF8wfzEzsVgMm5VB2A+4AyDE6Ak/VNqDd2pNQRgMru73rgPSDZelCbOICvjPplMTrY0sFugM99/1lL7Ee6BqsXg1NKiGXUt19YIDEwr3lTndL15ibwVn59uYoxg/vRf3LlypELxPdux0quLKCcQ/j0t7UAkNp8w+xubLouvXIIX3V3uKpD3eqP2qL/c2b3Dul/4OXmJqajlZGzAEBqfTEHgeMcdRwhgFx9B9TklLM/c+ArZ5v/7X+MmUPUvFv3PUk2Lc467YCV0ml4V1kHG9PqUjsxee0n5Tim07XNurDlA+Tl69+9K5B0U2uIruhaa8MCq8gQdKq+Nde8F+iytdI6bX6vI8B6t2krujb98ayNMrFHQrrQLs6gz0Ye52g/cuTIkZeCHID3yJEjD1YY2XLAAamWXWvD2E/X7SZ0mW2MOyw8eegY22usS6dgc+zk865jZC3AKxwWW4rhgW3kYLINK4/9imnyy7/8yzdAKWDwalAwshPPYjgv2MswzvCuHuXQ1V/VO8nY6Lk9KyAroyxGWyHzGWlAvvukMjP0gNtyCX7yk5+8AcIx/2z81b3nBzK/613vugPMqkvPrb7VNYAMC/q3W3puPzGnnySYYPdJeldfBuzGBnZYEgYolhOdwoKRM1meO2Gw3ZsBnzEm3QYQMpAdcNpzOD0aAwymdDU9op/rAEgWFAYcB+xV5gqjGAAkrDqd7VqHbPW9vNP9VhbmVmPe2GP+ZKyXw3fnAoabOtIt+oIpj2mcCDHGOgJ4A5cZp4C3yt91RF7G7gO0AFPrf+wm4EzPAdYLMQ0sl64C6wugU7nYrYk5u2wwQOQ6dIAHgO8FMYBQV6P/anzv+qdfGPu7VmA/ryMhoDywtXUiILc+60DG/u/61XHsa+ws4fBC9buv8ahMayxnFfCp77vW2hlztb/TK/NFe3ZtTPTNOib8LABAR6qfwy4b49a7j3zkI3eMQECnNfAKImgrwMn40DVjgSmOWRiYXH/Xb40tcBcwAoDD6JeyR1h286lx7D1irVQ3rL8k0FBeXIxVIdLmFh13yFafA40c6MRJ2Odyrfa9ex1Upg0Y3NKZ0HGgqnRJnC9ydy9Q513s0LBNeeQQUgD1HkYIMAZK0SsAtHKMlzUVKFibAVJ7UKGUAvQcQ7W2cD45FM5YyDOKnd33rS0JB06/Od9EOtQe9ep7ziZjBNTvORweDqqSd9m8qx31ibUdG5uzyPrqveSdYK4BLh3q1npDv72fOCL6znqOmU63d/2y/wK2+g2crszKoUf9DdynYw4krE702juga0USpSveSfReFFjzZ9e+fU+sw5OY07u2cs6LeHLQYn3GyYo9LD+3tut/zm56t2ubNdF7atmwy9JPOC/MoWX5WgcB//RD/9duzg3rlve+dU46CCky/L9M311r7T8cLLjX6VeOJTr8uP3mkSNHjnwxywF4jxw58uDkyqQCtjJCbKzbPLZ5BdAAaG3WhXELYbVxtknekHkGhQNVGAdAiQVMMnSkeqjMys/YcZBW3zPkMrqxe7CuAjiBYg7BwXTcjbnwTiDMbp6FtDKQMJhiDAqFVO+MXQabNAuBsgEvMTFjImKDPU7q99oSEJwBGWiRVP9CwD/0oQ/dMY0YJfVNAG6sP+xrYASGqGu/kGIsGT8bMvm5lNkYBHjVh4Gq2EmNbfqJxV2fBM467bxxqL8x1zDjAB+YaH0ONAACJVhotSGjtWcx/gCamxdzgQ7GH/AVA04dzCnG5xpgxldZzTuswT1cJd3/2Mc+dnf4DN1nYK5BqH6AbyDXfteP8qtr84ThvNes8bsMTyHX5ol+AnTILbgh5a0xckar67Kirv2ceA4wHDtWOocF8jZKYcfNemVd0ucAckzCK0tq27ks44Aph1K1dtR3Ul5Yj9xvbWl9ak43ds3d1pTWp4Ac+pv0HKxAz219qZye29yXb1tItfanIwC32lZ/awsHXj+NQWXpcyDGtn9DmBegXbD3ylALEOqZOWeqc2A8ptr1HUQ36Oeydq1fwBiHcO0hWumHQ6Y2ncPOC+lyEkx5ICoADysSILpgGMBMPc0xa0mOF2CtfgS60i96AUzzvr3OgdYbLNDGR65Q+gTE5bSSTgKzFygMYAaIAfPk262uomakQxApsA5fIDjWKYb6HlRY3R2Mav3DtuaQ21Qr1gpzzrop1QdmLb3E8sccFulTW5o/++4T0ePHux7A51m7tmgv0B8TNWkdppfNWe2j9/VL47yH1Fofdz0s2ig9tSaIDOl57qGT9UE/tdF7SqooDmWgohQZPUNIPoBTVIdUOHQFeOxdx2lkHnCaGjORFgBoc9jeTlt2vbwCo+5Z1r8xN9e966SzqE7K4vxfR7exNp+8g7F/vavWaVeZyAEcJtYUemG9AXZLY2b+A383fY36eD+tc8F3y9TfPLpLOpC73HpgzNXX2rbvZO9We+5ETucjR44ceWhyAN4jR448ONmcYgvwJg5+ybAIQFi2kOts+AEQrtmUA8AdQELgbAaDMEHPxkZhBGWgBKoxpPppc/u2t73tDlgJPPiVX/mVG6jXZ4GADPy+67k9r+8CBQuHFooIeMLiEmrZ5z3TicW1NeYpNq1DTRyM1bMcnoWRxaitPgGSX/EVX3H7DWx9EpuCYRsg0k/tAAwUiv6zP/uzd3XHZMH62hy9Xa+fsUQAmM8nm87gWaR2BXBgPwolTpewwZ6m3MrB/EwHA6781IdYitiiWIiM9gTTmzEH5GLkLRvT2C+jcMG8xAncDDOMzSsAxvDT70BELCtGszGSViG9xRIU3t09AbgYf2ssV26fb8oU8/C1r33t3XjTxW0Xo5hxWH02rBOA0DjW3673o+1XEH+ZmOuE4PDBcgKKVEZzVHoD4dbAtO3fK8Bs/DYcX9g3xqw1BXhkjMxrOoSxCXAH1ukfY7ag4erHfmZNtPbpR0BWc6H1VP2bH+9+97tvuv5VX/VVt7HXt+twAAS0FgEmWh+63wFd+ktahlj9u+46dKz2SWmDMSZXspQ8C7ga2wV4dxzMWX+b63RQyoCA69ISxDiW4sCY+A2Ap7vLutPH2IUL3lovlnm8YeOtEQsU0vFl3C3b2/hpizpJKeD3jrG5JpQb0Jc+A2uwUvWNtBoAIO/K6iiNBrC377AVN7cnJyNAHMjYZ9bG7uMI6V1YvYTQVwfzx1wF6EptgCkJkDQnMTiBlQlHmFysezif9XEBe2NfPUTbeG46IjXLpobYdC/6i0Na2Zw91gnziaMtnendvWD3MiatG/0tx7cUC5UpGmKBbc6Z3SPVN42dPYkokMpo7Vl9t17Sq57Ve887St5jTGHvAuU5KFC5Dh3ruupWHTm7sV2BwJiz9SEgcRnC0i2kX1jk5q693LLzFxzXp8Zl5z3AU38D6L2bpZ2QH1nqCfcav03RRAcAxxyV1kiOJlEg1myOiHWOJt5x1g97iF0Ljbf5LD+0ObB7Y84NebOB+8gS1gtzH9DdZ/am+lObtk83QgWp4lnFO+7FIC+Wehw5cuSlJQfgPXLkyIMTxvCmIFj2WgZJRpBN825gNwR6TwHuWhteLMRl0ch9CBgW6mgDjXXXhjRGTht6Bp2QbezNwKdv+ZZvuRkzWL4rAaLCCgNGFqQAmuz/myLAd8Ad7BKfM4RJ9/UceQIDXbon4C7Ds/8BRk+S2la7yrdbSodCtgOEkvrjp3/6p+/Asz1BXhjlyjJuqgdG8JM2y4AXIZGAlafRpXL3lYqiumPOMBjlwWschIkLN79KRmoh5AFSGbcO/RF6DBxjYAJhAHpCRRM6gY0lbcCeMo3tA7js+cJ19SEDDojD0Ktdex3AIRBrmUSBKnJWLtuxvgKsLLN1We2M3nWuZGCnF/S2v+lurPGegWG3xukyMHfuA68XhDensFrJpp9YkDMRcs44B1xgJy07Nx3oegfmAGJivK+B7bBAIfmblzB90j/9xuSmc/rLgV0JIAWzSb9rp1QeuwYs60pf0kVgptQQHADN+cbJOmfuB1jJTxxIW9qVyi/3Nh1VZqx1rLXaVJ+3Lkjhok05uRb4rg31WetHnwn17jvRBT3DoWv6ZMeZjtAb/e4d4fsFU+iA1CL0qmsa5/Jnd19trl+r0z7LPF6nifVuoyWAOUKUXZus806eYbqu/kAxrDrgo7oCmolQ/8ZTKqF1EGk3ZmnlWpfUtXUd6LJ556XSaF1Sd31cfVqzpV/wLuo5/XSPNAbmLodNn8u/TA/1IQCx8ruXw3XZuta5DS+XC9e6yRnDycS5AjTUHnNZe6WgEAFk/vT83lWib5THUSH9i3v2ADrsU+lazFPrtkPi0rn2DN3TuxkYhpEJLLfWYHw78M9a05hwzCWcdYB076PKbD7Ik63fmwMihvQPvTCe6g/023edtm8KD87ZftSXPnLuOHSTo1RaitqDBSpXvvUPs9iBX/TTO8J7b1PaLHN335m7Xlsz1smzrPj+ppuYtIB+YC9g2xqmTNdx7qqzPaW5jlhgvknzpN50FAHAXtDa5J1I7+Sf3zzXu07qI44Ac82P/sHi1i/AXVEE5pf3kOdxqmGiiwQ4cuTIkYcmB+A9cuTIg5PNF3llTyR9FtOhz4WYCm/HSMD4WyMfWLLgYOVuLjIbdcYoBkWC1YB1lKHCAEuuAOWeLK2MNu0BXR3ww9gHwnU/Fg32VrKhwIyE2gcEAVwtc2XDxpf55pnA6g1LftoUDdU/pp3UGJUnZcOKvIkrmEMZtZUXkFhf1i97WNWC3N/8zd/86Lu/+7tvaSB+8Ad/8HYAEXD/+aR2BmIGPnWoF+NM6Cl2ZO1JpzI6MrJrT8Yv4CMjNsbza17zmhu4Vb0bXwZMZckBzWDdNgMbHKzGsMQkMnb0d0EjzJsFEndsV7cA7K5ZhitW1Iafr6G7RixQZnVXGcaczsqBrX31UffVj4X6qyOgcdNF7GFogCtgB3Y8cNE807fAcvU3P4ENiXo2dgsoC2fHsmKA1j8Bjeu46Sfd3Db3GfYnAx/Tru9ru/mZ1C+VEfAL5NKunAbACW3ExsP0WyeSMW4NqYzY6TkdrB8BIg4xcqp5zwfupEfVxXrZfc1F4xCIBQjuGZjaxsbheZVTf/X81gR9a50Fsqm/udfYYg8DxOu76oqJXftbF2rHOrgWwNk1YtnnwI9ludHT2oQ96F6MfrogpF4annW6rS5eI036PEZydZaH1dqpHj0bgMi5tHli08uei4nZvcaMbmuPPtBf9d8yl/tcWobayBFV24GmCcZs9er6+sJ7cUE7eqS9e9iYa6UbAIBiAZpH5jgQ1HOsHwApLFtA4wKldMk7BhOSHq3zqbZZlzgnrKuudeAoQJUzZgGzruUACXytnemJOVZ7+1z5myrD3OX8sJZ3PUef9BLLtJZuwjuG3vVZjrPVR+xi4981cv/rU4Azx5ZIi97p9hj0fZ1H1ln7KukTOBTqt3Rn31s7N6xrzQ3941kc0nRFf9eezVvLySkNhbllbnavdDH2UMDdBYV3HVsQd9+jdN7zjKP3lbmrXt4nfYfRam3E8HbA5L7rN0LHO5o+6L+NyjAPOKAB5PsO3PZs+jHPNDfsaTgJrJkAbsQJDkV/L4BsbM111ylv35f2RRzs9mDr9Dhy5MiRhyIH4D1y5MiDk2WmkmXZMIYTRtGVjQCIYsguKAZsw9LFbrH5dOjO5r/b8Ma+L6SXkbpMl4QhDnCzGd5csEJeN0zbvTbly+DQ3m3jGnjLNFn2r820e+V6rG0ZiYz5DEKhqMt2cS9WXoBWYFn3ZuAG4D1JrqA3kEXociBpjL4MOkDD9kX3dxBSKSACkmIWBvA+7cFs1TtAKgDqHe94x28BzQGNwuGBM1I4VJ9+1/ZA3eqaoZoOAAQdMFSfZLABaBiR6aCDb4Qzrl4uc7ufBSj7X2gnFvCCV5VXffS1sEchrNhNdKI2rD5UVwDOhnVi4tAprOD3v//9dyCfHK/9DiSoL7oGoFQ5jRdAePsbc4nxWV0a12XjAxRW95eVC0gq5QgWWWMQWG/uJkApgA/j3AFfDrHDNheijHUHTIjZ5vvGL10ArPWZcPDYqR//+MfvnlMd66f6FJC7DNRlvS+o7LudSwvgAz7T1Q5VBOIAcqublBzAVU6Fzc+cWCv1K4Zpv+sf66sxwUbvf0zLZVqns60NAHNAARb61WEHhBMC72Avz1xHBSDhyvrWvs11uvcDYYEc9Lr+zLFT6ojGTUobuUut3WQB577bg5oAh4CXjY4Quu/d5h1kbK2/nAH0URoE/cuZZ74n9RUHE11P5wjGMgb9MoY7VC/BHsSoruzmtXZVB8xsTNdlIQMhgV36BFPYGNFhuUytT4DUnisFBKDUGAIFsTMBlbVVNET9oI3qlQCBlWktxeLfHKbXfNiVy6kMAN79CfCV80aqig3Br1+7PyePwyM5G/SvfrI2OkxsQbF0A5Ao3VHv1Nbk1p70x/7D2rSMdakEen+3hnVfB3UCbDe6QRSHHLAcYxzr1cnf9khSMfS5Q1+B8PUxwLNrMbnNDeuldEocFfJSO1hu903el6KCvDPowjqHAJnudx8gch0ny5rv2d6T9B3ruTHYtcX6hHFtfluT7AMB6darTS+yUTnGZEFT7ZaHWNn0XR3NayQAP/QfM3xZ+M6R4Pw3D+0nOcV238B50N9Sb5iH66CQw/3qhHsWMU4vBnmx1OPIkSMvLTkA75EjRx6cAC8IhiTwggFE1uAFatlQMt7WQMIUYQgBHPqbcYp9AYAS5ucajBJg2jKnFmDezaiNeRtcefI2tFqb1HUBLZv1NfCFkzukhnG4jDb3qJtnVLcf/dEfvR2ilJH3ute97sZw7femlFCvnsMAln8v49/hYU8rlVGaAEye0lX0g9m4ot4BLz/wAz/w6O1vf/tdntDYT/exhq/CIA8AeO655+6MyB2rpxHATfWsvoEiGfwMaSkfMmwZOVh8Gd+BsMZEigLGG3ANw0aOUuxG7BmGrH4CYgDcgIL97eAjgMgy1smGvl9BM2BF1wudXl2sPwPcXQsQr82NS+ABIF8otnmX/qzBy5hl9GvHMuiWnYRptwfJXIG0NVoBXr43nzHHF+yzvmxo7IKHV91c8BBAwkmwANCCCcZ9gav7nFnL3jJG12iGvnPQjr7b9qyx77kLaBiTKwgMSMAkxhbbw3RaPwPTgX1Yh8lHP/rRu7mKHSw/pjZJ5UHvuw64YE2V33NZzNhgdOHKQr+CEtuf2u4e41E7zcGeXdsCM8sV22f9n6x+rAONbmAuA6w80+FQ9Z86A95cAwBsLsnTC8Azh9cBoO+612GBQBllSdPSc4GZXc8Z0/rNAeXdKUVI1weemrMAmut8qb6AYc4HOgqsAvJU5wBFDGDpUJLWje6VEkJqCuCZPKpy4DrQDugEbLJ2AtA26mFZ7IC+xPvIGmku1O9y1ALH5RoGbC572P/mZO+D3q/0hWOPA8U+oB/rn3Zbc42JHM+ikzgi+58zYME1Dhvgnvb13OqVDpR2Rt/1bqMD6lTbAeFd3xhxIkpRkQMncdCs95l60mOOHznUrQ/SSdDlnc8iY3qfGP/Klj6H2GvZI9I3n1/XxXVueU9uKhvjueMB+PYetidQD+uHNtA3wKk1FTB6ZeLbXzoMc9dK6+GmO9j9MF3edlhL6dIytO0hrSPqX7+KFliAWPtFAGmnlC/WY/NeXfbdo67apQ5Hjhw58tDkALxHjhx5kGLzBwADYDByryHtDGJAhM38HqZhYy5PnhPlN/QRmIw9tvfZOGNpBmgt4LEgwx6mpD3KU3bG0x4e5Rkb4rhAgmfYKGcoVUZgY2BrAAnj7ApeZkR1oFogZHXqkKxYyBnT8n0umwzDrLZKtZBRWJuxrDLm1OFppbKrQ2zN6lHdhb8TYASQMumeD37wg7e6li+zlAs/+ZM/+RkHuN0nDI+eBYjAUmHAPA3QC0irHzJoq3ftBuYIpV8D575UCcCdBWSNu7EFSKwxmfgbMLSOgzVgtxxGcvdsjsoFdh2otGGsG3a5oJm+qh/2EKTGMGB6DxO6Go/6yZz2/aZ8uI7FzvFlyzjgpc97LuCHk8e92x/bR/pt06SYY+m5k+np5bKtjSfGYW1KV9VTqC6mkv5c9qf1DKDCKaX8HR+/jfMeCLf10UZjJTIBuAO0WgeDw7WMgzYDhfTTOo08G1AT+NL6AgTLAdJnMf3Tk9YljG7zNWBRLkcnxldXebmrV+PQ9TlzPBdwZx5or/5Z4NrnO+8485aRa8xqS4zzgKfqHTO8z7G5jS89MU7qBGzsb6CIZ9dWzE/vK+PaDwa6XKXd0zpTeRwd5v86LDfXrL5onOV1xSQVmm+uVlZjLNpA2dZHgGrj0P8iLuhD9W+M6bN3XWVV79rq3VZbzM2NwBECDwCsj6SQ4Byjd4Al7F0HZNJdaR26vjZZhzgpjD+HrLJ37QWEc/xWp5xY6WP62jOLYJFDtmulEME6XvDPIX69J7tmUzx0f2zbfa8bT0zYfqQq6FnSICRSEQD+Oa4rx5zv2f2kv5s2A6t1nQ2cENZR7x8HiTkktjrl9LDG2rs0d+ildCf9dvgb3aovsJcxd/WnMdWW2u3dZU9lLaNzif2e9XEPOluAcZ18RNqDZbhb70V0rdN+nYl0dh3zfc6p4h7pJ6zx3u+7pnPSrLN33wXWLe/pxFpxBZ93HfTeXPb2HkbofiC2+qmX+ldGerXsd2un/62Pm0f7ukZurm97+SNHjhx5aHIA3iNHjjw4AXBuGP0y+Gxgl4EFuGJYLeBjw5os2wowybi7hsXJ7wf8wYASrpfxg+Vh88xwZ3xu+Tbtcv9leAV+uG7ZFQyJZYL4vYAFwDSwZdnKy/5MAoAzrmpzDNq+/7qv+7ob6JsBJtRfGGS/sYP9MNj0S8ykUh/UZwvGPo1U50K4naZOKjd28LVMjJr6661vfeutDuXWfVKKiPqwa+qb+iEgEFMOYMGYfj6QF4tmQb9NL7AGGVCGUXM1AI0dAATAxHCUn1SIsHEFAiyAAETasRb2DEytH+VS3JO81R9zyFzC6ALaeD4j0HzUJwB/fY1R1j1ATnmr06FlHunPBb2Nh/7AsqUnmHCcMZXJccPJoUzX6z9hxvpo59ay7Mz5NYCtBeYypieHEOaWg/cAngv2L6PYb+sTwx/oIIpAX7kXc3BBm2s6F2UuyFh5dM3vPlf/DRUGfAH/d5ywlBvTQFDMbakOchxJEfGqV73qdl96QN8cSFXZ1b11B3DDEdE4crrVn5urmc4CIXZN3PVT/1YuHakP5PB0PR1pPet3YJawa6AjQGpZauaheaYOm9dcf/lMrlk5OrHzgX+YxLv2LesNCAVE3gP15EmX5xt7UWRHY9Rnch0rG9vPfGgM5eLdlAjmVnUJBN91AMjIsWk+AVStZd5P+oZjVs7ort/w7wWFFtyUU5hjwJzHdA1klmtYG+mN9/wedsXJ6TNsWv1cahtzStqC9EQkQACnPYa53Ttm1xrpUqqflFDqDXCt3n3WvUn6v7loa7O0QNUba17OcmB49TZvgG/qZ//S3Ky8gPp+rBvtS7Bta6N899KGiMqQD7a6NHfomXRE0i1x3IgIqayeaz+yUVXm3M5pa9qVLb86hPEqR7O+2HXfePqMXl+jO8yLda4vCHqd99ZM+q9+wE8MdWzd3b9ag3uGNUdZ961rAFSOz6sDyxjbDyzT3zt1wWJzX52w0Pcd0o8cwtYN/bWHttFl+4F1hlmn1YGY088i+v/FIC+Wehw5cuSlJQfgPXLkyIMTxuJu5GwQbT4Zo9hkNpTLQgTOJH4DYjY3nTD3ymfgAXIYgsueYiz3O6OHkSBXm7BUxgIDD/NYCC6mxgKMy7z0v037gtzdA5gpdYHDdLaeABmAQYyhBY0y2DF7gXlCN7ES+x9zF9sZsBBoXJ0y1H7+53/+mVI1bEg+qQ6xm6pPxk7g7RpLGUoZ0oWVVp/ApQzi+/Lxygsb0xeDqnQU9WUsLEZ1hiFD+0kg7xqWtb16VH71zDjeMaO3yyoECAJTGVaMHTmZGVsMIfkMhRVj8Ai7jGGGbek+oApnA7blHuDGCcBoXEYpsFVIbHUAjDBg++2EcLqZ8a8vMZv1MwCFYclYX0N0QXJ/AwYYnOZ6IFTzKOBl8wYCWBn6uxYAbzG26MmGQqsTsAdrv3niUL1ljGKYASiBGIHd5m2/m2vWmH6ELC+AvqG1CecRFmSfL/P81a9+9V3/avuumY2BPLkbSkt3lrUWaCN8fIH+9JxjIP1r7gFG0q9+5+QJqGkuCvOuvcDGBBvOD+ajkHdjkVS3nlud0jFzSP+s025B/AXQzT8/gc7Afevygrx0o/nUNTE2a9N73vOeWzte+cpX3sYhvds8mAAR6/++i/wNZFVP4G39Wh8C9eXSdnjltu3qeJCDddl+UlysE4IuAxcBQsvWxLjr7xxuAXTVYfPhLqhdmL780j5LANYOE6OX3n3e35w/okn0UT9Afk65ZURjpHNyyH0OVDf2xqR5JU2T9xvAfg+H2xQ25iJmdPdpQ2XVP30eoOl6OfuNt/QX5rZ1GtDdet5YG7v6wRrlB2tXnn9OYal6sIfpgBy49hWib9bhAzzlbNHv1kl7CHui3pOYqt4RHF2V0+c5Y7HDvdMxajGOOUa9b3a96h0qlYX1cA/+Mm829QIdtgYDR5PVce2yVwRCGssrQKpsa/bOPSx0bZeCZ4Fg70LOVe969Vy2KoAcWAsctjYt0Oz9aF22x9u9qfeVPvSO0CbzEXt3Har9vzq+QLbPzK3qvc6qZT17l5s3xmP3hdqyjvEjR44ceWhyAN4jR448OAGaLGiGTQeU3VAzoMluHG0w90CihBHpGgYAowbLCRDGKGNgYtfYVGecCSFepp6N/zJtsT60cQ0VBvnVYFi2xwJc2MQBITFapTBQ30DH2hQoleEf+HI9WKnnOUzOJj/jHcCb0RUwgmWjn5z0ntFa2wtr7nCiwJ1nkc25W3uESPcTCBLTOBAv8bwMygBg7OLK6PAreeOAiQF/gVFf8iVfcgMc6pdCxwElDOXGwenxCzA+H8jLMPHc/Z7hwqBkfC2LJWGAAjI4L5aRvswchiqHwRWkXWeGg2Y8KxCin3ShPhUCXTnLkOQYEJbtXkxDbEuf02fAdHUCTiyA3b1d78AgbKWezQB92ctedus7uVoTILLT2zHRpPBoDNPPxrnvASHLcuteIevyYwIEX/7yl98ZrZhTzSVhxepmzWlOpG/VqWcG5NYn1bkfYeK1JR1cgKr5IV/l5t5szlmXGNeVbfwcTNYze5ZQ+cay9gdGAjgA2dYaDijh2IE29Ze8ucAwgCuAHihJL+oDzwvQdUgT1r8c1PVRqRkCbjjT6gMpCKqnvq984fNr8KcnQOdNuWOOLZN9oxzo5f7Wn60bpVXpb3M90dZ13vTc5kg/DnsCsgv/B67pnwWXgZTrLDRPOUus7Q5q6pl9j925/bHzXJ2B7IBeh4z1Iw8r4BXISTc46oDu1r90pb5vjLwDV3fk4OyZWOTGZB1DDqkDdm4+WeuDMHZr8DqoEu9X62WMYfNZ+zhKuy7g1YGPfW49Fdov9B8w1WfSq1Tfymtsek5rgvQzAOO+rx9633GkWpMBq4DzxLuoH/mp+5G/f9f3+n5BXePfc2prdZFepzmX/tXOPpMiad/txoGOcopwQHFsAv57nrXcGHE6LAvT/a2Bldf72ntGdEb9Y677HMtWHnp1tYdr7Bxoufuh5FqP3TNdf68zb/+nW9Zxdd6UShshct1rcZq01jtIVUqmBZy3DCkRFkw1580b73V9u2mK6g+sbJEgnBZ0TmqV7km3rNf0yhpC6JxrgLu7X7UGAvp3DOydrKnptfLXOaON+mfT6nBubWqiI0eOHHlocgDeI0eOPDjZU96XXWGjnAHBWE12I082HA8wlqzhCizGNMlA8aw1NgBeC7bZuEplsECDejEqsHsAqP0G2NjUL+Ni2+UHUwIorXxATuVleGUsZagHkmaA9YMdun2VYGExKAOgAosSB5t0WFLl10fAn6RyM3iEjGLxbc7j5xPtrH9iRAWIBd4CkDJka0+SERxIEyO3tjGSMs4DcmuzcPPqFBgcmOVwoNqXcdF3PbeyGdyA5ieBvPQQw6i2YqzJWdg1PVOOOQYfUJGObLj55lM11gxKQBiGqtyJy8rB7GWs0UEhq4wteZQxns0j6SCWuXU9TIZRXB1e85rX3Mr/wAc+cAPMl0XF6AX4YaCZt5g/nAjAoGVYAWL7XgoUbNjAA/qHTfXrv/7rd2knALvSCvRZ99zH1Deve96yvgBzQGA62ufYmw5Nqu76R78Z8yvzvr8r06E89Ew0wB5eswxggDuGcGUAzq+H+lhvAFtY3BxUW78NL17dw/YWJr8s4vqqsaNvRQTkVOpgxnSrOfj1X//1d6CSHKHYrRihC9Dex9zWf1iXtXv1SJuNy4K/iTmwDOr6E0OOvnn2loMdH1hYO9/0pjfdRRKY460TwOoE8HkFx8wjf+/hiOuQweK1Fq+zTx0XcPKzY2ptckgoUBKDWpoIjhVMxMa6NbLPe7ZD9TDGayuAxnvRu3NT1WgDXVudA/Z5p5uvgKr0pjbUL1in/UgpAsj1LKkBdux9txEs8q73Xlm2oPm+esOxY25u1IA1o3rTza5NJ+sfKaG8y+XRNS+9/7HkAbqeASzn4DGG1kwMccxXwLhy01PpKvrfAXR0HJAJmKwv6xOiL+srDObK2TzR3hf0PL2Rl9dYCc/ffULX2j9433JE1A+AduvUzkvAMD3YtRhArF+sJwvseqeYK4DdXSeshZx6+p1u+Lu653D23linEN3yTH3hc23d9/2m5pH7fNch64U5hPFr3nn3b+5l73D6a92kZ7vWAlhXONNy5CWbjxdLWxmA7/Zn3hW79u5aZU6ZSwuOWwOfRfa9/ELLi6UeR44ceWnJAXiPHDny4ATDwAaT8YtFh7nlOht7OXdtwpcZCfywsVzGinBpBqvwuowRTEDlLXjA6GEY74ZvDbw1ZgMZA06T+wBpG/fuyeBlzCUb1r4AcQeWve9977sZmrFkMt6EZLcBFzrPeNhQaOkkAnf3ILvu+/CHP3xjrADcK0dItQOWMvK6/hWveMWN7fuknLgrjEQ5d/0AeRk9GV5Jzw2kCdyVGqLx6TOnnDNK5Q7dA4gYrvX9pi/Yg7mww7aOOz5AlMY7cIthU50AqUAKoB7AQV5BYFAGY31Hn6/pBOigtnd/4FpCD2s/BiVjikHmGdhllR0w6RAhDEDsn9q06SEAFuYPcK2fxngBSv2yJ9brX0CLtu8Bd4xAxl/lYo5mEFdXLNDuDazN+AxY/uQnP3lXr8psDnhG13Be5PTYsPwNxRVKbS7oN/Ve0GBDTTfPonVqowb25PYF6bZvgbnbh9eoBUCk+ed5WKDKFca86SI4hBbEqp5S0wBirFNYcti8ylfn5lNzo7kXINf/UrjEaP7f//t/39aK5m7pDOpXgC7wyZzGPJPHt7G2rjU/gWDWfIxTc+M+tp02+p9TRx9wJmxExToGd0ywWq1zPb+1rToBmoVHY4yv0w2oLVerebmh1BvCjfnsfUP/lpG5TMXNmQvA6nrpNK4OQv3U9ZxP1b+2OQCv9aw2A4wAQA7E6rP6Qa5c+tT3ifVNpIs11rhzAkntYS71zJxO60ild+kXpv6uP3sImX4y1usk4RgBwFoHAGjpA6cLJrD3reiY2hzwSS9qe/XV162prcvdw1nVc4BY1n/sxvYa7RX2PdzzK6N3bjomLQawvfcbp1/95UDHfjtHQNvomHWzH1EShP5KNZD0m05az+TO9U6koxw39ktSAzhEcNcguk7f6svWDA6UntPfPVcuZXW8rsP0f5075gMQ0RjSd3VYR4C+8F0/9ePqkmdz2BhDezNzAIsf8A2U1n65yzk5dm5zSGurNQx4v3rpB2ArpYP2qOsy3/XJrm3XNQTovH1n/nOIWXut5/azzQPRNogUlYVtbhw2dQNw2n7hWdJ6HTly5MgXixyA98iRIw9ObMhtTBdYZejtYTM2rxgaawwyjrEQ5e2z4baBd3AIg4zBydBdxhuWas9sw91GV+i6zTYj1KbaJv8KOjIuABzAEHlekw4H20OOsDylJ6icwqKxOIC22oA1aJPtWQt8YvkukFCYOHaQMH6Mi7530Ex9ELMzEORxOXFXpGPIiA2sk2c2IxcLuOf+1E/91O2znh2rtzp7nhy4wJoNFVS/2tP99V8AVMBU/2dkMpiFkFaHDGwAA/AeS8r3/QCUGZiMWrpo3Dc37rL5ag92Dpbtgjna4bpruxhPy/ymj+q+6SEYlgzEnhsw7uAzh2Q5EE0qBmygrV9zJyBPe9RNSoYrm1Iu3IQBunklGXlChemmuYVBVfkOduqa9KUxWAa29CHYiptCQt+pG0AW4LjzVV8uiGQNMtYYjtYHYJv6Gdcrq8w8XH1dtvT+AH05Xpb5ipUNyFInz04a382zSx/3fsDAMsyBI+oNmO86IE16INWHyIT0p1QtOWn6W52STcWg74y59fzqCNG/1cFBVubIgiLLnqOnyyA0T7VBHy3o5b4F1z2rta111vfAZ+DQsmI5/pSpzY2vNi5A1Jok97bx2GiLBWS0Mx3HHueUSdeNsz4EzkqR0drF0SevdPcUtSH9QXUQIVN/OxxMfnblOkjRel4dAKkYv8Bc8weAzRknJQhHbesQdnP9UjnVeZ0y1rRdAxeQk3KnslunzQ3ODGx0/Sy0XRv0o/DzysPWBVBtGhgAvvKrEwdPz5W+pbULi1PIPTCO/gNSK1+KpeYNFq911NrYMyq/awCC9Rvdp4ecOua8w9/sFRygxhEOzAz8NzbWuXVEVq/GR99Zz0qFIjrEvqzf6Y93TH+bR95DO2/IldW7LNRlyXI0eF+JrNGeZaLS1X039z6sX7Dc15HE4bprpTXfvtDBhhjHPjPO+27XLvql/zgkfLZ5r5fJvQSGZch6b3r32OMtI3kdi/rLs7wb7I/SrcbJ4XnWoqRy2+uZ59Wvsd1UIeovmmPXR4ch7v7lyJEjRx6KHID3yJEjD04csJI4LMTG0kYUI1Yoos8XZNmce3ugBlYjkAowhNXiuivosmxG7EOMRLlfuxezAounazMS+wFiyXPICFZfACpwa9kbfoCMXR/ImaGEDUO2LxYYAlIly0TLuHnXu951M+pj4wbS9F3A6sc+9rGb0ZbBx1jffH7YoR161nWBIWvMEGHeGVNd27h2bX2BKWVc+h342+e1NwCp/qv93/It3/IZ7LT7RF/ow/qzZyaMOm1hwDn4RZ9hAQPH+v4KhNcH1RugyPimuwxcuU7VGeuSfmAGMbiBMgs4Aqj8v+1IgKVAFeDcGrkZZdWlcep7+TIbh9pRPTLschhg35kzlRMYRL+3n+UCxQJlHAN9zCfOBNcpH3trnRDmov6UOxYIBKDHMlpwGJDQ9cLMl/Xadxh3tRuoBZC75jwFTKaDxszz+pxTRT8DyunYGr3Gy/x0iNUCWHt41joOlonFOdVn1kwGNMN710Uhu6tPgAd5VQEmG8K7AIfw+3TI4Y3pRH3cZzlSPvGJT9zpI5Y6IMQ4NG7porFOAEo9rzkP4AJkdk99RU8ADssUW+bmrnvrfLM+7nq5YL7fAMEcXZUbSxwI1BwRISHkHmMeyLIOg2VvAz4cZAaEp8vLfvOecT+nE9ASy8447hxaRh5WPdA3feleaVD0O6cHh42+8m5yPSdNc9Sa3bsD4ExX6Q0nqXmubdZ+USYcpv3dvNx3P2YqANxzODzprLzd6tc95oR5ZV9hDvYj37Cc49UDgCkfec9OJ60JcqJWV6kZKtf+BKvRO93eozZVppzGWLb1R31RPwcKA2+l1alO1jp6i+ks0oPDrPestA7mX3VunnUdtrZ9SG2Qn7exlNbB7z6vXtVbWqLmfpEVDnzdnL+cCRj4AH37qE2XwsFeXa1h9nn0Z4FkY7bOR2u7a1wnNY90IP1fCidO8gVGrcH3rQ+bhqgfoHRj1xhYZ6z7y4bd9AneFcs23/c6Bjl99be1eNfudQzvO2nfEcZinffLSLama5f5dN1HA/utB/rbHOSYMUf0pz2xfY71eSNrnkXWof9Cy4ulHkeOHHlpyQF4jxw58uAE6+/KbFxwJLFBThbsYlDZlDIEbSzlWQMuAXcYB4wPm37PAb5e2Xdr4MmJuiHVy5rox0FJGHjXDfqCk0L+MI97VofAVOeMKwbahiNve7dcfajuGE+Ms1INOKgGizYAOQMuwA/7NSOvjbywzsoN4C0/bnXqO7lzVzK8A44DWisPY1YZld39gGSbf0DApz/96Zth9rR5fpeB6KAdYHZjBRDV35hv/mecAk3kwGU4YSky5OVnZcwyjgAbwi2FMguj3JPkGacAGmD8hurv+GKFAUEYaWsQG/NkWdue0/0dClaOQUbzAk30eAHbzcu57MUFNBm3q//0jtEYYFFZjUfzovLN48qU55IhuofIVNYaidaLNUgBChtmiw2vH7DjNoWJ+92TYCwCmCo7XV+gdVlfdBiwne7HBl12MDYgFn8/HE76MqEH6VBzhFOoNmdMN0+VS/ebT9j09BPoFiChbwD49fWC711b33NQLEDeWtB4veUtb7lzEvV/Tpnm9Tvf+c67e5rPMRJ7Vt85qMlhWPVr83vTMAhjl9vVGo09R+8woq9AOh1bYH/fJa5fVtr+BkIBMhu72gbwAp5jpVaWPKPeXcB0TsgF5hy6BUyxHphr6r0gjtQz9IpDke4tSLuHLPbM+k3ak82JKx2HH6l4HEzZvVi3m1dYvzdunAPrJAFWWn8qV7TErnVShXAyeHdipJKuB65LRbJ9Bfg3d0VomNvaAmA1L4yJctNV7/C+az0HTFo3Nkdu89ZBebsOd901567Pa1/lyrfsNyDafHXAn/fM6mbtrT7NY/MAYxjjvs+rH33f9ENSH4k8oEOVC6j27vNe8f7kkPNerT3dI2XQzklOz2XW0nVzABu8vUfvoOpmHb7mit13mf93jqwTzH2V7YDI3jcB541Dz6u+/d0ep77s2ZuegA6ac3tAr/XY2tm1nBW1ex0I3t3ebRtJ4J3ifbZtWkB194re39491sWrk8o8U4b+UYa1avdbni13MueQei5Y7Afwbfy7vjXEgXsbZVI/9zzpb44cOXLkockBeI8cOfLghIHO+AaiMS5sILE7bGYBLzaoG8K+jIY1AAA4NuHL8lqG4bIfGB3LKg7oAbpk/CgfoynZQ1Ey8Gxul+26KRQCQzB6bODf/va33zbNpR14XJjyMlC2zZ4FfAKqVu8Mkp5TewNSGWnVv9y4b3vb2x794i/+4u1QK6B4oAd2SWwhB61V5oc+9KG7Q4gIYwKY130Zv7VTXbs3A+w+doc0CU+bt20Bb/1TvQEPwF/GDJBciD8m1ALtwCcGPjYjwxBDDkADxPWb86Jny3nJcAay6Auhosa1ui8DDVtqT7YGRmDjAgz1ezlS1xiUS7H/+44x7vA8QAmWobBkcw7rTsh9AsTCRFq9S/Q58G5DnwFE9Q2gAkM8UBDwu3N6QWn16bPmZNdm3Ot/+tr1gZS/+qu/emdE91m6nuHfdRn9QECOCHqznwFXloGr3QuAN786kIzBjP0td7V5W7szfvvZNCDqmYG8wD8Qdh0Tfq9O01/h5bv+aceyOemOg7qsm9KM1HddUz91uKCD4WLxBqT0GWb+svObK+X8rs6B1Y1Xc6o1Tfh45TbXOZyMLSDY+GuDPt7w5Cv79eqsuMqCxFiW61zMudTaqK92/cXU5Ejae9XXPOt+h0ICJ80bwNYyzc1tLNLaZp1ZBitHwr5zjC3WLgYtUAagL+81YFIOb+sAhp9yOVoa+55XOVjzC87RL/rU98BTazxAVdi2/th1HLhtXDlH3e/ALX0n3zIHLF3YXOEbFg9g7RkOpBRKXt9g8hoXc2zTMSTW/X2vVEZ6rEx95wBBemRMgKXGn2MDs5qz0FpnrQWgN+8cgNX8wgT1HvAO4iwAZuoTID99MjdaG/p8HVpd37qcw1Z+2M2zLpokffcOEYlRPRy61Roda7j1157vOneXEUr3jf+uT33HmdG6I0VEdeBc35QV9TdWNgfjgpbLzKdTQN7VRe2nB5ub1/6UDnFutJZL8dKzscf7qf7Vqzbs2r4OnY0muQLbu+/jvFR/c8dncgFjmeuHTQVkjdPn1c38qQ2Y/Zj/9o/Ks+46rI+D7MiRI0cemhyA98iRIw9OAAoJcHfZtJv/04YXYIENxGgF1AFjkjXIKkeI/bIkgLUAoWXWLFggjLjy2sRmHPe/75eRu+wNhruy+7x6dNiNw6Xe//73P3ruuedu9cpADIDDiFhwI2FEMHw29JShlGy+NWwKDJDq/Wu/9ms3g0b+QkZ3z47BFjDT9YUtL7BV/WIAy+VaX5SPE/MjyQgI+MmIwxbKGJWLM6mtAbzCbFcYUwusPE6uQINTtDMiARuYNn1fP0hzsYdP0ae+CxDsvmV8Go89+AYIkJHJsGNMbTswSNcZgTXkADAGUd8DeAB0O55dwyiXV7N7M2qrU9+XeiOWtf4BRDksRVvNq9rL8F3WXv/vIYJ9nuHcPRn72iiEPVlmPHZgOhZAxNiurgzOPgcm9l06ASR84xvfeAfiAiTo4TKqHc50n8PDc4DMwCcsLIb6OhqWUb7lXR0srtlncyYAfrDYrE/WIv2GPeVZdIeubF7ezc+57Cw/m3PU/8rRZ4BC38kpDhxb0DKj/c1vfvNtHH/yJ3/yDuQNhO/n3e9+9y0FSPrYGANpA7G7B9O3udQ8T0eal/1uPFoTrNW7BmBopmMBQpwPO6b6aNdA914B3mWgrwNvHXnGgnOkeRVAXZv20DbMen0GGNnnmnP0XN7VfirTOAMr6Wg62FpizgNAa/OVZb4RGliX/ZZOg2MI4O+dJ5WG8W89kLZIRIe1aJ1KCYdDdWzNAto4kAxgrBxAN/2XRoEeiujYOQ1o9W7Sf0By80m5Dg2VaqJy6mOfNZ72E0BYALdwe6kLsGQ9b9cRUQ36wlzpuvqCE48+bk7UdL5+MS67PnDScdR5F/jO2DQPvCvoDtA4PVPuMs6bPw5Lpft00XuxNnAIAMn76X9Au0gADm4RTK7fvZl8v41d85wjUloPTtecKIHF9hk7Z61ndH6BcXPFnGidAcxaG6RF6jqplzZyxD6uNnh3YJVjsLsfyxzIyhla33CqADL30M3V/X7SSSzn3j05ueoT5fbs6rJr0TqxvDs4MLz/PMdeeUFy7+J1enBYW9P0g/I2qse+pfnSuNkrexfZ59oz2IeZq/WHlEJPs5e7yr53X2h5sdTjyJEjLy05AO+RI0cenACwbA6Fr20ooU3shqy1CV3mVRtj4CbjzP1XZhwDasPfly2RAECWZamsfspVG8hZuPsyyLCGGA5titdAAQ7ZZC/DL1ackNLCnLFR2ogHsgIUllHm78IdsX4yGjDy2lzb7FefpM9iEmLdKqvrys8K7Ax86SdAAHDUT8YRw2Zz83avk74Z3tWlPgoUcnhaho1nZ9Ru3rnPdjPNGHT696Y9EBYqn6D+wF4Smt3n6UZGKSASKIFFnmHG8FqghdMAk0kevg0lVTeOC0AvFpSyFoTcfliW+upqZdan1dsY0cFlHxnjZUsz5DA+6bCyNxeiNgstdViPugIcPGdBUODT5sM2l3e+BEhkBGN7BiD2uTBQgJM+amwD4+TUlooAOAOUZpA7GAdAxBhdJt7V2UA2tYM1YUOKFzAHvi2oTx+lK6AHwEFtIvRF2OsCnLumrP57jvm66WiAQpwLmLLNAWtrz8LAAkwFirz1rW+9rRkxeQFOlVXahp/5mZ+5Y/ECruTZrB6lqmhd6BpMZuCtNkrVYh4BJ0UetDYuU5au6ndj4v+dd34WvCDSCdTGHUMAZe1wgF316LqAGvPUWABplom5oGX3AYEAIxh09AU4J43L5ve+RrAk1iRzybhLE9Oa23f9Xf87YKrragtwr+sBeYFMrXHpQFEb8nP2UxmV1XvPfbVL2hFA2qaW0U/eXfTa+6N7NnS76+kCtmNjsAf00V/tVCbdl8+bQ2xZmtjESfq3zGjg7o6JaAMsW+MKPAb4AlA5oehabdEGjGXvO2C4OVN7m0McLtYYzFPr59YPexcwHhDnkEMpMRIOFu+h+q1r6Q+nISCRY1hUC4cDJqdUDdbv2uasgZ7lMEbPs34mwFjtcsCX+W1e0/eef43Y8q6vfT3Pno4Trz0LJ65D5jgnsKEr3/h5Rxo37GkONXPWfNaujVahA+pgDwGE75l0vjQ7jUefYWlXv344T7zPrIn0xvqmXetIWIeMvS3HjXeEutbvnmMO6vN1CltznT9hjyuSpHbShT3Xwlgav6eNxjpy5MiRLyY5AO+RI0cenGQYAjgAIFhHNoSbAzRhcNrAXjeSmENAp2Xx2pwra3OgYb4si203tTbtGTkZuQxWRuEeEifEe1l9wi+xigLIAgvaFMe23BB9jBN17G+gBqMhwEVbYsllVAUEB6gyWhnXwHBMDAdILasNUFKbX/3qV98ZbxuGieUhxy4wxwFtP/zDP3w3btUxoC7wEYPX2DCcGa1X6VmA2qcRY7VhxrWxtgZS9fwMGjkHpagAziaALcYcA1Lo+pXxt2NFRxxeBZS7hlDrZ/ctK/UKpDLmMKqAYWs8LYi6IHwiBNTBL0ljFqt629v18jTuwXLdD6RjMPbdBz/4wdu1ysQy5aQBeOnjAAg6tswsB8wBnxofjKcMYICvuQd4akzS856TPgck9Kz+Xladv82hrrFmbIgv4axgmANYGM67VhirDSu+skN3fJadS38S+gEkABoDyqxbW/bWG6jJsF8GsL4EIHmGsQSoAtKww/t8nR4cIW9605tua07jmQ4BDvq7MSxfOOZnn8nPbTxaNxvTnFGYd/SIjtIf7XbY0/Uwwe2TBdw3HH/7nENtGWGe0zXau6kzYiirG/DbWgAk3T7dcH5j5ZA289zcok/KtNapM0AGALhsXboFVN4x9RvrGUO29RpY3Zq8gLY1EdCEIQmUkt+5a3Km9AzOu57lgDTgt/s36kS/Ym/SCexV86k676FPgGdjytnI0WZOAsKM00YDSRHQtdKC+N/86O/qsc4jKQ76W192b22vLiJCPBuY3vNEjPT85oB0KNZIkSYcOAHv5ingvT6XP9tahnkKzLe+OURSH2zale0Ta8Pm5JaP2D5h87GaI5XR+ir3snzMm7+2n+Z8a4G+xQLnMPE+A5RWfnWXo9c8Wof87s32PdP3gEkH22pz7OD6VqoXjt3eFfZS1jrM5H709fYv56E1QpQN0JOjwb5soyXMb6l1HN6aTogE6r7mkvesPVLPaU5Jc7FrjXGt/VjGm8eYYxbLWX2Xmds9OYFa0xv3nofNLppjIz223c0VTG7ODw5Xc75ndF26dHUsHzly5MhDkQPwHjly5MGJTXjCWAvcaUOL6ZYsALYAy4K1yz6w0V/GF7BiWVQMCoDiGlMMcqwEIXndn0FU/WLabvjohnZnjDEQ1RsA0sZdPkL5zPZeYDDgBvPH5hswg+GC6bsgEiAZEIfxUZ1t1oFXa0xVj1JGfOITn7htzoXkZ5CsAdvnr3rVq27svsoqF+/P/uzP3gwGkjH8Iz/yI3djvOCltt638QdyLAD3fNIzsJSwhOQeZEw3JoEE+rg+bBy1rfQAG8bIQKJzywhdliDjdYE9Bh5AdwH6ZeNoLx0GLvueLmNiArONdUZrBqOcg4Dg/nbKu5PZGbfbRmBA1wIC+j+AS27gyvb8UotsXenOgnAMdG0wtxjAjQs284Ljr3zlK29jwBFhDmzqjRwFXRNYLV9mAMkyj4DH9Kh7seBcpzzG/LJyNwWAMjZNibE0PxcwZkBXR0Lvc74A10jtyNC2nnmOfLVC/Xsm4Oi65i3Tco1xTKt1SAj7v4IuldMcwBBsXjSPAtmxzd7xjnfcmPqtDdYYY5+Dp/YFVrRuVH6OJyBgdcVyj81beHZ9Uf16bmMorJcuGbdADjovFJ3sPDI3vS+ArOblMqHNI44B4wfgzenWWtbf9QHwzXwELi24uyD8sq+1CeNU3eRDX6ciYBD7eoFca+I6FoxhgkFfn7YuAKq9L3t+766eJxeuPu1/B2otG7o6OJCsHwzm6i3ioTHfPNzmEr3cMQQibTSCtWUZzNq5jGasZnquDIxkeYfXuYpB2feu4VzUnzsuGKvV19x3PwAba3f3Dpy763DuM/PH+trfQE1rIV2nExxtfd91WMfrkJAKA0DPYbeOAu9aOsspY65wHAIJAdHmamU2P7y/rI99XrsAxd0nnQbH6OZP739ph+h293g23TH3pBAyxvSi93T7F8Co/UPvimV5d016Lye7dV6Kpso1Hta/jdpSN+lXvFe8L2u/OcJZedX7ZR07NLB6NS93PKp/egXk3zzW2MbGjM5a88zJjR7ZCBZjsNdbG+U47x3T860/6rzRNdKmNM/r01LweIaUT+t0xPTuXVFfdp8DCp9F1iH3QsuLpR5Hjhx5ackBeI8cOfLgxAYOENvGM8OBYQJsWPACYIEhiVWyjD2bzyuDFqvwygBTl2U4ACU2fHvDzRwU5XT1WGtrgAbKdI2N4YJ3Di9q4y8H3TKVgSYOxmJISk0BoMZkyjgIMGE4MiC6H2DQM2PPMdqxPDCuGAFAIcYvMFLuSKDFMgkBFQG+GTvYNPqCAfQ4HbgKcIth83xiHDMiugc4KCQSOEvHlgkYQNEPsL36yBkrTQMDahlby9pkeANHgP57IjVmJNYNhs2y5gD4ygXSy9WpXD+Acw6IdICRXdsZcVKf9Jmx2fD9PbTKs/dk9+Zk/dGY0GsAcWX0eWWky5s6IMMuQDajNmGwApiB49UnHQn4SxyyBnwDMgCH5P9VR3O3svqOHmujeVAd5butrdh1PZceBuzVHoCDcZcXOwEaA1WWTSg1S8x1emGMfvfv/t03IEI9y11dPb/0S7/0DsSrzOrUemIcP/rRj95y3WJKYpPp/8YECLwhxP3NQWUNwtTTN9YeYfH+rp71WYfFYd3X3zlIyt8N/DGf0isAUs+oDwNZArqFaecM2vQMnF1dw5kiF6rDgDi0GiNMN32emC/ax+FgvtAPfXNl9rZuOYBsfzDvMNYC4pc9S48AMgnmqDXP+AOwrLu1e/N6euYy/peR6bnWfyDy5nRe9j6wKzCGA2XZsfWluUVfvBetlT0bu9g6YU2TT7tx7DoHRJmj62htzHwONMMqXiBe/QDx/QaqVv90iXNF7vLGwHuJTq3jDWAtFQmwfetoLtB7ebmNZSLPKmB666wsjGPXGjOpDxLXS/MDFO75tS9pznlnVafWqM11uo4s7xztsGeSh1n+5cpWd/3hb2CxNbm6iapKR1zjfQmYdjAfwLd7ut6hqgDqXWO6nm7qh9YcB7OlQ5xJ6xhPX2t7v+mgXPrWU4B37F1pKLCgW7sbB2vLvkPtg+g5kJWDpv60p8KC3f1EY2jOclBt2hSscQA+Z6VIo96PDqGrnvVFjqXq4hBaY8fhZ71b0Hn3NiJvNt2QMeFw1d/2ktYv7zbta35hCCe1p/Mieh/l7KWLm4rFWlR7PvzhD98+e9q93JEjR458MclZ+Y4cOfLghDG24e2AVQDFHlyx4WYLigFFXcfQ3XD7NunyTtqku44BlWCJOECNoQikYOwwVrETAbfVJ6Ol52VgB24tu3cZZAtA+85PhkOn1BeOzthIGMFCIjPeugbLYsOdN6VCm3HA3DJknaKeYB31vK/8yq+8lR2gI1yYYeFUaMCJfu5QrCQAKIMbmPkkAXQuWyegMtBLnz+tLjHU5DFs3IRiYrcwZgAdgWyFLWs7gFt6AKzuyqsvnGoPTEj0c2OP2WWc1sHQeCWV57AWsoD4ssu1TZl0Ess8VqWDYxa8FEocYAlkMD+6PuORUd41AALP7fP6Awu852FtATLMtfS977vHPAMAMaCb18CEHA0ZjsbLXAdAyU/K0dD/6VR6junXvKp+sUblBW0sP/WpT92tCXQ6qV4bLdBzYp0CBgAfAavpPb3V50UWAHiNf89PGlcsJgxb/UPH6UB9z2BPz/ewHsDLznNz1f/XtA2AKTqCsQgIUAYdpmtANHoEgMCylqoCWFA/NVY5kxq75gzQ1DM2PQbdaC52nVQdDqPCqO4zzEptUCa9SLqnNaf+AiKYL5vCYHV456e6Gn/vEX2993mvNN5Als1XmlQPIfSY6AAgzsftDyAHhuMCkdq9dV7H4LUN6g7g28O/gL0BR61vnisChH70WXqLWckJZf2xjtEhfd0c7zsHewFw72MAAtjNfYByz24trX4cZFiW2mqtwKbESue4W0YqwHHTigC2hd5LP6Dtu0dYQJpOXtdvY+g9LHfxpoHBgDfXpYWorwCvflcn4fjmozFwf3Wpfzmx1ZeDQT0qr3lpv9Rz7Rmk9bE3MFZ00ZibY/YE9g2JvRmwvc9FdzgITu7fdWolnEacKPo0af5wTHEqtl6Yf/L7ep9wcrSW7CGv7t1Ihq7hLNBvgNo910GkzTXlR9eKBtmoFADtOpn8piuATn3JsWP/ITpNGiUOsuZs41qf5WTmYLKeWueukT8cevTePFp93vWla6tHz2h9q73pj/2IdYkOIhLQtT6jf/ai1k/75v5vjtdG9x85cuTIQ5MD8B45cuTByR5ugcm0YWVC5HaDbMO+huuG0tswM5BtUDFGGDZYNq6xGc7gYDT63qZ286p2zbJN9jCkBKimbcAYYYA23XvKN9CGEcN4zNiQjzHpmre//e13LEOAUuXLjcgYYmhga2DduE/4YNLn8mTWD23WKw/whJmGnXZNefGGN7zh1icBcbFQ+smAyGABhl3H3/OFn2doBNrFBgamPK3oUyHiGUh9Jo/dArb9HUj1gQ984BZyGCtlQw6vAErlxlwDzjpURv7G6ppBY4wWgJJHNGHUNabCezdUnsGKvckoWzamcNqejVmbYOFhiJoDgAk/2EOMaHNrwfjKlx8T4JDx/frXv/5ufuUIaXzlIQTOJtit/jc3nKTemAAOOSeABOpmLDG06KzQUoBmzgsgxDpJyIbAGxf6p32bu9D4AZmXvaVPgaEAaqzfZbdvf2Jrq6M1SIi+8rChrBXWR8C2trnH9cZW/wGYlglHFgCgo3sd1p617sp4kx5j7wMWAxiqUzohx2/tbJz6qa8C6FtbACnm265zV0aavJXXtAj00dq5/c9BuLoDKNkD97ZfAh5jYKsHMC4d06eAHnmhOTcwSo0xHRFmj1G8dQbALVCtPpvCZnVTHlRRBj43L4DR3Q8Icwjbvvt6rpQF6tY858jCViXmQ8/OGYJRab56j8uZu9EbxlhUgvZ5Z2MNbwRM818aAzooT23PlIe7e7WXE6s2tIaJrlFH46dPjAvQ2LvTGsyR61p7Crlrdyw9Z3OH+56eWKvpsnuuaRI2ksYYiETad5l9hvYAH0W1cEA3f+qP7qlfgXPpEpCQc40e0mH7Eek4rI0Lqm/ecO9S6xcHpXHGGuYEFqXScwDi1gLg/tUxRW+MAf3iSKufYvSKNOBc4zSU+gr4aL0w/tYX7wZzzN7H3pO+G1fv+p5r3ov6Mles39J4eZ/SdxFixrn+uUb7GHd7UHsC/cVxYo2zx6pPkRDogWgYTj1j2hyuTMznrjXW+gIrWD1zLntnN/c4ip9V9MuLQV4s9Thy5MhLSw7Ae+TIkQcnDE0buSsYBCC6hpEyahikV9BjGXyMASAxhoZTjTdXKKOyzW6GECbGhtFuyKGwUkCsctpIA34CK6tPhn8sQKxFG+g3v/nNt2fFUOx+gAGGZ2X7rvt6tvIzCBhSwvzU4ZreoRy5lRVwisnYtZW1QELPzchqY/+KV7ziFmYH2OoZ1YWRIE9r5QfMBpIGMAQABfz1E9AYqFOYee2ULkA4ZfUJUMjQ6Kfn1k+BxOr52egVMCCgRp5P7NOkcZazUV5URj3jHJtN3wCyGzthqQyvDKBrflByBRuN0eZ2BTIukHEFKtegvYJy69Dw27WMVPWXtsPBdPREmfcxP7FCzSFAX2MWQM6JUL8GOgM5gGPbFwxY5ajvhsr7XL7eDvIDcvY/gxpgaM0Awi0rv+8a6wVom9cBNAAogAqQEZCiD3buXxlODPwdnwV+jPuCjQs095zNm2t+YVTFsK5PhV1jIC6Ya3x2fTTmnqU+2oF9T+jOMsd33OhP8z62WTl26X/SGlefVo/mnX4OMOVEABqJiqhPmn8LUEulA/hZ4KWyer4xvs6L++YAIIROLCCnvfsOsab17PodOIRZ77plbPoBDgHftXffIUBz77Ct+1Vn/NZWY2Yeqqfxdr06LIBkXte/tbF5A/gDxAHTsdyXFW1Oenc5TBRIjwm993LMaLvUQwmQyrvfc5vTXdc8CCTbtBeiAuwNhOnXFgDghssnvddF3gD4OCk3N7e0IMaXw8L+wbvAewFYLv0ARi9nqvmo76xb5ufmxN33hvRL1kFzgz6IOjDWdAbQt0Bc87TvtUGEwYKbWM6cF9ZSTj66Jsd7/W3fYE5srn9g4O5BtEeuWY5fgLcczfL8G5/KKUIDcKnsntP/QFNr3TLPK7/2y6sMVAZwYyoDNUX7iMKS0mfTGdAtrGLOdf0tNYW5KP+9ubss2n6nv/q2fVfft4ZWVnprbduxwmp2yFl617X0q3a1pi6b3Jx9zWtec+vjfrpeTm5tt6fBnDf/pWuSkmIjkhy62Y9xtWZ7f2P6Hzly5MhDkgPwHjly5MHJgqWMJwZKm0KMumU+YHAATABuDGiG5eb8WiPEM4ES6tFmNYAC+NQGGPOHgdomX6gycBlImrgPM6fNc6kGNjcbA6WNf0ZN9waUBWz+yq/8ymeE+fZcBuMCOeqDRSHss2dWP33K6JLrss8zqLCLNyTUczOIvuu7vut2TyAr4KG+efe73307gK36vvzlL789V0hl/dH1GUQBMPVn9a4/YnTUvn4zWurngKtXv/rVt81/deozefy6/llSNBBATW1xujajD+O15zsdnsGV8bKMRUb4ArLXENQFdDED99oFkhhLC5oxvJfJt2DtAiPX7zbv37JLGHQ+SwekngBEAOXURQglxugCpH6SK4O16xorTHGGHSahPI6NuZyJHBXCT7WlzxsrwE1l9xMggIm2a0TtYah+1Vd91R17CBOMbm9u0StwZn1ZkATgzqBehtgC7q5dVvUCa5sSY8dm2WY+27QxAHEsMewqh9wEqu440BMOJzpi/duT3Y0TBwjAAQipLPmKN48vxiHgWaoGwE3XxdgHILUGyN8IUOynNbV2pB/CtwF+6YlUHeYRcBbYK2cnRx2AxvxepqP2LIiqvfT0PoZkZbZOYOkCUZfhDYxvncKS897CLvVs4yMHrPYpZ5m5ibrRM+3f9X/B1mXaYiVjMS44bW7RWfk9rd9AuetBgPuuq17NY/lSvXM8H+jXd0C6zSFr/cT81W7zwEGXck0H6AKrOIWkg6kfcyQso3vn/rId00VOFOPM0QrAao1yj/Gy7i1DlaMQGOae+gX4JmLA2t+8ANSmw5ueBmMScK3uvlO/XcPMV6lEgPPmgvRKchZ7J9qr7N4AeMfBhX3v3ckh7l3hHv1j/dqIKvso+zJs3djW1bnomeZxawHwr+83x3Jt6KfPyvmKDZte7drBWa+v5a+2Jucw0KccnHTS/Nq0MPKoSyNkzbTWaKs9qHVBOfpJH3n3eofv4YZ9Zv3r8/qHk7l7qkciQmadgeYlcNk7vT3Ydb6tg0ZdN0/9Rqj1N/Y1RzYgmwNUqg5kAyQB8wQYbX9K744cOXLkIckBeI8cOfLgZBmSNuvAC5tJG1OGOKPf5nyBL8aBkO9l3yzDF1icdL2fDMl+t7F38BFgA5O4jXYbaIeAOYH7WleGODBLmoiMC6wYLBinTAeaYnxgnWT0YOousLSG/oIIgAaABMM54BZbdYEEIaJAqeoXq5gh2zhUp/e97303FnB9GsjkhPvYtgHZTimXA7fP5W6tveX03cOTgM5d132bm5DRdh8b9irGlDEDOOiZPa+6l2t1D7vpmsDmfgIIMjYbz76Pcb25CjHuGL4bUrynR69O0+f9bJlhC+6sw8IzMbvo7bIVyX0sS/X0rES/MGDVDyiS6BdtxNZM9xmfDEBtXwbxsoId5LZMWuAAAxr7iqHYfdiyCVBtczduShDgSWNsnmsjkPrKcgQ8+nHfht7q43QU2GD86fyyXBd83HGQ23B1Uv9e2dmtH0C2BY/7fB1b6iPMVsiv+gHorIeY0kAszw/0ybESuFKZrU1CcJsL60CqLAfRAf9qT4y61sfaiAEtfUL99La3ve0OHKgOza1AFiBV10r/wnHmQCTzP2DHvACUAk040vTVMg8Bpte5Zq1b4Pf/Ze/Pn7XbqvL+f/8b+cW+AUFAGhVBEI0tNsQWy763NME+sYtNGcGoGFFs4ic2EE1QImKDDaKgiIAgnR1gl1T5h3zrfVe99vc6i/0czoPAcw7PGlW79t73vdZcc8055phzXOOaY14d2O/GGkac8rFe6Yc6Vef+rg0dOic1CYBu6wAI2nG0QNMGPPbZG2Qyxo7McqCuoJPvlkHrHbsugJ4+AmHSh+aJzfWtnczV/ndwoYCda9I3INQGSIBhCyYbS+yBYER6IUdo99NhdWVbCigIhHoHwSrrCs/G0DR/CiCzhYCpo60Fii7LE0C3Zdd20mZoj8qhN3Y36F9rGIGATcuyn28KB6As9iUb6R5tZDwAqQHxDlLbwxQFVDbX/M5zxoT1CEDZOk0aJGD9strdTx+V23tkV9g5B/7VhoLGa4+lANq1XSJHc2unniUwBahsXaJdlMWGA1aP44Ttx6Q1rtZubPBMYBdzlg4JItshs3ZfigtzHxaz/pWqgx1gW6256Bdwmq1hGwUbNr2DugPdkQzc35wtaGOM2cmwQHht7aA9YPgGkMz3xtGuud8R2UDm3SIRJZ72tKddPfnJT77MtenFP/7jP1792q/92tVP/dRP3Zju7L5KffNJn/RJVx//8R9/9ehHP/qyLs9G1Y9vfetbr/7gD/7g6md/9mcvc/t9Le/f//t/f/U5n/M5lzMFBN1e9KIXXf3ET/zE5RyRO/3Op5xyJ+UEeE855ZS7TpYxiAlkwckRthhdsNV9u/jbHJ+c7wW0NgeabYCuC2xoQdvfLXSXMcRhrFw5d+WnlH81J9dCGDsCu9bCvs88lxPkAKI3v/nN1wdGlf82x7W/qxO2xoJCnAxtAdCQR7BnANBc06Kpd+PUblm7TRtAiuXX9QGhHWDFscrxbuEWGFAdY/RyerXPUQKN39lCB2rPmF4YhQHitrHWTy0esYcCe3v/rgvY3e20QEz6AuDkqHCsOIjADg4Qxs62LQdyHUT1FhAATB0BOj+AjWUPug5jEBigjE3D4dkOk0kwYj1/AWBjaFmEW/fNnalMzuECqLVfumwraNfnNOYkpvvYhpjlpQMBPCxY5/2lCABUpNM9q7QhHGficCHgcc/3rtokfcEuA/DkVKRP2ky/dnjb8TCdxmhg5qZeYLcax+lXOue+DiF0CA3dwa5mB30utzB71d+1U89TZwCa3Ql0mI7IPekzdQ88rf2BpAAu4Nfm8ZQSAxDrmhzAypDWJqn+/W8rfX0NAGYvgTwbQKrcpL+XVQmApxPq2DVy3ZINANLRBcw3sLHgrt8LZFY+gFf7GgPGRG3X+0sNkIPM7gESk2Xd7tjV3wv+r11b4HnZs/J1b9oH77c54AFWm6YnfQAWYbqu3mXPHVDpXXf3gL/lcjeXAQoFGoCEQHVsRYDTBkBrv8BmOixtR6k4KqPvzJ3A1q4NRNAu7Fhl2iGjTj1D8DBdVIdEnl5tdAws6Sv5YOlCdm7ZwgKx1UMaJc/tHmNcf3S9gKM8s96lz8yhmNabCibwG1N3d2RsIMKYZ9f0idRPQFngqHmu8Vr9jSGHu6mXuUZ7YwY3VtgQ7VgZPWeDDcBm7HI2uvEP8Kx+2er6MbGrqnpqQwHi7pFKSwBvbQZmPdnUKQuSsh+9Y3atZwMogdEOnVvmKxBeHmH9AnhOdzGwl00uqJMdZoPZFOsuTH/vCwSng/3UNhjyct5iotce/aaHbBsme3oiyIfRXJlSU1R39ZdepPo1p1VmegggBmrL4Vx5Dqekh7vGPOXW8qmf+qlXv/zLv3x9iF1SezYmHvOYx1x95Vd+5QUEbZ1yu/KhH/qhV694xSuu05StFPjtwN5+vumbvunqq7/6qy/g6r1JgO7v/u7vXogpK6Vq66e6fsEXfMEF7L1T73zKKXdaToD3lFNOuevE4nNBUA6gU793ay3wdLcy7hbshKO711nYAiKwCDkruyW4RYUDk/ppIdviuh8LdznaMGt2y2sLWwAWZ8cWSFs0PdP/1d3hIv30WTlrtQmnc7ePcpg4NXL3LmPFydI5EgR7B4AGKNYfC0DIqRZYBdh1UFTlYi3dycW7A8XKAxsIllMTOIDt98hHPvJ6C2H1tgUY8C2PX38DxGoHgFmCDWZraNL/GIcOstsD8Y5AqBPI6XsLWAfiybta2dJxYLv1fc7YOqtAGKDNbtM0Zlqw74EvXYP5WN/1bMAddpO6Olxtc2Quk3aBZ4BT79C4sTVXKpN+B3L2bpy9WJ7p0rKayrFbzmfvBdBIjFtjekHpyudE73b3ZYwZD7vVvc8Dhh0CpnyHTh1ZUn22B0ZtEOmYGiEb8rCHPewS+AiIWidZmQuaLxt6gT26iOFqfGuXDSrpP3ZMEMizFizEPqen7BSwZ8FGgTX2CmAJVEjPbFVP94GjAN1+Go9yp/Z9wAFwsXHBFleH/q/s9BMbb3caLOvbtdpjc136fwGeY2DFd8syxYbr+caSsgCh8k8COdjFxnCpHfpf+gN2eoM3wCPAyJFN7P8dawmAS93px6YD2K3Z+qt61bfmiYBcgLfxYJ5bUHwDA/vuAokAptUpOy8ENbS5/l77Wr2yZXZCSKUAcAWC6oPGVWUXwNsAEHvAFikfsGkOrs8wIOUMFgS1nkgWILbmAGbSb8CYORmzlD1VHwFi5fZ512KJ098FwRb8N8dLt1Cd+hvYDpgU1MOmXTYvO659ducJG2wdwpbW9oK9dlcA35tD2L5sU++gTPqH6ctG1Q4O0vy7v/u76/kZC5g+9vzm1X4wjxtP2YyChdYedk/UFt5Ve3nvDWIYL3vdzg8baAHiOxwWcCpVTb8FhenKsuzTDYCre6tLdRVQkKaj4HOgae+XXgveWNsCjZfx3n3pjjQjPVfeXmtFcyNA3fthQdfm7Z6qTbXBphlqHDoAV7AhgA1AbJ6wnrBWNeasL/Tx7mg65WbpkOJf/dVfvbRb+vGMZzzj6qUvfemlvZ/61KdeQNfWSAGmsW83OHBfpD4H7v7Zn/3Z1e/8zu9cduY1NzdvfeZnfubVV33VV136/Vd+5VcuY/D3f//3bywrm1A9gLs/93M/d/W85z3vol9PetKTrr7jO77jUk7v87jHPe7qjW984x1551NOudNyWr5TTjnlrhTONccVm/fIdLSwT1p4YMECH2yFtFgHdrVocIgMdhjHLcnpsH0RG9ZhF9InAGiTLf+4bT3JecZEs8CtrurQ+7XQWue5RXML9t6hxT5QKXEquvZZpibnV536vIVai+sc555ZeRb1DtXhEJJ1UqpvjF15A3MSYlYGhnWd/G69P5bNAkLvbql+tV/gbuzcnEGs3Nqj7ehtQ+Nw56jUJrEvgQvymwaEL0AiZ7I+dujMgjycJSBiYFbPcDo1hzqd4oABBYDodNtBbRzU7Z8EO1R/q8eCQq5dB9QPBxrriE7ttcbi5pFcJp92lFOasyz3Mweiv+VU7T7se/oLeEgWyAXiApgALYIh0ogsW/no/CbLOFyQbIGw3c7vswULtKctut5FmdpswTDBlySHvjHHtuTAY3st8HgT85ujDhzAQsRS3MN8tOeytRd4I2xq+llZG5jRr7ava+ttX+/ZO5RLN1tnK34/WM45jI05eVID9LMp1Rt7fk93Bx45DLGAUm0H+NHODh4CsmAdbrvRpwV1ts+OrNTVP30JXNw+32dkP7Iz2YzaQl2wBo9pCbZO9HbTsGAzbzqFYyoQ76KeR7svmONvwZf0p3bseiC7oCEbx6avruy8hiVIrwS8zGnVgx3cdDYJcJetAfxXRqBWYzmpHasfG0SvdmeI3RnpyPb3kSUo/Yy2VF+MwvrL4VL62+4ah48BXdkJ86k5wNZ7wdoN4q793vbyd/UQ4Op5t7JRUiGw8cA/ZWMNY75WJzZgn6kfqjt2MvDOnC/tA+DumOrG2NdO0ll1PTb3MshdD2yXEgP4D8DuvkDGdEcA7GgXmlNr89Y22RFBGG2Fdb87KdYOq88KsFsfsecCgXLPGoMOBzS+gcdY50BQB5EJbJkH6BL2ePOC+c46BPjr8Fc5rDfI1N/qJke1oGo6XX2ykdJ+bXt2PQa7HNc7Tuxc6e/WUpi+3VuQFnAvMCU4Ut90T/0jTzpwWTttX9xX2cDknZZ3Rz2e9axnXc+9n/AJn3D1qle96vq7QM/W4D/yIz9yATy/5Vu+5er7v//7b6v89CAwtfsKshzlD//wD69+7/d+7+o3fuM3Lv32kz/5k5d18k3ybd/2bZd6+PtHf/RHr7+r3i972cuu/uRP/uRiG378x3/8AvreiXc+5ZQ7LSfAe8opp9x1siDSOiO7rZiDyVnePGMtOrEQlxlkke1gCsy8BGsHKALEXQcnZwOItbnwADXJOtGcREw4eTKdCl06g37H6LO1MwHSBCzKOdh3LZCXFbPbg5fpt4ypcmIGumB0xhzsULQcgA/5kA+5dgQtppQlN7Atl5UZG7bIOkYelhowvGfHPGn7VM98Rw5De2cIJ1KO0t41hq6t/9VdnXN6crRaKPZ+9UkglNO0+64fzBug3rI5OfNHAGOB0SPrcYGmZQ0Ceei/LcyrSwtE7UGBy0xSljECBCILdgC7MLNsw10wmRPpQDTvuO8qILH5M7Etl5EK/OIQA1jSUYCtVBq2ta8jtXqvjW0L3fbe+gmCKAtAetxqvmDKMmF9vuDesmS3v73ngjrATu27ddzAFdG3Rx0iCzouMA182/c6AtDaQ+7cHTPK8gxgCiDvyOxbu1PbyMMYUJETVv8F2GUntAHADwjSWKv/tM+yx9Vnd1xkWxZwx6bDquy7QLfNdSvHJru/wKw28b7e/6jnACIBFaCHvnEgVe/DrgJRgcOY/tu/RyAPgOY5dJ0A6Tx/x/3amm0jwIvnOAipAFP3BsIsk9Ez1XH7YPXrqIv1BeARiLxtSt8AZ0BCrFcHWiaVJd+ua2rfdMXhTOZ7AZLddbLMTe0i8LFBDvP5jgeAOCBzP9M2grz9DmAGfpp/gd0LhKsbgM6cW39YM0iB4JnssjLp4L7nssrtMGltwe6Zu9SdHsjraoeC5ylf/mgBP9caT323gUtt5h0B8AnwWzoDgfc+d0AfncOeNl9K27J5aQHJ1mqNLYd8bdBD8NqYWXvlt3bZ3VMAcUGuTTnR/8uCXTYte9Nz7bLAzBWo7P/0NjtpJ5E2AxjT7a4x1uW/TRwe2k/6J82KAEhAcuX+m3/zby7l0EMHzmGM24Uh5YhDUfu78SeYrR2zGQHqO2eySd2Hyd/1rZ3YdrZDMLx2cpDeKTdLa+knPOEJl79//ud//h5AJ3nmM5959WVf9mWX9fw3fMM3XP3gD/7gbe2eyx/o597kt37rt65e8IIXXH32Z3/2ZX1cWqnXv/7197gmvS5fbvK3f/u3l3rd9Kze42u/9muvPuZjPubCvo0t/O5+51NOudNyArynnHLKXScWkgsmLBCV7KIcALt5Z7FWWuRy6C225cztNyDGNlX5bTF7OREW30DhzY/HUUqW3ZhgpyTLlnTqu61truE8d5+DxlpkcyA4hHuwD+m5XZ+zHjjM0ekZTqmWkmKBigVEk21nzhPntwMXbEt3mrd3arHVoqtFvdPmj8DUu0PoClZUDlLObnWs//ofOy2diHFY3XNacl5iFvZ51zhcZJlg6yAv4/II+vkMoMa540Tv98vMXFbqsrRWp5aJynlV1v4AigA0dGdZigCM3a56zM2r7tp2Qa4cwfQi3ep6z0sXsbr723MwTgER9C29ETDhmKfH2plNWPDGewIPAFsLzu07ro74bPtNgMSYd++O6WXTCt4c2aBAR6y/6lX7OIALULMHxO3W+9WL1RVbe4FC2I8bMKCr0rHsgW90Ud8vm+51r3vd5XtjWh/ZDkwqTwBN2d6nYIqtygVLyt1XAAuLPiAi2wA4rk26P+BGYKN6S+UBwBFU6r7GMt3qeTH92PNlnWf7pS1ZgB9YsqCKsUEXBRN3LAvEHAMOmHy2+gM3pT84sifV5wic0h1ziDG5QOpuvaebu/2cAKKwiDevboC7wGb3sod0aAGqHUv73JuA8E1L1Hdy1m/AQzsu0CsY1D3GcPZXbmcgKqDKIYGYg8qXZmEZ2tpfPx0PK3MgoVQHGzg2Tq1HBKWsLwBjdliwa1iP+8wFlDfwItCkfaRDMQ4S7dD1grwCIXYtsIkChjtO+7z6CIJLRcX27PkGdKLr5K8VgPO950olARzus8ZxY7Vn7MFeAD91tVbr+c2/jWP1OAab5dvF6u6+3kdQQB/1GfvleRuAsX7bYIh+Xva7ceK62tzuLfpZHawNu7Z39J76VPvG7I9Fm5hPe0cBLwxZIDZ967PWgHTMGO/zxsIC7HS/52Vf5czNTmIw7yHAQHOpLDCw7bDpeYJmlef/nmstRVfMxT0nWy8/dnorMLH2UqB9A8Kn3CxPecpTrv/+xV/8xRuvqW2f+9znXv3QD/3QxebGio11+86WmLMBvPLsHgHenpt+Jc95znPu0ecrv/RLv3QBeJN/9+/+3dsAvPendz7llHeVnADvKaecctfJOrycJovwhPPNKeLIYc7uAr9FrC31LYQ7gAmrZB317m2h0EIcCwnTYB0mTMl1pLCROHEcNw6XHHWchUQe3xwXW+44IJwmv6tX1zkxmgPlWdqkepQ2oUV713nnZRt1Xdc4xRYjGVsGsO39AN7AFM6mg+baqvUXf/EXl5QHn//5n39h1zkxfplv725x+F3ORn1uC7+D5Rzgw2mTIgOwVN2d+s7BW3ARYKTfFwzBQHIwyoLN2hYgtkCT+nDmOaEcMkBE+gBQkLMTaHE8nCdZsH4PSlPf2gkzF+MwOYJ66uq0ek4dJvSy1gGaQLm+q96xOrsnR0BQpucH/mFzAkWlA/EOm/pg67WMq2Xd7u9lXK/Dv6ALu5OTuiku5F4UECIYxoAebZ6+xHjhyCYAa2PMMyu/MZPIzQgcX9B4Qaz6qParnl1bHWKoG5ueWdvkkANc6YA0InuoZHYPA3dTtWBHLxDS8+pL/SEHZdd2f/WrDV7+8pdfGP3l2ivn9Rve8IZLmQANaRWMscoJ0LclGxszyWZhgaVX+gS4VJ1tG3YfQAxgYlzYIeL9gDn+Ny4AWgC4o94cP6sMuxqqS2NVKhxpg4wXz1LOjtfNkXwEdQWAgGQLuh7rUzt5DuBI3lTl9z9wdw/pcognQDrxjK2/smxbV9/K1Y/qL4AIEKqcrgFS+q55Jt0A/LNLwEbpiSqjdwRSCjhhNdJLa4Bl9wI/d8eDsSF1Ed3QNtqh75q77WjYbf3ayVyxqV4Amsay3QvVgY4ss9R2/H7kN1Vf+rx2RzoGNtE92hLobW4ybwAH7ViSd9u7SLuk7CRbI8BbPfpfOpL6HgAreCUljWA4hqpdGwH39FOAc9NiaPc9AHQPYbTWSza/rt069A3D1E6DnTOwWOW+Z2ua++UGNtf0Hn2OuQ0473363yGaO++zQw4e7f2s/QS66AR7DURWf2cECKrJfWytYY1Xezvg0VohW9hzAuey99i6mxrCHE7nqmtrpeaa3hcg37Mbp9ZVAPrKNT84ZLDv+l0Z2N9SO7C7tyPHANudlHd1PR7/+MdfftfHf/mXf3nL60p7QJpv3xVg5+7I43fcVNdjfY4SoCtXeXW9P7/zKae8q+QEeE855ZS7TmwlXUfdD0BBSgVss3UogZPLrkkCOzA9lrXVjzxlLUY5QhwzCxusK0ABtiJHEGjHOUuwhHy2zodTsXs29sSyexfoDkDNeZB2gKOOQbKsKzmLAcFdVzv0/j0LiNPCvQMyjofWceSxUcgCkNgmwMcOVQio6j08F0C8h40dZcGu3eKoLusg347YHkg/HI5SvQOLaveAmJyWWDIYdrFV+qy2DpwCEgFL9K/D17AcAauVAwDFgOKUSiPgnTljywzGdtn0AfU1MI9jCBzdPLfACQwnLDBgpdynmISCHLYU60tjwynanMicWYy02qnxpm+P9fY+9MFBZP0dU9oBT7WxHJY5ffWJ/q8ujUfjjbOODd17V0b3Af36vvt6hjbOIc3hXHBY7sFNBWGbt5PZV+cFdYD53hVouyBYZdjWuuCdtgIW+dwWYDmipU8wHohnsG87TtRvwcdlfS8rUXoYOXvZKOxB1y64mLBH+/2Cz4AnAaNsWIeoxI5PfwOhSxEDAAVuYJQ6HM07ADWM/3QG2OEAt8ZD49dYppN0xqFfiZQh+kiKAIy8TVGhf/y977jAOyZmZWVbq0PtCtCpbra4syXyjgKTNjWPPvZM9fAsc8mCUuyk/hbsNFd5L2kNAE+AHfOS52Yntt9X95YlvIA5prAgpQAFYJFebLnyv+/711f6yxgQRJHTdMFvAQLldw+7DJQDmBqzbF4/Dv4zDjEpBXm1+QKL2ZJN19T3Alk7JhfgxaiW69R4TY83zYD7Nx+vXUN2FwAisUB3btFXlYN1uUGFTWPS2DGeN+/uMqOzSc3rgj+CMdnl5lfrC4z69L+y+i2wKse/XN6NY6zbbM7q/KY+cWBb7yf/bONp846btzflzu5A8h0b7f3YGGXIobt6LHey4IV+rOx2B5QTHJM30b92NziEdwMwAqS1fddamwLDjQOgP6YsoFbd0g12q3eovfvf3NWzuqd2k0arduudmsft7tIHfe5MiPorW4aFzC45LLhr+l//A/u7zztm5x04XLk9w7pox0TriFNuLQ9+8IMvv//hH/7hRlCVvPnNb36be97Z8sQnPvH675ty9TbP31Sfo/Qevc/DH/7wG+t6f3rnU055V8kJ8J5yyil3nXBssWiwXvY032WYrdPDucsBaYGZ44FVYFHPMUo4C7tldBmZm5eXYwjQBcwBJmydTnZBDwRYFpDTwhcAVH7/7wIbq2YdSgtybaLOAG3OFJZUuXiBmoHFx4NJ9pCQfbdljj3kIQ+5LNRr25yb6hB4VnkBdViStVnX5HQE3gQsY9csUMu54tBgoAIkOLEOpTvefyvhYOfExLTCUpWbztbhDmB7yUtecvWmN73p4sQGFNKZ7u/7JBbe9kHl5dzENsTeBLBWRg6P/wEUtUHtVZlARdvZ9rAR32l/Tm7tidkpkIHhii2UYNUAfzmGSSBbTrcgBxAS6ygB9nAw+5Ev8G/+5m+uAcgYmYBxKT+MJWAJUKz6YqaWc00qh9qpMjGMgGN0uTqmt8B5znzPsRW+90uMA1uC089lT6WHibHSd3JdLthhzNDBzYOrj3YrNpBq02R0P8b3so0WBCYCRQDgTdVxPGxu2ZkboOLQbyoF5e21O+bU7chA3ZylvgfI+H9TUvSDmQpE2d0MOWGByY2Vxlh9Xh/XH7Vj/ZQNyX5oJ2zLnukQI6w7oAb7Wttny3qmw+rSc6xjuyBsK8b6NYcsqLssvgV2j2D82vXqV+7uym5s2oZuTNk90bXZETsF9MWmaAB+7nOPwK05gT4sC1g92RG2XXBHe9jVIe2K8Y5lDijT1vp0Gbs7V7rXZ96dLaNffguoALqBqPWRnQR2PbC1QEnP0R9dZ65jaypHkJg9W3CO7QUkYoP2PLreDzBTwGVzLFePwC7MTcFfNsWz6JRxqf+wPrcPBX+Md0xiLEl9yb6z8frD993XPHBkLQPb5TFe1jRg1DysHSujXReb17/vBHPTeeUCse0GYNf0kzak273Tsu6ttdgyQKmzE7oPMKlNrZms5eiXNRVbvWsKwQzjSYDC7ppst/YCBrPH/bRuci5C9XeobHphbZm927nEusjY2pRNPcNuofRQQKHr5O51WNseRken7QIzVvuejevZ0nRUhiBZz+mZUjJgUVcX663sFQC7utiR07P6W0qMrgMepxc9o3oLugismSuswaUMe0+R1nhvT0ondF8l3QWAW4veSvRHfdoa750tD3vYw66e/OQnX/5uvXwTgNu8m1QP7PpbSQGAAF7pPMxp96d3PuWUd6WcAO8pp5xy1wlWkwM9TP7yeDr8oYUiYJWT2CISGNRCQb5drBT3c25sR0uWOce53G26y+TiQGA6LhDKYQI4YaUs8LasLM491hEAmQNscY6BZRG/wA0nJcHetC1eGcue6XNMjmUT974t9DFQaud//ud/vtTr8z7v8y7ONqcB4NIBZV3boq5Fl5PFy9H1qEc96vK+3bcOvcV+1y+gWJmcAOCZXLgc2PsK8vYsuXYB/9hg1S92Ye/qFPYWm5iB6oephdmDrXNk03aN7cL91BY52ZWTHub0Vm5gVsLJdQjPOurL7FmQxv97yBLnGgiDgUknOJB0zfZcjrbc0049x/oCcihTwAWQTO8ARQvwLEMq4RDWlrE8HvSgB11ysga+N1YDyORuzNmsH/q/9+z/rqs99105yAv8GJst9tNBIK4t4Ateqvuy9dmDI0P2yOYEBi64dpP+LWN4AVFgz46D3l25mN0byLppS/8Cxdp7QZvVM222do4dBBQ4DGifc2Rkq8fWH+gEHAUoBuYnAQD1X2NAbu6k8ROYkrNYH/d9oFlSn+UMd2/gb84zG0awFhvj/QDbqlcgTN8XhJDiBqt4A37aaEFbY1E9l0msTfzfM3J4q2NlZufYLn0JBO1dc4Lp1uoiYNgcpn2P7OJlxALYjFXvop0EqmwtN6di8NrWveN1mepHQHfBaKxH71b9BYvkbF1d3bQSgoj0vfvSOyA8tiCwUL5W/QI0tQXcMwR9AGFA6rWjUjg4lKuys9Pe0zP6HMPdIWAbYNs0AuqTVCZWqnY3v2OfC9BJi8AudS9wVaDLPCBIUD1W/9jIHfeYp8t+ZyetBezgULfewbph0yR47rJrbbXvvpisPc87myfsrrIrwTgV9BDUxLhvfPcextfaTAH8fioPeNqYNj6B87te23Q4UhwJCBjvQOn+351d9UXlAdzZRwzzrsmuAFNrS4FL+q3/j+lTNqAgwCI1FAD6GETbIGTv4tDKPtsD9qwfNhjiwNj6iW2tra0XF3y2VthdAT2/53Vf9rtrY3A6PI1edU/60FpK8FuaDMQDAQgpxAS5b0c2aHqnZevxmte85u1ef1/WroR+J3J635vY2cdPeGdJuvg//sf/uB6X3/Vd33Wv9b2vdSXOGdky7vQ7n3LKu1pOgPeUU06562QZrxxtC245Qi3GLV5bXLdIyLlowd0CswU4h7DPLCL631b2dWJ3S7NFs8WkhXvCwd3topwqTtcyeLGPAXNb5qZAcNK1bd8YLMo6bsvl6AGvbRPd0527Vr5NDrmDdQADnqk8Toxtg7EydoEeGANI7N7+D9iofR280t9tsbLtGzOWc1s9+5yjos27bp1pzmi/q/Pm5bwvAvCR0oND10Fq1RWwXfv0TNsI1dGWX+A8Vjkw/Kg/9BYLpmfVNtpWuYCaBSI2fcc6aMsmXJALsJZUPtA/oRMbUFhACYizTE8H/q1jZ0zIaa2e2sh3x236G0Dxd+0fyBUYtqB7gG590WcOxeqndqMXAeM5xZxnzvn2gZ90LpCX7ZCXG7ixzD75O+WK1JbendO7ANM6afv/0ZFfR3Q/29/LDnavce6HbOqAZf3pC8zW1RvpZVZHHTS44B1WovZ0T30V6LqfAS+W0WyMYWsF2HzkR37kRRc6UduW7Z5bUKWfxlZ9nw14y1vecg1OZbtXt/ud/RHME3To+Ri+Dgti9ziNgcTALmzBAL3qAchaHd33Z2e3v4H/PqucAhbSobAZ/t4AQLodc+kImgO6OL03sYd3zNLfJJCFc2sMGvebqgKQulvaj+XtwWpH8Hv7f0F28yA74X71s7tBsMl7G8dsGhau9zcG9xCxFcxOf8vlK0BhK756KU/QEIjW9XZ2sGUOEQViO5yzMRLABbA2L2SXNqXLsZ7mHXOabe1SjWgH1zugyrimSwLU9EsQV+By7f6RnduaABPVPdIwYHsmcs/K62rtZL43Jowvbb9BxsaXeT9pXhHM7XOMZGAOWy8QX/vK0W5cre5I19B4snsFkCiQ6tplDwvU0nugsevsJqpugPdlBPd34CVQ0/pUG1qvVUZ1lEIG4UBdgMkCF9nG2sVuKyQELGckAmtG9dydE9ZK1cPhc9U5wFV+ZHq07QGI157dl72vL7LNgo/SLFhz6zs7F6qbnRmC3Bvkoefa/P4C0N6fBTM9MZbuTTadxztTnv3sZ1895jGPuT4g7Xd+53futb63U9djfe8v73zKKe9qOQHeU0455a6TFuFtz+FEHZ0PTlUOBse0RS9mlhyAmyNzwduE07eM0sRvi2xgLtBrUy6s443p6X91di+gBVC0Dq6tbJyJhAOx4NyCbuqNPen9OBi2mLYQb+FeW9VmOSjyoVnY70IcOxdYGHjbwr0yYl1ifvZZjksOXnRKRAABAABJREFUL+ejuubc5VT0Wdu6YuAlcsc5Zd17SYuwjry8ffL+cX4xcm9y+G8S13DOek5tUP1+8zd/87L19KlPfep17rA//uM/vjD/dvt+7VsKCnk05brbNtpc0Ase9nfttqeQL9OV3umvZWYqax0hDp720x62mXJEsXB2ez6QRj9wEhd8qa+dWM4ZA2jVH4F9AVSVZassNurqMRBp2b7eySFU0ovUvjHA+75DueqjwEFBmNhiMTylM9l2W9AJ8M+5F8AxXo46oy9s09ZO1XsPENMGy9rdFA0LBGz/OQhvn1eb2X67/ZqtApgCr21h3+353oNN8Q49W/Bm8ytnk2zt5oQDijDxl73a2LB9v3HXc9IH6VvsLhDkAIZkA+SHTB8xJBtLXdezlZ2O1f+l5uiAxuogfYCDfzDG2XNAloDIBsL0fW3lsDD6zMYBUtjc/q8u5pdlrR0Z036zueyu8dX/6WgBCqkH6KD7jeX3fd/3vW4T9TY/AfuAMMtWZZ/pwgZ/ei/zlHGhLzagYV4QyMNg9g5A0ePctm1BfwBuZNMhAFKX1dr/Do4CRpofvRc7YkzVNpjXWyd/2+1RWfo9HaM7x36Ue1yQMDuDTQj8tL7os2XnpiMxwQHZ5jM7DtY+L2guTYH5pM9qK8HStSvyr7JjDg5j2wU0tE3f9/x+2OvEtnnMVwE8rOM94Ew/qrM5F8uYDhpTbHr134PszOPAcTtY6JM8y1iu1SEbX5tIVwKcDVwU9Ma49r6CEnSuMtmMY+Bt2zLRjrt7AsjNrmgr7V7bCvyxF8pkp+Ta7vMCU60tsPEFLjxPe2xaISCwNcTODfqL3hkntXV1U541sv5iz5yFYM0l1Yn5ojFwnNcwlq292Gas7J4JwDeG5FL3rKT1u3W4wBpbxn5XRvPBe4oEgsr9/84QNiG5L8QGPoZdZu8M+fZv//arr/qqr7r83WHKX//1X3/La4827L7U9Vjf+8M7n3LKu0NOgPeUU0656wTrNADANvgcA8xOC/oWqX0PfMBKsF2Pc9iPnJgW+RbHAKBkGZab/sBCfsEiC+kFdRb4ASavs8yZ3lx6mFLK4BhyyrELF0jjSAJrgFTez/ZWzhsntHymtUtt0UIUKG3bJGcEc7f7AvUC2ICDnYALFMZa8fyAmze84Q2XzwNNc4oDP4DX9R9gA3DGIcQW6vNydvYuAUe2D3avfKpHltTbE6zaHKOYgqWcePWrX30NvqZnOZb06Qi0akf9gx1je7C0BoAw9y54yznF+qFvy6TlxGGNKgcoleirzVdIVzmLm/LBSeR0SrBjgebawCFk3o3D6AdAhfkN4AXoLIN5ARnAyj6PjsmjCKiJpQs40Ua2cXad7agcXXohTUafd033BHQYK0AgQKy2B352XY45NiLwEgheGQESOaPGrzGLZSgQAWjYLcvL1k3PMJrUp7EoHzL96v7aY8e9eldXjj2mIba4/hMI8D5rg2zNpqNAQEBSf0vb0fcCB1judK9nLGDdfQAmwKNgAFakdneAXzZCHy7wuGlDCio0brumNqkfjLW+d+imdAUYc9VHuzZ/0F+ATEBFQFRlGtuAyg22Jey5dtPXSWXKbemwwmPA0NjtOsA9AMizpM1YkAdzUbBh2Z4J/WArunfZdcvirn0W4KJPa+PUa3VmgTPlHXe4mCMBk2yBAKzUEzvm3Ctfp8BG9Wfr2eANcLCptVcAX89uXK1Ob5AsqSx5TjE5tW1jTeAgncAalW5Cmqfj/E/Pth2W8a/PvT/AewF748pcIe/v7vyhU+YRNlOKiWWUAy53LSNYZ6zWbo0LNn5BPn0MVARw2h3UZwVtm0sbN4GGtZkx1TME7oCIPasym88by5Xj4FL1weYHIAvapy/sN73AbrbW8bc1Ebb/7kyR81sfWGdpUzZ85242xFwq/6x5L/EcYLrgIF2ga+pn/JrTsaF3fUFHMO27vneWwoGt6/Pav+e19mIfjHFpOew8Wla3uVkgGgBv7lNntkAqEIeYOgzVmDZm1pZgF0unATQXbOh5by9X603iufcH2Xo0j99Ojt23J40Rcl9SENQP9zW1wX2Rr/7qr756xjOecfm7lByf8imfcg3g31t9b6eux/re6Xc+5ZR3l5wA7ymnnHLXSYvAFq45BJsWAXOBI4s9YdEhJ6MF6U3bQTl+FvDLYFoHHxAH3FjQzyLcQTbrGHnmludzWxwt9hekTWwJ5VxzwJaFZQGPTaLunAbbAwGytmRX1xzWHOIAkhgWtScGG8AbyyiprLZXP/ShD70stmLwcpAcjOBwjtI4AL/e+73f+xpozCkA6OZ4YYMmXWOBzwmRk7O6V2bXYNIs0H07smyn2tQ26Q/4gA+4fF+6BlsvN3ehtt8D4jj6WEV7gE9tWNtufjGAlnzGnEF6bFtkP9hQnktPpR0B+GO/0pllB3VN7ZbTTcewdrHbsejoB2YP8K7+7HPb+IEclRvQyYn3nphwWEULLnDAMUiBXzncdHOddYzv3qv3BMJgPQXk7LbP9K02LI9vfeHwn/pT8CMg4oM+6IMu7cu5ZVc471KFyN27Oa61KybaMmcx/rSx6xcAXLCM07usfawm1/QsBw4emcq+Z4sS9sT27GWQAXDcy47tNvtlZ+51gMR91uql/7Uh27ZAuvFT26WT2QYAX85wBzdi8Pc9li/70//se3oZWPOhH/qh13ODNB/sOD22zRyoXr9mi4BcAML0EsAGpDmypvcAQrZBO2ovYMwRFN1rHMa2QA8gS10CCQRtAFRH9jkbuODiBnvk0ga0AV/MH/rM35icm4KEztOBBSVXt30m0OrdBQFWDwFUyvO5wB+Al51VtqCDd9wDtPqRu9W4swbQR4GDbJ93VA+H/EhLhMkqVzQWJICdXjRPOYBt1wX0rx/9xk7uONYe9FybsyeAd0G6DRA6aFV6BMGdzZcL5DVPmIfsvhGMAXCvbulbc/KeN7CMVsFNc2bXN5dg1gMngbJy+/eM7LO/u6d37HfvVT0x8uqHDUJUjhQNPb8+s34B9mCs0jf5+6Xp2eALe77gOdslt7653cFqwEprN+PefJQUuOp9Hd5mPanM3r21WO2nfuZbQR5AtyBA7+owKXZKPn2HqVZXKbSW2b/BaqzcDcIad9oDY9maqe8rV9sIGiMTmMNca33ofeX9NS4qW072U26W2i07U7s7wOxWIuVQ0vr2XyvtbPvpn/7p6/Xxx3/8x1/m53sTh6JVj2zKvYH39Lgxsjud7uQ7n3LKu1NOgPeUU06568RpvLbhYfjYDsYZAB61KMAMWeaWqC5Hi5Mil+iCFBzEPUH9uB13ncZlB3EabOu2mLbg9gOEW3CFc8455ixiTi4rmfPawokTx+HjFHGGtSNmDXYMZ7P2lbrBITOYtJuvT50qt1QFnlkfAPSqrxy/MXcrK1AFu9C27crpQCLMnD3oqb7kQAT65CBh8gFaEu10k3B6bOnmpHBIe4fe+8M//MMvINGDH/zg6+tru/Qsx1PqA3ny9Lktt1iGToDWFwmHks4AMgIuu14e4liYCed6t0dzYoEvlceJ7npgdfXsOgyp3i/QTE4/ugYY73fvKdDAScNKwugRKMF8BjIt08t9C4btmFpG0oJhxgmgWZkACY5wZWuDym4x34IfSJFg1ukD7bhjDlCmH48AL9aWvlqWpGvpnLruIXfsBMfXu29qlX1/bbDgKRvEEd/gE1nAbUGcPVBndygAxtemeS5m7jKh9Kl7ty4LLqrzrX7Y2gX7aq/GXcGidgToUwdHAoCcXi8nKCZqW5/Thw5tBBBgijrkqDK7RqqXQIx+gGO1UylZ5NTW/tUHUzp9o18b8FoQdNt6xz0g8wiSJ/VJzq90AGxIOt015inAPABo9UdwZ+cfgRSfeb7ypGk4st1sezefLHtZf9O9fUd/GwNsUu+BAStlCUB2U08A0JWFJb9gVSI1gnlnwWT1qy0Fh45BEPaIHQdemRv7ae5Lqlu2WZtnYwQP0qd0z9zILjhQc4O+O3f7fNlursHuBIgLxKlT/9tNY+wYD9jpwNUN0sklvvra94FoPpPnGfBWMKF6mIOkJmBTMJF3qzTgXeBb4FUbCbg3f/cutZP8xUl16LOu73ft27iMXd+azppAWhXge/WuXyqzejdm2Q1M5sZuawisWqlijJcFF7W5377fYKs1m51GzdmCSGyveVKbm4urV324LG9BeLsX7DwQgMIStvaqrffQxcrJjlifsfHmCkHnnilIv+9cOVi4ApkbpLT7BVtbAKLvGiPtdHrrW996AeXoo7VQtps9rj6tN3uO3SbW49le5x5IL3XKraU58wlPeMKFjKDNb5LywJPYtv8a+bRP+7Sr5z73uZfn1e8f93Efd5+YydV169MuuZukct///d//lnW9E+98yinvbjkt3ymnnHLXSVv0c0yALhg0mAYtDFugysvZArSFv8OtWmDK+ZhgSCwIYeFroQ6cWgYlZgbwaZ3Io+O8YMmywIC8uxhfUGfBMyxN32GP+Hz/x57FPBMFV7dNJ7DOpTbtsxbhOU0t2G1XzkHChOmanCuMzsc97nHX7bvb/tfJwXANOO6na/SV3Jfy96qv1Ag9v3tz9mw/B6Ta+nirxZ725wBXFpC5Z3cfFmllB1Y7lbt+jqUAoPcuHGEMcP3qZwG+vksPMZ441XQG60q/1s7LrAFSAG0ABft++8wFXjCM9esC+b7DeFrm7zJJ1RMwujq0QIZAAz3CivIuC2AuELbjbkERut419U9939/laJUHGcPr6IjfxJIFMgEIAGObW9E9tRGQOgHULhtQXfdAI2wlzKQFroEie8jT2gXjdkEzoKx+py9HNqg2VvZ+p+8AEgIvCyQfbdSWz5ECqrCNwJFld64+rq4aN9v/iWAL5iNmYHZF2ouelz1aPQVwYbE9/OEPv4whzDw/q/e2k7MTtnZjHgJcpGLJttgJUj0CQACvy7T1bhuMW/bsUXeObZ3NMxdh/QmMOdAKmOc5Cxh7Dn309wZYdseK/gKgKAMbfutpDB6B0rU/+84bSFWvDda4TmAJqKXcBWEFSl2Tbd6DdradvYt5UF5QQo+1LablBp0AV9JA7SFrUg7Q5bUXwPXVdTZSoA2LfwHhDTpi0cpVa34U5MAQXvZ211q7VF9AtF0RC5Kv3agdmzPZ6CRdx1ZPBC2UiYUOXNZeO+bdKzBgvqqOAifSAgk4C1LK7y1Xbe9T3vvuq70e8YhHXK573eted3mv7MHOF4FNlQnEBEBiZtu91H19J5hZmbV7z9SXxgCGafdaZ3lf+ly79ewN3GOP71xo3Paecg3bMVA7A8IFHOikuvV99sqBl8aUVETGGZBd+iO5ilvL7EF19X/tYR3cZ8aOtAndW1CbThMs3+pv9wP7LQAMoJWXX8orbS91BzKANSAQv7rIwXw7snp4p+VdXY8/+7M/u4CdteGjHvWoSx7cm+SJT3zi9d+veMUr3uHnfezHfuzVr/3ar130qr6OuftP//RP97muW59bAbyPfvSjr5m3N9X13f3Op5xyJ+QEeE855ZS7TuRta8EoLxiQxVY0QJVF+oKOmAQWXy1IOTl7UjhGxW7H5aBx5NfJ3s+TI1OL4+t71+6p7wC+48nQm9cNMNJvLNyul2MSgMHRACy04K48jo0y9sCUTVfBsatNAnpbbNf22nkBCWDLOujL4Nh0BRwT4C+m3gJGHGSONMYsxhWHLR2oDeTqlcNtmR+c6OqeUwG4C7Rtkdr2fACxA2CAVt2D9ar/MDk5Wb2/ba3ajSPmnTGl+7460NvajzOcbEoHjhBGN/3jPLrumLdvdRggxykHEAG89BkdEwTBzl4WIAAdYGsbNGDZqelHxh+A7Qg8Y80tAK1uWHre2zjLOXfQG0bxgoXpSJ+11V8fagtlAXmqG5AGa1Efq580K1K+LLhExxNtYcwuSLdg+dqIZR4Cch14BOj1jCMzfW2RNleug8eqK93ZABA7Y7vwboEUwFobps8wIjFJHZ4IFBEgkZ+UTVsQhq44gKeyAnJj3fV9Y7Jc4PVvoEljL7Zf1zr4zRZ19hqgHTDEztRv1UcuVe3e89MR+Vsb62yPXO57Inx/B1Bk/woqJo31BR7URdBvx+SmbcB+NCYApnY2BKT0zj2vAFN1kRbEwWy1i+AXMGcBQszN1Xf1WL1Vbzp3ZKOr2wYytN9xTtux7pkbWDBG91r1Mq6M+9Vt9sA8U/9siiKMciCWZ2HZm1vX3sjjLGd+gi3e9diJmJ/avx8s03QrvZD7e8czAPXIil2mq76iq13fu/UOANY9VNXnxBzfOJA7fPvCjg4MTH3dd42H6t37WNMsSAhwN7Y2mGGcYY52n/k28b12XmbvBp+sB+Rblqvfe1oPBRpKpxAztXoE6FQX+ZAx9dkZYHH9V/nGPh3B+tff0jvRnwWlpTEA3psj/O49Ihtko47BPGViCNOH3scBbJsD21jAPDfGqr++6h4g7bYnPQeqsnFY9P2Wtxnoao1Ad7y/9Yz1CXtdoE2AunoZP+286LpsY2skKSrolUCyHXXdk723s8w5Cv0WoOh9te99OUjrbpYXvvCFV9/5nd95+fvLvuzLbgQ7658v/uIvvvxdG7/0pS99h5712Mc+9nL4cDrd3PSJn/iJ92Dlvj152ctedrkvm/IlX/IlVz/8wz9843Vf+qVfev33b/zGb9zRdz7llDslJ8B7yimn3HUi9xjGR4tGTMwW/VgnGBG21AEpWqw6rdrWc/ksW3Rurt51ZDFujsAMcAY4ZOHMuSe32qILYMKQ28Mt1H+3tG+uP04wwAYQt9sJLf4BBMvCwpTgAGojuVyx9TiVDi1qMQ/AtYXZlsj6AIsx4CKmbFukAkUCYfoceyTh7CYtHoHbcs7l/LZIw+CzfRXw3O/60tbY2gFICSDD2K0cDmbvWp2WOcJJlae463v+wx72sEv6iG1bgJe21IbL6szBAcpyngNy5BXFaqn+gGjbgnOKtkz9s4xOQP5uc3YN8ItjubpH5+joMmkFQugUcByoT9+8Jwf7eFCQdgGweC6G2U1jYa81djCK6ELvFKNJn3PmjUEMZWAbAKX/BQjklk6Axa61vTjRBz7j7O9hdN4D8Nj3mN/1y6aBMJ7Tq2XLJX1fDmNbfulD79L7LiOWk762SJ8Ebi8jup/yu+ovgE51EfTYLd/6fO1EOlpevN1OTF8CZwH1wF79oG/ZlZ7n3p5TCgRby/u8IAEQoraXosVOh8oC8gnkAWv8TU8xXwWH2M/as88qv+8BP7WxHQnVI9ACoGNe8I5d1/eAnyMAymbT/2Ngwzyij2r3zSlP57MPtuD34yA0NtsBRmy/PsScN44BzgvYCrCxF+bS3QVAFvDfa9cuLfNTm2hz433HOR32PGV4P2BT5TUXLPC1qUbY+c1fDUhcVmv323quXeilnS9ygwL+em7zm2BjelqZcr8uwLnzij70PsrWvw4VlCaiZ+7haeosaAssY2tt0ZfPlP3A9O17OS61IXvv4Dk6IvjDNvX86pst2gP/tKExvruFNlCofsB1wJ6gLHae/tvUVQIYtbvP1bsx1zs98pGPvDDyzJU9F7MawG43F9at/mY7ug8A7J7VW2kuNuBx7NeA3diL9M8c3L0+s16TnkFwQKCheWht96aV2WcC1Tedgr4VXNu0PYJ8tSXQm77YKSSI4b373zpO4MAcFpAtsCylll0PdjZkM7G8e0csdeu3niun7pIE5Bc3h2B4Z4eXgX/K28prXvOaqz/90z+9MFq/4iu+4uo5z3nO1ate9ap7XPMt3/Itl3V48qxnPet63bNM18DX5Jd+6ZcuoOlR2h3zohe96Don/ZOf/OQLk/52pD7/iZ/4iavv+Z7vudTnW7/1W69+9Ed/9B7XfORHfuTlPZLq1KHN74p3PuWU+7ucAO8pp5xy10mLv0CFWE4AruR4QMhu0ePMWkj2Xc5eC8gWnwAbQJ08sLvNdYGthBO5zMMj+MF5TZbZtWwlju6yEW9iO3Gml7khB2rC2VEucI+TxKGy+F8mF4bOtgEHZcHixDbSHAIMx8rO2QmwqW1zHLDQ9tm1c3naAms5ULZUeiYW8W7zxEzpf06607L3oBGHtWE06+/AG05tdc45w4CrHt0DZOXw5VAHSOfgA7gB5LtFdhnJ2mK31C/Q7//KcQiEA9awrRfEWIdsAaLNPYaxiPHF4Qe4LlOoZ3K6u6d65HRpM+xlABzHGmtjt/zSt93yLW0GRy+RZ9OYMV4x4jCGsNiAtd5P29ZOAILyr6VHdN24c6J8YH791jN6fyesA/J75x2DDnhZMKSf9Ma4xFwqTQSWFPClemeTOMz6KIYTxiVQrGvf8pa3XAc42Jjye5ZfOgCmftBOgKvt//7Wv6t7CyQfWdTrzNffQMH61WE/m3ZG26xtkOIA0MPJ34BDZdUPQNV9R8C1d1jbAiQPTHAon9PdaxOsxZ4FHNM+7KFAyrKVjQ9syvqpn/L80QNpILJZfSYIIwhEv9mQdMgukgVx1Yn+bB7YTbezQKn2kQu9d+3Z7My2Uc/pe32ozTGBe/9lkWoTz9MHxwCL+WPZzkcwGBC8QYV9Dl05Bi43SEV/MY0XXPMsOySAz7U/W0TMm2wrHdy0TdiSy9zF/tSH1gTmHO0QYJjtlxqjzwpqVl+HTjpEzVgpUAJc15/mPc81NwpYCWbqb++vb/ounRU4W0BSYEPZ2c09rMshWq6tHHns5QhmH3eOXma59YHgtfWGXUNsEHB79XR3u2wAxPxHNwSle0bz04K0gEtgfwe5fsRHfMT1IWWVT+/7u7Ehz3O/+58e9v5SrxiDu+PKek7A2ViwhrPWBHr3fAGGPrP+ACILitIfbYspzk6zaeZqzwZSJ3a0CGwZ19YN5i594Lly/qonAFl7Vm7XsnXOPqitKtvzG0vyM7Pr3SvlRPZUXmo2ou+aV42Lxg1bKjjV/82R1jfdW3D72De3I0vCuNPy7qjHN3zDN1wCHunUi1/84qunP/3pF8ZqfddhaF/zNV9zua41xzOf+czbLr858Q/+4A+u85J/93d/92V90lrlVtLYcI7Eyo/8yI9cfd7nfd7VB3/wB1/+bh33vOc97zIGnvSkJ12YuYIk3/iN33jH3vmUU+60nADvKaecctdJi4IWoQ6hsAUSE6tFaAv7/peTEZOzBRfGpnv6G+uUM2IhDAC0AOVoAWQ5BAlH10JeWViBy+7yA8QCfO2W8CPjiYO09VmnbBm7ngkYAr5xCjHsgKPrmFv8105du9v6pQ7ArFv2TwvzFn45xq7hSAf81hdF31/ykpdcPeUpT7k4m/te/paPUb2xPTAfcyY46wG12MKYV04wx9jiAOcUArMwSboWy6t3qP45Rd43veCQ5ww/9KEPvQeoACSzJdzp6pg6HPYEIyaGZfUEElRWjg6W2IK51QFrGlgkl+GCShwibYmZJcgBZKh+Cx54Z050bQGI4IQDjqXCAJLaar/gkeCI1Bt03FZNp5/32zZf4GD6kO5sOpJlOgJh+jt2WfIP//APlz4C7AJgOK/1T3V0AI73dhAhEBrYZkx5rnZZMGwBEf3U/QU4cmwwLjm11RHw0k99sLaGYFqzMb5z3zIm2Rs2gj7QW4AJEM7z/G8sbz7PZYr7vY628bz2bNNvqAddWPulvtqPTu47AS2yIz2zPurvgFhBna5pDNM16UfYvt1Kru6CDfWNOvacxnnl2xlgWzLwCphiXBqPbKZt5Fh4rt9gjjlj5wg/2zdrfwWx1nYAOuidw6LkGu1aQKVgjzG6AJX5YlmDGxzoe+y9Te+x9V5ZBv4CgQv+7nubM3dLOKCXvqh/9sf2fWUq37MAzzsetYOUA2xRdtRz6AVbSncwEqU36lp6Ywu8YFfSNZiytrD7jo4oZ4OQ6iDYqp237QQT5SqWeqn69Teb17XYncaeNAf9COoB0gUGpCFJh9kE41Y97OTZ3TC+X8bormWMRWMIKKxfzJt2YVmL2U2wazg20Q4t80aHoAbe0D3zUu8GKKXPDk4Epmo3svZCYMmaESPc+ANsClhuig5BYDsOzGuCaQBzACwWLZt6DMBjKGvLbUf676BEayBzF1u2aTo8k52RpsF3dGfZy3RR4M/BeAKu1cNOq+pSHwGC2ZD6sWtbf1VOa7baqf+zY/QIuMzu7ZkTp9xa3vCGN1xA01/+5V++jOlnPOMZb3NNYyXW7aZ6ua/y0R/90Zd1GfnxH//xt3vP933f9119//d//9t8jv37u7/7u5fUaAGxwFjSmPiCL/iCqze+8Y137J1POeVOywnwnnLKKXedlIeNk2IRbRscEM2CWQqBBSLl6QNgtkCwuN/DwSyGLeCP4M+CGRaoy0ZZh2nrylnc8pdFuwDcsvYsupdRyIFxv0X1ssU808Kf44htAgDBSmyB3zUclT1VWtsmGCh9F5DVYv2f//mfL4CWPLgBFfL+tcjv8w5L6VkBtd3b9vHYIl3fFq36K+ClBZ5+evOb33zNbmlrWM/KyStnZ9f3E+gXc7O8YP/4j/94qaO8dR/+4R9+zY7rtGdMw5yR7rUF25bH9GvBkKRFLvbyAu3Y3gtO1462ZGp7h4YAozEPbaHUtnIkA5I4w9I90HV6hQmb4xcbpjYBUm1gY7d1AvWPeRKTI1N9Awur19XHOBQsWfan4Epj0EEuxlV9ZdxwoAGQu9V967HMq373rnI31ra9f7kaq5MtxvU5pt2CEEC53d59ZKxjK+3hfZu+AQjCCV6g1Xg0BgKYj8CU642hfecdswu2HoG2BbnUPQHEHMHpZVEmxpR8oJjv25f6W9+wOxtIAq71G0NUm2092b0Fx1c3tQtnv8P0AhUae+qkz/xguUptk6gzBieGXffX990jcOLgtH5cn96wwUDb3oc9sw072YMatZnrt3+AcZu+4DjOdoz5u3LMTdkyoE420MFR6bqgl+AjXZOiJgGaYl5r/wXEAUmrM/qSHvh89XC/X4B/gwbL2ha423F9BA2BPMfAg++B6hu8BVrZAYFhidVt/tVeOx4Bw+xtAUCpCGzpx2BMj6RNkCZGagK6jvVaX3XfBiP0RfpHXwC48gSn++Yhc3bj09pF+8p5DRBml11rtwY7LLduz17d27bGDLWOYD+NE+21axjA6tpRDPp+agcBee9DX5XT99nsfvdZ8xtg1xqqzwqUVv90qnYSuFFPOzD6X2oNeusAOnVdprQ1nNQ91pf0zfv0/MBOgPCylpUhz72dRNKu9Nzq4zn6nd70W1qxDfzsIajsLFB005PsXCVoItUMmyBgsEzrDeBYI1l/YGTq2+5rvrWGrj5AbGnSrGH6LW1R5dUG6cLaf+vY9FXqmTNFw32T3/md37mkEYvZGqjZbqD6urX485///KtnP/vZ18H1Oy2tzT/swz7s6uu//uuvPudzPudC2Ek/yj0f8FtKhXbxvCe98ymn3K6cAO8pp5xy14k8YNgYCYAm4ezbNpiTBvACMCQA32Vt5YRhsC47aHMjWuA6KGKdM2wdgNI6BYnnAYbXYV3m4j5HPVzPyUxaADt0w2Ie0MtRXnAWcGjbP2Cs7zgrHKSYSwAUdfZutqcvqBR4yrlvEVe5PSfwwYLddtscA23XO2DgVF4OpBy4nMucg66x+AdyYGpzppOcWyc/YwtyVmxR5tDKfQg8WYfas7Up3ToCMF1bnYA4RzYkQJgTBzDgjNE9B8Ys6GDLOccVY9bWyNiNe+CM/L0JZpx60z+BhAUnbe2v7eV15Cgm0hoss8dBWcYK4JgOaxPtkUOL1XsEM5PeM3Aa8HETSGSMAIvSpwD72icw0HZTrEZ5emurynf6t3akOxzSBem0wZFBu073jml6tuO6+x/0oAddgy573+YBNWYX7NxyFkDTJgS4on02KJWwGUcwS79vmhMgg7QS7rfdeFni6rKA2jE9gLGtn+XPXqB2g1dAvWxFoG7/p892ALAZgl8L2C0Lbsema7EHlzkMJF0gA8jiXRpbwBXAtjQRgjsOa9u6AbcSY2LrvKD2AqdrX5Ke39b06pe9C3wGjPZ3ts4BgH3moDDl6peubd5k7/aARM/eNAhs585BN6Vb2GdtoOHIcN8ggaCOdvXZpoChE1svfUoWVFumMQbj7o7YeVxgbfXPu0mZ04+0JQFSPUPwCIsTu1hOXHqWnndt71YAEavWszGBd5zJQSrwBJDTTmyqoJYyjcGurc4Y7rtTiT5rn645gsTb3uad7fPVJ2uJXbt0rzQRDifbnL3L+Aem7tpo51u5fZuPrEHsBmKvjN2e1biwJqluDkSsTAerYnNXvt1d3tv70GspHaw3BFgWPO+e8pI7DFFKEHa0fkqXALyVAWTew/8EabpG/Yxna8xtA2sMdsahenYUOChVEJbOWxNjUEsb4Zmbbsr415ZAdOViXlfvguoOPGaDpERicxP60GfZ9g0M7hpr7e+O9fsqa1vvtLw76xEoWu7Zfm5H/uRP/uQewP5RynHbzztT0p9SNPRzJ975lFPu73ICvKeccspdJxa3GDvAkRajLTadZrxstBa6nCf3W3zKScY54xBhSXjm0RlfVlICAACELENrnSELW86ORW5/A4YtdpclKKdefwda95zYr7YTAmcAHRyqxOIdKxf4172ACuxl+fr2cLZ9V1sKdzG9eeECYyqjOiY5sVipLexzFDBlKzcHWJmcihyGylAf9a2uORVy6e1W30AWzmTsTnnscgQDmYGSASJAzMCjypN3DoNnHV8OR4KJ6d17hoO4tPGCXH6vc8sxBVbQF++ibYHi/sdmxt6tzul7ZQcY9L2DTjj3chh6J3/vqeG2tUotsSALfayOWN3GClZgdeGIAnKkeOj5Ul7ob8/2rpv7uT5IP7SRgMkCgPTR/d1bH8TS/vu///tLn8rr7NmVh/0IjF4GqL5eJq1+A1jtWNoUEgCZdNa7Ayo5qYCKZQ8DPpVxHGvGsYDAslMFCIA26tv16cSCQu4RgAFuAW2wVJNNcbCANiCODgND6Fr93P+9Z6CHbcau85wFUpYJDxhJZ/rJrrUbIMBCQGoPqTr2x47H1RMsXsE39k+ADqCXbvQsQcDNR9z/Bbts0Qeg7k4JB/vtCfILGm4gw/factnOx8CB3REPfvCDr8GYDTw4NBAjv7IdgLkMPnZAcKuxUTsIpuyhgfRRTk324gg8L/i6ttJ8p2/smFmWrnlW+wqQ0vFNk6EfvRPgXFk7drUlwD59XCCVHRIwMx8Dy/rJhqYLghGCiLUrHdj5EDALMO6Zcpk33xWEaweK98IEtoNE8HRTJVWGvOALvhxzEQu2Vk46mL2j6/rNGmdBv8oVJKZn1i9y2koLgYnJdlhH0NcNihiLmMRs4c6n0qOwA/qh9k4CTCvLoYNYnX0WS6+t/eZyQPKytTdtAiDcOrHr5SIGiq/ObgANeOwwNOsvaQi6Lpvf2Kq/nROAPe+9PVd77hiQWsFcb1zt+oDNk5as9ulZy9o2J1UX6xhlyzV9ZLlLJbI7Z4De9JH9zAZl1+2CqP3kbxZEaI3V/82/lVdAqfsqcwPZ2Njme/20+YOtudXxlFNOOeVukhPgPeWUu1xygt/nfd7nlqefvicK54Gj4cTlFr/YqNgeAB2L/4QjvLkPgRcc4N16uGxDDsARXEl2C+6WwfH17N06mywAvEw73ymTQ9l3TqKW1w6jjPNwZIkssM3BXUfTMwA5FuXbXgs+2Iq3B4Bxpro+B8CJ3oDjnLOc5Zy7PdQJ6NnvnDr95h04W7aXYlv27ByOHA9OYs/p/3LlVhdM0K4NpOl3jiEWkXbu+Zg6OfhAkgUtei6GjH4BZPbO1UXbAyv24DxbNI9sONdvEMD1AFdt1eebigTw3PtUb45uzhenj9O57FLtfmTSrl4uW/nY/6sXCfANeLrgaO1T21YvOY2VvXUE6PS9PKDqtCDrMrt7VmzwmL+BKdUjxzfGIwYcRlHOON3KZhqLmzZAX9N9II8+qq7VbQFG77H5PAG2vYsdBAIZ2F3yQ9suDPhweKHts12Xs8wGGAPyNy7zLIc49vx+Vt1yvpW3tiiwhG6zLxvssQsi6V36AY5hUHdgCgbmprAQhFgd39PVFzxfoALo2HgHnsqH7j56b1uvfM7LRASgsq9sjsPavEN1EmBZFi2wtncsb+QGk7DlsjXLqAcYa196LiXLgpBHEFhgZQN8+lrO6QWgtN2yzI27APL6NnvbT3oBxGu+bHt5gYCdk9SFjgCMsAMFQnYe1l7LNvdu5i/XaW/vtsAwO0lX9lCpDYzelMpEmXRCygz2ZOsPRGXfFgQXYMR67Hfjjn3oB9jLrmxqC9LzK7s5qH4DWAJY+05Q1Y4abVTZ0troH+0IHNQnO4dU72yrMdRvdmrXIwKA5gK2W3DbPNM4z+4AuKWscPDXUX8xXgUslbV2YFMsqL95SO5aaxF2Q7v0ffVg47vOAW+CassSB8w69AubtnplY+sTAeQFWnfe26AoPcHkrR0qDzlAkMwaYRnqxh0723dICOw73QOkm993Z5M1GXDUOshOKyAqO+SzDchbl/Rd9g3g3f8YxEnlbJqFnln7tz5z3kD3p6OC955XH9khIy1V7S+IKBhonjAv9X3X2pmXDWNLTznllFPuJjkB3lMe8NIi4VM+5VOuHvOYx1w9+tGPvjDvWkQ4rKJ8muXl+fmf//nL4vS+SuV96Zd+6eVkzsps8dFiJCbFH/3RH139z//5P68ZhreSFjgley9PUPk+LVzKHfrqV7/6crLo//k//+dey4jN+LSnPe2SIyhnsAVPDviv/dqvXf3UT/3UmSPoHRBArC2Rtri1YAxEARI5yb027/McW7kmOZMWyrvw3bxknDcOLIe1z46HVuzWfP8nR6c42S3Uu+3Rd+7jsC+4CwhooZ0TtwDBOsyYH/uettUBbhYExsLhtFqwq6M6LNvYe+zWaPVvbG8+2Z5bffvJqcFOMa4rRwqH3T6q/limwMqchgIcDt3DOG5cv/71r79mCfkcmxOY07M+5EM+5Hrbtffxm+y7crZ2+zLGDWcPyw4gssGEZULpa87v9jn2MYALcMKZxWTb3Iy71XJBlQUgOJnrcEl5oR7LQMYEpysL3NgmK1UDvTDmOInLJg1YrfxY1HsCuDIrY3Mlbv0B9QADdWybXmBn5Qos1FZdE4NI6hHMJietL2NoWcgOkUt/sxkJB35Tp7ifTvzlX/7l9cnqSWU0Z8iViBlv50DttOk5qnNzC5CDDem+nOJlDXKI13mnj8acMe16doMAV4Cz9Mv1DsZjd3Y7rc+Xmbq2ZoEmAKsgDVYZUGCZ6+xj9qHP67/0q/7FkLZNe8FYzDX6oo29vzys2ghItTsljAn2JxEMaw2hTbWddCN0AdAMFHbd2jDzFZ3aIIvxfAQwF3DagCL7sYGbfprrqnNjrN90rPHWd2xca5NAFAGqDS7pM2PQXLf9veN2mZi+OwaEbvp+5zNzSfMDEMg9a0MWSNaHxlz6lX5IYWEu19/YtgKkxwME0zMAbfXQNukgO7nz0c6x2qFAZj/dV5s7xNIWdgxyTFtlVUcAr2Chd2bTXM8WCvo5NLLx0jOrt3Q1gqUOHjX3W6/Qd6kHsH+xZvtbYCd7pl3XPhgrggXWAtlygLUUAb3b7uAR3JE2wLxn/LLD8tTr+00dscFA+iJQpV/W3tZ2m6KEbQeSsuv0FDjtYDrrCOseYHFtLxhlXcD26kdzmb7E7tWOdFK6sMT5Dl3f543tDcY51Lbrmt/qG4ErTNl+EAKkrcCSlmJCoJZdxui1PrHuFWRu7sVqT7ouHbEDh33bNaM2QcJYprpc0c5sWJtxX0V/3x/k/lKPU0455YElJ8B7ygNe2lb7vOc978bvYk/08zEf8zFX3/Zt33b1hV/4hVcvfvGL77W8FhslV/+Kr/iKt1kctLhpu1xgayee/+Zv/uYtywnQ/ZVf+ZXL7xVbvvv8sz/7s+8V4P3UT/3U61M+iQVYAPRXfuVXXuriQKhT7pts7krM1RaeLQxbQGK/1f8tFAN4OHecfGBcAkDicABI18k9bqtdJ2ZPlt+0C+uY3+QAr7POeVsn1nXLgtpcgoGbTpv2/YJiu21389txjAG58p1xRPak8cTift/H567b9uN8WsADZSu/cYfBxLHOEel9WtD3d2w5C33AY/9j4MSK4kwGWOR8yvmLYSllASZM9XICtEO3cm5sIa38BUE7qGEB+pyahzzkIddbNbG45O1MAACVKX/fsr6BLdhH+gqrcwF6OudAtupSf3dNOV058PSy6znmQF+Or1QKruPQOSxoAT2pDQAh9GVBbqBS72BsrbNd3TjHgN7KD3jv/76X10+eSgftGKeVi0FmvO04rDygkPurf/2THmCiNf7r54J7uzVf37EByva3sYHtdmRfb2Bkc0kvOxWYfBMIagzp6wUNllG4W9mNW/eyZcpkA/y9ju6Cd567jFffb3Bh2wSQha22fUC3ju8nUEDH1tldeygA4sdYKh1Kv+u7QICCA4AWQMmCg5tqgrCX+g+ovW1/TNEBjOsZ6aHt3MajccEGLHjRdwJJR0a3PhbMA86x/7u7Y+uz88QCp0cmr8/T+dYXgbeN5coO+JOCxdb87onlW1ACyCeweVMeXHaczd+AgzqyFRuY3DK8k//1l4BXY1fAZednoswFjgQLsFbpKhY6G9G7Y/FvoAZYuYdGYnyqh23uy4C3rXyZ2vqhNu2+9CfdNVceg7VAQEElQJ0DrZZhi+2PhWsMdi32IzA+HehdgIj9vWkYFtxlq/q/9pHTXJ90+NGyQgGS/rce0UbsJz3vOmzaPWR0c7QCy70Xmy6Xq3Gjfc2ZxkzStZtrV2DS3GJ9hkFLnxM2BSjZj7RN7GH19nz2v88dTGveNd9h9JoPrasqkz72DG1pzC1RgI1bhmxt2LhuPePQPXN519WHApMY6dsHPTO93L7bQJy5W5Cazbc+xD7+q7/6q8uc3v8FwHrvdL35tnHYWm+Djexxz+n5m1pMDt/+bk0XgC1V0ymnnHLK3SYnwHvKe4QUBX7pS196YUC1mIzF1MQfCyIQ9TM/8zMvi4bf+q3fugDCb3rTm24sp8XPb/zGb1wYwUlM3UDaWLstpnJmPuqjPupS5r1J4G31kT/qf/yP/3EBlgOeWvC0AP6kT/qkq4/+6I++ZRmPeMQjrn71V3/1sohpMfaMZzzjUmaLrKc+9alXX/3VX33Z2vqiF73owlzmdJ3y9oUjUt+0wGyxnH7Ygit/m8Vqi01OAUcaAxbLkNO6DMoFloA4HEtgHCCXMwr0wOhYltmCLOtkYaT02TJ6OIGuT9aJaJsth2XZnJs/Vf0X/JDTdp95ZPEtoHZkz3qPzUXKcalcJ8rvQXcJZlZ1bUxUVmMdQ69nvvWtb71m+m0aDNvWc06e8IQnXOetzXlqi35OLkC45zd2sViwTXrO5oRdMGLfo+8wcXxvy/gC4BwijjdHaFm7CT1K/AbULfOITtEHTtWCInQPq3fBEjrAqVbugkurU8Anwmnm4AKwBEy805YNIFjAojo55IyTKJ9hjl2OWw5cTmG7Gvqf/QOO1tYL8Cobe9OYAPb0kw687/u+7+U+hx9h5nFsA8ebY9KB6rWHvmGUc2orGzMc6xtogAG+6VbS7/Rmy1ngXjst2OnzBVoxWjfI4hC9Hds5v6sXq1cL7ip3c616LuDT85QhBYp2AWawX2vHjqxS+rV6v3p1tK07XugRptwHfdAHXQBeKXm6tr8XlKZbyjPOtMvadu8HQFqWOV3CZhSIwcoX6AJIpb/ZmO4TCBCISp8dvKb846Fe25fGr7ZasFtbbzsbDxvgIYJgvZvt29U30Cc92jnQifYOtXS/dlodZX93jtlxv7ZsgzF0QCD0qEcLCAOX1nbuM9iUPbjJ++w8hhkKjAMubm5f7WxdgJHadVivSfea+8wlO0+u/cXENVYBq+yIwBLguXIczucAtWyj8uiHYFX2U1C2zxsb1hmV03Ob+3YMSD2gTzeQtMHA5s/0IDuabdHOgih7CFjlCuIqZ4N/+lIZzb0CvztvdR92sABcbSVoLfi7qajoCha93QHHQII5VJ8J2CXavHLkp67/NwXIBif2HftbyhV2SD0EAdhhqYnsOOq3HRp07gjyCpQbA+w0FrTgdnONNqVHds+kA62BpXgAytfHgt52KfgfmIyRHLlm1wkOZ+xZ6V16ak3Zd/lXdvR0cFe5eLNDzfHyUgOJK7trK1v+YXrZfXbdAKpPOeWUU+4mOQHeUx7wEugZUHUref7zn3/1GZ/xGVcvfOELL4ub7/3e7736rM/6rBuv/e7v/u4LuNtC4eu+7uuu/vt//+/3+L5t2wGq3/Vd33XtxBylZ/TMFkgxYP7tv/23FzbfSukZYuZaLN4kz3rWs64ZAZ/wCZ9w9apXveoe79xhQJ0gGsjbCaDf//3ff8uyTrmnAE85ci0sLcyxRjjmmAgcGdvWEgt0jIQF+jiWx225y7LcnJiAHov/dXAT/3Mq994F+m7F1AIUARkcJMYRADJgYWoPTrxylL2Apms2j9wKB8C728boXbz/MtU4YUdWITZ746t65gDETN0xtkCYRT+nBniG2YstBdiVpzfHoHcpxYv/AS5YPQCeZUUCUx3Kos+AexuI0S+2ZHISAVGbE5LecXwBkMvMkWMRGFVbAbo3DUdO2uqQ74DXCYAosEJ+4wQwvMCLvx2MpW8XAMTYlTKALmEqaSd9RA9W340noEHAfM4ghqS8x8CQm9io6qNcIGyghANoAqwCCLLf6gHQk8pB/sZYoV1j3FSe3KtY/spQ756DCbdb8LHCFsjUxhvgWebqAtT0TB/5AXizKwvm0dkF53YngWezgfRXGXu41gJyC6ofgUVBDHXecb67AxakNFcCPNa+uh/4AUTps/4vBQtd2/yne1gfcA3Qt0GNtXfKFyhZnQWEGG92ESxg43rb+bEmF7DBskufpUNhZ3eLOfbczgHb/kd27M4H27dHPdAGgSiNhcZYNhLAAkTzd2OF7a8MTD9lsTObcqb7BISMz2Ndtk76wvXmjJ0nlkF9DLrtTpRjWXTed2vniDyge1gcO7lb6APFNlcynaIrRyY6ERRKvyMmFLiUNsGuIiCdZyZd2/cO+JOawfjKpgN+2a7mTgEHwLyUM/Lf2m6/oCH7bZ2ygWwM094zW7q2qzrUfg42LUiwtmLt1oKg6gPkNW4EROlSekpX2HM7T+zsAY4L7NZPXZtuY6OyEZjKgFd1YnPkrhfAVS87jqwXANbqJWjNThgvgr/GkzoISq2uSx/ST3PPW97ylnusAdhqgOzaHX1UGc2ZfSftRPO+gwT7vrajsw5Vo1f9zi6Yz7RNZQpUO5B427W/axdrLAf4yYlc4LRc+AG/0nHZLUWXgNv9DsjtneXl1192UKwduR25aY68U3J/qccpp5zywJIT4D3lAS8WQPcmpVKIhRv76las2Zhb3/7t3375+6d/+qffBtw9yhFQI9/6rd96AV1bPH3u537u24C7K5yCo7Q9MpZhUu7gBXfJM5/5zMuhaOUA/YZv+IarH/zBH7xlnU65p2BSckyAEA5Y4wjaZryL0XXGsRYcrIaFBZhS7jI9lzXFuTmyLxf0SfbvZR6uYBIBiNYJXJBrF90LGnOMObnK53AA2AA9u/UXKxfgoI2WXZgAdrbOyxYEwKkjEKayAxEwWNzLaWhcV3aOAYZm37Xwj90vXy/HDXvS1sMCRH/3d393AfRqv5xmzmrf5ZTkQNgaiaUnf/Geiq7NFgTFGsxpySkBiiXpXO8moHB0Xru2dwjMxB7DpOwe7CpgNf0CpHNEAUX0dpnb/e4dOW/LxA5AxzZSNvByt7zSsd2ivaAyQJQuYc7tQTcAgMYnvVRnTLoFTW0f7Tt51zG5AaoLkK7OYWZxfH0ODKjfMdywwapr/RdAEogB1HVKutzUHHF6SFanj0EZTnHtDRiw7ZpeSKmh7uqv76SZwNLbd7czYcExz10WdtcEiNqye7Qfco8ar7WJcWE+6z7AzBGUW2BPnXLsF+gDLAClKqsdL83RQLLKiOUltUr3Nv4DKuSbTOq/QIPAh8pq+y7gbeslvzIgcA8/Yqc3CNh9tlwngDfjxjzCXif1S387XImuJsBDNoNdyYYJGBmrC/DTW3Za+7ChR1bs6sURVN2gwH5mq3n1FSiTOgeY3fgLBFYuwPDIwt1Ajbl3mYwbcFz9M2Z3/jz+vQEvz9txtzZV3xtb7PQGvtTNuNjAgnvpa+2T/QIM7jxpzjkyi4/BQPWSU146EQxS4wWYFbOxz9oZJl/95k2Viih7ClTdNUegsHlCGgBzsD5Stw12bN5v7bTrnubbdNeWeX8L7pWqqHGr7fpMG+tz6xjjKH3aXRrHgMEyrwG3/R/4i6Ev8GZuZjs33QC7ob13Hbdrk02h4G/tsCx1tsB3C2ibUxbwpOcYtdKe6FfBy9pUrtxsXj/q1bVsmVQh9BbwW7ny1NLH7uv/5rcCDAWYqnv/m0PYql3XeE76VhnpVXUH8ta+PcsBlb0b9q5x1N89r7lALmBBbHnlpdphI6RKkdbI3GRNQTdOOeWUU+42OQHeU+4a2ej0TVLKA45+6RDeEWkx87Vf+7WXv1/ykpdc/cVf/MU7VM5TnvKU679/8Rd/8cZrWrw897nPvfqhH/qhy4K6w+D+8A//8OpdId/xHd9x9fSnP/3y9wte8IKrz//8z792fGJPxiT4pV/6pQvg/GEf9mEXRnEAdU51zkepMbo/J4M89rGPvfqmb/qmq4/4iI+4LMK7rnzE/+W//Jd3eboJi1WLXdsHpUbYfKpYGsBTzK2ul1dtgTWO0AJcy6r0fM7dOukWrkfWYXLc2r7sPNdyKHyu3N3mvPdzaDmqy3jdz5elB3jC1FzG3TI6Pcdzj6ynPfF5ma7LGlEekCvhFADCAQXv937vd+14AOrTTXncMLKUDSRLcpZyHPrZg92qWwd+9JkceV2THsuXSy84ytseABf9uNtVvY9tuHRK3+0J4pzz3ZKNFXsEvP2/+gCABwbbiszx7FptV128U/cBmBZ44pCSBU4ay2ytIEkOohPZ9X0CpDQ2sJzXkQYmaJ9lxOtLKT32cKQFYPYgsZxQwIt6OxDNlnqstq61nbRyC6Zl317zmtdc6yUb0febjsFhYA58W2AhwfQEBtgC/9CHPvR626x2xMiq3JzdHGZgOCZwQQ6gEsAVuAc4oC/aAmC+dqkysGT1oTFdudnpBam6VqABGAUUAHqufek62373kCJ6hC1N14wjeZeN2T5rbAbe+n9T6PhJH6tH19UX/W+8Am428ARIX9tJp9b29H9l7Rg0/up7LPmdAwJPBKH6KVhQUKm2WtbxAoF9Lgc29h+gbYN+q/Nre48sV+P9OB8eGb+Ard4pwNEBhACgZQ4ro++yF8Z0/ZW+2ongnbTHBoc2yGee8fcCY8vKX/AYa5cd3nlxA2970CG7xm7vu2w90yupgdgdeikglY6s3trF4B22T4/gn3dZYDAb1L3K7X652Su/3TfpWHqd3TCO+qmcAPfuqe8a50A+wWj1AOxuHR0gpu2w262PAc7YksaJQ8wal3LYA8XZSvYhOyc10qbp2XQkQGSBWJ9lc5aFz+52b3VoTBkHXbtMcc/xfnbibH9oiw1+2d20bG/6CywWLDQ2snU9086gDSSYL8wfyhLs9H4LXHZdtl8QpzLre+/LNmIKV+Ye8rfM+/RLsKbnNKbloqYP6kDn1BELWH+zA1IXCa5qE9f1zvV37+E3nU/nur/fwF2pkbq3+reWY49rW3OVHWHVKxsvbUxl7Pklp5xyyil3i5wA7yl3hZSHr5y2SUzem+RzPudzLr9f97rXXRwvEuOnBUVO/hHYOEr5eWP/JYGaxCnaLUqcXntv8vjHP/7yu0VYeYVvJTGYyOMe97h3CcBbGohYyckv/MIvXH3VV33VLevfIXblG96tr7HBvvmbv/lyGNwTn/jESzsGAP/wD//wPZhjHV73n/7Tf7qktOg6+ezeFcLRAyLt9rYFdvu/BWvO0eZeWxDBtjeA2rJkOUO2ry44te++LJB1RBYgWObtbiXl8C5bjMOx4MMyO4GDHIy9v78Bt8vKTbwfQEodOQXHlCOc7wUivO8R+F4GUO29rLRE+2Ga2DrZZ0CjypJSQM69HKLGbQt/9wB4HVh2zCHaszclgn5Q95wqTgqGECdNe+Xk2tYPSM3pdlAREAOrpfovAMphruxSiGivQBOAJpC59wBSA3MBEyvep2u9OzCGztR2dN9vYPsCMPLvOeyNQ9i7ZDPpPSZN/ZEDB0SpbAyiZYLttmYsJ/rPsdfOHPBsxQK81am26NoApyOzz1jg/AkgAFQxOPv+kY985OUwmIBNKShyNPu7/qlugSgAOoBydm4DNvRKPdkgB8VgjAGzAYWVixXlxPB+jNfeNbZxAY7aobKq6/YV4GdZtsbljukjAL8sw8QY3XyH1UmwC8h2tG9HAE9b+FGXYx8t4PsHf/AHlzz2x/v1ZeOsemwuTeOwumGBeVd6rw02ZQ+GvLptHl222nvuYVXaut/aZAGV+kduae9Ip9g++mMrOQa+HKTq4VnqZCws0Ltzhj5YAPjI2N0AxM5NgJJAIFvPj/2g/rbB9xz2Vv02hcQGpjb/8BGE3vltwST1NQfsfGIeWz1Uxh50Zsyy8WR3NtT3dkKowwJkQMbqEQMxyU75TiCUnppH7QbCQlxwvbJbdwASaxd2OWk+qB9iwWJSC5g6KDZpfpKSJ8BLjnvPS0fTK+Cf4NCOf/plLqKHO68DIvvdeCvgv8GKrnUwpZzs2f33eq/3ug4sWpuwg9olOyovudQCchn3WW3R37W9A7zaNQe89a7SnNBVQhc2IKDOAr21dXUWuKED5nf2dNdTG1CWHsKhqTHd7SqqP1qjYN1KSWDs7U4djPj+7jq2t/m2NjKW6AQGuDnNGqOxDBQ31wrKpavtGAJmY5arxx7kiylrjDubwBpNH0ofVVv1rgUlqgM2bz9dj+lOpwDAzkKoPVtv0bfKxXKuLtW79VHPlzMbQ/l25RgEO+WUU055IMkJ8J7yHistnAJVP+3TPu3qP/7H/3jtHPz4j//421zbojGAMcmZ79pYq7FxY3ElLULKnfujP/qjl4PYbpKP/MiPvP67cgI3Y9hWBwvBFjiBv+XMDSi4SR784AdffrdQ3cXoURasds87S1ok/X//3/939eVf/uWX/3/sx37sAszeSh7+8IdfmL3VuTbq/VsMd/8XfdEXXdJW9HkM4H6/8pWvvPrJn/zJSw6x2v9pT3vaBQR+1KMedcmFXPu/q2QdLQeitGjGWrP4dW3fAU8AAbuleMHcI6DBKd9DKBY0XAYjRqtF+TJtLPqXwaR++yxslWULqR+n0oKc47Fbdi2eOeEYNcAIZarf3qtuWx/O0pFV6R5sYM6kZyzoi3Gz+f4wsP30HstI7e/GbmMy5yCnKpCnfswRyBFdNi0gFtO1axqrPb9nYSulr/1dSocCLAFrBVcSQGUOLnYfIAGzOCcqAC5Wnrax1RsYiUkpdcMCbLF1coy73/Ny7rouAFlghJMpjUT39jdmp4N8vLvnYI5y2G0h5uQ1XnqOvIHARn1am8lTDDjrB8PGu3RP1ybYatq6NsJo0z/0x7twMunaAr/aVfAF6N6Pk8M518sYM/68t3fPttVH5WOu3R18VP/UBpx5+u5ZK8ZF4vvdUuxddnwZYwtKbJBnwW+Awzqm2gZ4aiypA1Ykndvy/KytAUouAIdJtsAqMAt73DP1Hb3bHLbsxW7DX9uV3qeXnltfYefSEfZ0Wdz0ur4quLptvmw1gS3pRNR/mfHe270+V2/jEYgIQNMG5hX6Zes6BuYGBr2TVBerZ9osWSaj4M4C5nRmg1UL9h77ePXPd9WvelbfTfOxDNvqln0F5Klfc3ufu8f9Oxa0qcDiBkoXTF6wV51dv3q7gQSf00H9ijm4122QoR+HwjkMUdnAOOB87SPIk71g/4yvZYhjgQMEl5G+DEltU3sJeAZ2ZhsDNYFZbLY5RNv1fOPLu2a3APTpJaAZ2CsA1N/SK0ixUB0C5rQlAHGD4tnu0qhUR+Vj9m9/bz7X2rA5yzpAkHuBWfMWRiobSH/VnR6kc/1f+yTLrsZIrQ7d57A0ddvdNQkwVf9LnaC8XUtaA+hT+oqJmj+S7jQH9b71hQDTzhtr82vjzbu849baVPv0DDq09RJo6BopjQSg6Bs7k1Rec7NdI4Iv1q/WrgBZwLzxkuxut76T4qV3926CnN0jkLBsZuCsOUEgvWfWdvRd4K51kXevz+jnKaeccsrdJifAe8p7lHzJl3zJJVXAraTUC//rf/2vt/m8rbekxULATSkEVlrQxNANoCxH79d//dffazltmf3d3/3d6+1VpIXJF3/xF1/SMHzmZ37m1R/90R/d4/sWLwEoSVvY7k1E/ntG+djeWdJi63//7/99qV/yn//zf76kTrg3aevyK17xiquP//iPvz7gIHnZy152WcDFkH7qU5969cmf/MmXVAyf93mfd4+FdCkt/uzP/uzS7l/5lV95AXnvDdw+SovnexNAfWKhigWAkeFgkQRTIWeFc41th5FydDQ4jxwGDjdxPfAHILu559bJB1IkHN51lDjrx3ts/1begiWcEgCcehzBV6AFtuHWZ4HnBW8xkmzVPjL09nnAWM/UhkATLF2MjmX5AGVyWPcgEu3Qu9nqFwBbP8SY6d6cVG3kEKMFpbs2MJjTXn1yTLCg6IXDsgrSfOiHfug9TpTWLws6VSesFv1JRwA5HJ9l/OQQ2Yau/zmsCSdQH2KRAYKkJKitABjSTdjSDggD+i6zV/5CKQewTDGCbMnksNU3jZl1LNUHgynB6vE8zjBWEedQ2fRvQcMFgDwb67XrA59z8vfgK3XhUC9j0f9Hu1O92wXyxje+8eqv//qvL89JFyoHs5xzrh59v6xFum679KYNWYBXvTDU9MP+vSxHwMOClhv0OQJdbI1xLbhCv7ZtgNzLlNSGru3/nHdt7DM5GBecA6JvehT9un0K6Nvrjv2V7hSkcSghwB5Q6z26DgDA5q1dNUaNB2MYM31ZjGtT+3Eg2oIqO4aXLcsGdG32JP0QTLFdW+oKrF1Bip6THgfwKc84XIBoc/ovo3cDJDufLGvUO5EFgfUhcGXZ/NW5wEdjrXYOHNqAAQBPDmFz7c6Bm/rCDxu14Jv6uWbrxxYsALzvsu8p/Y0xuWxiZQGBMT/9aGv5XKsX9mHjGmhHX+gtO2ptsUzFnX+AafQUGFp7NKZi6wPkAGdSsqi7gBwb0nVAxe7bFDqVV99h7y4Ts/fB4AawbhodbSQNT4HNQLY9gC297dp2xWHm+q62ar4q8FJ7pl/YuuYCwGN61lxOv3oH64DerfaxNT+ygx08AsDspFz4ds5Ys3keXQHgepZdXN63a4z/td99X1vIy0y/etfq05peqgu7E4wpOr/rIsET43MPMsTqZQ88c/MW7/qOPd5AEPudTQIY95MPIogs/dZRR6u3tb4+2+CO1A61XffkrwjueYfdHbS7yqSjUUfnJiAwdH3ttWO0/4HxmMm3Ssl3yimnnPKeLCfAe8pdIa9//esvOXZf+9rX3vi9SH/yFV/xFZeFR2zdDl3rgLMWFwGTMU8DEr/u677uwp6NgXqrcp71rGddyon5GiAc46L0DbGCS3nQYuX5z3/+hR3W1mXSQpfcl1y0LaIwEd4Z0oLrhS984SVVQgux//Af/sOl/m9PujZgdsFd0v0BvADD+mLBXff/3M/93AXgjYERWB4L+L7K2wPDj89qISovqAW63K0tDm2lXWYhhouFP6DEFlRMhmTZcJ65LLrjltBlw3JG3Hd0YJeld2RhrbOqrAVgl5kLNMXi4eAuQxIgdHQ6OAhALE7b1kXbLhtwGYgLhqjXsoL2XTlFPS8nTl5KzmTX2Uoqry3ntGtiPdnS3DXG1jFvMaepfsW+w1bBFlrQQx8ALNQRmOFddrso4BII4bd7uw64fQT76BzAYPty236dzq3TMtw4goC3nscpo0vq233VaUHG2iIWJVC7a9d+1Y6BP13fwTqNN05tPznsC0gD0zB3bHOmywHvgRF7eFP3VQdbNSsvO+xd9M0CzguqaCNMq00fQrerf6zr6tx79FmM0uojTy/AWltUT6wr+r5j7ch89476RH/oc2IM68sFJY42ddsV6KMM2+jZJO+MGevaBYqrT6DqAp191ry2zLfqZ6u4tjXGsOuWrdu9gZfHNDZd3zZzzMjqjHFXufV1fSB4ANxfQCM7gOG4wQE67H8/mIALEtKLYyoE+U7VB1tekCIbtTbPQVECTOlL4BTAUM7m2phOaOPuCSTC/Ke/y3xbgFKdBNv8XoD3OAYWkF77Zit87QjA2fmh92j+rf0xMOW0p8dsoP71TsvYU1/9jf3nfXa+2znUe229lbmBS8E2n62eEYCd+WxttM+Nc7Zp1xKrV2tjgdgCyjvn0NnuX7BY3l9zVfNec1Lt7HAtoDGd0LY9f4OtdnBUrsPVWnsGqFa+HUzA0NofyNb7Nj4FKTxT326woOvM0T1/0w/0t8ME0/fqUWA/eyNgkl3FWPWsxnk2pudLk2bdhfnrIEzt3BhyPoLfypPXN1u0tmDtKBu8QXRAIzuC7Uwvk+pRvTCgpcTo/pjswFMAcfXqHsxfgCsAf4OA1hR01Niwa8F4sB7AsnZoGQAfk1eg30GW9ERwvT5sXK+eY+oag1KW9bkc6dlsZAmM8URqDUEQ86Z5wlxpZ42dUz23ehY8SOcFm+mcOZc97u/q3g+yzO3IBkbvtNxf6nHKKac8sOQEeE95j5KAyQ5vSFoYlHbhcz/3cy9M1Bip3/iN33j1ohe96G3uw75zX8Bih5YBK1tMPO95z7sAxIHFLWq+93u/95JvdgHNYzlH5muHPpVntoVtbOIWIKUiCDAmG3HmZN+bYB3Z2v6vkRZosY47+KzFWIzo2u2+yJve9KZb5jeO+UbKE+zgoXu7LvDndgDe2xEgGSYN533B3XVGW0RySDhnybJabQe3mPWcBPOHE+ezBU84aAsecjI5i7vYOzqyy15yqjDHUX0XLNvnrQO8jjOGFkDIZwt2LAPOov8mIHqd5mUYLqv3CI77WWYkp3mZXd4P2AFAFPzg7ATGYV7lKJTDMAdGfQAhPRNj1/v0/ByTUojkhJablVOc8wlAwhry3Oqw22YxcJZFuKC8NqATD3vYwy7gyh5MVj3k8gYs2xKOGea7nFjsL04qp0p9gAHLRKUHDjCRM5Cj2j3tGsjGylXo3XLwjCfb1rsGY2odMvmEjSWsmwU96Sk20bLSgbabyiGpX+rjHTfLHl5H2btixqkLJqdt2oEhGJiBDg7/ccp45dQvWHer+54B0Fz25AKHxo7fdJxUF9vAAT4OEqK7DmNiG5Zl6n/2be2cZ9UG2fI9bFBKgXWs2TKMtWUrS32zgBxQY8E3fZOOAm/oQeXVnpi57KxypVOgI+weUAb7t2vtdLEtfbdXux9Ywk4aD2t3NkgHmFDOppwANnl/9xlP7mvOdbgiYIP9EezyvL5P79gCY2h3odCztVvYwN6R3m1A8GiTFvjVp5ivm66gdwl46V3lyXRYYf0RQ1SAbAMJ6Yd8rss01i/acXOv0wv9c2ST77x5ZPluEGzn5GPwxPvveNl7tLu+3vnJ2g1IDWDFBt/cqFjmxn6/tVv2XSDRmJDipnu6BmueXuoraRt2DpaKyhpFALP+ypYHysaw7bPyuQLjvbN85uZN9abzAO+Xv/zll3aoz5u3zLXNQdW3YEZlaefsaPU1PwB+e1ZgcGVWVtcI3FoHqKM+6n/5krWJIApA8BisbSyZLzegRwQ2jdn+zuayVYLfcvEKzBojcrTXZrX1ArTStyA9CET3DnsGgfddhn36V5n0zI6HBUt3J4e5uL8FC3q23N7SYPge+Fs9MIPlnWYPHYRmd8/unmAnlImJXZkBrv5WLl3FGO9/gQDvBFjvuV0rHZWdMILLSySgw6eccsopd5ucAO8p71HSghGzLwmQ/dVf/dXL4V/Pec5zrn7zN3/zwtDt7xWMBPI93/M9NzJRyy/7Mz/zM1ff9m3fdnFqY7n+9m//9o3lBHL81//6X295cFk5ZwOcAqAX4N0y7ssCxQL1pvrejlSXP/3TP70w1FqwxbgN7L2v8ta3vvWW38m1eTvXLRPwvojD7e7t/V7zmtdc/uaQ+VlG3DKnsDhsRW+xaTukxbOtahaV60QvGIz5sIDKgpxAHZ8TjuwREFqAZAHTo5O7z9k0B0dmwIKcHAmLc+VtOzl0A2C4jLx9zrEOytotuq5bgHgdK0CEnIfaffsRqKufbDl1qjswqCCLw8n+5m/+5gJk5VjkuHHosLHkEVSPvi/1SnVUr5zPHNiYqhxEuQ4LUuhf7Ui3jqAEhxUzCBhSXekOBz/B+OHkNmZvAicc8gN8WCY0Rh596r7sVqzIzala3TjiHLPdEuyZnGQAvC2YWFOcS8/HjNTv9EQbYdUu0AtU6XvOJrY9pnbAfeCzOnS9nHzYhJ6lDwAyO9Z6bqAuJlvgR4Bj79525Fi99XUgBMcdaBorbd917QtQx4nfbDjWlrYHdLdrJP1UHuZYuxwENehvAYsAGyCydwQGLhgJKD7aAqlJNt8ihv2WS7ddT48FhPpZm4gte7RV6rgsSf3NDqytYzeOdVlAfBm4gAFyZOjS2d1NUHlAG2NgWaTaZ5n7QMMjEIllXT8DI7IPXSs1CxBWm/R/c6CdCMYWUMUYX1BynynX7dqE3TWw9ucmG+1vc13X0MejvlTPAj3ps4OTGhv6L3vamMTmo1dsrNRHrqdzwJ+bgjEb0KQrN4GxG1jcnQkbxFkAGDDf94B47ahvAYk9SxBJCgp2mQ6yXz7z94KwxqO+3nQ/WInmNwCv5yzwXTunT62BBZk2h6/84fStA3zbWZa979rWtNl5NrOy92DC7tW2+kEqhOYNB8817wYYY7T3rD3wM/uUnZZLtWe2LpSWqPfNjgXiCRYBRXtGZUkBgwWrj82DzfuEvup3/RjA29wtPcoGrdaG6DspDqxRAJXHnLPYpz2rtmUv7IAAMu8ayO6l3rUyGkvGQCD8AsfsALFuSKxTzDsCuLXlpnCRdqx6CwpYG8ipLogoNQz7gpWcPtHF5oB+95z0qPmvd0kvjodG1sbY0+mJ9lSf2lleYevMygWq08/Kz/b0eXUBBJs7+7ldP+KUU0455T1BToD3lLtCfvmXf/nqUz/1Uy95X5/97GdfDjlbFqmcZEmLjbaN3Uo6zTuAN3nMYx5zD4B3yyn37C6oVlpElXs34LnFUECQA9e2jPuSdoEzcF/SOdybfOInfuL137GTbwfcTTBNbpJ1CO/tumVULRP2vkgO5X0VDgpWxm5plceT4y1HmsW7ewGeC9z57AiqcBo2n+QxHQLwV3utc76MJE7h5jnkXHDK/b3AmfZdkGRBggUALPQ5wBiXwChbcdVtQQbvcAR4FyBWLidk68Lx1f8LFtvil6PpcBsHbwA7OQuu1ba2jgbwFsgoHzTHiyOMYSXv3zJ6vVdAxW5RXGBr029w9LQNgHUZgNuvgCzX0x+scMwmAFR1lHtuAROg2gLHWOr6wjt5prZW1p6k3vdOPtdP7lm9XmDI6do9x2F20iYsWOs3Vk5i+6x6ai8AxrJ015HWBnIA2+bcNYGxnOrKzvanQzmXwBztt0BoAady7vZ+tX99GJCVM9lhQq973esu+ZEDfpPe20EvWFCAcE42RlXfZfMxt3q2E+iNPQyv9FwKgmVktcWa44vFa5s/YGnty4LytXdBL2Nm+2XBmKOO6uMF25ZNBhQVbNk8zwEq8s0eQUL9T+jyMUXFsa57H1siYOHvfnrXwCysPt/RG2PdGFvWm9QPtTGQDni34N4yaI/b+9kZ9iwAChtbbk7gViLFhfkGQA7Mr4/7vYx2dnxB72XFkk3VcBO4e+wX7OG13wuaYWfbuZC+2v1gPKfLu529d8Hwky99c4MeWci+2zQVC/RugEA7aJPjwW6rx+zwAt6At5vAb0EKtqzP9rCznZ/NTXa4LLt80zJg1fb3gsreHfhorG2gaxmPUveY+4BcUiR4x/oi/WsuVIaxBkjVTs4ISN82vYwdI5Vff+j76l9ZAXjpgDksfXaoYN8JuDYuu7489vLH9swCdAXtK7u5u/croNX31u7aRdDO51indvNYr3RNNr3vaoM+CzwtgCb3LP1cFqjdXspoXqkcay9jQlBL37PDQFuBYnpCH9y/h6V1HTDeOOu72thYcO/mgTcuPEtwVZC4a6RgcFBZ/1snYBvnk9SOgO2eaVeBYETtlE1n2+zQMD9W93Sg+TGgux16EUjYBOmyzN+VJVApxUVSPbtmWesCpc7GMAYBvhu0uV25lS28E3J/qccpp5zywJIT4D3lrpHYuwG8LZA+6ZM+6R6pBzYHrpxht5K99pjfab/bv+9LOQDeFiyYBW+PlWor33153tuTDjj7gA/4gMti7Pu+7/suOYjbcveeKEDYBTstkH3PecSus4jl+AOCFmDb7aXL+LkpBYLP/SxwvEyrPZRmHU6HqABL3bdl+XwZbpsGgaNwdGgxVtahw5bkyC/LalmJyt4tot6XgwlI0U7LjNv246Rz1NTdYT+AlRb+QBjtJCeq95NHMOZQhyXm4AWmOfijsdZnyxjqYC0gg2CA7ZiNOw6h7aScD4GBBRmXOddzsIOlLcA64pxwzHLE5O202M8Jsq0bgylbkHODObrXV25lylsITFjmEP2vjA6p4czacllaigW+BEDo6G7zrz1ybjHggcJHJheWFycS+BAQZ0wZm5WVI04nfe49VicqpzrID+wwFmOptrX9fU9X5/jSRdurl23lgJ4AiACSv//7v7+k/enaDpqkc/IEqy89Miak7gDYr/4LOB0BzAWiFvyrHIHBIzuWABOMZ+XYurzAE93abf3LsCQbGDI21xbZpr9BkmVQqz8GLfuS1A/phjrafltZgQXGoOfvu/eZLb6Y9rZIe0/btDcwsakrdm4A1KmXPsQcB8hg+7Pza2O95+rzplhIPx1SRocW2AMgNq6yVX3u8Ef6LQilLwT+9OOmNDDPLfPes5bdvFvAl2GsDYD6tpnriwXH3/KWt1wDvHKUmjf6HxPeQUqAqGXOVq686AJmUqQseHvU1537Fix37QbVzKkLDuuvteu1OVuS3bWLgu0w768NFdzdce059N98Rh9tfxd4dugVkBHwTg/VVaoDtn/1WzCme2t7gDVgN/1rDVjbsk3ynu5OD2l72Df91f+Be+1q8L71L/3WJ9W/NevmmmdnjQfBc+kBuq/gHf2sPMxYDM5EYAxAKRWIOmBC11aVW7vXj80ZgNSuF3gQcO5v8xkGvnYFWC5r1rpo14w9f4Mi2mPtrd0a8uwLLKz+CgrYFZAYhw5pFEzr3tY+u94Crsa8rX+lntB2vZt1Q/5JNjcRnPOOdEfefAFiQdTujSneM/s7pnY65vnWCFI4JdWJfRbUkascOGy9AFA3dgUyBWVPOeWUU+5GOQHeU+4aaasQsfgkOembR+veZL/ffF1JW75vuu52y2m79xOe8IQL4ApsvEnaLk7+7u/+7upfI6Wf+Jqv+Zqrl770pRdgJNAiIPzP//zPr94ThQNlwcsx5yhxdoEtnI3dkr6AxAIrAFmAAifbdZzJBX6Xuem6fdY6moSDwVG1wFXuHhq1AOuWuUxPz+eMAi3WEQHuaiP3L6hwdLi1HyeNY7uAs7ZcEBuoDIDc/gB2AGQAWJvWBLOl63NgOMwxH+X35HTtVmmARg5dTJaAyBwc+XU5lhycnpkDsrmSAdsLvHi/ygfwco6BdOtcYq3sNlRAGX3SH0BeDEAOrOfSXwCvfJ/LxOzvnCsABoYi9p7+xWhSNgGYcf6OQYubdEkKCmPAeNk2XOd3gzPHcWGcxYStLYCEthFjTgEodlxgEWH7bV13+2s6U/DNIWsBC7F4e1bASLknAwoW7KEXggTaA1NcOwpmYCwCKm8CMb0v0ByQcBzXdIGTnu5ixzZ+FkzvuvrjIz/yI++RysPW12PKoLWB7MwCZgIuC0pr32Xvc8bXRlaPPq/exuLaboxuOlo77eF8AGCAV+O/cQwwo1t034/2MjYTqQkACemt/I+Vq13YzWOgbYMpylxArDpVd6y1zW+qvZLeMX2rDj034Kz3D6gDHEnZwV5sUGqDchuQ87wFRHfO2vnJdTtHYc7dFHwA/MpDS6+BdkDfmJQAnKTr2WR2RR+ZlzbgoO+Wxez9jkGJm4Bg41vd1raZF7AwtZfrPWuBa8x1O0GMYddjF7JJPtv5uu8AmOYDdZW6AYilvwVnqk+23BwBMKMnBQn6XbuzMbW3rfUCYIJuxBiOeVtZgiK9b2O0HPWxcY1DY1X6huon8NPfDho0Fnwu5273Z29bv1fXbKuAhl1ElS2YI7AEVHfYZc+WIxrA2XPtehAQMp+ag+hZsjbIOmfXbeY+YK71ib7qt4PO6JEydn6onoBXddV/dNLOsh2fDqHEurYebHwB7GvX3hsTXLnWMrVdIHrX213AB9l11tpdOxHSkz4TRCiY3nzZXJkdNydLxaHNlp0vX29SX6t7/d+8rq17JnC35woKsa/YyHvw9SmnnHLK3SInwHvKXSOxv8iRodsi4ZWvfOXVE5/4xIvT2AJnc3ittEX3VmkB2vpNAobuTe6tnNi0Abwt1low/8Vf/MWNZVRf8opXvOLqXysByx/3cR939cd//MeXBdnv/d7vXVI3vOpVr7p6TxOL7iODghMGWLQ1z5ZzjI0EMxEYtmAXZgOH8ggEE2ACRpA8oBbQR6BUWdghnJAFDxa44hhzIJfZtA65/LaANEyWZTAf2cbrcHq2U58BCeq7QMcC0MsK4ShKuQCE23f2syCIuiywwBFNON6BIrHjgYABc05+7scWSfX3w/Hcg+aOQKR7tM8CNUcw5Hg4zDomC2QeDxjZNtBH+5z9W516b0yZ1dUEA06KCvdnH510rQ8xg9W1nxzYrqV/gFM5fwEXtowCeRZg49ztAYUbONH/cu9tfsHVjU21Ud/meDqR3hbPRP041IAs9aejC5DRcyyznE0HE7W1ns4XZMtupmeANeNzGXZOFy+wiIXnO9cZu9vX+84JsHIPsOP8ChRoQ+229dnx7JA9bSjX9DI1j8EuY61xFPDoecbBBsy8E3bqAmvqtoBrv2vfUqIkAVJ7sjwbHEAN8DwyVR30VvkOgmter6wFRxYMXD1dG+s3PRHs2eCE+QRLfNnZq8vG6AKtUvR0jTyagLDajJ1Ib+QU7/2qj90EtmKzHeYTAA426Qbg1raufVnbtgDpzpd0VLs7GGznuf4HOqqncSyfvVysDvpii9Qfa/XIhjYeNzipvX2+h4XtPLw2ft9/A5BruxNBsdVn3ytH4Gpzn9Odoy4sQ1W7Y7Fimm7ahZ3D5TfXDuyHMSt3KX3GflZOACJWqjGXPgWm9p0DZRvXC3L2bCCt9+99G3/ZjNa9zTd2ntSnC6bX5ztX9HxnZ/Rs9U3nWxcLoDb/VN9A3soL/MvO10793TOxv+3EqQ36u3fpO/bYM4CbtU1g4DGQZg2B3SxICNylW91jjBp/zRHLtl1dZT82oEXfapPep+8dCslObZDAOF7WcwKYtx4136+NYB82VUTfSRvDvnjH2r75TioHY1N7Vo61snHi4D0BiupSm9RfH/iBH3g95wqYO9hYcEF6EbbLOJB31zu0nkNq2JRa2vodOZvkuEa/k3J/qccpp5zywJIT4D3lrpEODSN/9Vd/9Tbf//qv//o1YPqUpzzl6ud//udvLOczP/Mzr/8+pjDI0S0v4yMf+cirJz3pSZfFiIMpVlpsdUAb5mxR7pUXvvCFV9/5nd95+fvLvuzLbgR4W8R88Rd/8eXvFrAxb98ZUs7J6hbIm1P8+7//+1cf//Eff31A2XuCLEC64M6yKYGe8pEeAVdAyG43JsuyAYosi3GZR8tOTHYBfRObGEvuCL7YGnjMibqA9bJjl920W/4AX4CYBapb4C/TDYjjGtsXF3BWxwV7gWXrbG9aC9cALDgr8r9x0hZU5gy41/ZEz+yn92prfU5B20NzDBwsYyu/NgzsdWiV7akcvt4ZM61nKcdzkr4DSAkSeLdNueH9sgm23Xq/6lWbSwVBhzZFyBGI8gxOT+XK/aruDp/L7iyo4Z2yJ/IZAsAc1JNDjsWYAw6k1BcOzTmCMQv8EM/lLGK+AWbpLz2VMoF+cUC9r7ILnnnP+rpUG5Ur/QUmOdBI2wBPlH98xjKS6Sr2bM+onWu3ygt8OAI7G5iQDoIji9m4KR2wm4AwCzxXZkCMQ+zkhXZQT+8OwJKuBOApMLU5FrWhd8uJPuYX75ruESAAePbMnPfNoQqQP7YbW7K2VzvqHzbLSe8bOOlvzE6nurse0L5btYEuxlj9k25JDbKBlmWUsTmN3e5bwNzvxrxD/moDqRoAGgvWL2BP+rs+rP6BW2ystm181o/1RWw4zOQ+w/brPWxPXwBJP2LC6mP6uu9snJurzI/aDTB83JV0DFQuaL8AbO+H4bvvv2AovYplbofV5uHc1BhSxWwQbgOa5pqbWMc7R/h+2dXa7TjG2YcFx9d2Clh6vnQkR0DYMzwTQKfvBTuNJW2E8d+1jfn+XlBtA7lJ9t36A9gmp6u+2bGmzOxlY9l7sCu7RsLqTf8d+ldahv6WPsVcBeisfGNE8Lw6BgA7PE2KjgDFngPglBKoZ8obK1jTO3X95scVaOh/YG/P7XPMVbti+qyyN3UFkFYZbGb3HNnhxo052Y4gOsMW7lkBPbPf0pasLrq3Om0Q2dj0d23N3tBLbcCuJ1jJntv9fJId59nF+qh7pWwQjPTe1pjZnMqTz7hn0mNtt4e/eu/qWLmerz+sPZwfIC1GLPHWEq3Vuk5aFjuj9jwPYHF6hQlszJ1yyimn3G1yArynPODlS77kS66e97zn3SO341G+8Ru/8erJT37y5e9y3d6UW/YXfuEXrr7ru77r4ph///d//+WQsdgCK7Fqv+iLvugaJL6JNftDP/RDV7/2a792Wbz8+I//+NWXf/mXv801P/ZjP3ZZJCU/+7M/+zbfB6bGBu55X/EVX3H1nOc8521YtN/yLd9yOXQiedaznvU2aR7+NfKmN73pAvJ2EFwLrBe/+MWX/8ul9Z4gGI2AAiDIMuY4bBx7C35O04JsyZGpe/zsJmDL37sNF7in/AUwLMa3DJ8tA5QjwHFYhpN321yRcj1igWAGygm4wPSypI7ggHfVRhxZdTuymCz6lakey2jlTHG+jtvQlXl09Je9wSlWl94v5p+8nNjCgEusYPmwl9WbONjD4Vpy8AIqse/oTU6Jg+E2j+E65dt++gYA5j0WWFjQSFAAoLNgvxQBQMvESeR0G0igDqt7yg6I6lm9N0fQ6dp0QbsvC/AIDGz/Yx4t4I9NSreAiw5vWqYcx9D7Kgcopp3qa8/pczlMsVbVN4BW29N3QQLbXzmYfdf1WGPy/QJu6RWAqN/VQ/v2f3NNbVnQAYjBoW43RWBJz8zR5fRuG3YYaOVIc1EbSL0A4OlaAOXOkb0DprOAAzBjU6EsE5ftWNsjmOJv49OYpXN0ZAFfY3uBDNdp3+qY1M5rd/RP7W4LeTq6LPZl4/X+6Ss2/jHAZTtz12KvB5zWF9oI2KV+AFdM3srItgjILJh3DLgZE4A19a/vHOhXH2JzZj82DUJlCgb0P3YdMGcDbsBCzDypGrBngXHG7s4l5sHVvSMD+BjcXP1o/VDakrZpL8OUrpj/BN86iKm+pqvA37WndGy3w7M/9Am4tnPe9smCvzvP7Oc+088L2Lv2CAyv/TafbjD2OC+qi7Hb/1IHCNhgLjrATOqetVXaBxtVQEPagoIF+/xjvdmQ5rvubwwIcrhn25SupJvZJ6CqA03lY6Z31hWbcmfb3vqrZ/euPcuhmnYn7E6Q7GOfFxjxvTI8Y5nR5gppkNi83tv8bZ0DQDRWjVtj0Ny1AXz/CxT7zLxj3eYgtt5B3l52tn7GOsZct4tHmQLfC2AaBxs4EJCtztvmveumcWEbks2F2/3WPumOFAjWJXRodx1ot9pIsNA7sMHW3Y11757d884CmdpJ3mYphrq2d07nepd0pOf2d89MH/aAZH7WKaeccsrdJCfAe8oDXjoQ7JnPfOaFgVtqg7Z05uy0yCgX2Bd8wRdcPf7xj79c22Ljq7/6q+8BwpEWW0972tMuh6+VziGQ9RnPeMblsLEWL+Wj/eZv/ubLIqdF0dd+7dfeWJ/nP//5l/y1Acqxb1uI/MzP/MzFuW9RU55bYHNs32c/+9k3lvMN3/ANFwC5xVYA69Of/vQLS7fFy1Of+tRLOUkHmPT+72x5wxvecGHuBiIUda8OpW/o8we6OJii9zqeMGwLHhCgay0ydwseHVoAK1mHwP8WrUfHcZ2lBQM4lZ61z3a/z4Ce6+T6/qYUARwAefnkUEvWmbBABxAACTd35ILGwMh91wXKPPsIyi4Y5P3W8Zb3DvDq3gXW5YjVfpwrdVmWMeCg+5xIDTDYrY7KWDal91+A2T30RbtyFJd9uMCHz7EQj8CHd7SNdb/vfR1w0zUYO0C8dcAT+X6XBYoZugemYQZhXnpXuUy7R9DL5zFXF1TnRC9gsjq/LLMjiG0sOdV8cxoD7gL8AAIOsHNKfPVx6CRGUdcGLsn/V7vZIprQPSxw71Jd5GzdA+JyMOVprvzse3NO9h1zszqW57k6vfa1r73YaA45lllt73ogCABOW+VgY+kd05UsO8p45EC3C0P+Rgyu2HY7Fpc1TS/0d88E7ggeAffXhqmnMbP9vPrKHqm7co11AAibquz6LF1Qhi3B1ZPdpksLvibG1AZR9LPgxgKaG7RLfx1UtafWY2ZuWoYNzhgjPVf6hCMDfYN2lQHg3YMXA3mN/8qRbgRjD3DnwKHq2d/AJwBfssz0nQN2/jj2zzI2N/WHOcbP9jnxOVsscNJYqi5s2QYM+6yf3qtdUO0KaKu/dlI/h9CRBVq1v7QG9Hzny52jfe89dz7edtKGN82vO2fTX98LetDXtYfqKZesOcg7ahs6DnDboOUCyEB7gKv1r1Q06of1bRcE4E1+2P6WnkS5xg97X/tvEBGI2HOzrQU95bPdd7Kuqqzs2gaPs6kODMbi9y5y5ybSXRR4KUgneOUd1NU6zvjrcwFc86T5XroJjFCgLRsizYaAr3kI01Q6nAXrj7ma175qD/OPPrD+kdqD3aj8wEtzAFu3ts+BZdKeYLEGiOprASugLN3BNK5f6bwc4+pu55Z5Cku5/x18Sv9rEzbUulrQiZ0q6COQoQ+sAzCsV9etLQDZu8trxx97RVero3n3dsT8c3+Q+0s9TjnllAeWnADvKe8RkvMacNvPraRtPrFpY6XeSmLeFgGOYdvC5SbwtYXLF37hF97r4WOf93mfdwGcy18bMNzPUUq78Omf/um3ZB4HpFbOL//yL18WX4HNRwk4CCw+5hR+Z0kAdO/wh3/4h5dFWWDvx37sx14Yvg9kwbawCAfOcQywsjhxu20S6wAIkhxBzQVRFgD2PEBDsqxTC1bOB8GuWdYbwGFB0n02gGABnAXM5E2zFU9ZCacT+8OiekGNrSfHBeslAcRqQ3XhhHFqMTA4BK7hlGk3jpqygNOcZSeJA2q0hzLkEgTc5jD3f45i9W4sAQqBDtmC93qv97quS2UHcDrJPYelQFD3BEpwKnLIMC4rc/XDoSEYWvq5Z6weVkb3YjHRl3XK1VU5MW0c8OX9u6bPsRzpD9CocjjDfed9AdEYOtVNvl39n93Vvvra+2zOyA1obL5VIIbckAk9UtcF8gFsXVOfO7gHY5Ij2bUOz+l3/bjBBWUbJzv+jg4VkAVw0HPrP4Biz6v8AN6uqb+yj7VL4C9gUltiVvpZsJWjGsAX6FFZTpnfuh0B1GWIJgtsAFGqy4J0dMnhgOxi7wYk38PXjtvF166sLCvQPQsiLgvXOyzgtjZ67eHaSmMAm5GOaE8BEuPE9uTAp2xaY8QhU4BWAlivzbue3QRiLPsWIMOmL5irXuYZZRgn2gBYYkwKvkkR5H/A0eaqznY7jEk+yuoM8D8C3AtOGUvHAOG2+QbigHr64Sagd3WU7tWOsaxj8WaHgMp2NGgb46PgSLmse6/uSx+Bup67dsC97MwRzN5xATj0s+Popp0V2mZZrMrTL0ebQecWXPb96rzA3k1BTfa+9w0cB4YKMG6qiGXmm9M3OEgP9fWCyQLJG9ja1DoY7f00XwqobQqbrpcKha3EKjXHOChUCovK7v8CY71fz5fjtu/Tkz7XBoICQOPSlcjfzN7bPZFsioLNz9r3mK52oZjbBbTYDZ+zD7sOMs4dXtj7Y/m719yi/YHIexjYro82MC1I2v+CIvTauF47KlBoPPWddUifL7hOz9TVmrQxJsVB92DUtm7acUGPHPxXXzW3SAWjjV1njrRLIZGaI1tVPbGw64P8tP6v/4HT9Lf1lpz61VU+csFZaYeyi95z55RTTjnllLtFToD3lAe8BEAGcj7ucY+7+oAP+ICLgxDw0OKgCHZA6e/8zu9cwNv7knD/p3/6p69e9rKXXX3913/9hcEa0NvCqNQO5aMt7cIxZ+5RWnwG6gbQlkLiEY94xKVOLbiqTyzh5z73uTcyiVeqd45RbN7eMae0BU55e2MKB0C/I4cI3I4EYNXGMXh7ByBvLLEHqmCfYOdx+Dgv8gYmy2xatu1ubVt27m7b44xazC9A49qu2UOlNm0BR2C3tq4D7V4AnHolQI4FJjistsRynBx0obzdWrrMjQWufcbhBDgu4wcgjJWizstsO+a74xCpvzZZFq1+4TDuKfbAc843xv0C1P1U3xyBHJschZzNdZykbcBaVPYCCHI0A5lzbhze4qCkPXyKjqmD91hmreuAfRz4zYXZdViymJ+7VXfbTpstKM/xcoq59AbLylaGz+VP7F2xRoHzC+J7Jzrku54jXyO9cg1w0/iiU9seGEzLBOeQAl+NBaxqzmHAV8B199Zub33rWy9lZE+BR+sQAui6JoezvxsrDvXB5Oqe3qkysu0Yvm9+85uv/uZv/ubqIQ95yOX7AAmAfjqDGVqZtW3g8IIu1dnp38CITWOw7MhNibDtteB10jy2DGGMrvIoL+BYfXt29V1Qj14AfY/pM97nfd7nWo+S2oR+up/dAYIsGNIYxNb3bk5c9y50orqxE0AqB/usAEkxantGAZr6CnDjtPgd4/JvL1BM5707kFmAQlsAY8whbLCxu2P4uNUZgFXeUuOjdzL+uifd0RfVVQ7PxkLPljubDtO7nfuMM/Xye/VaGfpO+2//sC/LCib7zO5t7YAJmfzzP//zNUtwc5U2VrDhsTjlkxZA3BRGWJlAbOxd4+iYUmIDBssYV8/j/HoE0/wPXGTLvMcRHFcOO6e9AdrmZPUxn3SdMWHO3TrSPeO59mo8ayegnzFi7O97A3fZlwXu2TngbqBbugYIrW7WS+lkemr8pINyuTY2MCnZ9b7LribNmeVMb8xli1pba0MHb/Xcxmzr+Z0bqq+0Fo2PrhFkbQw5cK36SWsheNhn/QQ2sgPAW/Op9jbW2IaksqU8EGCRFslcCHykn1LwCBJi/rIJ5ml2R6oDuwE2vQTAtGvri/qeLajsxpe8w1KebNoMh+RVTs/ofp8Biqtr7YjFrz16ZvOcZ1WvdGgDanvIXPWr3psDunoJdtem7W4ssMN21NfGafcGBleO+T4AeAN05kzjY9nxp5xyyil3m5wA7ykPeMlZ7+e//bf/9k4rs/xeAbz/WvnVX/3Vy8+/RnJ2yrfbz7tCOhzj7UlpKm6Vy+q+3J+s83craSv1fbnuXysW8RwkrEGOhcU4thqAdEGFdbTWgVxgk0O4IJjfy65bllAL/d3ybNFvsXtksmIV9/ee2L3pHJYdzKFYVks/gIa9dx0pC3PAIEBZ/TlJwN3kyCzcVAgW58ARDpO288xlFa+Trq2Brth7wNLdbrhgGKYLICvAx3ZWABF9WAaPPgFScG5yNHJAcpB6Vv9XF86m93RP4yjnaLfrqvM6Ud4bEE8/Objad7ejyn8H4MTe0Q8L/ALF9Kf7N2ihPx2G0jv1no3Tyqr9AsnrgxjMfZ4z+cEf/MH3CF5VpwDG2pojC7jrGeVs9C7ejT4ueNnzazvfL0hY3YEO9Eub2gZcoK0cn71Lz++9qtuyThNMSToP1LS1H+DL2cXOcnhbn8U+pHsO27Mdv+8BgX2eM7rM0KMNpOfLBjR+2ZZlMMrx6F7XA5U8Y9mArmVLamv9jckfyLPgPV2NwRUwtwxXtkU/0OVEO+mfYzBAAE7eUYEk4wVTb3UVE3ZlGdJsSqB+aQBqHykN2BAAN9BQcMh7akNzxtpH9wNr6RDQdgOG8q2yt5iQPk+PlQN0wYzD5l1G3X6/h0epO0BxwccNjGlz85X3Bexi7G0gakHeI7irTO8L3Pe82jvAV6DNeGguqP7yaBoXDtJiu7Qb0P04P+obQb7d0cC+rH1w/XH+M772HY9j1JjzbvsZ3Tu2afUCYO86AQM2Pci2As0WeNR+5n66Y/dJ8wsGsbYwp+5uMQEK9a4+yqCTgpi1vbWJOQT7tXrSCcFyATvvD/gUhKHbzR3pQeNcEAMwmg70u++3PbaOAGUHvqXz2fkIEOruPbDkgdo9c9NB7GF37KC5S7/JDSwdUO+yqQz0Tf0r7VH3sZ/6XNuv3vaMbK3nOXTS2BHgsV6il4n3qP61T6A1Bq5cvtrVeGGL6bV2SmprfeIaTGr2wOGv3dO8HgArGCAQg4UsKAWclhJCGzjc1jvYsaJetZ9UQ3I9C4DaISXnsLKMfeck3I7sPHun5f5Sj1NOOeWBJSfAe8opp9x1ArDDqFm2jvyaGEXAICwjzsoxFxjna8HJZdxhYK5Tt04xFs2yxhIL33XCFziWN26BCt8tCL2Le4xWbFPgMNYGAGaZYsCM/seIsYA/MvLWgdYegLIFcLGZEqy33X7KgQDucjy7P4duWUwAQ05s7SkfLicKu9c2dCyh2CILnCWetYdm9VlOac5ndXcgEvbMHh6Sk5UA+pZtbLsqNpE2SfbwFO3g4DbtzxF2SAuAHOMLcNE9bYXMGToymPu7/sOowsoGqFQmcEnfYBNj1AE8ba203X8B3By5cqEDCDiaAIt1LLfd6RU9AqotSMHx9r00Er0PJpuxXjkO2ZKnb4MvWKE7vo7sRb8BU/IVbyCocnI2cyz7v/4H5HYtAKa+Mr7povc5Bon6iYW8LN7KpHObBiN9aCcLRhrbxPFd4K37yqG8dgjTL92Qs7HPMP0CUIzBZW4v4LXg7dqsvWaDP9vWQI89nMh9mFobCHK/ft1gm/yZytTmmHvv/d7vfY9xsEGFTTXCTrD9Ryar7fCbVqJ+oFNsBzAOWAEs1kabR5L9Yzs877gzg33MJgEC7RoAtEhhYm5YwHl3a/hO3xqHR3BT+x7BhyPIqy08l1ROAQF2qf8Difrp78YOVmHXNG43d+cGZ+vT47zD1mM/szHGyerfjrut/46po/6qA7CKru64uEmv2Rvsyx0nm3JA2gKAtuAn/cGitabYg9jYtn3H7sPCdBgfvVa/no+VKchjFwvAWJqRyoqhuYePCopKKQCQtI7Szuw4wB5oK7jSM/tMABIz19xWPesbzODsqf6orgUaMT7NBVjswHVMT/PbBt93LLKt2kPAWM5ots941ad2Z3St+bnn9DxBXml+NvDOxmGtV7bD7jBstfemm9ogT/O9YI9UBht0V58NHLBrgiEOE+1/75nNxJau7a0RBLzTnb5vXAswGyPpirUznaiMf/mXf7n8bnekuWttY2W3xuqZUoYVTGRbu7fnsvE9p771jgDpU0455ZS7TU6A95RTTrnrBGjQohmY4MApC2WL191am6yzfmTmYAotW2sd5GWDcSiw04AFR0YP53zz2yqD07BsMWCg64+OL4D3uH14mRzAINcBTgAAHCZMkN57mcSJ7aEW6kAY93C0lz3FCdx0EDkWHCt1BpipwzI2b2KqLQDTuznQp/8rv62htnsuY3uBN8DXphDgkPZ+TpyOce8EaP3MkfK+2mMdbM9YAG+ZlZwlfZkzv8A1sATrTX8te9mzyDEX7AKLwGj9A/yv7QIgMEXVO8C97+VpdD1mq0PRgFW2k+a8V573TLwbhp769zzOnGCA3HwAAvqCrYlBa4ylR5XRZwFKgfuc5ZzFyhX4sHW/73LKAwRzIqX2qLycTEB2h7d5Z45m9ZG/MmZZDjDGkXGizTEZNyAjhzI7sKxMLDL9usEkY9chkQEfazuqoxzKqxd91zvKl0p/2Th2RF+xJ2zIBrcWGCT1d+XvmOhdOetr4wJpMLaw3wAE9BPoxC71uzYGILHbwNbKqv9i8XYQXuUGIALG2E4AH7ad+UBbsLm9H7urnuwcUNgcAvSqrPRiU6csKOhwqQ3sea5t12wVprbP7DwIGMFqU58Eg9Lcpc+WHbp5cRfUVneyDMSjLBi68+baHm3bO2WDKztQyvipzxqfwMfGa++ZvQA81pcCeebePRTN3+q7KQvoku82qARQPQZjl3W9gYYF6raNjvdh1hLzvLrSmV1nCKYtm3j7VJ8BRo39BdUXjGNL3NPz0pe+E7Si25iW5j1Bxc3b3o8g6KZEUj+pCQB30vV4D/bKwZrL3mZDmlfll27sZEOac83TAMACNw55kyt/bafUAMedUHRg039suizvIx2FdYLgN33rGqkEalvzkf6qnTetGntdGViz/Z1eGzcOI9s0Dn1e+d3jPIjaxAFuvadA6wbWVvcEtjYvvn6qPClipOvoeQK83dP/2N3SSGVL0xk20fjumvq1OUcwA7BfWQWI2+Vjp6C1Ru/UeMdOl3IjsdboMwQMQTxBylvZp1NOOeWU92Q5Ad5TTjnlrpMWrfLVLUMQA8UpxS1El2lmYQ0045xzwm2pW0dxD4/i3HEeAGjux3LgVGBsrKOWLCDLaVvm6wIznp1gfmI2WZS3GAf02Rq478w50U4LLGybAch3Ky+G2zrJyzQGGnlH93M+sUexlhaoA7x7Bul6eTYTLBXvBOzkNOWkBCDYXpijqD7ypKpjTsnmfZSrlFPT39piwQV9lgD31L1nlt81xyVHtmc6KMQJ6kk6a/tlLE1OTO/a75w6zq7gwUMf+tBrIBqAy+HVVuXrk0fwQQ960DUAj2m2J3jnQJWWpe9z1ujdk570pGsQoHzGvbcTvXPScs5z1IAiHFu5OXdLce0Wu+fIqt2DcTji/R9repmCWO2Ax3W+66fAS0Ac0KFc5w6LsQ3W+1ZWfVDf1AecSIB6ZQdEBQDXj8Dh/g5krl/LyVs7lKuWni9YunbG+FgAAYi0W76NR+C8srx74vDCY67xI/N+gw3qQmcB6eqx7EDt69ns3DL3V2q/WGb7ubzE8scq20FBAhoLRgNTAS3Yftj9rluAMQEiYTUHBi9YtqBSzwxE2qDVtoPxsyCtYAl7ZR5YsNEYZKOBH/qTbQW+GGOAp+oErNLXGxz09+YcBSICyHY7OmB0A43sk/lsx9HOP+aInacW3F12IjFWtXflNXYa8+a0xmnfNW6M0+w0lmJ9nx3CiNV2gh7p0gYapLfQhwv6bkCQzdict2SZwgv+7ftql20LegDs3znf2DOPG+87Pu2y2WCXAEc2JalP6Yf+3AO2skUB5No9+5QdawzYsbPgpnHpwDIsza6VF1igV8Bs50R9vG1aXTCu6x/zjLJe//rXX/q4cdc8F1i4awgBRcx2dVOvfrq2+zFQN2BaG2Tj+1u7qZu5WP03fY0x0fMceGuNsIEZh8WxARt86+9smfEq6Gwe7EfQQ4BU+gmBOn0uGCXdTnXHzDZv0Bv3eaYxrM+ylaVWAuhu7nFB2Q3ma7tlLQtMV0Y6Zp3p/ay/1kY6HLJrHPDWu9Y/1iJ91tzeWoc9y0YgHVT38vZaJ3hPaWq0xe3KjvM7LfeXepxyyikPLDkB3lNOOeWuEwtBDgpnirPe4rKFOgbIOnsWXOvAJBbBC8BwTmzD5UQA/xIgzm73ldcTG8NiWrmbs9Jz5E/dsjiy2G2ADKw3zIplhtouiuHKaQMQYVwAfjg7xAElC+YCRDetxXH76m4b3K20Fu9yya3ThhmK9ciRWLAMSKnOmypD/+Qcv9/7vd8F6JRSQb2xdZY9vIB6OuLkcg4NQMI2YznyvC8dIJxK+U5zgqWg8H7VJ6cXONl7SZHQ55UhH/bqq/cHJOmf3Xqc48n5B5osaAjk4GADUzYfLaffO+rjBTyO2+qBRZ61gOMGGLauyxCVEoFzuttAFxzZ1AqxtwLIAGyYQrZ/pvfaHjtTqpbXvva11yxO6QuWSV7f5JByhAMxjF8Mxb3e+9FzugEgwPhc8G4BN3ZkGdpr4/TbAlhslTEK4FggdJ+zdmYBy73umEN30xLcdMjN8f2TAgAFNY6pA3Lg9/lrh9XHzwJuWz7G8jIoCzZIQxHYICes98Dkrn277gh+7HvsFue1Yw48NP4WuAaM9Tt92bQ37Ljt60Dl3S6uzAAYeUk3lY0xKqC3QR2M820vqRyUAQiiKwswasdjOx+Dkcpee7xjeOevPhOoqS2AvNmcv/zLv7y2oaWi6HdjuEBS7569lLe4dwVYbh23HYBNAqw7FujHMeiBCbrA2urTtuW2mesWSDQfmRcxdHf3yvZhzzXvbHoGelA72REBxDPH93dzmuvtRpBaZoPSfSa9gt0H2ij7148+SzDd08FNU+E9vbP8zRiXdGhZ1P089rGPvc4HH5BnbsZWbawmdhQ1ZgGD7K33YjOb27o225LtNx7Z3GXJby7lZSQLlCzLHUvefIhBCsgGiCurMrqeTiYCt8Dozbkv/z1gtTL7keO/gCK7I6Bp7dPzuueYCkowR0Clg0elRMCmTRzIVjm1m2Bo9dWeG1w0rwHuta3DRHee6T6H9S1rvGdI5dAYD4wXcLejoTmi69uNQhfZSXmPu4e+Spl1yimnnHK3yQnwnnLKKXelcEAWoFhHXY5LDvaCCMlul9zfNzm+AMtljhKg5AJnfW9RnvOiTsDXfc4ysTiPQB+Op4U+BxQzmVMD5O1dpS2w1RMAoW6ANKw7nytvt2n6mxOFnQLU9s7Ag2Ued28Le6AilhvHB2CyLEHMJfX0bnvietfbuiznIdZPzlMgXcKpoitd43o6szkIAeybC9j/W0bl+m5ZWrV9z/b/Ma+p7dk5jQGRAPtli7tuQXtttNtQiZQVnO/eyeEwdExbdM0elqKs1Xf3YR3veMHyXgBK2bbfG1PVC7tMOwCwOPfGBD0BLNAnDCU6SBewazH02xYKtA0wCujf8W2r7Ka4oDurbznMOZU5n9mNJEAhJzbmb33m4KAFwI9tLZjgnY/tvEA43V5A1vtqIzZBoAYIoW8WyPc/AWwAqY0p5ff7/d///a9Pht96AjoWsFqWHJuRuGZz2Pp7g1TqWP/528FqC/BWrv5RvrYCXNTfgRWxw2LxYsDpU+zzQKT0fhlo2nbfeVOHaHc2XK7WysVaE5ww92Tnux/oA5ipboE52zfAfyzB6rgsv9o2vS6ocGRQ78Gie7giWTu+urZBy9UV3wnCrA7Q57U5x3lUECVmO5Bo9TMGfOW98pWvvAbzerc+b1t3aU8aW/oZe3DzDy/4jaVqThSU24CUOu/Baey6uXyBcbJBEQDr2mDBXs9Tp2yEfKvazBxpPWD+so2+awO5GwvYznTKeMEyDRiVSgjLFainP4Dk2rG50LhsjFXGzkeAu2OQztwo57zrBH2WFb4BVzuIBG0bc9neTcdUn1UX80NzIWZv7+PAz3REaglj06FcPbtn1jbmT4GNfuSXt8bRd5siSduZmzbIZq7d4NzalQWs9xBWuxTU33hqfAPZ2V9BIGm0rAkF+itXah4pg+zKohuNmw5Dzba0a6fr6uPGFOYxfWVneu9NM5MYbzvurV93NwBWtNzC9YfzC6zpelbBajagzwHMdnI1l3adgFzXBvzWNtW9ays722eeOOWUU0652+QEeE/5V0sT+aMe9ajLJNsi4IUvfOE1KHXKKfdH2S2Jy0hJbGsDQBxZp8C3zeG2gK1F7pFtlmwKA8wcC2MgmrIxB5NliNi6tsANJow67pa9ZbQta8h16gZA7FpslWXXqPdxy65rltWB8as9tTWnALsEY5jzAiBZEE39gSILQG1bdr0tuJhxXY+5BtRZEFnOSow6DJEcZ8zXHBjgrfpvHrpE/TmLwOgcrZw2W2wB1nvfsroDADlgGDXyKnLoOKDq52CSyuyeQCtpIjjYD3nIQ+4BwOofYH7gJAfQFnH6oV93e7wxYwvwAuX6BxDCse2aHHIHy9A56UK2TMCMd9X2CyQtKBlAot0JBrr23O2r9GrB29qtfvc+OZ713cd+7Mdes4TZAeDr6oPDzbDO6Grf5bRWxyc+8YnXwM+CZt4PgLPjAnAAvOMIL/PQdcYJm9D3mE69y441ZRpDyZbvMKOAnmUa7oGDy1hb0L9n2LK9/Zqkz8aZ6+XotNVXm/Rd4B2gwDMFIbpHvnC5nYH1sfG9c+uR3rWy6me5oulC7xiD3bPpxwIcbLPgEQCODth54F1X/+nlMm+BMN6VbmGhpn8Am9hs7JUt4Nj7ATS1SZ9jsenH2pldUGf9UTso33zjoE/vuEFKc9+CnL7ba9gLtmAB5gV6Fyw0J+wzN2gXyB0YJfULADdgyjbtxligb8AfUAwYtTpLP7uGnVRn78DeHu9ZfV4we9/HO21bA/02IEj0t/mRbRDk6ZkbGEuyL9I3CXhJm0QnpWUBni5LGMgp4FN58o0rf4MltsxvMFZ9rV22XbBI5Uo1lwDpNjDL/ld3bFL60LMqg+2l94J6DnmtzzFqzZuAUAGQ1a3ex+4oQVzrFYe19Vx9Yexo88amOU/QeNnaAnz+t1baMbiMa/plfsv2Sj/DlvZs6aGWTd87C16y6YHby7b2HLpX+VjDBUtiubZzp3HkPsB0dsKYEBQ1zgUWtPcyerOv1mPmAv3UOqBysru1g/mbfqhDfZANS7onm84GZwtqz+6t3A5y7T422AFzWNS3IzvW7rTcX+pxyimnPLDkBHhPeYelxfTTn/70q8/5nM+5x3bjtrG2UCBf/uVffvU1X/M1l0XRJ3zCJ9yh2p5yyv9fMDCc1Hw8FdnPMefjOoI+Pzp8iYW6v4/ArxQAHCYpFDa9AScKCLWOMIeNQ+p+9wCmF1zY+3b7rbG7zj5gedmBy9DyXEAlp2iZo5zqBJsH+OTzPWzE4n5ZQQSLEONKux634HKiqj9Wi3YARlcvYCSnZRmJOTzSTnB6F9jm/GtvoDGHCJDs8z2BPKcSI2vb1pZIZQPz1GlPRqdLC1wqP52u3pvnT18tg5izl4PG0d+tlpxwuq1N9zPluR/IuYykDToct/XTyd3efKuxtc8lQA0O9IIv9Gm362qrvbb7cxDlUV7mEqZqTiVQsL50KNGyloBTC7Sod88rZ2iftVW6bbHVqX5a5reUDw5+NE69q34J0KtOSQCXbawLrATYFywAdvZ59wRgC4RUdvriMJwFK/ssx9tBbLZGL/jk/WKCxZxShnd+9KMffZ3rdVM92FLveVhtRz1hS5zWzkZtMKzfQHn31Ye1sy3N2rHra7vepXfDlq3utdeRmXm0e9uW3nUZlurrWQClzePJfniWIARgn12SG1P+ZICQeYrtBqDWpvKAZ2OwgDGWATOCeAvUVQ8M5d3RAsCz02UZ39s2xgvZ624CSvZaYtyb+xZQdk/jpi3c+jkdrt4Bv43ft7zlLZdxBqz2PkCoZdSuvd6UDf2YI4/BF32zc/HRJrFly0JmC3qGIMZNIHHfyyvPfrGvdKk+26BUwP/aHIEOO44wUNllbSLdyIK7ZNfywMYd+7bTW3fsrgrPUI5c9IIxdM6c10GH+RFybxcgY4uru4MCgdx23/S7cWyN1k//G++Yv9ZP7BBmPhB5xxE7Iccte9F6QAoA48GczgaZH/vJnvS87pNGKb3dg/Pcv2tG781GLKFAGijzpXWaXNzmNWC2AKQ60l9gNPa/XQOlw+jzwNCA3oIl5qOEPi272Xtnl/rcnBl7lg2gl43BgmvNV1i62aF+d70USeymtFbeufesDXcNhlHc9/XTm970pgu715qpOcYa7pRTTjnlbpMT4D3lHZIP//APv3rRi150fRDQvUUbf/u3f/vqp37qpy4TdwDvi1/84ndzbU855Z5iS6qF6zrgFvcJ9gbWCEeA07sgY7ILdn+vg9+C1dbQzQUHIOW8upZjlACzFkQBTi67ihN6ZMNhenYPUMuBJ7tAdzo7AHHZnstWanGtbsvwXZbygkbZCo4NUHDZcN5PG/vbiducE8/jQHCagCQcGG2v/RdA12f6kOMA/M0hyWnouX2+DNW9Z8HuI7Dp/bwLZ1gbYpgpC7h7BDWxbHN4cqYC7hwilHME9AvkyfkFXjlZG1iszTjZ3QdwxmTGBAS46TvAJ+cdaADwtA12AWH6p404wauvXQ+IW8ajMbf3G2sctuqd41c7lFaBEy+lBwDPtu5tg4CEPdW9Z+Xk1p79AHsFFYCd/Q5o6toOf1JXYyOHsudszuUc07/6q7+6dswFRow97PGcXXq74D/bAJztQJwOIxIIyKFvbAEYYzw5WI99AfCmI/Rq7cgClsadk85zmvtt+zMW227JZicWqPNsuw7W6d8gGptmm7PxsUzmDRSsbbM7AIhsTHY4k/HEXnU93cGETz8cYqRvNlilDmwGBjjWJ9uz+ZOJIF73SAkiqKQ+PtPfwCm6ZKu8Oiwwl14VeJCvFkCE8QjQkUu1MnrXTdGAjWfcC36wc5uaKNldHPREG+/a7wjiKkN7re08jm/trt+UVf0cYLjpf6rjIx7xiMv4kSe2/qsdsbqzmcvyllcdO1JwTCBt3wGQubtdltW7c+8xQKWdzeNsnPdTBwEyc5U5cFO0SOGgDQHwu65wbe+0QLMdPZiVdmtkO9g5z8MCZ5utDfq/5y9LtDLNG959U7JsqiS7CXp+nztwrOeny2xsIj3Dm9/85gtwLy9wIGHXB+TrI2NaWoPGi3GWvtBXNk4A1PwLMKxNjP3qXv0AxcaCNUBzzgbTnedQuxVcYpf6DFN+x7d1S7KpaOi1vui3lFEL1goQypXMlrA7u5uFnRSkkt7BWK8PAd7qAkivve0Q8H7VqzZ3OJ+dA/ULO9Q7Sz/S2JP7ODC/e+qXriuNgt1igvLsT/cGOAuYS+8gyGAtB2gOWJf/l42ofU6A95RTTrkb5QR4T7ltaWH3m7/5m5dJu22NP/ADP3D18pe//OLE3iQt3n7v937v6tM//dOvnvzkJ58A7yl3XDCnAB0ceo4a2dPMF5i0IOdgEY4b4cxxXG1DkyqBg8mh4jBahLdwbUGcAEA4FRbunKs9mdmW6sq1lRGIh3WBeQNk4IQtuM0hPm61xjLjyHGg1kFQR04Y4Lj3wZoGJKnnMueWTSRv2wICAHGL+QXT+6l8Dtnmzk16r54nX5u+V05OWs7Fsp8C2LougC2bVl9WjoOQOMmYOvKP5uDo92ynbcHqFANNPQGD9ZfTostNmVR217ZdGRsK8ybWDaDG4SvLCq/cHEWOoz7pXXOM5B7GDkwvOHCuT2x5xXbC9NTnm4t52YwL2i5zs/sAqgvaAxocnnNkai/4jbFm/AnGABY4zsZGfZu+1UbGYM7sB33QB10zAAFq2JX9xhzjhCYLIPp7QUo6lfT88vP2vh/yIR9yPb4Ab0CBBcyO43IDKDdtBd+Ajr+1q7bQfhusOTIRAdlYgeyYZy/oJyCQUy9tBfAZ63i3By8L1POVvzZwAWHvCgjc+452C7jMrm1bAbyWbYYl2/8CDcvoi01m7G4uS/YZ252dYZPpMdC9+zDm6Wjji22s7J4fOB2QVpt2/eravptAZPc7FBDgU9mBJ/7vGjtHbIlXV3Xvt7zZ+ln7r50n7vH3gsCu3ZQ628+u2/IW9N3/N0AG5MYAr30EmkoT9qd/+qeXdk4Xd06WkqkyA9jk4FXHzcvNrq1+bnohn9O51dlj27h3gyDswaYBYWMWkN2UHYJVR2A8AcKaE9mtTTGVvm1QojKblwQD2Y7uwSDWLkBv17LtjQsB0R0PgiDSaAiyAkF7dn1UP8hvXYBO8LN6CSCXOkAAsnpIfaDv5LGVpsXaCJvWzgt6gAnLbtJHazR6H3ja7+q2KS4A09YdR5sTwJhOSk3RteawntXcLaC+QQr5/lefgM6YqmyiMqWZsdYACB8PQ9O/AFrze5837wNSgaXee4MRS2zIZtKFgiq1Q9fXdq09BM7qX/mePdccURnZue7B0rV+sRsjfejz3lWObfXQn9q45yMt0P/armekT7crO77utNxf6nHKKac8sOQEeE+5bXna0552cZIDPDr1NoDg7clLXvKSq8/4jM+4MH9POeVOC+CF88Hp4bRx0gE6HJUFP5MFO9YBXpCYw8w5AkhhEO4BRRwHh5wlcukd85zu1s0FN1sQc9R6Xo5YnzlVGEuFE7lgKQeXU40BylH3e7fMc7y1ESfWewEBscIAFQugaTs/2s+2yCPrU/uvM7xgji186rDsFSCjuq7Tu6k5YpvY8ic/JZZcti8Buslx6f/NMbygD8Yc8E4bYL9yPjf/LIZh3/lbO8kPTLcAFkAKsozBfefqnK5xHLtmGezLSFPnTfGwDiDmzOrGHqS1/bv5EH22/6vbbmX13eYsXJB9cxu7NtAa4GUsYSXuVtyeUztgyfY3MAwoCqAAxuR0rq7a7t1P9aGbsYUDjnN+vQ+n3XsZ8xtU2bY65hBdFiUm9qb1oN/LeHc/IGcBqaO4fnUFkxHjnp3rubaC2/q7YPKCUmwr0FdARZ8AtPQTHTS2FzwEfAHjAFmr7wnWIyCFLcD6rh/2ACLPW5vT97HONqgEYNgUEO7zfphp0nEIYnm/BTToc6LPl9G58xbABPBYGXJ9bzDL1veAtOMWee0nfY4+lZt47YV+Vzf9ssGIBe6Xbbhj97jTZOuy8+n+vSz+tQV2hGBEFwhrrnvrW996+b82D8BKspvyeWJtd69Do9RHn2d7MW53x4c2Mz8uEGQ9YT7SbsukZCsxq+nErhmMOwFCY2xt2AbRHDDp8ECAXfUFhAO8zWUOrqsegmuYuBu4Fggzlna9ZEeQftI2xgQdBxRar/R//oP2BjgCOB2kiqmJlZsIrmn/Pu8Z2W07Xcx9GMvy0/djPBiD1g3WSsZw+mG8L/BrrEghALzE4BfINRaNi+od0Ai0NYdhl2Kpai82ps/MJf3de/Z7D55Vp0QKl94dI1nQGUO/7wVGSXpS+3RN/dC7d28A7uqafLj1n0PmKq+xV9C7+kkLo9363rxsB4m5PTDcuDHWazu7d/q8OlSW/L12kNRG6bkDFB2mqB1cs2vxU0455ZS7RU6A95Tblk/7tE+7TMY/9mM/dp/A3aTtrEknbp9yyv1BLChbZHIYODZyvgH2OPnu2x+OLgbCkRFnoZtY+FtgcwJsDwZYYG11b/dwzjmjW/YyDjG6OCoLPDuQAhPIISOcLGDRMiX737Y7YJHnL+sFGMPxcy3QCbuMA7n5K7Gb/J/IMbeM5SMDD1CrrtrcVsHNZ2i7Xqw2Ti7nR7/2ORZMdcQycdgWZyQnB5sxNu/mx6UP+m/rxRkH/C2oIwjQs2yhFgTAwHb9sn05qNUVq0lbLhhGr7QF8IFuVX5sKSeJc7Qx+jjaUi8AuGpT2yK9u77pc4fg0I2AppxDqSV6B/mwl+leHQNQl+kLeDUGMbd7VjtJ6hcgr3Z3Wnr16ln9dB0d1k+Ai+qCnc0xBiKsw0zP1SURvLFtGWjZtY9//OMv5WIPAjPK06jfHTQDaFvmrQDAsnkESjjgy7JcUGqBtwWk6LkxugCXMnL4l/2ojAXy2AKgxD6b3WMfjb0FbdkJekMPOP3ye27ahwXOtI3rjD912F0K2rO/sehtA5Zjd+slCMPOrr03Z7iWLQMYLRAKvHFwmrYHZrAB2tfW4v6W9gPoC4jbfMgFD4D86RE9tY0eqA3QtnW+Z9vdwcbWPtJ7sBPLkN5g6BG830DCto12oHdHVj4dXr3YwBLQVZs7wMuWftc98pGPvIzXdpNpY++LWSnYyU7oG/VXt9oT4La6vsAzO6M9tNmuBTZ4uPdsAGHt0Lav9rxVWiDAlzLs/ug3W5lINaBN7eoQcBAE22DuslTZR+2xICv7vAEj7ajftUN903dSLgk2CQr3v0MEgcHHcru27wWNA697D+mCNjAhH61DUeWndhgd+8JWs3cCn5W5uZulE9pdJOqNpSwojV2781rPB3QLgngnzPQ+awybI2oz5S9YSg+AynS4+3oOoBg4zL7Z4eU9e2fvKB2EACambyL3fG3a93YS9Sx2rWCmnQOV2/OseXvfPjNv97e50BqyQCibXbm1gyB986fdCHKKC+6uvcDYr91a05inTznllFPuJjkB3lNuW5rEk7bD3VcROXf4xymn3ElZx5MzYMG9LDJADicI0LlOx4K967Qmm1vRczktwNicLwtz5SUW6LbzrhO5zhjn3/MWHFYe4JKzCPDEGlxmFdARs2KBHXUH5LQQ7x126/c6hUAb9ZZXEnACKOQwKt/7cUq2PVY40ws8AaYxZzBNOHB918Ifq0h+OUzYBbZzEgIPMaQc6JIAGYCIUl5gn6jfpuPgnC0jjsPf7w6dwQZKsIOdKr19mzNWebFtcrY63DImDcdbm3MYj1voHW6S/gFi9Zktn3SXDm4OXm0VQKYf9EHXVT+gqPfRpwGbDmPpNGxt1X1YYwBCOmF79gIcwK7ew2FKHNgN1iw457C7TTMBfMjBrt4OYIx1VfsAQJa5umMfgAEoc406dH/ANkceSFC7V/dSbFRPp7Mv2OQn3e3z2He1OScbcw0Y0ftg7C24wN5oi+q8rOe1HdK76HuHUQpI0QH66Vl2BvRD55YBVh0be72LttFWtvuuXW48pdP0toALewbo0+a9G1a1nz6vP2Pie2d6WHqTnpce9n99oO0xY4Gdjb8ABulc2KhlYJsf6MkCmgKEDoPqPUqBUTtIV8PmYu/LEdq96ba8k5WPyagtgLTSE/i8cZb+2hKenlSOQJK5TnCougYWNw7Wrpu3Ntcwu7vpTJbpuqBocgw80JkFzVcEbwSB0ie6ri8B1Wxdn3VgXuWVu1WqGzYbA7CxXtkYgAKJO9cA3+W2NQ7ZuU2xQB92feGdzE2bU5xN3GDBpt847ooAFqurudj8LN+6ALCDFwHgxouy5aFdcJNtleeZrfLsZZV77s4FaxOT6vNP//RPlzEpb2tjfM8z6Od1r3vdxTY+5jGPuQ52AQDZHDsj6FbvxT4BCO0gSv/NbUD8ypBeSBsLemrT7gcaZleBm+YKOZw3YK5PtDP7ZU4XzJJ+RfBGGXt4bO/bTzopeNs7CPx1j5y3lesQstUBgP/uClgA3jjen2R3DiwjegOh1jq1e5KOKds879C/+qA2NJ+pHx1M/zansXm6uptPAPj1SfY7YLmy0ie2qTphrRtrxnHvVHlHu3JfZYOpp5xyyikPNDkB3lNuW3bReF/FViQg1imn3ElpUdiCP1kWBabBkQG7Du6y4ACV6+Dd5OwAeyyoAXC7+FywiOO3C/Cty4J4y7jth7OI0QGkttUP02TfR041B80AyQCae1jMAkIcxMS7YCFiBy6jFdiGlbuHSilD/YDb3hOz2Xsua7lrAPELaPc3R2TbhyOD+bKsaYw57O7aLZC3ctwH9CtvawBCTlkCwAA6Yor5DLBL15b5pB28D2flyJ5cZhd2TmV9zMd8zMUZUpcjy5ATCyRXFmcX8yvZvIXLoFW3BffVxZjyXMDBgvcA/xz/gDv14qTSFWDWEdReVmRl1g85kpjI6r+sc6CMrfP1R46n/sJIDhQIaAjgsn2195FGBeM+hxsTSztuzuc95E1d6bPvuj5Htf8D9WuPnp0epjPyL9OJgGYBiJzo+lof26KtTpX/qle96jpvtXQNOcj6b+vNuV87JFf3BjS692//9m+v7RgQozEiP/EGiQIxO9iN3nRfwJqDjzYHZvemt4BGOpSD3vV0kY4uyE9vMHmP4Ltnr52h19h3a9Ox57eNlvmarcQKB8QtUM6uyeuqv+0CSM96L3OOXJOYdOmXA+60Ef0xNy3rsfsrO1AG2A3QC2iJsY7Bvqk5ANnLAsfK9z2WnfIwhxegM8a33fWDz5ZlfhO4S5cXNIsJiGUq8MNW00nlb7n9DjyPDfjKV77yOsVSbdFPba/M9NGOBUzPZRIL/ugLOrbvoh29+7ZV0n3msU0Po8wjMI65aSeM9fayy/1oQ4xGusjOGKP7DptGQJ8LFux8sOcCmLs3p7I+pB/m3K5vLJcqQ5qD7G16L3VA9wEqP+zDPuxi3yq38Z39za4DVtlZQUc7ZnbnR31aed2/oCFdkmoKYK8vlzFeHTGfBcL6DNC6bGzveWSt73fSB9kxhUEsEGPc0AE7Dcw38tdaM2FbN985oO4YWNIXu57Qf5smDLi861NB5p6Xzei7+oIOVIf6pe96l+xUP2ycOggu9LdUD0D66i2o3HMEquQUbg4skEaf1VMgGeBdH3XtgvQO66O3As8ng/eUU065G+UEeE+5bWnSj0UU4yXW2H2RTjlOnH57yil3UiyuE0yGY8CC44SViZGBXZFwDo7AQrLspnW699Rpi2LO1Tq9CzIv2LxpGjhkQDsAJmCRkxiw4LTjZcl5FkcJgInBavHsWg4FZ4JDjBkM5Fmw1b2A5gVdlG9bI8CNo3PTNulN7bDML86JflsQVDqHFv9YHd6Xo4f12f3Zqe7BtsvZwADioHjfHK49tM/7Vf8cV/lTtZn0EdlRbY3hVFlYR/oXe9i7eacAQu/Eea3c6iY/JcahfHccHqzmHC4OqAN1cqCckt69tuhzlBfY6jPOeeXK+di7PO5xj7uws7SHd9AvsbkCHWs79fSO6kMHvHfvuikDqkfOXmMyoHTBoq7vHYCJyq9PXQss6vP6WVoMYIjfCSZ1jNAFwehl9+X8Apcd/qS9tBkgiVNqa6r2LJjQj7ED0JDWYoM69GzHoPFhjNBpAJ+2ASyp39quY+7CtUkb7PFegCTtL5ARgzSpzbUPh59No+dHsO8YUNB2nrsA7t5Lh46BEeVu6gx1Tm8DBzDkllkJFDXu0lkMZTZ8gzHGQu9cPQH/ggzsIxaiegE86Ja+7vl97nBD/VH5dnHQA3OZceqgIXl1jc1N88IOVqY87dvOja9jf9Cdte/LfmW3jZGbdpLsuF67QBcBbIJFgnHy0y+45vplyHbeQ+3213/915d7bP3vntqk8uR2BTLVhgDV+oFtTaTyOeoPGw0Y3bl6wXjvqA/XTmkLYCaAzDhZ8PoImhsL3s88Q3f0i235bI77sVp3HUKntp/NqdXRjgHXL/vXu2DqLzt+QU9zYX/TY2zp/pYX1ngA1OsPAY1sfM+rbAxjqQgAusbpli+gIuevuVPKC6z96mm3iTbw9/a1vmFT6AKdssboeztmHLroAFp2p7o74A0rV5sBgqtzdaS/gozdVzkOTttAjPFqJwawG6iNVVt9Sr/X+MPM7bt+05fsn3p4N0GG6ipthrElVUx/6zN6Kv99/0uB1Rwo3y5dk95CwN9BsNou22x8mAN3HjvllFNOuVvkBHhPuW159atffQF4P/mTP/nq+c9//n2656u+6qsuE/TLX/7yd3n9Tjnl7UmLwn6AW8sq8rcFJRbqMlQ4dcAji/Jl5C5IwOkF7nBk3cNZdYgPRynB4NitnEBcoIMcqeukARF2i/o67j1LjkLgAEagfHYcAM/cw7G0hby+tjDmOAFS5NTUHt0PkPLZskcWaHVNskCyd1kw4Aj2LqMMsxG7zaFQAIebUkC0JdAzYy3mrAaoYowETgYSAgNzANsaHFCnHtgzgai1lUNZap8YZg7DK49v91Q+Zo53wlrLWeNwK5vuVc4//MM/XOqeA9b/wIYEMAq8KU9l9ceI6rocLAc1YRulAzlZQChO2rJ6uwaou+Dz6i8QYoE4QIS8zPRfnZf5tsCd9t4tywvgeq7v6Yjyt04LbAJC6yNbUT1zgc2eHTgUMLRMf7+9l7os8Oi5BEMeUB9jEdhlDKmbMaDttdnaLm3vM0DHAmbHe7Z/fL6AqHLZDKA3PRQYcyjSAnb9lr84tpUAwLK11a1rAQf7zgsYLZi4rHJ9pMy1EwvOAmW0H9sLkCjgAigCdgBjjV07E6RtEFTaNtut/qsX8koCuTA17W4CzOu3pPGVLki9EDCyjD5b2AUiugbzms7Lhw0gwi6UtqF6LVAvPcTuVvEOrtv5xPb1Y1/tLhPtv4AkXdu81r7DlHcwlK3YcltvSoabdsSY3x760IdePyfbWFv//d///dWb3vSmawAR2NT1dFAqIWXZPi7lj6CQMWW8m8N2rvX3ppJwzb7DluO6ow1Z3RcYBPp5TyAnMNFaQYqQtT2AReMVg3jHMNtqLaHOm3tW/eltZRfcUb+eL9VAIFy6uHauvwV5BT76TB7k5qva34GF5u2uEwSUL35Z2M1ZPlOWAy3V01gI3G0et8tFGgF2xPXsvT66VXBqx460POY8Y938R88FaaWj2DLVoQCj+QpT246U/qfDrRl2LOqjTVnFJgJrvWNzEZZzY6axQ/fZJ6B3wKy2knNXAKA275l91jXWrPUnWwbc33FcWelP9iyQHbHATjQpbdgJ9mnbVBvZqXc7svPNnZb7Sz1OOeWUB5acAO8pty2/8iu/cvXZn/3ZV1/wBV9w9axnPevqjW98471e/8xnPvPq4Q9/+GWies5znvNuq+cpp9ybtKhchsAy0xaMWnDwCG6sswroxdTZRf4CRsmCw5h3y4zy4wCkhLMgnQKGj63DFrmV4YAe77CAdNf1PaaWMvuMQ4QFpk20C0fdO3JIjoezYK4sgxAIsAvWbWfOK6BqmXqc2mV4HnNCuu64VXy3lAPgOG3YsfRBnywbZcFCAJB2zuHp+8ChtprmaMnfajs5QKS/A7qAzDm6WELVIXB486/2rBwcuecWCOhvuSgr23ZE/y9LGxhIdzH75OkDagJ6FtTKqcY4t8X02He2oy/DElOWg7pOMB3QB0AIbU2MOWUcUwZwBAFxHLllqAIQNkc1hprACyeXTsmtrH70GOOoHPRyyCbLsAOIAGC00+ozsLjxJoDkVPLA4w4ijcXkYL3aHHtzHfN99v5ekNePdt1gS8LuLJBgzBxZvNp07cFuVT46xYIT+s025PQ5kGJzmHZdLL/NTwnQB+BskEC9dhz0GRZYgEJjovGzJ8gDMDcFxQI1fVa7p/dscM+o3gBRTE9BPe8NTNA+tnUvk7I22cOUjE31x74zzvrblnsgR59V/0CXruud2Thttcw9LHblVw9jMJsDVFY+3cXy7W9bq9dW7o4L+gDkuQl0XXvs3iMbfe22sd5zay/gGoBN//u9oLH/padgJxIAUL/TETsJGte2z9OLDVqx2+Zru1y09doU9lBf0F/jg93Tn9pcXRe4Ng4XVNzdJxukol9dJ2ibHcb2tv7Y3RSCFPpVvdZOLttcm1gfePYR8FwAFXiOEU3XtEXvlo6x2ZVRv7DH9Y/0JQ5R7Zm9V/8HNgo2yT+u7v126JhUKP3d3Fs90oN2ofQMTFHzqX7o/q4RRKHnnrHz3OqCtWV2wVpFgFt96FfXAGXZP+XuHKPtzH9SxtQG+qhnuMcc09+9q+/ssjBO6bRgHQKAub8gN/BZvwbCdq28uX1m5w+w17qwa/W5XMzsJ/BbyhkBmQKE9YvnVnb16PrS//TOCBPaUD+YX6y9TznllFPuJjkB3lNuW37rt37r6qUvfenVk570pKs/+qM/uvru7/7uq1//9V+//r6FQ6yktug+7WlPu/qoj/qoyyT+ghe84JIT7ZRT7rRsXjdOI8cUk2nTMFjoLpNiwROO6zqfC/Quew6LZFmqe4p5dQNuLANkt5txJC3UOc2bSy9ZZpvrsHFslV62q1yTGGacPw75kTEFOOBAAbqBY13HsVNHbbMA2NZz39n3fnOSANYLPPt8WSDAHfn8/CzLluPM4dl2lY+uZ+XEYIxUdrsYHCIVyNKPdtQGwM4P+ZAPuX7PwK2AFU6ftBj978AnbJcFuhbU8zcAGSDFKfO5zzj33RdjmJMmFQAwB0s9p6rPcqYCHKvnz/zMz1wfREP3a483v/nN93Aoe36O2dZ3gSlOLsa3FBYLEAJBMZ28D1COAwp8C2DvvbyvNsUyAiQm+s421WV59rvy6vOYfoHv9XH5gunvAlrL0Fuw0mfG3W7jXr3m7KuLLbuY1HTAmKXrxgl9BaRKKbOHKmkT24S3PTjGyxr32Y53/Zp9MDZd53DBBZptvV6QxH3GGaHjCzgc7S4mYCx5wSIAlnG2gL3gSvWqzvRaChKgEMYgJmfbkm3RV7dE2wEHMeLX9lY/aVDoR38DJoCKC05rY/2kLeiYPsVi3aAD+4a9uzZMEEsAC0sYGLPBPodtxmDEmsd2ZNu7pp/sgpQhOwaWzWpcbnDRNWy5PtsfOkDXqnP1qV6b5kbb0eObGG7GiLHu3fv52I/92EsqnOxWc0PvbtzJ9Wv8NfbZTvbffKLdjXPtvoDpAtrLLNd+G+BcfTdX7FhYnfQ/fVpAWmoCbEY7N9hN+c2NQYeJAYiN0z7z//Ed2Tj128A1W2gelOoigBSAickvRRC9a0xKiUWf5e01Zwl2CEankwlw0lppdU26qp1rrT/qf/OudAICTd65zxz6ZdztOsj70l/zDAawoDHd3rzqyaZb2CCF8WPtt/om0CmdRTqsTpVlzqEfiWAhMHfHy5IS2Omkdm+3UmV25kDjqflW2c315YxfHZAiw/hkY6z7Anil+NKm7tn7jM/qZndCYr3VZ8gJvVP3pk+Y4nT4lFNOOeVukxPgPeUdks/6rM+6gLux1p797Gdffiz2Xv/619/j2ibrDn350i/90jtU21NOuafs4V4Lqi4TjT5jfGFnWKQeGWtA1Zsc12VRYo7ugnqfa0HKIXA/9gNHVznuXUfDdetUL+jkf0Ck35i38ktabB9BrcT23j63rTdZ8EFbc7gBvFvOslUAUwuIexfXrhwBKI6xv7fNOBGbnoJTz3HVRpzjPnPQCiel+x1mFhCYg5HD07ZGhy1tWUnOV2Vw4nK0cnKwhivTVsSYK7V//1d2AAdgm65Wp0DHTS8hRy5n2HtzlOhRZfc87OsF4ntGDlJsG+AQ9pRty7aa6z/PW9AH+KEPOf5HfV193/5WhrqRBXWMjwUZMP840QAVOgJUW30ynuigtpGfMWYfJplxTr+A3RtgMC6909ZhQfCkfgR4Y0CmS6XwwKhOvJP2MtaXmejdga5AUeUC14336hJ4EhPKoWHpc7tt6D17sUD1vq9AVU4+cHVBaMER7dD9x8O+tl/Xbmm3zf0MqAyI/cd//Md7AMgBJgUkFrwA9te+mGjy3DpIiQ71DjGoAbnyoG5QDbtSW2rzzbNqt8CyTb3Lgv3VKRvS+AaoAGoFMjDQN/gHpFpge/V6t9x3n34EcstZLehlnG4gUX/UjmxW7XWcB3f8ra54H6xBANPqDtn22TzG2LdSA2ywdO3+TeIZnrfzce9fmpqelS5k3xwUFWBUnyzIabu+4InfcoB6vw06ea+du9YG7fywAbudk/cdtyztY3xvKglBIazrTZ0h4HEMpKgDW2Oup0PsxwZhzDeCE+zD1rkfOX8rW2AFQ1cOeikksLXZlPoJ+9ic3TxqLqrdjR1pSKSqAgbLu0u3dh7tuQG7mNAY8MuiXaDTrgvjegNhx+BDf7NV5gj2qCCVeUYKA0Cu8b86of/99hz39T/A3FqyObz1iLaXd9/a9Wir9OMGwDfwAPSuvh/8wR98nXImO2wtXX/Z9WQHwhIEWu8UUA4gbo1jzZ1UJ4f+VZf6eQ8/7LvGabpQ36c7mPYO2NsdaZvnfYOJ91WOa/s7KfeXepxyyikPLDkB3lPeIWmifexjH3v1vd/7vVdf93Vfdx09PkqTcODv93zP97zNIVannHKnBHNimTbL/FiHq0V/YBtWT7Lbbi30lbMg1jJZd6G+TsKRycNBSTCpMOcswI8MKIt0TuZueV+Hk+MFLACceF8Lf1tx96Tv3YK5jB7AE6ePY7inNAMXlKGtOTXLCpKLD3C1DN913Nfp7Ycz6xAeOSQTDA9OqHJ6VtdjvByfte+HZWRbbA5TTksSyzUd6TmeoTw6oL3k43NQG2e6cuUB7NnZVPlmbbtVHp3gsG45rtcuwCJMGCylnpezBjirjHS8MnMOq0fX5ZTZOhn7uLyWnoe1uNunK8OJ1nSvOjsEaMG+Bc3osO8qg1O6+qwfjN3asrIf9KAHXYMffgOf15HMEWyHifQs1a33dyhNz/27v/u7S9qED/3QD70GPnoGZ7LPMIb7wYLD1vN8f2PCbXqP5tDAVfVKYhZiktXWnUSvfwIwsQqBu06o38BJ9Usvex+2xwE5vR/QQ1u+4Q1vuD4ErTQJ7FDPWeeyvpb2wDsAJow1QSLjfMEtZXVvOmJsEzmGN+BlJ8Vub+/dA//Kk43FByTawBudqg7LCNyD79QZe756/c3f/M0161cuW8Gn+qBn1F6x1qoH0GxTwNC5YwoHddBO9QOQya4StlD77LZ/4HV6SNeAp91X3wNwgICbO9vp89rduMUkF+SxjZ7u9G7pFCAba3uDlOyOPsMspwP6ZBmou/Nk/xdwWgBNUIcOHJmO9OMIIK/+baAiXc+2ZXM9p2f2jHKaZyPYLIdwySGqnRzUpb8XHDvWYUHUm+qmfvoOKLkMe+0twGYHys7r2mnnVHMg/U+WNc6eLAN31w7LNPfd7oTZvkuwhPfAL0EgW+npKz2028JuoOyMfLvpe2VJqSAg5gDABV+NW4EkuybMy4K3AjzGXp83rrWJAIn6sWnaSADZXKhdq1d2xIGgmKl9n31fYBcQ7Vk7dx9TXy2A2295b40HekIv2edNJwT0lsKAzdqgnHemBwn7Fmu2zxoz0uH0W9vaqaCewN/aw8Fy/pc7V785/LH69Tfbu4FcwcnaNn3SvpUbcGxuY7ekUTnllFNOudvkBHhPeYelhU3pGZ7+9KdfPfGJT7x69KMffXEemmxzBmLyvuQlL7lmgJxyyv1FsBcAk7vlmCPD0QKQteDu7xaXwKFddPt/mWycAU7qAgsW1Ssteh2+1T0YLYDFZf3Yksg525y3AInEOyxDcVlxnGunY/cMB8+o67JSt2xOSJ8toArEWwecE9DfyxqT3/LoVNzUTkBFfbNbg/ucQ74MUqCDbZrKxlDmQHBsuibgE4iY49B7ZtNe+9rXXrNN1CP7Vt/koMqDh+VVfXLqckQqD5NSnzj5u/JyWPofI0y+1crkyC4A4EC1rsGs6xkxe5eljRXqIBZOYM/o3fSroEU6GLjYT9f81V/91aUdNhdeAnDCZlz2c893UM4ymmIGA0eWHRRzcg/tMRblOKbX1ceBMNWn33/91399AWOOByYax9qd3ndffQJ86BlAAzrc/wHZXSOVBpbfsk+Bb8vIswV4Wb3L9jzW0TsD4wQcHIIHhNBvC5JxvBeYMQaXqQwwki/ZGADQpxu9b6DXkY23wa5l8R4DVcCOTXGirTYYswDf1nfH/9oAqWKWeVdfvN/7vd81Y1c7HlMeHAEvYKyyF9yqnPSiMR4AA6xYhmNjIv3peykEANHAC3aYvdEmAF5lpgvVH6gh/cOy146AGlAKQOT92BWpDbKn9SkWIVZ6Y6fnLECsXe1YkC4IOFabCWAApdih7BuQ0XxhPgXOLJtcH5sLjwDtgvNs/QYxV2e2nNX5BZ1dcwSXuyeQii4oN/nAD/zAC2iVzexv+uFQOwxU9l99NmXDAmYbPD3uJrB1fwMimxf1WGftb32gDQV9/QD5PcuhgcbmMkXp5RG4XVBw1zJs/vaN55szd07pd36B5xoP1lyAwV2/1NbZQNvvHaYW6CuoWf/1PbAXkMsOSOOydTV/NIa3Xa2NdhfSzlE7b+/4Zfv2nQV2Nmd99zdH9duhq8a9oCNdFABWP+/FXutbbS43uN0SditIi2Ue9f7Kkh6B3hnz+27adXdUyGNuPLi//ioAZnzIhQxgTQdqd/7hMvKt2Yw1dqPnOKOg/pZ/WEqKxqnD97SZHRXeVwDslFNOOeVukhPgPeVfLU30v/d7v3f5OeWUB4IcWT79vYf+JOukYW1u7jXlrGMKfFtwZBk9u60O28R32Ix70E4L874Dvlq4t+DGOln2B2buApfJLt7Vi1PZ57br9ryjU7MsXE66OlcPp8G77wgIHdsm2UOtfAbM2nbn4HJUlLWggkU9ZwMTEIC9jsyy7IAz/c2Jxf7JGaMTORD9ztF8xStecQ3q2sqq/QJL1RfjDliyTLvVswXbA2QA/Dkz6s4h5oBqj7ao9w7YOlhkrqu96htb0jFo6O0CEtpDm/Y+2weVK+9kbKzaBzCxwOg6gQAqQY/q5JRvIMKyyHZcLuhDt4D1C2D0G3gunzTdUKdliS5zUB04vYDeWLOVBeDGut46JulD12PZAXYAyp57ZIXT4cYWkFq9AQM5x7VxeYCXne2H3eg3FtMyto+BkWXPk+oJAA8sbUeO91z2mrobd5VDl49byemm8a/993A4YOfudNhxu7sj2EFBhcRW7sBY4+wIPALS2evtn81lzi4Zg5hjtanrFsQBbrBlPbPxt7oKwHFgV7KsSfaZXkj/QheP88XmU96AirGCzQmwW4AGG9KBit3bD5Z4AAlRNzZeeQ6NND+x0drbAY2eLfAjZ6kglsDVzpFHhrfvfE73tNOO491JAgxeHTyWvbZAf2Lg7ljp73Kml6N3AXZ5m+0+8XkiJYxdMfp7dW0Ba+0NtNvxBrjbHSXawhj0/tq3sq0VrBcEY9jeTdGy84+yPJsNA1TummHXTHKcbuCwe5q7lq28Y897mavVReBJHe3cwKTvu3TZOqhn9Xv1tnEpRYMcu/JPy4Mt5681AEarnTw9Q5DCGqL77Arq++qoffa9jLueL4d+IijQ89gOukAXgZzmtE2BQce337GC1dV8aN5OAltbT1SOdFqJnR27NvQeQGFjcINg7FPtZz6xw4w96GyBhzzkIdf9QBdri/TFLgU22vxlt07fF/Tq/aQYEbyWKqu/a0dBZ8zugGAHUlYfdfDetyPsxf1B7i/1OOWUUx5YcgK8p9y2fPRHf/Tl92te85p7OF73Jk3mH/7hH375++Uvf/m7tH6nnHJfBFBhIWrRC3jYfInL5uXo79ZxTtEy0nZhtoCLxfIeMsZhafG82wod7NI9UhcsGIvdmxOz29p2+3SyQPA6pnvyNgABmGBxv1tPCeBhnRXgyrKi1pEAEC+AhKF8ZGn5vU73OqU+8657ujlgaAHEZf1y7gEROQDLEvRMwKX3rq6xZFzLqcROaruvQ2I4h8uo0Z85Xd2zBwkpC8i3fbMg0wYMOG62nDqcC7iZkytIgEFrWz+w5bj1FAC3h+kcvwdAyvtnC/c6RXQx8U57irr+0zfL7tMHy7xbdjX96LtYzB/zMR9zff2yT2MJAbZ2W63n0HGADKfanCbXX/lwNy0HxjbWGf11+E964F37HNiAQQdcqA76q//LZ5hzm45hiG7dAWy7fX8B67U7+kz7AWaBcsZX7/GUpzzlAsrIL+r+3WpL5zbP4YLxXQs4NI7ojvG29hAou+AacGyDEOqizQBE9Fagq+vSx5jg/mcX9B19TgDl7GF1blx2beUEgqRbm4NTEMgWYOxW7cn2xsRnhyozoN57YGzu8zGLAe76aHNkpkOrO+7VduyLFCD6sWvkxbTDweFyxp0AmGc1Ztgwdl9fbzCyv6XF2O322nhBRjs0FpilD8dAK91eMHLnHjq3DMudh3ccbPBhA5D73XFuS+p7IB0g0O4dc5y5cYF4tnN3s/i9c/EGTNTDHLVM9B2DgnD60hjo7+yxAJ70AMY9u7OM3w1Espv62HscD1g7Bq4rO9tYkCBwzXij59mw6iKtgrQeGyQ37qs7xjz7kZ5iwFtvZR/lewf+plvmuOqZDWAbBIvYnOrArqpXbecwRussc4wdLXsWAXAS0I95v8GG6mReAe5uEGjXg2xj12qnBfXpDiDcmMhOea/af8s1r8m92zvbJQD8XHLBpgBZwH/HJAC73/WXHW3sKd11wKX1xoLm1itH+7s2bYMU3Vc57K0zALKx/Z/O2AFm7lZ3NhCT+JRTTjnlbpIT4D3ltuVlL3vZZSJ+2MMedslVeF+krbnue0eS3p9yyjtTFnjkBFgY71ZaC9IWm0Abi22Ovu2Su01v2UYLuC4zYsFMAGXP2dyXFuzrpNgC3vMtiJMYDg7l2S11u2AGvPiMWHADKZLjdsvNL7lOt/qtM74OfMLB8c5SQEgxsM7tgqpHhueR9QUEcFI4Z2kP6FK/ZXhtLsdlXMofuU7/PpNzaItzbdG29tgynAlA0h4Yo51ytmKIBiDlrALEdrsioNyzbVfd7eKbVw6YRT/e8pa3XAMRHEpOI9auurtu21J/12ZY4xuM6LvqXyqI6p9zGZi6oEnMGvcAJOglIFH9tMsC7ECv1VH116+bFxdziaOYVEd9urppfMkbX/0BVMYWG2FcsQe9R88CYCx71KEvADlscO+9Y3Ud6j4r5/Gf//mfX1KDlM+5cgM4diwvmOtzDq/2BbT2fsAWYAAm26aYqA06GZ3jr+2MyXW4KyvgS1/4XE7dytoghEACdir9TgKFADcLdABvti8rF+i1wZZlda+OACjWdnnn6pJ0zzLR/N37VHZMtGW00h0pSqrT9ivwQr1t5wZwLRBr7qhPNoDF9gKOgGFArO1TYJR0MJveROBPrkqgTffoU3XdAJu2rY9qp52z6Ko5ZIOFtQdQB5PXM/UbG0D36dNxx8vq1tq3/Xv/X8CRPTnOPfRmgd1lzO7fnv3GN77xYkfTd4dKmv/MdbVPfWi7ujWCYCm7sUGyBd432KpuR5asugnubvADuNzckE2rbPOCwIR2txbQLhuEXVbwspEXbF9gvL8dElqg0uFa1kFASEECc6/dLIkghrm+cSLAIF+4OUqAQqoG4LOcudIPYHlaSyz4LuCo76UqMRYScwgAd3el9F3vU/tuEMUYt1bElt/c+IBH7wYcBljuvYJkbFZzGL0zxvSdebD/O7jNONZvu95zGKC+NQ9UrtQse3aDuaX7rAuQC6yB1s5tzmdz7Oq8tEOrF55pzbWM7NU566F9L/256SYErNMH6+PKKM3KKaeccsrdJifAe8o7JLsIfXfcd8op70yxYLQwtahMOOk+wzjcbXILLFigJgtQLSvIgtZCOZH3c53fTVOgPItoZSxoCDBwn62NLXBt3V9nW7kLPHFivOPRIT86oNpoQeJlJ2uTo2Pt3bGLMFI8E6uMQ7v37vZjjtGCDP3mhO/Wb++1W9g52Rxv7KDqJZ2BvuegK1+OOdsSe1apGQBOOb0dnFVAqzrKi8npFSz4p3/6p0tdYqJo657VwVEBwDGjcto4f8D2zfu4aRCAUX1eagF5PBfgAhJvfwKGtIs+qh2kf+g7ANPqc8BoDj6WJEBBLjwOPcBHW9NVQY7V5SO4x7nTl05Srz4Lyht3nMo+3/41Pvu8etVWgYycZ2zE6tY71Ya9Xwze2vwRj3jE5fu2n8Z2TYATG0QBzEnb4TAfbCsOOhYVG6CuHfAVk7e+D+D9iI/4iEs9em+gAv1lG6qPMdEP4HDTVvTOvZMclgCgAJE3velN17ZA8Ie+63fvJ4fyMqkruzrEVGULfPd//+//vYyJZYAm6TggRF8FlPQ8YwaoA1Q1lisnvdzdF2yndzY+jmkVCJalMrCt5a1lBwRAjHfgS+JAQs/ZnR5AGH8v2NEzNgfo7gYBTAl+bWAEWMReeAY7aseB8Vcb9bPpAtRT0IZe9Sz6qz2kdDgGeAA1+pNdcw0AyJgG/O0cBDTaMX+cT4z5nZeXfbpA6c69ZG2IQMz2zZbPJvo/gLGx2JiJEVrZ2Wp110dsKvsN4NP++mR3rtDNZS6asxbw7wcQhz1K99h2OwrYaiCo9/GMW83bR+Y/0EzAR5+TDeBmS3r+rhtswWerNgWFoMMGmICaglJ0fMeBtgUAGou28AMaMXId1iWouTlZBaix1gXX5Ve3bhHkoGN9vzsc2HHjVh+bK72nYA070bivLPq7u2WAvnSi+7LlAEv26Limq6zaJjvbb3XfwNP+bS2yfdp3DrnDzN1dAQIR1jnsAt1N2GjpE+ofdqofwSTzeM9iZwHo1g8bvNsgABvqUFg5lul8Yj60HmOXbkeOgaQ7KfeXepxyyikPLDkB3lPeLbLso1NOudOyrISj82PhvE7qkUkAzFqAinDUluUKiLIItcVygallRVi4c8IxTTmnnDDsEwtmjsOCBbYLciyOY5KDfdOW7HUOgUhyvx1ZV97R780xt449wMXWXTnSsGk2xQIn6AhAq5NDR5aB7Zmc6nVglau83Qa/DDnXaUPOZmDuMgYDG3OsOSv9HXD4L//yL9fsyhynnHBOZYySHJO24m+O454V+BObs3IC0wDiGMPbJlICrGNs+7qDZLAq5TPU15zXcrwCmIB7fV/dNvcspuAe9NfvyilfpXpof0EGY01bOGhmt4f3ThiRHNcEQAqQoFfA0X7Xzn3uIDp1sH0T27b2XxCza/WHNgI4phOxsnNQgZP1LVYXB7o2Dnzt3TFC6Yvcx9hFBQbYEqwoOgUI6JDS+qP7KisWqZzY2GSc7bVV2M9AH8A3O7D9Wl0FiBakStbuAMX0DxB2gZK1DbvldgMzxtyOQf3J3iXHAxrXrtTGWGYAkeoB7FjwzLvSOzp1tM8Lyq/eAi8ArIB59QXCHJlyG6wAFmvHBbdtExeM2p0L3p+dB04vmGS7PXCD3QbIZD+AL9KhHMFS4xHztrEE9ALWGodSRqRjASfq6xBBbWKbOp1j07XzTQCue/29aQkAoK7VhzeVsTqlDYFPgGflaqdlZ2552qf8zp/6qZ96AXileslO9Ls27m82XYojQJ3t8Im2FcTZ9YF5agOgC8geAVI6Iu2CfhFksdtCO7Ax2y6r70c93jYFCmoT4n5tpz2J8bG23Njx7mwpewUIT+SgtxOp9wxYP+au3/c2V1Sug/OWuW53hfZnrzbgK42BXS27a0M7SuuQbEooO4AEzORyF4zpf4CzMdHn2RbrIXYaA7+5x/jXzwuG71qLzmKvCnIpzzxbfSpXv+4BkNZB9G7XWMaWdmWLHeBY//R5fbc2au1/gmmtv1xjp8em4tiD8QDa2L57aNruVPC8rm+d4QDg1gannHLKKXebnADvKe8WiZGUOJDhlFPupOzCOLnpN/bR5g9Lf7GeOC4LXi6QwbmxWO4+7AiLVmwUzFVOv+cuQGzhzEGwjXYZQHJ0en7SM+VVzDHlwCfreGkPwARnfrfwL8MSULRb7dcZ8LtnASO8q2dgea4TCcRecENbr8PA6eUIK1957luABYjsEDpskkS76BcAoHat/R71qEfdA7znnAbKVn52LiczUKptvuVjffCDH3ztWAXcPfShD72ABl3b98ARTu+2D/Yc5qU2yJnvOcAUKS84oAGfWF0AAo73Om4xKdNpDMraLBA7Btuent7v2Kx7aFU/OW2lmlhQMXGwiv62LTPQWR8LZnCWlUk3Oc/LJl/Qwfbd/q/u6rsASo7k6jXgh+4CHJbtXLmAeXV1QBymo3ZZPecc90wgjG25ayds0wU4Obimn1I0VJ8cVAw1zEqg/DJ6+ru661vPkUtVe2rDBTnYuh1nW86CaWs3l4kuwFRAoJ8jqLuA0LI25ZvcLfprL+nDMhqNeXbLM9intblHe77ttiDgbksGWGJfY3QDHVyjvXdXACAOs2zToCSAGfMGRp9A3NEWY6bps2WyGufqAMDJBggkAPDkNN7UM71LnzuUywn12aTdEWC7vfzuu8PC9mdzmnIEMOj2tg9gmU4Izhk/2787D63NWkBWXTf4t2xg4K7/jdVN8UIP3L/P7j1e+9rXXmxWNtJcJtjV/3LmS5nBbgk2bABkcyGvYBev3cdGtdbA4t3+q05dW7vvrpIj83XTHGkT5SwYt2MeiLhz6or+Wsb/BmLZQgCm9ROma+XXHumrd5fORTCSbWSXBMPY2C1TX5jv1gZJF5Dt9r7aQiod7GDzZPdV1gae9hBIwK8xYFyUUmFZ/WvreldrymXGAoiNt+wOHWD3Ky9AuHc0HtiW/g9c3cM2BRbNa6tnyeoG3dn8vOYE7c3uWe/1ObZ499aXmNMAaX0HZK+tBfc9k83o3cwlbL9AqTY0DrS1fqB7Rx1VP6mYTjnllFPuJjkB3lPeruTA3yQ5obZo3Uqa5Msp+AM/8AOXxUPb3k455U4LgIBzw7FZoMFiFlOBY8S5XsbaEQhJFuTYg298t1t6gSXLmkz2EKxl11k4H9lj6gS8WJaX50vlAEBQjyOgsydF9/0e/rWso6Nzt8At9hWna3OlApts6eMYA8EAcZy13RZ8BDyW9XVkfC1ooH6AQ06W05exXzBblJsznXOFkYW1CWA/Mp3lY+3zcjnGCFs25Opa758Tkj2t/HLbcjSVxxFd4AOLdbdqczyXCb3AFn3cLa8O01mwkj5x0DeVxjq3HFxtuX3IueScAaK6VwoO5a9OLUCv7D1cikO57McNcnjv/g+4kqqkshvLtW/MvAUygTYAsT4L5H7sYx97mbNy3I0XW/vrU3oIuMEywgIVHAgkwvbF0hL4AfjqI+0fE/z//b//d2FIBzYXRFjbQhcADMpaQG91SKqBIzNywTosK+XRl9WPJKZxgKD+rn7l8mV/dlfDgi3ez4FKm9LgmBty7wOsGPO2QK/NSRZUW3bi2vWjTTCeNhAkt/T7vd/7XQc4joGnPYzKYVy1H7a9FAfqQa+9r1y5dHftKVupvxw01A/dEWzRr8YyQKbvMRM9w2Fn+gjoE/gEuAZAAkcx6gRt6LlD8dgP42KByoQt2/f0OZuy7NmE/b5pbnbfEfzduWvnHvcA1zZX8panfM+U5qb2Sw96r2yJ+hpfwMbeDTtfufoM2F1/6JNl2xpb2k27Gsvaa3WQnrJvrtn1w44BNtdWeG2ivAXgtefOsebdHXPG+RHotfMAo5ee9h3gNJsomN21Ao2NHwFLaxWgvEBic7EAWNeyI/1g8+4Bb4JsSf9nz7X7pjCpX6rHtgGbsgGE1Wl2w4GDy2jedRK9dqCiXSXGrjRKxhoAX75hwYQFZqVkccictYJ1X++jLzBsNweudDt0o2eww/qN/gJWBWayjwX11o5U500PsTsBzBP0b+d7+reBT2PcDjZzKfCXblo3W5tYD+/a4nblGEi9k3J/qccpp5zywJIT4D3l7Uo5JY/SpPniF7/4tst67nOf+06q1SmnvOOyjBWLzQUVOD8cuj2Ua9mgLT5zJhZcc906RT5b5u+ykXa78jJsdhvlgmlYf3IvYmxwLpRtCyNHdcvjqK6Dm3BcFzBagAS4su+IjeHgqX0P7Y2JgXnCWbBYv8kxxrTcduQQbP3de2Qke/aCU97R83sX4B0nxRZwzhcHHUi7Top3t72z/3N+Ahcr9y/+4i8uTqi+4FR2r23UCSAwsWWazqRju0V1mU0LDGB+O4F8Dz/yXDqIkbqABYeVk+Ydex4QiMNXGYHEwAVtoG1t5dTeffeCF7zgHgBZ95TzdvPL6ifbLrd/pULAVM9pxcTizHNMu7b2dL9tq9hF+pOeAazULwnETB9yvAMeelfgAMaRazc9iHYG1KmTw5gw5I7gFmAK6FE/Sj9RLtCt25EN6H+/F3zwPZCU04h1yvFXdn1dXQOVBVk47AHf5dZ1rf5fEFd7sDO75RdrW05F9ZX6AhDU58bHbvc2zuuTDa6wL0fw1nhZQBDjj50FkPS80nPE1P/Lv/zLa0AQQMFmLAMXQ33TxGz7LgNzy2Cz950WcNvDMDd4xLayw0C0PpNuw6F6ru85bIixqUxlNFZ6PqAKaMmGyMu7ARwMSm0qbcayko1h79oPXVsG3s699Gn1d+fuHQMLYrpvA4H+3oDq/ihz27qf7PfHfdzHXdqq8cdmuJ6dNj/2fgKGyts2pocbbBUg3Pd37QY/Ntjius2T6l2PKRncp56C1QtSboCKDdoyEuN31znqvfrb790hxEYKFjQPSgmApart+ixbx56Y39hlYwYAW33S8z6XCxmL1fPZ3k2HJcjhM8HHDSabLyunOu/8v/aNTvR8u3gEYNwvbYr+1sfaMTtkftw8vOYQgUrBH+uUI4hZ2XYKWR8AX7GX2WhjTpti0cpXfGTWd48+MG57Vu0rFVQBSQf/ArE3qFU9u8d8o42sv3aHTJ/bCbBruJ3f+owdaZ1+tBFdbxfRKaeccsrdJifAe8rblVtFQG8nMtri5Sd+4ieufvEXf/GdWLNTTnnHpEW1XGlAzHUogSEc8mWyJpgCHOUFdyxQF0Re8JJDvaDysWzPs+C2sF8wL1H3ymiRi72wbLW+49y3iHYglvIssisTkwMTTA7UBY4BuMtwXQAY89YCHfNimTAJcJod4UxsWohlWC1Ta4Ekfx/ZXpu2Yll7RyABkLgAI2aL9lzwa+vHUXeASG0aGNBhXDE/czByzsqn+qAHPega8Km8fpz6rZ2kh+CkCS5IRcBB1HYJBhLmcfV3YIr7dhvpbgnW7gu29H3jgx7sQTZHJs3qJNEvAB063Q/WJ/ZXjmHts2PkJlbe9vF+vgzPzcXsOiDzBjCUDyTre23J6QbsV99yDMb6rQzOO13Yg3ew5o9BogW1PP/IxDvqcvfVh9UxsFXwoHv3oK3dCu9vOrtpJ+hVTMQ9dGZBuWXU+mn3jhyH1Z8edfhbbUP67JWvfOU9dhN0T2C4MS6o0I+cpAuGpi/yGC9YHIi/IFL16NlHOyd4VJ9ryz4PgMg2HoNbtgtXRsBDn5eeJNZ24/LVr3715bc+1paY5cvy1xf0EMvVeDrq4AI8mK/6ll7XPoAh7SQIwzZiOPaZlC1suy3OcpBuu2LrYotKQZCuVw9BLnaBznimOmAXApzMlXuQ3zHNT6I+bPPmkN+xvcD+6sr273Fcu5fQ5Z1f166Q49zadRiKOz5XN5e9jIHKtizwvAzUdLw+SYcFB7Qd/WVL2OhdJ6gfnTuySv9/7P35r3ZbVtZx7/efMEhfBQUW1dNLJyBdBEQlCEYLpVcSIYYoSCMCKhqFBCIEEYGiMwiRImKAUtpC+q4oqIYqKKoKUX/wf3hz7Tef/X7PZJ/iPAeK5xyfNZI7997rXmuu2YzZjGtcc8z/T5y3nAjYwHYYtP4aR7eO1NZL66TsXzrbNPQBDPbp596PtVynlncaq6S3euJ0E0t199gFsb/tAuDU4+BbenMaLh1x0OklXbQTRJn0t+7gGOC5v6vjxtKuySYbo/Y/Zz/Gq36wtLre686ffc95Jx629hYWxW4r9dYQIw6m1M51Znec2PiHCW0u1x70V16WX+xhemYHU507K9O+t8YRCglwr02EGKEXdFIdG1s45+pYpgPnmCjPQHhlNJ8ByYVVEg/7kksuueRRkgvgveSPlE/7tE97zP8DaTdRf9mXfdljto2egjmwOJO/9mu/duc5v+SShy3iwNXIIDX+ug2R1EhhPGBlWHBahDNYhFKoAWQxKp2CMTUk/FYgqcCR9zfOYcEE7NQy/Moyany/snMKbjM+J8BroAcWS8MIMDTUIWbnfQBewT158m6GJLCy4HeB5QLpjG/piR2p7QB7nsXsnABbADee6bN0xunl2rBstBk/+8xgecd3fMeb3/md37kFkcZ+ZMxj7u7vGUgMGXWsvcuCaR0Bnwo6qJ/Gdp5xBxw8dbz1CJwTg7ZsooIBZV77xoxlJANvqm8rb2Pizhh0+jlGZIGU5QF43XxjCO05wB3mNKBgIPvARaefi7PobyylgaczXPe+tefKvvuWT+xkYUX2PQBsQNryu9Ab4hHSA6zQSQ93Ei9Y/xCWBOPd2FCgEGAw8OD1r3/9Yw6pkTbWt/YBUEzXFjO5ujPAuGE7AE7KxxjuFlhtv3pc2fW11TtQQ92N1dtdEVhdgDrMPc6Q6rY+UAY4EJZeFdx20CPDvgDXuS0X4KzM9K+OPGxUYC9AbOVan21c1TqsjBn6CYcIkNf766wpg7chNMwd8uL/giHK0tA8BZo4oqy16F7DErQu9DMHdK0N1j76qriZ9I6Dkq7Se20InKSLQJgyPAsKCr1Cb+rIMw6c4HjHutOx19+NF52/C17e5xQ80+qY69M5f/dtnNk6eOOC2O4TB1JxrMqXnRTrj3YeSJdT9Iwp3vwWeO+BUye4C9gqsKpMBe/Ue+ugdaWu3eu6ueNkWXu3vjABtmkfDgH3ckBxhgDMO6YOEDevYP9vbFgd1olgDOW0UL/mKOOrvGIAbxylvw7iVE/tixP9E7A8HSjDdumKxV7nL302f5V9bB7Vp3bPfgNqWsdoo+UPaMuh3n5mTaZuzD0dozmhtCE2rHWRNU2diHZf7P+9f+0CcF8aGz+B6NpC6Imlbb4zTsjD2kudeD/QuYxqawJl6BhIt5u2UFQPInW6Pmx5quTjkksueXrJBfBe8sBhFbBwX/rSl968+tWvfki5uuSSP54whiaMOMYLg4cx0me6QC5blDFWg7zMOIySHp5ybrGuYQqIlMcJQ/A+o6PgGLZKt+IpRw05RmABPwYiQNiim/FR1iTGBiC6oClDrQB1wdbmmQHaOmAkFdwuwxrQUOBHuWu0ThgU2FUNHyDmnNh0PejMNkxsb0ZOmS89FbyM5BnwuzaAaHHICwLaXj3QbEbPmEnima9OsWwAqAOLq5sMp4F4M+KwPb3vDK0hv922uvKMoVa2mfpz7wxXLOCBoTWqGgMVcLXy7F1vetOb7oAu73eK996/OphBrW4HkIgbOFn6qzOxR+kX9rP+BCBpbELM0OX7Xd/1Xe/0XHxl4OrevbjHu2fPjbE5QHJpLW9790DcpTfjdc+/+c1vvq2T5XMGaUEXBnrjabbswFzjxNqwp4djTItvujalg4AwYEiB0YJR+rX2KRh2gmf6WEGYgqAOI/R3xymH40hTeY1X6oDetW8Li3ICZSeQ6NPwKgXYCsz5rf93rOv42nHERzl9ACxzTi+2MEDWsx1zd//CWK0vcaQ4nAyQpfyce3sOa9eYWOcdENfYO/0r+3J5w+zD+gNwyJMxS9up38byxlDkMKBrE+VZf+GY4ZhsW9GdPW8HSOe+junmIM5VIJj6LIBVANccUR2uE0/7ArNO4JYYE+l0Qd0+czp86zisLq0eHAi2exxUJzxP23ZjFZDT+I6Bak7n9DJHniCWtmys0kkdAogV4t22PstGdr/8VNo//N1QEUBBdSpNYzLdd/jf/lfv2kg/Me4Bi5VXOIel6fCy3bcyTW82VgNjy0Bde2yewSLVBuaHhnUxJ5sv6bIdMJw6+qI0qoObu6tznLfq146CrqU458zFQgwYd6xJqu/WY5zBq2f9m1PGPGy+2z30xTjnMDRrzDJo5cl85TA0jq3VLecXpyW2MWecMQq73drLzjEhNvQL9Vu9soa1E6Jlaz/ex3rA+NAxUB+65JJLLnnU5AJ4L3lg+bAP+7DHjc17ySVPB2HwMCYYFn6zWPd/gd1JQYnTiARC1GhiKNkaW4CkBqSFq+cZHSe7yf3AD0Z1WWEFbTEbmq9um+0Jxhb+W8Bj3AGhvMuhcAANBiA2W+uohqV31fhmEJWB4ZsRUIOgdaAcZQO2rrRxF/tlBjcuJONL6IDzPepITE1xeGfUAK3Kvl4Mz9/93d+9Y9nO2Br4uu3tM0DFy2Nc2o5NRxiY+9vhPRhDjLXG5t37xQukh0ABAIy2aD0UDAfeAQcdSLPrWDvqtuw9RiJga2nZ5smAZuDSJeCINiyzEIhXHS24756T+eseB1T9/u///p2BLc2VD5AitqYYrBN1NDB3bbY6BeYyZLG+GZ01KtVvY+AK3SHkibagNwUiGi9y73Zg0L6Vtcw5wAs9NYZ0LFOHZ/t3LKmTpuA0UKRg8n3hWQow6wPdQstgX5ttS3Lbsf27Y2HHyAK9rnd8bln6f8f5AjPu1UfKwJ+ODNwYwLs2MzYpOwaxNDFn5Xu/91AjeqG82k/e5FMfr0Os+TMmAFu0C1aoMCr7H/u28TSXjlifts2vr6yM03HgjfZSTysDIFJebD+XZ7pc5yLgreFgJpxixgzv1ZfK2q1zTtt3fqFvbVs6VSdXv6Vb0P7UHWl1Dq+OTVaXA/hWj4DepSmcyUDIXRcDtfMe8LDzqXo6+2b7fA877fg9MW9zOJpXGgrmvrXJudY5HZl+7/hj7lIXnBd2Xqw8C5VAJxsihX53p5BxwhxL7+2smI5wtHE4rJwYsEIh+N2c2HG2Dng64ACzvUNehYppbHh6LSSKECiYxh0njW3YqtYMdYDVMb5xxnkPxsmO97vO2UnH9Fvz6uoB83vPLV8YrOZw76gDbWnMIbHP3rl0lrc5dIWp0ParGyEZlp/9boca/VVPdrpwthobtHl1smO8MWH3LO97Voxm7WLtaxxSn52/286XXHLJJY+aXADvJQ8sP/3TP/2ws3DJJX8sAUh1O2kX5zXEJozFxiIsuIKpwJCvoQqk6tZ8C9DJFsU9vb6sp5PFVAMBKFO2Qo1dgEgB0vtAA9vy5YVhMsGGLPjT92+hj2FRw1f+1WEPnwEKFnDDGitIVhBG3oAZjIP7GMEFtP3fbZnqomnuWmPFMTCw24DSwFbGDPBiBjxwduLgkOnVWK370DExCcve3Lt3uNN+Y7Az1k82Of1w2FiZWNUdhlTBoaWDicvwBTyoG9/aClCgfgpk0eGCU5MZZmPHAngZfg4Zw2QGHNF77+9zNdDKRt/fY9runW/7tm97GwqjurK///f//t+3rDrsr90/A7UMyb13jC3Mpn32zJ51iA+2Up0HwFr9A2CDuQfI69bkGdgNy1KA0TP7fwb5DPTF/gVWn+EV2teI5ysFlLRPhQ7XwVQQ52QJa2/bzuv44vQQjsEBXR2HypTVnqsX26O780C9dfwCdpyAbYEceRWbdrq2NnX/6tM4bBw1Vg/YN6ZhajucCkiEma4u6I4xRp4bs7ms0bL4MLO1qT5rjsDaw8pUZxwMYrhyEDUETeek+wB5rFKgENBk6UwHAcKY+bsfm666r8zyoG3cp31s3QYCCV+gH7ZOqten8+wEHs95476xrE4tY0mdSX3fCfSeIJE5E9vfjhztvN/nwFM3DfmjLYzTgO59rw9MZxxEpS9r8zqhAcN0CWPVs9Iv6F5Hij5yOvjqgGp9+Ji3NsYb66rn9Knhg5rv0wndube/C6UjrQnG6a5vzNhYzhGG1e5AOeOJ/qFM9MScszpcG268X5pCFOjLEwftCUOFcWz9g/G6e/Yslv65owTTtuPf3qs8dHvlmv5wDAhBpI2VQZ+1HunBinb+6Keb953T0LEaA1d4nKWz2OvYvKsfziRtYs7Qd+iwNdDeqe9rh+qHtbMxTNsLsYQA0bjC9N8c0HHGuqgOMHpdPX6i0vn1YctTJR+XXHLJ00sugPeSSy555MQiufFku83xBLwsHMuO9PsJKtaAmxRoZGT0eb+XYdLta32HxXrzVyCa4c8wlGbBJAZA2YXywWDv4TGMT6ciM9LLetpv8toFOGO97NuCvOoV40bey+a0WGdUCYUw6d9l/9b475ZQxoI2b10snRmK2KbCGLSdemCSE6PlFYDifgCxbZeMO3kBbtpOORDFllU61i3ZjEIGGtCg4Bvdod8MTWB/jcLmr6y4lWusNKzVsnSFzMDeKsg9WTkGDO3ehVhgoCmvU7LF1DvZmRixZdeRgj4FBnZthuwOsQMQrDzT44VYECt5eR+rUlpAdgap7wF8WNVAYGB7D+wD3sqT+ufs0AbABmUHBs3Ynr4tnAVwWH90qvjCRyx+/Yz91RGQj0F9H/sOm7MHwHmmbDlt2BiPHbeAIJ4RzsV7Z/SXETiQRD6W5gD+vXN51m92j0OLyuhbmgMg6Ljre35gg7pVn/RRvffguMa6pGtYeQUHp9/Th4LEYloub+/0Tu90+717Vhbp0U16qH8DIbC7AR/Nqy3z0uB48JxxZrLrvYe+7z3qkC5hKwLypi/AQ32q4VK0vfKt/9iO7b6GDdDHGmtbfXAyAtQ7xpgbyk5v2vtdaBaOJExK4/9982bF78Zz9xTkqcOwY4gxqIBO31Fg11xkPNhvq7Puoum4JVTByYoHVptHpavfANKUmdNQeejzwvPQJaDmdLzrhK4BOkb4nHV8lrkO5uVdfFXzpHHCeGQLv+vmxdYxXWi4Cfev/awz5JkuOIBOO7tv48bqbHmju/qgdYu5Wb2bhyd2wSzvnmnZ7YCxdsKUX79ZfsRZNkd3R497AbXd4cLRITatvrN0t8OBQ1iZl+5+Wz0IIaF+J3YgYeGuHVamObaWt4VcUQY7C8x/dHr5WP4cPtxQIEJAccg0Xru8mE821zbsRtvZPL/frSfUhQM4O3f6tkY3J2EfN7SQMdGc1V0kl1xyySWPklwj3yV/bHnhC19484IXvOB2oXUe5nOffNVXfdWfWt4uueQ+Kauq/xcYZFDVGMKKKQgx6bcFcRlzJyPojM1WhhHDAuPLAlr6BXxPsLeMhRpvJ8PBopvxD6hY/3WPtGuoYWIysBhNjaspfxP1BTyqsQ+kaAxC9eFZi/puN12eATEYRNqrdScP8si4U7ayLvvt0BJ5WVpOoz8BhlMfqjOMlparwKTyiFM4g2tbesXlw1RilJWJUrYnhlABa+XDjFvelvZALexfWx4LfDMoy4IpMF8wUfq714FAexZ4jHnF4F4ZB2LX6GvfKQBQIE490weGb5lngBeAk3uxCgtCjSk9o9c92x4LLHi7t3u7u7jy9GXtYZstpiOmUwEd7QOwqv5hhdmyro32DFZv+7ED4AaqTcZQXpmXV89jpbVd1NtA0Rn01dnlv6ejlxllnKmjaG3J8TLdGbgwljSdcRDS+uLbv/3b327HpjfL25wEC+PEAYDNxZEhfrW4rtMPz2NwL6TJ6kAf54xY+wG9AQUcEucYWPC+ZVwaf/AHf/CYOWF5WfmWt5VnAMnuwcQzJncMxWZ2CCSQXzzK9mOgdfXFrgrAizECUxIYom/2HcYlek+fPMfZUwfk0hGHfG0BtMMeBcTop+JeY2buedvH/W5MB/oYc+RNPs45s3Pt0tTH9GV607nLGHHOzdpX2nVqto1PQLN99b45vb8BXjFK71sv7NtBfRiJ6wsAUfoyWZmxFa0HjDsciBwq8rk63tiwtto9APHG7e1ao869ArZ1gqhj81gdh+4FptFF7dBt9+a1Au1lSMuHcwgakgKju45f7PX9ZpfM+vn+Xz7WR1cfG5uM0cYOY1idr8btirI4kFO/rmNzgmXr74GofVaf67y0/EwX/F3nrPG3jrg9v/KV+csRg1FfkoHxb2D/QF+AsZ0k+urGMQecyZt3ArvpiV1D8mrHyz5Y2eaFU784J41d5nB6YRzgyKCTnm94GuOY5+mQvBprOj64r2nf5xS65JJLLvl/XS6A95InLZ/6qZ968+Vf/uW3TJcHkQvgveSpGqrBAh1weG4vLHBYIPM0mnqtz/Q6MNGClBHHkDsN0Um3GNZAO99XxpByNJ2yQRkQNQK9CyC6dBlNDJ4CWg3BUCBGOIPmH6i03xg1QLvVO1ZHDyph2O35boW1TV5e2zYtK+Mf66PMUm0sViGjAsjSOKut67ZrAZ/J8jIDZQAVMECexZt0YrpDQjBZALzeAxjwnhqeGKkDamZk7p17tsxBLFTG7tJ30NlznvOcO2MPu48xOsCtLBr1M+kBXliA2lI71AjEisQC3e9ilC6dGerSWz4Z2jNqG7Zk9w9wA5oBRca6XXkGhO7Atv1PHwcQAka6VXbvG3t2cZKBz2IyK2cZ5UA15dlv2EZ0F3uywNOeERbj937v9+50ae8cYDoRmkPdiyv5y7/8y3eH/jgAruwmekS3ARl0tsDY0tYmZTECNjve7G/gkf+lrZ32+2//9m/f5mnlAxIDLG1bbkiNsjcL/J5MSv2hfU27FATVr6RXZqjfMd+ELtC/sSs7hrcf7n/gcRlpHR8KLHiHuM7uB2roYwAMrMuTsW9cNe6qt+lL2xZ4b+xrOAa/A8IAwPI+ma5Pp4QnWdoDvY2ptoWrlwFsKyN2+NJp+3JsyD8wtMByx8oCbW1r84Q6o+fqT9t2XHTtZLW3bjs/Np2yaDt3Nl3P1hFiTDJvtgz7f+OJMXF/79rGG0zyzlu2+Xc+Eh95/QxYpx0HGO/6ZHqhbwDZ9PmGaaJrXRt0zVGdO9cu5mqx6X26dV66dPEE2PoN+G47Ae7K7t04aO4yJlsXrB71zQlQT/oOB6WfHDBAT/PK7hWTvaClMtBVeg1Yb+xo44J6sU6xzuAMVOYCqMB9DF9rIWXZ9YVxWN/bDgjznrL4Nietznbf+qh4zAtTM+Egl5cTEN/9e373L72tuRyICJinW5iy9zkulcHOhtNRrC+pJ30dI9tuIW3pna1rdUenrWXVf51oDyry+FSQp0o+LrnkkqeXXADvJU9K/tk/+2c3X/RFX/QYIOXxpMbWJZc8VaRbksvsAmAy0DELCow0jYKlNRhr0Jz3eK/fGL9lLZbhRWqgFZCoYegZAA8Du8xIYmHc/8t4apoYujWMGWTABgAYFh/jgaEOPHfCs7hzmB/e7dkaXI0ryLiU557YXJARiFDWUIF7deG9DGUADWCweTnHsvvA+KXxrGc963aLffXEFs8ZbNuGOYBs5RjQNxaOfKlz2/IHUtqqu79nBO0Qt92//P3O7/zObYiCpT+wdAbrwFEH1Kyc22Ze42jPvu51r7uLW6gNMMrKTAVUFBhh/A+0LBC7PA80qsEPmKhzomy4lf/1r3/9Y/rhwKd9VhaG9L53bQY2najRh3HrEK/GnbYNFfiuTJiQA3r1pT3jsCDtiyW37z0j5AI9ar9RNuUWrxMwzSBfXoA36kV/XJ3ukLjl49nPfvZjxoMCV0JllMkorRqHxrkCK+3DDVeyOnfYDp0viIYp2i28HacKMHWcotf0HJMRW8042bpsfuWlY6A2GLC6ehbP3L1rJ84U+g3YaN+Vb2ObrdNCtQAYtekZt3j3At0AIGWnaXvPNoxBHXaAXqD7rnGGGCOxerWhsYoeNA5nmfh0qGMVgGxiS3vjuWqz1dv61fI/x9D6+Mps+zlnR3eVFMjyjaHbuiuAD5gr69qW++UNOEinCrrWyUgv/H+Cva0T6dUZeepYwXK6fL5v71hbDSDD4haOZaDsxrgRIgZOtv92Ti7wCqQTt70g48rcmN50pk4T+VP2rjv8X+Zu5ziAKzZlx46zT3ZeNs6fbGv1a01g/O18XgB+uib2rfjn00dhAAY+AgGNIdYXq58eLqidhXSq4wHTmnQXUNdQxifsXcDsfhM6R0xeYxuntLbWP6xdrAmMw+tLdLzrsqW5HRneJZyCEBDTp82LS29x2+mxsulnnKwnCQHAivCwvMzZw5GClaut9WdzmjFoaWxt07MBhHRADtC36zDueo2+GEMLdE881/VgnTP0t+14ySWXXPKoyQXwXvLA8r7v+743//gf/+PbyfO//bf/dvMP/+E/vJ1of/VXf/VuobbF/3u/93vf/L2/9/du/vJf/ss3P/MzP3PzSZ/0SbcgxiWXPGwpIMcoIbsmrqtt+0DeGkg1zE9wlgHTxeX+X7pbOI9pKHbjgBzvKsOhYGsNyl6Tbt/lHsaEBTuWVfNquzDjpcaINAvqWtRbPAvTAKgFcNiqD4ADlLl/751R0m306l05evgXo4ixgBVbpitmHKOf4VoGmHerIwySk7HDGMJALgB0GgwFpBgpjCqgp9/li+HHSMSMKcsG2w6DixGOeTugdyCvw3x2rzAMwMzdA/hSdnW7e7H8gI1Ahb3LwVIr+4ztvUe96w8zdHefsqwegXVl2dXYr7MEONoD3Brf8wRP5LNsPv1zxjHnDAazGKXqvW2yepkxvLINIJ9uOSyIrgF1sKBWBwzdAeliIgItdk9BWoYpoGHhIcqUZlwvL2s3p5HT99X3yrQxYu8WZ9IY0/6q/tRX669sQ/edrCq/m7/HlD4dSnvnWHwY4IuzzIFAL7wTwDsBIheQlSYmmbFJ/jsOqi9ptjzVJaBNQWD1tHqejuwj/MPKKWxFgQLrGH1h65a1kfZV5sZkdlgcxmDHC7scgBvVYePWCZABhQGA0wHxVxsuZDq7vGlnaWF7l919Os2Ex6kzEiPcIVptj+c+97mPAWeNEQ5i604AQHGZxQ1ZY36iV9pOW9OnAmuNk995XHlO8L/AZeds0jHoBIiqnwWd+l1gad92X2gbh1Ptt+nOM5/5zDvdMk9w4rX/mRf1jT0jhAXwULuqBw6wArF18nSs0KcKkLVvymMZ1J5Rb9oOgGpcksa5ZuLI7i4D41jzwRm7uUXMZ0BvnWvmfs4SumoclS910XIAYTlmjN9d28kzYNL7rCOEZeG8q47sPRxkrTPPl429MoqVq89WL62fMHfFzbVWUG+b64W9aL/GeKaHwPLV65wO6tS9Y//SJSxl7zIfYSsba8yZdojQh903va9jjM4A5+0GcDjgxtpdF9ao8wlHbscL6dY53LHwkksuueRRlAvgveSBZaDt5I1vfOPNx37sx94uJN7jPd7jMffMGHnZy152+/m7f/fv3nzDN3zDzY/8yI/cvN/7vd9jwLRLLnlYwqiZWBhaWFugMtRrxJX5dTJjalgCWSc1sraYr3GFzee+GlrydgK/J5O4ZSmIVkDnZO2U5ceYfDwjt6EagJ8FT4GEgIUePNT6AlZYlM+AENfOidjeLV1G7/7HwCzgo1yMMGVgZBZgBSrY7gzIZJADYRjqBXcLnpECI0BWgE4BB8ZG2Y+7zmDCPKp+YWZqn+Z3MVYX93R19qpXvequ/EIlFIDA6JKe2KDKAkRYvsYMXl0Aear3gCcAzwzpgXyrS2kBF4DsPWmbMFwxEpeX3/qt37prK4DpPo1P6Rn1z1CW9sIyrPwnmxbojP20+gPC/fzP//zdIVozkPcp80vIBmBYD9kbQIidK8+rj+WjAN/u2fUZyqvfGsNi0GKUqnd1vOsDkgfG24KqPVqufqSv3gt0yvt9Y0zHiLJ3lQMwBphSpgL5dXbQdfq15zb2rU31K+NfT38vEFMAt2Mshj2wC1MfmFHQTxkL9Cw/6z97dtvmjYXAjN23OhiQNObcdH1rGiCE+KhAzY6XPmWEGht7YJR45sZRQEkB4x62CTTy3Ppxx6NusW5oDQ4OOiaO5sqmP0/P155rn10TX3TPOBRK/XHg+L/hjFZ/xip5F2tZXhqaRv7VT3VUH28c4X2W3n3xZoHBxruCn+d43TmEzhag61zr+/wUCDRGry7WX4Fl+qK5YfqiDgFYK9v6d/tJY4ZrZ+xLYX/Epi0QzZnReakAqzFCf1Bu+TBuADA5VE4nj/YxvhdoN9cZo9wDcHWoqPIWEDTuzbk0ncEQX11irM4hB1wsa3dpcsjSAQf77W9xcpeX/b30V0brlOqLNl1ZliaH9Z5ffrQHQNZa5Zwz6am1CwerA8swVPURc40QEtvZsvQXe335mC6YE9UfNv9CEznMlUNTWy2Ngbn7XR8Tssh9wq046GzfA2eNEdYsxlBrAvcaDzB561Bw+JvxcO/qgZPCwaxthVAC/OrT1ZXV0epOLHBlUtddQz5ZBm/HjUsuueSSp5tcAO8lDywf8AEfcDv5ff3Xf/1j2BCPJ9/0Td908+Ef/uE3f+2v/bWbz/3cz735uq/7uj+VfF5yyeNJwddJDZgtQi1YsUywhvoM3fesxX1BjoKDrs3IE3eVoT8pmMgYmtR4OsFXUtZTQWn3MlgYGGcaNXwZNk2DQVV2kPI29hxWsLrCorTgr9HEmFv5bXdXlrIvdh8jokD8WT8Muobe8E55ZIjtfQwIoEuZYlg60i+43YV/gXHlxWqRlvwWqJpxNSMWuCRGXo0V4ACgpO3E6GL4FKR3n+cBNI11VzZv2w4IhPnqXT0grmw3oB22c8tf54A6KBNK2+7/gWe2IJfFXdC9WzKl2f6G4be6XJnXz/SvlWftPCBFjN/V//I8Vu1AGQY2feEE2LscPmVraQ+7WvoDbsVlLGuuzp6TQdtvwCRATVsJ4QA8XhgOITW2C2BpisNcJ9AEQKhPLc2lUbY+3TnBVGBnD0Ha9fWb1772tbft5vCeORt270ByaRlH1gbY6nUycJ51/bBwJh0HJmJKdhxy6FdjmbasA+m1o99tiTfuAQcGelQ31y8XFmO/zYE9xvTao04kYzU9KeiOQdkxQL/avUu/9xSUbExZbY4tDgTFHAbOYNCujs8T7wH2nE1AtaU13S6wt/sA9hOxQNcvOcSM7fq/MUOc0eVB+wqV0rkBMMuxY2t3wTXAlLnFuFJnX8dl4C8gstv864Ct0P06OE8ngj7S/lRwVJvIJ8djnSCcksrV2OKY3uLp7nlg2q4B4rTD+vjaZ4xz6wbvLxsUYIjRaN2iL9SBgCFujuwY38PGlN03vW3dl6mqPluXk4Zo4JjqjhuhQswJ68dAYiEvsO3rRBEn23qijPXqFd3pYWdjq5oHT6b57l89C9G062PZCsPgN2ONvBZUd70gPB20Hlt662dr36UPABeSZA5D9abN9bPpx+pm4C7Wsv7YNSsHifF1v81RsP83vrYM/heCRwgWYLJrKz+HpPpTr2cICuNDnS918u5vO4r0WbsUhGSpHtchWb3tHKi9EQguueSSSx4luQDeSx5YZshNxroiJ2Pq3Brznd/5nTef+ImfePPJn/zJF8B7yUOXsk4sFgtgdWt5WRruZWwW5MF8AfRhXVmIblGMzecaQ6IGUsFQUiD2NEr9XoDmZM4qy/m8NE/mSQ3kLqb18xoqPTmdEdxnMCJrELdMjGNGBGOEwSTeHWDGb9I4GUkF0treE+BpjbgeuqaMZUa1Hip+q+FaHSrIWZaek7IBc1hpTp6WP/E/MY3o0mLFYrwuPeDjgLaNzY19NwHS2P7vHUI5MAoHFgFTT9YcwAkYL5SBMgOvtJH60T7aCPPMFlngK+MXMwfIjM3KINzz+xTM2m8AkdXZ+pc09MuBuYsN6HT7vW/g5Ate8ILbZ4BPQBIGtHova4qRCQDU53d91/aeAh9A9rVD+zyDW/8Ye8kJ6MCLfe+55XHvWtplLC9fS6OMz6Wx0AkOySNADuMMIASTrEDEBCOujpj1RcD47l39Pf/5z797Xl8zFgIMtB8QZdd6L6CmwBCdKKhDrwGm8jZZ/3F4XsEpzMeCvvpYmcTdReE3ThSsNuMPkAjgWmC7YW+AMfrZ+jzd1087ZnTsbigEjg7voDMdY7EMgasAJLrR+KPqXz/CbBRCBzgiVIl50DiNCex9wKXpaOOZGvvUm7wqQ0Gr1n2dFMrZ8YjOnLs85Lt6z0FWx1DfwUHg7zoFO86fIJ37jKvWvJxy6nVtvt/mzMPgnU7v2TEzl5eBmcqxujKGClsyB5S44ftsTqBfxmH5MeaU1d91hHpQf+e83bY4+0sde+ccWeejcd9c6lMnonUDQJfzY+OZg+NWzoGwwtQYpznuyk7W74HPwj5hw6pbz4shLc/0Rlvvb+EXlq4D3ZTfbhnjkjVj1wz68+kwU+/0c2VcaILNq55bXtdP9x5OJvO3thcuZ3W28pzhWLxr4OnKh7m8Z7YzQbtoC88LT7NnzH3yO53dWEPPjG+bd40HS0Oc/OV77zMu7LeeKSDOt0MvOTU55RqKo2vcEg5IAX07BDCuL7nkkkseJbkA3kseWCxSGk/XNrLJFrFbBFTGipk4dOiSSx6m1DCcFOxkfBaoZDx1++iuMSIKOG5BOUbFFug7UAWgtEUtaeiAxt619bdblGtcnqChxW7BxxprBR6Ur9J7ylI96+kELL1n15WvseXUVe8/t2UDQ4RzmDRepnxgtwG+XK/Rz4gvyMuIL/MMu00dYQcXYG9ojratMp9tcTK53aMNGYjuWZ4H1DF0vHtxYAE3kxl9wLD9PZbo/p/B98pXvvLOiFn97zOAV8xH+rayAROad+XudtMCVnSUfvZQKiCAGHs7ZA04zTnxdm/3dncHAc2QHPA8YxprCOjpsJz91u3d+ibAqXp9AmNtC2w3IKstvq94xSvu9HPvHOtpv40xJUwIphhQYlv4V6YBMwBO36v3lY9xXYfNGK5lg60dltbuB5ABZnYNG3N5tn2eHtdxtDm0wOd0esBPnTAFmc5DbNTryZw1Lpz1bDt9Wf36O6bldGCgnti07ZdAbwZ/8+5ax97215Oh33GrfXPvWBs6hOzd3u3d7n7T/4Bwyna+u+OpeiloBnyenmCpc3Rg43Zr/HnIlHAve48QKMqlLMZQz9B7gCxHz0Rf3Hsx8sTSBugaQ+n7fm/4FduxAWP6HlBzetXwJNpIOTgsOWSAL3uvwyzr3NE3JnZM1JFX55hr+xa+RH9RrrZhwwBUn8/5umzSjunaTZqn8/PUy+qWMRBo3flp9SOeqIMkhfjQnhsn1f3GAuCd0C1738ZOToO1CQAY69VuDO/WXvLaslTcdzqTey9d0lfqqOGIONdRDQtQ9qj8WF95h7loc5e+Rtems+YU853wBsbj7go5dc0cpA84YHEfgGiZ3Po2/ew8JNb9nlvbdlzUL/e+Mk5b5sbrNo8B8KcnGPAA6oG3m/vNCUBY7YOh7XBWYQ2ApOak5XtiJw8CA6eTcnJscjY4IFDdb5xV7oKx2pgzbPfXKbc87H67W+zA0J9XRo7ZfRxSuHvnTJTPpb26BwhbmzRUU8ObCFejzh5EzjnnYcpTJR+XXHLJ00sugPeSB5ZtKdv20G57HPvIAnknfp8AL9avw0AuueRhysk4YTCXqeu3iQUl4w/rbdLt/AybLTQBuowAMdxcsyA9t5xZvJ/gIuOgaRaUqDFhge+5GmIFWqTjtzJuyvhlOKqnMni8Wzl8Mxy8q4BLAXLGjC2PZbFNHERTBmDLzVgBlKufGlnAXYw0jNkJw0ndtY2AAgXC2xZYPwUnTv2yXVZ9Lj0HPTkMBZOywHQZfYAU9eCAOsYLYKeGLhBuegjgom/L80BjW7z3zhldG5+1oXLqFwA7+RSnccyqGX8AqT279pyhJuavrZa7bwYpNhU9uY8tJ5ZgGXlLe4AxRrG8q7fVK5bV3vO6173ujtmIFTSwFbiq/n0PUCjLz2E/KyPDHBi9so29+tu//dt37DL9vwfRiAm5d2sTuqrcdBt7rdv1977dh2GtnuSTUX/qH2YhKbO1DD4AlfYt+IDBqw/ZNqsfARcHgq+u9CHgKLZvgXmAVscXddC+RP+kWZBRHxHeY++YY7nOsvbTcyt/HVYdX32f88MAt+mLeLw7nA+YicmK4Vs2oL4EIAHCFNwyFgDGPAPwoxsOWDOmaMPOU4C39WOhhoCDxqC9B9gjvmgBbm2++zmZxP7U75b26mHp0J3p7cCksocBsj0EqUz/hp8pm9T417GoYGHnU23J+dJxpIxC42Idcp3r6bi6KABfh2uB8B4kt7rB+C+QZQz1Dn3XjgNzqdilnSP0d6EUHHRFnzemYGR6hzpUDy1r1zotz30guHQ4Kc37p5P5dNTcN2YLbcI50b5NV/bc+vK+Vy8rp1A46oUODOize0L+OA6MU+Z3QDin3tpsc6KxwjwqlIn2M54Jr2Ec0+YF3hr3VznLHKcDQFR1oL8bi5f2yg3w3m8OVjsZtktnbb/7R5ypQ5Rjt/nRDzCYjcV0dX157+waZPW1Npkuqk870DqX7P/dszqeLdixx3gvfnjZwMv/8ukeobOA/SsPB4DnhBk618LqmU6p08vmvOSSSx5FuQDeSx5Ytj14AO/iAf7Mz/zM7bVN6Lv+vOc97zYMw4//+I8/5pkXv/jFt98z+C655GFLDbZJt12ewIO/LSDPba3Aw4IqjOctnDFS7mN5dhslkI/RyvjqQraL2AIRNbYsbmuoeTeDpkbWCWKeTCbG7skMbj12kS1dsXcBKwz6Mn0B5/sb8MGYOxlG0masFPCeFCyoAaru+kzZv8BKjF7Ae0FNIEuNtX03/mbDNNwH1CqDuJ2AW6DhDqpkLO290wUHzABHl9ZYsB/5kR/5GB0Qq3Lj69L+oA/6oDtgt4bYQM+VccDN0gH8lhFk+yUgYJ8CfW2bMvi0QZnL2mAgKEDQNUCPbbAniM6YBloz3Avwq3tGrdPotyV1zGJG6xiJczKKb7h6nWE5g7ShC4DB+3/1s3ofG79spb1j18e4Xdpjja58gOuJPoONx2Cf7G+AB12zxd5W5W6LXlvNyFYn7Y8dT/zeOilYBejoGIB11fGFAHTK+nKg1sD7pYUFXrapPseBIV3tdYKSylBgSp5d6zjT8Uc4CrE1z/G6gHGZqNLp2AhAKTgIHMWmwwqnAw5HAricjrqJw6OMccYwzP59xJm1lXm6MiBDbF1tKa8dl1y3IwCwYn4SYgLYCdDi8OrYLp40Rqrxya6D1YOwKhz82sw2bbGC6VUZxfeB+mWJmvvaJvShoYvMrxNhOQr+tp7aJufc6beTxaru5LFOTSxG4+TKLI6oGLhC3dRJd59zpXVUR0aZkQUtrT2UYXWODTkQvs7Rvk8775keSFWwWzvTfXNgt++rR3KyI82D8nwfg1d5OQ7XfnvHxmzjDnDXnKzfAUAxl+kTxwrnBgBTOddG5kMhftSzcgtTZE7isDGGG6/qKDGGVo/MT61PTrECyNUvMcH12zrTMbQnm6/MI0tfLGMg6OqwIVisMziuVz5zgLln9zc00NJbfdkNs3awy8kBpcBXeWzs7X3sJFqdmyfM/w5X6/xj3t3/3qF/tU9qd2Nzx1B5L8u5jtJLLrnkkkdJLoD3kgeWl7/85Tcf9VEfdfNhH/ZhN9/yLd9yd/17v/d7bxlNn/7pn37L4P1P/+k/3U7Wf+fv/J2bv/7X//rthPvDP/zDDzXvl1xyAjCTE+xlhGLiYV4AWACBXbRPBsRscTsjGbOroIf0+13DndFQNpvfalz1ujzVgGK0l1Fc8ER6DMkCRefBSgVUyvCdFLw8jT8AqHy4xvCrUS2f0m3MxrITAVM+tk4zGBmxzWPbFoDardbyxIhzb8tRALzbhZvmmQeGR4GEATYLFzD9Gejo/ft2yBc20f6egQWkxYDZtt6Bj/LKiAa6AQ9sSy2YMgNwIDAWTplqGLnqrm1ZVmbZXowoeoPdC8hijC1fr3nNa26e+cxn3gG36gVDqrEf5Q0LiVEtPECBfWDxgBcxQIVRGKtzW6NXZ6vf9U8hKxjNgNU9szAIDmlbHWHntb8BS/cNVH/3d3/3O0Cuem6s0C6eY/i3jtXr0pluGH+0F93rlmIAxTkeFOjxuY95pv92LNW3aMIAAQAASURBVCpb11Zc9wDYbeHXtxnlZ9/BEFMfdL27f7CsxHwsALcyABsKUAHqT0fO6YRSD/SanhfMUWdlyGJjrpwty9hpO2R2zoOxCOl443wSZdE/+746hcSiNF4NqNMX1W93f9TR5DAmY5QY71iUgMrVr0PkOAsGvmCjL73ds3drK/3DOLv0bHmfPnPI7QMAchAYJq/xoLtN6gDiBFVXnUtbT9pOOY23dRBiihor6ADgyfhCT5RNmxWcA9oZ1wCrG4PX1oBCIRds+zeWNX/Nj7FVzOKT/apuAF90EhhvfimLXRnXlsJvuPdMu/93HWBMsP5oGBHgdefic55fOc449G2zxs5XngldEuZGOwlnw+G4+zeWA9fXDsYlfXr3ijvuGbrrkEDs55ZfeXYPJj4Hq3lFeIiyzvVfddPQFKdjXniBjrddy5j7rYtWVvO1dFdejO8+u7RWX+J7t449x4HEmSp8jzTEL6fLe0Y84JV7aWPZdk3Z3TN7VkgEDv3ZgZjmxjDjZB0gHIcd7/RTIPee0UbWAKfzXx3WcWJcfRA55+aHKU+VfFxyySVPL7kA3kseWF760pfefNVXfdXNx33cx90aBeI47vC0z/qsz7rdvvilX/qlt5/KFglf/dVf/ZByfckl/38BtNSoZCxjhlggM2wACpg3WC0MnP2+harFqsXyuQA9gVrpd/FvAVtjqvedQK6/y+4DwDmYo4dceHdZLN6HMWmR3QWyvDH0GFaMuZPBem69bb5PoEI7nAZigViA9MmKLtOn71b/0tIW2sGn9bLfC5xMWjZgGeYnZisj9mRIlXUIZCn7kvSgHx9MKjpXQFQ7Mfh3DwPQIWgzHPcBMo2F1xPdyzpUX2edKJcDbsqQbMxA958Ao7IuH3vGNk7vKMjsf/pf9ldDCpA6CMZw3vdCMOxe23D3PoB++0XDZvQEegyn7/7u774t84xT+la2JN2a0bz6fv/3f/+bV7/61bfv0z76lrEAk0sfclAPBtXyuDZc3vf8gMR9P+tZz7pN10Ftxi+Gs7IBrjHYjHXqdgbyyVz0HH1V55hb+pJ+UYbe6mpg3u73Tro7nVib6JeAozFuF5u8jEoAFtHXgOgYz5P9vXobmCB8CxBl1213l87uWR4B7ZwJ29bMAbJ7GiPSmLk6Vx9LfwA+oHxtbv3jnoE4DYOiX9qZASA9GWbLszAznnUvEEm/KMu4Y/A+gGbjDxbdRPvM2WHeWnoO+ltZgDjGmqUnj8Bac4Bxb7J23f+7f/pLB4UWoGd2DBSYr6Opc9zkvpBJfjOuyC893vPdkl7GuLnR2HrfPGxuk2/3TXfG0t//4rcCwoUJso29z2rDjteud35v/s0b69/KJv/6QoEyoBgdFZLA2NB5skBt698c4z3eW2C6DsuOvXS9uzwaEkU7GDfUw3RkfbMxmxvSY/o04HE6TI8XDoZDwfix+ncI3dLzjqW75wCzdTYbR+vgclioPmq8WN8wjmyM0e/okzYV1kFdqjeM0669usOCQ826c+2+d9mRQhcaf3tiHBoQvO85pLS59Qn9N8bs99XpxmbzHX2RX/qx8WD3SVO9Alat/eQFsC5/5tWCwsbSPc9Br5x7jkNhz5hj9S8Hz9Z5wJHtnQ0N0zMNLvmjZc7wz/u8z7v52I/92NszHdYXdjbEyFrf8A3fcDe+PRlZO2zX7/u+7/veft7nfd7n7oDWyYd+6Ife/NRP/dRbTOPLv/zLb/7pP/2nD/Te3f8VX/EVj7m29cfWVk9Evv3bv/3m0z7t0x7onZdc8lSQC+C95IHlVa961S17tyyByQb/Xf+u7/qumw/8wA98zDO/+Zu/eRumYdtdL7nkYUu3ytpSuYXlFpAMfWwPgBjjpFsVu02uJ8lbuDOKCNZBwU6AiYX8CWK5t4YtYSiUMVJwZHIC1QVZa+gydlqGMgLLiGJAeJ8FOSPqZIGWmcX4abnL7pqc22PVp/wqz4waWxsZG0CflkE9l7EHzHcfYKfx/oAbgIoaxfJX9hz2FyOj7QXAGFgnRu1v/MZvPAaQUo90qYfLOdBvBvxYnWV2YK3O0FsaO+gL+xILafUEcBvQW5Y0Xdo7B5yVGTYRj5X+Au3WR2ZAA4s4EjD5CmYw6vb7nsGYxhyqgwFoXCNef+0WUzqzMk4XxhDWNgyHGSgTTNB9xoAeS2r5eOMb33hXtrXLrt8X91hd2j7q0BlpbuxYvdIP+qBP2O6vXm0xrTNBP2TATkfWpsvXC17wgjtGlH6zZ5f/glKABW2qDzjQz/Z7QIGtsQ57M5aMzYyNaIwR57LssZVjejC90VbLx65haRoLpF9HAel2ennnQDnjYnNY6NOeL5tMWvpL45uWNWos6a6JE3g0Bg5A2e/7djjQyr962tkEGJc9aIke0jFAi3rVrxnPHesbO1h+gfDi9gLDOBYw8oDF09Pp/vpZmePGuDJx6ahx3ZxEN1xvn3YNCGM83vuwAPVt40fbWTnbZtq0DlROps5pnYuUoXNVgcyuVXtvnRvVUSCiuMMAfOlw2uw6JwTdM79ghAJl1bly9aNfAUkHKmoP/aCOvfaH5tu4vnYQmkN9eo+5UlrmD/UgvwWFC5QV5K2+eJd5uKCwMbRAtbHBGIs9OxEawvi+cdBBZ+4Hhiq/Lfzrl5x7PSC0LFFgqrm74695yKFq6yMb2x1+V0B6IhSBNYP+bC2391gn0h3rJuzglXFzj7UTJ6jwB5uz9tzuA4wCyZcO3azz2buxu4Gqe6Y7n9S3Q+KMOXYQrbx1znQcs8bRH4wx2q/l3phgjd216/Ij3rfxsiz3lcOZASuHOjPGLS19RZ0K4VIywCWPLyNszXbfWoOsvqdXA2M/8zM/8xb4tZ56UJn9/5KXvOTmT1u2Fr7kkkdRLoD3kiclP/3TP33v9XnXP+RDPuQ2LuFznvOc2wl6B938+q//+p96Hi+55PGk4B6jpFvv/Y312gVrGbZlHVqw1xA+2ZA1cKV7GktdKE8KynqmAMv5Pr/L3wm63peWd07KPCxz6jROfAqYMpYAdGV0ehcpq4dR2DoqM2gCfPWb+wBJ2CK29KnnGpYTxhZDSBkYFvKmzeWpDFD10DwXNDlBfG0EzMPYBFQBKhhbwAEMlRpiZUtqw6XfQ8m8B+DCGARSYptXqpNN+wQhqqc11roFf78vTIm6ZPQWrBvwJh6x+qg+A20Y4d47IG1lopcDQhZfd8YxPWAELl0GeQE026vL+t79SwNgVEB9xiUQT7naN1d221gdSOO30+GhfgtGARsKti/P++zdAxD27joogGJ1tjCaG5/S/fpTmfH+lr86Ltp/mueTQYXBW0a0e3tNeY2rrp1jaPtg66d6qawtW+u6Tqr+3/S0T0Hwgon7ACixu6ejr3/96291YEzYgbzYqwPfhXXY/+rqBLOXnpARZdi1ntV7gUIxL6VnfNW3HMomVIo5TJ9TZgDRnhGiYX1Imxtv1T/QyrgHlGm81gLlEwDzPqsjYSDOua6fc7t1ATm6o978Zhwu8G8s7UGG5zsLzukz4phO9h5hbBoTH7Dd2KYY3MqAqe+grzOUiPLV8Xc6sRq+Aei7dyw9bee3srHNPepbaBNze52x3tU6MB92J41r5zrmLE93AwDj6eA59wPDhSGhp4BTTNB9A5+N6eZ3zN6lO/AVU5qubtwEDmPP1mFI1wHdmxPWh6xjxM4WAx0geoa1UVddK4jhuzT32XjBaaO+Oyab5+1CwWpdGe3csLYC+AJiMVvpmvS7Xu1ODDotDz14Vqgdjseymdsfu25yXRiXXdvfA+T9tnyIH6yte5aCOOH7XYxe44xxhMNYfG9xwAeEC4dmDLD+tIZ4UDmdjw9T/jTy8cIXvvA2xOLqcePZdtr+xE/8xG2bfMqnfMrNZ3/2Z9+Gofqv//W/3rz3e7/3bT95UKndsfZ/5StfedtGY/E+UfnGb/zGm+///u9/i/dMv4ZPDKje2m07jt+SfMmXfMnND/7gDz7u71vXXXLJ01EugPeSt4rs0Jl9LrnkqSgFWS1my76YWPi7t4ddEMYmkISRJ92ykRgVJ4PpBDvKdikwdDJ3T0BRucqA6+L8BJbcQxhm3eLb99TQrqHYrcXycbK1LMz7G+PPQv5kNfX96r+GeUHeguE1tpW5bKsZMfKFSbf7MOyahzIatZlyM3bK1NVu2qVOgNaxOpVfukIHGFbLK6CCgbmPOJungbT7gX+7DuiZ4SQfKzNWEvBHXQFI3cdoXdgDdbY0Hfy2vGMhF6hrvNAyLm2nFBeRQdv66OFs8gXgoOPAFeUeQ3Pp7SP+p5iiu19sXozTlWvvHvi0azMqy97cO8XUXTrb0jdDEqC2tGzH188KyrfPnSBr++rStqW/rFJtOsAZyLL3l3F+35jgN6zBhj0BCnTsK8ikztvHAAb0syE99AuswhOE1WcLbCv/yco/RX7PMarjBxCt9dwxp06jsqfrSGldT8pw3bPbki+u7XRq/Wu6tu2dC8khFjEgczrF0QCAB6y23oWG0IcBWy2be5fG9Hr9dTqgXTHA1QG9FZZl7x+osjYX19c4J5SQsWxG/co22e/YwesXgE+OHAAcoJ5eFPBRNnGVl6bD4pSJ6PP0os60jpsFxDlA/K/fYTyfgDoQvvOTudXcvzKunjeerDxij3ZOUC+A0Y0PdfIYG4DMPezL+wqQnnNc5+w6YADpYld3ztmHQ6GHSgENza/tE8C+s68a37SBedQc275IV4318sRxalyrbtYJLX/mTCzW/b1xcfeInVsnpXFWO82xIn+AvwG/S0NoHjtiyrA2R3O4nE4BIVKEgwEYAkMJndOO5kU7aAYQr93ONY0wJ50/5sSjc8vP27zN2zwmzZUJs3vPDkSVd+mof+tK+qvfA8sn+18YGuO8sUpop5XDfLJnBzbrA8qi/2Agrwxd6wJvxdDXN6S/tDhSd7+wMXt+Y9A+2oIzWzvus/+XDzuU7B4Ahl/ylmXhFREldr7Oz//8z9/9NqB3JK1//a//9S3I+wVf8AV/KOTBE935+/f//t+/+aVf+qVbwtf0dCEXHgTgXf/Y5y3Jx3zMx9yxkL/v+77vMWSI+2S7indA/CWX/L8mF8B7ySWXPHJiYQ2s2LfT7h2wwwjYgpJBe7JV9lzjf1nwuofhR2poTRg6/i6jo4af3wqySt+1MqAa369gTo3KGrueq8FRQPgElBlnNZIK5knXe2o41HAvU7fXusW8IHWBgW6pxh7RJt5ZMK1MXAbVQDrbLguuNf/3sb4Yr2UMFhw7mdNtvze/+c23QM3yt4UokGGMBgbu7hvrxy6IhogAUM64Y9xYnM/AWbkGSO6a+mAQOqCKIVjQfe+dUTQ2lO2yANABvJg0tsXO6No92NDiwQLvl78y/SbL0ww9bLwZlw49azvvuaW/bakFCvccQIaeLZ0Z9APj9pmRuHc0NilAeGkNlJOvfa8NVj8DgReWYLFZ5X/gwcq1epnRycGzPC9GHUBFn1Tmlkf+bfkGuhZ4BNg1ZuDuGTNZTEmMJ32jTpj2KeMMMMP/Zd4aL2xlxvTTR+SvDpA6WtqmdYRJv+Gbmm7j0xbosd26IVIKAklHWgUKOh6ItXkC7QWY9F8nve8aIBLggJXsGX1MjMg5NcYS+vAP//DbuIUDTAZubAeT+NbGUKAUIFOdrRxi88pHmfx1Nmj/5VkcZvXWdtjfGL79X6zTtTOnzsa+lWvXHFqlTgq0yvMJtK2MWO6AYw4PY/FE3Ezjn23d9MUY0tAjdajVoXffGC09IPPyUMAT65ecjqz9vo8xlC62b/Xj/d5Bz7sdffkQcxxw3THoPqeG98mj9vNsncj6Nidcmd2tQ3UATMREl6+ugQCn57xfUL0OoYZYqqMWuNsdCR0n6rA2JixfDhqzc2FpCi0ESLYe4GAUskE+hQYB8NRp31jWXaeUSUuPp5NA5s0BXVdpd/U2/TZGA1DV9fIuhFHbd2KuFz9YCA6O1+mkg97s5DCnG2c5mDYfYeoK+wJ4xoSuM7qO6t279YgwDhj38tayd1fNuc4T3sE4ITzI0pD3ifqzXtLX9JOtj+y2cdjpyrVyAuytQ4C5dHR52nsdKtcyX3K/LPzCdt1O/sN/+A+PAXfJ13zN19zGoX2P93iPm8///M+/+ef//J8/JlTME5EBu/u8teVTP/VT7/7+ju/4jrf6+y655KkqF8B7ySWXPHIiVuEEs018zy5cGRYNOdDfangVbC2LdnKChDUq+jvjhxQgZBSdLLsTuGWEup9YpJ8AMcMG4HSGrvB7t2UXUGFYn1u8gWENw8CoKOhSI7MsN6ARwwIg4J6GkSgLrgYqA4ZR1/YBdjAIMT+1awHjslMZmScLWDn8XrZU38lg7AFR8lvWduOL7llOBiAChowtjTU6pdHnq39loylb2anqi8GmfwAGMHAANMvbQOAZcX5fOXs4VoEQecCy2gdbGNC2cg2EqqNl122JBqLsHZi6A7bHenrDG97wmJir+vCMxRncM4jV40C65X8HpE0HtMfytPQB5/t/egL4XvoO2hoY33plHOt/xhu/02X1WuCih99xNgEIjUFA+pVlrKayVLSjd9EBrKsektZ+1LiSu2/gAQBRm+2aE+6bLtC+Y8muL940tpj+vXYt0KBeBo4z/gFyK//6Z3dOdLv17l3Z55QAog9wdY8+MtatOgLgAXC8n+7uGlByaWH8Ax32Pf353d/93Zuf/MmfvDWOVy/T1ek81neBNAezNVbr7l/7GePLANcngZADdeswqPOIbqlTQLB4wdNpfUq76UMDpXc/EMV7xfWkP8An7VNHgPLUsWVXgvysnOtD6tdBd/qC7eTEfd2N0fm0TEttzaFTkLuAGpDPtvaVmV53bjx3aHRepS8nuKXPyKexUR0B2fXhrgdOwFe5tKn3umYcBBAC2zvXGAdaX+afxofX3nUId/3Re7quONcinJTmYWX0rL5p/p6Yt+pc4UzZ9Y2960vmIHUu7vvGvY1FflsZxXjloDyB5jLqOy93DQKoXHoOkG5b1qG+fsb5ylmz35fH6fj6+PSsddW1njXR8rUxDEhtbmhIp+6+2DuFKlpdnM4rYC+9wDzePZu75MWYD6AXymjzXM+jcI/dN92pBPQ2vwB3l8byZi3YMdvayns2Lg4ELssdOLz/MeU5v+jOxjaMYfqpDVonDyr39YOHJW/tfPyVv/JX7v7+tm/7tsfNw8DSf/kv/+WtU35n7fy3//bfbp5qsv74CZ/wCbd/b35++ctf/rCzdMklD00ugPeSP5Zse8UHf/AH3x5uI77SW5JNFAvWfsklTwVhnFi48/5bSE4shsuWsnjEWLE4rvFblluBzUnZSgyEGk4Aji5Sa3Se4CiAqEBrWUdl/XTB7l0FAoEiZSsp6/kOhjZD+L7Yt8oCdPIxVgDfTkMbSFRjWr66cC9YddYvY6gMXgxYrEUHZ2GSSM932Wfe03ARpxFxX70BAwcAMTy7dXbpjq0qditmEKNuhmYP3gPurWxj39jOLxSD8ANi+NliWdbQjKvdv3cC/WYQit+4/DEgl44Tu4EZjc1YcB8gf7bP3meru/SBuwD1E0xoH/J3wQ2sOMb0yqpdxVW0vdO2VQylyerkZS972R24t3paG+3dTg+fjFW0dAa07TfxNZfenlk9AWbf8z3f8zHMw+VldVi2dPVjsnSe/exn3xm9HE0M9bLaOBfIQNRuEdbXsK/7npVJfyqIj22o7lc/YzKPQX62CQBBGfYcMAaYpb4xsIxzdAdI1T4yg2wGO93aPesTPRwMqKL8gC/M0pVlAH8Zcxhs9A5wgM1u/F/9Yq4JoSBvxnO/ORRo7/2xH/uxmxe96EW35w7s2oCXgavKuXQG3gitMCDbdmvOoaavbA1JAhC1Nd14VeeZe5VxedhzQJCGB9jfG1OMefRNPeu/q3uxur1L3QGOejiXuUQ90uGls/ysbgBX1Z/dqy6kdYaeMM4Yk5XbO+tobTrGPaD16p1zrY7agrQcBwUyCwbWMVGnrflMWex62Ge7C7ArCyC1/eqcKxu4zMXmd32OI4j+nAxZeQfi23FU57O5rSzhU/xuLCgYLkzLyVxvXRkbgMDmoN23cgD81aOwOj3gywGdXcdIe30Pa7TODPoCKJY348/ybt7kRO1OA+ms/koMMNeYzzcWeJdx9W3f9m0f4zhQ5z0U0Bxm7jRO6K+bcxxcqm72zl1feY3dZc8DvMnu0w92D+a+OZROdgzYfLo2UF5OVE5h5Ad1bTeIsgPa66DhZDCPaUtxqzc/AYPtNKAXgPo9s7owv9n1wvktREV3BVzy+PJBH/RBd+37K7/yK49730/91E/d/b1D1J+KAO8nfdIn3THFv/M7v/NhZ+eSSx6qXADvJU9KZsx867d+620cuicqFvMXwHvJwxbbuyaMBGCgmIMW5mUC+rtbWCf+P8HLMnkxnbzP4hTT4jTKGGaMBukVeC6j9vH6m3fJo9+AwifTqYbIBKB2xve7D6QhBYKVqYb3yYgqIFPwFNtqUjZy67Fgj3sKsDOmyggBHns344yhfAJw8t9ynKdpNw6kupf2AJ4BhzuBeIYhEEyel84Obeo2au3cctMNzJoZxr/5m795a7A973nPuzX69jvm0QzXd3mXd3kMeMrYbRnVu7pd2hhJyodZtHoqw2yGHMCowA3WJYBbm7Sv2SqONVlW1e5ffDTGb7fiAgvp4Ri0C2cwQ3Z13QPbbPHd7wPDF09u9TVAYHkc8ILJuPqzXZ1+AolX1gEtnEADEtUnMGrpvfM7v/OdPk6AAKsfDqGlJcaneL49eA+QXqcDcFF4DSzJ5a1xlH1WlvZ1oK++4LcJlq1rDPnV0wlm7X0VgFbHmIJ3BZ70uRMAwspafQAr2u/opf8bqgVIA2jpeNFPt+wCNSZ7rv0biOk+ZSn4ZGxZG+63V7ziFbfA7TOe8YzbPrxyTD+8E6MXkIIBTp+MscbO9k0Ot3Occa9dF/LL4bH8YOW2r9T5t3zQ3QmWcp2RdQAVZKaX3m1MAeIUHF0aBXnr0DFGG4PKFAXumJf0acAyHep8LfxCweeVUaxR5aXn6rLjLPDrnA/L4Cyw5HrjqgLCvW/1U1ZwQd4C3R3nXDvDjkyEKXC/9cW5o6TzogPazHfn+NI8aaMCwdJqnHRhAABzFe3bvqPuXZ8+aC/1uPFvQF5DmjikSygX5bbrYffrYxylHE0F7s2D2KrmKWUF3Jo7tJn+unv2Pk5T9UyHOOA234iZLP0zrjjQVYxsaeydYnlv3hDvfbL/t5ZYOTaHeV54MW3XPAOBu27tvEpXjaNbV+ydywOmsPvu6ysrr1AUxvLuBDLv2f2xa6tnTtWNDXsHZzvdpPdLy8GoQFxp7rvrMGO1upvOXPL4MsfyZIeH0on75DWvec0feuapJk8mPMPiAn/pl37p7Q606dXCdI35+83f/M03v/Zrv/ZWzO0ll7x15QJ4L3lgmVd68edmVFuobOKeUfNkt8RccsmfpnS7HCNlixtxBLeodKgMw6OMDoxd4ESBsoKVXfgzPPruMkVOxitDkhHJCCvIS/zmvcpY1mmvEenV6C9IxOA8DRT5PdkRFtkMO+8qsFvm0hb3ZV8xKhnG4q6JR8ewY7yc7GR1qe4b3xIgBjgDAmp7W3xtpz6B9gLzDOqCBMpbQ3mfpWWL9cA/8Z33PoBswbkJfbO1tYzYvtv2zercCQABtlsnDEHX6L1rDGJsQaELGPfyyCGy5/UXQCdW4J4fkISNjBlHV2zvLPtMO73xjW98DEAg/q97xvgB1i6PDiLbO2ZwMn4B8g5jEf5hh2VN9r8D34AXwE3Ao/5FZzECAYrGg7L5Tpaf9u2WeaBunS8noIfBWcCkjhD1Dvid8ax/e2eN+lOn5ZHeOIgH01R/bZoneFod5JgqqFKGpPYsmATQAOrte2sMBxydLDhjytIcmAqQ7tZ7dQmQLON8eiGGJ/BtaSy2si3A6mB5ANC3f+x9qx+Aw8J8DIgYQLLy6Is9FHF/r98PpNnOJ2LsAzArMyAUUFoWdOeGgoXTyel2Acka70sLg9n4Y+zSbsATjP46PbQ5UKr9uaEXlLn9bx8HPhXgVf8NE3SC60AquwvKOFXXQG+hAsylvuXTeGMu7bzSGL5n393/ZQkalzjmWg+cj8vrOT8ZQ9WlOlg66sZ9Hb/PubZOS+1HH5RJGbFnl/b0399lPPcd5/xt7NKn6RHnQec9+TdGmnvct+860zC7PacuzNU9VG/9S5zVOQ0cEDixOwejUx7paddf5mJjOSejPqHcAMj9j/1tLQf03N9i5AKjiV1E3YGl/YQmwgLergX5npPGwWrqb2PW8rtyqwtttXzuXUKwrIyrp93X8EnmMLqy9wKR/b93LS/tW41vXUee/EufvnLian/jiTF5+TInY6nvA9z3/+aBhqbiVOJ4LlNXn14d7JmGiXqi0vH0YUvzMafBHyVzij9RWd1tnpoM2HxLMr3bmLE+sjnyqSYLz7XdxJOf+Zmfud0R9ETkvd7rve7+Xt/eroLtXPq7f/fv3nzTN33TbczhJ6NDl1zysOUCeC95YPmSL/mS20lhE8+3fMu33Pybf/NvbllRl1zydBFACEAHq7FGQRdXBTKAZhbs5DRsGAmMCWyTM+0aH2VaFoCuQcW4PA3GMmyavrTKxKvxWMCmbFggVOU+kKWGb4Hwpu/3+0CgCQNU+TFvbGvvgpsRzrAsW5fBUqCq5VVv0ixgg/naemr9tTwnu6+MbUas/9fmZUwWGJvIMxakuHXLExBqMgNMmwP4yoRpPGT3bTG+QzQGKs0gxKB87Wtfe/OjP/qjj4lJKRbnnrENfp/l4Wd/9mdvF9BjGatnhptyFoAs25Jxt3S2eGagARPuY1CeLEvtCOAFGswABpphVKkXxh9AmqELEPz4j//4mx/4gR+4Bdtm0DakgfzNsJxOLO9iQ3ICYHDr5wV69QHG8K6tToFCQFoARhmWwMPqsDS0M5ZU+5f6wErrKepADsZ0xwdxK9uPBgasTlZnAHIsSbFd6Zt2xx4d42vPLMQDBwcQypZfW6+B6HvvDP7pWLf97vkZnssHY32M67UL0FhsTzE46ZV62z2rl+WrDrT9vrT2u+3Xy9MOkhkTd6D+GDwOXMNK3Ts4AcoWWx3O0TAGOSeEOYLeACnWj/a+bj3u+GaOMtfQZ06qzgXAjskZD72grH5asK5jdsMe6DsOQNs1DHNgDrZvmZv6rXSAdK2LjVfalp6bZ+osrZ7SEZ/TCVKnAeDonIPrkGyIJOlxZnYsEuO3ea2TVV1g13etIH1s0sp9IDAHo34OoPXezkHqt05H5Qf0amdAmLkJw1dfKTBr3DrZwtWbOiTP+9p28l3nNT2xpR9rvesT5Xbo2hkXfr/tObsegLvCG0ina7WuUdSFtqqTyY6qzVMbw+pIHZBadqldFnRoYyZGf8Hdhl84AXPPWx9sXhL7dmPTyrkxpfVtHtnfyxNgGSPZLiDl1H+9t+sk+RIeYe8yXxaMV3f0xU4nY37nZ229d20M9ZzwT8Zp5d+7NzYrn3FM2msDgG8dCfqwMdDaZulpm3ON/nSXJ3JIWfvjHyXV09XZHyXrk9PPcxfPU0Fe/OIX3/Wvl7zkJX/k/dPNrf8WR3/4xfr9APSP+qiPuvmMz/iM27oZyLvvv/W3/tafQgkuueRPVi6A95IHlo/5mI+5nVi3BeJzPudzHnZ2LrnkgUUsugJrW9RvUWmRbvF/Mh5qlDEGa5D6m6Hid4tf4FiZtJOCBjWmaujWqOsp1gU13SvvZbEW4D3lZA57d9lOXYQXECA1jgtMW5jLW7f61fjGMAJktHzA35N90q2Nvgtu1AirccrIZXg5jbox/AqWN71JTyR3DZOVYVXGCQYQo71blJeOOLuNcTnDZwdEzTCa8VUw2sFHwjXsG/OGobPnHCa19JbG0h7LY4CmexnNuxeIUmZ5DcWlNSMSK6n6VkfE0rdtHpDnwCXbJ/WFgXhbXDP69571Q2Ai1tTSWhmEW1jd7CCsAX50Rrr7rnG3Z5e+/P/Ij/zIXegRAB22NKN3YNTegw0k3X2vvgGj+gFGWvurMUUsVMAKduw+G3sAZnvnQGd9bR+gIsbzyr16tKW2/YiBu7jBQJEa9QAT48sM+44tjO6CZMJGrO6xqZbHN73pTbe/D5hYnoDrGKRiPU4POabE1FQv8qGN2u+8G7MPKFpQatfWJsaCAlrGHnrlGY6HifsLtq5N1veA+BwdgOiy+4wV+3/tuDIOUC4gSs/1D4cm6RcFcMwvgE8ADgCjYOLJ2KS/DucD8gPB1cfpVCgQSmdcs01d/wO0N5ZsmX0dFxtOiA7s+uppY+0JKgur0PBIS0uMV3noXFxHqHG84Rs6J2q3E2wEDJqjjekNLdC+YNyTvjlJOZS5H8J5VyBYeIWJ8V1/P9nHddxqz4LAbdeuTYw5dTra4dB58nQMq9vmX5vf93vnzJZdXuRrfcSYaheHfmlcxjotE9uWfvPbfeuNPe9wxLO96FlZzQ3vgfkN8BqQbE7f9Y27QtqIXy50wNIY67V1YJzpGqzjkLHUgaLLg8Nedw3Au+eAt3MgOWDUOCoUkfVTw51og4LM2hrgqr9aGxs/lrZQLtoJ8M2xpi7talja5rv9bZfRflu62mafAdmcCvqotlpdbKyoY8Nazu4KdYkU4Hkg9H1r3Uv+f2IdMHkiLFUOGTtinkoChF1f/U//6T+9xXu3VuFkrfz6r//6zQ//8A/ffMM3fMPNf//v//3W4fw3/+bfvPne7/3em//yX/7LWzX/l1zyJy0XwHvJkwrR8CAxbi655KkmDLUaoozwCeOScQ4gYKDUeDwB2DJIGF8FTRnu3sn4KltE/gq8bGFdQ5IhU4ZGgTblkn4NLvkp08p9GGmMDNtmy0rFdprU6ARCNGbwCR50W2pZg8CwputgFPcx1mosSus0NFv2SUGT1qn6ZvgA/OVh0tABBYLuAxDOxe/Sm4E0wAjbrSxxeSloJD9AjG6D1UbiSTJ+MV7Lii6zZrozY0rMz8bepIu2wQKQC1AUwB0oCOQ5Daj2B38DIQvGy4cQDwMkFy+4p5Gri8b23da7AXpjYGyr4EDgMZJn4K6cA0hXTowmW8wZnyvrtsf/9m//9i2QR09aDvUlnu+MgRm6M7gHTO3d3SbPGKXLp/6LhbrPC17wglt9eNWrXnXz7u/+7rflFHuWjgHt6Zr+OsNe+7tX/6gu0lexJAFs+ph8AzqqCx1bANYM5Rnb2nZ5HDDvoBxhHeQNOHqOSfcxjMq6rUOInhZIKoCuXwMuCnKVVbp6O0NaYJctnbUtIGW//8Zv/MZteBDMsAKO/Xv1Nx2Zzs7psM/+HvN3ANEO3DN2FlABigAqyvKfYOAZF/Y8NrU5wjfQY/8DeI1DWNZnvSo3fdC/tQ3HpDET87P6rm8VRMOgF/ICILC0OVyAUmuTjSMF2Jq/zs0Abs7XhnAowC3fBX7pibnnBH3ah1w3XsgH4K3pFFjs/N57zv+BlYDktSmmZNmSkzL5m7+WqUBidVvdmP+MKcYOThLOj/VzfaW6UcZnHSJd07TcxpYT2FZ/BcA7vnOilO3ekEE9aM29nR+NC/t7ZVmZGuqj7QSoPdvbtwPXhLpZOwysXHrTWSB0d+UIZbTxUf66U6XnF+ivxkhA7v5f3oHHwGLg6H7bvLUxRogKB4g66PMsKzY7HVdvzccEwCu2MKeKgxjNofoVJ5JyiVMP3DV3cNQ6UHLPbZz13qXvYE1juDGWM03YCeuapc1Z7j67a4wB+nWdTA8i7WMPW5qP7caaDvxJCUfhpDr6eCJe9QmMPmx5v/d7v9u11OQHf/AH78azxxOh3h5PFo94gPFi8YrTewG8lzzd5AJ4L3lgmWE0o9rW4UsuebpJDdUtIrc47bbTgr41QLv1tcYDw4WxYyHN2CqoWBaJtBnfNV5P9kuN74YZKGvNtRpnZYIxWKXv99NQs8gvyODdNZiVv1tblVedNY9nHF9AonQYITUy9wHwYVta8LuvBv/JUinTq7Ee1QvGobh9BaIYQYyWgsAMT2wsedQGuzZApozvbmktALVrM3zcA8CZEceo3Day/T9QU2w84M3e42/sU+0mrmjjezICa3RzcKxsM6C02e5n4JXhBYDcPRi2+sje7wAY6atr7b7/MaO65U99CUOAGVggdQt4IR+W133vvr1zh4HMcATq7fr+VqdCCAx8W/7HND0Bf3Ew6dmuqRMgmi39y+d+23U6wtBkXDN0l84A6l2bUTrm1n7bd5m2dHntPJBh7a7tMEnpD6nerhybo5dHwNyeXb00hiKwowbtCVS1DxRoNcYYF4SzEAMTY4tOGOeWzgz+br02psqLdD3XnRN1iCytte1+A2gaA+4bQ8++rf/t0NidJj7dWPsAaRx+CWzT38X8XbvTH/F4l+cxf3bw2hwN63t9L/DnZM7uG8MVKNxxU3/wvPAjyrH7B7ZjOa6PYEgX3OkYZl5qGAjv7XxVBxPHD7Zxt60XtCqg1r6we6bDazdM3u4EAOrvWe3YXSMdzz3TuQroU8dNt2rXkeGacloXdJ1QQL/zUnWq83Pnxzrj2gbGh62hge/Gma4RylQ/mZ993315al7EmD0ZwXQLyDv9a/xTYgwDArUuCy6fTiLrqHMMryOyoK95AZAERKxTfXndfdOhjmMTYzRHVOf6E1RtHn0whldezrS1kTl5+QHK0//lR9ig1V11C0BaJ7yxsU5+/VEYof228RvDcs+M8Wx9wrlSpjHnuHfRef2oh6R2jWQMpB/GaUxdh5vtvRx4QuY4nBQRQDtpmz3rsEltZM5cvQqJdTr+jFt0oDpi55F+ZXeLcVT9Gy/o0v8LMnD3QWLs/lHiMN7JEwm7ILTGEwnn8FQ/XO2PksXx/a3f+q3beLxbG3RcveSSp4NcAO8lDyy//Mu/fPOX/tJfujWKtqXhkkuebmIxbNK2SLV1rLFby6ad+B/waPFMCiBg5vAWW0ADDHjQC5a4j2E8KfsHE6IMI4ZUWTWTc7vzyQJqXrtFq0CcfDBEGekncOsdjJYCz+pvQJZt6hiF6sz2wjJjythzb39nOKtPoAmgTPkY6Y3HBwihB+JNLl9ADPmqcVvjWh4xlxpmo8zkndC7dB0kcp5i7nCX6qd2A1gA53qSNKCH0Ymlpb3UPYCPsbz7ME7pF92RJ/cwFmdc7F0Oplo51p5/7s/9udvD47yH8TtmI6YNY2//jx1RAAK47RBChq7Dx4DAwJdnPetZt2V3kA3W0L7HKN31fdTXgEfxZB325tCc5ZOxrB6xV2fEjC2134R+YOyujgZMiUvrb6BqAQWGLx3pyexCC5RpO9Eue9eM6OVrbMcZywMhsdlP9nSNdADl8q8NVv6OZQUYCqxKo84nRrx7jEmMPnEUy7Av2196DjJp+o2rWt0XsxGQCGAFDJcR2S3b3Y1h3Os2b/1ZvOu9f7rsMDs6uXYFhAFqzR3aAItu+jLje7+JxznwF0gjDrOxpn0SCF+wrGOnugS2Aj2kMxECY2VanlYXHDNCkNSxuDS058kQ7fhfpl91AyC9OhMDVHk4VoTX6LhtnF59CU+Cmbw0gGR0VLxmzpbqn/sKkms/fQjL2VxZUN2n4xF2pnyr/zoa6sxVn2d9FXBuXrtOEHKEfnqOjhVwlrY2AACfTuBznqdXayP9kS7VoTT9AJBOb2z5Vw92nZSx3HHnZMNqB++3Mwi4S8+bz9azOZ04wMxYTF/Kft7znHn0pcCf2OkAxDoHGk+8jm6AtLAQDVcCZN3zxjTjmbnLQW50xcGkDQfCcehw0I33Tc+4szHJzoOly9lnnuZo1fc6ttLLhjoRt97YqM8U0EZ+qEMZc9/YR08LEK+uNn+urt3DcbZ26NrXOL/6MnYvrc3j8rSyaj9rNOtha0q7BroTDCP6kj8sHAdbI22N+pbEvDLZbqunikwHPvmTP/n27605d7bEn5Rsl9UAXiHSVleXXPJ0kQvgveSB5eu//utvPvZjP/bmsz/7s//IWDeXXPJUFKDHPmVgitu1xSwGX7fnTxi73bpp8QvIsOguA6esgkmB0JP9w0AA5JaJYUse4+dkQBSIls9KGUFipGJnqBuG+QkQl9nLIMNIOZm3jJfmbwY91tsW71tYnoYtcF09lG2NfdMyFcT1LMMS8xF4XUYTY2hyxiUdsCOGLNZLAQLvw5ZhCAIigBx0aEbnYsUORHrlK195B/Biwexd2qXgAz3de2fwLc3dL3QFfQNwYpHSrz2PJcown6G0PCw94Kg0GpuTsd+DkYBYBYQmHBzavDoL7MF6Fq4BA4eB3oNhsEAxBvUjbe/gLuyptdfAXcySpSH+8MDnsZ89DzAeU9O2fPEMtTXDFoPMNSEHAGZA/73LVlSgbxmB0tXfy4AtW6/9kwNC3cywtxV17WELLbC9oFK3LksTGFswC1hYIB+YoH9IYwbg+ivwbM9ua/GAz5V9ADRgU3xi/QHDFUC5e8uWpy9rR22BRdYty/qbcRGQoV/augxw2jMzTNcuS4tO7bqDBPf/xqPf+Z3fub2ubgEqYlFi9O0dMyT3no4ZnAFA45VxYUDE7cQ6nAhhcLZVxxjAdcdP48ra3RZ0rF/gkflr48T0YfXpHu3NEWRsrzPqHL/NZ52D6sDctdWFWMvKtXzv+t6/e4E7nl2aq8u1A73FzjQ3AsEA6vp12eDqRRxx87k5Ul1O1C9gCFBZp51r+mwdwAVv6wBtnenP6upkr9ZpaEt8Y8kW9PR+OmsM6dyqXE1bGwDEzBcAP2OdtYf6WD6mG/Kh/bu26E6N+5yd6rygZtdb0u5YZQzrAXDmgzpC9xtW7HRFGa2p9Onm23tah+pKfQAsjQdCDBj3gaFCDfScBiFWODiAruZ4YZmEasKy7bhlfSIm+z52I6ir9efN5eLS6tt7HnhvrDXP6PN0kOPCGlL9dcwRc7d1xEkJ7DVv6pPGI/3/BILV6z4bF+lGD1Dj5Hb4pndvjADoA9f9rd9z4tDr6bDwQnUSPFEpSeJhy1s7HwMxP+RDPuT2UNTudDhljnzy6le/+uapIh/3cR93t/vtu7/7u/+Q0/uPI08VHbjkkicjF8B7yQPLgo//q3/1r26+8Au/8OYbv/Ebbz7v8z7vboF1ySVPB2k8OUyaGfAMEAvFGkr+Po0HxhgjukZzQRzGMEC1hvCkYCgDuAfz1DAB7JUZVAZYma9d4DLGJsrnntOYZER3O5x3FaRWl2UFMRg6LlgszTjBQFVPjOFuZW2a8t4tu2UbyhODE6MPu7JplZVc8J1xMgHMEoB7dcYzfitjs2wv7/b+srpmHG4XxAw1BskAs4FFS+sZz3jGreGz+8Ye2JbvN7zhDbesggHGM8aWz4F/M5xmGAKP6Np//a//9ZZ9q10xa8YGZQwCzoDBtqYuTwO8bFXH+HF/wYRu9S/jU7uXja5OtSvQbnkHxu13RnaB45VzRvSYvMBZMXht19w3Q3tgHHYjMBODUWzPHbqxvxuXbeERGOFYR8vPQE0nvGNI1smg/xdQqdMC8wowJb53Q75g9gJhlHuGDDB9+V1sYAAaOZmNhANEmdQ9kGn3LrTAgNzVw7YnkpVjOoZ1JY2lOWB9ZXj/93//x7T9ZLFsgQXi4umPxrWyazG4lWdtNJ0EgollDHTF4uKo2r2r2wJmDghSl3Xs7TfjCEeVdI0VHe+NvcAJbc8R4cAi/Xh9e/1WeA5OAmNGnXvGWeN854/2HUDGPuqjuqb/TqcdUGR8Wjvt2n6fjomLWwdDwTxjsfGVU0ldAaALdE4fC8TLv5AmnKnqbr9tPALiGmvoF53SfvrQOXdtvGq8bSxN5QHIAzFOcLL/FyQ4AdfOk6fQlcZ41bcKNiqPEDSud2491xEY3e49Q2W4t47dvZvuuUbvrGk4KQrirw/tWSFB1FFDqHRs0V8LctPZpl8HonqkI1ifdL4OVHnXhg7LtAOHE/U+gEo71JFIf7RXwVQORnkVnscYvef2rvWdjR8DKMUhx2jHIBbjfc8U3C0Yr52Xnp0sHUc37nKgYVUvjV0HQAsttv8dQtd1pG/3E3MQxuvmys0BdiZw0rVvyHeZyuLfazuOazvi7DbaWLjn7UAQEsMHcE2nt97ZfKFf01c7bczBq+uN/UgaxpfORZc8fiiCAbxr6/d6r/e6+cVf/MV77/sLf+Ev3P39P/7H/7j5fzk8A3mP93iP2+/1qfW/Sy55OskF8F7ywPLiF7/41oP3sz/7s7cs3o//+I+/+f7v//7b2IdPZDvMd37nd/6p5POSSx5PLHr3seW6xh3mWBlfZcmcxmUBwAnWh/ts+ywwLB9l7gF1C1p2m2aNdcbRyaZkgNXQ87v8KmeB5rI+PNutzq7XOGOE11BhTAG8TuOvRtMMyR6kJo9n2Vs+gAEDUNrqk0HSEBGtT/XH0OyhCy0D48H7aphhAIqPKj2sIwC08q+MgKMBP5h2AyV2/37boU57z9Jk9E83ZzwyEGeAYQ3NOJpBxKjb+4RVoK/aDWsWEMCoPgFJfxeMKPNKPEHbbQFoBdsJfZIH+iPecdtV2IGVfQet7bfpxgzChlJZPXjv8rHnAI/7HaNV++/vGYnev3qjh6urPVsWVUGuvVt/mEGPxSxuID1V7oYX6fhC75bX3be0GKATdck5UEBD3lbWAa8DU5/5zGfe9YvpoHpxrVuZG8phOoaV3r7MwWXMW51gXgq7QJ8wy3rg1vK2Mu29wPCC/cBSaZRNKB/0oUB3nWL6ZKXOJ/3cmGics+1XWIwyszruVl/ls32ojrgTIJfm3oPNZ3xYvayPD8A0/hsPOBIHYGi/tv99Dr/9BtAHIlXP5AOAtbbUj7H2dg27zjVt1C3q980bHfc7xu8bkCkP1RvPcIzUATXZ/etfy5u6oTscZfQYm1Yd6eu2gpfdTWcBTNilDW9D6EF1pA7aM/7s2UeNn4DB5cXBV3XAdC6yVmibNx/GqjoVO740PFTj5hYQL0BbB8G+hRjQHgUeAWlAujqEW2fNe/tDmZbtX8ZJ85J61M6ePdPD2OyuFuXlOOhaqfOvPJjHgZOcRRwZ8qtO3YfRr56EKdqOhjn8OJC6Y2j3A1qBvtq2Tv+9V7gSZVIe4V44c+rklk/zoTUMJrE+qN72LRTR5jA6ejof98zAPs5iuq0u9T1OLUCz8u2zdYmzA9T57uuhwJyNdjrtg0Guv+8+ISswqB12bMwX3sLah4N714HXlzy+vPSlL7354i/+4tu/P+3TPu1egHftAEhdO/7ET/zEzVNB1vcWLnIyZ+ocyn9S8gEf8AE3z33uc+9A8I7hl1zydJBr5LvkgeXbv/3bHzPYzXjZKZNPRPbcBfBe8rCl8eCc0lsjACvEgruASI3aArsMDKwyBga2ze4ru6zMpzK1CmTWSD4Pqin7iyFkMV4mYn9jUMi7+93n/dJl8ANHlLPPM2hrSJ2L6gJ/e3ZGxhgeqxd10q2j6k9+C9IW8AAQAJpr0O17z0q7LGjgH0ZX2xcjZAIk6OE33j8DhoHMmJcHegGIUf7dP9YlkJMBzZBhoJUBXSCakTmDZqzc1R0jb/fTZXVuWzojrizwhjOoMd1DTbQjI5WhL50TFC0AVOYU4G51IV4wUFTdloFYFlzBHOVaXdlaC3hxsJR862f7HcMTkHmWlwEuHfkDagDYsQtr6OqvQLWGB/At/3WcFLysAwPY0Gf39+LejaW0PNgiC0zVDyZCSvRwJ0AQvS9YWtBm9TCGePuyfkcn1Ie8Lc1u4690nKpjy/8FY7oVu219Ap2tk7Lqe38BsAI/3TJfZ1XzVeeY95TxqQ/qq66v7houwbZWoR8KWpK9e322TsXOL9oQgGILtX7fMVvd2b3QUCHGXGV2HduY/qkr+S07uHXc8UG/AWzbmQE446wyr+p3dY4ai7CqN7aeTM86JxuapoAivQUcdueJMat5V3blPrdzdy7UZ4Uy8HcdBK3vOk7b17pu8G7vp4OV8zfv9T7OqvYzDqvOW57Xl9f2Hd+Bitig3r32MM81DeNUwfCuNegkJzEHFiDQtXMclJ/71hR1/tKJ/b4+0WvKqC4KljckTXXmXOtoW/WB0Ton6/RrY/DmITHIMds5KBAHOtfcNxYtT9N3zNO1g+d2z/rGnJQr39Lczhs6YMxVJ8qnPMJtnM57Y+fadaKsDTk0MFW/PseulXX5AmhjTwspRLe0sfWO9XZ1vwD0HIoclNrSwZ11sHPonI6k08H6ZNm7nWcetry18/FLv/RLNz/90z99y+L9jM/4jJuXvOQlNz//8z//mHu+4Au+4I7N+nVf93V/aMfu2L0/+ZM/eYcPDCj+05C/8Tf+xp3OPgh79xM+4RNufvAHf/Bxfx/J4Hu+53vu/t9O5UsuebrJBfBe8qTkXIRecsnTSSxau9XTghqr6QS+qvP9v0bgxEJTnLUayQDDk5lre59F+r63eD7j3YlpxtCzuHe9jFdG1Amm1PiRr7JAGAfdVto4nwVQJwU/KgVJzncDc2qkA4nGaBMbtot0eVG/6qggizoGkK0da0zUoGXMaaOmCxBb+suPw7W8ozpkO7B3Y9K2XgAxAMWJEAgMqy2gMYDF0l2c2N1n6ycdGZMTcxjQtJACPbykAE3LD4QZkAfw056LVzvDjsHMKFuMUoATBhZAqiFHHLi0Z7CEgEsOmRqDuUYuABzgPgNaOvJsCyzDbvcNUB/giT2690mLDnMkCNFwOhr2WTq2xU4KWrvfNtMy8wsSYmvN6F1e1maNe+jAK6C2mHENHaDPiJlId//P//k/t2k4jEp+TseHb+MJFh6DXn8m2E8dh4ShAMzUASJdjE9ScLfMcGMU4KmsXeBawdtuL+8YVXDqPrCs5ebU6G6JjrfqWL/gzNEvHBIm3ZYdMGUMaT/Bpit4t7pYGJXtdhImomzL1r94xw2vQheVS3kw4xqOwW9lNg0s0e5l4XZc6iFtdRBWOtepf+1HZ9QrILr9wjMYswWk6cTu7bb46fn0HdtWmxpfCzJ7ln7Qff2jBzF1u3jfDYSkB9V3DMTujDj1FSjX/qhd6pAoC1b+laFzS3/vXAvU67PnXOv/PSO+ca8DEcVEbp9UTwUiN65ZizS/dEB9yLP3lNFpDihA2zZrPysgr847bzc0hfbWR7yvem9NpZ/pM4ChOinqVNt15Z4ubg7CEh1z923f9m3vxlexjjmnG2rF7gFO2zq6xMTmfBOeSD7WD+wY2T2AVOPL8gdkXZrWKQBg5aTbrpeE4Jr5cmVZ+Tr37R3mHqC3tYBxVBsIe2TOrc51/QdQ5+Q9x6E9u7WXOhOKZ7+XGa1/GBsdcip0hlAtlzy+fP7nf/5t2IXV1cte9rKbf/Ev/sUtS3ft+imf8ik3n/M5n3N730Jhfc3XfM2Tfs/f/tt/+zH/v/CFL7z7+2M+5mNu159kh/H+UaEgsIqnK4u/+yCs5Z3L8J//83++ZSxvPT0dHVntoz/6o2+Bbg6O7/3e7735gR/4gSec9iWXPFXkAngveWBZXMhLLnk6CyPR1nXGxBaL4s8VZCAng6wG4gRjlAGCPcgAY2wCXqVpixlwADhk+94WtLbdAdcKSPcAOIbirtnW1+2Pfa9n/F0w2f+n4dnrZ72UDSudxtEry8enjA3vcQhawStlqwHX9/qNYdlQFt4LjJ3RZGug64wqDBSMt4GIA0vKNhVrs+xasUwblqD6A6ShI/QAs5XRCzBz0NjJqqZ7DPG9ByuWEXkyosqMkqeCNK3nGUkYXcq5g9UAlZ7rNtYZYsvrm970ptvDOmYgrs52vWwpB16VTcdYZORtm90A0oUksK1zzKkB2LuuD2wxPsN7B1lJc22w9tq92/I9lrNt8IzYvWv3D2QdM2rp7Nret8U+g1Sdr/x/5s/8mbuDZHz2//rm3mt7+co/HbDtXp4GBpg395vyriwDz4FFq6vV//K99I0ZmN/7bfn1Tve0vxbk0k8Y764BPvQ3elnA6NyWL+0Cn/qCd5+Alfpu3y/zsGPFycDfvWKAitu9+t79DjlSN6dec4Yx/utsc9+eXZ2K2ayMQEg7BJrPXRt4uo+6k6e9Y2E9xIL2+xwa6z/TfSzcAh3eW0cWxj3mmrqZKO/0zdiMsaaNxXiuI8AYp79jG5f1pv2qFwXhtZXfG06j41OdCcZRZSww6Btot/69tt7/4npWfwDeWOqtr+7SaN6Mycb6Hlzq+Zaxv9U5SwBTPZiwwHkP9NTe+w3Qd5+j4pwbW4bTEeK+zj0dAyacnKdTp0CetqYX0xngGSdl87U5xnygbroOoL8A8RNAl+dzd0sBYmXVh9WFdOhex5/qXOez0wmgLHUunusw7YqlPd0RgoFDZGPwnIbGPQx09d1xrOugAu11dpnzT2ea0BAAaoeP7f7t5uBoM55oy7WT9ud4aB1i9tvt0zFxHwdpcoSsT2qzri/0a+W25gVWb3zCIuf04RBzmPHes2tCt3RNwdmtbbSdMgnHtL/3PHB694mfb71wyVuWhTf45E/+5Jvv+q7vuh1/v/qrv/oP3TNwd4erA/qfjIzd+3jyRV/0RX/o3rcE8L77u7/7zfu+7/ve/j1Qemu5B5Gd4bBzhN6SjLn7D/7BP3igdC+55KkiF8B7yQPLjNhLLnk6S7fV9cA1LMkCagV1/V/2LONF2Ae/2dKOEWpBz3hvPNDlYQvWLVTlCYjhWhfy+w0jQlw7xhsB5HRhv3w5oKShJVpehgJjw9ZaRtdpEJT1cjLl5KeGVrfZqssKliDGj3ycwFKNvn0zhGoYArq6LR0LqvXkvfI4xt0Wuntu4Iwtw4w2QKc6sy14v4u1S28YHdiMgBRbOOkJRgyA2kFSjMQBkGt3cfTKHsYcYtTZhkrXlv/9ve2dyoq5Y9t3QfH9NvBrwObuBcLvMxDLtmtbSzF2plvSqu6pJ2BTWYTYPa7LE/bRgEx1svsxJweMztjQbmuvsZIHpC7fA0nHoNx8VQARO2lG+so4xvBA1xnytp1OMPKWN0wgzhZhNABwy9Ov/dqv3bG4MYsKVDCIa3AL0wH4AP5jZgEt9lkeGeYDDfcMgLesM22+8tBDbN7Vx/Kmz2L56Ytrz9Ud5wPWMUMe+FmgTD2Nba6vG0f229JsH12aA9dPp05ZdAXbpm8Y7IAhulxQbOJe4PDqcO/e95jQ0t9v6gGwIOa6A8H2m3AdDgPa/9Of6Zp+7yR77wKaAEOmv694xStuDy8CJOubxjj1ra2UiZOLI6TzVAHTk80p9iv9kT/tyIm1NBz+VBZmQc+CsZ1TCjYWwCp7tnFz1Sd9Micqn/cMlOG8sNVb3+CINf5U/+ocKAhoHOnfxgJ9tOENClorTwHCskLpT+eWAqeAxDpe+5wdPa07ZcHi79qjDpLqiTWMOhByRtrK3h0A51rB9X2sj7oDBhO0oRDqlFB32oMDsvMxZ/byC9A0fpkby/RtuKSGhJJXea+TmmOt6w59BfPVmsAYJY+YuPR0Y2N10xiofd3rb+OE+i7ru2sg/X8iverR8jHAStk3hnJ2bRyzdgSkm6eMdcYOddxwXvS+Thvllyanq51EyBD0WV7MN+YE4K6DMe1a6A4JOx2WTzu2OOSsh7QNxr31Fv3UtkB4c4f10tI0N24+ezLSfvcoyA/90A/dPP/5z79l8w7I3Xpz+jcm7fd93/fd/Nt/+2+fUmD5zgJ6soer7dygP//n//zN+73f+93Oy5vTN+ZtLtw65uUvf/nNt37rtz7moNlLLnm6yQXwXnLJJY+cWJRa5DK0aiidrMkyXmtUMPhqqDKyATsNRSANLIbJ7t/iYqDVFrBbQJflgo3LaAMgO4DLAnhGwdIagAKYLSOYkQE4wBKpoVbAt0xbQJPtsq2TMsPENO1vBcIZSgWGgeUMScYREBuo0K3fzRtwuwwvecYCA7xof8ZJt/320J8ZKYwlhos8DhwsaOtEbQCE95yx/ryHEWNb/6718DGxZXvQlTqwbdE75Gl5X1rLzwCS5WdtMR0R2mFM0t2LWQvUW3kmA0Ux+8qCmj42jwAjYBPjfNdXF61f7e0aI6xMzRrAA8/U98oh7AQmkS2mtl4u7wNpV1fbDr9tfntm5d7CfYfX0e/lY8CnQ+1WD2MarS5W9upYmedA+OUNgM3Y3LW10crt0LMCqPqdPre0di8GWQGItc/YR2PUGEewsWbY77mF8vjlX/7lO5Bu1+n98rb4cRNgBYN+719MWGMdw33tuO2KGJR0dG2++gGKAIPbX4E806E5QsrUFNKEvqqH6TbHwbnFu4APA9/BYAUW9Wt11zqXt4YfKdgi/931gHXNQVUADwvN+Nixp84p/aVhL+pYwLIv4AHo8Zy+AiDr9mN5Ns7R0c5ZPdiTHu+7uwHWpybmGHMERwtAyDjaWJ/mhbJaXSvLWNkATQ0r0PYFIPuo641jDqjjEFEm/R8A17aguwWRtRvHwH3gY3WmTjvb2OlZmbqtg/ucpe5R5oYlqdNLHZZFTyfbbwoY9745NZRRe3YcI8AZThv59WzLBFxV9oabMbdzEEin44G61jbeY0ziFCTmYPrXvAH5OBDLROc8B452TiwwKx/aia6WWWyewRyf/hk/ds90cvmczllf1MG2vHeeLLjb9U1Zr9XDtuHGO31uY/rGy/29reQOTqTH2sAaUfn0X/1Ju1ifeVbsXwfYmZeskZfPrSVWNnHtuz7luAHQFsA3/1ur0vWli2igPMYdY1jj9i5PWNLGAPH8rRfVs4NEOab3nkuemMwZvni7+zyI/NRP/dRjxprHkydyzxOVL/3SL739PFkwe59LLvl/WS6A95JLLnnkBJhhIbqFJYZCAZf7gF3G1gksWJxakDLqMffKpivgycjdAvY5z3nO7QJ1i97JrjmMDMMEw3XPDFiy2B6YhY20BfQMlX2WnpOwgdgW0QU6GB4MjrKOe40BcxqpNbJPAx5rRazTAoIV78DMUG9A2gLihDFQto98TsrAwxwp20Z9yisGkxAb7//+73/H1pR2Dbi11epYW2oD+VSPBTPV9WKQ7d4B+3/wB39w184YROpJ/QGJJtXBMj33mW4DWRiR8gygLKBdhrZ0C9YAOoBKjOmlQcewq4BaWM2MN4zVsoYYkK4NfAWUzsDeAVUDpMa0Xfvu/8l+d3hewb8P/uAPvv19/eKZz3zmXdlsG176AKPV5f/9v//3FiDBdFpf6rZddT2wX13tb9f19zE9tBPgQBu17AUb2m9s/R8AO5leANKnG2PRzEheH991270BLgBowC1QRD71c2MPY5g+05UTmC7rvABYmZx0r+XqmFlmqfHHoXfSnhijzi3pu9YYqMaN1uHpuNGGdE9bFBDp87uvBz227dwrT95X1qexq3EmvX95mcNtAPhYx3St28m1nWuNr1uW63nQFcdBdy4Yp+SnjEbOKP19Y4HxtuOEcWv9bH0b4N26KFNVvZyOUfqoz3VOVf91tHF87V7jwObAxkv1Dm3QtgdK6e8nQ7ax5PWFczdHHZHyevbbc6yXJrbyyUztmNp5wD0FbJvmqaueUecbFwbKbFzYB3h2X5kBeC1L9cicqT2M+QWZjRMcLwBz+fJ3362s5iY6V3CdHpXd3PVDmb0FbevgaTvWme7bIahAxx5AVyY+J6O2wpLF3hdGwHxqfJqucqZ0Hj31rcC78paVuvlIuvsMGN23uPvGN3VibVJWMaas+L4rGwAVKD7RFgD7hkqSnzpsxcJv3P6+u8C+uLzmI04bIk5/dZ8jWN3aObW/OXO6Tl+egdVIFZw/6mDz6iWXXHLJoyYXwHvJJZc8csIYsDg+wQ5GxIRxcxoO910rmACw2MITIxMLoQBImVlbrG4ha4vcDAoAp61vjBRbuQdw2e67BTgwBmiMFYLtsHfNaLdg3u/dOmsLq3wxNiaN3cfY875KY/Ax8hhuQIqCSDV4fGOWaC/1cLLHlgYWMlYnJq067r2Y1djPtqH28J+13YwL25cb321gDcPHNsOGpjhBhRpL2ptRJ57c4okBm+lj2W1YM65h+GBEagvxaQEiDkJbmYHmjPcxFkkZhNpi5bBt3UE7BVVOR0jrGKjEmC5TrOAdo29ODPlfOffuARcrx0CxAvfbUjfAd8+/6lWvum2Hpbs87oMpNMOOg6VMyj0HAN+7Z1ADNpRh/48Nv3peH1yaDo1zeM3yuXdMR2yZxaYHggPR964BfGXiTb89t78XW1d86LF49ZeVae1me/XKvDoB4Ip7CKTRF+uM0mc5ELqltsCYfnWCMvqUNnddf9Gv7WTQVt0KX/AHmAREAhiUYYm5TF86FnVHREHp5r1OjLIuT0akv4H74qZXJwqKt+wF8jonnOPh2nAMcfNNd1B0fD1Z+ca+ArzqYbrSA86UEZiqDltHQBlsf06Elku+PLM+svGjjFeAWtsYgFRQ3bvVl3bru9QrUKaA9sYDDtiCx+aDbucn2P/0yZjPEVpQumF9zFGtc++rQ1G7F9QtQFWA3/3aib43PEJ1s067+xyswOP9v7Afv/qrv3p3MN/unU6Yv9VTx/w6AuqUabgVz7f/CJmkLemIcBrV3e4y6pih/J0P6EfHKPPRfmuoGHnS7u3/3VFQ4Nc7qg/mgs5HHObGYnrYQzUBrfTcrpjlzWF21ghdn/R96u50Lmmb9cnp6tJbnjZucDzRbUzshmapk8j3nhcKx3sGXCvr7hNvH0hdprHdOdUd4wogVd9fHgHE+pR4werfoYmb8zZvloGsLPvdoXKcgfpTzyOwq6DO4q5xAfPY1g8qpxP2YcpTJR+XXHLJ00sugPeSx5Uf+7Efu5tgPuIjPuIPXX8ycqZ1ySUPS4CdFoeTMlBPdipjoNcmFtXYfOKR1mgHBPqfoefaQKQZoOLwMhy26F3czBlRYp9uocwA3fu2JdthLvsMBJ7hNeBp3/IK+BOvd2mIF1uWl3LtugOEgFbdYsoQaPiBk9XB2PF+C2egW8HEbumUNlY0w45h7R71vLpzX7fsAWzKolIHJ1uIcSA/qzsGm/dgyw38A3pUVwoE1cCfMAxr+Mrjrg+0W5oLHQCoXR7GMl2+1u6MeaC2kAe7tvwvVMHqYQBot6CeoHKZirZj2npb4xQISHcKBinDvmdIua6OByAzJj3HWKW/ZRFiLjH0FnpAuAV5fN7znnf7LoYucGXpMrin/4xz4K1QD+sT2Fjyv3qnExPxJ5cWvRLGYeK9gPX9PYDaO5fmDn6jO2uL5ZlBSvd237beAg6ABLtnIRMY38vr2MiAGNtPgSViNa9s2G7avaA2/WweTsdBwTW/lyVXAMxvBW2Nh/pBnUEFLwsoTORTOsaNgj4NOdDt7v1IV38DGPu7Y1G3iJsPCg7svtXrwIjVMWAZKO4d2tJ1ICvnSgHEje/e0b5ojFIG7dhxTj2s/TlbjB/mMO9ZfrFybXXuWKhutYd6L9C+5xxcQ6cKRssfdl8BaQAiQLJ6Q4zH5iJta+xRPnVF70/m5QmEdq5r2AtgMUdHAc9JdVXeOs4VnHMPXZRGdV/dGheVrc4uY3IB8o69dXxymprjFyvSgVjY7dVLdW787pxzjvMAdOsIddv1jeeMJ+Zm4HnbxFx8At2nk2hyhlqpYxhLVT8BVtfRoH61Z/uQca87RfxOOHmBolimu25OMD54zi4Esdk7Vla8f7+bD846NVbUkWuXkHo1T9apqp+Lt21MWz2dB+SpU+Om+Qu71xxch5AySwcjV0gmYHh3AHAIadfG5919WxNgFW8sVMb9VvYtPeLs7jpm0t0wHB+cudYp9KRjziWXXHLJoyIXwHvJ48qHfuiH3utB3PUTAPuj5D6A7JJLHpZgTtFJhhFDjvT/sngKbPT/MgvoOmbHeb1pYc4M5BmgN/biFsMDhwZALQ9jY2DRABoZ5eJc7vmBUft/4Kxt/WUFLQ0xV4UrABw50ZgBBwQsAFxW09mvyyArs8riH/vM4TE9WKlGHwG0uKdAB8ZXDX1GQQ0b7/bOGRYrJ+YusEPdThqCAfAJSNj2fwdxnUDYpHVRQ3RSUFl5gWvL02KwznhXTnUJQGEga8cJ3aohV+PagVI1zHeP8ipXgTV1wlDeb2IuYsIpD73nyNg908OB06urHpC234G+K9tA6+mrkAzT2/0mHqr3D8jYPXvH+oY+u7Lvtxe96EW3ZVxaAz72/Tmf8zk3L3nJS+4OJ6NPy5dDzIAI2LEAIIDA3rmyjS1XEGzvXn8E/tYo/YVf+IXbUBJYlkuDvkywz4D62gkrH+vp1Be6VuBO/+ZcOoHV6vXKvvwMCPYOjHH1CcQAaJYxr78CADpuidcJpNjH7gOsK2lgngLMvIeTQX/1jgGsSwPb1Diyei/w7H4HEYoJST/FfARI6jeN43mO8wNwhA4AzooHuufWJ4yN9BOAu3qecNQtreV55dH3C6AbbwBQxgh9jfOjW7Mb59P4qN+svLbtO3Soh29x8HlPGdwANd/aVr4axoRe1uFzOv7odwE8wKJ76IExVDqcQeu3S1OMbuOWmKnnfNz+A9wn3i+MQwFJ5ez8ffbBfvt0TDwdKgA86ZRpCnzVnp1HzLmAZMD7ZKGDvM8uhjKkC7w3v+a35l37FKgvmKvu6Kw+M53e+LP37296qF2l1bARpwO06wofumg8LvO9a4+GMOp6quuJ1jMwsGBv+/b0CpBp/DROAU/lT5igOqHUmzxyctBv9VygvSD1PpsHtwZcWYV92L2r3+k6545wG7tv8xfgVMgi7F/ju7Lt981dnIL0X90qi/mEHuxZDqDu/LB7TPvoS+L6OmuAAxJovTwLabM1T+d7+qZdu4tk9xvbER6sX/a78GYOBBWX+JJLLrnkUZIL4L3kceWnf/qn7wVkH+/6JZc8XWSLwwEBjBGAL6OqLFHbnxlwFuS2CnabMQPFOwockDK1GFe2nQGO5kQBWNgKt4WxRfEW+WKYbdE/5uZYim9+85tvDZYZCQMSduiUMnQL4a5tISweK3YUwwMownhheDN2CuYQhlQNngIWjJwJI2/vtSVyot6BmtIAXhSEKQOLcYtlxiDQdtqLYQr0kmf1wxDF1uxW3bIj1UWZQN1megLgKydgkOEk/bKc1vbv8A7vcNuGu7aTjF/wghfc5pmhsmfe9V3f9fb9r33ta+9AVFupbWllbPWQox3etXes3Qf+yMd0Yc+vjreV/DwQB0DJ4Fc/rmkHwBPwHTBRpjTQBvOYPi5PA3H2//R6+rt6WPgKB7dwZmAeLZ197xom1dJ8xjOecQvKTlYuBzPtPWVeF3zXrzkh2oYFxgsaAR7an3eNsb1rq8+1x8BcusZonsxwX79e/911cYIL2HeL+wxlQOvqZc9hd2H1q9Oegg5AxcCim8uPdy8doWXW5sK46HOYkIBx/UN+jX0Lo7Hn3vCGNzxmizhA2sF3z3rWs26BKiDIDo+zHVz/Wt1Mz/fc8gZ8XxsXLAHY2TKuDdTh6hkgPV1YzOvpggOAhAKp0wewuOsDXQpC0JXlb/1nh98BYlZvBdF335xqwBdsTfWmTQoI+RiHgeLmG6Cq505gbtcBf/qctLWb2M3099zV4O8eOFggk1Q/l5Y5y5goX9pLGvvb2DjBuu0cMXG41fIr3IE8l0ncOabjL10CbGLfF7AsAClvHRuMYwXf7wOjXO99XRcUgGxIqDJmOczMa9i1xhvg6n7feLDPxjnrkRN0bN7qYJSfbvdv3QsbpY7a523L37pkem0ut2apg7UO17LHOQToVdcV0jL2AvXr6CgAeZaz7aD+rTW67hJjduXAknbgYAHwOlMwV+/7vetEOtBxUtnLam976A/m6ZVhO1F2nYOGo4MTfu/Z//KHLLBrWxPqQ0tj14QccjiaMcDuFXXduaPrY2uoMuqXVwxa/b9rPwSCpWcHlHrYdfOW95RFXEe9g9PU7dJZmbSnOWrPrDzCdj2IdF3wsOWpko9LLrnk6SUXwHvJ48qHfdiHPdD1Sy55ughDiXFcIwRwwyAWW6ynWs/Yt1BvvMJJwTsGTEGSnoBeULWnDrtXjE1g2GT5GHg1EEUZZgxY3GOVWSxvMV+DBEvX1l2AHTaEsA3ywHg6wc4arAyUlrUML4vv3st4G3BjEa4u5b0HQ6k7TMKyoeQHMLQyaGfpyisgYMAMJgjg12EkDBsAp3oCDAAUany0rXsISVlMDFQgVZlOgPiF5JhBZzvjWL37bfkF3ADHB3ztf4ZTD8piADkZvMAkI7YGdoEGIMMZ4uJkwWFWYkOr8/0v5IC60C7aWBtO55b2yrx7MPUG1O35ARfK4MAnzKvp+q7/yq/8ym3bcG7s2RmRZSljIAsTQVdaHmCJdqRfQjxgK+3a0lub0B1tuHLpb4AFTPmlN0B+/XXvXt/cM2vzCfZRHSUny27G7YDTOW927QM+4APuwJ19hJ/YAUzLH11YngYy7hr28p5fmAh5nTDQV146Z7zEitLHgY5YVMo4h9Pqv6xQbaZMxpLpifENKFDm1j4DIwBbZUN2TFFfxrmySr2r8UqNQ9prdWjc1wfsjFh7bcw3DlUH12bT2f29egUYr53sGsD4wxSnk5yA+qe+WOdBrwPkhSwwluiL4oUDhsp63jO2Y0tLnShzQ3+UtUm3zzlSPdch2LYA/sjf5ASRtVnHa21k/DHvrY1W18ZWjkfb0stCrOOsIQwKpALflPkEtuXlZNKbA9oXCjB1bdD5S9trj449xkrgrrEZoLZ80B/v2P2rj+nWxqiGCekupY7dPRxs4nCxApZde9AvOm/dImyTrf36gi33dYQY6811dKq7RgqE1jHedj7bQn4KzKtPc1ZZ+o3dy7FijadO6xDvWERPCk6felAdabgha5PqVMOhWFOps7YD5zTQdHmt7u6asUv83o0/Ze+an4x1u7bf7DCxLpJH50VYL3bHA1C39yoHdrRrHGh2pwDRhYzZtc0ddMJv9L+MdHUoDY6kOlWFLJtTdc9yll5yySWXPGpyAbyXXHLJIyeM34kFuMW7BTbAoowPxrCt25MT0LRFzeLc4r/gHAN1woArA9D9wFp5GutypykD0fauHci0hfIOX1q+tgCe7FCnhXgAIuwzAGJAhXdgvNZoX3mXpkX60pQvRloNYFIjq2VsHEz1dBrDMwSAYgwoWwGlpW0Y6NgyBXQYkMB5BpN3A6zW9jM8Bm4pH/YjwBLgwdCQZkGC5rWsO4Zf2WAMjYI7kzK/GUoD/H7v937vLqSBugHirQ2F4Fi+luce7lVgS/zecwu7fIoBO7HtXBoAUWyqXWewSW/PzLAvELQ8cowoGzYaA3Dfy8s+M8gAvwPVMDV38Nhv/dZv3YIXi8f7mte85o4FO9BvDFD6CNAc4DHWkvpq7FV5EyagIQj0KTpSI1+bYyjpU8aAAl2M+zL1d5/QJ8CR5UHoDCw5erY+bKxp7Me9f225La0AszoM5KMgaMc4/cb/7W9+A9TZ3mrLsjFEepPlk045HGf/L0yGEBV2B2CHlZFU9mMBL32mQFgZkee4W9DFOGTsdW114uDE1el0a4B3t/sXoDQWDtydni3shnjl+v/KPF0DFjUMSmMM11GmrzY0SmNdYqW1XgBpnIxir64suxcwLQ8D1/XhlXkfIST2u3ZRP0DBXbftfn0aQFQdKQgNQJPO2VbmO2xqDrrOda0Hz+qr0xmH3hmfVo7pv7rpewGNxsmykyecH4C9juHyU2Cxjh59gN4V3C343fUDXTpZmnUGFojmAOlcqYwFd815uzb97G4JbdIxr/1pv63+1n5zxKwc2zViTLPu4bwTNqX9v/Wr/oxT08fdR9+0S3fpdLzsmgJYK98FTDvvFyyW7sl01JfppnAK2qH9o32vYyGnJyCzeqAs6rpjEaDaPcIpdY0gtIixuo6HjiPLozA/DtHbvWvDjb9bw4iXLfQWXXeQqvIP8OQoML4pX0PaaGMAOpYwskHzzSGx3znirCn3m51ykzlxgcvL6+ayvnPl7drE3Kue6TzHe8f+XbeTZ89s7DBeXHLJJZc8anIBvJdccskjJ4zZxlSbnFs2MSctuoGkp5wsnhoLFvcAH+IdZRhYCDOcLHQBOMvfDJIdNrUF/bbqY6uOuTDjfLIDqraAZhhbvAPiXMf4ApTOmFPegbwA1rLa5LHAWQ1219TZyZBm3GEHMSIY3crOWC2QCCyaAGEKkG4xv4X97ivjGhC38qx8e3aGMZCuDEx1jOXJyBDWAxh3Gp3qpoBm2V5ARHpS4FAdAGhntA3IXzzXbVvfwZTbUr42B8iIGziGb8NVAKEY/cIxlFU1WVrT5Z6kjQXLQBW3b88DRpaPgrX6TcEKz7YuAOjiBe69gEF64xC0vW9lAmJPzzE41dW21O/9e8+eAxRj/WnzsqiwsuW/bQdYwUwqe46Rfh6kVUcHIE7cVu286+Jna3NMJEb+2lqIiTNcCtapEB+rr9XL85///DuGvjRP1m/L3jHKb9XRsy/vszT3fmlguxUcFwakcZOBV7YQL//Y7x0vz35ygmv6TMcQ+auU+V/wGjBDRzcuGgfUKV2vk6Z/Lx2hDuSNLhlD6QQni3ov6w+wsTYXNsQ4qk53be1pnOJUaF10t4X44AU6ObBcx3qvHtFnDkH9HrvProCJfHqeDha04wTojguOTo6CgpUdOzkkCr4B5sTrVJaVS1iAbsPWNvRaOB9jFDCw4HvBu7K6OQQ5Y+pc7HhWHWgfMhb2d3OAfn0Cxyeoph/rS21nukbvJuZNDiL1XX31PnPZDoKcrP726Ry4fsLpumc5GL2j87Q29g6xUTmHlKdO3b7rBMNP5+g5Rhewrr6cOwCsGfY/YLTPmyNbT+q465Xu0LivTtv+57fyai+s6B5oejoEJmLOTzh2rOHm7Jzzftft3JLuyumMAOXW5pw85tv1IX3HGKjP2N3T8A36DB3kILIutrYUasy4JWyU8Yb+SY/uGDO7jhEGjQ4tP10D0gPjm2cHZHPi9t4nKnWMPGx5quTjkksueXrJBfBecsklj5zUUOsCiiF9GhgMLsAVw6GLfOkWZDhDLpS9AoCwtX1iMX4u+MvyxYazTc6hGQP6AAiYKba6YzUIz8AIbpzNMlH229gW+23P9JAUC36GMOMHCNyydCtm2T4taw1D95f9wgDCHlme2249lEqdtK72/8An8UoZGFgpQAsAi+e0g7oRh25SBrT2LFiFAdky1yDevQ4hqTHk+ZXz2c9+9i3DauEHxtaZYTawBgNUWARxVhm3vjG8GWllaypT4426XjAcSwarucaz9OiEa/Qe2MAhArwcgGV7KJBi946du/KNTbZ2ootiiQIttN1+X/2M7bxvMVobd9g2WGlN9v4y+LUnYH99qeDAHCUzGIEtE6Al/bQ9dGkPjF7sZOwyIMJY17t/6S89IFuZy5xNKysQZeVy+NxAvcnqabGZGcXqhzMGMFMwpGAUYMh19VmQXlkLxgLPgSVAew4G+r1rWONjoncLfD/VJ3poXCw4rU9zZunDNd6bXgHmAijeASRdvXUrde/tlunGj9xvWO36yOpjuyX0PSEw9tnvwNI6tQBStlVjnwJfgNDGSH1o1wbiiD+t7oEgZwgeB87ZIr38GM/3DMBnz+2Z5X3/+8bENOZxiBmTC3L1ECz1ejq5tDGmeOMzA4ywUJcH44h+KjSLw70mwDBpt93lB0jF6WDcKtuyIQOkYx6Tf9c639fZ457qVJ0SBf/Kfj3n++4SkIZ2tl1eeetEWL0UsGs+3bP5ZG21cWhjXsMcGM+Mo3WqFOiUd+20a2sH4/x08Izx2jouMAvYKxO2zqDzf21dwPVcWxjT9n7Or72jYLT31+GlvowtgEPX7wP/6kA4HWkcE4BJYw8HiB067hd7dzJd56w2lxvX9OX9JmwBXVHvAFxhM8zla3MOKfkrWM/BI491iGhbwL/dKQ7xnE7Z2cFJ09jH3oEdbh1lzJJvzhvjrrWh8dO6tU7yrk0aduaSSy655FGTa+S75HFlhvZbQwT9v+SShyUANgvygptdrFvw+x2bo4t4coLCWBs9FGZStlVBiAKnNaBqUFnQ7u+xPBtzdov2MTssfnfPtiF7Dstq98wgYzACwpbW0sAKnFg4q7Ma6OfvjEqGrTooU/BkLDGOGc015hlHQCv1sXLcxxQGojGeu/UROxX4BZhiEK0+xLucNJyCtAo4NR7ofXGcOQJItyzLN6PzrANlWhs4bG9AhkPQqkcFDpbejKvJAFL1smsDQQGjjaXIsCvgUxDNuwbWzdgaMEA3ytoW37bgCEOO7tP15W3pjSUmFAOQenmdgbv/F2oBo5CRO2YTQ3ZpTZd/9Vd/9fb/OTjoJXYfRpF8OZl85RhIhn3UOI3+BwSsHlZmuo3ZPQcIFrQtyfQEEGL7LzBeOA3byGu8Mp6X17U3YOIEQzC5gIfAan0OMET/5IfhXD2gH7bOYn1r24Ie3bJbwHF/O+hmxrx87V0Dphdag/FP94Vz2PeP/uiP3jkgxlp1eB7Ab+36kR/5kY8Bbvf37lu+jRdLz4FPZ+zT3bv2PtnAq4vl0X27tnVPD+XDCKuTAXCw9p0DoDsu9tvrXve6O9Bj5Z9u0P2T9Sf2NN1dmYVBIZikHCjYhwUFJ0Bi4wzdX3sMgF7aAOXJ6gsYu785/bDzjHVlxZoHO37p2yf7ErB1OoTMsXUwNNxO5zss4QnQGYt3jg66D1TqfFWHo/rhVHGYH9DL/FAQ8wQXuwvH2ODvzntlAxfoa7mA5cAzIk061fAXe54TADjOObgyNExK+8q5XpmOlzldpxLw0Pghr9Ik0jR3AHfl07i9NqNnAM7Op0SZpF0njzzop/pEgfLT0Y797l3nmq5zp7SMDXVWnsBxAWZzf8eago3WL/ouh13fpe2U0w6k/bb2pAerQ4ej7W+hVzambK7cOCYM0H7feLzfrUWW/tJtCKYe+NqD/Vpn6mrttv6mLEBbu1bsPBBeZv/rI3SaAxqD124XMcrllYN25RLaZ3o/2XhrbD7bov1v9/T5Sy655JJHSS6A95LHlR3k8ictAKpLLnmYYjHIACM1GgZIFIDFYAQQMnCFO7CwP5kmNTxqcJXx6dkaCpOT3cbwtE1yIoZqAYgthh26suuYQLtvYN+cLAx2h7RMlv5CM+x76dpKfB58UQYeoxggWONSPpt3dV92c42v3Y95WWBAnfRegIN0vZcBtXSAAquPsj+0d9l9gKZJGbgFYBhADPT78uS5Aofyg6WmTLZgFixnfK4NPuRDPuR2C/8Aqh5IJi/qt+kATpVvZXfIEwabOJaYo+qRkQY4E3d2z+86gL3vX7gEBuq+sU/L3MLUsRUcOOHwtKXPwTCdXP975jOfeQvYOdRw4SEYbww4Do4Jw/S+2Lh0k8OgQKZ6Ygw2HID2rVNCOsYEwNrayHvo9+ocME8/vNtcWOcI2TOYXfrRjFuAz2IOr/4GIGIdlzE4XQG+aEft793L09of8Gjs0H51YCjX6hwru4zN/Ya1hxE6NvPyMYB0OrK015aLqwz8W53t+eVhv0+3OcWmaws9I7Zk+9Zi4goLcY4NHAv0bvqFQV2AVCiWsghbNx273aON1n8aM7I6tf9XFv2946RwDz7LwwAZedJPClyVOepeAM2+ATjYm8YQ4/7eufAlu2/tt/psTFJsWLrNYQN8UcfComCUc6RwipSFialorOAUAxbtncvDOQfoe+rfOCy0gn7VQ+uAZOZn/VYdY+yaW+TPPK7eC6Sf+er83X5a9ul981JBUWkBqDq39KAu82ljSANM+7t+St+6U0MeKurUwVnKtTF2fXfzjTG9c2nH0XOdI66xd/sIu7R07VYpg74HlnbePPPc8ZFut3zdPaM99CXsdrpQ8LWOmrZX2dAFnE+wmR6pR+A/3aWTnScbL91Y1Lahy8YsZV1/dGja8jxH5/63M2mORuCwsV+eORE5t0nXlnU6c7YgAejHxoClx4EHvAXOTgDU65vK3PBB6kaZORy1XR0a2mZ54ZDdeHkyqkuGkO7u2TjXvvpE5Rz7H6Y8VfJxySWXPL3kAngveVwp8HXJJf+vSQ2WGpRAFwwFjBkHUjAUsV3K9LGQLuulRhtD1cK0hmFjA05O1pA0CviWObbF/xba3f7K2BL3dGUTn2wG/xbNWwQz+GbgiX86gx+DZAYDY2Xf4vQyIGoYlRlTELeGYgHRsnMKdAF5laFA0qRp1IgruId52vpktGDXAEjKHu6hVbZJTxjm0us22YIC8grcqPFoW6KPNLsNuKEmMLV37U1vetNjQGj6B5Sa0TdjaO8YkHOywuUZ8AL0F89T3ddgFxu2DFFsTOVcfY1NC6RYnc+RoO7VLYPUQWaAp6W3Mg6otN1375zhCgyYYbf73/jGN96xkaav8k3X9DN9WTknS2eAw97hfv1nwOJAO+3QWKUrS9OkfwA+wChnCWDUgYYFxLEoeyAMIBZ4DnzTbthYS2/PLATE6pshbkza/wB0fYGeAYG63Ru7U5nKOuPgor/y0kN0jF2rc9vGpeuZ5U14AONoWYxkeV2oDeOMcUK/IXTYOHr2swIJHZcBTGf5gUDGV20AuOk4XScSxmND6tRJhV19Ms04AXoAoHwIn+AZeVDnA8GBOHRuafqWJgCQo2Z1uz63/rP/1+fe6Z3e6W6c26dzBvbmQCZlmgD/C4ipl45p9KqA++qroUC0ecc9c6bxdP+LeV7danibczxueIKOffQKEx3oJFyMvnmC+9LoHFYGexnkBZ78rh2NM2V9Gk+BaK5h5WpX+ecYbf0ADb3fPFwWe+fgE7xeu0wvhHXxfNdJdVjqQ8J5CDHQeUM6/nZvY/JKq2uHguJ0Qj7pibrUj41b1cnmpc9X9+pgL3BccLfrE88XhJRu2bh0BSiqjfcZkC6NhgBRVozyiXUH3eQ821yweW9z49LTJ3cfYBfAzglDX+SvY4tQL0BkMfm1q76N7SvOOAdD5w3pidlsPjL2niE+1Fmd+vqGeUO8913f/CysmN0xbfOuPztWX3LJJZc8anIBvJc8rnzap33aW/z9cz/3c2/e533e53ZiftnLXnbzi7/4i3eHmIwFuN8+6qM+6nZy3kFB3/iN3/inlPNLLnnLwvBgBGCdMV5tz7Odrov8AowW5FtMOt33ZC8WiCgQwHBv2ru3TNgzv+eBYN1WZxE/sQVc2IEywyyGBxLZwgfM9m1r77b11mB2MjNgANMLoCCvrbNJWU9lrzCw3FOmpfxPGEA1tLuFskANw9ihWOoZYHpfW2Kpacv7AHgM3AlQp8DnCVphmdaA7TuUucxgZbdVHhABgB2AiNkJtJRPRmR1oVsrlXPpYDUzVqv7AMWyeabbZW2W9QPQousFHU7gB6ADmNx8ARwYALjyFTSnAzNkB2iuHEsDg2k6PHBiOom5y7CbAHyAZg0BQG+04wzkgbwY+WUiyk/7pYPFBpbRx6Xh4Jvlu2CoZ1d+IPP6FyAWcAMgN7Y4QX3b/vc9kG+g/8Be7VxmGkOXHgBj6Ls68rv404Cw9lN/FzShc97HSdB+0LELkD/2dUNftM977rwG+CqAc257p4tl8RXU0l+NS/op8KRjS8E0bMnqQoHXAgmAuwIZaz+AekGdgm8dy1tnwD71DixxQKS60K7S0W5lyjvY0E4M4P/0lrOvzjNl233Yl96pPQp8q2cOBmO0ftjQJ/ILsAHenKxTaffAyO4QEKvTtzik9MuYezoRzLeAdflY/djVUcANICZv/tbfCu4WYKxTUH8w1tJddY0l7frKI45yHZ7yXVDduztGNRarawUN62zYcxtbjTl1jlWX1IN3eR+HsrGkZdXvOLv2+8ZvAKG2Mi/TG3p8ArJ19LQfu7/6UT2WVqX6bqzo2FEndB1k5zhhTWAs8kx12/pq4GR3VNT5Y4x25sH67vSZk7WO09XX0jJPYeM3jvLEHM952rFbfRkTTgeYeQdQa353eJ5yGk86HyijMA5bY07H7uuP9Kptaz1CF/TTzXl71jkExnTPn7ty2ncvueSSSx41uQDeSx5XvuM7vuNxf/uWb/mWm/d+7/e+BXY/4zM+49Z4u08WP+/f//t/f/PRH/3RNx/8wR9881mf9VlvxRxfcskTk9O4YkgxYBk7wBAsN8ZdARmgzBaV2HQ13H2AXd3qW+PFPd2aViC6W/r6rL8LRgJuMalqUAJnZ9wPyAPsiXGG9TGWCMAZeDVAqwdMzQiogVZjS1oFY8qAwlQFHNWQmuyauIhAHmDKfQy9svf8LgYg6fbliTo82UDYL8rFcPH7CQ66R4gMnx5OAkSbYL+coR9OI6XOBPUxYE8sSUaesg2oEGevzBjbr4U/sJUbIOFwPsYo0ASAN6NqOuHgrN0r1mfBuPMwPkYsJ8oMvYGyy+fYyNOpbfsW03OGq/ICovcBiCrTfh8D0eFnGH2M7gKqJyOQ8VoQcPdgV9PfOhOUVVkm3tkQLW3vfcR3dZ9y7b0zWMUW3jVA9gx2+iEO4T6rM3mR94VAEGrjvvGkoK2Dd4RpkEcMrxMEWR7W3gUN6Ls6KtAvDTqx56Z309cCz+qoY0UBojLnCyQWTMS6bz8sqCMPdjZML4UtMX47eKzjTscpbd8xt7qtjYCFBdtX15wqdei5VxmA/fSxoAQABkjGmcdp5/3GPe81rqzuF4Odw0XfBpSQtT92d4FYY0R1uuUpYM6R0j5VvVBm82jr49QB/3e8bTxkoJJ2wD5dPc75IVzKBMNQ/+5cLy35Mb7o19pAmxecMyefQKPx3BxeFm2dBd7fdQFdUp/KcALonYPoiLrQfqsLc1oBxep4Q+Gs3k7WbPus9gWQY4pPHB52OiuUrzoAlO8caQwpOCyvxii60X5KH+4DDbuLQPvXSdO59VyjkPbb/n8CtHVuSaeOYGOvOaTOf2kKsSKcAgcR3dzf+vDSMf/XiS1vxmDjo91Z+pZ499ZfQikImdQQJ2XoKm93OFizqA+6b07c73v/wGpr4/VXY1HngrbVZGUUM3/z6NLefK+c5s7zsFZ9rk6GB5VTpx6mPFXycckllzy95AJ4L3lg+cRP/MRbdu8v/dIv3Xzsx37s3UR6nwz4/fiP//ibn/u5n7t9ZoDw933f9/2p5veSS04p4NYFdOOl1ogFilooF4Bh7NkytsUoNmyNg9MQqIFx3wK9DDTPEIv9lqeGSllEvr1jC/otimtEyu8MwwFGDuAC8E5WRzMEHcZjyyADwUnNrTdlLyhK/M5QqJFc5p76qdE46fZGdVaAoCynLvKBTOrsNMwK6rZ+G5JD+coUlTY2ChCtsRUZsoyp+1gvmECYkUCbgTXCHIzNWsAJKNR69z8mnJihwgZU9/otZmfrfvl12rpDxbAfG6NT+bBu6Pv0ZYxB7bO/gUcDwgbyirN7gvQDpGbYMfhrUIrB64CflbGAXYGk6S7Dc+k5lE0/2m97HiAIZLC9na5qH4DF6gl4aHvrrq0Ot3Nl9w603fuf8Yxn3Ok7cNq9e7YH1wB8z0MabVXF8itg5LuxRrsl9xxLdv9A3Pu2z3dLfPufDwZVY1aWxdZxtqBmHTvtk4z5hn+oY8DYQsR+LiPZwT7rI8bJ/ba6Huubs6jsOiAFndnftgD7H/Dh4Dt9ZfeNsa3cxoMx09c+gJOOeZxk8qce/W38KqgKpGm/LSO4QNzytz4qFiadX3oYl517pntLf3XHydFwLd4jv3XGFSzVP4EsPkAi4Vp2P5C6OtXdFXUEmruA3HbJAMLE9t3966fqUj1iwpeF6H9x6KWD6Vggsc4NQOV5vf3Feyudn9W9sVMZjdXdOVQwsWxUYz7nZR0PJ/BWwLPj6sS4eYKhbVNMW23ddRBgWlvIH6HH9IiDDpg+nTDuSEdf7Fh1MncrZ113fC643rVXQyy0P5zrk7Mfavc6+7p7omuXhpLYHFfQVxt3PBUaa2lvTJZP+eYEItj1mLLqfs85fNe6jl7LhxAs6y/GNuNYHb/WHtpO/huag252TOKYn2DX77r5efWy/HcttTStUexsway3K26/CdXEOUYvHf7aUCenrlxyySWXPCpyAbyXPLB8zud8zu2E/LVf+7VvEdwlu+drvuZrbv7jf/yPN5/92Z99AbyXPHQpc4ThDLCxKC/LAYPHIlecTYbbFqcWlt3yWoabd5AashXspbJnLZbP+wpmFeCdyHOBSEAKIIARsm/A3eoAk5LhKX4mA1mYhv0PlCrIVGNqUmZMy94y1IAt66sM1y7YT5C8W/1sZT2NXIYKY2vvdUiMOi0gbpu2euh2bIaJg7YY1uqdyCNmnDx4B7BHHhjPdKflEZqAYS4tRs5znvOc2/SAS+qYYTeDaB9gPaCZvjqFG4u07bB37x2/+7u/ewvGLg+7T7iFAq/6zd45XRpAx5Acc3ffA6yX14XzYfDSoekbFv3+xyQF8BaA2j37X8zoAgRAmX1jBBc81D4An/ar6lgNxoIZAN4T8DnZsAOT3/M93/MWaCRlWDsUkTE9AN/4U7aq8q9tFst179pz8s95MGO3xrn+Zcs+58Oui2OsPyunU9E5TqRT9rfQNmJDuofOFPzXH7Fn2/8BMdOnMkp3/8tf/vLHvFOed/jgQImOM8vnQH99C+t9uusgufbJV7ziFbd13bHZlueCjROHWBqfOQaNI+pBveyjbemJMYrjwFjjuZYDsC4NwNHSAgQBc8RM764HwP3+1k7mEoDQnl8/nl5yagxA2bN71+pmdd+5TN8GumJ2Kpc5jc40VEzrH2ALIBJ3fM8IkVHQsAdRqj/l2bglPXVtB0LBO/kFegMr9es6V5WxOlCgDxipnAUVjc113nmu80jXF+pIfXin+uw4v2t2AtThTG/URXWzoK30CvbWQVRHs/bQZicoylncMhZY3d/rexuvgHrqDNi+e+lQ1wgdoztOdN3UZ07mcPOgTPrcfQ4vf5+AsLbtmFVHh3s4IPa3teTK3FjXe/fm47JgObcmDrpT5wD2k/ncXWdLyxyB/dsyIzMs70L+WLOu/XYNOG3+pDfWI5i9ymbXCYeXuVOfMAbTN+XaWkC7rm72/olxHwC+8axrQ20CCNZnja/0tGdluHbJJZdc8qjJBfBe8sDy/Oc///b7t3/7t5/wM+593vOe91bL1yWXPFHp4t2C0ELbFjRgkUNYAG1dNDK6GJsDpbq1u++q8VtDym81Tgp8Mkjk93yuDOAahd1eBxTadXFzLajLKsPuWHmXLqBwdYJNhwlmAc2gxOhh4FiYK9NpANbAkhZmTRf1k7KqG1Ow5cXM7QFpDCp5UGf+r5HLgCgwro0ZpQ4x6wE/DVmhrhkqZfWVZau8Dcngd8Yv1gpD2rbMsVsGsJ4G6PI2sFQsSlshd3CVPK7Nx4rZ3zO4GH+7f0YTRvdYswAXrF4soAFoe/+e2bsYsPQekDhZejPo5GnpzNhfPmfwiw9aZtJ0boCT7ekMzzoJ9EMGKUYm8FL7qs8CnUtv7xzLsv0JgM6ZwYBeXk+2bI19rO+yufsuThBbSemzZ1aXDdexcjuEjR5W35f+AGNgq50C6kA/9v4CNvsG4tOfPbd2AqDRdQdjlc2856ZP0zX9Vj9e/GKHLxqLVmbbutvXMZ2B2MLIAICEFWmZHYDXvixOZfuZeMzyrL06huq7yl4WXhmaBXA6bhv3V/9zWOz5vbegW51KHQPNEVjTq8uyrY0bHSOUT/xr26w5e9ansPuNDfRgdY0Br247XhUENb5PH+l7gccyLAuAVu/1WYBgxwVjScdhYg7tnAKQ89Gedhms7HYkbHxaWbXBhNNSfZoPtN30R3vV0XvuyFBOzypL5+ACfvLZtYB5xMc9+qm+IB9l7dI3Y5rdHWVB18Epr+0rZx/susN7u46QZ6CZd/VjLJYf/cv7lENMWexwzjuM6zo3m8eCxWWJnoBs10RnWdU1Nmzn7nP90DVC1wXGoHNsMIa69zzsznuJQxR7j90CHFf6qHm5Oxo4dBqGYL9bnxZ81z6Y9Mq8+Ztzav1dHG4hlrrm6LrU+qj3cMR5t3vUJweKse10BOy+jTMAZM9g6rZv2a1jfSY8g50Hytq2mF5O7x5UqhsPW54q+bjkkkueXnIBvJc8sPA0DwR4ouJez15yycMUhscEAIE1gVFlGyE2Adaubaw11DAhbRmr4VVGRIHdkylyApAFkhg4jLYT6CB9R42Rc2E+Ad4pb4G5AV0YUNir3aoHXGrc1snud7hPQTJAesvPaGpbnKzRk2V5lvc0fE4WFPYj9sv5/tYP4Lgsu4I1jIseRiKPNepP9rG0CrZJc38DYhjYNVQLasqze9Ut0Ed8wwGXZcKoV8CatrDVsozXs058C/EwxmRjjwKoa4jve3XuMJT1m4G82LrTrRn4v/Ebv3G7xX59a/9rw9XT7//+7z9mC/3SUr/qYnXj8Cj14HfgAmcMMA9ws/R/67d+6zHstRmCiysvL8ChGZAzgnfI2YSh7127D4sJcATAY9CeOqn9B8jNcF0d7f377HR0fa79oKFDlidtx/Gin3gnYPwEQzDllN128JO11u3BAAMgxPSgIMfaYPnuOFTAFMgAGASoao+C9R1zgO575xjfdFL8XFt/O9Z2XHC/951MPrrqXnVTEKL65n+grP4GuDSejgGr/tSDd3IKAeEBe2LEAjCAMvJ3jgPYw0AzDgHXl+76zfrcnELT66W9dlJOoRKwpfVpLPnTKakOqyvneOxeOgukIm2TOgk5Vc0d5gshNZZeY7FXV9Sp+XdpqrcelNq5TJ+UDiCqoUBabmUvKGuMBXa3XIBs40TnCn1EH3cPcGsifXmQrjqkJ71HHPICVF1v9FPQuX2284DxYbrTQzjPZ7pmMWd1DNCe68d1Dmzcw3bHmpeOdi3A2frsLomul7y7Y5EYzljO9+mtb+mqX+NXWdAtX50j+q/3VPc2JqxMGKwDJ/exO8U8Tg/KgNfm2K7y1R1jp0NA37N2EU5r9278Bu6WgWv91PMC/A7I1bcap1r9aDN91Dxn7t0H+1dMeuXctZ4ZwHnH0es9u08c8eml/CirOnR2wCWXXHLJoygXwHvJA8sb3/jGm3d7t3e7+dRP/dTbmLpPRHbvZGyXSy552HICnw6r6NY1gCcmq62xto4yDm2lw8IZiIZBuQXrnsWMKrNPHhh9BSAnJ+Nn0vsmFsgnw6TskvsMuBq0wAWA1PLPKMASK3AHUFh87d03A8WWPIfznKEVCgJ6pzwBvQqi3Afw1ug80ynLFZCCddRnaogW1Cq7r2DspHESJz1Yq2l2W3UNdbpybp+0DVkeGGgF9r2jzLl9DxgdY3JtxUBavf/ET/zELRArxMHabmEbtnNi6e+ZAUEMsVe+8pV3elOAQ11U3zBtACIAIsB6mZJ0Z+DX8jVDEsC0/Dk0Zb/v+enQ8jpWr62ZdYz4NPZhQbwCNQU4bG8vu67trp0L4kj/ZOXWmHfQ0+p5ZfC8fm8beOOwAvUaSxRLFegEFHJ4YQE1rPnJ6vPNb37z3TbggiqV+/pb9bZ1UDb7yV7rOCKkB1FnAPX2uTN8Df2iz/LF+JdeHSnGREa+d60N1Ok5vtHTgmeNZUyvgSue2zPT0zo91J+6KrAjLwXD+87zGc4VBwiZf/wmbM7Z96WDrac9ls85CHaPgxDFJV4/U2d9z8q8uhgTe9fG/gXAqPelCeAtmKsfFfAqwHc60TqGlpF5pqtdga6Nl6s9OSjVr7EeK9L4bJwyf0tTzHBOWnM2IKqgP+CdrmsP6wLP1Jnr2vo9RxWQ2Zja3QUF5Tp+0BXPdGxqXbYsLdNAvLJE6ZA60XbapwfY0as69s4x5b5xQZiG9l95rJNSTNgy1ff7xsGuNbp+qVO5/bpjUMcWdSw/nAL6FlHGOgXrFOquFO3svr7b7+6148m7V66NKZsrrBsGdDvYjnN239aWnKh0BLiq/XrIneeVTb36e+/fGAy0bfieAb10rnqp7qxb6zC0E2fvEDOdA6BnQ3Q+qBOioarczwm/cjbcCn1fGkLFWNdwDlh/A7rruFmeVs+XXHLJJY+aXADvJQ8sP/iDP3jzj/7RP7r5lE/5lNsYdv/6X//rt3j/F3zBF9z8jb/xN24XCj/wAz/wp5bPSy55S2LBjhnQg38YMIy1LUpnhAB5t6icIVWWoy3WADfgzgQQ0K2fQGWL0hNEKvuTMVUj9AREAaU1jjzD4KpRyfhjUANUGLaMJQaF58Q8naGwxfbKyeCowcoYYTB2i23Zr2Xgya82AYhOyo6qkQUQAaSoX/WJBQcIKnDOoGudFcDVdqcRWLBa/gEUAAzvYRg1jp28AhaqIwWxGvqCcWQ7Z40p6Wy78kDcGUPT1bXPs5/97DtDbMaT+wsuLz1sHoDr2ngOuQ/8wA+8vba0GXyMPKw/bb50bcVdPvbbi170olsja6zZgaFO7l4e954BUiuTGLzdrqvu1I86U69lEgGc9zf2z+4fAxQYqH1375iNA7Kq+wsltHQdeMOAXHo9CG/3jkUkzQHTmHzv/u7vfmfE7lC1PbN2XzzTxv7E2KXrWPTKJawFXXBYjsOhlt7yKIbxCVIXYFN/gFLvKdhjDJM/gMPJWuvuhI5/2s6zZekWIMHo7HbrEwg9+2gPaqNz4jcaB40dDZGhn9DXOiz2t3i18gFoF8ZCHvY+AGHZmmuTHhSlHgA89K0gCZ02X/guAAqs6bi2d2HY2k5tfgFwchjsf0Cfci2f+vZ0a4zo3a9e9x7l1rfrJCzw1j6vjdy/byF+gLCcFQ4wXB46jwHsvUcdtb0ackh+3dNt4HQEUFTAtnqlzhtftjtJ1EOBeeXXf+gGcLzsT3Nbw/00/wXVCpp2nFM/9Eu6ngMGGuuAeV2LdNcA1nkBWOudk82rPst67f1E25ws1+5MKYhdUNXYPn0RPogDo44UY1JB5To/zrLQxepqwzKo644x5ByT6jQ/68AaUZ8se1cIlvVbB/A6GNI6QOgKeWodWocsXaHD3NddK10fGQfl1zjTcWzPbq4HfOrryqQcu2ZnVvsXHdy3EEHqSZiVzkF0F8grHeNananC16zvbqcB4HbvUZalM+fV/l+d7HdttPqyq8w4eh9j+4+SOlQetjxV8nHJJZc8veQCeC95YPmX//Jf3rz4xS++Xah89Vd/9S14+5KXvOTml37pl24n5U1IMzrf533e5/a+F77whbfPjTHyr/7Vv3rY2b/kkjs52TMTRjxm7xaOwNwCHifDc4vNnhgOlBDqYNeAHzW2LHDLNPUBWBQ8KVhQQ/A+I3JyGkAnOINhWKaNOnDy+e4V63N1MnBrjLHl37ZLxokylnnD8C1DpsaqPDdGqQW6ugVWqJsCRt2+qmwYaH3mPrZm60xebJdmdAD6GPbKUmCpuqQOMe4YTPLAcC27S90AtoHbGDX3gR10iIG5tgBwYswuDbooPVsfy1DDdtvf0/cZUfuW3u4f4FsGu/ilqy/37LnNA+/wDu9wO0cMLN19Myr3joGh26a6vC6W7FhEAIKT+QVgqSE/cEg7uLbnp48DoWdMb4cJVtvy+upXv/oWcD7BujGJd7+wK3NYLv87EE08T6x27YwtJf7qPgCC1flzn/vcO4DXM0I3MHZXD5iGygZ8B3Q3fEkZdQz9td3/+l//645xfxr4BS78BrQusC9GcQEUDDIAqn6mj9kaS192fYeTGeukLZ53t8/SFeOCPgHAdI923ju2a2hprz2MmWtPcYMnWHCrR8AUIHHpd2dBAWOHcumDdO8EdICq2K6Afw6Xpru/xcVcXU3P5mTZb06A12Y9qO9kYuub+v/qSJ8o29HcsFAMdVatbldP62tv//Zvfzcv1dHQMYgjrM5GeSuQf46n+tWZb/2vTgVjKSBIP5lwtJgHzMmApjpZ6uRcn6VvdXo5vJBjCvDZ8RQY17GncdwBbOoDMx/A1MPMzEtlgZqrlbfs085j9LSgl7y0jsyJdTIWpHdP2bvmix7oyQG73/WpArt0xC4B7VqHSOO96qvSsx2/uiJv0jHXAYNXz0LemP85MgrKNr3qptisfpdOd3Co9651fLdsmL/ut97qe0+w2EGi+9/hXw2xYg0IjN/4sd83JjSEFifW7vOMsc9v4hh33VYdMj+6rm9vHBKGSL/Q1zgppWN8blrKa7zdnGsOP4F27wBWA6rrXDdGGNs4ZeiS9YWdcQ6MlS6ntLMzms+O+5dccsklj5JcAO8lDywzVj7iIz7i5kd/9EdvjYYduvY1X/M1j3v/Jtmxtz7mYz7m9tlLLnnYwkg4Gab73qIbS85WavcXAJiUqYCdZIueA58YpwxcW7O3qMUg8ztjuEBfWcBlfzJAa6zUmKrhwqiowX6Cq56fWHhjRzCIa1za8jywbnmc4eC9W3ADgTBZ+v5uVfVeoDIwCFvaoh3oyigFhEmnZWE8NE6c958MHEaquhKzlcHKkC1QbXskJk3f6VAahkeB3DK/ykAq4KxuMIHKJFLOOcumV2OgLs3Fk927hGJw8BJjaQAZMKnGuraogTdDcvcMKJOHAWWT17/+9bftzSifsbV7Z3zNqTdW6X6fwTfdwZ51iJZ63ZwhfmoZPyeTk0Errww/rLk6MpoGIw/DanmyBVisv71nACk9nwDk66DAfi7bbrL6WVplSQLAyoZVtwBbwJf8YxGeDgcAC4aY/C3Pe2ZAsvAQgHzMMP2nIPM+Qnpoa4Z/9UvfAMSV6WuMGmhoXJisrw/QB6hKb/W8Omrfs922fVWf1//L+FqeX/Oa19yxuAA4AxbWD/St6Z84tLu2duuuBAzpPbt+037X3Rz7uyevG5fEHAe6NbRPxxP1atwooKg+lYG+0Glteeo3lpyymZM6PvhfWmuP5Xk6snAeZXKuf6qT3QM8WVq2QtcZJq/qA/AiTWPl+k6BQsz0glaAHACjdOvgAYQr0xxNpCFkAKf6qx03wLH9vmftuil4qs9yVtn1oK6l7SA+W8JP5yX9UKaOP72vwK52l3e/d07Xh7S78ads2oL5HSM7p5urHKBpvuO8OudQjjv56/xXNrJ2quNGXleXHGzyOrFGEmd148X67ca0tdOcgEt384pDQOuM6jqlDgcguD7ZdVDH7c41rT/zYB3UZUp7t+/zOic00HV60vIbn/t+7H+HGVYv7DjgCFt9OERwzoxz/dbn/a3ezTmr7/V7u1EaxkP/7fxbvWocZDrL0bF7Nx9g09Zh1V0cxjTrQ+tcuij/DmZdWa2dtW3ne/o3h7HdR/K7PKxeHdp5ySWXXPKoyQXwXvKkZAbXYjv+k3/yT24+/dM//XHjHG2i/rZv+7abr/zKr7zbPnjJJQ9bLF7PBT8DF5B4gh41el3vCcKnIcDgnTDwLfYnjHnvnWzRD6gpA+NkqpbpOSnTyv9d7Jd55fdJDdXGADy3+9UYXZ63iLaF0KFzWGvdFtjT1rFpClqrT8aJe5QfyMfoVpZuJ5fHMnu8tyzIbpFmcNVgL2jCcD/ZPAV/awgpFzDzBC6Au2UCFQypyCuADkDIyPHuXcOclV86qQ7LAj9ZTK13YCVgDkg7tva2c2PaSHf5WFn3sd17AO+AkDF3l/Z0eob69F6cxb13f+/6ADl6DIClnxjkWHMYqD1tmz43jAXQBiN0ABdQd+nNWKbbm5+A4fq27eTVxx4wWECkjgH1jJ14GtukIUAwQlcf0nJgDPCcg0SeB05OFgpiISCAoyunfO8dY9RiQmK67r4BKViou1csWFu7C1LLY0MKTCcwkTtuCh/RLeD6Sccbulcmnz5VNiM9XZrTceBq272gs0OMGPbnjodzLG/+O3aWySnfHVeqex3rOpaXVde8AqjbB+XfOwCOxtkCMUDfOkwKZgGmjbv7H5C7OnF44Rwsqy9zkoPijDHaVH3XQab+qiPK4DchEjiIAIbK1LEUAA7Ykn/vLZuYg6KseKAapl+dhOqErhtP7Uyhg5wsbUdzjvndPKRMHFDGBmUnBT3VjXBHnmvZCkjST/1uH2sCbUJ3y4L3fmXwjvX5vmfijICOn5whXROdfbJO3jppgX8bt3avnSva2ZjG6W3HAuZu5+HNDYB583jnLPpDD7SVd555KyDa56WpPOqh+te+0PWidLUppm3Z4cZTMdXps91exv+GPtCO9GZzlHlRfHrgZx1/dNc86X5jxuYKu084XhwCdzKBtVnXhB3XlQvrmOPD/8bBvbd/Lx2H8C4vnftWf/udY3Ggv3joQOmGp9kza++tU9SPeazrJ/PPg0jb+GHLUyUfl1xyydNLLoD3kictW4AtFu8Xf/EX37zXe73XLXtsntTJFiU7wOdXfuVXntQEe8klb005F+kWn2UwMBROo+JkW9RIZNQxsPzmedv3TgPOb4zcLYLPWHQWzz18qAane1vGSg3Alr1gSstZ47Gx+Czyl9/18xltW4Cv7y/PW7CXqcWIdNiIvDYOJ0Ol+WQA1sDSJgW7CzKVJcW4BAQDg1rWSa8B8wrEMtK7Lbp1pc2bT38XTC+j0zVAbJm0YgZjnpa9V1afZ1an7/iO73h3SvkYLaehiZUuJmZBKjqxdgOMMUJnSAK5tak2nNG6Nl/a04HFr5XmjLNd2/PLz9IFtAIJFw5hLMzJAGKglW8gFebkRDgRZQcsAUXLZvT3WJ62h1bX3VOAscAeqc7JFwBZ2+3T+IGN7Xoy5TGe9jyW6TkOYaRV94jtumuvZz3rWbdp7QMkNybU6dT+4Tc6DnhQX/QWuHgCn2UZFhhpWeTzPgObgwKwAUQAZjd8Ap1zQJE8Y1Z7D7b40hjDzeF9PfxJXqVRpnAdIC1Dwd8eZNU2A+jLi/EbM1rbdeyUH+xx+iVPK68dJNJwmKFnsejVH2cIIFN+l/7649IRR3515b1lBusDHS+V85wH9YuOJ9pIiI2tEdd+BQ2r4yf4TpfUBx2ks8AdujWZHojh2jidBUDpAOcK5557Oy9rz4L1AC6AozquM/B0iLbPm+/UoXrm8DpBRXVSIKtzSQH8jnX6Kwfsxs4y6L1j+RZaqSEDerBeHS70smuirpm6nhJ3t/GPjYvTB4fZmgcAvA11paybQ+pck5b2r3NFmJm2gXqtM/OUri3KWj3HzRMgVufCJRi/jN3aaH1ZiClOTOlw9tBXes/xtvYQIoreCwnjWW2uj1iTGnuX3tYHna84gsxZwt9on65jjQWdT4DPp+N779vYO6ewurOe6g4N5QIw09nG8J8j09i8/O3/OZDVwfRXG9SJ3Xm9u3MuueSSSx4luQDeSx5YFld38trXvvbmF3/xF28n0l/4hV+4/VxyydNBLD4L2pYZVsblpKxJUjYfKQDSrcoFUyZlpfj/ZIxYhEvP1kcGQhmujOIutk+myslqOX93z+OBwQA1BpwTirEwtw14MSBnyG2RXqO/7F5sqBpTzbd3tZ0mZWmq6wImbVvSGKHqiFFWsK7trOxltABcV7ZuyQb6MWAYQvSCUWbbNOO2oBmDm8EGiBX3uc4AZSt7eWDNu7zLu9zlVTiG6oZYu8orfIZ6ZFw3JIjtpQPMdm1xdXdtjJm9c+Du8jPQaHFouzX1937v926NSgAlZisAcvkYuAtQWJqYs/K5su2essEZ6uqtYCM2u/YA3A4kUK4z5vX0le7RU+BIDWYxC9UXwM0hg/vNtlPbQ9uXba+1/fRkORWYkD/tZ8v8DHTlWPn+4A/+4HYXzfqg+Ipri/XHMukKWu/aOUYUcKJTZe01tESlzjAgY2NYAqJ7n36MyUdP1dWuM/q1KceFtpJ/jOGVG4sdWIe9Tec6juz/6hUAkpRh2javU6T1t/oGXgD2ARhiQ64vVzeFHGj/l4c9L06vfn6GyDm3Z0+nVm9Ld+BKDy0ck3sOlIG8+vmYvPteveqjHIx17JGC0p0fOtYZ0+2OAEByyizNMvZPYHLXbNGn+417rtzGp/2tfXsYGjCWE6b62Xi6dE5+MCLr5NDO8tB3cHqWQdudIuqrulcAtzrXvic9dVInsTnN4Vo93A/ABdhfOgV3y+wsIF1Gp3ef73Sf+aNjR8um3NYz3mX859Bs+KKOe8Zged3YZseFnQNltRdsPvum3/x/grftwwRwae5Wt/fVh3o9D8p1uJ/DZwGMYvJqIw4uIHfHKju/6lS07tC+QF+hedSBj2c3FniHttvvq1fgsvfRy6WtLcw7dZAhF5RBrVxLc2CsGL3uFbNafUl/9QK0FbZssfnnIOrOrTlyNpaZe62nphPi2dvJ0fdax1xyySWXPEpyAbyXPLB8+7d/++0ku8PVBvBecsnTTc7taCdYyPg8QaUCDP1tYrFsMVx2jmcZddhcBSwxIBgCDo4Sz44RPYaEg6FOQ3tS4E66zXelbMbHkxq1DJq9Q2zFbccvW0QeZswzWhh1jaPGSMa6KjtInry3xiKDa1IgTz0AQqQjTwX2Wi7t4drJ5vGexmMsm6/bZjEjq2cFqJXr3OrfGHczVsqMcSp0jVnPrU4H7gxw1eaLi25LO+MLg5VRRHeAlMAgdbZy/u7v/u6tDs5xt+/p3IwsZcciwtJ753d+55s3vOENd9smlzY2KyNd3N3J0rI1V3piF9dAK4CAGSb2n3Zm8IrZN5Db6eXbWTJAa2GFlNmhTB/4gR94x+ibw3IgIoYyvVrbLP/tUxOG78qhHy2dOToK3kyEu5jhW6AOwNWt2mdfBHR13GHYjp3MKAYmAqMZ8Ppmw2+073NO6Duuu0a/jYf00P9+A6pV18k5FgGkgBHAn8YD1q6MfyABUKus/+nvykuPysjVB/vM0nOtcVcn6tJzHEJ7Bhu5AGHZ/at7oMv+lp85OziS6iQDBgMlOuZiKQK7ADxlPRtLBuBObHPuVmlA83RwfRVgsr+FPtkYbvdFx9775oXT0dG+WvCn7HP1C7zX5yfqYuka68wZ9Atwrz+UOc+B0j5Eh4RV6LiLybh79FN63r4hn10HAOIaUuMEfekwIPLc3UE3G7pBe3dsmHj/RJ3WAVSgtQ6RfXMiFPQzxrtfuTcuFSRvHai3ExRV//rNrs2JsPoR/qNjgxitp7PEPd0BMYflHIpAd2Gz9B2g/OM5Xc45/rxW5761ILa0+32EL6gTWHp0yRqmzF0AL33eNW0jrf3G4WvcNNfuHiCpOVc7mAM2n3ZMVh/qC/gL/OwZBhwwdWzKk/AJdY5Uh+WpbHP6uuvCOXDqA4ynk0vb3K88jdtb9rH4/ft/z2wM4+iR7304WvUrfdWc92SkYP4ll1xyydNNLoD3kgcWJ4+/7nWve9hZueSSJyUnQ6tMwBOAtKA+wUHfNZoKvGFJdiuh9Mpoq1Ex48aJythBu76FMaCHoQ/wGLh3AozeIY8n+6QG/GnMn6BvfyujBAsZm2jGBqlRUECHkdatn+qmhppn5QVwfrJtGCEAy4KzFvo9bb4AMmPlPkaPtpLPGuQF4YHuNc6Xd9uHCzgzjM7t890W2zKrk+oix4E8zugZWKkex0xkKMsnXdo9M4LEKgU83AfuYSQBZFZWgJP6mp4OXF54gN2H0T193ME5y4Pt8tIU8mHGO2Bo1/f8QIbV0wDq/Q0oYaQVbAQC1xh3LwOXAb78LHyEGNfaUl0wqvVVBmoBilPnqystB10/2en7iIeoHAUKysDXLmvH1ePKsP6//GJAAqO8G2iwelmZVs+vfvWr7w5Skq44ke3rSx/jzoFu+pF+oj44Vwrk2tr7O7/zO3fgIZAPOAMgnb6oI6E/HLzarbzSVx66PP2mz8YEQI979LcyZZd/ZQOqlB3fOKriIy8dMSKXp7FL6VjBjjlC5lAYu+z93//975iQDgmb/o1Vi22szxUYWRiT5XV11OsFqU8HHv3qroiCg7u2ut17V4cOD5QG58nS332rO2Pxuf2aznWuOue8cwyf7J0rl7po28hjQRk6AMjf85xC8mxsbjvow+qKDncnCKBuZQUImUOahvrs7o9z3j2BUjrpXZ1/eq3jRfth6+ycd885EtDX2NbS02+sIVwz55qHekgfoJ9udMdE50LlbViEPYOBuevr32Nf6tucDcDNzjH613YizAE3e2L5WWzx9SUHIW7uGdN8c8bSBOS170vzPqesv0/ATlt4rrpdJ1OdvQV+AaLWNXRs1zcvl7GvHK1TAOXS57zY/+ZaawvlMC4BiRtCoXPA2tOuhrXNxpTpg/lU37NWOQ/xLaiMeT1puISJsdazygo4tt5Q/o438m13Eea/0DZ2Q3TnzYTjen3YeCeEhR0Je+fu2dqj8fYvueSSSx4luQDeSx5YxtJ6wQte8LgHq11yyVNdzkXfueXVwrvMD1JQ6TRoz3vdd8ahPA2GCWbaFqwWt7Z8MyK2AN6idR9x3bCUCswURD0Nm4LaJwsJuFBGbYFo+a1R5Zku8CcYFLuvcT9b9tZBAdfG/FMO9VPWUIGxtol8MY5r/Lb+W/ayesourFFXgHggEaaf55Qdm1AdMlSWLqBAXrVrDcrGAT5ZUkBXoQH2/Iy6PbexmeFTsL/bnAsKqrsalNgzDnQp60h9tC2FbtgzA5IG0K48gDt1B2ylsyeY3AOFVra9EyhbJ0PrGZjTe8re3t8DHgFdgA1GtT5W507HAemegIxrNf4bC7uyOsG0Mmd61nb86iCjfHoyPeJAUccFrrCRV76xm+j+0pixS9fUBTBHf2N4M8TbFwGiBfdslQYeqbPlcUD/8lFd3TtXvn0PsJnhvXsZ4Yx5Bv0YyfrN3rvyr3xiporJST/163O7Ol2WP8xAOjtAVdnXNgNk6GQdSZxq2PuARXqwOho4hdlf5nbBSOMMXVPG9kcCYKp+nfc2ZMDyUGfg0l9exLEUd3bfa58BaMpSpq05qjG31ZH6KJOxc2PHmLJju4vl3GlR9ubq1zbxjovL965zQEi/7D1sfocS0tk6gYQE6IFrbZP2R/WLOWg+xIjsXFlWp7rs3AX8Bcp2Hj3n59Oh6L10sgeiGae7TlE/nUsA1toYy1S5xTiv88580DAadFmZGqbBO/c9Jjgnkv7TsbVz/u7frolXvepVt3q6etr4KOSGb2N8zygQ6oBeAVvvc462X1S6K4KczoPO/wV9tVXXGO6haxx1nIZnWzdcAwdN52n92LxaBjAd2f3CE+z+je/uWXprD2Or8cp4bk6g85ix0wcHsJnblkfjtbKom+6WUIfq7Bw7Otdbxyy9/u0bacC8t/HeuLY5AbgrHM7pmBXS45JLLrnkUZQL4L3kgeUHfuAHbl74whfefPzHf/zNT/zETzzs7FxyyZOSMp0s3AsSlmnVZwrylaFThlUZmX6vUUkYPjXIgE4Thpb4r2PIlMnYg3WAXkCxHkilDN3aeYLADJRJgSzfBb66PbrsGfWFUQGcYuyfRl6N627XLbguj2VGqhfA4+MZEjXiGvevoHDbtEDKKWVmMSYwebUHZolr3U69tM9tlcBYBniNvIIAxD1tM+CZg016GFuBJPXbg1QYs3UKFETf93RugNgARFtv967JgLHnPve5dwfCiau7T3V86e75GoI1upcHB7xNf7dF14Fb8qQeATbSoeMF5rTt0hq7Ur3WYAVEALJs8y6rTh3qT8KM6Kvn1tLTaTKg1nvkueUvcAgsoLuAWLq9ut41gIFxY39jU506JO4h/QbydIzSXzGlz3Gv9aF8QKz2E/2jYyuAA1OsgA2gv8xdALf8FkgqsGMsOwFcYK/xqYA7li4nWg/N6ri3fK0fn+P40u9hZPpv27Ngh3rquGlLNF2ozjbOM+ClW9GbF7sEsEuNe+pZeYR+EKdyIPzCOTR27Kl7xu0eDGXs6Q6MsgGBT92NoKxAGiFD6pTR/4zj5sECYpxlwqEY+zG7dw/gCdtxadhBo06BovKNud4x0PxIHzErsXwLpGq/k0FKPwpI6z/ANTrdua9zXvtrY0LrIw31RP93rbsdVjagqDmyDhv169Au44v8dz0gf96nLHufbfhdTxj/gNv6aceT3bsY4guLMyfh5jD6oH8s7THn5/hZey6v65u7d+1v3C0jvMzprgvqqC07u/O/+uF06BqOXpp/tQXGvjjrq8cCxW0jTsWOqd6x3zZf1VmPUXsydrse08YOsd319Rl9ZXNyndW7FwvX+soYYd6pE0cfsXMIoArYtmblbGkfME61jeiVdy2tjRFi83qP+hGmQeik/ba1hPbRj5VdnzNX9dDMJyqdpx+2PFXycckllzy95AJ4L3lg+bqv+7qbT//0T7/5e3/v79380A/90M2P//iPP+wsXXLJA4tFKMOlwExZPpMaXl2cN60a/racue++Zxh0DBLGJGPMexkkjXfqMBrv6rbKGRllgvR9kwIOBbb91gXlydIiZ73UoJoATmYMMKwL1niuhlSZbgwPZSzIW+ZOmcbypf6A3mWUAJQYEpOGTzgB/Bq4uwfgWMMBYMBQKuvtBCYxV7A5a5i2rRhEyi7/2ITqy72A5YK74sb2wKkZfbbNqwssM4e6FSzd3zO+9q49O8Ea2vWxAWd8b5v6wgkAwrQVwGX6KlRGRbkAOGefAqKrI0ynxm1meDvQhj5Ia4bf8jRga2xebLgeJrdr7/AO73DHhpWntodx4jwVXCxBbFTGJYN/7+5WVXkuG1SeAZLaBYhIlwF/1XssPP3Jt7HoPmZV6/7s022bgpxtA/nwvnN8O9mmQPnmG6CC5VdWXMGvMgmBAPqGfBtjHDbkve1bgPyCwtOtvkeexEpeGuunS3cMMgy5OpHUIRBE22NFtj4LaBbc8X22kTG1Y73yqeO9d/nFWHMQJ8ePvKwcuweLdfMJ0HUOG2Oa8Q1wJ7yCnQbGz+m1/J4g8cYGQM2+d68+pX8oj3vqQOjY5n/g0qRApj6z8q3snCb7vVvl5Q0wC5w0fmP9tm/KD5YhwK763XnMeGfOPufT6mP7TQHf+xyt8mBdQZ+VjYNmfxvvMd1PlrF809mOoer5ZA+7p20mD20D40T1uCB2Haur27UPEHd6tjr23rXFrq0cL3rRi27+5//8n3eAo/bj4G4f6zvqtG9/6lhcJ2qdpn5TXnqqjgGYHA92GdTJxZEq3x2b6J26w1hueCFlPeuw3+pi38apvRNr1/hIr+1kqLOyY4kxap/Nh8aQ3YdpDeAVDsLYQnf1c++VP/2Sk8uYoh9av+y3zcPGoY7/+5++26Fg3q8TV9nFFb/kkksueZTkAngveWDZhPmRH/mRN9///d9/8yM/8iM33/Zt33bzPd/zPTe/8Ru/ccviuuSSp7qUcceIm5Q5wGirIVZmmnS6sLRYZ0jVmGUMMS7Kgq3h5H1lj2xRvsXxtrjfd3L3frOtnZFRQ0pZC9ooRwHXAqwFfE6gqNdPI5cBxRiXRwt79cAIYLzcZ0CWgeMevzOoHXpWpgzj7gzLwNgBujKgGCYnKwsoIBYnw65g/z4zRmZQFUSqoceQAiDNILJ1urro+TK/pLF8D5ARXxEAqUyMr71jdbIDbwDJy5u6x+jcOwbszFhbvFZMywKEM7yFVdh9M+gciLXP/l982+V/h6wN2BkbCwNyBtlCBTDE6ebJthWf0T1+s3V71xnQ2F01eNVVt5fThxnfy/PKvdiOQNnlFaNveRojjEFZEOQ+wFDog9XPGVtw7xbbd20FPGL4+nv5wYDCuu/YRAcxqjDAGgagQEV1vXVZxi5dOsGPk3lXgLxgj2t1qni2wEm/gbLqsMAPkL3pNo91cCj/mQ79L2BuPNZO7UsFiDsG7dk5Afb/9Bqr7p3e6Z3uyo/1S7eAO/uePjkcczrkXWWW6n/6bgH/MnS1jXoGJCmHbcvSBcyu3//e7/3ebb73+/ri+v/0fr9NXx0wJ2wD/QJKPvOZz7zrMz2gr/VtnFQOQPneJeSI8p2gdA+zKhBHn4zPnd+UUR7KBsQ6XZ4dhOceOr9xEwBGH9wDGHcQVpn4ysGZo+815BC9rdPSOG/3ivbq2HaCUW3r3qNPtA3MQUsPa9pao7oAYDMOFHCV7hm/HsjW93eOrF63vzasgbY5y+Z6235SJ8Subf7YoZi7vpi+019s1Onw8rM1ESav93bdozzyrL+o3zp/u27omoQOWQsAzgmdolfVrdZ5+61QTe3HmPLWMvLmuXNs7zcHkDwYt+zs4BDYHGO3iHlZ2BzzY/VYHel/xlk7MXbNoY3A5La59QwnXsds+ZF/B/ayH3cPp5D24OTE2t1vW5v4Hfjev9e3NyZccskllzxqcgG8lzywnMDUZ3zGZ9x+nohgcVxyycOUE7gtoAGIqeHDcCM1sCxiT2NVP2F8FZgsoFxDpEYQsAK4CJBsfsTDtPi24Ab0StvBGQVkSRkw/j8NMHlSVy1r600ZGbMAX88zBMVVbDoYHe6toVjQqQCO/HiH/BS4dg8jjRHLYG3swZNRRWwjnNHBGGF0APWw0JwYX7Hddx/b7Hf42AxZB6LYzj/DZ+1YxhWA17ta5hqBjH1GotAYu2fvmFEHfADA9QCqguvL6+LpYsYtjbF1BxotrXd8x3e8/d8hWztgau+cEQ60nXE+A3x52HOYWTPMbKnUj8YWwuqa4bkyDIC2TXXpTMRmVZfLw57ftbGIl75tv9uSzsBdvsSzniGJmQgYAQCcur/fbPfWrj3dHTAOuGbYiitY45T+Yljqw9jWdBxbX7ry0THJZ+Wt42Syv6dfqwMAgtPLq7cFh0/Wf51FHe+6dVm/FQOX88C4B0zfNXGF1XeBaiEz6mQBLnSLMLaacnJeTR/1B+Nhx/COKXR7svrYs9rfwURlEjrsaf1geWzoG8z29eOVTegSMYbpXmMEWwPRs46fzat2AY6od//TJWXxnvXZ6frCqiydxThdHt/7vd/7to7WzwaSDczGoOM4EEsZA1B/XF+ZjgJfxYnffUJjiBW6sotPbnwRW1Mokc6lnQOBb3UmnGzfvQsY1XGckxNrum208pqX6IH80Melb6wE4tVxWYZrQfiCit5LRwuW6V/qojtWtL92LMDfeas67JnGueWwAOx1rdD5Wj+2RlBnWL+da83T5p9e92wPfFMfQg0o833zax0/HTfsVNo7NlYb76d3wD3hDvYbpmzXVrsXWC0cTMe6zvHKbIyW74ZgoQPqUZm666DhAaThN44d1+mD+lOmXVuZHLjYsFL6R9eLdo7QRfVt19eE89caieOR803/L3isr9WpsPlcGIkSB85+2/MhjIPLi/mHTmvzhhhSJvOrNZedCgvPwMl2rtPFa1e3DQ3xIHKu/x6mPFXycckllzy95AJ4L3lgKTh03/+XXPJUl7LkChgyzMq2LevAbxMsWgaEbd8Al4IZthAzMMpE7cK8ANtk31vUzuBh7GO+1fB1yIltpJhIDg/aRyzEgtDqYtKF/AmSMtruA4Hls2D4jKsJ8FCd+S77CzBjcd93F5SuIdXvGo9AuhksGMAW+TViC5hZQBfoLuCLbTKjZW26tpAXrK+CND6tl3323AwQxhiDCptu+dvvwIoTiAWkAkj3P4beQJkZbTOGMI0YZ7tma/nA0LKwgG8YtzXgZ2AOENZW+oxyTZbPMXe3e6OMMsa9+I575wz1XZuBRqSnjwD+dt/0FSudsQ/spg/uZxw3tuKYjGN+2frbspUdDiAvy/pkmp76750APPpjy/EM9MbbLONN/dMTBnHHBmMH3VxatrECUbXzPmsn78FkXR/Ebluae37gH91dHukyR0yNSeUB1AqxUXCmfXR5UI6GMHDYnjipQgdMd7UHMADQCrAx3opBPlZ6GZGTtfuznvWsO7DCd+NkayPsM/W+8rXu6AEQRniB5YtTat/KCcjEim0IAuAE58BkeTE3eFfBdvUv3EQBK+OX9tW/9Ttzgz67vK591w+wHo3H+23OkD0rhMiue6c+vj67su33pUX31TNgyFi1cWh/CxmBda8NjIXKoL7qPFmZypI0L9J5oL8dIgDzgsb6spA0+jgHj7636yv/6sy4AEwyx+p/deqdwKX8KUsBOeA3ANG9AMmOLefOgUrnRKBr9ccHG7QgORAYGKjesUbVIdC3oSk4nE5gmHNA2Tp3l/Xa8txnK3SeleeNU+s/0799A/aAtsYn/RGzt/XUeN/as/mrvumz1beyz8ue917zlzo35pxzfw+665rEGsB7zF0OFjT3lQwwKUhsR1F/N98KMcJZ1frVfnYcSHOfpbl632d1blywBtk9QjQsja1F1oeM+5M9s7XM0gXI0zN9QNuLh96xrHW3tIxZS+P1r3/9bd0s3fVbYSecbbD5fml6F3255JJLLnmU5AJ4L3lg+Yqv+IqHnYVLLvljSRfrBRDP6yfwWLaPhSiAkoEn/d6L2em3snMs7MuMc21GtThjFvtlmYh3Kl0gCkAG0FnAmEF1H2BK5M0zZeF2O3fZhDV8ClI7ZMqC/b6wC32GIcRQKeisnFiFJ8Ahv4BXf7fNa0Tf1x7KdjI4GcPe1QNEgAi2HWoH5fM3MGHPje3HAMHQLjhbYxjAN7Blf8+gHdglDu6MrJe97GW3AIutwZiPjMGGD6FvDjdp/UyWhwHHZSe3HdQ5lul+m0HIEdG+U/Cs+iatAq3tj/pbGUztU0Cu1YkDZmYIro3GWlydDuAFXmDmLR3hGbpdHGuofURbrq3kvYw2QAEwaR8MpwIeBQIYyvt9+R0AN2mMxoUFwIISwqF1vGvTpfXvsaoGoo6xST+A8ravK89Y1wNC9vev/uqv3r7bvQWr6YDyYVvrT8o0ASRw6pyMxDLg1JVwI9pcfwJ87O+yKfu+MqalD8wpE/AEmzqW9f/+DsDr9Y4Dp1NJ/qcf2hVg3zxOF4UWweYHJGPO6h918nkH0NsY0bagV0tDaIX13bXz9ALQOl1YPqYj0396NFm+jRlLa3omv/t7jgIOwoZzqHNhgM7ysndON+kzkEbdae99Ly9+6+9lB1cnO1cAOF1Tnyt3w7gAlM82LfgoxA4dPcPEmIvO7eKdt+s8ksfuFMIq7G6et8TS4wyS7jk/0wVzYcG11qWxug4WQKL5SrmsdTg/uzOlTlnjfp2FdQzUWVUGd9cMnjvXIOp2uzDskNj7zFVbD9EP7TogcroiFnv7j7VaHQnWM3WSeMYYYVw72/Dc/VWAu+PKxBqMrjYu8+oVK54+OITVOQqdRwvsm9vptvmSnionB1f1aPmx22Lv44Tabxs/sPg5QXbP8il8xuofMOtgPnOsUCjWrqvHvcc6desWu1vWvhuP9v/mJXNQHSYcVZyC+o+Yx3tmeV15FkOf883OKID1JZdccsmjJhfAe8kDy1d+5Vc+7CxccskfS4B/ZZtZaHdh7b6CUhbZjfk4YSx2ccpY8D8mgwV3AWFbWhn9jKcZ1z2dvAYUZkpBvG5dY4xPasAwUk52SEERwiBWLzVuTqO5BknBSvcVVJbnGifNk3pxz6SgJwO6xmJBkQLuvS6908gn0qmhboshY1X7TwCq6lq82YILyrW2cnCMdLqd9gQJ1Jn2xnQFSC5e5v5/4xvfeAfs28LcUBFtc2UC3gLMWsdAPW3IUcBoLzN4oQAw32Zsveu7vuttXF4hRQpeyUv/L5CiT2ivsqEL5mP9YDOPDbq/hXcY+K3v6m8TdTcjGmu5DGXvlKceaOSwOTqkHAxObQNMIXVWYCd77+53KE4PuBKLceKbwcp4B7DNWD6BiwJIBVxnYANsOD7aF/oM4LCgR+vmPrZh+zddrhOIrpV52D5Xp05BGv/r7/oFpvPjjUfecY5PrRdtVYZbgdzmQR0D6I3t9AEjGovY2Ld+8TZv8zb3svvVQVm8ZRvqF9VTY4awFbs2cEWICMCO3RNArwEpYkz3QLYBZMCrXcOYXrrCxUz/e4iddlO364fre/RfvPjtGtCvO7fYci0dIVf0A2OqvlDdwiLWXzhC/G5runkQkL377HJQ5537V8amTw8ac7cAMX0CTp16ry20rbJ27Ou8dbJxTxBYmbHQvY9+AMTprjZ1n/kKYx4LmZ4aG4zb6qmHGzrgqs5X78LE1Fe8s9vkW7Z+1It63pg6Hdo4zdE98B7ztOAx3dq92qvj/e7vIaTdpaRulQdgeTr99b3O7cahrhWU0a6TCUcbneHULeC7fsmJQj8wfPXf01Fl7XE6TjxrjFceTiKhZnZ9+ZxzBkgLjF3e7PiRvn5tN4m6WBqr+x2Et7Fk1/7gD/7gNp05WYVR0gYclDuc1SGW1i10Qf1pY6FgsIi1gXswle2Y6A6pB5XW9cOWp0o+LrnkkqeXXADvJZdc8sjJuXgvq5GRXZbWCchalHcrN2OyB0pIi6Fl63aNdUwR6TLW9hk7b4bNG97whjtQjyFSQ6XGHmMUiMJwwvICTDCYgRMFGE4gxHvKJiqwWnDWghqAWHBY3fQ5v5+GYA3iAumnQdi2sGUYY04bAyrlr0ZLWZsFDNreZQ2WFcQQFsN2bLYCGGXTNPYfVrND07Q5Q1N9McYLWGGuasvJs5/97Fs2pjiUDjY7QXy6sfeeAFHrtKynAgt0YGKLNKfHdHRG+bZQ0pMJB0TBN6CC35t2jWeAqT6qPYDoDF3saQxmIRn0Ae29dmL42u47PcEIO+PDqzPXC74vfQZ5WZen84QuYIAzzHcfIKp9QT9eO3L0nGBJGe0M4JOZKp2C5a985SvvDgt0eF3ffYLvBTTqYPJbwaqVbUY4sGyCPSrfdFmeWs/t29oMC017OmQNcDAHhzYqCGs8aJ4LIBUIVxYOs47pRF7V1zmG14FlHhBvUuzNOns6PxizC8qf4C8WL0AWWxoQqX9M//f/5ozd611rlwEz2Nuve93r7uKZlrlvK773cdIMYBtDfL8vtIO5EnCGjTtwZ9eAO+Y7dec5DprGI10dTYemM5h9DosqU7QgOWCoOr48cnDRKfXe9uyc2b6499cpC7RsDO39rq6kow2NVx0rOk+XTSlfJ8DZ/nF+nztg5LMgrnZvuIWGHmm4qIKJADOHZtFzgFnnNGN3Dyo9Pw2P1PbomNcxpGD30p3DAmjtXv3JHG1+WTmng0BE9VtgUf12rOic1lAcBYrlW51pozqD6AW91a8an1i6K1PHdGFegK7mC/OUd3QNok6NfX7f93RYSISJUDtLb31Uu/h03SlExOp+7H11bzzbuKJ/2jGyfr60hWTZ/UDp3b+8iKO/8iz9OWXVAQf13rlxffd2fpL2HJTW43ZLcAb1oNk9w8EldMcll1xyyaMkF8B7ySWXPHJS9hiQiACgzhO9T0OxgCqDpgw94BSWjO2GDq9hAOy5k9G2dGasb0HcA0cmDXeAnYWRMwEON6wCw8PiGNjCoDkZNzXCGEO9fjLr3Ksu7wOJ5R1AKa812sWGY0CehlrBJoZmgRxgoROYMZnKPDwN67ZxDbYCXgNMbakEjM64ASjbiqiM0iz7UZpYKI2TeAIQre+TJbiPuHa9ZwAOlo3D92oYYmzt8/u///t3DNh3eZd3uYtBiQUkHIQ8idUn7f0/wwlzdyzeGY7v+77ve/Pa17725hWveMVtusDW6iLwEkBNV4F32lb+yqzS1vRHSAbtMKbQ0hqbaPnd96kze2bA7Ite9KK7+I22ojoIb4aiuiw7tlusl/fVka2jyrb01mdnyAL8p4/rz9jO6rUgvfpRvh4cxpCtXpZVW9BFn/B3ZXVED86Tz5XzdJ50zCxYeoIzxhBtQvRxOniW9XQsyY+xc3rs0L3VJ7Bi9etgtjoUyuAFWuj3BZtdw0ac7mj3buuVR2PTyXQuuLY2o2/yCtDg1MGsl0fAonG7QJ263nvHstMnzE+N59vxmt5yJth6Pf3b72KBT38dYmQLNkeHMA5YnUKlDJjhGFoZ99y+zU+cBwAlIHDrnPNPG3O+cNTss/HMfLV8AFEL8KkbOgZcB/icrPMzZu2kfWjvlS8gaJmsAFNzCr3Qd8oKlTagq2Ba+/QJ+EqjjsITnKYjdRSczgO6oI4xU/Vh79T/OA2tZxrjmM63z3ankLm/+e4YJU+nFNjts/I2HXRooHYvU9lWfaxszkbjTNdYDZGhXtVTHVfy03IBsdXX6QBSPnOkOb1gvXQ4PaSlzk8GND3uO+XbegOTubrcsVudAXvXV5cm50/BZ+83z3Awbg26vAu1gBVsR4txiY4bn4x367vCPT3jGc+4TWfj0N7tkMuNveoOWLy0hIzhKHNgqzpx+OOuDxjee6wd9PfOOZdccsklj4pcAO8lf2zZwuc93/M9b5773OfeeUs36f/mb/7mbZy/gmeXXPJUEAtywAiDCXBa0KTGVxlik7I9sC4mNRwAA4xURjrjxoJ9edrzDkrb4he71wESFuI9tKPgcsMhKBMWbcFTgAv2B8FKmmC8Eu85QaYCozVGm7eJ/DPOGcmMroa0KKhXwFqeyvRRhwzTCaAF+NHYngzTgqfqVT4LCk2wL+kEMHBtCcRoXdWYlK8ysBh/DG8sY3mxtbSGp7rEJMNEdFL1hHG5+wCmYrgC/vYbhhs9LAvI9lh1VwNzsWEX6079/Mqv/Mrtsy94wQtunxm7781vfvPd4SwOWasu7b27zvHBIG8YElvLZ9wD9tW97fF710IxrA7EDN17ZzzuGobQn/2zf/aO+eygus1TKwvnyIDg/T0DEdNxxqP+Kj7n3rPryr88TNccjgc8A0zub2Xm9DmdCe0fZWyWGYcptzl2TEoH1pVBvvz3NHl6ro/SWWPH2sC7fJepV4Bhxn5ZwkB6zEDjCzAM+LY0AeDtx2JN7n3WDACU5lcfoo+Yq0IJiCGKUamu1sbaY2EJMMuWLkBz964txzzXjwGDxhhxjI15whZ0rOC0Kquaw8VBScB6zDZta9yiTx1z/G0cXdmNa67tf/epV44jY/j6xOoPE259YHquDnd99eXwPgAxJ8wcE2JAGztssV4fo7crfw/Bokt1UJnnOv8a+/1uzmrsdIfYAY+Mkd4FTNoHS76HWtXhYSx2r9/KXG47Nv4x8Nt41foHYHf7eOcPY7OdNPpCHaXNZ/tCncwFIr2r9eh59WHMPMFlotycTRiXHadaFnpufOlOoLZrnSFdL5wxbPu7/KgTbd/63bUBvhvXOWIaBgNoqp9rowLgXbsAx6UPxHff+kHrrXk9AfUycK23zCGcGHRIHWozazhzYucH4PC+xS43v6vL1h8ni7jbxtD1XTpfhn6dcN5vbLK+sUZZveqPGzfG1ucM2PVd29g3B+/yumd3DcN2H45ytuHythA2y8PGY+024HYf82/HSutkemos4wDUHueunCciJ4D/MOWpko9LLrnk6SUXwHvJk5ZNul/2ZV9281mf9Vm3BsN9MkP0m7/5m2/+2T/7Z49h9VxyycOUGn8W/hb2ZT6RgkzAxxrljFlSJo4FmrhljJ+ybLBQtvAVH23XxZQD9AAOPecawwnjoYtCBlwNgLJBaiRgRew6BhWjFNDBoCuIXEZbAYqCV/53D+bVfexDRhdDxzsZZBbwjBLPegc2GbADWAOEl1YZRDW0/VYgx2FBE/FpbWfss3QD2CbPmIIFpV2vPrUuzzqtsd/ti+IDb7ydDDR7/vOff1d/i40HmMB8Av627qrPwP6CqwyslX2G3WLo7f8BnSvvjLNt/15oEUBo+5L2Gki5NLclU4iEGXgry+pjoBKQDxBYZjwGKoB275rhuO+9Y0ahPLtfPujTZACVvHEmADexbwcYA6+UCeAjnvJA74G5M2TbdtXjxkKlLwXWtZXxaW0p5ATAQB0snbXxnnGwljabrMzrv6sHba69OQbEIB4YsBAftqb/+q//+h1jboAyxteukT3znOc85zF9b9tsG4ZC2iuH/GyMw7je9ZVr9QosAn4C+NUHttr0bHo3/QG4264r1MnSW7t6/3SRA+YEljgHetCR54CHHfcANed43EPeJp4FGmGxA8HoYP/2zMnALOClT3KGnfOTECScJasvTG3zztp9TDrOPo4BIDXQ0TgL8KSD3qfcex/npX5mt8oJoE4KahJgKyCbrkuT7qoP4SocxGcucV+BT3NF5xnvLmOaM4NeNAyAe81bdmBwFGqT+xiyXUeU/Xrep44KilZX6YX06FYP75NPjiQHexkDq1Pu3ccctj4OhGz4Bu3tOWWQ3zKctXHHfGU/1wP97b65mKNrcwDW7gkqc/hpB+/H9sVAr6Ox9dk1DOdC68ffdYDWWapc7TvAfM4FYG+dvI21q216OCs9MHfo/yvPxv6uibS1+lmf33hIPzZHdP2inGt3hIOJ+df7MXHbXzYv7rc5clu/5l2s4R7wZp40xmlzTGSOu82hu3dt3bA0y79dRpydWyvvvbuu7h1cq/6tpS+55JJLHjW5AN5LnpTMoP3v//2/33ppC+icsoXIF37hF9584id+4s1f/It/8RZouOSShy1dGE+AcAUsTgaFZ86tfRMsjUlDNrgXcxQYZcsuw0C8sDlKbGkd8LD3AbgYlAw77CjsoC6qsel8GAMM1NYD1hoDBNuwIGeByMZtZfwUyG59qVuCscqIObe8q/sTRJH3GvOM5AIr3lHQ3t+MF4aVdmFoMybVi7K0njBUtLc2LKu47B4GYQ28soYKIrcOq2fKdII99JPRxsihd2tHB45gfXuHEA90VZ1jqxW0krb3ycdOwWYAD7wbEPpjP/ZjN8961rNu87EtkxhWmELi5TEi1bOt1wxVrM/pcpnZ6lJd05/NR9stMgPRwXMzCgGc60PdJry877oDfIC22kv9Yarut903Y1M5hJUQO3F1vXy/6U1vekx7emdZ6tpv9XYa//t9W1YHtgAIgCszfLFWJ2K97lrBZazRlW/6UXBnv+26uqXbM5SxqgBCDGSgD92rw6Lb1m2VLhjfOMgOaKpjx7iifhqKQn8FOIirjbUO4Gsfbr85x6RzvDqB1LaNT8e6s68WlNI/OJGmB0tvej22eNvZmGWMA8J1LNPnCkqXCW1MM17sY9fH9GFrr9Ud9hwQe/psmzh22wniFBw0nu3dgBfgEHYl5ra4mMBkzEpja52kHf844oy/67crQx2rWNfmOXWJVUg/gDtCNKz8q5fOyfQOK1J/1qfMoepY2Bp1vd+EIikgWNBaWyl/QcSymevwOceM0yFRZy39qV7Km/it+oX+VceCvm+M3tjlGXrXPtA1jjHd/e0f982B+n9Bzfa904boPKNN1o/o7P7eGLZ2tR6iu6cD3sF6dKBhb+qI72F80tQ/5APw3TAtRJuYR8pcLzHAnGU+lr662QdAjzmLhc3hD9TvYXKe4WDhyKbHdM4Y693WCGVg05elM9B0DjNhW1afC8Nk/bM1q7lgc4idQQ5MLJlh78Eo1n/pz+burSH07dXJ+q5DHu0i0X+3M2NzZHdZmHfW3o2xf8kll1zyqMkF8F7ywLIFwg//8A/fnpY+ec1rXnPzbd/2bTe/8Au/cGuYTsbGWjzGv/N3/s7Ne7zHe9wa/XtmcQ+7ILvkkochANOyoCyQT9CNEWUxWuPL/7ZySoMxxSABSrifEWDhPoN7xjIgybb9spGwHLCHGMgMa+DG8msbLePzBNNqLCqj/DAA1QFwDqMJi026yl/Q42QA1RhqWIiCKa3HArvqesIgwzZTZsYJqeF4Mt3K3j4BK4wSY1TrrkCW+wogMYQBXNJnzBQgY3CVSVS2r/pksEin7aY+pjfAOkbr7pc/egSYp09tkwItZYppe31m1/cuW7hn0HXL//Oe97zHsB/VyWSAU+tXHZ/ARh0CtqTO0KT/+2Yc7/cZvRhoAN0d9DaDXoiIvQs4CCzSz+iqOpEWQGL5nuEpFrY+WMOVXmA5F8zVp5aXMXJPpjkwzDXAWusCcKHfq5tdF5ICQGA7Pf0AnhmTengkIIyOSdPnBNboRoEA+QEkV6/KflO2gj+7tvalWwNCTxDW/eoFgIA9WqdMgSb5Ur8FMO4DoQq0ubfgU7/PvLXM+3v5GmCBbTfGbNtXO3gOOFmQrGNQ+4Y2BuoLt4K9xyG4v6cbywem3tZnC6cCBKLrDWlQQE4ZsY972ODEM3NGmnO0i7y3TrVHx3JCL4UbEaahYBYm9N6h7xgzzUvGP6APHTZ+aAP5KNCq/qf708uNb+bxsrfNs4C1Pt/v0wkMcKqztuzYOtsKenZuU6/05ASXva/znn6hjo139AazvnXQOd4HM/x0+Emv4HL1tX3llDpKTqdL1wcdf+YYG7iHvbv8Y+n3vQ6gVOcTDszWHbavejvXEm0XenAyeFu/+58jrs6VzhXmpN0rZAdd3T3CuwDSB8AvnbHyz9ADdNQ8adeIXV3WN5wU9G0fjH/OyzKkOX6MFdLbrgjM382zA20xeemU57fbYv8vVExjeq889IWzVT05IBaY71DGjj/Yu9YS+tRk+rBxz6FuDyp1sjxseark45JLLnl6yQXwXvLA8pmf+Zm3Wzo38fyLf/Evbv7pP/2nf2jxtm26L3/5y2++9mu/9vb3L/3SL70Fevfsv/t3/+6h5f2SSybdLs8Is1BvqAZAhwX0CfoBErZAnpGLUWehuQVtDTCsoS1mJwVUgVkWrAyOGtxAoy2oT6AVe4SxUlZZF6xl8WB1MHYt8OW/QONkz2zBra4Y/81Lpfcx4oCWBcEat7FMxgLP6pAUqGHI9x7/Y2cVnCrocIKdvd73yDs2V0HZGoQAdGC/NpRut492673fpYk1VTZSgXog1PKy7xlWA3dmjMmPumUsleUCtKNvQCF5BfYyasscY7zNwNqujOmtg7AAw0AfRizddIgZ3aF/uwao1nYDRAte7e8ZbUtv9y/99TdODYY2RqpDYnpgDp0bQABILQNW/Sr/DG4Hv2h/jkw6MRYTtiQ2sq3me8faZXlfv+3WZfF7JwX8Cu4URABq6KONS7j37L091M6Y0HY7maLano4DBNpv29cKuKojeTkdYAVvTmYtYGj5pTtjZXW7vXFPX8T+MtZIu9vj6XoB245HZ39tOpxHmKcn++t0HBXAasgeY9sE0xUzrfc5jAxjFPjb9ZRyqT+7QIxrgG/PDkjBnFuaY9JzEI6N17lmeef8KeDEOVUnlfpTT+Ia0+m14QnUdQyrHhvrqhtY9Cdo6J3+7w4U9a8/SLfzn4OZxCmvY48uGINOgHF1BAQ/t7crm/6j35R1XVZwnXzGIc6TgsHV2/vm1BPQ7fzUd3a8bp9pOJS9XziNjhFdIxTMrUO77GH1YQwA4mk/5dGv2gfOMa/91bU6r7Wb2OMA1DlSjCfatGMB3dEOJwO6IL31gjxUbwuAd02ljryDA6DOJXVVveXwNh+Kq64ttc+eWdxhu1Haz6onPRyVwxebt4xx9aH/0uEC+gPSN7/uua1Zl5b45uYKYwFH3dLcmmDvATYvHbvLjCPv/M7vfLfOEFd4+VoZ9+luDzq73x1SKb6vwyInW3PsmY15BY4vueSSSx41uQDeSx5YPumTPul2Yn7pS19680/+yT95i/fuvi//8i+/jdf3V//qX7199gJ4L3nYwvi0iC740IV+jakuok/AjqHByGAkYPMxKrA1gCMTv1nkijdZI9fWbO/q1kFs1i3ExVqrkXqCHMqIscpAFTutZWagMZgYtxhTDNQzZIOynuEglMm9jJoycpWpxov8+J/R1vi12qOiDRmepw4oT0MS3AfKevfaqABY2ZTA425bBQrWIcDY944y9ZrOaUQyApW9gPWMvgE7DhpZWX7u537ubluqdqJvu3dp7TojkuNg902PxxRanjCRxMUV/mPvnM4MSJ1+MtaUafkcIOmU7X3bOq5NBwrZdroQC3v/jLN9lq5QCxNANLbRYgAC0R0ctb/FbARiAOOX94VmcD9QgxFb1iSgaR+nh6vvxYBdvleHu7ZvTg+xjYXxcBjN6mUxagEjZe4trd0rRjfwB+OYA4Bxqz32npV15WbwNyzH8jR9vQ+U6Nh2OriWj5UDW7mA3H1bkwv8FCyuA6Q7C7DLxIY1VmKfGvMai5WT4v/L3n9/W7dd5Z3v/jcqYgMCBAKEyCaYaIyBRg4uB4IAYTDgAgO2cSGoMmAXxgaDAzmYnMEUybhIJYIIQgIJJCxXQfl/uL/e9l33ft72aLDPOe97kDjn6Mze2mp77TXnHHOEPkJ/+jP6+P/8/xmE6sY4uWFqynttAkC0M2L76wIG6fmC27b2e49DmhLsaNeTdHVB6H7XDsJ7BDz0LvF+OQoWpO9auqicC+Cp12ViOuSr6z0rLicGre30+g/GnRApgKK+c5LsWHuC9fqH8B07xi5bXXsb6/cwJUDdgo1+Nzbpn9pTKJSu1ZZijquPBciAaVjNC0Tp79qta/Vrz2ODax/jPgDLWoEuLmvVmGeOowfE991VIe1kQy/RpQV5T6avfmjOWNbpgvKn82JZ6d0nVMc55+xcvOXTHgt27sf4a4wKXN86MIbs+HM6NHbMWQf2hhgy1u0cJl/WErv20V7JhrA676Pr8qU9di3lQ8+NwyfwDegF7iIOOOzyBIXvc6BbV/YbJ+KO26t35jvjGvBWmyxIv2s4LFn9D9PXHGrNieXdfN3OACEZur+/exaBQ1SxqjsMtd8rg3EJKcI96WK/FW7pv/7X//pgXcMRao1bGe2gWSZ+afw//8//8yBs0o69l1xyySXPNrkA3kseWTp4JfnWb/3Wh37mW77lW24Ab1t4L7nk6SAW5BtXzu9rPFnIn2wNgFPPt4B1b5KB06K4hSYj2mFFAEJGB4Oya4ywBRE3P7axtfB2eJAtfeK1JbtFdkFSBh+jqGtYJAA6RgBDyRY3oAYDc9m2y1paA3YNMqwYhiNwVx4SdXoyhhZsVW/a5AyLwUBdttmC99pswWbpA/QYool0NibtGhXLQl5Qa43u/W1Za3QJa3Xv37LLu7ysYSqvtVMGdUAsgEf4D0YeoCRDi+MAaIYVA1DZtmMMalesoIBMzHWGl+2w3ZeByXD7vd/7vZv+FqanED6rNz1fzFLGdwYd5mGsTqBXW/jrU//b//a/3b3qVa96UHfl4b3f+73v/vv//r9/HUb0sjUrQ8wgcXe7J0bjGuz0fcEuYJg+2rtKu3LaSlo96i/qx2FMG0cXU3LBu+oaE9n2WGC70CuYssW8B3ozghMMYTFry79D4rCm1OuyoLRBZVKG8gu0LvYiY7nxRpsG1tdeC5iWjvjLtmkvC7Z20qaVoXSNh8AEwMfWe3kLUNDXPLcHYAFWpLFANqaqg9cWiMRePcGg0qucuy28POdU6L3lqXvKX85r44l2VX+2OAMPOSjWaaaf9S4g7zq5kgUOsRe7LlxJabUVGhBkzO53dSVkQQBKfwHTO66fYSGMs7aOb36xCoFrxiaMceM7YHBDR3jfjs3rqDNHLUAsjIVQFvrSxq9WV4nnu0997VhKb2zZN2YuO7Lfqz/Ojp079X2O3NMxuOCq/0+g2zywQJ3n1JV7tMXqgv93jlx9OefRfZ4TQd81/i3Yax1SHzK+uU95dq4ExBpn12FqDOb0BOzR82W2LsC7659zfk2wOAGigNvdyUJfje+NdXbi7Hpk5211tqEbFuBdp5DfgM5AW+3md+PcrivMDz2/OwYAq85r0OYLeq/DbfOHDGA8VYech9I3pup33rlzU2Uw5lujlqfaEbvYeN/YbCdO80/z644Jpdfc9ZrXvOaWBkYyZrA22XjIpdUHS3eBf6F6jAcchxvqS3keRXbt81TL0yUfl1xyyTNLLoD3kkcWXvmYTA8rAWCJSfqSS55KseAHhGLaLnB2slGXbQmMayHZ4jMWmENXMh6ABwlAgKHJWF4DzMI+cM7WNGAMQ2sNuPogEGoBRtvsbP31m8V19wKdPOvdC3aX19JQL96rvjb8wS5Afcc4298YRQv8qldgwN4nLwBX5bC1dZmxGQenAaU9pc2IwaRZ8AJYpD20baLOMnKq92WBMeQWlPL7Ahc+QAftyvjD4KI7C1z5TjacRdeqn0Ch/mqztkiuwbeMyt6FXYhpldGVER9ItMyq8uZwujWsekf10f89W1oBRrFUF6DYdsS67NkAMCwjYOaGC6FfAboZlrETA2+r/+/+7u+++4M/+INbXWlrbbBsXfoMwAHspyMAw7d8y7e85RlIDTA7gRiGNIYxlpQ2A9wBLLSv/AEvgCyAhOouQG51X1rptLAL2tLhOd2T8dzz1c/v/u7v3n4D3HvOu9dJURuvnmJY7YF2farLyvtu7/Zut+20gLVi7r/iFa940K+MLdXlyRbcLcn0wQnoAa6NdwEBgQKlX/4Z+Pex5Os/GNX6Sn1IeA0nrOtn60zD+tQPlsmo7tXHAocLKhlPgKonC3Druf+x04H4mPTr6EqURT53O790F+DqN/XU99ZV6XD9A9t0HQ0LjNJlcwqHCMeh8i8rd9m8AKINJ7HOLe2gXvuenta3AEHArJ4HeGtLY8DOUxtnmVN0wTZjpflKPheMrP45TNQhxnNS/szfnuXw6/eum+96XtzX1YkNFbJzzc4X2nNDSZxhFYyzqwML0O4csb/veEHHFrBbdufp5NzQScCz7hM2yr3K1P0xJruv8RmA2jvEZge+AQ93zDA2bRuu7HpnfzuZqAtOY/IDInctsU47B3MBrdcZezqt/KbfLqCuj9Bd9SgNzktAq/lg4/jSbe/n8BdfmHNh9YXjgx6VdmP1xr+X13M3lPpQJusP4wbGq/5pTuIArt4aZ+hnabTeMBdxEjeW97/xI51QH2Ktm6voauvo0i4PzQ9d8y5EBuuP6qd5q9/Tv+bDdL85hTMzG7X3XnLJJZc82+QCeC95ZGnSbjLt4JAMy4cRh4yIN3jJJU+lWBgnjJY1mNaQXoCOUbHGh8WpbcAZF2ICYhYsq3G3rvVcC9D+imMau5FBsCzU7sE4WSCAsQX8xNxQLsYEg4sxg2HIgF7DwTbC3RYq5qKFNgNhWUrKd4K6jB5GjTJY5EtjGa4MH6DLxneVX+CbmJO7vVVaygIktrVPehhm6lneGYG2SQp3sCD1gjoMjwWM/L6GovYAumC3eH4P2Nqty+p1wR76B2jAkIltmcGXLgboYZSrx9LAnuy3ngmwWKB937Ugs/oKJE0y5GytTwAmmJqAz4wweaZDtlraog840y8DEDLiAndjr5bn3/7t336dAwsDt7BDHTKzIED5DWgrvYw/QFt97Wd+5mdu/5fGGvvaSV9hnL70pS+9tVeGaPcAyoWoWPCC0JPVSf1qD7pap8DJigOqdB2jSTql0f+1c/lhqJ/xXgmQbftWY091A4xofhfb0uFpC3hybCz7c0Fc/Upf37rAKu59y/7aMcGYtqESpL9A2rLXOO3oJ6By2alnH3o8UWbtWd02NpenAG9jhDF3Y5ACDovVzAkSE124B8Cm8joAEai2svPQAnA7PnIWbDiJZYnqX7VlYVP0x/ouR8COWTtuY8PtPLngkvJzCGkvcwwGILAPcCvPyyqUbwxB/XgZ0styB8CuQ07+6R2nhQOm6Dzgk15jSXZ9HZnlHStwwdEFjtWxfr76t+uGfb/5i85s6JYFr+n5jqvSUe4FiTcEwur4OqzFhqV/Zz+Wp8oubxySdMD4ICSMud8cvFvs1aVndny1rtg5bcuurNu2PUc/hH452cTmVQ4FOiZdh5P2AYqvI2cdcsD6c22x7XAylDmb6Kv0hFGit8uw9S7Ok+rPuGcs3bA1Gxu//+vT1mqJcFHrnNKv9SVjm7WfudChZd27O1RKu/m0caQ5F7OXHnQ/h05A7TpJm6M4EsWA5vTjYAks7vc9FLZ1QHPwtmlOvY3l319hjkqvd+3a7pJLLrnk2SQXwHvJI0uxEj/4gz/47rM+67PufvRHf/ShnvnMz/zM24LiZS972Rs8f5dc8kRyAo4L3CUnO2aNH0AOQ2Zj8QEqAGme7zt2ZYvUFqcMOfEUW0AXI5QxBUCRx2XbOPm4hTc2r/hrgIkFZoFJyrgsD+wW77SVn3G/rJnuYawvM4nx5N3yCwSwHdRiH0i+RtMaUmvg7V9pYrxJy/bsk0GlnqTpGUafMjKciPdVDz1/X8iCBXDXGAX0K/uyg7S39rElkkGVkePwmAVn6Oi5Hflk22It2nouLAIjioHn4CcxXRnetrsqg3raesEQ/7//7//7BtI5Sbs2oS/KDpiQL4zH7Vf6IXDxPrCnrfHdmwELfNGeHeAZy/QHf/AHb78JS7EAGIArg7PQAtVvIB1dps/AEe2l3StrxjbWJGfN6r4+JJa1Pk8vAfB0cQGFdRhoT7r8eOJ64DfwZXWdbtKTbZv9/63e6q0eOI+qi8I/ABFP0Ed6+qOybZmW4e93fZtsaIRNzzhhbNE3vQtYJ1SGe5Zlt6Dh5m/rbcF0dbF6tYDYAm7rRNrt7fTG81sP/d04wPq9flt50lvzB0fPCbhuGc4xEsN0Y5EC0Wx57jdbqNNTAJKxUD/dtnTIYEIfiHrWT9TBxt1dwJF+KYcDkOiGtLB65Rtj7xwDAVsbZonDZEWbce7sOMwJugeDke5XhxxV6xi2i0FIDO8xL53MT/3gdGrSl21PczFm9TJsd06RvvtWh/d+wsG5791+bf1iV4W1jA/d7b2tVwCPOzd6Tt7MPfQLQ9X9Zz/b/uj62ab9X1tvPFtzkL5gnbOhPxaY7fnuWWentloH9oZh2LFj21G/3p0bp85X5u7bHVja2jimzvTNDW2lf2s/ADugdAFjacuP/m0tQO8bDyp/u2oSTGBAqnbiIOl64Km43c3JOb56Z/1ZXH4gtx1rdgvlGO5695Z+5QRI0+HWJli4Se3a+5ZJ3jXjmYPaSrfy+82a+1Fl2/iplqdLPi655JJnllwA7yWPLN/7vd97A3jf533e5xZb97M/+7MfTN6nNNn/q3/1r+7e7/3e7zZRfc/3fM+fe34vueSUZV2ejF1G2C7oT+bGsjg3Th5j1gKaMdkiu0V9C+cWqxbLnonpVVqMFQBfHzElkz0opvQd9LTMF0ab/AEVkgU6sPPkKQE2MBROUAP72CFSPsvgk499rjoS0xLDcut0WaPqfkElhj2G07Kelu2327nlQ/raoU8GxIZgcA+moPct4CyNLd8JniX7LuVhpGlzBieDT/thXy+L5wSQt4623ZdJ1PfYeQtMLyDHEG7c9v7atW32y2ZfECv9TTecSh9QWpu+67u+6+uEbNCvCKMMGKNukt6pftNlsVkdnoUtmMHW/+lr2zuf+9znPmg7MbDLwwte8ILbrpK2d25eynNle+1rX3vLh9iovYteMpwBKWuwe/dbvMVbPNj+m4HKmZGR6zTyjF2hQpYd6eCZ7qnuXv3qV99+71nbSknpO/wL0LWgrz5dvVSmdsh0P8CKDhrXzvHulNilsaS7HnAawGtc2PHvdJLslnH6suxOgOWOTfrUsi7ldfv29psFWEoD48yzwEtlBGosm/SMfWmMO/PHWbaH2dV2GJ6A+/IX6GBbsD5EL41XPQMMEZeycmGoyef2k20v48j2dzppjE03G5PNK4A0uzaMa/WLxpzmm3RG/Mt1JhpDz7Grv+m4ZwAzDj7SfwBtyrdM4gX5tfEyC9cpxkHq3toAsLiH7GH1mTPXuWb85FAE6u6YavzRp+i15zhp+lTH9AYAZleaMWv73jLYObrUA1lQd0FMfWXn1XOuWdB/QWRjwL7D/We4nWXvqouNuasOtl3VW+Pqzs1nHuk3sNt7APe7TjFXaCtpnI6ZhHOkfBkTpW93CP3ZMXOdNjt2bL87HX3LGJfHre+TubsHnXFwbtr0SRvYIWTNqG7MfTteaj/XOEx3t4T51W/Y2rve0s4OT6tfp9uAWWtPurBsa+QEcd+L6d240pxWHWBT29my4Wf63jOlaTztfzvXhFPAAgYEv/3bv/0DILuylIeuF5qq9wCvu0comNKs/IDrSy655JJnk1wA7yWPLMVA/IzP+Iy7v/SX/tLdJ37iJ979tb/21+5+4Ad+4O43fuM3bhN9C5KMzQz/j/u4j7tt40le8pKXXADvJU8L2QX3sluSZYCuQe2ZZW8wfhkuLVYtgAGotl62OG6Bi3kSKADMdYhTwlDZsAu2igJANlbmskqWtbFMwYQRL1xBi+C22bVIdgryaQQtqHluId76UWfLYGNQL8NtQeEFqvZE+WWbqOeNR7eg5oYAWAaUumBcY/MItbAG5ILTmJ7yfqatrRdsWYN2y7RsqGXcLPC7gJkT1oVKWOBsy3OGgFh9XsO1ugrkPZlPvat2x/Tb7ZqcCcIaLAibfqQrWHYZTr0vcBV4uYCBsji8qPQDt9K1jDB67sT7PWE+sQ0TaKNeAkQLQRHQW70GlPa3uefnf/7nb2k7VAo4+NZv/dZ3H/7hH373X/7Lf7mxjwIxF5DWH7HLeg8WU/f0PnoZmxcbV92LYai+lGG3HjPq6RQWVGlmjALnhA+prtXRhmjYcapn/+iP/ujG4JU/oASAT79fsJZenoBR/1eO2inwZpn6jPzuVVYggPHoZLYmG65B2Xs+9l+/i0MMiFn9wdbebbbe/6Zv+qavwwZ1TYxe/aHvvTu9o4vGtdqwfCxzL6k9qv/0escxutjzxSEurQ4NLNZjW4tb8+zhURsaodjFpRd4noNCe9oKrQ5P1ufZ13fc8D8m3Y7LADSheKqz+uyyZMt3aVVWfX8dHNVdfXAZieqv32q7fjvjdO/8ikHXHKdvNLY4qE6/B0JzoJwODe8AWm+fKO9CQOhn8g5cVzYxmo2VALB1VOq/QONlWpd3Owk4NDiJ9oBO/XFBemlZL5ztyaGr3+18YW73rDnNvLPzq/du2srvmrrFFAbECqFhvtcu4q/uGK1vbLsTjm5g5YawuC+/5mlj6sm63bm1vFgryIdnsb8bU+xeOtd02sD4pc7XOUu/pCtfO2Ya15Zlu4xRYUD0Gzs4jKN02vvWeb/ttGOjd5ujpLNrQs4WgLL1BzZuesqRYWyrf/asw+mETCg8QvVtjZr+17e63v/1scBd67f6RmNt86lxuLwJyUOHzHHNrcplfuhv1/q7TqrSz6HSWNv81DVAM13m/PP/ub6/5JJLLnk2yAXwXvKk5MM+7MPu/o//4/+4bY3NGCxcQ59TGCa/9mu/djOwL7nk6SBrIN+3NZAxwEhd4HONBdcxilq8Moh2UVqaDk1yijNjs4W2hfCydeXFacW7bR5bjMGzjC4L7WUTAS/P0BRtUwdIKN+y8tyHgXNug06WNbqG3m4XTNbII4xhxqR6PdtGLD9l2HukA+gAGDtQxyE/GDJAs5PdswxbdbmA+cmIOoHTBcnW+GOMM1b2fuUAnjG8GDWYN/K2hrvvyrN6zDAMUKrsARCn7i+YebLa6Msaw3sYH2CDEZgxJs4vgMC2akzI8iKNrSsGJh3a9qzPZFBmrMtTdZGx2D2BpAG9SUBd73zzN3/zW3/qnvL3nOc85+6DPuiDboBg6dke3LOJQ2Y4WpQfwAuQCvQTkxKYUxv1rp7rr8P/Vg/u0xPb4/XH1fsTbGQMA1mw/QPp5bvfAMRY/eJK0nms0soFhFDvgfQZzdpcWWNO1W5YivSsunSv+kpvS0PbYcEaJ/ofY708BAIom8PtksoDFPKsrer0g34Za6SJuQZM2JAtiZPa5b2ypVsLvpVmdVsa26fsQkhKo7JWnvTP/RhstsFjNmJW9z552XA7mKhCnuiXGIn6jfpekIiji+4ANZQJ0IwlmPM93TOPOJhtDzsCtK4TtHsc3ol1GEjr/77H5uNAU2eAICEWqkP9KBEf23PL7sTy4+wTv7W8AeCMnRvPGpDV+8qbd1TuPgv60Af1uf1xQbXyFHgFDMRkpl/9Znv7AnTqXVocIt63jGagrfF+QdCdL4y//te/lWuB223DZerq+/Rm1wvAXmNHddtnHUQbEka/XQB158Fl966Tym/q8T7WsjwbD9VzjM9zTbZOWu1KZ71nx2Hs+XWMObxzWbg7Ny7I7vldS0hb/+JkA3YrBwfB7vIwHyywa/25BAOgadf3PVvXu46hG4gG2lUado7VhzlzAcKl2xhhHo+wU9333tq8kAvi3/ds42m7SsTlrUzNH+qt3xqDKrdQFULG1E+7Xj9rTC2N7rFO7v/mOvNx4+nGL7c+xuzu3Y2pjyr0+OkgT5d8XHLJJc8suQDeS56UNLm+53u+593f+Tt/5xZf15bZUzrt/F//63999+/+3b+7JqqnqcRIC+j79m//9rtP/uRPvns2yG4DTh5PN+9jAGxMwN0ax9jZOLSAPgYQYzMBAu8WVnHLGBPd3wIc4JQAlNf4WeOKgQdABbphjGRMM+STM3YbQGnBYUYM1iEDc+PtLZjrO8OE4ay+Nr8LCu9v0lKnG0eOMcNYsbhf8FkesBcZWAtMeY9yJNrNlly/bZqbzrKXpIsd47cMl9o7kA7js/fZ0ggIWHBhwcEF1AAd0l5g1zOlnyHW9ntgV4ZWegRMZ8T3PeMOMLJb2s+tqt2/8ZwzsnrHH//xHz9ghnuGUUtP1S9dPreWngK8yiCs/BmT6V8xY/+b/+a/ud3T/zFzC8Gg7QN7GaLv/M7vfLuf0M3yWd/qProFHAOG0t/A4I1l7L7KEdAHPMBOpQPbp6SlHwXE9r2xlzEeo3KdI9oVIJvuNF5Lp7JXN7WrNLSb2MJ0vPvrB9XhAkbSLQ2ASGNVf2OnJntwpPYERmw/dhgPsAjDFvixW32NkcaQBWFOoP90uCxY4/339emt++23ntfPyTqrsDeBH2efJ/cBVqu/xoV1fpzAUdcaB2pP8WSB5umdA9SkxSEDhAJ+Y5UvOw9gDHw0jhh3AD7AIvUj/iXwVN+iv91Xe4uFDPBJn4Vv6H0BNPUf40bP5RBSDmlvSAzzVjqJqWnru//1T05RjHe6lNjWvc8ArTCF1YlrC1AucFo5jamVB7NZf10WId1aENqces7bPqv/mLT6mnrZ+Vg77S6i1Q9jxjrtOCv9v3PxAsAcmhuGZZ296tPzwoToQ8Bsdel3c/UZzuHc1XL2K7+rH+GCVhyISp+lu8C59do5Tuxv62DZtlngeQ951V7S1v+was0TO9YBoa31tk706WVZL3itDjHEtfGuU5RDOzh4s4+14xIDrEMbZ+x0MvaW9+YMO3j0FWGZmoeFfsnZVbz8+m1AL91pjsWaL8xR73VIa/Wk7/Y8x5qdPc2Jlbl+x6HafOWwN3pU3oG7/b/x8i+55JJLnm1yAbyXPGlp8v83/+bf3D5Nvs973vMebBNsgv/93//9m7f1DS1N7IWJyJB/p3d6pwfGfQuEgOhXvepVdz/1Uz91ixeMifQwUnqf9EmfdPe+7/u+D7Zxtihpq+V/+k//6e7f//t//0je4bd927e9nQDPAH9YQDXw5HM+53PuPuRDPuTGkGnBkoe8sBiB50CZSx5eTmB0waU1dAA0y5Bc9tRu5dxDrDbUAHYVA8ZifrdxYn3ZKslwA6BhAK3hIq01LBgyu5V4twqXjncxPn2X3sbAWxDYdvmNbQkIWWbJ1isG2QLHC6JgIjEc1esatQmjnEEiDaCAPDO6sJIZAE5sVidroC3QBbg49UT7nnWyANd9hnegQII16eRuxqJDzQIiMloY9fXxDKWksWx1y2dB+dWB/S0QMYMKmylDzHfGIX0Riy8pXxlou5Vf3flNrObqtnERiCEECOOfvnE0AOG3/rc+tw0wzehe32OP2hXS+6qf5h2AfOUIZEqal/okpcnoK53mBszD2KTVac9XB80p5bW/9AyoBoCrPlavFhhakG/7E/0RBkHsQXEEMU8XUNzvCwpgYTc/lLdAbt/lZdmq+tWCSkCFnrGLIB0tP7uNNwHWApwXiDv7zgIUC564VlpY2Lu1uPyvU+Rk069DbutGuguk09Vz3OdY2HzeB9jqIxtb1di/jpTtc5uP89N1oKBxDxjF4bEsPYKNZgw8x5vdJr5jsHET6Njv4kb3/vq33SQLoq6ObHiCHXfU5R6iFOjWb7HBAUV2LmAMy6dydw+2YL/rS4kQIdWZ9jBPAKflE4hDFwHOlc9WbnOdGPgLzi3gvvpUvtSX+USYi97V2CM9QN7uStEX6QiAcHctLGiuTBt6ZMFb64UdO0/HmPWH73RmWeHyUvtJXznp5sa05kzwdx2DG3/XmQNA0uQ8OHPzrN6NHcD5dRovQJ1wupzztAO+7IwATtJX4S4W7N369Z0+CLW1a68FS5XbeCWN9G5B4G13/cf6hK7oczt/LIv57NfmYHqyO2OWFbx1ZPcGfdjfgaLi2zpUUbnExVf/dK/fC+HQPYG0/WYtkC4U173+11xnnah+N1QWPdm5zsGtezilOMflrzm//h3TF8O4v7tTqnoyh19yySWXPJvkAngveb1IQO6fB5h7n7zLu7zL3fd93/fde62FRZ8OhPuCL/iCu7/5N//m3c/93M89bnotzL7+67/+7oUvfOHrLPiTFo/FOwxszaD+8R//8YfKYwuWb/qmb3qdLdoPIx/6oR96913f9V23hQuxhSkA+lM/9VNveQnwveThZYGC3ea3hoTfWiTaBgfQYwwv4xLjZUM0ALUYBUCDjc3JaMBQKj2LYSDanogurQWUGFAbQ068yfKMsdszDJbkZBguc4mBseyd7hUPl1GHDZIsmMFg8dvWs+cSYNEJtC+ryXObNoYdRop2qS4cDMK4ZLAu081J22t8bey6BTi2zeRnDfSeAYYB8BLvW8ZU9cc4DOATQiLAq/EF0xdYGSgbs2VDaWzswVOn1/AXqzTjt/QwaXaLLl3BDGL4L/Bxsg7pP/Ap44oTYcNSnAxS71sDn25geJ3gKOYxULn/MR5LWz+LVRebtXLGJu6ejM/yVgze3hP4FIBbvQKbNzZzf6vv0irNgF8ngGP8kfJrC/n2H/F/1+mgXoAX+nj5XfBD3WgDjhf10v1v93Zv94AdXRu85jWvuZWrvGxcYWxxwMYyqem2PtP80vwNHJLn6k/f8ZywBgtE0u9lfimrcZOhLvSIg5x2K/gy8FaPF5TV5zYe+AmM7NizfW+dc2cfXgah5+j1zgmbNjnHqM1HHyCucXTH7fSua1jYK8D0Bf70lQRwW104vFJ+jGd7aFhpNMYYI0s757Ux3PtXJ80Z6pDTLjE/AV3NQQAuTpPuz5EiFEd6utuzjUnq9IwZvfW7QJmQH8t+lTfpmF+MJ8KaYPcu2GVcXeb4Onmr/2Io1weqN4SBPciPs8yccbIs6bPf5HHBvL1vx0pl2zlZfe/YsXPpgrDL0N2P8cD8RweU2zjBwZQYOxdUpHM77xmrT0eKsirPjn90fRm367g8+xvHYPNb96fbO08qz4KiZx2vM4jz1dgv9Idn1JExXjiOBX03ZIP+u4e4Wgsuk/qx1kruW/bunoXgQDM7MIwZ1qNLNNhx2TsdtiqNZYVbm7qv/oz1Xn6ak+TfLqTyV2xdzt3m0w37IJ51eait+l66Oz7ZQeAgNfOG0FAAXk5y45GxqPwIt/Fk5NTVSy655JJnklwA7yVvFFKQ/1/4hV+4MWRjvmXwtpjJg/wxH/Mxdx/1UR91W/z9xE/8xA0Q7oCU+6TFwI/+6I/eGMFJTN0OlYu122KvRUuHy5Xmo8jf/bt/93YAS97tFkQPI89//vPvvv/7v/+2aMkg+sqv/MpbGVu8fMInfMLdp3/6p9+2JRcLOeYypsslTyzLimE03Hfd4p2R5BrjfEE1jD9GnbQt2C1OgbgW7AyYpAXpucXSuxkojO+NPWZxveCkd2Pp2Ia77JJl1zFSMCB2YQy4XKbPghEL4C2osgaasqjDZSEta4+4l4G8jK0td7KAYuIaJg+m24KD3r3lWjbVAt3q4DTOGTYAHGUAVjUO1eeV0VZ3IGCyBmdjS9c7OOvlL3/5g2sZSO2QcCI03dFmC1TJg/yLk1ubN/YFYAYsB7BgwomZp73OEB36iDqw1boxJ7BvGTiMYboXQ1Ubuu407GXliV/bc+UZcz0HHYNVOzQeilVcOu0Wqe/95//8n2/PO6zFISyVIaZPZe/TM6Vb23Rfz3a9Oq0uut+J3/3Wzgm6o26wI7vGGC1PGawL4nZfZbaFFHssZjXAmg76zkmwYTkAeOpZ+2NbLWtf2207bmgFbQkQ2/uWqZf+5RxY1juWonLQGbp36uD26+3f6lK9LSB6Ak/6yoJdxkG/LRi+zht5Ei6E0wHTf8dg766fYdgCC9S9OaHwFeW7NUZgQ1uVWx/YOt59gZrAr2U1br31qT/exyrePO2YejrPMA3P8Up9KC/GdH3fXNUhheUdo+6M4XuC5ZjygBz1J7yDfr47N+y0SFerW2MHwIr+rBPEdW3Zb8KO1Ke2/fUtY7z5YlnR8iV2tvkVsCnPAK4F+5cF29hjh0Pvre0ASQticswuY1Rd7dxyApccinTWGLnz5QJ1WJHqYsFSoPQCw+tIW0ePOXIBxt2Rss41TEp1Sv/6y3m24CQgXVnXCSONda73f/3F/HfqunIDrHuH+OmNVz3Xer/+WnvpZzv++N8aYh2Yy7TduOrb9zy/9bbjzEkIWOb7XtMe23bysg6NHQd2fbfjxXlWgTnC+CqfSX1SO7nfGHE6+o3XOaHT+fLD+bU7XvpuDaaP1X9rS4SDnm0caAwC6tKz0rdrQlmsrXuec7y1QR87hjhxjNmczaWz5w9ccskllzxb5AJ4L/kzC4bsfSEafvEXf/FmUL8hJdDTQTv3yQ/+4A/eDnj7sR/7sdvk/+IXv/juoz/6o++99x//4398A3dbhBRb+Bu+4Rte5/rLXvayG6D6xV/8xa/Dcnk8ienxT/7JP7mlGYv4O7/zOx/qua/92q99cALuX/krf+Xu13/911+nzIFAX/VVX3UDeT//8z//7su+7MseKt1LXpdpSiyYGRDLvElsY7WwbfHYApWBwYhYwejYeGaMI+DCsjhskQXGMjQXzOz/ZRTbFnkCxhjBy2xjJJ+sKAw9RuMaDid4gwWTYHIuYOeeE/BZ42WN7o0nzKhh2HSvLY9AKvW9YLZ2UyeMd4YsMAlbVvpOP5e3hMHFKNJewIPdUu7dC2rTndIOmBWjMoNkmXcAke7r/sChrgcK54CKPYkljs3bPYExgUoAHXW8rC31L5+BKmJdBkzUfo0tjOjV0w0NssbngmXlhREunmZ5DOxYluQCDIxyLNntM32qp+7JMG/MDADNoLNtX1vZZt27sPAyGDPsGcExb+lOwG39juNCnVW/WLq9ozotD5x/CyIBw8VJbX4DhDEq5UEsUmwloKo6WVCj38tf7VMazWOVkwNjjfWet8VW/411a8syRjGDe1lQBJi9OttvTpwv7+kXBvH2W/neMcz4WZv27tIWzoRjSboYbMbVZT16nzAmGyu7+s2BC4zwTkBl791xo+fSISFSql8A2wICfkuPThAwXRaTuHZNxx2CRkqHg6R0/+Jf/Iu3tuh+DESxqrHMgUU7xmG4queT1Xj+vuMwXd7+7v/yVz8xRy04nZ7q65jDMf3pJL0H/pif9HlsPPqsbHTQGICF2TPpopi7tbH87zb1ZL9z0m3M8ZOtyllmRwe9W6ehfrpgpHxpL3P01qf89Lu5p091Zj4vPXH19fvEtncA7Naluel0fO7fZZiqqwXsH8uBurtSPOM+5Zc2wE0dnaCvdYh4ypXb2kM9ecYuAc6YZRJzHCzIuTti6NA6ghZY3z6w/6sHY7Exd9uSc8p8KS/rtDgdJ5vH5geHhepDPuvIX2flgtUbjsM7PGN9dbKbtz0X+Kc3WxflqTrXtquD1oc7VhhTjTniBe/6Tb9FLLB2ap4ylvV/80+EGiFYHAacUxdrOylOvd1Kpd/8LoZufxunsXjtOLEuYgOZw4VFoWfd03Ni9toxd9+OoEsuueSSZ4tcAO8lT1qaxP/Fv/gXN3bsY4GdTb4//MM/fAMg31AhHCxmHk8KpRALt8N23uu93uveezLQ/sE/+Ae378UVPsHdUxiqTyTFyc2g+dZv/da7X/7lX36oZwq/8N7v/d6378UOXnCXfPVXf/Uthm/bjz/3cz/37su//MsfOk/PdrGQZwjtVkogoe1pCw4mLTz7TYzSZLcZ2zq6YCeGp8WobWiYQ3twCdaErXjSkDeGtfe12F3WBbDkZPPais4QxqzomnAGm5c1Ev3O+NtYlIlnl+kMGJTfBWcW5EoWnFBvWw/qOAEuu75smGX8LCtI/lwDKjBwsE02NAG2mHwxdPedm2+/lW7M0IyaBTFLu7YSBzng6TT6e6bQL41V8lVIGOzgrmVkBzgxYE42EH1jzKqnnglY7Z6AsRMk2S28a3BvvdE714Dk5TUDjtEITMMeWuP9BPpXDxjA1U+g3oZ8SPZwt37bk+wJYCJnY4Bc/Q1Tt/v7HVgMGMXaDOzBRqqtqyd1z1B3irt6KP22bYuFbtw4HQ2AmD6lK885Qkuncbz81T97Z2UFEqY36mWdTx241jOB0+bgHZs4eRLbdZ/znOc8iD9MZ8St7L2Yk9rlBCyMObtFWL+s/mz3TTLOWyeks72DAa79u6/2qM77Sz+XuVa6PW+HiuvVYWkKGbOgtb/YnhuXnDNpwy/oQ4CqypejRRuXjpiw68gx9imrdy+QTTh1gFHGGPph7lg9Ocf8dURtf1pWqD7M8QDYAnxiXwNPc27YZg0gq24CUrYuF6zDigcG79ygXugVFvuyfXs/ndOnjcfmvB1f1QFW5Ql2a0vheM5QFqdzhV4Zz885lv4rj7pKej8QMfAv3QWYCxuygOE5zi0wCGhe8G7behnA4nRvG9PnE5Q/HQB0ZMfT7RO7hqYH1jycLcZ55TL/LJC2O1qIsu28bDwFIG+fWJ3b57XH7iaQf2XF+LYbZXclYYQCaVe39Ktl85of+8upBfD07nVE7Jhmvt92Wqen78rnurF2wVjXFwTWRtY11orGqn2fsZluWVeox3VmeKc5m+551hzY2sWhozmdrWUa69UpVnVzr501tQ2nY3nneLYbR7ig+liHqzXut0PG2NoaRr2Wp3X8iMPd2C1UR2IOfhTZ8feplqdLPi655JJnllwA7yVPSooD+PM///M3o2yNjlOasD/+4z/+7gM+4APu3v/93/9mzD5VYqsOg+yUQh4whgqH8PqQmMKxhwMaYu8+bMD/j/iIj3jw/du+7dsec+KPDfxP/+k/vRn0HQb3H//jf7x7Q8g//If/8O4rvuIrbt9/5Ed+5O6v//W//sA4DWToUCOHxrV1NUA/gLoFWaBVoTF6voUgefd3f/e7//l//p9voStigXffD/3QD93Yzm/ocBPLBjoZaokFOqPT9kOLXoaheKlANAwl7IJ+x3baOJ5YbdLak403fxbsC6YwUvYQD6wHwFy67jTi+ijjwCEagNg14sqz7fXevezYBan6K1/nYhhLLV0HKkhrjdk1Ypc9tOOJd2+M24ShsezorR8Gpq36ri2bGHjFgAMgYLLs6eveeW7n1FbqoPfF2s2gqX7SfzpBT5RB/6F7la94qr/3e7/3QH+2POqoPtR9MffVLyNtmUqMPoZo6QAxMbcAKwGU6YsyOTF7GWHACAcUdQ24cTKHASy9P+fWbmMtHVu25aF7gEt9AnexZYGCGXvyw5gDmq9eas/Al4DMPssKYkAGdPZ7hmRpdH/5zBFZfdvCWj30DBClPFWWrmMlMk4dyNV47H66Vr8TX7brwrHo9/eFHNl42+ILqvvA0OokNlRGtu3R9BPzdx08AHhhB4DRPVvdnPE3jV30G/iwzL0FObSVPiH2qjiWxrPtg8D/3l8diQXMWVOaC8QsULKOqM3LArbqc9NYQG3DsXRdWAb9J93EWi1/WNnaiO6ejNtl7NO/0sAY3bAEJ8i3fXZDGCxAWV6AqAsI6dMLpGlj/XL7oHZTj7ZCmwP0swUs6fNuR98xbZmntvbr672v8a35HlizoC6d0yc2dqe+pg52nAQqbSgS+SkfGIX6BiCr9AGXG0Pac1tmYKGyNvYZK1sHJa1l6pfC8dTX1wmnXe1G0E7rcFuAcceR1QE6ra3XoUAfiOddM//Tr+2PO/4kxg3tpP8vE3jn2J0rzjTXWWis3jycctoW3Wc3wDpCtFc6aW5Yh/eG3Wg8EoJl1x67+2rzzAnRWo8ebqgN65t1vN/nwN52WaeC/CvPrk0XxPfbrgWM0z67DjRP2i0mDzvG03u7hADBwvMYf83lzaUL3gakNg/pS+n+OsyTHGXdn6O6tWjpO1Nkd19U7n63RuEosDMmoNf6obS8hwPUenydHTs2XXLJJZc8m+QCeC95ZGlBW5gC8SADejtA7Dd+4zcesHTz5BbvsUPACi/QArhnYtBaIP95Stt9i2mbxI67Tz72Yz/29vd3fud3bkY/sd0oTzSj6GEkA+9f/at/dfv+hV/4hbdF/8MCvO/5nu95+9uiq7jCjyW/9Eu/9OD7e7zHe7xBAN7CQPz9v//3b99jIX/ap33aY7KmO8Tum7/5mx8cMpW8+Zu/+d3nfd7n3Q6D+8t/+S/f6jEA+H//3//31wFVW7R90Rd90c0Z0H3AijeELCvoZCntot0Cd59r0SjO4mlYM/rEqQTa2G7W4tp27ATziUGbfmEgtUhlTGB97sI+YTQv0IFViLUF+GNc9X7sXUYzA2K30S+TyaLeb8tIWmOGAe6QE9vV96AOdb3ABeMXiMoIXKYc0H1B3d0SWZ73eW11Go8MsQVGgdJ7ENum5/0nE1n9M/wCShsDMRar5+pCDNw9iAgTDVDfb6985SsfsMHW2F/96//Cs/Q3cA8rBntsWUoLcmy4gfLj4LX+ZvQy6PY5dcCQxADnLBMiAfCxbKDKgNV5Mti0HzZ5Y2zAden2uz6U4wgDd8FL4RKSntl+SIeFoFCW/gZil3Z1nrHZPaW9cRY5EjBZK3+Ga3UcCNz3yqQt1JuxxDvp7jpX6B6Gbtcro5ASewhU13tP5QbIiEfavQFkwDs6WN6xzYwVe9ibPrgM9mWv6eOuAzKIMW2Zist8BfbTPw6j0qwctZl2MUYaX1cnACXVwToxlp3o3Z7TFucYSVY3jR3Cc3j/Alfav5AV/Z9+iouNNdz1+o7D7Yy/lbF0jf/VizoGci5QuX38PEhrAcZ1vmGg7vyz7bl1SWfWWVl61W/jVWm1g6n7Am3oI71d56H2SBc5rzYerzZZ54T8bN0bbzkb3LuxV+0wkZaQExycJ0i+c5j+6K/5Rl36Td7N+w5OXKcBR6QwITtOBnDlLIoF3fiy44FnGmvOcAj6mj4MhFyGKH3sHg5h5VggesM9rKP4dDrsM95xAo3azli4Tj5zvzoguwtFfbl/gd3VA/Vz6j89OOc9z9D9HZv8T2+tP/pubO//1j711foyJumOLasb1jPWYNYZxjLAJ6fAOoO3LOplnS7SNyYtA3+dXud6yf+cT+YK6zPjMl3ub/lctjaHS/m2+6vfzS0ni1kYmnXEYuZ3Pf0H2PY3R0ehhnp34G73lkZrlfSpPlKd9j7zMHZ0Y4lQC8LscP7Uph2eylFWSJmeLe9YwMIPCelkjL/kkksuebbJBfBe8sjSgWExhpp0X/SiF91Av1OKy9Sn8AyxOgOAm+A/67M+6+6f//N//ueST4uKD/uwD7sBrBZfX/M1X/On7g2ADmBMYtB1b6zVz/iMz7gZeEkLoUDs8t9BbE8k/+yf/bNbPRWW4bFYuI8lz33uc29/YwI+FrvhBKs98/qSFmi126d8yqfc/i8cR8DsY8nbv/3b35i95bk6qh5bcPX83/pbf+vGOOz3GMD9/bVf+7W7r/u6r7sd8lL9f87nfM4NBH7Hd3zHWyzk6v8NJRbEe8DVuTWY8bfGiQWzey1IbclmlC44CGBzKFqLZEYuAwvYw1ARxxCIZcHOiMaIJBb9Fre9o7r3PAO5xXULblveGPvYEmtIqSeGKcYHI56RAgQA/mJEWbRj1YhJuAecLdi3oKoyLRvtZMnIJyNJOfYe9bS/q89ldizAjbmNfbY6k3R9WYrlOZAn4wNYmGGDTSKd3YLcPRvSQB4CgsTQYxxjGjHy+nRP4Rqq1/oV43KZiEA6Brk2Lv9t6a8MGbpiC8pD99LxBZi0yZ74vkxnYO06LBIH1RB5sIW8+xh7+gzGIYcYoxWY3O/AH3Ul/5hIpdvYXRn7nu5jHvZcxqj3AVGd7s14L18BukB0TPdlVQEW19nRvcsgA7QCaTI+lz3d/4Hc+r5txv0V25CjBPOv+6uHjOny2PUcC8kCe7sVt7T6vuPVMgGXSbpjzJaNXupv2l0ICH1F+sY4DN2+V67ynyM1hmPgYlI7BBiUTr/L74I9y4oDyi9blwMZgKOMwBP6tNuQF4SivxxjdjkA0jFe66snOLRjxcmGNnfsjoDTQej3BZvOPqhMARfLYuTEMOYs2w+rEUhq3BeCKGcBhpy5BrB0xkE9GY/Gpp0zznzbIbFAPF3BIm/OMk8ugO6j7uV9fze2LsN1gcx1JJunVjcBY+7HxN/65ghsPBGfXXpdF7u6T9+FFemZ6tw7tfvuajDvGLt3t9COqeYDrPZ1mLluDbH9my5sCKN1jmyfss7YcAzrfALMGzO0+9az9cYyXe2MIaezZUHmrfd1DCx4vGCo8RWjXh6EyqIzPW+32B5c6z3bl+WPztHbros5q33WkbYA+66nVgd3HNv1JafBzmlAznXucGCqh4QDeR0JXeOg2QMlu6f/Aa57aJ7yWy9Yv9w31qXj2TjGyXVwiJcrNn+/ZxPuQYmRP6Rvh4t6tWZAbMCW7/7qPyd3Y2AO0t1hw/EjzvcJuj+MnHr4VMrTJR+XXHLJM0sugPeSR5ZCDjTptCX/PnD3lMDNTocP6PvIj/zINyjA+4mf+Im3fD2WFHrhe77ne/7U78U/JBnTMWMLIbDSoqFyBFAWozew+rGk+wr50ELm7/ydv/NIZWiR08Ioyfh/PGnhJKZrBtrrS1okfe/3fu8tvnLyv/wv/8stdMLjSaEZXvKSl9x94Ad+4OuwtDtoL4MkhvQnfMIn3H3wB3/wLRRDoTuWCRwT/P/6v/6vW73H/A7kfTxw+5TA/McTQD1ZxugutpfFa+FvoesZzzPE1shqYYlRgA0LBGN87JbBBIgA1F0jAzvEIhoouIwSxjIGKiDI84xMRqMteNJj7CwziCHFiGIAr1HHaGJEAAcd9gSk610Yh8AcwOsy6/y+xiKjR1052Ga3vMrLGu+ePY22ZXuRBa+6ZhuovCnjAuKMpwyPWHD1xfKGnYnVugxLYETPxUih3+pJ3dI9erbl1CaA5Jhj1SswerdtLii+f5MMXbFjM8zKP0MywwmjfI3gWIm9J+ZMOwvSZ+3Rb4xp7YAZtKd199c29+oO0IzpUz0ALAPOy6M+oN0WYIyVBWAGqmzfri0DDct/99qe3nv1hZ7D7OVsqb/YXl0bVj6g42msaycGt7jdy4gyFlQHxseu1X5i3/a8UBF/8Ad/cGvfBUCcHN7/MZgC6stTv2fw0jkOFUAjMKdrAFS/db2yrX6t3tE95VjwboEbZV1wSXiVdaj0e3XcIXf6jHd0rxjnQmEAkzxL3L8M/2V173P77BrvC+JoO8DuMkQXXOrD8dDv4gern50jdj5Jurf2Mq8se28ZlCdzb+ci+V4AlY7sOLy/yVciLq85q/7Z+NX43Ni8W9x3G77njYML+i/bdMfbrTe/6fvGLN/LR31wwzA4sA84qWyuax/jlrlxt8mfTosNH7Dfd2v7PrfzoD5VX7Urp7JXf8YKTEr9uN/EBVV/28brHDLGAdt2baJ8tr5z3qzDYB2eW+f6KZ1YUNycIa1lOW8/X+e1ci3Yrwz7vD604ZVWZ5f1u33tvr5qTNZWu3badluAvjLXDht/mjO0UEqBk0DRHSu2HoXjWjC8T79be5+tmGJuAAEAAElEQVS7fORfW/t9HWbqYPXMGuHsV/v+ddZy1sjHOnnMN95DzxAbmnfksbSA1vQLENt8EQFjww1xkDl4zTxTGtlSiAicIo17QpY0V/Vbz7cGKj/6fXPBOtK6F9BdGsJD0QPpNqZwbJSG/Cr/JZdccsmzTS6A95InFe4g+b7v+76HfiawMIDXs3/e8rKXvewGuP7Wb/3Wvdcz0MgLX/jC26Ivtm6HrnXAWYuOgMnA6YDEz/zMz7yxZ2OgntIi5hu/8RtvC6FYr6961aseKa8bxuFhYtG22GlhdZ6Y/mQlQ+vHfuzHbqESWmh99md/9g3QfiLp3oDZ+0Jw9HwArwVYbbGgnuertwDeFmgtFGMBP6w8ERi+stuRkzXy7lsQrqFhoQ7YWGMS6ICJ0LVADIb0glu2XGPurJHiPYyVBU5cS5a5s2DhGlwLLmDYMgQYFMBYzEnG0IInC4Inyw5dlkTXM3YTC3mLcAw+9SlcBANM2RigfYCt3V9dABe89wQaznZmICyLzUFC3W9bH+PZ9zW0dxurEBilEWM3EBKDcQENRi0G94JlQHxgUuNP/bexZbe8Z5xWxt4HkFj9KJ9A2q4xNoER6mZZvOq3tg4kLI3e27sqi9ieC/At6L8gSoLFrg12y7O2sx1f3/HsOhiAPfLb/zE8xeOjv9sH1V961n29D9PWOCpsgDYnDvfqPQB5TKONua2f9tG/lsXK2F/QbQFp+Sxd9aEM9A3jnaOn3wDctqMn6qlrtVfvrY7qv3t4GXaz3QIYykJzLLhQ/mzbBUYAHe4LcbLAn+crG/BLPuhAaWy86e0jjRP3beVfXVsH2j6vzk6WsW3fyxY8gd59n7TFyRZiIRGXunFKn+G8kG7lpJvS4oBRTuB3oNKyEE8gcsGhZTgu+3jH/2UMLjB2jn/br5YVWh9oDAvsMd4HVtaHYsVtSBx5ApoYh3dO2rzq/94NXBKPWb/QpwCm9GXfaU7FhO0+IT92x8X2y52n9Wf1hSG59W1NsID2sitJ7+SIoEOcSuU7p0v91phht8fOJct6lR9O4GXBr0NuDzvEwFyA2/079uyco13Uu+eUd5nyp1OFvgIHT4cHpqQ8KIdxd2Mhn31y87m/L8NYezc+G9/WMbKMXjsJlLF62rrrk37XfvRnxxr6syEVtj/RcSEhgPycBZv/LfMJmu/YsO20db56qW706XTOGLsOsp0jd+733fiY87C2wewFfFvXVdeBu80hza2NE323G0loFvWnzRs3epfQSgsCL/Occxdb31q6v92XzpRG7xECAqiNzdvfdk71t3JE4igP/b9x8S+55JJLnm1yAbyXPLIAEm0HfRhpwZswkt9QEjD5vOc97/a9ib2wCx/3cR93Y6IGMv+9v/f3brGAT9l89VzAYoeWMVZbfAdoBxAHFlcHL37xi2/xZk9AM1D4bd7mbW6xqP7X//V/feQybMzXNYwfSwBXr4+FTAbfT/3UT90OPmshGCO6ensYecUrXvGY8Y2LXUiKE0wfHu++wKdHAXgfRSzKT/BrAdbTAAEauF8amALiktYO6QfwKgEYrHEPTLU43m2mjHLvZ6guo3QNkD253qI/naU/vf90ADAEGM8YFBsXb9l5JwiuztawZsj23dY6rGInnQM++r/wHD1bf9ktwowWrDzv3a2Kj8VqO2PQneUtjxkAGGGMyAQ7Uz0ry4JC9esOOcu4E1tzATjg6gKanl9Due+1SWxVwBK2M7A4gKkyAyCBaAm9yejKANp4pdhY4kmu/pQGhiMm53u913vdnG8ZdTmkMqLaTpksi41hzDgWM5rBLU8AwMbG0gSAKdemK22GJqNbvQYCYjjrHw4cAw7v6eZryPd/dQBIxJoGyGeAqsvXvva1t/puzhAiQVsZM/RNW1ar++rCwXVAM6yk+3RvdXYZj13jAFEn+yyAsfoRdqJ3O+xQv7e9eh08toUvYLTssXW6uL66uNuUlwUof8bDPXRx+9A68xYc0hbqDpNsQbDTgbVgrXHA+ziaAIX3sXjdu2N97f4rv/Irt3mpZ3Iutn1489Bzy57EmOPQMFYsQO1ZYR3SsR1T9YF1zgE71rm2cobS0JfMRTuvCZODtbs7NYype3hU98c03fRsl1Zn5qb6hzbDHl1QdEHnZWZybnWf+KYY/qWzsU03prhxRX/fOWJBWPpg14vyJbuNftmn9BEwSFdWtOvmyz3GiOqOwwtrN5BMXdZv+2u9Ccj2TumY89SZ/rVOGIzF7StnfRtzdg4iu3tp2+wEiOlX0vh0hhXanQrqlmMgvdkxYQHS1Y9da+3OAmV0D13r/wU3d+zyHs+fc2/3VP+1jbpXjztGrtN+87g7jwDj5ooznMnO9TtuSmvZ4utIXedD/2+/5dDEkt3wCsYMIQ92XNcep6Ohaw4s827ztrB1rXmaK/u9eWEZ80Da7EE7fDhj+gQkNz9iQu9h14Bc5e4ae0Z4k9oKizgwt3w1x3a99NVP67H6l3WZGOoPe+7JfX396SBPl3xccsklzyy5AN5LHllsbSrma2Dnw0iHqzGk3pDSxL6GdYDs93//998O//qO7/iOux//8R+/MXT7vrIxIpMv+ZIvuZeJWnzZf/tv/+3dF3zBF9y80rFc/8N/+A8PrgeS/KN/9I9u32O+PpkD5TYvy9h7LMH4+LMeXpf3u3jBgW0tWGPcBvY+rAR6PZa0KHvU+x51YRZz5onK95u/+ZsP/t8YgIDIjV+4xsbJqmLo7pbgFrFieCb9rTwBAbUNRoFFPaNiGTYJRh3AdVkqa6QA8hgkvR+oatFcO/ZsZcd2XPAFuIIRdBrpFuXLAFuATDspM3DC4hwTxEIcM1H+1GvGQ+k4EZ5xo543HMUatNrkNIZPg29BHf1r62eZYJjXy7JJuta28t///d+/5bP6ZqwwaPu/cmib2t0WReyV/u99GZiljbmJ/aJ+AGbaP1kG1gJDmP4Ybj0fE6+wKcvULm5vjF8AWO+r3wQypyMBoeUrQ+lP/uRPHjgo6HPXaqvKKY6vfpDRVX1WVoy2BBOntHcL6wJhC4RXr9hJjbHqpmsOTmEYiv8KzMbC1N5ApH7LQAyQ1SYZpA7H6tO8BsgC2NqK2m89yyGQM6I6xOYD3ACdASHrdMnw1G9Xj323ZdWOjAV+jTn95kA8OrxAHhAASz8Byusz+vHqj/Jt3+v/80AxfUgc7dUPY4QxESC3DNAFhjA29fmkdu1/zg+AxoJuvu/uhx2fAHscT+n4Alt0TiiZ2ioAIf1Ph7tmvFTfthBjDWOuAaSXZade+632TIBi0jCObtgLY+6CS36jz9tnsIkXjCg/rc2q2/SZ7trWvE4Az1fm9L56qu0aNwAxdlgs61U+1nFE9/2/hzotGL3j2QKXwF3jL+entdyOf7vt31gJ5NHOuxPFeGiL+umA2L5wMjalu22zjlP1uP3OGNx95b9+j0WMiVq6dlgs+G3+FOZhHZCcJdpid7wAD/e6ulCu1RNzqzIaQwGjG1pAnZRvOxDsNFC/p+PXvdZTq8f77t0doC3cb7eX928Mc/1v644eOUB2d8Js/5eeObx7OWQ5KtSL+trdAPex7q3xtJv3Asu3PdYxsWIcA5av49mzC/xam9HPDStDx4y9xiL1at5UZ3TbOwNlNw51c2fXnOvQ2NCaQb3lqG/uTd+t27Vn1xtD5d18Ul6bY8yh6qlySYPD1KGm5vfua3zbUCZCLjWel7ZdQ49FJrnkkksueWOWC+C95JGlkAUf/dEfffd5n/d5N/D03MJ5SpNu9zZB9+xTId/1Xd9196Ef+qG3uK9f//Vff/cTP/ETrzPxA2qSFg/Fg30s+dmf/dkbwJu88zu/8+sAvN/wDd9wW1gUp/c+pvDDyOblYcIuYIM8TDiHx5MP+qAPevA9dvKjgLvJbn9+PC/04923wN25AH4iKYbgw4pF+gIu2AinscH42+3TC1QBkGwLtzgFcLQIZXTs1l6L5/1ryzHm4TJ7l+XCmHYSMiBjwZDdureA2zJhbZVTVmy0ZQEBAvZ08PLpBGbgj7TlNfY1EETdYaaJFaku0/kAxcAJDMjdbsuYsd2Vsavutm42DMECvdhfCcCV4cVAVG8MHe1f/cVOD8hLMm4CQrRjABF2DCCBIbwH24h7DKBkYO2Wz9JNNl6yNmWsyzMwC1sJ46m2qU67t3boHYE1C4x2XUw8AFAOOExrOtmn+mqs40iI3SgN/RT7hgG5zMry13gLYAXGMAD7H9vLeytXBqR61O6YPwxFIAN9WedAUnkrV9vQ06Paqrxg9HYfcBp4BzDte8bthlxJ6pvV1xrjDFS/cYDI27lF3DX6qT3p7bLilSvpvfeNZ0ANDHyOhMooBIMD5GwpplNOR18g0djDucJhQ2cBZzuGYTYvI06dShvgYJzstxwnxh2Osj5CIxiXjcOAZOOa+tP3zIW7fdq4tVvUxbHeOjXepzN9B3RgZa+eYb+pkwUP+3AmnaAugGidSPRVfS9AakxTnz1vp4+xBWhYHN3OEOh/QLfdCsbPypteizsNNPP+nLCcGD1DZzZP2Ph0/TyoEfB6AtEL6OqrycbedR+Qb+fjjUGvzrBE1Qt2o/qRh7PPySsBNC2A3bgmpj190p7GX9vWN8RLuttYYxy3Q6FxxhhhrNQPtKO6BRaaZ6WlbKsvdMZ4hOW7czJ9WyaptLBNl2Fq7k5f9C1jjTpRH9p1GZnS2PJ5z4Kk5s2zb+3YUv01TnFOKhdA3P3WCsZp79y1pXpzEGr5BTQKoXUyetfRsvWpzcQnNm/suKT869zcPK2D3zi2Dv5kHRvWknZE5TzVf7Fx1Ys6MhacLF5toMzdF3MXyG/e6LeebWxt/dP4gO3fb+346RkhyfS71qX0GQje/4WFCqQ1byyor02sgbfejV/l1XMLbnPoLfh7ySWXXPJskwvgveSR5Tu/8ztvAO/zn//8G4j5yZ/8yTcj6T6JCfMt3/Itdy94wQtuk/TjHYD2hpbYuwG8gaZ/9a/+1dcJPWA78h5c9liy9zo4I3m3d3u3u/d5n/e5ff/VX/3V27tO2fszxNwTK/CVr3zl7buTbTPAnoiVGiAEBN58PRnpgLOAm043/9Iv/dJbDOK2rb6xyhmDd8EZTL4WqIwRYKX7GTMW1Aw9C2NhAAKPGBpriDFgl8nE2MP43e3N7mMMpKNtWWtB7KAm8QsZZkIubPzZBRJsNbagFkuTUYOZ5L2MHyAY0JZhvABG1xsX0tGM3RbetvczHJbVvACW/6WPwZGsAbq/7f/ysoenKAejVn26bxnSy75MMsqLdQo0cSAZg3AZWAuWO8hE3ZemcBiAOL/1N4YtMItxB5STxsZKrEyBY8ppe6Q2im3brgKGVr8XgiGwurGlem2MBtZmKDbuxG59l3d5l9vf6qp70pPYv4GjGXsAMHqNDY2RfLYPxh2mOAO0MjBYF5RhmCe7VZsBry7oSO/kHLCtdB0YgfM97+CmNagryx6gJD/9TXerh8ZX7dp9vQsDqZO8d/t3OgzIkHdGqb7e956pXpVLXM90oPRrA/dzFKlr4BI9pk/awRjHuF9Hxx4WyDlgdw0mtPFwAVEMq/R/ARgAx5YZMJ0OVn/6NHC2MgOaPANkWZbbsiyxA+mM/G9b6r/61jJi/b6MSPe5Z8eXBWVLG8C0uw8wYr3Ls8vAXmfbsnPp4Tr5FgTyjLxzamzMZ2kBYAtzJHQK588yEOsPlaP2Xn1LD8WBLe30oN+Ae+YjQLGxUL69gz6Z3xas3rIaM5UFUAiU5EDAjJXWHgK1jlbAou3rW6d0bnV6gd4F//aertNTYK8dNsYf64Dt68173VM911caQ5RJSB35MjaqH4At0BrDnR4to3dBRsA/vVjm7OrUlnH1dMF3z2tP9W7sAO52T+VbXVQHO36vA26dh6u3AMidpzfvifAtGyIBYGheX0D51IPtY9q2/NeuzXHWf+phnfzm25XTwbygqzXG2Q47Znpu27drnB27S8vawns43awfXOckXeDfb5yoxsh16HnHri/UtXLZrdMaIWd8dZaem2s5zcpT1/ThxhJzf2uM3u3AUs7d2qD2bX3RfQgL5zxgLCgPtZ8+ieHd88DeDff0KLJt81TL0yUfl1xyyTNLLoD3kkeWn/zJn7zFuv2Ij/iIW4iCQImf+7mfuwGCMRaakAI2iuP6gR/4gQ8m2B/90R99ZFbo61N4i5M3eZM3eZ1rnUAOpHsij+9eX8PJlv+kw9ieSP7yX/7Lt08SoArgTQJh3vu93/sGuDIuHi/0RdKp638WKfzEi170ortf+IVfuHnoA+8DwgOr39hkjYg19jFLz63k2nyZlBv/E1DDoHGgU8bcLpoZssuMA3xhuWIwLMtxda77xEuMRYGFYmsao8LiGNCrLC2OMd92ey0DE1ORscUA2AOh+muhbpGOWZL0veuBojFSu55zA9gAjN6DMFqwMyIZMICy3ba5oMa23xq8+ssaq8A3AI06XTbUMmvUSf8HUndfxmDfMVHoAaBoDdoYijlLMjjWkGLkyiNjOcDlt3/7t2/plzeggHfRv92+WFqNudi6OY1KK3ZM41lp24LdJzC4MCW1PyZMv6dHpdG4Dbhu7AkI3lizwM/yGtiLibm6BWThGFkWFONSXZRu/QazDdiunzn8Mn1a9mmAYXrVb+m/sjL2OckYzqXXM8VWFXbAIUX9bW5IP9O/xmHtqd84xE17GRuAP/p4Rm2Apu3x9LM6bUztO0YgXQxwA2L1rPqq/9Se5be8C4fRO/sfiE7nMLO90zjGmAducgBtWyxYwuD2G+fB4/Ut39cY1U/16QX69IPtd8pijFxmN4YpAMF4Y22xYIz3LDC8jDzjv+/GoGXlJQuAmC+AWivyinWnv6a7nAbGz8YCADy9Kj2xso0l8kAwHJNl9a2jy1wCYK2v53jYeURb9xvHh3z2XciSngPY6wMAM/VgHjB+VhZ6rb60w4J5QMvTAWIHAiAZkGjcM4ZxZO379NXVIfUh33RxWZPqbsMV7BrB+wDmxjShGRZspnvKo8+Kh1p/FrecTplr1ae+f4J969z1fXeG7P10due4Baz8tmuaZY3u+kgdGUfWOUQndy2l33Mk6Vt2oSjjzgEcuM0F546GBYmXkbksZk4n79a31ikljRNgNYY3XtdGwsPo/ztnn31y++Dq3NbNhmuQV/eeeqiOffZguAXb7SioLnfNZ01xMrSNUfK0QLF5rPS1pTzt2KldzCPCLjVfmUsCZLGiHYBWXjnz6gvb5tZ5pbNjqvBJuxYU09d4o9+Yp7vXQa/yKvzGE+0wveSSSy55Y5QL4L3kSclf/+t//cbkLU5rk+uHfMiH3D6nWBT94A/+4N3f/tt/++6plEAPcjJ0Wyj82q/92g1wbaESuGI79ikOHnjUsACPyqYN4G3B+Y7v+I53L33pS++9D0CcvOQlL/kzvzdg+f3f//3v/s//8/+8AR4//dM/fQvd8FSF1nhDyTI0FgxYFstujVsQcbe/JbaJYXGlWxnKThwG5CyTYLeBbrzINWg3pqB3WbADU8UF7X4MJQYPA5oh3n0tvhfE3lAVjLstK0OIYb5bKBOGhXvFJ1Qm16qP3l06AYLy0MI/gKHfgKfyCHze8mOQndszzzpbplB9qLxncGAArcEnPSA/ox6DRrs0LgSmZqBrayC1OgZK1C5Ojt7D3LZNgAW91+FfPYfpAoDdmH/yTHfOA24wJYVfcG/geX04cLf8NYbF4O16fb7rfRfKQFmEVKhNAoxKH2DRd3GTtbF8ABMB0PS/OlzHwB7OBHjdbf/0ZBlQ0i5P4r0uIKhegRa9v3d179u+7dvevd3bvd3tPbGOHCQGZHAYHHbXMmQ3REO/lYb2375R3sTJxXTEXFr2sbEF89C4s04IzHt10O8OmDN2GbMWPFUn2ye0KSAMALS6rh9vP990lfM+dp187vgBQK9eFzxTr8vs3LpxTds0Lthmz7m14VrokLJoow1vgumrTvTZjTGr/Pqoe+VtwwqYIzgUACi2KHNeGLeEDljQaWNPbhiPM16sul3GrHqzvbzfGpvE2hS/Wn5tId+xnkOmTyBX9+sD6XBOid214llMvtMZsOC9/AFz1IO5YZmFwPQN9XPW9wI15pEdr9dRJ5yItLGZsdblZUHD7TeA5gU+9UXOPyCq5+mQsgGI6XZjK1C3v6XRdQ7dZVvvOqTnHTK3eq696ZU2Ur51uGzfOxmb6wRbMHOBTuOB94ifbaxYANrYyWFd2W3tx5wG/lofnMz3c2wxTgDGz0NNt6zKRC8fS6QvdEb6b+fCzp3qdPOz46H/rSWUke4s2/50kK2s7uzOgXXS7bhJx62rdg7Z9Ixj2/Z01j30dHdVGKt2riot52RUV43BtWt5aG4v7f6ax6uHxkA7PhqThMMxv/W/3QKtKaqvbI/ej9WLKKE+201jHcmRyvncd2O6sCmXXHLJJc82uQDeS56UNNF+wid8wg3k/czP/Mwb0OigJdICoFhw//pf/+sbUPhUS2A0KS7lKT/8wz/8ADCNnVxoifvkoz7qox583xAGlfX08p8SczigJClcReEt7pMY0g5r6577AN7eBTTPGIt5+/qQwkXEzA7kbUH2Mz/zMzcm9h5Q9kwXi94FpLBek90GucZGes8I6BkxIhlzLVD763AahtGeBr3vTBhOy5LYWHgL5GB3MBqlz8hhPGJeAHMAEIyGwKY1xLGQ1+BaZg7AY5khwjXU78UgFJuvRXuAqrT7P6AN+7R7W8QHIGA1BeIENC4Td42o07DC+DpZRwwsoAnWiu3Q0lujVXqVEcOyPMdA1qcDRGOsBKAANctzBk0GCHB+27M6yHAE/AEVlr2zAHpp2QKM3bbMLiEDgBkYnQx0LLd0T3zdyhGY+Tu/8zs3J9fznve8B2yl6jsnVVuKgVP9/h7v8R434P1N3/RNH4QWqF7E4wNubnw84MmOgVuH4h4DsJcdzpDFJFwmE5bevjtR38Azh9gtYIDxHGgdK7Ey9Hz1gA3Vff0fizkdrc6ql/TTlvjaEWsP49rhPOq3usNoBrJsu5T/2pdhSp+177JvOZI4Bxb87b76Te9T/xvqouv6DiY1sFqd0kXgMofCvntZs1uvflvjf3WYAH/2ACL3L8tzQUYAzvaPZd4uG3DHRuMz3VH/xjTvqT720EvjMaaXMtmRIW1gVb8BSeXRDgRtqE26F/BqrInhveOX/C5rc8dl44m+siEOvF++l13ZR1igZaOXJw4SZeVkSMfVY2NW+oWNt2Mv3eH40o7rjFReZdLGwGNzqbSkDUysD64z0nsTcxowH0i79YPlfDo5Vt+Aw0A5er2A584Z+mG/czCYg7WxfOy46D2Ng5xqQsJ4DliuPzokS9k4TTkv1fWCwxuKZfuCvAOtF4RfXdAvl3HafXa1Kb+DrnZs1h85bdfx2P3iutPNZS2nZ4DqZYtv/7ceMccsAL7OZoJxvTbJ6YwipdlOG2HmpK3tNtQCXTnB2QWY5Z1u1JYc/TtObT/fNc86MgC0+qmxD4BqbFp2Lt3btSQHyq6jzBnrMN623jGfThtDjBecvOYuoUf6bg2F1WsHTG2zB2sK4cCxVl0JDeM3O6KEMKNf52G9PVMejCP1Mw7jR5Fz3flUytMlH5dccskzSy6A95I/kxRyoU8LgMAAW2qb+AvdYOH4hpRP/MRPvPu+7/u+BwyL++Tv/b2/94BhXL7uiy37rd/6rXdf/MVffAMDvuzLvuxWrjO2cKzav/W3/tYDkPj1wZq9TwJTf/mXf/n2vhe+8IV33/Ed3/GnWLSf//mff9tynHzt137t64SL+LPKK17xihvI+5/+03+6tWkhOPq/LeRvTMKgY6y10HRYVEaXhb7FfotUi2rxMPs/I8WJ3y1EM1CXBYK5w/DcbYfASEYv0HK3UDO6ljmEaeT5XZQDQuTHQXwLwi0rGOhj0b3sPnWALcm4iOHetUALhuYCJrFEq5fGAmEosDYzqJ7znOc8KNPGKd6Dbk6jSX4Zpv7f8iz7ZdlKy/BSP+quZzMO6u8BnoGg5Td2KzBdmIZi2nYfwDU52drAgWXQiC+pjr17gYvGHofwiDW6xjMjE8jR35xG/V49A0ToTsBjY115K9+lD5gP5K2M5T3wQf0FcrabISa/eKyFf+lvoGd68NrXvvZ2L/CeXi+biw4zHBfIWvDyPLhw22xZbOrJoU8cCMvs8k5sXttC6Vtjf2XtI+btgga20QfEFGOwOt3YnsD71cfyWDo9t4AZltuCdWusLVCmLhfQqO/UFhm7GLAMWYAioAposMb4Mrro6m47d6381v9qx34DSp7xK9V/YSNiUAHH3LeHTS3zzeFIO0bZumwLu/Gj74HXygTML2+ADmD1shq1A2AVkKWe6WT5oA90k7Mh/QYgiJ/NSdN99X9gfVLfqo2f+9zn3sKZVN/1E7GpHSZo/C1P6RPAZdmH+i0x32yf8bv21CbLUu5a5cFq88wys5P00+FlGG/9L3xADo/6OicCZpx2xh6UT/PbXsOwBwY64FF59zAuc6/42MYEZaSHyx7v+dIXQx6Qy8FnHqPj+ps0OT/0O2OtdlD3tn5vv/WMkBgEoKjNvA/ABuQVGgfQtYeUmWcbn71jQTM6sIBe9+56BeAP/Dqdw+bZHVcXWFXX5kpzhn694/WOLaeOKTc93dBPC0Z2X2NK3zkBdm2yuzjWQbrgpPuB+MtkfixRZqGMgPEcjbs7ZoHZM42Vc3dQ5bHrZ3dGnODuOgi2brrOsWg9wZFbno01xk9i/rMW0l/XIaSdknVMGk/3//Ji7G3cM4b0jsaJjd27a4C+ly/xvtWPHTMcHdY95tnyyJHeGMwxyiHCKcJZQFeT0qpPCPF1ycPJ//g//o93n/M5n3OzlXN4p2ut9X7gB37gRtQyHz8ZqY0LKdi5An06tLfdVNbQnV8TSeqJJCKTs24e5p1PJG/zNm9z99mf/dk3+7Y1nwOVv/u7v/vum7/5m68QH5c8Y+UCeC95vUiTcDFcnwopfu1Xf/VX3xi4hTZoQmqQbkHQlty/8Tf+xt17vud73u5twvr0T//0e4HnFgNNbh2+loETyPqVX/mVt9jCTULFo/28z/u8BzGnPuMzPuMNWq7P/dzPvQHILYACWL/iK77iNrm1sIk9Xbzc5NWvfvWt/K9v+d3f/d0bc/fnf/7nb4zP8hDo0+/PdFmAlWEqrl//Y5KKl7jgJDAiaUGa0d4Ct99rm4AAAFyy7AwLZvq3zJw1mjdsQ7LGhe2OFvxrgKwhJH9rLPQdqwLIxnhYRhi2r213u61wD0ha5i/Dh0FfH8pob1FYHTlw5k/+5E9uC7vqiVGqbLu1n6xRed+W7NOA9f9eZ8irJwAggKJPgLVDxaqj2h5g1fuK+YrdmH50HasZSCT9sz2XCQh8wgbSVmLI9tfWfsZ46QeYly/scFvHuy/AuWvd3/XiZmdAYb680zu90+swHRl8PVMaLXJj7bW7oHJVDy22d+t8zwSSxvDHbN326Tn3AhEZkhvuANMM2Afo3RABC1bqpxjWlRu4t0CDsBkLlPZc5Q80rP1iYO+BdOUz47G274Ptu4Akdif2OUCNri2bV3ulHxnf8rEHHp75q49tHfXbHty3YWD6qPvGZLGXlVv/w3QGFgHEOHqAGvJROg7hw6DUp7D9jQ3pDNadfIvbjI2c6BtOeDdW2A6sLtJTbc8wN/70vWu2+Yq12PXStT25ZzHEsAKNY9irgKpEPFSAdtfll671Tgci0nNjhXEYSGbcBchhJ9LnZQTuc8sO9A7CkbBA6HmvNtK+G8MX41GbeZ/8Lnjqo46AOd3HUSE9aasrTLodx+mqusW2VT8nMxZwvH1E+dfBs8DUMrONJebWyiC/2wbSwsjuN+OGNl+wTXk2vNKCqF0Dzup7mOK7A2afdZhl+qovmXuNFZwedgsZT4HC5pHVCyDi7qY41yA7dy44eh8TdgF8c6XrHDu7C8Zzxuh18izTecf6nm2+6v7Owag8jdWNwbuWkcdz3X7W7+oxsG9B+/vKKW1gpfuN5bvr4VxzeH53WNGf7a+1Z+1jTbZOiGTHAWxyOssJSpfV765FgezK33XnLJy70dZBZLxwGNlZP+sU2L6z6xh9jT5uaAmgeTpuvFkHVGtABxOf61eAL3vLHJyTNueT2PtAXgzn1jHC+Gx4ikseXz70Qz/07ru+67tu6wBSHdeGgbGf+qmfegN+OfcfVSJGRVR6Okll+vqv//rXOT8n/Uy/3uu93uu2e7YyP1a4xksueTrLBfBe8kYhLRIDbvs8lsQQ+JRP+ZQbK/WxJE9lxvm/+Bf/4gZQNfif0gL9b/7Nv/kGP3wsIPXjP/7jH0y6gc2nBO42AZ0xhV9f0rbuYvD+x//4H28TfWDv+73f+90Yvs90wZyxOE5aHDqll3FlAdrC04FmFrCx9lq8tvC0dd7zgA4LdcBBaVh0AkYsYBmPy9Y9GVtJaSzLiYG8rJA1gMU6A+qID9rCpXxnVO0CmxFiQS89Rl7XnSi/sfg8A+zLGM2YzTPOSAokBJYpt/ZggN4Xp049MRpdPxlXa4Qly26rfcW7XQPGIWf1owXgFhDJGAFUxfItvQDDAMLavPGCIeO9tZODs07mz+pG7+EYEKNOvvqt8AKNSzGKA19jIJanGIOxwrDsOvisnQcxCj/4gz/4QfgGuq79TnClRe3bv/3b3/62M6HfA0Qbd2JdYJpVltJxGM2erA64W2O3eqnt+626WJCUQbmM5nWEaMcTrAQsxSStfKWLjZtTbpmGYoi+5jWvueVHvECsynSzMmEv1S96xr3Y0v3eol8brgPB/4AQwLq6BtgktVXvk8fqlxNkAViGd//HEK3tGdOVM+l7wP6CP0AIuwmMb9uH6/MYl+ofQ9g7GfXYvMYebdu77XrQrxcMkj9gk2exH6W5DNV9dvuyNre1mwNM38Fk1Oe8x1/j4QK+jQPG6z0ccsM07I4AzDkOwXUm7Fhl7DQmYbgbm40lymmr8YJDHG/Aa33DuLQx4fXdZSsu2Gacc4Dl1qt7F2gyHmC/1T+EuTGecV6ZW4DLCeBWH90yAqrlo/Fu56reuTFANyzK5tf7tOeGaFBHQKsFiIC0dEBoDeOgsX4BdHkB+nE87LwiZAtHwrJjzafmru7F9DdPbj+gdxy4jRt2ptG/nhH+6dQ77W28P0HEnVM3/MA6Qk/W5s4T2nzXHjuPbTghY7B1jDzqF3Sq6w73NOfaxr/z+RPJOi6NEet4ltdTdgynw9pWvs97FyRfp4Z63ne6D8i7urjrF2Pjrm2MncY9uwJKz5iNya6eOG71udXrDXGw7G3O9d1tsgxiY059EhmC44ETB5NWn9Q/+z3bIb3vucaU1lpAfw4AeoH1b8db19fBCRx3MDEd2nFHmzQXA9YfRR5W5/485M8jH89//vPvvv/7v/8B0zpbc8lE2dVv+ZZveTt4O7LAk7E3t//Vvq0za7fIHk9GWus9VojDh5HWx//u3/27B2vdL//yL7+RudLVT/u0T7v76I/+6NtB8R0OH2P4chRc8kyTC+C95AmlQe4Lv/ALb9+/53u+58aUfVj5mI/5mNuBbEkDaIDh61sCIAM5ixsZsNFiMeOtxVBbXANKf/Inf/IG3j7MFpN/82/+zd0v/uIv3n3WZ33WjcEacNPiIc9x8Wi/5mu+5jYh/HlI+W4CjM1bGdve1+QYW7qD6wKg/yzbZh52Iq2OY/BWr0DemHzPVFmjFAgR8NHi00FXFrwODrMItlBpkSp2bODPMjgt6k/2BPYS9gMm7Wkwn+zIZTUC/TYG6QIESUAjgFBoAEAYthUmEDBpY1sC6hJG88Y+FOfzBBTO7YZkWcULJjEezu3py5Y5gZfdFq4sC3SfoPjmrXrps2AaA6CFLZCMwYAVGKBaG1cHOVUaV/oewJbjqHrFxFoDOX3KsFmjSV7oRr+J5ZxOJRiFpdshi6Xx8pe//AHLrL4XcNo9sW/T2YDDtpb1bP3TtvHyynBkUO0BNEC96qlwD8rS4j7mRu0VsxdzOQFaYTi24OcQWWZgzwLGWzgz2umkbaSr7xtTWZzmFt6N6wzG7Rd9xAXcsAQMT4y+8qEtlLc8d19Oh5jlAbDYfOW35wEy9JA+6y97cJV+g2GlHtT1HrzW7wzj7fvlp+2R+gWgAoDjMEXOjt3Kv1Ldqx9jnfepa2XRp/ZwKe27YWqWmVleHPiGEbyxTtdZBITjCFKXxhp1571naAvjQQLw263M9MXvC2jrawtSr8NDrMfysADIhlMpXYC4NBd8Um4gx45/wA5pAMKXBdvYU11Wr5UPyKRNlam/mMW2H9Mb4SB2/ATCrONwwWBjf/eIv73paYOdq4whC7ZszPBtR+VTZmVb0Aww2LNisa4Oye85ly5rWj2Zl7wP4Lpz88aQVk/uA5YtS/gEqrefAb93fNjwQXSy+4CzvctuAWDk9kf6tH27d9uiDgDmiNm6WZCUrq8TRT44/jgbFvhXp65LQzsskLxtczot5FuZlFV4AXMlBxhgV50tO5m+kp0v/G9sUgbOhh1HzjS2zu08Kh9izGvvdRb5bN84ncynrO5pw3Odoj+ps3WcqXNjj11XdoAtUMtBdALGHGTrUKH7nHb1f/eXDw6Irme7NUbkbAb47mG6xr4FVNVP9xXKy9jSe5AlOH3lV0gLO+KM+cY7YaP0UU5eOpMu9b7WUj3joMtLHlsK8YfI8lf+yl95nXCAAb2x67/qq77qBvIWGrAQho8qkRMKhZA9mU3emP/iF7/4SQO8te0rX/nKJ/VsuvN1X/d1N13PaRF2kH1PfvZnf/ZmW4cBxOR9OrKPL7nkieQCeC95qME/r10T/I//+I8/0rPdHzj8ghe84AYOOMTs9Smxs/r8y3/5L19vaTYZNbi/vuWP//iPH5NJ8FgS8NCk2ucNITHhnkgCWHbrzqM+nzxMuZ9M/TwZwYJbgBKjC7NmAU4L6n7LOLGVL50WX3EZOIymBXgs1FuYBBgCJ9doXYNojZtltya24yWMkgXHxINdoLkyYd5Y2HcPNh7QARDSAkzc2d2iuIcMLWtFXhYoZjRjZuwhL+ppD8FgrDBMGD1ruCmP8rvvPtbFycTB2Ntty4DPAL3AUAfplZfad9nHfQ/QZczIK6BrgRUGd3W426YXcNZW1Y2YssvmEhMsQDeAszjnGUoxEFuQprP1vxxOleWv/bW/djOQls0NTF1DlwFMZ2ICczIAZXtX/aTxhz5jbwHmyzNjC8CFnYT9DjSib9qUbIzJZQT2f+AqQFT8Ugx4oIKQJQvIeX//A8u7p3c3jlXfYhBjJjMOA+3P+LnpgT6/rC4M0gD2ZftVLwsC+ruG+AJYu7UaC4oOAhxKA9OXPqUL5bXvvRNAoB7TcWARRi0Q13gEkNI/tQmgaIFTeV8W34KgC8xsX6DPu5V+wcAd37bP746BjX18nxMIcEEPN7TCtgUxrnO6aWsxYNeRsGFFzAPq2Xio7ZaxqJ/td+XBDsfuc9/unlAfwDBgypZr5xCyY+o67bTDMqmFSOEMKf/pO5aWbeD3MaP1AfMeEMucte0sBIM2BMbqo7t1fZ2jq3vqTnn34DDtibm4TjRj6t67cYq1NbBRnRtXzBHG7nWqCqmz/XLHsgU79XnrCIdqbn0an+V9y7QOT0xeor67F0B2guL0mD7t/Gi8o3u7C2nXBfTP/KGNV6/1AePjslAxkbePaBuOtx1Pzjl9xdrqHFu23hf43TXLjgkY1nZamJPke1nim68FdxesPfOoHvX19KX25zTXvuscMlYbdxxUZ17d3Q47V+nD2tu44ztdNdZZS9KJHauND60vhH3qHI73fd/3va071JN8rgNIf+LA0bbd13xJb7zLuIO5K+TRzkPi+Cb1HY54+t981wcDuDQey2655P8nOfE76yXpYPHzrJekEICxZTvzJbJRZC194mElYPfpclD3R37kR95CniWxlRfcJV/wBV9wI6dlF/T9AngveabJBfBe8rgiGHqTavFpH3VQbwLvuWLJ5iUL6H1DsHgvueRRxKIYKNfCsQ/mXRJzEACACcWoa+Foa+aCpssmSixeGXAMxQVDlp3FwFom5LlwT7AMlcUCe0EKTM01rBgRgAVsEItz2zorH2YFA2jBszVkGDYngAi8BQp3j/pUd8sOWgakMm5dSXe3yC54xKA5jdIFgJz83LtauKn3gF3hGTxf+3foRP+nG5igTjjH7O56zwIF1UlCr+R9662/1XEsX+EA5Ll8tQAN4M3pUZ0Fdga6OngkIDKDK7AX07P6qowOhFpW0taHfAAAer9DfWLp2B5cWStzz2P3CFlQfuhd4GAAdAIwZMzGJFZ+wEnGaukqf+nkpAN+6CtiUWYQMkT3QJf+dtgVEGb1Rl73oJ/uFzsZANS9hdxQluK2Z9CKiQv4xFrtWWzlyhA4vAZn9QJEWJASOLJgP0bbMrxcKz+lmTMoHYhdXDmcYl97xLiOqSSOMMakfg/UbudHZeoeTg39R+zZ7XuuYY0tKGj8Wz1f8Mv/xq4T8Fg24L6TkW8M3ncAQuiy/rMst3UgbJxkoJYt+/LUb+kfx5YdEQBi4yqHwgLn/a1vNkaUTuNH19NlAHC6sXGKF8w6WYbG62V+JgvGbz0aexw0tI6HBWF3fDZWLSC1gGN9bEMJmOOM5SdjUVpAHf3zPtYlfbJzgL5vesto3K38C/BwCi7Iq5zmlwQ4XZr6b9eFPtg6FrZIm+ycu+Xv//qZsm8M3HWYmS/poDnO+GN810+BdQsaelafE5Kp8XgdG8ZQ4Jy5VbsA7cuD39eBsuuM+/rpOl9OYBQQR5YZTkdPpq4+qz13HFhn+DkercN79cuctuPZrkektWuTBYyNb43Z1kGcotZIxj9l094cJrs22ev00t91XvSu6qb2xD5NgO/WecYa670FsK3dtkzuwxRW78q5QLPDA8+dJhv2wA6O5kchVNrR2FyvvBjh0lhCgP67YPuuIcwV6TBd6j3yYhzt/bVReeYUae2D+U+Ptu8uC/tR5YkcC3+e8obOx0d8xEc8+P5t3/Ztj5mH7/zO77z7p//0n97muAD+wvY9U2XL/O3f/u333pP+tOu3s3baJdcur5jMl1zyTJEL4L3kceXjPu7jbn87vOw+z97DSM91YE9ewuL5XADvJU+1LLBoMd0ik9EaaBKgEqPA1jCGoC2I/iZraFrQWtDblsuoScSvlA95Ohdzy/7wvgXBgKgArha/jMVlQAFclunCkASYrHHD0O/eZbNtHhkM3e+QDqBYsqwrAOQCFoBk4LO6I2uAWrQvyyhZQ39jBKvPc6stsNbhcraGAohKJ1YssNIp1EDzjd+7DK6YlOpnt6NjiTEQF6jpfb0nJ1oAEXGSfPr4W7/1WzcAN3mHd3iHG6CHKWb7ZPqpzSob/QjIdkjggunqg24JGbJ6XFrpf/nq+doXkCBtbQPYEl9QyJh+D4SsPhdcXgb8MoUq5wLRjE3tCtzABsLSxOSll/QLgw2YrM8uMKTNtJO6Eg8Z2O0ZrO8FGxag6lPeHLLEKF+G3gkUYoitg6f6DthNP9aRJA2xcdURfVs2pz7cvRnl5af2ZEwvu693OLQmUWag2gIw/RZgbFsup1XPYjzSLbrO0Kezvf95z3veg/HG/UAhOwu2/wMztN2yEXu/Prtbj3s2XdU+6nLHMk4MBwI5tMf4Q9erH7Eue2/5DvBLx/XR5oveKRYzlp7+s9c4vowjwPsFgzkAtu2BjtIyriyTUYxMaVcuoSgWnKI3y372fRnD6xCib2R3j6yTin7ToQV1TzAPMEnnjCurc8b77bs7b8r7gpXbp5bleMZuNmdhYC9oLN4nh5wxeuftZSbrQ9YS9Nn8rb7o+AKd8rbzJ5DLIYjY/BiL1XvXzNU7D9LlZdD2/I6r6tu8sOuMBUbNucbdBeF37NkQH8pxrjPW+cLZBiTn9JDeOkXXcbb6e8baXUB4HR87F7vf+kkdyoe2OnV31yXGI8+d79/+pV7kw9jfWCA0ywlwew9dBcyu02MBf+OaPDUOGGONbetItLYzT6w+aPvmjJ5tbGs7fY5n9b95kCcgs3wo18ZkNyeXrkM494DFHJGtZZqHm4NzZotXr71Lw6GpdmDtQZnyv2vCS/60OIC8eTN29mNJNjyJrPVMBniVuZBmHPSPVWaHqVfmC+C95JkkF8B7yePKu7/7u98myUcNzXDKT/zET9zCM/ylv/SXXm95u+SSJyvYXkkLyRY3GesW3S12Wxxn3GdEOeRojZzdtshQ322CyTImdtF/boc8jYhkDWGG1zKzLOJ3ax8gBYMPiJwR0YI6xtkCt2vseP4M/3CCrAy16syC2qnFC4AnFv/LTGRcYhUlQB7lAkauobaA9W7N89saf54X13EBPEbIAmSx1ypDQJjYtWIsL9ijLf3WNkUsPsxK5e56gAA2mWcYjpgrhXzot4wXQHH189KXvvRm3JRuIXJiE+8BVeIVpr89t2wqBrb4m8uwoZcL1CwLyf+Ai+6rDxSHt/fVFxhqGV3KtfFLlc+7TvafOjrbFLt82VAAQX3MVnhGuDwk1QMDE+swww+4tfEht78CiR0mF1uoeg3IpDvLapVWeXCIHOBmmaTLaiqdQNsAb/qQ/jtUxjiiPmvfDFvxEjmKtGkSK7fy9f6Xvexlt/vUd/nwoedYqbsTB8hUeYXDWJaivr2AScaO2I36dXVWqI+tL2Nd5VgmYIZ7caJ7pnTEUO6+flugep0P2w5AOe3se+lUFmC7OtWvNl/KmX44NJJDb/UYmAwsASLY9WDcrb96T/OJHRGlHZBRubWhsUC7L2AuvQXhT4Yg8OZk1y5rcecU4Ij7gEb0mHOGc8A4Ka/ecb5PX1a3CxJJf8MurHNVm6mDZZ56ZsG8+55bcHLn18okhMF9962zq/+xFYHv5o+EQ2kdihuz2juktYdC0TcOh3VO9lvvs43c/e7xfzqJ1c5xqK5tSbdGMbdid6uvZdPK7+ZPfvWVnRtOFqR7NrzOgve7HgKYesaBnEIO7Hyp35lLVofNa/J0srdd2zzvIZG7ttp1g7l310ObpnHwdOptX9QfNn/7vr1n32vXlQNw1YX2MX+u43vXUZuHvZduAUytiXwH4GN1y6O8r1Ooe1p7NBc2htF3a5F1DhkD6CDnwq5Lu2YnlJ0VxqKu1x+ax8wbrcGbH+hz13uOA3udc+ZIgLF3PKrs2PZUyxs6Hx3imnSuy+7SOyUw9HzmqZQO/408Vlzg2rr1egB1ZwR97/d+72PuNq6vp89nmZ4JZb7kkkeRC+C95HFFnJpOvPyziAO5pHfJJU+l2DrfYrHFpdOBLTgdtGYLJMAIQNRz3WPb5BptayitYcQ4ZjyXZmmvsbZxI3fhvoYH0IARyxgGzNr6ucw7DFnxOr1Lvp3Y3jMbk22/A9cYoH1sC68ObNNf434Xynu42rLkNt7nslaWAbNg7LK07gM/kuoW47O2jY1anC0ATHnNWHFYXYvDwJfAWu0o9rR63PKLDXtu8934x0m/pSsOEymdAD5GenmiV4WvATR3f3m0DTHjXVxXAFH5LR0HnAGeMHMANvRunQn9FeMuKU/pACYs9m3AQzojTELpV5cZXoAr4BGA+WSoMrAA0uWz/AsZwvDvMIvet4Zm78I+AhL03fb9xEEsXQOQ1/axLWJW2tYplEXlKq9i8ZZeBqLQDx0AUkiEJPDW1n5MzmXYAZABJdUVRrA8ORSr5wNkl1nVvemh7bpdB/aI/5wsA7N3SL86dSAeABfAzQGhbNjcxgjgxbYBlhXgsXt6r2e7D0N5WZ7L2FM/dGuZ0tt3gfKuL/DWBxsYUGfcMWZrQ4Bh9QWQXWcUIESZVvqf/uj38rIOgQ2DACiRJsBfHXDyLOBn3G0MWDY7val9En1M/e18ct+YCija3+VNO+7uhZ1PMGaNX5jG2kNdSIM+77brdUjQq91lsrG76caZ3wVlvc9YtuCucmxs29Uf+kxH10HqHsxCLNFlXi7wr35qD6Fr1KfxcYEyae3cQThZT5apd1fn6QfnkrlRn9l5xIFS+od8ckrVHwB72OPAYeDbHlIoL8bVBU6XGbvrEXW9/XrZqepxWcv6jXTMceYLdQlIpTML3O7umBP0um+tsH3Mb9vvjScYxfeV03wv7QVsFxg/wd11KJz9dlnp2gNL/Az3lZiT9bvdAbUEAuMr54K+6lljqcPZTgcvfekezr7SMy7s2nJJBttvdq0BwNYHmsubAxunW/dgpesvQgp1D6dbZcnpnu7HJF4HJ32y7tj6F5rI2P/GIq1vnkgKZ/GwUrt0kG3yX//rf33ce5ujqtfGqQ6BfaolZ3kfkgOiz4d/+IfffdEXfdHtgPf7ANzuIU9U5sgX5OlQ5ksueRS5AN5LHlcCERJbEJ+seF56l1zyVEpxOzF19mAhQG6LGAet2cKOgYAVh3HAcF6jeheVy4gB3FkMe34NkDUcpL1pYIBiEDHyliXbX+EF+t0WbYv23tsinnHOsFrm1MlGYZAAm3peLEiGQHWqzMvkDWSSztbZbus862HzcLJZGBDSZGQxOPrk3beVT5qAcMwuhkBGB1AUY62/sVZ3q3hlqiwOSVlWdWmJzwtAEHO4fAQe5+CqjgKUl9EIHOx3QHA62ntiKsTOxKSVfgtzYG6L+gXOGmdbvIqfC7RaoKcyJ+L9Vk9AZFvZyxPdstUYEJlkgFW+6iTjg1HHsOs6UEb9ZsABrtcxUn6AHMuUXWC/38ojtpN+wvjF7sF2A5ju6eUbVxughJnE0SBPwPnyxVheIGodOZhegA5G9YZX8Jwt9OovR4nwBf0m5rATwB0u0/V0d7fzAq4cBiif9UfhMcpzzhf6tgf2bOxJZadXwM2TYQyEWKbhCdiRZarRt3QcEHGyv6Sd/nIkdA4AZ1jOZtua6xv6YOVftp6x43Q4GdOMFxws+sbGRD53Fqxzi7jXeATU3PFznTbmGvVHRxxIuE4udavuF1haYNq4rP3t+MAcpys+8rXgFObbAnzGdc+YE40z3uX//gK4zSl05tzNIs/GB2XjzFl258ZDVTZz7e4UMKaouz0sa0Ey6e0cRB8BRxtiYJ0QWzcbXkXflhdArdjdrqvfBe3pnTl8r8sDVriDXR0UtyzJ+kVjP1Zk7YWFD9jtPdYgG0cYaL/tpG39v2xS926duc+YvfruntMZbm7QT82bdG7HH7q6fZns+3csW7BX+uf4tOMeIFkbCGez/eZkPW9edozZseNsV2tP9c65a35XV+KSG2P0FXq+TrvdtXWCrz1j3ln9l5Zna6v0qPvSs90poF68e+fo1Yt17nLiY+1yqjc3a0ugcU6K1gf6ozk4cLE5UIgUz6VfnGPWpcgKG/bijUUe5pCyRymv+kzsNHs8qX6bo6xLngpJT37+53/+7qd+6qfuXv7yl9/WTpUjgsSLXvSi20Fwxcz9hV/4hVv4swVpH7XMlZc8lWW+5JInIxfAe8njSgvEFh5OPX2yYlAVn/GSS55K2VN8GYsO0sIcBNw0yQOAMJwsHIGkFrq7JZpgXexW9RPMXQNvgZI1rvzdRbmF8wkwWfwytHbRDcAGfjIGbNdbtu4yYBgo0g44C7RsQd4iyyE9DEkHdwUeMooY/FvvW09ruO07T9bQ5uUEhNUxxmXfy4MDu7BRHKwVCCZfC5hj5XoPgHcZRv7fbeLLONoyYM7ERDmZyqUToJUjLCCuumxh2qFq6V9xwmxR7P6+Z8gv43CBCUBN6e8BPskyzJeN2jtLd8MZbD0rK0OQoQe44BwA6GEmAQnkAUtemzNeAWFYsNpkHQzYQQBIBjNDckOVdE91qc0XAHJQmv/7Dtjr/lgegSmAFYa+g/jkXT0Cm+pXQBdtvPGBAUxA5+5LTwP2Gd71pQDz0hLCoDZZoHzDEyT6FBZracU4cfgawLTydVhIDGWOFuOT/qg9gU0nYOr7Mil99I3t13Y6iI2rnqpzZVBHwG9A3rIe969+SfcBi8Yq+rDjZenq36u7C8ytU0ob72nu6wBYIEvdeeduf8ZMrL5rn8ZM9ac/CZ9gizGAkPPxHC+0sTzsuAfA8gxwzHi1rLYdPxfoBd4swxXLl95g4xp7ts48o34SOrv50qZ00HftLp/pjnrX/vrcAl3KrxyY7saOfk/39r36nh0ogFEhOHqvsW2BTG1gvtvPgumnw1db7DyHxbvOohMMND4aH4CgQlt03eGPDvtbQDzpPRseZMFwIJ21ijY2zq6OLAh89k1l4CQUquRst51D9bttP6AlB+s6vLePno6bc77esWjLqZ+ug2bHNe+s/+/acEHm7Ttk51ntfcqZJ/nsXcZFQDf93fLu++XVYXzq0LxofMsGowd2kOnDHN4c9oBkYzOH9rKxN0TD6gXQmuNwHUzS6nvsS4eU9pz1YoBt+u2Q157vw8ksn/VjYRow2Oun1g92+Zx1/bByOhDeGGXDenHMPZ4YT9e5+OctH/VRH3UbU07pnKB/82/+zd03fdM33X3SJ33STb++5mu+5u6jP/qjn3SZlfepLvMllzwZuQDeSx5XAhwy0IpL+Su/8itPOh0nqf9ZmcCXXPL6ELFFA9v63uJ3t+pZQAJ4WjTaim2BK85twpA6t+xaXC5rxV+GLCPJIh9os0DKAnny55nur19l1K3xuCwpW5oZTQywBXg2f8IoLMNrQzr0O7ZZAGlgo7rLWGgBVt1ijGANMSCWSYo1K09rwOwi+zSo1ujEggFeYMJkPPyFv/AXbvnAfKweWrhlEGQsZ+DHcAZo2S4JkCmvDOauAwYXREoAdr0H2xBQpry9TxmWjcOYAobF3q1eq7PaFvhnS9rqBaC+e3oWkN32/AXItINQCcIr9Ey6zTDD0sm4qh23zfev9mdMfdAHfdCDOsDKCaTWxpwfC/DugUQJ4LW6rg5tbQd+1a4xf6rj8qz91YdwKuotvZQWIxLYAHwub/1efku33wJH1YW2CpRVzwswlh6QAgC0IOfq8W471xf7AP17ByASKIUVT88Z1wCY6lT8Qf2gv9ivC9b0XPWHVQzEw5baOsHqwiZWLo6jHRvUfyxuDCz3Y4BtPMx059WvfvWDbbl7+E/ges6X+qR81hfKQ/flrMHmSserq3TBmCimLwYaQG8B4QVGOO44yvRrAEHvbRzovsYMoT6Ur/SEitgwCwDn0qkfVe/lpWu2GS9gBPxvrMHsxWzTJsYRY3cCJFtw+QQ+F8SiS/rdCZgZK07m88kEBnAuQw/I4xBL8xMAVd6WQb96zYmkXMuaxojduO10WFmXQbuAP1C6duJo2zAqxvx00VpAGJlluJ5bvhe8W9boOnPp246f23eMEelGer1hOradODHoRX3CnK4c6qU5LUcCNuOGflL+PUhMXXXNumZBU+uEDVmgjHSi/+2eMJem9/qK9l5g13yw8eJ3zFzHovzcN/cuCL4O9G2bFTqrPXdMNg5x0BjbjFG7HpG2d24Zz2s7T3lenW7/NO+VP3O0cca92tsYYBcAfQOYc6IssKtOl+Hr3p2jrNP0a/nmTFzd5whQbiGDEu+yznBwaeN7uzFKv2v9juTQ/c0BdvYIYWTdnV67Xz3vjgFjDXbvG4u0k6V5/fUl6i95mFjFxt6nkqh1H7i7evipn/qpd+/2bu92290TGNzOngg7T6bMu1PsIqdd8kyTC+C95HGlrcGBsx/8wR98923f9m1POp0P+ZAPeZDeJZc81dKEH1unxaOtjhlELWJbXFtMLxgQuCNm2Bqktp4l4t8lnnc/49bC2v+7RZUx1cIUqGhh26LVggSTj9HZoifjFIi2BiwAaJk+ARXJnu5OGHrAhAW6XN9Tkpf5JSZx6bewAjrvVstldG5IBP8zlJfhtIbcydxdIyWx0O/QiNqssStgNBDNwVXVV9cDIDOiMhiAOMrVX4BMhzL0TkCgOKDqYo35za866R1AhGX4MKhrqwz28sWA6lAHoReW6aRu1ENgcOyF8vu2b/u2txOCSzv9Vu+kezDFbN8GFK+xuWydZIHiBSqwyGzlxETUDol3LJCz8Xi1m7jYlT9gduNJejeAY5ln2r/fhTwQQ5dhzIh0mBc9PBluwK7K/7znPe/WD4GjYnMrB3YUMEBbJ+WDHvZc5RB6QXnLkwPZAHSM4fpPz/ZMurYguy3D+h09wDRdsM64YgwD5gTEpm903VgCRAQolh8xgRekrp3kB1CdNIbW1/zG8N7+APQoRrKwFOLp1u6vec1rbv0sXXqTN3mTB442MbV7R0BB9wb26lMOO6O3wpNoB9cZakLY2M4ew1l7NBY4EA0ADngRxkR/0u7GpAXaypttzxxDAcR0kP5smArb6o2t+w71vEDYOhDuA7YWkF1g++w/ACP3erex4T5g07sBr/IFmN7x3lzHuYodCLg9D7LyDvOP+XTZnOto2fIA5qSz7N8+gNHaw84IzEmOK+CjsDgLQCvX7iLYuf2+tlnG/xkmQN9M58W5NHbpc9qgv5i8jfHlv2fF2vXOHC3Nv8Z3zql1DErP+KYOXd8xWz7XcbBOgAQoumPIAp7GuD4OmKw/YV0uOLnjsT69DnYOqFOWoXsC6X6XN07b7RueARJuO55p7hplwd29vtc27u06Y05HjLGco2TB9fMdW24A/uZ5d1rs7+ZvYxW2enncHS3C12xYmV2n6ZubvnIuOI3V6/nOZXGAmj7LqcbhaC0C/Ocw6/fmZm0nnBSHj3VD/eSNKSxga9dHibH7RGIef9gQBBva7Okqtf+3fMu33H3VV33V7f8Od+/QtSdTZuV9upf5kkvukwvgveRx5Wd/9mfvPvZjP/buIz7iI26xbV71qlc9chrFw+n5JvvSu+SSp1paKMbuDEDA4NswCoENLWjFuvNxuJptr4xEgJmT5ZfdYnErvIMFv+3CC0BhN1rMMngssC2eGXIW0vIpDuyyCXcLMwDjZPHuYSgLBgF9lm2VSBsLCICiLC3IY0FivrjOaMAIZPQCxhgyG3NuDSl/lxW1TBJgWeV893d/99u1QKAWcgG8gUexm7Rnzwe4CMOxzDvsZG3rfuWlR/LF+JV3AHFgWsa4OpfvgLDAqt6vjWO01P5toy/fttdj3gIfGE69R30nwOeu9b0QD+qWAVg6jCLg3rKClKk6sT22Z4B/AF31EvCVEbWHETHwq0t9Sx5Lh3G2W7wZld6dE4azZfWt2MNnO9GBHIgAPKxyhnJ5qD23PA5Squ3pmb6AxQesqpzdX/16hzYALOqbtd8C0ctsA5YsA6k8iLObpBPpa/VbPQSCAN3F064M3WN80S+w8vrQaeUyhgQgL7PV+ENWv2yBBTJhZC8jzXWgsbrhVNq0tWd/0w2AOnZ19bKxRTHuOayMQ3Rswxf4rLNM+9AD954AyTJMtZW+0LsDFgAZyQIl6tGzyr9OKHkJlMu5pO2BVcDDQI8N8eA9ABhjkXqnF+d71/F15vtkl6sr882CUhuL9qy3nRPMBdpbmsCq2nf1k85vfOcdW9eJYQ7aOc9YsuOwulwg8GQaismuzbSrdzXmcqA2zpXP7sM6NifufKx/6Yt0YeetBcyX7bl9bdmsvfsE15fB2XPmLesI7FZOmMrCcYmlbh6xQ8B8rP7WSblz7xlmik4t+1Xetw8Suku39WvzxvbL7dPWLAs6rx4uyLrf79NxOrDx3+mP9lpH8zorrdfO9+6Yea5V6J762vdtvRH/lzcHS64DZvvhyR4H0u+aBIi7u6X0ESx/DmV1Zkw1tm/4HM4AZcUE952jZ52M9CmdE8O1MV4sfetiOy4AvZx0AOS+cyDn1O66g3trT2HH6Ez30vVHldWXp1rekPnA9m+M2MPH7pPWU+ryjGv7dJPFKVovrSxA/kRl3oPVnu5lvuSSUy6A95LHle/7vu+7+4qv+IqbUf1DP/RDN3ZYBsjDSgbfD//wD98m44zR0rvkkqdaLOCcQC8mL2PHQni38VnsZjgBxyzGMXlOZg7GDhADgHZuPW2R1WKDkYGBYKEMINntRcvyEmaij/iBa3xhSgKpW6gBrCzs1+hYcIRhhykHBFgAY0Gd7rN9frcVY2FU14xh5WCMJ5ilXbfNV5vJK+OG0Q2MAR5Uvr/xN/7GbZH/yle+8sbozChocZfxEDuzLeKNZd6xwAK2X3XE+BersXfsoXHAPqy0vS72aBKw4zCzdOgVr3jFTf8qZ/eXRzGBuzcQbtmB2mTrut8Cit/hHd7hAUDQwXDLiM7BxqDrujIxkNbQByDQi1OnSzPnR+xsjDdMtxwm6orRiP22oQToFPBUG2p7290xcXoPQy/d6d1dC/jE7HRv7Y1pxMBWFu3puzAeLeJz9Mh3EjBS2wB7MZRLK0On6xvjb5lmxoQ1lAGyGQlYnYxl6e7YIH8MW+UHlAl9YszyTnXNIMcSXmNffdvivdtwjT+7HX3Zb8pLlNMYZMzB/hWKY0GpDSewvxsjjJl7/QRL/VU3+m7vdVjZMtnUKaBwnR6Y9fvbMuSWkVi6YkMuM1E/AZosQLB54+gDhCX60fa9ZapvDPWtX22k/ncL94ICnt15b0GlbZ8N77O6tc8sgLTj8jof5R2AZO7qf32nPrXj1NbBhhUwzynLMk85HOjqxlSUJ/MM9vo6K+hv7bqxlPu/ft41gCXwdfvaOnIxStXHArNbn/5X9mW191083gVT19m5jNaNSQ4o4/iiZ6VVWcyR+k391XzG8aSuzMfbrvRtmbOrCwuAczgoF8Dc/Ox9nNGeOQFGYKE2XiD4XGvtnLj6fQJknAuclcbKHefowoLbC8rvGLh9at+1/WN3b1kPal/v9F35u8fY3VpAfzGurQ5qE79vuIWTsa2OF9RV/nWkcSDt/EyHrRlOtjU2+Tr3tG2f1lBAYbuaegcHo50wdjEYZ1c/cn56p2eFAeo+h4A5R+Ec6y7502Doe7/3e9926tLL+6SQB+QP/uAP7p7O8nigeOunP/mTP7ntytsyPdPLfMklp1wA7yWPK02eL37xi+/+7b/9t3dv8RZvcfe7v/u7d3/37/7du5/4iZ94wmc//MM//O7rvu7rbh60Btwv+ZIvueLYXPK0EIfZAIgCyWLC2AbbQjEgFNtxF7X9js2JUeCZDWWQYKIwen1nKHR/i14sOSCEhS4WZNcsVjdsBONeHhlRyyQCLDPwNoYm420ZL8ssWoOGQZksg84ivt8yJgOOgJ0MH0ZI9YXdlezJ3ssA8W51usaVOsaq0gbq2j1tuS4PsWKr3xZ1y1gKRAXmB7ACKvdAGAeFBAwHwHIGYMVISx1VBgaGfAK5+1seMlACQ2v30o090ffy8K7v+q4P9PDXf/3XH4CXjO8AaXXOKHMI5m5LTfpe+rUHwLn0crQBdhn3Dp7AftH+2nj1gk4towcIuyCDMjNMe3f/Vz5G3qafACXpP7ZX73VI1x6UtaAjsItxCwTTb4CYylLa1Vt6wNDn0CmP6j6mEfCv5wODa7/dUo4RfQI4q7fyQ7+AKAzbrV91YaxYUJ8B3TM5heR9mbGJbau1TTrAyQPM1DbGh912uwzHBdK8p2c2JiVd5Mw4mcTA8AWllznuL6Ce4e+98reMOOAGUaeAAGPihp0gqzcn09JvQB1Gb5+AMszTE2Df7fGbLl3TV5QVmK1/6LvqBWtff9zdDgtwbP6NAX472YsnW/BkWa7+7pgqza37fUZay+ZWv4CorUfATeMFpt0e+kSfzDf+qhtAmfbnWKtthCLQBg74BQAvmEaH1qHZM7ase6/86GO9Z8u1elwejUFbjwB49aL9Nn3fqxfxgLWR/CV0Gxu18Wpj3fas8jfuCXtTXXOaCWlDDx2gR984co1LC/7Lv50U3k0v6LNnxGbnyOJANbYp3zluCEm0a5Rdm6wzZvvvCazvGEFf98yFBWwXfNx+su2mX+0Y8FjAsra6L79+3zTonPa2ZrPWMddx+tFZzj9zg/FrnewLgAuvoMwbc3r7vrxt26yzSV9cpvA+k+zYCEDGPOeA4HjYXQv+Vu4+rZ2sXxEtOMHkVx/HaL7k8aXwXgG8rVnf8R3f8e6lL33pvfcV6oC85CUvuXs6S7uNycbf3TL/T//T/3QDcFv/tZ57ppf5kktOuQDeS55QvvEbv/HuBS94wd2nfdqn3dhTP/IjP3Jjif3Mz/zM3W//9m/fAIMW7E3ADZbdW9zLDGELntLodMtLLnk6CMOjhbwFacBtTHVxbwN2xPDCKgTqxO5rIdn1jDCn/QbUtXAVu2lBW4Ato8bf+k8AHDZfAjDAUFgDcQ8uA4gwsIBjyYZk2IW7BTIQbcGF+4CAhJGWMBj87lRkh2gsowzo2bsBn+qDwb1Gtt92W/4aabs9sLQxr9cw6m8HGsXYxfR0cI7yFstsDWogKWBF2IPqr7YuvWX6bgxSRg4wY0Hsvbf3xF57+ctffgPmCiHRby1GW2AWP7eyCyOxBtwy6ZRXPZRvh5BsO2ItFuu0hTv9U0faHVNIHhdoVN/bRulPOr7sHWEO/L/MzepNSIfqAmu5tDg2lsVt+7M4fMJEYNIGVmLVlZa893xMJyBj9Vh9Fi6hecvhHP3eO97lXd7l9jvArGf1NaBv7bVGbr81HsT6TYcAyAzf/q/tjCsAkmWgntugl91F/FbZFtToXY1Fu114gdAFitRp5a7eMKqwpyvvAie7LVe6e8jUCUrsIVb6ZnVP3x20U583dkgHUG+7PJZ+bd7HmAJclOcFE9XRso6AMuL1LrjGmXGyIQGAdg0o/zoBOaH8z6Gi3gEvwLllH0pP3fW9NqxdgBAAfg4AOrw6YA4CyJ8sTuWnSzseqgs6qp+egC+AxtyxjkntR4eXSX2yL+Vd2wJ9tZV4vQ5Eql2ED1hnKT0BRjVHG1s2T9pFTGfj14acWaeneUc5xeB1ICNH7jKD6d7OVduvE0zEEwxfQExdY0vSle2/dNW6+gQC/d995bP/HSIK3N+DWK1N7ILgpBG6Rn2oL/1gwzIso7d79ckdz4wH+tn2VfMvcNkaZUNAbb9OhLbxvzpdJi/92PFidfX8Ti/WEbKyDq7TUbKOjtOZv+/x/La3/uc+afsuTWsjDGtzTOOicEcLUBu3tOXp8CbaBiNX3pZxr9+us9wYs33cepCTYB2Ru67igEiPrQftNgMI9386zPG4DHvpdk3Z6mMOT9On9WP1IdzZuY59WDnXnU+lvKHz8WM/9mN3/+gf/aPb90/+5E++F+CtHv/23/7bt++tG37hF37h7ukq6c6nfMqnPPj/l3/5l+8tcwBv8kmf9El3/+yf/bM/dU/zzMd93MfdvrcLsHX0JZc8k+QCeC95KPmMz/iMG8jxxV/8xbdJupPp++3xxCL0n/yTf3L3ZV/2ZX9ueb3kkicSRtqeVAwcyjGxLKo9CCZ9bpEJuOt+zBjsg8QCelmGFu8bb7b7A0BaTABUAAJ7DajKKJSXDR+BHeVZvzGiHM4UsODwlTWgl621QMwyehe0WraGd+52eHlIGPELKu7BJgx6W5N3e/h9DOMT8Fw2V1K7xbiN8VF9MdoxdPe0cm20p8Ars0MtbAMXB26B1pM5m8hfhkvv6nsATfkoTMN7vdd73b5jcP6X//JfboavLY6lmbNBu8sP5qV3YDYy8pftBeQJpMwh13vVN0DAgSWMtO7fbc5bNu/DYN62rA8UT3gNRP0H8M+g1Q5YlZwh6g+rFJBZH9stp6WRLpePnCO7DVMM4qR2Y4AKdRDI8drXvvZ2/zu90zu9zlZ4B2gFvmvffgN0LZDYdsY9YVkd0SMAoGt7D3aa8tDj7QvuS0eqD/F5N/TAGu/AGe1lbCnvwMPSMnYAfLF7K5dDHXecAFbLv63LG097wQtsM+2pbAAkeaZHC5r24Rzre9eAxRhcC4T3Hge6YZ/ZZcEpoE56d+z3xnjgSPdUlvTDQXgLDuUYWlaebfzViTHZOCh8zYLZmNpAlc1X+Sid+mbtIiYq1pvDlejJbv1fNje9WYDNNXOROls9054LQO6YJs/yBLQ0Tu/YcAJumyZwaOdBgA32p7LpY+sA3DEdEHrOS8suBwTR4Z0zFlAj9Bn4tJ+Ns6s/LuC/4+KCt9p/d99ow62fZcdLa+c9oHZ9VExSZeF4UWfWLhx+DmmzjV4YEv1pHWpAX8CauXvXADuGycPOTdv/F6Te9YE8c7accbzVLSfFMnitndZRfV99mifOvrx/15G9Dqpzd8E5n8uHPGrjc670Xdr0ULtumupinah0xXzTPYBucWwbf8QMXwfKHpi7dX++1xwhDxsixZi2TooN5QNw7pn0przZ0WB+4bDjBPRc7+P4S6etqxvbm2+sq8VnLu3Gye5pnmo9JlSWXVLb7/pujbznWVzy2PKbv/mbNxA0Fu8LX/jCu+/4ju+47R5b+fzP//wHrNiv/dqv/VN1GtP1F3/xF2/fv/3bv/0GFL8h5H3e531u5yxw1p+SnkQkk9d2GreT75Qf/dEfva0DWxP/w3/4D+9+8Ad/8LYGX+mQNqHmHNh2ySXPJLkA3kseWr70S7/07sd//Mdv3r7CL6xX/ZQWCHnJvvIrv/I2IF9yydNJ1qDIMAJY9T1HRgtlLDwLacaYhfRuf2zB2mJAOgyO3bZ9Aj6MIQe9AZMDyyzA9+C1Be6wNnzH3AFWA2MY6Rbku60OKHEamSebZo10QBL2BgOD0YCRtwAzI8z7ur4A4cne3W23YrdK3/swkBKG0ALPtljudn6AF7B2wXiHeQGWAgljiaiPBc82Bl7XxX/DPlVHvSdgNYOEgRuTtthfgaE9K9Zi72qBmV61OK1+ixOc4R6IyUDqOYcVbegGBut9AH3Xi/1aKAgxWFcvlQ14w+jbLbrete3AsFpW0gLeDP0M0tjUuy1bGJLKV1txtHB0pEc5ETuMqvpjuHYtI892VflggGN/isVa/vUNBqH+hXFafw9oAyD0vj0xGSOzPImXik1YO2VAqENxptc4xgTt98aIPthXDKUFpIA55QEjMbA/ycgN1FTGbQPv8DEGLNgJ0PfO0neQX8B2oDpAKb0rzeqnMsRqtqOAswnwZyztWsbX7lCovo2f+vbGBd6wEkAD/TBQtvvSHWMnna79y7OxsfeeTg7bloE/tgdzfAFXtt8sALJjNmeFsWcB0GWSGfeNHbsFvfoJxN5D9qpzY6Z3LvDsXfpiv2/YGu2sLDueqttls94HNK2sswDYimW8oNmCyep06x4T01io3YwNW3d7WNqZtx1XOFW2nX3UgR0g8mnuW9ANU3BjXa8DYZ0n6tWzykDvFmTe2PzmuI0JvmCbUCRA2BMU3z6q/ZTdWOw+Y/86mKRD/82H6Z3dNBwvDqNa4IYenKxjgPw6olcndv7vGc4p8/TWwa4zjGPATWPkHsS37bDsaWlqK2PTCdKe+n6fU0LZTnbvAtBA1d3dcI4fu+5Y5wsxFt63E2Pn3WXl973xQp3us3Z/7e/r0FgHy4LmOy6v7u277RLYfmtXjl0b1bc8WHcllaX5Oxak8Z5ea8sOom1cbCcTp/eyp50tYW6hG/qydUXvcsaB98jTJY8tn/u5n3sLQVBd/dzP/dzt3J1YutXpJ3zCJ9y96EUvut3XuRVf/dVf/aTf84mf+Imv8//zn//8B9//6l/9q7c1H2ntd4ZF6PlA2z4ByuXHmSKtrT/90z/9duZEki5Vrvsk3f/sz/7su//wH/7DrT/1nohosZfTw3Yrf8zHfMzt3l/5lV+5+/f//t8/6TJfcslTJRfAe8kjSWDtx37sx94WkB249vZv//Y3o7MJ2Km9bUEuxg0m1SWXPN3Edq9dSDMqgCctbmzfPcGtFpS2RFr8OlTKIvhkdq5BkDAMsWnFXGxx3II3wXBbkHhZL92/C/kFl08WEoPDuxmoy7jZNHahv+nbMryMLteBJgy2BXjlwZb605hc1jPgHGNLHj2HbeoQmUAowF1GQO0gLwAmBndAZ21XvbcwBNqpq8atxjHbqIFLC5r0Xay+0gQGE0BDi0wslu7pwxDvfYG6gZzlsf+FH6iOGCnlEajuAB7OgOoCyztZYBUoCvwAilZurFQCmGbwbbw9zyfyoa0WfK+uGNb6Tc8CGIU/wN6T3+qabvfeWNfVWcyS/pZu72/xvzGXHdBDjxh0Ygo3P/V+4SMAIgHo9DLjdMHcng1UtA1e+9oCalu9PlyZao90pfQYqNr53IZb+zpUrWcrT04AMeD0aWCW8WRBkMJDYISuwb2gGweAcCPKtuMSQx8AV74AB5wK6WX6iQW/joUFzZb1qG6XYbploKPYdvKedM8edragzIJu+pBYzu5Xzwu07dixgIexiCNqgZHSFE4GQIbBhsnLiYQhLR36vWO2OutadSoswII5CzSnJ+pTXe4cpL71twWklbF3rQ4uiLN1Ks3TQWOeJOfOimXq77PnmHIyaeVdne5hXPu8cq5DCci5rF1izOIscd/GjdcHxJvducX8pe8BuOiwdybA7tUzda3NjJX0Qt9ZQO08cHAdrID+8to4wBHgud3Z4e/uwpDHdXqpM3OeQymNJ+n2tv2uYc4dPqdTePuqviR01TpTTyfCgsLaWdgAoVYWRHWdLsiX9Zt1wfZ17zy/L1i+n52ftm1PR4myr6zjgc6eoK9ntm/6bWMdC2eyaXJGNC7tjoYdy87xgNODXu6aTr0aT/ceu8rWUYT0oO44MLXf5llfsNuCIx0oawzwXvXZGqx0e84OnJ61+wfzntPBOqRnrYU4Ius3jyqn7jyV8ueRj87W+fiP//i77/qu77rVV8SsUwJTP+RDPuR11kuPKrF7H0v+wT/4B3/q3vvi3rYO6QDlPo8lHWAcMN3a6rHkp3/6p2+7kL/+67/+ppv9PeU3fuM37j7yIz/yT/XxSy55JsgF8F7ypKQJ+Kd+6qdun0sueaYJFtUawSZxwANgD8C229iAPsmCfrbVMowtYKXNmLFoY6hg3/a9vhXI1CLeIn0NowSIsYdILJtlGVEM6DUmfKRtcb1bmhlqFu2MnmUoWuCvMbPxNhlE6qj/zwXiMnm9p3swcBawAfxiXmEgLhDrmYBc9YOVG7hSG9Wm1ffGAu65gK3K14KvZwO3lm28oIO/2kaMXgCoOLrqsO8xaZPf//3ffwDUBQYWC7b/K3/vDLAuv/SqdCuPg//OmHl0hWFS3jsUc404oC5WK4NcXQKMz4O91sjuenVki1zGgNOqM8BKp98Ao/oV0EFMaCxuTHCHtDFCe6b3AtAwzhh3tWchGDbWdc9Un5weGYbeh7m626Y3zABgsvuEhgD8VC55rlyVfQ9R2kP3FuTcfu++8h6ADdxd0FM7bQiOk3HZe22HPbcJ70FwO9a4h/HrIB79WExu4DhgRn/8i3/xLz5gRAPpjZnGlxPsWAO59GOen8yyQiAABbxXe8n/6bhaMBiQTmeBUPqbsRrg57d1wC077gRgAJqbD3Faty9xuri39l0G7DoE6FUALieU9IX42bF056MFIRc0BwQu2LdOt9OhKP1l/51MyAU1F5yza2KBoZ17No0FlBYg3Pjq0l02sEMHN/avXTRdNx5tHPHdyaA+6IEP0BP7HvtvwdIde8zx7vH/ApInQOx3ZcTEdkDkgpQLbm5bbb1qm9Ipz41N6wxx3zpb1S0GOEfd6ofxuHs5Aulj7zCHnazvnaf3YEisSnOEMWfbaHURiK59d241vps7tYs2MB9joS5D3tprD/U6nTpnHW/Ztj1Pfe53OyrWYbTP7jpvHRP7bm26bayPr16tPu3Yqk/Wbuaidd4sOHxfTF+/ibO88ah3N89Zd/KNRW9MNU5i0O9hq42LC+QjFdgBArBGQhACi/Ow8d0arrrftY5yVQ9CRKU3nN/dbyy55InlJ3/yJ+/e7u3e7sZ6Dchtd0xtG5O2EAYBoE/1IenFyg2M7vyKHPXtbGpHVPqTk/y3fuu37n7oh37oFoLhYUDZb/7mb777tV/7tbvP+ZzPuXv/93//2zq8cfAP/uAP7r77u7/7dl3fuuSSZ5pcAO8ll1zyrBOHgyQWnC1AAVYMdwfe7CEeyxjEdGhRUJoZ7svYsODG6gKWLnAsD0CWxOFRpyG8zBSLY8w6W7t3cb7GlXcpOwYTgGcNhTVw1kDEYnM4UIvoAD/MUGk5yGMNvhOsljegMAPJlqvKr47KQ2kG5gLxyn9t1eK+d1dnLcxKM4DWFlTltmUfIGS7NSO751swBrRi0JbexqRVN4w3DNN1EjBM+2R0LDjn1PhCFnSCry2OhR2oHNo6fQroBVaI6dpvQJYFBxhEdGkZQti7jG3g3oIS2MsnAw+TcRmO3aO9pKeOVl/1o8onf+IMM1qr82Uv9R2DFSO3ugjMxdLBOnNQCx3TJkAIwMzes0AQ3VuDug9jU5/3Xg6c3r9bpE9j+AQA/LXFVKgKaZxs9zWwNw0A85/8yZ/cwkIAx4V1KfQH0AqLTTsCyzhXGPUL0GGTM5qVtb4k/+IaL2iG9ec39bB9HePLNW3BaKdjxkfMR333BHi3D5bX2qi8q0P1tvdq6wVk9vv272UqLkBJz1boExYadvPeC5wyPpfnnHgOk6N3AC6OP/1p+y22dbIM+p3LkmWfLui9gNb57NbDWX/GSrp7todntAsW5llf0uMI2b5ovAMGGZPogzElvRGmyPykLdQTEHJBf3kzfnnGXL3b0Jdxqz6N8+YV4JR+xmGUCGdwMkT1S/Mpfdvx3LvovnI0dnBW7biwLNrVE/W15QCid73xoGuNH0Ll1I+EoNJ3F+hVB9YKu46Sh7PudkzQD+m6Z7SPuV2dbExe33ecX71bIHf1+LF+O/Vd/ZzSNeMtnTvHkW2Lda6dAPCuC7f+zp0GOxefY5Vna6fWRAsCGwPMTUgHC6xyPsjn5umsm2Xq73v8Lm/i5q7DQ1/t/9Z1XcsBhtndPdaOC3SvQ8JYygHGebNOmdIy1nRPOrzOx0seTlpbFG+3z6PIL/3SLz1UPf9Z2+IP//APb5/iAL++pNAhQlBccskbk1wA7yWXXPKsE0aIBamtYP7ayrmMg2WULMABOMuTvAvKBYwwD7pmCz6G6jJmd+uu+IzLxhK7EmCXgQYk2IPg1uDDrGCkOXjCwniNzl28r7Fgwc6ADpCRPgMQU+KMD3waKmtw9cHgBOxVL3njy1MhYPaAD8xH9bXGfhLI9Xu/93sPAJA9yMUhUsJqBLCIV5rBEWMhgBfLKxDW6c7JMnUzhntHLMQ9KIhhmwSG9Q7s267HECiWaSFsAnUdbiPcg/sZUoyUZUGfIBNjbesYsAk830PCfE8YY72HfrpGtzfdBevkyb302X3rwBDzEhi8hj9ga1l+/mLhVGeFaMg47FPdx1AGEtJ9oBE97ruYv4Ap+aXvywbTztXFf/ff/XcPDojTvoBEJ9BvG5xA7/ZD6aqvNaj32WW0bf0DbehteseZUp8AWEmPwYsB1nXMb+DtOgcq08asNj4aIwEuwKfTieWv97mXQb7hWOixQ/78Ruf1I3HNjV0OQdQHe56TRlm7T3uLG7vMQn1Zv9iDBhcskhdhMOSRY2jzSucaK7reOALcBmQ0jqc7fWLxNzYkOTgC/TkWjXW1x8ahXIbxxpS8T6e2LTgFjen3ga3ecaa5YG0fjLkFfug+AGiZif7Xt+jFbg83NhhP9GH/m0+Wgc2JIU+bl3OOsR3c9QWVF7xfR4K2W6AKMAkw33wpp/GKfuq/XdffjHHybZ7EptSn6ej2I4ctuncdbgtiA8B6RzoplNQ68oC+8tA6Yg8y3BjG+tbqirFtHQRkHR3G4tWLE+A1jpo7F+RbUHcdPt1nN8GC4evQuA/Ydc99cjrn9l66wOG4zhd6Q9apvult+T0n39ps56EFiXcNdc4p3V++9rBc/WXnZHXrPVv31gwb63jb0Liz/b+/QhkJyWTc9QzHjB0hmLXioZtjOFKNfZzd3Seu/TqvNia5tWGH6jqssvfkXBeK7VHldHY9lfJ0yccll1zyzJIL4L3kkkuedcKwa2HagtRhZtintp2Jb2pxf4JTwMAMJMw2AJwFvYU2to8T2xcIcS/WZIDgsiEAShbOFux7OAuDcwE1Ze09u+28crbQDlQEJlmAS//cOs4I2PAT3RMIw3hcA8FinLG72wjVH4MtQzSgQ30GxgJHLOKxpIEiAHcHMzEaenYBnwyG2tFWvuqmbWeMoNJ+8zd/8wcn5gagZUj36bndStr7+q32ERtWG29cRtvHAYtd65n0JIbwm77pm97igwUGdb20sKpsmV2QXFkZ6msYcgas9Lxt4xvGY3VHmzK2l828LDf3aivgHgb1spdOg5aRVttlaAEjuze2u1AP4kA+5znPuT2XsSbkRhKoW315tz5mS+ZuhU2AnMq07DUAxQKqq5OMWnktj7UdA7Q8pCvliew2+iQAtrrJyJQuXVsD/wR1E1tQ0wMHQK2DpXQCBLuvfBTOY9mO5aXwIN1bHadj6WyyAGfpCKuBBes9Cwj1THrbPR1gAlRSt/Si3ys3UB0IVHoxg4wZiQP1cngAWxccBhIJO5Ee25rvnv7HZAZGGAsBCo0rQJ/GAW1Gn13bOOVAwdUh5evTGFJ9Knt/e594yV1XVuOWfmwLc6y7yi7EhDrH6O83IPY6DOR9QZoFPtNVYLx2Wobr6tqCwNs39AHlW6BxP+toWlBMmhsnVZv5bR0uC3Kah5VzgVC7Tuju9lftv4CY9gICqsMFLzedneP0zw3LBDzdOXGBLECyECo+C5KrM/MGUG3HHXUGwNo1gnAP5gjXt9ycnRy3zWeNQ+Wv+rPzhqPXusH2+H4XrsHcx9G2ekG3rGmsHZbduW2COUxvAX+7rlkHI8fx6iAGrbFOva7z4lxTrX4ucLdg/XnP7hhQJuNWY6vdT3TWfdsf7gOWN4/+LpC7c7I+Kr3Nzzoq+zTO26FhLHWvfOpzgPVl5Upz1376pfs33Ia+YQ2pLTmJd56jczlMc2xxeHD80ScOfAfBCtNhrE/37cIC+tJxO1McBipedfc27l9yySWXPNvkAngvueSSZ53sadwWrJiUgI0MowxwAESLXieYL6DUX/FcsXbW8Nht4NiUZJlgDPMFiMWN3cX+sipPY5YxYqsocNB7MW2XwQekwyTEVpKXZZNaUO87GewA1mUOb5y8rZfNd4KF0rWMhgwWwHBbx7sP86OwCQFJvStwq7IVO0y72s6qfhkGxRLtWnUKuAMiC/HQ/Zi7ACf1Iq/lIbCxa0CxBUkZN4FA2KkMJwc2xTTuAIcO08O66f3lKxZxRuTq5xrOC844gGTZpNpEnS/Ic4I2qytrbDHoqqOuVT9t1U8CMKofp7+vkSif4vr6iGnp0ECMUddKr/8D4BwuVt1h7QZkYqNpZ8BYdcBwBZIzUrGWNp/aah0s5XcBztKuPUqr3zkVAuXKQ32yNLHngYu1ncMWEwfhnH03gKZ7gHLGBEZtZUp/sKb01d4b+E2v+psOda2ti70rQxpLPZ1/y7d8ywdAbWlXnxwYDuwr34DIyleavTcgshAsvcdhdRxVyqb/91vs1OoqQFx/d+8yq5Pa1oGN2sF3ea0f9FzvXsaeNjVur+5tWIAFVPTNBTA4zhY41n+MH8Yv79mwAPqUsU476UeVD2ghjdo1EMJ4SXrOdmbCOaO/GWe7t7TNDT0HpNuYmFt+Y6I56wSBFug9AUplXBAcYLRtd7bxAq+YdRtuAYi+4+fG6dY3tekyHxeI01acleoTyASsXOB02c5245iLkvJR//PuZbAv6G7uLn2hDTgGpG8sXuaxa+bf3Q20uqg+jV/mrj3IcutiQVXjUv28Ppm+mJ+AYoC6PZStz4aDMu9vftTjOqDO+WqdIDv22nlD39Xr3g80N5+Irb6hH+jYgqTLxPf3BHhP3d975P0+sFbIoj3gbPvYMslXFjiV/7MPaov7dkdsn11gWj0oc3mrrfUherXOde23erJOI/1QG+uD8rEsbqxzv8uTfuH38mTea81mHe1Qz9banPLa3AGmdlqku7tmNR4vw9w7c2jURstSvuSSSy55NskF8F5yySXPOlkw6zQwWrC2EAUqrGHbwjPQo7+YC8ukwkpwaJWDodbw2cU7xo1txhmKGEz9lmFvS66FPWPJoRkMw2Xf9jvwZEFnoC9gwXY6BuiGAOj+Fsm9fw/xWrYMIwcLyHV5E+/XlusFu3YRn0gzUKe8ZJAGBMb+W+AFEAUkiRVSmgFbC9aX98CmAOI3eZM3uV3H4g2oKq9dL++FdWDQlBZQBoim/rW1uK5J91Q/gWSJ+ooVTL8cxKXNxfPrE8MyA0e4hsJTdA/DSZtj3SwDDbCQnnW9usRYEUpgDcWA0uoVgLqHo9AbgBcWobiMAIFAzgDqBZyBTFheAX0Bg9Vv12LU9LvD60qz60nP1B4M+UJXADoC8pdJXH8oja5Vjm2vrjtpm77Qffqr7wBI6WnpAvjL64JY1ZVwE9VBzoc3e7M3u/ujP/qjW7t1bwZlz6Vjgf8xxIG8AK3KiPkFWCxfACDlLy+9W8gYxnnvqXw9J3ZxbbEgKr0qPxwAtXl5ATClpwx375JP4yIx5izTUUznBWTlf4Fq7wOSL9MS2LpgzI6xgFghEdbhBLCT590GTk+kuSxL7wDe0jEOAmIcV8dnn8P8N5ZJs3SAUD4cTrUjoAXDd9lpmPaltaCWd5dGaXcvENQYaqwGxGw4F/fo2wu0LftzgVhjjnatrTk+XTMnnmxY4686PsG1DSHE4ckZpb8uM8/vAB1jzgKa6/TaMXmdNZw37gFOyhd9Voe7e0VejPlnXOF1/NEnh06uw2vjXhujdm2A9b7A8erk1nPvweQ9ZcuuTStffd3ahv5xDBiTfG9c4kihUxx0iTFgY+cvUIrZCkzeMmAE6yvaxdwqDJWdUTu+7Nppy7pOxtX5rUP1d58syLrPbfgH7xUqQ1iLE3BdQHbTXkeWtBcENR975zJsz/GRHvu/jz4CPNU3jZnytGOitRvHwYL6xgjtv86VHZfMXxtegu4oU3N983qOw/In1IgD2ei+9Yp1tXBp9Ky5rPVhdd8c11ias4Me2Cllbreb5FHlPt15quTpko9LLrnkmSUXwHvJJZc868SiXezQjdNn+9cCHbtwD2DquQymFrBiK67RyCBfgG1ZwwyqXUyLGbnGeIvrFrQZZcDaZVdhNzD+k2XpJgA1bErbsXe76RpMyou5vOwu9yqX+xKGSHW3QMcCpwxohjpjWn0AugG0Ld43VEUL/Oc+97kPtkNXjgC3gK6uZRCI3yvkQsZErNwYg+Uh8DEwTqgM2133IKjatvoLRO7/0twDbsp/xoqtgA66A6z3/ljFMSgZZnRMW77t277t3Qd+4Afe/f7v//7dS1/60ls5Ak6B3kBb4ET1XN6Bkxiw5YFhWL23bR1Y3P8MJaw/IAUDjc4APgAv3qNN6Wsgpi3/dKYPkBa4IZ7eAm0ASiBW9wh3URkdGoMZZOu8rdlAcf2ofFQH/RWLGViDves9wILeARzZQ9KWce9/bMjuydHQOwNIK286opwOOATA7cF0jGcG7DIdsUGXQWUrutAjWL90aMOyLDi8LEPgZWzdTp1OfwE48mL8SO8ea5vzssz0/43Tu/cuYGBsWeY+YBCYseOudMtjoLlYpgtKeo/xYYHUBXE5ZxIg8gIAO/aqg1MAGEBGsgAvBxrmLKBh5wrA7bJje19OnfopBjU2PHBZndR+PV8fT6e0ITBMn9J3jPP3hQJZ5jp92nF/5zvjOefJGYt4QbkTXF1d2fmOjmBF73uMMQve7/yiX6hHeVlGYmJe2/i3C2DrY9ue0tlwEepuQ3fsYavSWcBtd01ox9XV88An4xLAF9itLrYet2/T48aanBCcT9sXFuTltBOr3NpAyBxOZbreb4l0OaDXea0N1hGByb+7dNY5rbzmFmkoT+l3f+k3tm77bh1y6vjs2L26ucCY9+u7J+NTXS+o773ysQ6iwMWYqOpF+28YBPcvOLvjAr3F6jWH744cYwF92HE5qU13bQmc7/49fO3sn8ov3Z63/jI3eO/mSZ6NqxynC2BLe8HsgNjqqzRbl9WXhNGRDyHEGu/S611Lq8fWHqXfmFeaWPN99FvhfIQ4us8Jcskll1zyxi4XwHvJJZc86wRbiJEMEAE4MGSwXxgHLTIdhOJe2+tLLwOTsdVfwBRGzLJRGAWMDyxcRgg2hvwyglocM+acLAxYs5j3PQEQbTxHAOa5vd27GRaMsdIXLzKxNXhZGws8MBIYyAmDeUGVrjkwzrZ4rEogXCBr+cUQZQivEaquu8d2v66JU2rL+atf/eoboBhwxuDe2KXVZ2ULxCs/HeT1qle96nZfjFwx4BaswBR5zWtec8t/Ut0G4pRW7w8czODqr/K++7u/+4P66V2BcEA/oh5PIGWNJzEJN+asZxm+gMsE+AFIlPY6KYQVoZfLrJLHE4BYA68+IhalvgU8CPStDRh1AWO/8zu/c2PFLsO7vPVeQOz2x/7Wvr1b3FH66H663O+ANm3NmYJVl35wqOyhT9oCcL8HzZRfYEQGpQMRsaLTvQWVAO4cCWv8q6cFvM7QINv+yoS1JQRDertlCyCMnc4454zYrcL6LiA9wQx2bRlNysOQl9Y6dOjeglLLsjvvo3/Y1NJbhtruBNiQM1uP229OUMUhZuIae/fJtCM5LGrvM7619lvgxBh0guR9N4YbU+WjMagxzjywoXLSJXF96WvPN57QfwfI0RsHQnJaADfMcQB27XSCYOp5gSDOObpyMgkXOAb66DsLoG1bus75sg4EThUhA9YhKE87vxhbkgXY9GHl3JAQqy/GS7rp/tUL86W2WzbxvmMZ6nQDQL7Okr4LgbAAsHnB+LHg7ILDxm0AcuNs7WyMcc/qYmJ+iEmZUycd5Ig6GbjSNYee9QrINYYDFc01AEt1vM5E9bbzkrGs+5q/9c3VS+1i7FHf2mjBWH+3bCe4e58jwnPbFzyzQGb1wBlpvbTM+TPP+77Ng/IZQzbswwL+O8ZKKx2ojRpHdu4i6ZhzDfyuz8gbUJXjdMfk3mVMAvT2TPN3eem9QkGsM+ycD6xTm/NLy44tgL6+yflJX0on/bO+SWdbX/X+5qfSKy27g9rtU5r11daM5gh6d8kll1zybJIL4L3kkkueddJiEJOwxWOLzBaMDhlhxGABAfawzDy7jEeLUgdElB4Dak+GtuA/t/5a2O7WRexLB6AAQhiNfd8ThYEfYsgyRrFvHOSDqbGxLBmge8gMg6Y8Y4UGOgRGtohmnC2ziIGDoZEoJzCCUQhEZkR03db00op5+7KXveyWVgdwMRwqX/mRZgt/20330KWMsIDWALzqLJCWYYUBEghWehkOXev/7o2lEyArBjBjrt8rOwOU/vR+YCMjPrZ3bfQLv/ALt99f8IIX3PKdkd213/zN37x77Wtfe3s2YyWWS+8SK5GxZ5sxQDtZwzOjmCFYut2XQSTPgAgMGUY80CURe5G+dn/hL+orHQwXu3hDkiQMRZ+NSboGqvwm1bnYu/S3/Drcru/aCNDghPekdip9jMm2f/ZsgBxgc0ODMKaB4A5lc2ja6rh+cPZTf304VoREwBB2yNgCRHTW92UaLRC27DdtsuEpgJwM4pOxJlQHx42yl8YemiTN9EPsXOOP8kkTUG28MyZ1DdhNj0qbsa1vd299T6xNoA+HwTLM1GWsd32bHtipYCwDPCyosm0IkOKU6GPngj5l+y4Qbh1uQIpk42zbTpzuNU70O8BcHcayN96pg+4RHkXYE+1SWtVR7wHoGmfVb3qFOd591TPQXp2esdn7DYN/WZDrKFg2IN1b0FcfWifD9ql1NknTnLnM9AVhF7DfdrOjw/b/ZbdLc/vP9ivvWXZuaaSj5jl9e8u5ISP0JWPb5nvD46xjYOPLLkvVHLss4PRmnSDyCtQCvKnvzc8CtfqK8RUgzkG3oOYeuLUArr7usMDGRGOEsD/aYXe2qNOk+5c5usxn9WFske+dcxZo95vwQjtnneCs3VHmn01Lf9X/ty/cB+7uGENOZ8QCldsPGqPkDSN3Dw/cg+KM5+pmWezGvx1D6Jw8rHPFsxyoe1iZuYMOlkds2D0QlQ6sPiwArW8pEz1cdnd6sID0OqLVG91t7Or+1lOFMBIP2m4Lh/TVdkKJqId0CADcPF+arQXNBxvupnurlz2McHcbPaysQ/OplqdLPi655JJnllwA7yWPKz/+4z9+96IXvegGPFxyyRuLtCAE9uwCFXAC7GJIZngwUBhNLSABJn1s0+5eW9oZcd7l/jW6fRgHFtjYPbudfQ1HgCbwWToObQKIlQ7Da7dEJ0Br4E2yLONd+ANLlhXhmnxtbE7gw25zZQh5DzavOJ2BTkn3AJKFRsCABB6Wbww1wLA8O8QFg7bre/BGoC9wJbA1o4ARCUBm9J5M1KR8locMEQab2Hzqomc7ECuAuGtYUxldgaWB17/+67/+oP4cjMUIXXY3EADTBtiRAGK7pzJqk8oKzASklBbwk9GpLbCeSw+bORAL8FpdA/uWCafOd2suABPj9oy1yVAXL6/fHf4FPFydCqgOuBbfuLQD0jC/6SIwKFkGsjqQP+Dqlp8RjYW/IG3XApDpnfAs3WfrfIZ0bauuFiTUpzAx9U3s/kBNzFJ5DMTj1FEeDELsKmALx1Tv7a/Y37ZlA2psuS5N8ZE3FrB6TG/VV/lQl4UVwESlhwDunu9AN4w2xn3lwspb1vSCT3SgZ9qGm+7qx8v427/J7h7Qrkm6tEzKxNi+29n71E+NCxx1AAXpqv/at3q0xdhcsqC8fqpvmh+ETwAYp9NiZgP4jMPapPt7Z9fr4zla7FYwH2HTmUN2XDgB2GVsq8cFoxeQXTAfsAkQct+yLD234Y4W7DoZk5v/BVTML/r2ArHe5fltm/0/aVyvXhr/d4zaNl2A0Hggz9sfsEt3/tWnpcNxsk4j8+UyZNeRs0zJvguvocybzjp9dpeQ6/q19YJ22n6wjMoFWDmS3SO8lHjkym8s4dDkeBRGSX0YJ9fxvHqz+ukZ4/aG45A/bE/1RM+XVbtA9qmz9+nfgsL+P+/xdxnkdA+Auk6UTWv1a9M4dVX+9XvrJu+3RpM/JADrNmnIw4b+4izGml2W+uozcPgMaaOeOQIAsrvmJMZ849D20z38tOcb+3Jqyf+OAeskbn1GnIfR2qkyiQ0shExz34YOs+vHHHnJJZdc8mySC+C95HHlQz/0Q+9e+cpX3n3hF37h3bd8y7c81dm55JLXi7RQtBAGmCxjzaKwhact2HuwT0zQjaO2sXMBjX3EFrWo3xPQsWSAGwxEoGi/MaYs7lvY2oYm9iKGxWmonoxWLAnx71xbcNjCP3Evo1H+dptkssancjOullWH+cSgWbBxF/DAkJgelUGM4YwCABnjERMTc7q8lKaDwV7xilfc3vUe7/EetzSqN+UIpAkE6Pc1vuSvdAEpy1QFtCUAuWW8aK+28OcYw2aMvdJ2+Xd8x3e8GYYBvLZInsbvMjnXcF12zAJfdA4rlYEIRLN9WftKy/WNr7hMIYzDvgeUABeqx83vbi9VN5VNTFrGJMMQoN27sY+rJ0BbAljvLxZ1dZdUfwHm2ln9A/rLCyOYs2ZDe6hj+mt7tHITwJL89T2nA/amk72BWulL7G75dgq4WL2A3f6W794bKI8ZzcAVW1F7CJ/isKTGlcqWDgkdIQQFgBIA9fKXv/yWzru8y7s8cDxhZu2WfU6vrgmTQLf0KzsDjBlCBGDUpS+MduABxnP5YYwDuxesMg4Io8HR0P3AaWPPApMnI2/B2/3/3OJsrFrQc4GRBWn2PZU/wMMhbCv3sYBX77Rf/wdki6Oq36TXxVxfZ5U8YuNxwvQXC77ftZl6Wfb8qe9nPd0HTO54vqzGEyykD3vvOWYukLrgnb6+zELfzY2bL2O+8hi3FuiTduNVoHh621ihbxmnlHHnSGOjtI1jW59bH8ZQ8UvNx8I1nXUnnWUg001jzzp9d/68j3VqblAfttlzPJ4gv3YWMsqYqf7KM8dpY3H92lyEAcoRXRoc5Dsf6fMLzq5T+XQirJNu22WZ/etUtjPonCvVi2vrRF9n5jlOnKDu9uX7AOLV/Z2n6cPpnD0Z8CdLXj0s0Lo6vn0KeLqMdMLRfZanNGpPoL2DO0+AP6H/m9fTYVNae8isdltd1G+1n3vELXevvrM7KDjyd2ziEEaksLPHnKKO7IAwZ9b/L4D3kksueTbKBfBe8oSSF/8bvuEb7j7hEz7h7lM/9VNv7J5LLnkmyxpPGCotfDMKGR0W1MsQsRAOGHyTN3mT1zn5GgjC+AFk7ALZ4hwzsQUv0BIgY3HKQAHkLlNEXgID9iTuACeMGcYFNmnv2hh6Fvi2KQs94Zm9J9nQDQmwZbdDMmrWoF+Ae41UoIZtmbY82oIMXIupGahWfcXi7C8Dp7xjOfYJ5AjsqM4cPPfWb/3WtzQDjFvwxwBhwNu2v6DFhtoAni1Lcesby1d51DswkPHae7tPbLjS7pC1GHl0jC7Qx54H0lcXMUgDQ8X5VYbe9fZv//avw7TpHTnmAiKX/Wb7o/eVZrLhSrRl973f+73fAwOLMVlZqkvtTTcw3YEUvdPhUABKwIK4ptqq6/W9APGAhQCZQMz+2s5PT21df9M3fdPb+yojkEIb1A/a1t4n0DHGdqLfaRuGpLZfQDdZNhzQZQ3n8gyg6VP72BLattQNFVC+jQ/lAZgtbur2tWWmrpGbeFYeAPMJIFufcBghfeawARz0f/fKG92nI8bHdSxsX9fW28/lEUCWLGjofwc8VTfKiunlwDzAGIBpwRH6f44/jwf6AiKIsV166mW/b54XfExvgc/AvJ1TFgiiU5Wrtksn04/KXz81VgHfAWfSbNwABqdjQC+stdIEnvee87DOHdfoq7nsZCcq/zruFrTFnFtQdefI++rLXLpjBXBJ3taR5bfNg7qldwBfjlPX5a2+2fUca0mOFP1UOTFv1zm18/YCTme4mT0MbhmoZzxSoPLuclAmDtwTxN163bAUC7KfjFNAHX0w1q6O62d2t6jXjXuqTwMC91A15dY2AGHv3rADC/zStxNYX3ayMsjrhvmRtjGKPm756MSuO5aFvSD06cQ5wd5ti3NM0SbKeYa02r5A387+oU62vnedtOOrPu2ZPuYTZVln2qlH3reOf47dBcLv67NLLhBCAWC7oHPvXrIAIsM6wzljmh8BvZyZ6StH/Yag4sy3pk5nu691L+eBtneIsHo0Tj2ZQ9Z2nnuq5emSj0suueSZJRfAe8njynu/93vfffM3f/PtsKH3fd/3vZ34/o//8T+++9qv/dqnOmuXXPKkZZmYwCPG0R7i04I00KSFpW3GGCmBjoGSGL8bq6xFrhANy+DaxXRpB7j1F3hlgc0ALF2szNJfwy0DltHZOwO7Asi6L0AA0wKofMZHAzQxoPp9t1Wu0XSfEd39GIMMu+Rkg63BkixowrCxpX/DPHRNTNbKGhjZ3xbxLfDbLt49Ge7AtH7DmhYCoOuBKH/0R3/0oGylEfhYuzKw1NMaiWIByw/280//9E8/YB8zKP7CX/gLt7z2joBJ8XRjEUvvrd7qrR5sT8SIdViJ9/gEXFaeno0NXLtXNu1VPmvjdKT3ASyW/aPegdjCC4jh6ffyLO7dY22vXnAo43KNIAxvTBygwYIgmKGMy8CqNayF6AiU7Xrlqj5zpCybqH7o5Hd9r/eucwS4eBq9y5Zb5uFZTv1qgakT4FVHe8o3QzNdqo6qU2NKulb/ZbDS+U1zDfKTdeae9Eb7YuDpQ/RogYTy8HZv93a3uTyd6pk//MM/fBBOZFlfyu/gHka48WCZ4d7JGcahtHW6II+xUxqcF7bpJ+VfLGvjmvF6Q5gs8LzAzYI3J2C44JIt48onX33HDNt+v8DwsslqT0CNcW9Z4ss+3EO1OFcc5IZt3lglbwAc4+Ky9kqjOhK+YYHNjR0PTDQPqQ/9c8MEqD96t8Cq+pW3BX5PpuIJoO84AlRatt46Bswj8iPvG1945xQMU4DROm6Nj61da6diddcHxcJVr8p0Og82n/r/zmWAPuVYMFFZFjRUTxun1ZzLyXEychfU9tnQBKv/nhUyobHW4Wvbhhw71YndDkDKBUDVszxzBnFAiI0qNitHqBjTwjoo1zLLOW8W6N85S5+xQ4AzRR3Qd2U7d9Iss17/7D5p7Liw5V2915bnOmbLZBxfPT71xrgjnEViHNh6Nw7tPL5tIl/qdx1J66Q5nV3mCONR95o/dxzF/l5nnT6lTpdxv+OrvCvvgu59X6DeWQLVR2shOkuv92A3wG5p5aRtvFMW4G/rcOsu9brOn12bXnLJJZc8W+QCeC95XHnJS15yMw5f/OIX333BF3zBbRH31V/91Xcf//Eff/cpn/IpN0PxkkueaeIwoAVfLWJt4belrUWqGKr9DlASi8yiMoPb6d+2jfUecR1tx984fgz5ZfMuGGGxbKHc/wzCfuvZFrHi4zJgMMBaEDOaujdAwVbynsPSAUgtEICVZgsswfa0fVo5TqBAnpNlkjEYxYhlaAG+gD4B1rFtK4Pt4UC23t81ddq1QF9hFWqrfhemobZZ9kntFJCYiJ0LXN5t6QtM7PbZwNvSZpj1iY0rjmHAcoACAAjg32/SVJ6N/bkGJ6apWHVi78nPstxWPxiHywhP6B69BQgta2adDAx/usgA42wA2GnT8kgvl3EmDqz0GYMYNhuvNf2sbmuzQG2Hs2TcxcTLIMQoA3gpu7wCI1bf9G+gpK2etU+/C4UgDcxesYixm5VDOkBAY0T3l2bX9KcFfoDg2lgfUq+7tXf7TMKArs9ica8zRl1iS6/zpMP9nv/859/0L71N98UOBiQuoLfsQToE2DR+pr8nGLJ9xbt3PFvmpzZZ9uICRguebxiWDY2zjLsFwWrbZQADeVYHlSkdMzYIfcHhofz0ufuNEQ5a7B2NN+mucR+DunbSR+lX6SYOCSxUQ+OPculTwFeOR8AFxlzf6emCfj1fm9K/pDF046Zz5sjvnjS/AO8COOsY0aa7hdwz8n4fC27nqGTZtCe4aUzYvn7qZgJYdsiYNt9xT/iXQpo0njrEjx65HyDkMNItA4ctYHhBdXlZsFX9AT2NP/JoXjVOqoeNTX0Cwlv+1f3TiQq8cxCaNc2C+HTKwZ0nKLrM/GRjmm4d97H+MO7uXHnOEeY1umxcW5BUvzI+rSNhnXPmaqF6Tl3i8DMmeucyhne9sqDotuW2LZ2SZ/1h9W3B+Z3XjfPaiB6cAKkxit6ba4HUdOdkD++60W9iPvu9+lKvwNOTQb1gt9/pkD68zOqdd3Zs58BcR0ZpCnmG+Wts37HZusB61kHD6sTBuP433lnf0lk7rC655JJLnk1yAbyXPKE0Scba/YEf+IFbHN6MxeL5dbr9l3/5l9995Vd+5essDi+55Oku55ZIC2wshmU8rEFtm7ADs8QQC3gSb7T/Ab22arY4bUHqAKc1ohlb2LB72Il7GIELvpZXADLjdOOdYdauoRb7EVt4DU8hDWKQMeiXHXIa1ifIx5BwTR6kIQ+MA9vpsHXVCRAtYKQ6/W//2//2ZoA6HRmLOmZSIGr3MdyB310rlENhBMRKteWUcSOPtUnpL1MuI6J6BeYAuBbMxsxTPgau9wOqgCnA60DowIXAnQBqIK/DdZat03OBxtq89nGYUmDSgvra6WQ2GpcZnADGwNLKWDrKvocC6hcMtIQj4wQ0sNhKF1DFiE+wFPfgKuEChJhYRmj/1yYMQKzU2rR8Y3fV7nQfs3oBn93ivUY/lnayoR0WyNj+ufW7eoBZuCwydVIZhNnYftPvnD3LCGUsAwcYtoAH14CgZ4xNIMZ9ISbqJ4A4sVr18/SpfsLoTrD6FsjTNhubHLgMfMXspieA+PTW4YkLCK4DQrnthIhpafxaxqrt4OoOgKJe5BUoZGyvHgJyY9DTabG9i1Gc/vQdYMopIQQDZ5gD2YCrHATv/M7vfDuv4LWvfe0tnx2a1+/f9m3fdgtpsjso0u2e5dDo/2JMF3KkZ+qXnA70W53Ta7pJf7YvajvtUPocanRkGb4715yg7AJcy7hccG/Hm01j09G3FiD2/+kg1L8WaMIGle6yyxdMu09n1VPM99q59qCz3bOHgJ7l857ux8DeOc9YtyGNdk2xQK01x86LW88nwCYtZdNfdifNfXW8QGP5trthQfx1CqyTch0RgEF/vcP851m6vWPP6WhUnpOhvcC1NNRHc4nr7tXGwM76cNcD+vYQ1GVya2d5Odt258ydf1dHty38tiDqXlsgnh7Im3Xh7pIxL8ubeXf7hvrRB9QJXdwwD8TYuHrmnT3TuFAdiwu/DjnpqQ95sEbZw9GU1XVz5e5kcMiw+VdYol0bAuo3FA/HtnWC5+xqq0+XnvHUmK0Oz4MyH1buc049VfJ0yccll1zyzJIL4L3koSVWVcDu53/+59996Zd+6c3g6e9Hf/RH373whS+8+53f+Z2nOouXXPJQ4oCj3Tom1ueybHxnBDC8gU/9HuNwWXCACcafhe/JZlujI+m+0pEnISSkC2xy2vpu6wRyLCOTUbVbfPuboc9Ic7pyoIQDsKQDLCgPa9iezLnTuN8YjZ4BqgCAlzm4Wy8d7IIFi7UBMHNifdexbouHnDAehb6IqVU7Y72WJ0zfBLi5IABWpm3u8qbeGR3lU3gLcZgZ+IFnDhirXnundijP1cHznve8BwZssgxH7wa+q6/KnVGmbbCoz7rHaFkdW4MTiGW7pLa1zdn9dAn46jvjVL43zmwiljP9i6GI7QiAefWrX/3AwbAAKcA9MC7jrXIWpqJrQqJsWcQh3TiFdNuW96476E5/0caBaeoKcIB1DZAQY5XB6/6ktIH9y1wu7fQLWAxww9bvOXVaHjgW9P1+S9fT7WU5qn86Ymt/+anugKrGtO7PSVA6P/zDP3zTR6yp2oRTpmcBgtpA2TkVlLuP0BPL7q886XTs4N0Wa5v1jnPVp4N/Srv2Nl44UBFwVrqcJhj7fe854Q0ACzuGyxOQp/Z4z/d8zwfjUOVv7A7gNR9UpspAP+iBdwO2ARX6TtJ7AQ703O6IzTMAfw+X6vd2Q73lW77lg36yfQw4gj287Mx1wgApE22oDt0HtDPHnICs8XwZtX4H6C2YBbjeNB7r74Jlm/bmfxms+vTOv/uunZc2lvMyK40t1VVjUc9wkGwevH9Z9xuyCKi1zwFP13FhzJbWMh/XqWNckN6GN9m8eG7n9a3Xs+4X6O07Rwb25o6T8rExg9WXfgtYXIDP/ONez2KdmrvE2Pa88iygvusb/VW7akd1tnMZNuge/HifY4GOWgd5x4Ky6oQsK/d0Siw4fgLty8bePGujdQLSpRP418bqbPMonxteRRlP58YJDAJtjTn937gqTrt1mrHGmEGvz50MOx+eLHQgseeaU41jANh1GlhbmC92/W2uO8cp4H7jejrgsNbe09hnJ41Y05dccsklzya5AN5LHkmaQP/5P//ndz/yIz9y903f9E137/M+73ML4fBrv/ZrN0P8YZ5/8zd/8z+XvF5yyROJxf+yFhjAa7wzXjYGGbairfqMJSBLC9MWnphl3S+dngcctaAFdFgMB25u7DxAgRinpZWxxuBiBC5jw9beBfMAMwu2lhcsSQwRoKfDZZaZswdbnOyQjbMHlLQo733AxT2QhoEpvmwLcgCwMiexABk22L5tOd+wFNV39dcn46X4rcXeBWzH3lr2Tmli6qoX9d3f2jZAePUg8G0NxL1Wm8TG03YxJpc9tayigLMYxg5OAgCVXsZLeXdY2372oBn14cCqM+YtNgzjSygQ+eg58WHLz4IvDPdltWPPBI6dzL0F7JRVDGnAtLAngY4xcvVB9e+Qw+o4Hdc/3vVd3/UGxpWXGKeVu797+Aq97bt4m72332vn0lYGuoiNSeitfrRMo8qMca4+9aE+wPzyXtslGKccGaVXe9e/pQ+oAlIBSfuLQU7HAK76ogPJTnCfjvWeyh1gWpoYioW8qL3SP+U19snrxm1ewJaxre+uQb/hBNaBheFI70rbYXR0dAGWM37iMlmTBX/0LUzCBQHUg7ylj0DKjdVs/F523AJLgG9AP6eHXRqVp/ZXZ/VnADV9AZgrK93CsuW8UqcAjz2wiH7sQYFAXoAJEBww6lnjpBAEC2AtKLiA0vZxdbQg3Y41dGtlwS5p71zi9wWmFhBTf/KkPManBTd367pxS/4XhNtQFdLUzuakBd4IEIy+LGi3TGdlonPSO+tZvZ1zKMfiAnib33M+lg4d2zag09iRjRUbr3idLtrP3MUh4B0L0i5rniO7PG+YnPt0aeeG7e+AZPP49l/lAwI6AFL4nI2Ju/V/Oin0h2V0nkD56u2pu9tfFnTffrZprh4sqxWgvc7X1QfzLlLA7kgxjgKzd8fN5vHM6/bhLVfPN/ZYe63ObfutbugX5gxA//bn0qQ7G4Kov8ZAzHm7dLq/ucp6bFnY8qI+tbe6sfbRR7GXc/By/FxyySWXPJvkAngveVISiPH+7//+dz/3cz93++uQoSeS0wC45JKnQiz6MHuSjXeWbGgD2+xs/V1jK8DF4VXAKkzAhJFhAbsMI0YgwDKxiBePd8GS0rVNOuNGnEjMJwtj+bP1T7lKA5vRtrZlea2B6KCWpPcw2gKGFkR+LGOCEcLQZlxgvgaEtTBfJqDYwO4PYBUrtTyUd+/LKPl//9//90H62JHls3x3vbatfQBG8hfroxAJgXaMxAUJAnWro4Cx3qHNklhgMe2WNRNb+G3e5m1uh1C+9KUvvXu3d3u3W34C+nrPGoM5wjr07QM+4ANuBkhgZAxLzFEGc+AcsGcPnqu8ttELBxKILR6zNuG8WEbtgq2ALgBEdbLgdn+B5toG2LuAtfcwRjkh/BagSZcdMoYRufpGv8tHUt33ToB/2+t/5Vd+5UHsUvFrlxnf75WvOpY+JhJAG2CmzxoD1PMyK/VFv3mOwdmz9YfK95znPOf2jrbpKwvQnmFa+Z/73OfetvCXr/SsawC3/g+I3ZPr9ScAn3YHBGz9L8hWvQnPIK0NZVFfKuQFIBGotKBC5ToP1tLu8rzGeHVfuhv3sN/3QB+7Eoxp3mF8qs/sGMmQzzmT0G0fwDa9SgBxWGmbxjJupbfgyrL1zAPL6F4QbMc/sU6X+Vs/3YOu1IFtxcbj2soBeP2+TjRjNzCFHixgtQC1tjrZmCfDT9mlv4zEZeqt04eOrGNx2xmQs+zZ+2SBY3PmtsMCTQtimUc3JIJyLnhoTtVvT6BRuy7QtvPZzpf6Dl08nQA7BkqX7qmr3QV01qm63nJKc/O2c6gyKNcCcssAVo6EM4JzGNior++98ki/lNO4s2xQZduyclw4o0D666BVr3RKXrxv217s6v7nDNS+2w5btwuuKuOWaevt1M39ftbnfl89WFB5n1l96ruDJE9Qefv7Eg88u/MSPTB2L8C7eu7/x/q+6yEO9Q3lsfPJOik4X/Z/6Vn7yat5moOPjtBx49m5Jt41m3yvbvQ9XbaTC3iMPJBTd9e/jyqXrXrJJZc8k+UCeC95UhIL95u/+ZtvWx4ZDQ/D4L3kkqeDBC46CAcguIvmjXnJELTwTBgivjsUCBthjbCu9RtGJhCpv5hkDt6xgA0UszVNWnsIT9KzYnomgIeNGcp4XIPKtnyHpQBpLIzXQA0ctQ3cqdzJGprqYg0tBonwBK4tSMjYUwelDYDzDluegTFOjVfnWDwMVuC3Q4TUX8ZL4JMFPxAxFiimEmNR3mxV1MYLAu/WazoUENwz7/iO73gDbQP63uEd3uHm+MJWLY1+f9WrXnX3MR/zMbd3BWSuQVjcYYYeAwxAo0zi7274DeAdQ7L6qG42BAbmHzCz6wA9bX6yk7S1dy0Itm2723p3634gffVF72zbVR+M7trOgT+1T3rXs+lA7yqvAemFalB+jHdM4do5gDTAbLfv9tk4x4kwBUB1+VmweMHAdAqjfXUegFGeSxMzFSsde7z03vqt3/rmIBC7te85BcRbxaguDf1/GUxAGX8bx5bBuU6pPhm/1RedkVbvqm7663TyxpLeXx3+wR/8wQMge3cSbN+nrzsuGcsccmPMEefR/3SNk2mdK4HStnV7D108QZZlLW9oFf1yGZAcdOkGlv+yBY0bmGD0wBiq7MvsXKBnw7i4BsAGZhh3TwYo3bLjY9mpwF1jvjKJ587Z4R1A4AVXT+BLOivLbNz7d86RH/cvqLS6YN48Aa7VT/2XLvgO7NxQCet0og8733j/Cc7qK8bEBboXYPPcgvbb9gvoG0OWNX2ym3duX5D4ZJB6xwLy8kefvMs7Ns9b98q4YPYJIiq/WLDG4Z1/NpawuqNf5vA99NDv+938uwzj7f/btxeMXFbxsuQ5TcyV5kLts3W3Dik6s3qz9XUf+HfqhbydunLq3JbrbCPrIWvIytNYtI4UdaVf9duy7umIPJ/z8MrW9+rG9j06Jp3G6MYfu3ysg7bPrJNhY8x754K6O05YW5aGmOA792sfbW482Po35xqLdl0mRvau4TnQnizAe8kll1zyTJYL4L3kkaTJ8wu+4AvuXvziFz9g4sRG+5RP+ZS73/qt33qqs3fJJQ8lFvotAp0kvqwJB64tO6sFrEOAsFCTQBxyMk8s7AOpemdbdxkCGDCBuQFNa3z5PdDTApjxnGA9lXdsSMYZw3ZB2DUasOuW/aEv77a6jDRgQ+9pYb6HxAH8LM7XAFl2l1i7QNgAuPLrgI8Al9KQLwZh91e3fWJjyJ/tpoGmbdvXnoA1+cNWDWzFABLbNLZc97QT4fnPf/7rHJiWAKgYZIDs06DB4AyIrA3f7M3e7O6nfuqnboYoHTpjKecc02a1QcxPMUgBoQFu2NPAbLJhBgLn/viP//jBfctu3MNTFhyQ//JgK7lt9YzlZeQEUC+jLEdeh9pt/8BcLO+MLfq2gId06g+BneWrdq8dauOu1d7lCzhZmzHuAYDqZvtx76nMvb+/2GoAMEDFsreqv40puozibT+HKWoH5QLKpQPlv3ZUj8I2rIErDvPJhCwdDCrhG+gdo5ehK7TEHvyErbZMQjF/q9v0CSMc4FDfqC/G4o1lrg0XpMCwWjCw5zGyOWk4lRjn9N04s2Cb9LDGgc9dB4YuK277t/wYYzjjFgAvLWGgSq8Pgz/gGpOxdQvmqG3DnTFQOrXba17zmtv7Fjje/tP3xq7qN339jd/4jQcHbWI1c2gB4eU5YF9bCdVDD/cAoxNYBc7W/r0bEGP8XeeE/BoTFiTXDxcEXEeCMUPdL0iijf2+QMzOgfcBkfu/9lrn4II5mH7rTNgyLHMXUH4fCLdA8s5LC3rt7wuO658cY/o1cKzfatvdki6Nk2W+7ETtu+PzKQuYeXbXF+pxAUx9ZoHjFfXMCYNRunW2jhTv3Fis9Fs59LMFqk8nkO/0xX30cttgwXRjkkNgT0buAv1Yn8bq+jBdVd/CuFjX7FplQdL7QNP7gF0fZQbU+l9b0JkFMDd8B8fp9kdtu+AunTzDk5z9bMfvdSbtnLx1T8+Ea8C6deDv6taOf7uTYAHdZeRv/7QOW8ee92s7a4dtH31t56HT4e0g3vLMgXk6Gy+55JJLni1yAbyXPLQUa/dbvuVbbqw0YNJXfuVX3n35l3/568Tou+SSp7tgf+4id5lfazD1P8MAWLlx987QCuLZMloYYAG2Dn9i1PZX3NJAIgv/FrjAKeze3RbtlPcWsYFKCTBILEdgigWzrd3yeDK4th6WMcoIxDyz4JYneTYmCFUBGC/dyiKEQs9XF/2/9RpIkoFRPTAkAs1su1t2dOkGqgKOxZUU97h0S4dxzajrcLMEoIn9WaiE/raFu3xgUpb3WKMYf2dsxK6Vv5jAAZCBtdUdvVIO21b7v+35AWrAQydHV/aA534LuAaiMZzW4AMwiGkLQF0gaFlZ94Ev5Sm2sBjS9IIRnzi9Wpn7v7xlBNommwCpatdlkp5bTpf1Fejou/bF0OoawJNhri2BKvqbdqefdEtf1d6A5mXUqU+gAr1dBigDmYG6W0k5OAJJC5MRyJ+upwcACoassUAoDSfcJ7aoCldwtqP+zIAHrqzB7cAxY9cCd0KhBAp2X3rb3wDWAPv0vjAhQId0tGs5bQMwOb3Uy8aL1s/1vfS4/tTvvbMypS/auHQ4bJTJPcAQdbA6W971KU6w3ikON73OedAaJQdQ33tXz/3qr/7q3Xd913c9qC/tCrCqDd793d/9pnsBwTlO9Cn9mahbTqvurf31IeNLz1Su0twDDR3uZzwFnsTsbwdA6Yg7TOcBwI1DdoUARVYf6fUCcuYGwO86MowRAMyt82WDrl6tfgK19vcFCLf/mCf1Mc8vCLSsa3MK3dndKMvCXKDWe08Gs7zv3123SmPBXeOkPAKUFowDZgkHsu264Dsn7IK/W9YFoZel6ZrxY8u2+d17lr1qfDWGaFvzKjbvtsNZXwvGn+E5zB12E2kzjorVGemuA1x77XusQYRk2IML6bi63LkJ8x8T1TiyYKJ646C+D9zdv6ez4gSuT5D1PlatOWsdydZmGxJhdXDB+11D7NyqzbaOz3IsKL4grbxI3/saZx0cvLvRNm/mY3HMV/eqd+Op/lU7iocP5EWUaKzkmF3A9wSHrZ0X6G3tW1gj82mivy6I/6hy1uVTKU+XfFxyySXPLLkA3kueUJowY+z+/b//9x8AOb/5m79598IXvvDGgrnkkmea7FYxC0kA0hq7gYQZ5w7aAua2CG4BmXHU9z3ciKGXEV962IgtZFukLqMNOxAwBRgOOCg/wLc9XCSxFfzclp9gVQQCeIdyiUvqcCZGxzKE/F3j2WFnwJ0Fj/b06gyrPdW657FvGPkOkGMsYqphQe3BYKUTCJl0ynx1WHtoH8AhQwfwDRgXHkC9CeGQBLwEdBVaIUad7YiMCB/GCeBWmIjK2/MBO7Vd78ooKq3eF/s0Aeqpi57LoAFS7uFwGKHiKwNBS7vnuqdnsJnUGQNoAaM16LXpafCIect4BGIDTxlgACKM0ZMhmAANFjTd+K7dxzAMyP31X//12/8Bi/pk9dQz1WvXsLQZi8paGWwDBu72foA3XWe49o5l6DM0N/7zspTXQGfIYnnqb+ug6VrgLta4svSOwPzar3K84hWvuOlz+QhYBThjyy94Ir8LlHe9e9OR6hBY1P0O9HNQjTZzqBJwwMEzzeHYoBjnTh6PXd2nw1Nj+WLEGyuw6Bnb8p8uYawbN5x2DsDtmvjbDpTMscG5Udq7DRcgUb05WLH0GpOFWlmDXB2WzjLQFqDb8WtZc3R2WaX70ZfpRu+vPPXXHc98l58FchYMokP6X3UdOG38B7jvGCfPxiT1szqyjMjdyq4uzjEeAORZ/2/IhQW2EvUIgFHHW7YFAU8AdQGw1eMTRAX2LYN1AUx52bqVvs85ny3r8wRzFgSTPrBx2Zj65oKqgGuOHUxIbbZsSn8XXNt8G6flXfm8a9m6y9jc8XjzeB84Ko/GMM8B/U5QUPn1j2XHWqfQNztU6KzDwThqtQegcfPrXRszXX0toMvpph1bay3DGFjombPvrd49npzA7qlne8/OI8YNYOP2hepb/Ng9vHdlHa0LJu/cu/na+X0dLesUkb9zXNu+35hc2s1bgajbRvRonQXWxkJmqVfOGcSD2qdQZa2r7W7pWvMBPeMEpjebr90twEmMZLFrIOHFxIy+5JJLLnm2yTXyXfK4EqOlWLsdKtSk2iT9JV/yJXf/8l/+y8uzeMkzVgBPu7jd0+IDJRx21SKxBSkGav0AQ5CRuAe1ZfS3uGwxa4FZeg5j2pinjKg1VH0AbBkBYt+u8d7iF7vStmPiOrALQLbM3e4BVthWveyHNZrLc4t9ISMYEmtsAgjkIxAKm0aavQtbI+lv4NseGBeoF3jTbxkawI+TkbqGDgAb0BYIJH9rADHylj2bcRvYBkiQTtfLW3/VG0Clei1f1Z+D4TD5av9AmgyYN33TN30A0vYJ0HLoWOLAuuopfdEOlb0y1PYBW0Bl17CeY46W3+qp967Rh2ELVOv3ZboyFgFxQmdsDN3aAfNMusJ3VBflqzKILbogFkARgLzMJaxrul3+3Z9BGRhafdSWAX/dU3liYwZGplOluywhxiVW3bKKbNNkSAptIuwCwxIoygBWj+t0WFY+ozadLm1M9b7Hii3dHEDlMR2rvQL+0w99lr6poz3IEai1sRITDCus2gWBgKycMekggzfwdw8/XOAp2XdsW5UWB0a/OyROvwJ0l351scB+v2OtOkCM9Fx1Vnsy1pe5bGwMzBRKh+Ot93S/vg7ESTqMLzZsAsTvHemS8RD7DKNswWDj5gJny5JfsGYPklpGprwARLSpvgSAwYAr/XS+eu7ZdJ1OYP9Wn+ppdxNoO2lxUgG4znAf3md8OPO/jGWgygKhW98nWEgnFlRcYEbZvePcbu6zbNVday6j3dxjbrxvHvW/NIwLvi8IvEx5ea6eTqanZ8y9m49zLNEGC27TjwX0FtR1fYH7BSLXKbF1eh9bcRmP97Gn5RFj82RQb190P/1xbZm06lvIpe0Hp0N4v0tLvuxGWAeGNlXvWOm9yzkK1mMLBO56Yctygrz32TRb5w8jq1Pbvie43IeTfgHUbd91LtDv09Gxc/M6Arb9zv/3XeucWHC/eQT4Xz63HZcUYL0gvr48Nl4D6MU2F17I+sdcYL1pjOdMtg4zT+8uFrtIOAv2wGNEAWPnJZdccsmzTS6A95LHlQylpInyl37pl+4+9VM/9bZl85JLnsmSIZ1BIPSARXCGggWvuHL93j0tMFuMt/hcYDRhVGDHMn4CIcSBFGsWeGY7r634jGP39J4W2djDwhlgxy7DyMLXPQSAsUbBGoWAGexRB89Vhr5Lt/zY3o1NJUapsixoEZgTUOFwKezf/t8txa4F2knjLd7iLW6/1T6BN8CHni1PyyDB4mVU1QaxP2vfylOMVWxlhsiygzFIEgfJqePeF/iUcbNsNYYO9muMFMB9oRr6n3EUENena8CbjJVYlD3TvTnP+h2QUB1WhsAybVEeep6TobYI5CoWLrbfGvILju3WX3FyGWJ0SfmFzVCfG5ZiAaNlAtKJylh9rUNhnQcAtI3f6AA1bReopb9VvtjVlbU4wEBAgGiSnjUfVUfVc/W6J3iXvrjLdHXjAy7oz3DEOlrAwjUOjGVmVZe1n0Pc+sTi3nACAAns8wSoiHG248IyrhcEoZu704BOah8H7qlHoLw6YEznSCnOLHbZglu1Z30Nm7Zr1X913LOxkjGoASdJYHKf3pdzJOA+XSqtxrHuz5EQG7+2qn8aT7AINw6jcTDp/bVl+tB4kWgH47j/A9cLs2DcLJ3yYHxXD95Hui+d7z3iAScL9Bqn6bKdAu7behS24twNwQGhbndLe3Vc23CcYMLpy5hqdJwuLBMUeAPEX4bgAs7GBW3o+WWdno4NY/cJAppfFpRcEJsja/uTOj8BywUqgXInA5O4xgmzY7R7N3/a0bx5gs8clPK+cal3PFhgee93feNN00G/n4emnaD7zjU7Z+87MT/3d0CXdcQJ+O6Y4X/jTFL/4OiV1wWPF5T3m/kAc5OTwSGKQiVh2m5e6IS1EN3dg1bX0bXhG7A1GwvMKYDdE8Rc3fS/duZguA8g9f0Eau8Dbk+9pU8A5M3LsqL1x403re9una3jaNOSh1P/tn9sfjYtOrJAsfs5tMUvF47Gvevkors7B5pHG4vFRAYOpxOl2xzRvZzA9K20xNB1loAx0rqNg3QdPvLcb+XZvPCo8lhg/1MhT5d8XHLJJc8suQDeSx5XmsibaL/oi77o7hu/8Ruf6uxccsnrRVpsitXa4jODusViC89lgrRgBVTulluLyl1gArES26JbnLVIDczYRTDDyKnpa5BuTLPyENgQ67Pv0gV07cJ+wTfGzIIU5yKeIW6rL9Yao3eBJmktwLxbkRnJtqh3T3kGysZCDYwMpKyOYmaKtVtZ1BmDgsFbGgE64uIyTjE3ACjVa+/pnli0tnMDuRYwwtzttxh9gNTElsD+BlYma2BX/tryuc997gNWdvf3t/sDpAOwgPyAnPIZg1O7lmegG0OIsStGafVQmli6QGPgtjh36kP7LmNpQZzdgg0IWaB7Zdk8nATnVm/Ga7+no0AzdQkABHJs+AThIBhslRPAyxDsU5lrP04SsUfFABZSoOcCgf3u3RjG9L081p9tmWdoLojGEbAsPs9iRQMb0gHOCYLFXBoBJi972csesLyFJ9HPGdeY0uodINb92MfSqK6NF2vsy+sCVsamBWgw9yt3us8ppR9XJ+Lodk/13/gYcCu+dvWNjY5pJ4QDwCQBJPdXyJLSLk3Omvp2f/u958UlFoOcLthN0X3VgdiL6QhnzzKiS7fv6YAdAli4C5osaNc7gRj04jzoS9sl9AiosDsVOPj2MCvpYZXrT8YpMZFz+lS/C8gmxmZtv7GHMdg3hAoxN9Ah4wI9XvDWmLDb75f5R0+W1S6PC/4uOL7zzzoY93A+9+645R55A3Avk89W/o3fuwzHBUi0t3Ls+K7Ols14gndnCIR1VC4wq1wOJcUyXNB169R4rFwL9G2dyYfyKbfxAvhvvjvZm1v36m5ZseJ42y1y7oDZ99M/ebFeMqZrD+UyB2Fz2iG1DG5rDu28jukF8Pqtsd64tXk79YwTxXus++RtwxXsnLhA8Sn36ccJxJk31NeCv6sDGKrbn8zVZ19d/dU2yxg+82Os2Pxuf9z+cYLb+rRDS+162TFTGl1rvNr5JvnP//k/38Z94KxDz+yAqg2ts7rWfNSzxsoNu7As6wWDzVnyZKeDsXgdeJdccsklzxa5AN5LHlc6Ef5FL3rRDbS45JI3FrEItJgOmAsIsO2ckQTAXfBkDyzZU9y7DxjGiE9sL24BDKBbw+fcnodlKD2GaGBKC+0+C1LsYSJADAbfMkQsqhlLC8LYminkwMa3TRhKngH2rQCe+zCaAoJiWGZUvdVbvdWN4aruAABt9wZsWtjHLMTqKT1ACubNMrDUV/Xc9n5GS+yQwDfP+aj/JADNVujSCkwOAOwZbGYhJRjqv/u7v3sDE9///d//1g4BSZii5e13fud37t75nd/5wdZtRr163TZhHGEYVo7aAHjYNnOGcB9pZhQxdLUruY+pc4L2wM2k36unjLEYxQsyxNRU59i8CXYidhr9F2dxY1KvM6Q0Ag49o8z+Btql57VJdZ1ToLpmxAIOsI3Tq9oMywjgIS8Zl0Bg7xcCwb1YmfK0DEc6Xlk5eRi46Vr5bm60hX7rfIETrLOEoQtMweL3PONeO/i7TMwN77BbjI0fy8oTgmBBLPHA0/9EmAOAS3UUk7Ty1T97XzqObZthHku599ZG+mftId4x4DsnSnnoHfWRQExtgL0McFlHw4bWcOhhaW1c7eoufVJHdgroE30+4AM+4FbOYmX/7M/+7IPwO8Z29VaeXvrSlz7o9+lin9o5h44QK8ZZDp3yUF+qPrDktUPtSwf0FfGLN4RKY4jx6NWvfvWN9Wb8BGwtG58+0M/SwtxegEv700vvWwBXXoGCrtFbbbHb/D2zzFhg9TIZXTtDIeycsX1lQTLPmMvU7ToxiPHFd6A6UNH4vqEEtl8px/bfBcCWKbmfrU/l3HttS9dPTzbmjtnKuteX5bll1b9t3V8n82Mx/jYderRt5X87PDhn13G47GDgmT7q955rLl5HwwLg8rI7QRLj733scfOmtmuO8N4F+7bu7mvz+njtsSG67os1fTo8t34WAL3v+nnvzgcn6O4+ji3x2xN1ferWfbq4+Xksx8bZzmfIj8cqh3ZIFxrzHLxmPWGH1PbB6tRhrN3bmLds9MapHPHNF7WF+PHmwJyCjYXWGNXPxnc2Psk3hwGnOJ3tva0PLrnkkkuebXIBvJc8rnzYh33YU52FSy55vYsFPy9/C8SMeduSMS8ZtkDefdaC1cKyxWZ/M/ZbBIub2e+ljRkIcGSgWcAum0SeMGSdOpyBAnxq4bpGAMM7uc8AFQpCvs6tqYl8A8tsVQZESzsB+G49ebb/Ay0CKgCRGX6BtWJndr30N15q7+k+gKot7OXlNM5OgEHbKHtpd4+t2YmYut1vu3lsOfWdcWBLf+AKFmPPV98BTJ1yH1D98pe//JbHgFGgji2HAH5gNBBo259B0zvTjwAx8e4A+IBcB1SVTuEbxF/tvgBGBvgCK6sDJxOVkbjMqvLQu/6H/+F/uF3j/NA+ZyxNYC62s/LSkWVb0+vq0/voIhGfNZCZ7mMyL4MOazOpTpV9tw+vjmNHYfXsIVqAF/1vGUgbGoE+qrfK8ZznPOcGNgIeMI3UM0MYA7nnMSjLi8P00iss9qTfvKf0uy8RJoZoY/1bvwCILABj63UfW5rT4XQdm1YolNLKwZJjpr6Y7tVe6T6AGyMr8LN66G/vSBd7n7i7sX4dFJnBXjlj12fQx1TFXC4/uxVeaIY9Nb7fApnLf/XQOzHZ7Y4Q6gKY2nvbLfBmb/ZmD8LyGLs4TDD9N3TDOgns4qA/rlVeDqTKZHw1r5SPytlHu1Q3tbfxtfoA7itz33NMlO9l428f6LuDG3t/+dNXA0foMOD8HB85B8wfdPZkwK5jZUHIE3g0fvttmZ8LDu/8pE42feP6glnLqKT3CV0xJt3nLF0w2oGkQMxlKO/4sUxJabhn61+7nODY5kufSjbsyz5DV3bs2FAG981z3n2Gatoxbcf/bS/g17bD/rWOKU8cUNp0ndju3xAU6aIwVj1np4z0jUf60LarOrOW8ps5RttYX6xzYGXH4wWIjSHnLgNl7v9zbXEC8Y8HhN5Xp9I4GbxnegBeB9OderDs1X2PNBfQXeB31wHysA6gxwKp1bUxz++NV8JY2ZHj2u4maD3wq7/6q7dnG8esr3bNyxlnDbAhHJIzhM6OP9bVdMM1jnH61TXhnB5F7uvXT5U8XfJxySWXPLPkAngvueSSZ51s3DVgha3Dtp1bTFp8MwD8ZrHKwALyAXGEBgj06DnXlzWCgdPzYv7axiu2KhavLd+lCVgAlioPVliL7xaGtquvUQNoWjbpsjkAqxbxSXWzBsGCZAw/29+VMQA1NpqFeIbBW7/1W9/SrhwOYxKmQL5b6DMSK2MMwYDT0rF9dIHkPYSkdwIwMRF7txAXmIw+wkQwsBn5wBPGSMZq+a/eX/CCF9yeC9QpX6XTtcoeuNIBWtiiDKoEu5rhCbjuncWaLe+Bm9UL5gp2n63jAZt0EzB2tuFp7J3ADPCT3mFzVh7xFxf8SGxZX/BQOy/ou8YsgK33AIABD9VFxuJu9UzHqrOYPViWpZc+VM8BY9qzvFRfG7+1PNm+v3lLSsNvgYQAAqAc49940P0cLRsfEaAWuCjt1amuiwWr3+4hfPonthpQDoBfGjlFFmSUd0xzYUz0O0xBQGx6qG9XH8YVh73ZvVBdpn8cD8Dx8lN9Y5Mz8OmqcAflp++vfe1rb2Nc9a4O9sDAWOA5QwLFqzesLmNp9VUfX2BsDf8FXrED/V7e1gEBeBW3kS7u4T3LCDTG0lv1Qx/7v3ucdl9d0w19Tz/aeKjLstSPl3m3gOmCCYAp4D/9U77e2Rjk0KPqSBmMhUDFDXez71rGLVDG7+rMB5Di/w3j4Npu06fD5prdkZAYgxa4W8AKuLShKBawNJ6cwPCCsuu01A4LesnzMo7XSaQd9t2+y6c8SG8Znwtm658bymJDXiwIuwA33T9ZpQvwrpMOGGeM1Qb3AZUnuLdA4ILp0gXyLpC6YDNHI/Y4Jn/jAaCYgwnIzvl1xjr3d/vObr1f5+AC+ZsfYy+d1f8AzaejesW994G7DyMnaHzfPGw9sO/gdMA8391TC+yuHm3+tiwLjp/XPLtrhC3v6uqpK8ag6o9DiTN1x+Lub07QTv1trjDnNe+XRvNBuuXAUO9tbCt+eo5sB6St8+bUl9VfZAJrQHm45JJLLnm2yQXwXnLJJc86abEIHLVlmsGcYc3ASTAwGUwJMHCZq8vQCIgATLRg3ZO2NzTEMtVa7DqEyfZx7yIbNzAQBRvUFl7pYYX1LEbsxk+zzX0NHmXFzDyBbO/dOsDMwE4OfMhIAfa867u+6+uwmeRRvL6AEwc5xRAEigLugB0968A5RhBgUt0JtQGs2u3NygBU6P49hA3gWT0BJIB1lRGLz8ExfQJle1+gbGUsb/2uHICP3lfegS4LyGvr3iMeqvKURgaTA07EXmXoA8D7BGD33jUs06V0pPux+rBr0snS7XuAVWljDlffHXRX+q94xStu4B3juD4TI4fR1z0O0uv/6oBxqG8UQ7h32D5cHcYSDlDGFo6xCJwrX72jtuhZW/ABqUJmVP+9A+Bnm+bJaqIrDtiSP/FlF0wEVgjrIGagdzO8Kw+wOVmQx/uFeEmMEepR+y8YTke9R9/zDn0CwEz08drtZCBuDEOGr3bRjtoKMOJwwWW2Av6NAUKpOKyv9GPk2iLbewDAjQndH4M3HS+ddJPxL0bjfSzDPpjIpVGee59QLH3X98UI3lAZ+k3vBP5rk9o0HTQOqUfOk2U3A6Vr8/QuwWzUrzDFgAvrUNFfT0BxATzPGvOMf8ZkzGjtheF2glvmCI4X/U5M1WXWrwPKbodt62X/AQ09t+CJcUu5gTDCbwCpd6cL9h+nqndiiXq/tlS+Zaeuzrh/QSxy3rM7chbYvI+5fLbTgqcn6Otd+7v2d015AMr65oKsC5ZrywWyt3zLvO5dewjgjhH7nPctkHwf69N4U1thPe8OJu/ISdQcJPRK9VO/r797/+4QWGaotHbXhbWKtlgm/9ley3Tl0FiHBKf41te2+4bOoBPG5YcBB08AdYH6BWdXB1Y3tY18CEezuqpO17FgLXBfHhfA33rca7uW235ygtT6ur8OYt0y7VhgXciB2tiaHjQf9Ft/7Xpo7O+6Mbwyiuvee7qebvVc9xtT9b+TCa5t01dhg87dA5dccsklzwa5AN5LLrnkWSe7javPGjDL5GMcYxJgggBEAIhAJPdiggGGd5si41qsQOy9pMXtfUDHGnBrALY4FkvVljRGo7hpy5JddpeFr4Pf1jjCFExO4wRQZGs+Qx0jznZrhkTACjB8GVGV2+K9Bb2t3IATBnNswuoF21bZymO/BWJqR3Xfe4B9QEftDYgpZiZgtvwCnfbkeqwRcXIDSivfK1/5ygeACQZknz/8wz980NbLJN44cAwZ7WTrewZM9RAYXJnFLcWmBpYo1wKUlUEdM960a/9LF7tTLF/lcihc9y4buWviju5WyAWp6O6CEtp+D7fDCGOEFQIAgFc5xSUFFgXY9bsQFcu+LM3APrFLl7Vzbv1NekYf9n4OjJPJJv/6OT0E8pbHwMx+r06x0RJ66cBF7b9OEiAigzv9SfcWGFSG3lUfZkADVeUZiOHANMBw38X2xV7X7/s/x0ax9ctnbKneUd5f8pKXPBgLY2FljCdCnKQXMazLc+XTXsKc/Mqv/MoNAOWw6P0BPelU7Z1elzZWuljKwk/IJ0CGbtV/Kmv1VP2pa+zn8iHkwo7f/VYeMKIBFQCnZfhpd6CW7b3iqAJo6RiWID1aEHR3UYhjCqxfQA5L3Db32k+sS0BHadBzsS7tMNDfq/P+vvmbv/mtLgDT1akdCAtAEiDdHmhnHNg65phacE2f4eRTps3X1rVdC9u22mRZlgDKnSvNJzvWrJwsXWVdINSYtOzHEwRbEHWZtOYc4yDHyaYLvKZLyqg/b1iMBVO3rN61gC+9Wabl6uuCv0LRANVPZudZFztObh1o+wUngfRk+0Mf86C+kg7WNzla01kHgzonYPVKHumksXeZyfK1IK48bMxdoY92raa8G5Jn07GG2zbZdjmB2hPYXdl7ds479fV0EuyOlnNeOtO5j837WP3jzNO+Y/Xeu06HgLncOtLaR+zvPZei33N6dxaBeObVd7rgfAv1L+SUsa57u4+T21qt+3P2elY/2rbbelU/6aTdRo8i+ufTQZ4u+bjkkkueWXIBvJdccsmzTixEAWCMelsKLbQZxsviwaoCpgRgOiTCNc8yTAELy8hZFsyCaMsoAQjct6213zBmy8OCBZhejJndrtk1h/0AoBNMUowqoNnJ4mI8L2BswQ3sAITZgr2HE5WPBRG61vsChMSmDPTs+dibsTx7Z1u9bR3vnuq89zt9mfGm3N6rbRNtKS/Lqux/4NBuD+19MVmxHmMP9jdQBeNzD4nStkB0AAvDdo1EMeNsX48tm2EakJZhXBnELVa3vauyA7YDGYG2yoLZCyD0HJCU0Ys9zZhPAN0YqnRrw05gcHr3stsXSFEfZxzLpHcHIspD1973ff+/7P2Jr4fdVdb/n//DIVDoQEsLpS2FgkwqDoAQoRHjSJgMUVFQwSFBUMCIJJIwiCMgCgWUQQYt0FIEilo60BELlET9P355f755nd/V7XnaPgg8z8O5V3Jyzvl87nvfe6+99r73uta11/7ku3/37/7d7bOe2wFfXd82zvKovulNb7pdhw3q4ML0ZiuoQ/m0c7diA2r6G/txgRZjBDhDnycrGNvMwWsLKLEzbXewWM5m9v2GN7zhvcAqIBAg37jDjtU3C5av8+1/9lsZ6a4y05NTyru++sqP6yA7Bzf2N0Z54Lo+3lQJDrOrTg4VC7y19brPMJ/7rn7Jliur3wIIBQ96fveVtiVgOP2YG8zDGLpSLmxwxDxbOwG8XYfRXXmVE4Dd87MhgRZgTmMofW86A6kozHd2Qkjl06F//S1tjXGUrh3E5tqe5x2Q9ExzggAg3QoKZb8FNpLsvc+lOKGbZdU1RjYNDgBx32MY4gvyALOrf/VkawI/6mkcLyvZ+FgQEMCJ5W7s6SMCoFaeMXCCb9q4B5Nu8GgBygWtAJ7ea9veBYEXGNP21dEGUnf89VuwZ3O2atsTBbs2yLnz4op2LJN027OAlnG/7fNsqT3Ogx8XRDw/P4H7BQnZCZDvnAe9+73DpebARrczyW4oz1gg0fPpZXV+ts+7U70A7l0nxRObOsHWDbT04wDcc/fD9t0TAaYPffdEQYMTbD9tTH9vehLXblBgA1EneUAZy8zd9cYJHO/3+x5kX/pWepgk3W2/yLO8bFnjqMBza5vm+1IPtV6Vr1xwXMqGgqbmcCnTsiVnA0hHE3i8Kce2zhtssPYxRi+55JJLHpNcAO8ll1zy6AQrC0MX44vzxvng3GN+ckA4hP2/DFyLYIcqYTqsg8lhk7fOPbvolk90wVAA4bIUgRscIs6Lw6fcu99jue1iHzMCSLlAaXI6uQRwuOwSQPTmN82B6rnqktNXGwNFpBHo70Cg9KkN2tzvQN++Bx51HYChU+6BjwvecjIxszf/bXrLIZV7mfN6sqw2P28skp710pe+9HZfrMTa4iCvHBlA+4Jigbe1wUFiXd99PbPyOtTqzW9+862NSeV0fc5Pdez/6uLAt+4H7AOmarNcibbHOzTuBMPTaXqofLaYAElzyjCuKidHiT4riw6rUw4bB4wNr4MJiNgAB4Ae8yep/1/wghfcM3kDuQLRq0+OYe1In92HqbZ5FQNR1eMEZhccZacLYOlffbbbWRcMxx5lZ8agecE9QLPq6u+YSrU7ZpOxA7Sp37qm+gSKsht2ucxi4OcylU7AV3sbI/XPHoLXuOp3QYvKCmTvd2ML6y0Q2jOwUQEvgM1NCVI/VUfs7w4eDOwFONZ3fV/fLsCSPt2bDpYFlvR5ejP3SOeQPXSNgEv30lfXLmjzIz/yI7cys/V+bDOujl37iZ/4iTfbM6cAJuX9lkO6zxo7jQ1zf+Oi6xtXgeKVG8O5OQ3otAB9+kiX2bR67nbi6iyHaXYS6MFGFizyDjGndV/6DsTeAB0bxWQUfNt8x6cNA492/jduN/+tOW53jhj/7PHMKQrQpRuf7YFYxqL34r5zT4B3PyPaJ28znWmLezc4Qle7++UUny/4Z5eH8Uyn6r3vxU25ZCztjpt9r5qn9P22d8FkzzvBQwHGDdKufoi1xALm294T5K6NmJtsMh0IFFtfbBneqXbbNMaa6ypjbZGd0om/F8QT3Fhwz3O979ZGF+Q1JvyvLebGBYy9a/uxhjoB5vcF7tLt1n2v3Xv3HnZy2vb5/lTeBpV33J27WNjMBkO2PRvgFHQAHvs5bUHQS9lSXHVNc/KnfMqn3L3uda+7X4Ol5+bUArUAf+PSeswcK7jc97tDbHdbrO62rT2r+bUymhc3ndEll1xyyWORC+C95JJLHp3INWirO/bUOngAUUyyBa2Al7v4PRfRwONlXewWVE7eOgDVpboBYXNadtG/bMvTuVvnJIBgD07i3G/7zty724ZlDVnorxNw5vrTluptAb55OjkenHZb97o28CfHT07YAK4W6DH7+hwA0rXy3Tq4LgDNcwGA2w85C/SEAeswqurQ964pvQKwehlSlffsZz/7/rkdHJeDEtAVqzggUs5lfQPExcIElq0TJuXCu9/97lu7u6et7oE63RPgm/Scj/iIj7gBmLZIcqLkBnUCN1sByHUvwPwE79eBXzBBGdIaAJGx3Zchs4cOJpsDl02nZw4zG2WX64B3b+xdB4MF/NW/nOyAs6Q6pYN0Znv4HrZGHL6143VBqO5vnKiPsVS90q2+7LqeWZsdVLbjo+fs9vdlhuVkAkUX4Nw0Hn0fKBpoiRWM/RoI23Ud7BdQ65ldf26XDtxTL9thq3fAX+2X51DQ5Gu/9mvvUwLY8v+85z3vxlAtBYkDC4H6nm3+aGwKPAG36o/q1nc9E2BpPtgUJNI+NKalMZGrWRvTeQz+xkjjW57vfjBv6dN4AzCd7Ej2Tke2F2+OWGkZXKP/qnfPA54rpzLTzTJaAcW7DRuIZKcHAMt9C0r2NwCktjQXGs8LyrBntm98mnOl6FhQ6Jwfzd3LJl8W6wJ7u7tkgSdB0AWGd6ydACsgzfxCT0BoY2Pbuyy9bf8Jmu2288S7B4i96VKW4bw62baTTRuwwSBsxm3/gohbxgJTuzPn3OGQSO/i/30/n8HZh55HF3aPyJG/QLz+M88t8L1jfdcvPjcns6/NMy1YY9x0vbm6edD80N8Oe6VHz1xdCGJsYHvrL1AkncnW9QQFt3+WRb/Ap7+tkXbMs7u1lfcF+D6RzZ72u6zb06Y3yMJmti9O8PUcL9s25ZzvfvPPjolk57oNMuzcsfbs7/rrZS972e3e0v789E//9H1+/+buAta706l3UO+pbEMO8L4TTMbm7X3g7IwNxKiLeuzZANbQT0ZOnT2V8nSpxyWXXPLMkgvgveSSSx6dxApz+AbnChtrgVeOIQDL98ta2nQGCecBwEt8vkzgFq2AstNh5uhJ+4BJsoDU5uZcx2/ZWxbwy9bCDNYuIJUFPtYDUCpdcdr8LGBioQ9wc3CG07M5WbZPA7ECVWPEVdcW/t0TyMnhx8zEVg34wAiSU7bnxcaLMRJYy+GuTq4HpLzjHe+4386dc5TDUH84HAY7mGPDwauOlVVbYjwGNmVDtTNAbJ10IAkGUM+IIbhOY9dU/8rsnurtgChgYtdizcprGOiZcwzQxrJdMEB/Zs/pmcPFjuQ/XZCg52Fmdk1Myf7GbuaoV7fqGuAIpPHb4SuAGj9rg36A/2xdEKI65xjGDo0R+Qf/4B+8e8tb3nLbhv6e97znHpzp2kC0dIhB3e8+w7ysjf3umgB6AMACytiscg2vw4+JLQ9w5Rh3gCkMsE31ghmdPdcOqQ/6u/L7nHOeeL45B2BdmW1P1ZZlTtkZwEFXFykANo2MnNjqjpG9p94DFdLRW9/61lubuw6ouawwYEACWNwt1XJpY8VVfjaT/rKRxoKUJj0vfVTf+q2yc/4bb9UxW23M1k8CcFLpGEsYq8oEBiQbqOlvKStqB8DYvZhi5gVjQd5rc/oe9LMgPxBKDmZ92/Pqe3nfTyamcet3z0tfAfyCWm9729vu0xpsIKnypYqRyoW9CSCol34D8LC1Ze2eqRTUa5mBO4+xG0xLKWiwpBdU9N5aViGAz7sDsLLMwAXR9KnPT1DtBLDZqTG94O0yF33mmgUGFyTT92xC2/sMkARUPcHUrbf5Rz3pdgO2Wxf3b3oPbds+cZ35y/PM095r2wcneO6ebdtDoHfvSrtrNr/15ry2FqicxnnjzzwQeJedC+DafeF5wEtz/gZIV9K7NcHqa21Y8NI7TNBlgzLb/5vWaoN/++wnAnYXaH0IEN7PT5t46JqzT1cPy1zdcpZFvoHAs+67NqQvz/NO2mDWzlkbCFhQeOf9j/u4j7utJV/zmtfc3s9d3zs62Rz12YVdLNpmbdC8tkz0ypHmY+cG9aAXdrhj/JJLLrnkscgF8F5yySWPTjArsU2WvefAsQRoQBaY4RgknL9lh1h8cxT6HRsrAIJD1GIVA9S2tBwgznP3cZQtwrG8LPjl3uTwrZMDeOQsabN7MZw4pRisOV+Ymxww4BEBVCxw3GcBJ/1w7hJ1p2uHJmHg9gMYqb1974AjIJP2yQ+JdciZTI/A4GW+YBmla/2U07CHNAGzlo2GVZRj6hmlEHjOc55zvy3VyfaA2rUHIBR7CagBYgAP+zsgp7ZguqZ3YHPPDvjqdzYS4Nezq0f3e3Z6FgDg8AHp14GtTj0vXaw4pAurnTPWswExmwfUdvdlii1QuUwzeUnZGWBPefSRntpyDzATBAjsi73a/wB4DmL1lT6Cs2drPsBuWXcbuOleh5Bh/JxbvuV+ZU+Ap93yjoG2zDNgV59lUwF8xuzmvQYqAB0czmYslhKkOktXkmChL9jSfTGgHFTmcJnucVje2twCV6637VqO3Z5jvGKOe5acjMB21/fT2O+a5rrGsTyc6Re7vO/SR2z16pCtZk/1RWOBHntOfdT1AfzZP1te5qcgRv/LPb1sM/3Qd5jz6t7z6h/s0aS6FsABLCVnoEL/LaBrDK/tqUt6qR3GkxzlQDRtNUfVJy960Yvu3wvePeZ3c2rlCFQ4kG/n+g08GYPJAoTquocObgBo9b1gP7v1flmARRBic7Qug34BTs/tvuY/9V873XsXbNq62lFDrw4C3HRMDm7Sp96ZC6zt+96YW90taLZBI3VZYN0cuKAyW91AARtW/qYG8px9dyh7Az+nfvZ97e8NIJ9szhN0XCDRdcv2xg7Wh2sXQHBBv9pT4LCxLqjUvNCY0NebVkNwYNdZG4BI6tcFhbfOy9ZdBre0KHSywbBkwXDXaPcCsOffpz2sDW2Q4LSzhwBaz11weN8tp/3uHLV9tsD0Q883P2ywg+0JIiy7eNvIdte2vPf3u9Y9Ab12fDSvCmALTtu1Y8cIVrYDhPu/tYG86e7TnpPNa75pjbEH3F5yySWXPBa5AN5LLrnk0UkLRNtuc7w5RctmAxYse8GC2eJ7WT4cWU4awITjEICWc7MOJoc8gAHwaPsjICI5WQjrFDjMR05aDnd/t0iW22ydbGCBRTJ2moVyn1fepizgICXypnEAgBqcVU4CJkZt3vx9HJkW4AF4OXqA3RbysQArN52Vs40DkIMod6u21X9957R6/dfzA4QchOVz29Vz/rEP5Zp1GBxwFtAYi7TrP+MzPuPu4z/+42/b1x2WBbRKlglHz+xHHRMsUNsWAapA2P6ubcBYQQIOVDoIzOY4LwCyQAM7wY7irC7DUH+y9d0eW//UVikqOODAw2WPAScXYALEAzQEPwAa/qbH2kp/tRH4+cIXvvCWp7i+0Bb6Bb5jIMcA7++ulYpFPXr+7/29v/eeSV57Yg8Zp5z9xuMCWuscAx12TNLnOuQCMyfDc0GzBbiXYds91fMVr3jF7TP5lc1P0jG4T/BhwZrdmoodXqqPfgessqc9cDHnuUAJGxKM4ezLsXnmUt15qTnMYYmAtUDm6pzDnk3pN9dVfn3Ss9JVLHnjsDHcd3KWL3NsGcps3zVsa4FOOXYF24CcWIbsv/nHQXOYfrV5GbL6E9iQ3gpE0At9eMfUBgAwtjJ7Ukf2p6+zTSx9/UGAMtWr9wpbAKzVTwtwA+7Nk1vGBsR8B2AEkHm/7TuPXSyIDKjcOdd3ggLkzGu/qSAWTN6gyoKZO44W7PRsZS0IWB3kt19dPgSO0smCba5fMHTnW/a1/b9AbYJxurnhlevZ5sxNCbNA5O4G2WcbH+5dgI+N0efKQwxSvxcAXNC9z/V1Y4tt+S4b7LeDXatv41m+dGly+l8qHGsOwQ590vXeP5j1u7tAkMD7c1m7Z75dY1Qf+967awPfGwTY+XXn+/cnC8qe+iYLpGqfvgLs7vP9bx5cm9xUF7se8Lcxz9bOd9KZlmyB/R0nS3hYwHUPvuy6go+t8/a5m3fbe54tyaeuz73Luk+AwBp000PsvJ9UhjXXk5FzbD+V8nSpxyWXXPLMkgvgveSSSx6dcKIBKss4BKJYLAJBOOEWwICVZdZYrC6QCRgBhuxiv2cFarT4xSoBQjwRQyTZRfvmXrSNbfNeagsw8HQWOPCbU5WTwOGxmLYFd5lsu8WX08/JwzbiwAJMc+g49P0fkNm1ARrar519XhuX+ehEZYCyFAsxHum8emA6are+y3m0HXCZeQtcL2u6ZwVylnM3B/X1r3/9ewHpp7CDBUiATK5nN9I4LOBTXwSI1S45gh0eUpldLwBQmQFLHGPOanWTC1SdADxbhwQL3CFbmG6VkwP+zne+85YLlWBjrpPl5Ovqh10NgAOcqx+QDPPWdt6u7XnVAyCwB7IZUxx9IEXPkec2YK7PAxWA+/0vDQl2enVwEEv9GzCZfgsiAIg2T2rCjpcFuWPIXIEVuweknSyn7QNAY/WI4VSfl3N42fbpBIiyjDXl09cCz/6mK2Pe/MJGjf2e37P3/sZJurKltntsza4uAe+CSLG1+qw81QI7Ahs55upobgIGpy9jt/6TDzhbKOAT4N7cIMizYEX1AtjLcVu5Me2rL7Z6/dG8w94CHYCOa4f9X5vLAV7Z2Yi5bRmxiXmpNpVKolQxGMiCOtWje3u+oNSmOAhMrt6Y6Obp6lJgyThkOzv/L+AqBYTt0eYw1/T8h94ru+Nk54kT/Nl5jA2YZxYc3F0iGxiU/sQ8XPlys5pvTibwgrlbr7PuC2xu27ybsm3vIXMGMH0BXe/zLWtZu2cQzRyxrM0d51jtAqAbENXP5pRlripv55/+d4ig9/wCessEZ6ML8mqrPgQeLkCsn/29a5VzLbJ9zOYEp8xJyzbeFCjZfPNM7cHwFWAGyu66agNn1iFEcIItbABO8E+aKdca695b3lNsWlkbvF/G9M6tq5PV1/nZQ0Dr6vac0zHR9/4nYvFuXXcNus88545tg7ouc/yh+q+9rNC39/AGaDC69YNgp/HW93al9bl5oP+lPzI+2UuinO2vUyfmhksuueSSxyYXwHvJJZc8OmmhuLlL+5EP1wIywQxsgbq5XBfg4ZAAd5YNZVv1Q4tiwnGrLGy2ZSGs87iMSfXgIHFGMTo497a1c0aXNZhwdjgXm/tumUALFgC2lhnEAeK8ciDpJP32P8DIZ7534FHS71hufR8z7td//ddvDEX5aAF8AK3KdII252Jz8QJj+x3g83/+z/+5lVFuV32wTDVtkVogMCgWac9Rr3LvBsz0NybVsuqWlZWcQDiA82TWACB65skaWycuQIxD7GC+ZVpxprqeDavbCTwDPtjUyQRLZ22Rx6beQ3vY7LLsFuTvumVts80Fyk4b55xj9aTzyraNH3gGdKncPq/vSmchP2SgW38HDgJc5HxOZ8BCgR3gK3Zmv7EpgQDrmHJel2nPLgOLpflYVrS+AXxJFdGzY3oGxJkLpHOxfRWIH6C/Dnt12GBOdTTGAkeNh5ix5roAe/ear6pXdTDOzU19pi3A8+oY8N/f5g3MVM64gFaM4Z1zAYTS0WB02XKdDhZolmc3JnBtANY0N6Sb+tRhjX0eSJyO0m32IBWEPsUQTMflsO0HGITJ7VpCR+yPHdNtc5S0Io2Xvn/xi198myeyf8ED6XjsIAm07/PmFulwKrP2B54vw/UMMJrT6bzfu+tkQUBtMEeYE9ntvivUARDtGu+8BVc3kEV6voM49/2wdQfkAnj3naW+3kGbssF8Ya7Q9mXO0oM5Bri7zNAFsZTlmQus7TXLpvXdMp29O3fXijqaJxawNVcuG9OaYdcAnp2YNxac9swF60/m74KkO+d6n+/6ZPty32vLEt13knIA+dmzse26PbywaxtHzctJ47axzQ7Yunsqx7tMm1c3m//6DKY33gSmrRdcU3mBzZjlm+aK/dPnAq/0t+Dnqd+HwPG9dsfhyn7OprV3weUd2yewvH10rlm3rmsb9H4GVfZZxvbqx//0v+dG9DkWr3J2fK1uPU97rcd3fbzv37W77R8iHU/9f8kll1zy2OQCeC+55JJHJ8s2Spa9s2wtOWh3+yknElixrLkFxyzOl8HDCSN9FgABsLAAPllE6rqOFudjHeL9nmOcyBOJLaFu3b/pE3Y73Doa65AuS2QX5iej0D17DfALw7b/A2ZahAeyJAEdWKEYd4FU1TWHsL9b8AfgxHCrnA/90A+9Z3RgSiWYohyHvuveyiBsIPBwHR564kDHzgt0lasVmIWluXazDiTQbx2kEwBR3wVPTufP//QMRAbYLcC/eR3pXs5P/9OXbdFYNYl6BbTFKAXQBkbliGsHQEr90jd2J6extsvXmyxj+dwmLFdt4FZ69n3tlk9TnuZso2v6YTPAI7mVe37/14YAtu6vLknjziFy0glUx/o4praxXaqE2tOBgAUG+ixWKdZhz46BDgjOnnt2bein50iRwPkFAnafcaku+rO2VFbXsyVAVwDKBqK6ptQUtjr3fzqqHgHzUjJIZdB1L3nJS+4BqADS7qncAFSgCvurHUCSJHBYapEFkewmYEvGjjQmvjd3OhjMXAiUyz6yhUCgfqp/+g2MiRH77ne/+/Z5OqjcWPX1ST/GogCHXRJdg72O1S0FydqZ4BV7Ms8BJAF1dOFzwYBlF6YT7QbSs8kNEhrzy5IzpqRWMGefaRr8AHadSt/fgj5swhwiiIE1Ckw8QZIzcLcBpmWqml/V6QSntFn/KpdevSc36Ohv43BZzPu9d7aUBp6ZeMftPLds5W3XglrLptQegOkCzcto3Pfu2bebH30Br90hdO4I2vlbAOQE+VYPDzFx2egZTFugtp89RFZ/7XuIrJ2SBfe9x6prc0/lChosG1dAUfqVvm+8N0dvipXV7+bNXpDSnKav2VJS+frU564x/r3rzAF06j2+QewF1uljx6G/145WTjDWfQ+tqRZwXZDVWGLr6n/q+ATiz7XajuXTftRlg0Rr29s/uw4VrNxnWXNKS+LdsPr12zttWfbaal7dAMdDc9XOcb1TNiXaByqru6dani71uOSSS55ZcgG8l1xyyaMTC32O/gKvm2c0wWJa52Idiq6z9biFZcCKRWuLS2ylgKjAk4SD0PO7nsPBqVs2yDJt1jmwsD6d8gUaLdo525zldSw45pyiPdwFoPREi2gLaYtvgALHljO3KRKAQTmA6ceBZxg7gSQ5fbFrKz+nLzAVsNr1AVL93XeV42AtaQnSaWUF7Om/+inW64La65gD/jhWlSX1QUBb1wUGydvbc4BHASoLSFT+5n2sPQF9ggSAnuRk8eqLE8xJ9FnPD2QDPgbMVU7ga4zBnp8OAr45T2wu1iNwll0lpQRQV/ljOWT6GxhaGdjtC4pjV699LWjANtjKbu0EKnZPYGXOdw56YybwH+gLwMHMqY8dVhg4i7FaPesj7NaAzvqx5wYUOkAPK1W95ehdphawj51JCZCws54XYFvZpSMoTYHDuqqfA/EwhWNnxjCW2kLu7YDLDbKYQzj23QuQ3kBK/ZkdcpIByeaYBZQwJRckAvjVXqBz9alcaQo477ttVp/uFnag24JwJzvM/OvQRHNRek9f2SOgF5sbUB7Iy6ayk+w/6fuema0AxGz/DtTOHnqmLcONZ/P96qxyA5XTp1yS5p7mHCAKu/DeqO+NZYCj8mxR3+93Z8QCleZhh9Hp592KbaxIA2A3RyLvdf21Bxwu+LGpMgTdgGvLXnT9Bq4eAr/0ofHeONP33hVAtgXINii470ZtVid6M3ebqxf42hQK5i9BphOA9iz9eAY1fE8Hyl92tDkN8xaL/mQ8AhC9i9jkzuvLll4we7/fNcEGcZc9uwAv3VurrL7oYe2LXW579csC2FsP352sT+1sngKwb0BcDm4BOgcPbmoo+b53rvNMfbW7j3a+sRvA+2vTN9h1ctrfApYCa9rkvbO60/YnktMWzqD4/t7vzvz0C/4uM3uB5w0ePFSPBa7dr5/3t7qcwP6WtWud7W+5cc81o7lh5yoAreDUGYTYwxKT3pHmWvWzTlo9eaYcxg5qu+SSSy55THIBvJdccsmjlN3CbmGP4benzQNkEkwi32EwAj76rPs5KhbUFutAJPlA1+E6GQuesY7VArfrZFsEJ3KdqW+yzvo6t5tGYIHYzS16MgiWmbK/96ASi33pI3Kozm12gSd9HhiRzgLCOG0cvAQoY7u6w1liVHZ9ziEwFbtuAeZlnrTYz/H7tE/7tBsYGMiW0OkCWEl5dwNNMYiS7i9VQX1c+QGCtW0dK+AJp6k2VN8Axe2XTTNxAibKYJure7qRtxOACNiipz04b7e9YiIqr3sDFvUh9qw81ZzCrkm3Aa/p6EUvetE9S/pM28Gm6GGdvt1ifjrYPTeGJmC0fq+vAvndU/nYxLG6q0+fB/Ke7Kp0jslamg8BAfmfl6Hfj5ytQC72C4gnxhOWJbZtdcjG5Q+s/OrItns+MDMAL9sJEO4a4xbA0L2BhqdOGy8n+C/w4HCtys8esmG5m2MgOxCQPXetA8AEtoBXALndai9fc3Us0FKdA0M3b3HXB6gugLKssp2PFkQCpKQjB2FimpsrssH6u2eXpzdJR1IfVH7tTUfmsj6rjfokERgB7PXboV/YX3I3b77ZygUsCOxon6CD8Wusmuv3cECAK0B95wP9bdzS9+ZEp0vMZ2At0AtzTW7eDRJIy7HBuQVid5zql51HvdPOnQb+1r8LcJvzXAc82yDBzh/m3IfeRQvm7Fj3GcATU3mDDWxePfb9t8DSguH7Pnoi5q55ckHaZROzAWNqD0hbW2B3Ptuc+KufnQ8W9EwEi83bJ2i+bM9T5zuvLKPYWmXfUxvkcZ9+Zb/eLwKC22a7Mhx62m8HtQmC2lm0qUIWYNzDyHZtYy2zNtKPXO/LnN85HRN1A+jsSpDmiYDuE2g810nn3w99Zg7cQPz+2E2z60qA+YK/+85YcsCC09u3AH46Me7W1nb86mvP3/RdylYOfbtmAwrWNuYmufb1g37x/QYXd3fL6qjnOsDY+/ySSy655DHJBfBecsklj04CCWw5Btzk9AaIrPO5DNYFCzgPGKuJxaptsl2HOXdusXY9p3CdLU4jhwaQuCDuQ86FOi5Tav/fxfuyVHdx/JAjmOzi/1zsq9syb7SVHgEQnBAHDfnBiGxRLh8esC2WXcCUA4ti4QYABurUZ4C1BQqWbcahAzYGHH7sx37s7e9YllieGGcYzCebRfsqL5Cn6wMd+wmABKzph3WC6WsPu5LGgD73b/rUfwuC7lbSzWNJ9/QHlHPoSeATwH1zbHLaA8oBBgnm2zLBti4xK2t74CSn63Tw+6l/6E0bajswDdggrUJ1sqW8Pu5+zwVKant2EUjX9ZWFPV/5WF+1I2D/i7/4i286qE397j6g5o5tgGb3y4drjC2gQ3/VOx0DHqUBCfyuPsBAOvcTAzu76WCyUgv0LGkHAN2B07GX9Wk/6aP2bb30Seztnue0+PTZ39ja6QsAK01CbQgQbe6jM2WuA75MYMEhaWcwVAEFtpwLEFTPwHinoi+wsmw/c+4CUOYS41tezmwv/aTHgN7Y01JXqIvyBH8AQmwJuGl+rN+MUeOmfqF7wJx3R9/tye+B2ueBQZueJHvDlgWEFCCiT2O+5xYoyC6yEQcD9l1zot0GwK1Y7gIFggZsdJlyUlawF3MxW1h2sLlUPybL0t15cd8HG4Q5g6LmEWNp2XwLEi9Tlk7MU95ZyjTXaNPWYwHcBbN2m7trAFq7u8fPCWTue4wOsOgBkLuOMFd4BuAa0K6dG9T1DvA9ne37f/Xif3OFa05mrXG9QOCWtbLf7ZpA/TbPvvJX5+4D3DUXZbtbX/MtJnlzkDzJ5ebtGvMImznTfOhb6ZLYxgKJvt8zC/b+7XusX/cDHR8C2h+SE9B96NrTdvd/da0vpe1h0z5vvt6xof7mFX3Ajk5W+AYpNqhzBgF2fagPvBOMCWvNE+gG7nr3A2yNv7WxHddS6QD2dwzsu+AM9Jzjf9deT0bOdfVTKU+XelxyySXPLLkA3ksuueTRCbYb5wHowLFokYm1BZTgmK1Diqm6LLdlzqxTgR2zDKp1lnZ77qYyWAYGkPFkLOxieZ1Xi0PPWmfSNXLbJXuKe7JO90PsKWUQqSj6HhPHvee2PcydQBFM6Z7bZwFJWB9Au65/4xvfeANyOMcYkrH5Vjen41JZtmVWj5/5mZ+5gcXV1WFHe4q3vwGP2gDM6e8cVTlgA5qccI49xGGhM/cAwzj72L/skQ16Nkep+wJw+g3g674cvUBCrN2AoZ4T2ChPsHphPOtb93R9ZdiO3/UBS9I5bIBhWV7pc7f/L1jivtoXSB/YqO9tnVxnNCklRnUAKNW2n/u5n7vvE/1Ad8Yy5iLbddhVthUzNqAgkCw7qf1YooIw+tQY5FwCB9dxTPrMuMcKpcvy9zrYLfCuZ2OoJT3XWGyM1KfyVMrXWp1qQ2Bef3N0e0bldN8Z5OH47wFRG3AActq2zCaqR3Wkg3S24NnmUe2aQPeerwygK4B2WV1ALcDxHoa0LPUF3c5n7vzVM5YNXbDnN37jN246CdiMrZzNA2J3vgIIVUbXVqeCPX0WSGweqH0CEvWV1BdAkuzH+8AhbpUZ8N6csvNzv6tP9zUe03/jrP/r19qQTdbXjcFsAdD64z/+47fr+z47qq7NfQWlqkP91LP7yWayw57XmNlt0rtNfQFB77Dqa7fFpgFYIEf/6TNg+f7s4aA797G/h1j85iR9zWY2kKI+5/hbG93g0wJRe9/W6aGA5YJsnn8Gek/AnJ0ad2x48366ToDRPL/PWBawei4Qv3UCurPv1YX5a9nGC7Lu3HmCWJ7l8wXA/WxQaZ8tH/xDZW+QWWqj7Ff9zRfyqnefAybpXtDF7gJ2tm0y351g6b63zCHuXcB7GaH6AhC/bN8FGFdfq5OtwwbMPhCwTn2MyU2n0nObJ+xwsMZau9+1mnXlPn8DLQvkbv3XHhYgXX3u7/NAWX2x4L/dIad9nOvUtWvgtLbTh0MT912zz9bP0mtdcskllzw2uQDeSy655FEKBgT2lPxlGGRYYAC5ZfpxTAMW1nG0cF4WmsXpsqPIAh4Ycct83S2S5GSQYMDuVuBl3Z1bYS2IAULqytlflvFu7VvGzDpTy/xKMDoSzsfJQiXuySF2wJY25sS09fvtb3/73Yd/+Iffvi9nKWfa1tV1LoBN8moCKaQjCLwJCInxFljC8eCkcKYCNM58iJxXYHT3BAyVK9QhcAEx65hoLyYLEJtjjAHK1rZPc0wC3gCulRULMoCo62IxAz5t/076neMX8zPwZ20qULUfNoU5teAi0Hy3Z2/OvgVhYoTmlDcOpDvZvgWSApzWKTdWSNfGeq1fanfAVgDnMh45r/0OJOi6+hvrK52lL4e9dI0AjtzMtR/DsT73t/5y+nY6zJl2OEztDPT27MrZg7Mqp+cDD6v7pmnovr7PZsw57K/ruzZ9Cm4IcFQPASHAOABcoCTpvp/4iZ+4B6XNXV0PJAp8NncBWatDQGlzSPV7/vOff58XXN7D0os0dgLJe15AZKzZrq+dtdm4ccAXWwi87Dl+07lx1bOMeQBX5QtwVF666bq+728gd3M4m5Uzt76p3zAsl4nfZ8DQfgSKzCXYv4AE4L9rAJsCZHvwo7GE1WjukAak51Xf+sBhc94z6bCyarc5AcDTdT2jtDDZcPaTFHwxNzQvVE79tQD/Q1v21WvnNWAM0ET7Eu+IbN3n5hP1V6Z59mRHnmDfvi829YmxhLXn+k1p5F3i72Vr7tzjPbZz1oJv3gv+XsbiBjblj61uGwxVrjnSO8fYox9zHtDX88y3xgJwC8tx03EANx8CNHdOJN7vwHx1tP7QVu983+9Y0cbdObTf7TrF3L7vvA3QKMs6x44PByzSUe8rAd/mG8Gm3Zmhr85+38Njt2+2Ld4hy2w1ToxnqWHIsss37ZZ7F9Q+dfSQ3k457zV+vJeXFe5zjOYlE2jjBkW08WTo7jU7FtcufL/g8c4hfu+BmmcwAnN3dyPtGRPmt2Ui0/O51iCbfmp3C+xYBAJno72zLrnkkksem1wA7yWXXPLoBGOOU84xyIHOSQaKWezKaYgNtTnaEiDdnv676Q8AA1jBu+UOM2/zPO52TYve3Qa3jheQ07PVzQJ70zFYZFuoe+YCksA4C/pkmS8cGyfDW2Avq7IycsoCLiy4AzcAF8nmd7VNuPLkLw3oi53nsLWcwWc961n3+fwCQ/QLh1au3n4HitgeDawKEMyhDuDtmYElAKk+w/gAWHL2OKXydwKjamftClyqXQEt2rWHdGHraa8+7jMgwzK6ujcHl3OnDeofiFX7AYNABaeCx/Krrg6v4YzX1gUIal/glD5N1EFe3wTQCGhJr5vDNxArlm737OFBXd93Ad8OpAOibOqAmJe//uu/fveGN7zhHgyp/3t+29Rrc20QBGgslI6ga84t5oGw9f2v/uqv3rMff/mXf/l2XX+/853vvNUt4LO+7ln9dCAdYLxy+z6bqW9tka9/jZ3qlY7rk3TugK/aVbnpw/h1OFxtqNxlf3Vvz+u5PQv4VxulkFgwo797pqDTAl3du7aX3dYu9TBn0bGgBtZ8epYns7JrB+CuunSd8o2P2gY4UQdBK4GCddLZKqY25zy9dV1g8c6HO59tMKrP02Xl1C8xZKt7c7gDB/u+/3fLPyaZII5+2dQny1YVNDLPpDPgfGXIe+ykeOC7uVJA0Lhjr54HUF5AEqicTtSxvxvzPQvgHehrbFfGedijdgEXNwdmPw6yYod2miyDdLf791t9F8C1NV5AEZDns73fu23Z/v4HDNptIajqnZJ4L7Olh5iIgiG+x8bcNCmb47Q6CQQBnTAPN8iJkb7pI/YaNqLuC3yxHboC1gLnFpDzHhdw8M7eYPKCpzt/77Una1MfeJ42mVvOYPVDv0+mqN90or3WSepgDkvvDgFtbDpkVbnNJwI3Ab4O/ezdAexfYO8Erell2dBrb/S8QQRBYu/cE9g0F7jeHGptQ07dnn8/JGcA39hVZ+uyfYbn7xptg+07zyrrtIUTVF5CgnGzZavXac8C6Us6WNB619dn4EdQcPvwiUgARBBtUzeczwUiP9Ghcx+IvL9+u+SSSy55OssF8F5yySWPTnKQF6xMgHocUmAuxplFtUU3hoCT3bHxyG7lBEph+uy2xWUP7ynEFqub/xCwgmnIOQY0rJNlC/iyKHfxbzFd+YAiAGZ/y0G6DnJ/ry7WweboW1h3TyzT1772tTew5bM+67PuGY/LQJGqIeeqe3P6YqfFjI2527WVA2ztGsCXugNHMKNyEqsnNlC6t+2zawLfAFTajuHJ+auMnhPIlcPZNdWR86D+ts9Xdoe2dW32FSsSsFlZnP+kzziSbb0udyjbq+2JbfDAdYBbzwrgA+xj0sprDIjv2kBIDi2bkyKg/+tf9oaJh8WEPdxzsTsDOoFucik6BA/jbFmTxoVcpQGvSeVIo1B5tT/ANpAXow34VL/VDsBIdaqs6peOHNYHBF8AJUA4GwCEBaSqm23x9VE6rd+yp+7p83SgL0odkci/Wlk9H4i5wJFttMumX2fRWKHv6ppdBTxjgnaP9BJ7gnzlGf8Ak2UdLjgJKOw72509W9qZ9AaMY2c9T1nmG0wygE1/N4awINUJgC+3LeDX3AdIAzRilZtfsrHaXPnSXmCGy3GLoW5uqh/ri8DPno8N228AtbQxmNjm+J3Hz7ycAmralgiS0H+pXgokpN/mN3YF5BS8AupuQAUwa+wAk5ZN2hwSozrdBHZlVz3LgZX6TA7gPSiMfcjhuaAmUAoApq4Cgpvzme53V8kG/ABOdGIs7Lbyk8l5Am7A7gV/+i1FjXkp2eDIyUzc9xGdbnk7LhbQAhapi5Q+y1hcINQaQBsxb3d3goDlBmSB9XuQ2rIZ1+6UaT71ftbHO68vQEonG8hd4HXZ2hscWvblAnsLki8wuL8XANz3iTzU6reM4WwZyOs9VHsx7IHA5jC7CthS+toDH5W7qTK8Exao7W/BBwClHRebb3nfpeYqOleGgNMCmgtOLqi6n6/eTj3u9bvLYm2P/bvXWtJcvLu43LcM9X1nbD03ILEBk31/0c3a/45dwbQNspxrY8+0Rq2/rXGW3EB214T3Fd2cNqh+9We2VMD3kksuueSxyQXwXnLJJY9ObMG1WI41ZkGcA+5QLuDIbivjLFlAWlifDI51fC2eN1+vRa8F7eYttcDe7asO2cFqsoj27N06uk4mp2BB3u6tfXvCetJvwCPWF2eTs+R3wqniYHGqFgh/29veds/GCYTRpt3aTkfpNPAvQLfnB7o5UZkTo42JHHQLyq+Duk5dz9eOygVm2fa5eTs3J6u+DoCsnEDC7g10TIDElR8oXR5OTPCAu8QBZuoDBOrv7knkXpUmgqMGXMOuVD8A6doPhpM2YzPrY9tdHWq1DuzpEAMB5CMFWOjvBUowObGt0uuCPn2XngNy6QzQpi3GjDyM3dvf2KXVIUcwsDX9NmYDBrCS+6l8eYQxE+mz/qqP6Cw7c9gi5ifmoNQQPd/WYcEBwBOWXtdgsQLpu7d6CiTZ4r+HX5l7ltUdIKlPSsUB0GT3wDbjfcHJ+oYTvaytM/fozk9+pIdJ17HmzX8AFUzu7hMQwdDvM2C/9gW4mj+7Rp21k/R/LGvgVe0IOE6fiXFqTG8QoeulHDFu03cBE4GgrtuAzOaglhrCvL0MMnMeVifdVb5D18zP6gFUFWAAWu729WWMLgiywKz+sPtg2deeBUxkb94Dm1ZGm80XC+ixv2Uprq0sExsYtgGEPcDT+2TnmQ1A6LdlSrp+WZeAtT3gaoGsZSvuu2fB3k2fdL6vt80CCpiFG0QR+NCPC6Zu+6SsUO4C0Mta9Zn6yLluDWAsb3qMDe5ifauH97h6LCi4c/NuzT8ZrwvK7ZjcFAbataD5+Qx9sruZFhQ3Twgkn4eXaTtA1/pIcLWxaseIHTTseBmh2mX+O4Ftsgxp7/vmKvMYW12wVvtOfQk+7ZrrZNqunCDvQ+zTvXfXWee68ix/r98UPft+OYH6LcO8R4/bRws8myOWwaysc6zQm77Y3Sb0qg71dX3Otvf5Wwc7Jzb4tEG5nc/q08rdfNiXXHLJJY9FLoD3kksueXQSONSW3haIOXdyoC6gavv/gmOu4fTvNs9dRJ/O0YI48oMlysWOJcDedS78DbTiEGKxYF0tO3iBP8/GcMEU3MU0wBkw7Jn+X+fBd8q22OfE5dgFcGLCBKZhcmJsdJ08rgFoldOhRDnBH/mRH3n30R/90bccvH2Wg4hlmQQMAfEAlph6dO9/eVqB7N3b531fPSvTwS+1J+YmBzk7KTesez2TcyGlR9fGOK5tsRAdlFVdAgiV133YsN13Omw9IyA83XG8APG2m9v6fjL+lMMxYqdrr+uwr1PGTtj+2o8ybNVXBmCQPQA+eo68iZjXGJXAOYCtdCkFVmo3++z617/+9bfnp9eYOIDmnl+/2LJe3wfuxhSPBVxZ9We/3/Oe99yeu/mlseix0Suz+spj2vXYzj1r0zB0bX0X6ND95oDaVGCi+6pXgLLt3vQuFys2bCCucRCTOD0toOsQQH27LPXKMaar57LnjJM+qz1SIQAvgAGuB85Vr2yVHXHW5TIGXNZ2ben/vsNWpNd02N+AQvMYW2GnwHtBGraxgCtZgLE+2WAbYbvYbF0faNxzAt0xM6srO5AWQl9JuyDnsf7AuvaeKJ+ug9OqjwPc0hfwdVmc+sAcnWD2V3a2qs1dJ4gEjBRUBJYIRqbbytkdHOrp2QIBmHfeS66R8zMxL2yaGUAJ8FeAYwFic4AxJj+nbdzAHYzx3TXguQtE7lzle3a7YNQ5/6mzd7Z7t+8WhGJD5lXgn7GxaST8sMMFmNSJDWHIn+Cfd7bUPcBveki0WQBS+zZQsGzOfY9sAIdUxoLKhH62L5cBq8/OnQibFoG+Pd93G2zGYldvLEyAXe+7nitQ0dyH4dn1dlUYi9YV5sDdobTv2tXFBp77u2Btc7ncyav7ZUYvgErn22ayOngiMPaJrj2/W/smD13Lthe89bxznGw6kC1zme1rF8vwXSB/x8G51t01xbL+N6iw7wL1xOj2bjzrpzw/C17vGOi3d6xDK5+sbMDkqZanSz0uueSSZ5ZcAO8ll1zy6KTFZA5GToQ8d8tQkN9RKgDX9P0uPk8ngqPHkeK8c3BOh3TZWdgXW+YuygNx5J/FLgxMcChUoKT71YODsgeEba5JOXQtlDlz65RiyywgBAQG7lpEA/0wOrFJW3BXvxe84AXvBTYEotQXgEHbr3ebsFy6HL9l2AHHMIT28KKEc87Z1PbVB6cAGyepnYE3np3z37XA5RxDILFtpX1fLtkYvNU7Zq4+txUU4BfLMICyn20XsAbIlmzOz3Lrtm1b+7Ff5E1dNjZGJfvD2gYQbw47gMwGAxZE0LeAt4AlQGKOOVaw9A2Ylf1ffd0L2OCUVx/AYdI9tb18tC996Uvvnvvc5979wi/8wq2eOeLAqMrC+On56d/vF77whTeQt8BBgnlbPRbg7m8M666pLfTU2KqNGPqJZwJT91C7vmts6t8NBq29cZqNU0GPBZw2aMQpXtbfshClyqCXDRhhxJ0OIvAGiLhsLyDT5hKVK1f9BDMAJcaPQFliLmmMpFcATeVgCusHTGo5h7FQjYu+M76MN4GDxiHbZ6t9DqxML33f/FO/lY8YGxkLtmsbj+YI9tg97AOA2T0Yxv3d/GCHx4//+I/f7v+Ij/iIexvv+U5xN09WLuDb2BZMYONSQWgnpnDfy1sqTUb2U/CDvQO36RMjtWdUF6lqFoSSlmDnBHMBNiv9CrJsAOCJ2NkbTPQuWUahd602sstk7XYPAnPdCWbpI8D0AnGeu9cCmsyZyjb/mfOMYSxb79X9fHMFG6dyStsdos3eL96Tu8tkQVv2uAflATJP4HDfY/pkQbcF4Y17dfcup7MtZ2V3ETwE+rpvAfAz6L2Bqu3vfrJNepPGJXsX4LQTwI6ZtT12IHi+wQX9rH/0efO7gxY31cCCuhss8CxtX3B7+8L1Jzi7n2+5Kwvgri08JK41F2+6ja279ng37c9DQQHjZ99FylndLFP/ITbytl86izMYsuB5P81L3iNy/BvrO5Y2EHL2kfmud1jzt4P8Lrnkkksek1wA7yWXXPLoxKFogEHOFCcuB9p2QQAIZ2i3me1idRf83dvC0oKUM7oOSXIukKVv4Dit8yeHY4vWwMfYCcADTONA1JNptNvvF1CWD5Cz6nNtA1wpT+4zB9Fs221x5UgAzgNAADzyRp5pKAASHK++k8e2w7G6LhCjzzCdgezbb+pY3wG3ON7ASzrF5MyhkG8RuIMpW5swZrsX27TPgLCx9mxn7/tAXTrocyxGZQF7A0QBV9iV6+xx0jhsAEL5hTlf2nw6mLsNUoBg8/kBJRboA7rrh2WUsxu2auvtySgCbNVGh8DV7g0isH8BFofBAWL7rv5OPwFYwODq8LKXveym17e85S33YHWOf7Yll2KgH+bkppjIfoAE9Na1xtE6xuxFMKVACnvZcR0QvHmB5UHGOqNz9gkkBFKyTYd0sT8BByzhrk0fBQTqo3IKx1auPv0fQGls1m51xCLMNtNN9mq++LAP+7D3SukA4OFgA0zMG+Y99el/uTNtve/adCzdhVQkOyc6LKm29sza1JxWGzDEsT77HXu/+it/Ae610WVVyrktLYM8oA5x1MfmdTYs7yl7lw5CXuLdAk1XDp6TXqX/N8VPczL9mf8BVBvo22CeOSCRlqHrpOTw/gKEZBv1bXrMlrNp+VuNQ323bLcN2m1wUH5zQO8C+eq88+qCjux99ciePXvfH3vPCRq6Xr5588AeBrfA6pYpaEKvm3eZ3SxTdwHjZd7qK21nSwIs6g2YX3DPdYKVUu/0vXmfHe5cvMzgLeucY3f+XeB12dK7+8j8pp7LqGZzdLBpEHymXq7bn7UrfbfvDu+oDcAmm4LFmGn+aG7t/w2y0PkyjHctoe0YxCfQaB4O3G1MLNt036P9f6arULY+txPFc/YdvMDlQ4D5CbCesgDtfrbP2j7fd+sGUBLz8+7e2LrufRu4ONu0YPMGEDY44WfH4tqocb62uLoQ2DK3ma+UuSDzsovVaevskEq7ly655JJLHpNcAO8ll1zy6KQFphymFoXYcHtgCid2ga1knZl1/pZNugd5YLbtwh2AAqgAsiWYn30OLMImxtiqrspJ+jzHJcAkOVlJ6xhgt+SgAMAs1jlSu711QeNkAeF+90ynuGtPQEPO8Bd90Rfd7pFPj9Nc/XdrbPcFCFvgB2Dl6LXID9DqnoAMjjLhNOQ4d233d11ga2VIwdDntlEDCQL9HFBHJ/2ky8qrbgFPmHOBugBaOX1t5+5ZpRQIDOTAA90cRAaA65nLSl7AYdmabArr0DUL4NevAPV03t/pL32fzBkO6oIfSfoDcmLOrF26Zrdocsg4bJzIbCo2YSkTAIdAVHaI3YuRlf0AXvr9kpe85MbCXVtl+w5hy3mToxX4kPRch8PV55trlf0FHrT93bb2nlFflyahOr/5zW++P8iua3/f7/t9N312bW3D1gWEVZfqDgiujtIrLEiygE//YxoBfPvBSO17tm47d2An5mhlyWltLlrgDCBU3bLVgMbmBykXapO+lrag59QXmOSY5+ndPABYwuBnx7uV3dxh+3PPk4pDzuPzgCJsyf0bEKCeCzSxzwWMdpv2bq8HzAN+dy4+gRhAJNsm9GlcGiOYlQuYLtiAGbv5QRcYM8bsDlhGfbp2uBpbq+/rx35KDcHmGgv9/O///b/v3vWud93mra7tvnSfDoDWUvvsgXfAy81Jrr+6L/sTBKCH3dkBFLOzgh7Yu34x95yBA+N/wSF9uH2wgKXrgVr6gSyIifm36WcwlF1LjNmtH1usDHNQc4axUZv7G4ucDbILgOnW0bg/wT/rDfa57d7dAObPzX/veeqwIKe+O9u2z9l5agG8HWvLZl1b3jG16wZt0ocLQG5fsEFrpvTT370/s21jxfvM7w1ms7OtT30DPO79sIG+ZYNa/5yB8f0f47z5fW3iBK63P09g+wRP6Vwd6JacQPXa+Opg27zzS78dcHvOecbNBph2/gWKq9+uAU67XTBY2crbNdsJXm+7+tvOMmu6nVtP8PrUUc8ScFfWk5UTkH8q5elSj0suueSZJRfAe8kllzw62ZPiMe5s1+XUA8Q4T3tq7+kcJRzH3RqYYBAAUDgI3aseJwOKE+6enImcxxz9QCjM3XUUOAlYq5uPl9N8HnLib4xTzLplEC/bYh2SZUYs45Hzi21Vnd0HuAR+AgSBT3Kg1oaYOxhq2NbAVGVVT4d1yfHX/ZUVgFcZ6S59aTs9ADQrB/CbdJha4Ejs0b4LMJGfF1tTe6q7/K1J9/VMW7lLNVAfV+fAGA5onwHKcjarb5Iz8sEf/MG3+tiinbAnfbTMIkAZ1hmQrWtzjB2OdvYdG+D8rk6xeR00Jb+xQMMGOtK/w8He+ta33m+/B04CRzG/gT/L8FP36poOqy8GZs/I5rvn1a9+9X3eW3bX/emQE4ghq2+Na7rB2i5lgzYCHB3ox34ru89i+lYPgBk77LoOJQvIXMBLDmIg6TLqFhQB1Oh/QOSCuF3T97/6q796awfg2iGJAFqADEBNfwLpnGr/4he/+JY64Tyh3Ry2zCtl7CFPglXyfmMqm6s2RzPwXRnGn7y7mML0pHyHm3VtgRMgH0BVH7vfPCX1CTC5ecXYbFxWPjastBqVV+qGgmYYyemz8av+9Gm77x5QuCxoOVztfqAbeYq9R06Qd7cgsw/BltrTGMJGDtTve4dWfuqnfuotAFaZb3zjG+/BTAGK2mj8Yy0uULuM5AQYvYeyGWcLemsPG11Q1rtLfwMh6Uk/KgsIt++zE4wCeC0Q5Xsg4aZhWLB9x5oD/Myry9Y0P7Lv7Qtz6tZPX3vvncxM9WIvy5ZcVu8JeC3jceuqrUAu7wLvBSk/1N3aZRn2yxb2nAUD1wa9czfgdIKzeyiZ+WKBXfra/7VrWc7LHs5eWzf0/hLMyd6bt6xpBE5OPZmHVv8+Nx+ca4EdjwIBG8Q0Hozl3jcL3q8+jaftS/PwqZsdIycwewKo2rDzxup234fG09q3tal6bzB/gy/efQvIsz3t9LNgurroj62rwMoZsDltQ1BJ+q5+OzD13EWgf3cdL9iWOGTtIdD9kksuueR3u1wA7yWXXPLoBHOPo7YHLi0Qa8G5zJYEgHouHi1UlzmU2C7dZzELHJTjGb7nCHOaMBE6vCmQKwEYLiNinVBOF2e+a3fr954Kz5nqO3pYENhC/zydXfuxm6UiACQ4vAyIxDHA1FrG0B62Uo7ZcljGvsXW5YB1TQevOagLY5hz208gjty2PT9gLj0Azt7xjnfc7k8nH/VRH3W/rT8glvMVSFT/AGv6rMOZ5PjN0azs2t3/+qP/q/v3fu/33tdrnaf6Mb0AMiu7Ni4QVlkBS/QFEOIgdQ+WmHzDSewm+WI5mPqJ/jh561Rp88keMjYWnNgc1ACN3Tbc8zENASGANlslux+QV9uNCfZQP/XZL/3SL90DIhjQAOF0tHVwwBbgiv1iRFYu0BA4W302ENMzqjudBa4aV0BuoG36D7DGEAIQJ5ji2JIYjcvcYtcn86rrKrvARP1ZOQIhAefZaLaLibrzyM5D/S31BbAnsE8f1CfY9OYn29ETY46zn/R/9apfqweb6X4OuPZpB6AfYITxiFVen3QvmwNSyxFb281bD6VTUK4xggUb6Nl4xTjtmV1TGc0L1SswV//IPyoftDlBPlB1WkAnkevXmFug2by5c9+ycoEdq5t9T+w7xA/wpmuyz/pBkKLvmzcq5+Uvf/ltHgzMKn91/S0A47nqs+MP0GaceqfYjq591V8O3wVn9L16awfQZYEpZS27Ub8usLzBB4EC4PDJVF8W676Pt3zXn4DqMrW3PzYYtv25oOcCVssmVg/vwPOwts39u2uMBZq3njun+39BdUGYvX7zeVsb+I5+ziCwz8+dGcuYX/1q965DNiC875YFNf3t3vMA0H5ipzd3qWPjt/ezcWBeP0FnbVmGrQMKGw8b8Ny60pN7zIXSWTWvShez87drtWftfdcA238bFNng64LuW58TRD1BXmNNeWxxGdLeudPfRwABAABJREFUYWtb+zzjfwMo28YFvbf/d2wv2G5OWzs/678A9wYtrBUEMAXfHiIcbCCp33aOIFBccskllzw2uQDeSy655NEJp8g2a8wXi1PspMQCmcPAGbPotU2S07HbG4EoLayxxZZla8HL+XOvvH999ra3ve3msAdyvfOd77wx2j7mYz7mlod382G2fTu2afdh+FkkrwPLYeEoWwQvyMNJlarCIjtZdvKCBfJOAj0xBrEdA5Ww3AA9mNPyjfa/OtkKveBwf8fiCcxoEQ9M9ux+B4b1GRDfwl+uX0BJ0jXAaw5H9wLTOUmcOqAvJwR7D8Oka6tfjMsc0X4DZTlVbAKwu8zOvuueQCrALqAyxyy2LGAVA1LuWk4mxm36aDtqdUqv3bdMTA6/eqlDnwXmJcuABEYBloFjTr7evtqDCPsu+6UfAQX5QQHIAC8MUYy4nrcHPSUY0NlMdTROAY5YxgI4XdehbaV9qJ7GX/2angssxNwWdOEcdn9tlE9a31Wv7HmBOgGO6o2BvGDJ9jFHdB1bAHy2ku00zgN6HfIX6M32AjoaA/V19iYYRIC72ukZQG31OgEGNr9AVPdUJ0GS5iHjov7bfKjGETY9HXTNsoYB4pVVmc1lC/5UNoAYiApYALYsqGyOM28Dh/uuPN4BvuzfHBtrl01XP2x/QA4wPJEbfQ+hM8/SV8Gn6tzcsTncXQuENi9LU+J90HO7d4Hcrg3g0p97wFg2UnlveMMb7vNQ911s3/Rae6STqZ7LoFtd7rPYBnsAHLJXwNuCpAs07n2NrYcAnBOUcr3xam7d4MeCj8t29vwFpBJt3HGGfbqg1M7lO0b06YJxgCJz2MlIFVRVH+9x9m+9AMgF8LrfmFpQdMFwa4pdwwBe1VmqIwEp48m4PvW+z/AusBZx7QkCb19tGSur04fsZXcxaP9+t+/J5sDeid7vBW2X1W/87hy79TJ2d623Nuu3d5zx4MwBfdb9rTnUd+9d4PO0lbX3vX5tTjtOkPmJ9EvWBnec7LhZWzIHJOp62pL6rb2YJzZAsrt41obO4I05n91YK689mQ/XXvf+nfMFMDcQQ3/Gs7RclbFrkQ9U1jafanm61OOSSy55ZskF8F5yySWPTiwcObZy4bU4xAjhYGx+TAtXi+UFaTkFHI4FgwGM2ElARddyLBaEAW45vCfngvOG1SuPaM/HbHQN0HoX8csks2V6t8Ku47wgACbIMju1e08Tx9aqXEzTrg1sqC0BGNW57wLmYug4ib57AzAxUAEj+oWuOADVM5DLqdrKWKDIfcoIxMs5CADR7+mK44CdFUuXswAkDkSRCoCOlF0fBR7GPAZW1xagUABTbLr+D4DRT6edbX5Fzlq/OaU9H1P1TD2wOQuB2m3r77sAtFI/rEOo7t1n27t+1f9+liVFT/L9YkB2Xf3MHhYgFLxYULsy9VkOPHCBs941mOrZ9p6GHXCNUU0f6pVtZVeBoOXLlVe2vL6V17N6bsEQeaADDNgMYBIj2rZc42tZow7Oc4AgoFpe52UhAn6khaAjzwWwdG96XHZn32VDzQHY68a3Om1uUfOIQ7kcBud7gHnS55i02ME7F/SDubZsTEzgDSD1XTrBbpY/nJ16vu3V9VPXLqM5ETDwHIxRgo1au8yv5oHKaF4AtL7iFa+46bS6Yg1Xn3Tc/X1ecKxA2gn8YK7Wjt35gL0L/PQ+AEYvOxnYDMTtM/NP7ejvBFgM8JV+Q4qbfUcALmtXwYnGeUBYc2tzV9/pY7lhBYIqtzKBgg6KMocvIIjtnmxqCfPDvr8WxKsMNr7BAjZ9Mvn2HaqdACFzpHe1uVFdN2Cn3srZvtRH5pZza7r71MX7Drglry0AFNC8gWH1Mh9hGguKLZt367fz7NZhmb3LKn6I1dlzMc2lSvG+ByarzzLhtX37iL7MV56xdd6g3oL7C2Sq44L3u47ae9Vj26ifst/efdYijZneP9uGBRX1gzKAwQso08vW2XvdWEjsELL22Dlbmz1vx+iuFZcFa+2yOl7b3XLXrhd0VecT/DOmBVk3sLHs9h1z9HUC7uqonhuofGiNxbYXZN55gg57J2/9peyqP3esbj8I4lmjbN5sejcPSPckR/8ll1xyyWOUC+C95JJLHp1wom3zB+ztdlqLSrJO0AJVuz0PcLrbND1jHY0T5OXsLHjc5y16n/3sZ98OzamcQJ7YuxxdDnjOO6B3t8Ptdrtl1ADTeg7Ag0Nj4Q/sksO1e2ytXoYKViinL+nvHDL3BkTEPg6ICGQFqHLaMBcDfHqubZjKBXxWftuSK7f/A56w4jjGAca2bqaXQA9pAziGARy2anZvW7YBGTHm+h5QzSFNT/I3OoRKX2/qip5bGUAsjkmAU9cFPnXt8573vHt9yeW7DlV1SG/yxXZtgNSCrcuYtfUSyMg+OPsLjrBrAJBAQN/1zFhSbGJPsl7mDgATwAi0XSe0+9L3nlS/W33TeWXSFXYrgNLhX8YYxxSIgiXOwa8MuUkxyQFhP//zP3/P4A7QzTbqz9qnv9mcbfAA3n7SYdek5z4vQCEVg/Fe/9S/2TUgDuOy+zBe12EW+ElP/V1dA6HlcZXqA6Cx21Q51X3ucEK6M/dUJptPT/IyA6S7L50ljZVlEvec9FgwqeDFbtV+7nOfe2OtsiWfY5KaU5PKk35jDw+sTtK7ADo3T+TOvWywcgJnT5ahvxvTtae+7f8XvvCFN3t+z3vec384EnszB6Vv7Dy2psxEzmDvBABD+gN8L6i3wb19p5h3+67npavas0G2k22XzeirbAMrmP1gjjZH1JZ2MHhGbe7v5tNNN4T9LPC4ObcFNHt2gRE2BaDWjgVlT3bogrXabj5YEO78jh0px7vs3L5vbJ05VtkaXQowqaPAjLlRe7ybjdcNdAFyKy+92Tng+k1TpC1dl81kJ+ZR7+PdvbN6ZHtrB+c4eEhXwGP96r1tFwtQbNcuqy99ZP7b97/r9n3isy1Xf+73yxxdwHp1u+UDFTfA6T0jyOK97wDU5qgFoHdtpb2CvptK4wSrPXtTWjSmegYAcddV3kHb3p2rluWs/H0WG9W28/79f4Hyh0DdnTPoSdBuD1FUtoMm2eG+j9mWMad+C/guW37B+wW1NxXIgsEPjfdtqzqyacEx85n3z+ptGdbWDg453XXtJZdccsljkmvmu+SSSx6d2NbohPFlWVi02+J1AlbLBsGiBMbsIRcWvoE+lQHMA+xyKADLKxbJff9hH/ZhNwe9Z9gy3AI4MJSThUVlO6J0EMsasYDfnKzA501dwGGysObYYu9tXl4Le4t7Zf7kT/7kPSsTU00+0je96U23/LcBaBiAQCvAU0AwHQJAujdgTtqD2BkOvaqcPUzJQSo9v63YAVdvectb7tmCyyKrbZVjSy02J10D3QAEybLx2EXPyuHs84CRDt8KnOneWCs9AxM1wKyt40n1677apD8BLTmY7I/dSCvAkbSFfvuAfcnNG+AFTA/Mrl6YsN2rD6pf9Q+46//0mD71c8A14K5ygdzqUpuqXzrsULnSCiTyt6pb9UgfHGXOJl32P3Zu9z3rWc+69Yct/QEs6ZfziiFpzDlgquAIXWFCVrfKChDTHroSJOlzDP/0VX8u01Fqiv4HPHAkAc59b5t65QCzbS8FkjhUDbAGTOy6+gPjfLdvL7ALUATCYQ8b4wtUaqt6a88yZ6t/enAdAL96LJCZTQfy7oGQC+4tY898tnUyBqWMMU/Q4QIBy6ZLgBjLXjQ2baGvLdW5g8fqWwDFHii44LzxBTgA/i3Tb/+W2xszsnt294fxDGAC4HteIn/x7iBRp7UvOcKxGQEamye++rAd7GMpJ7AQzQ/Guecpw1jed1p2j9ltPgSOem+eqQVORvACdub6kwW4DF/vCulpvOPWVvedpt/2gKwFotzj+gWgTtYgHS14RQQqsi/68T60u0I96IEN2S3i3amtGL4CC/Sz64wFs6xJzCPaK2jtuuYwdqx/T5s/mbyet4Co9hi7W47+8JyE7S9QyU6WJaod/l9we8FR12JKG0OCq9j1grXqbueFZwIM7ZRZZqvATT8FXrzz1o62H4ydDXyuXa897XvNPLMA/4rP1mb1wV67OqSj7WuBsDNYYT0qQGWcs4cNGmqXupiftEW526/q4G92dwaj9aVAXX8XMO3d3FzVuiRpjbABXAFv76DdMVebesdKzaW9vxlZO32q5elSj0suueSZJRfAe8kllzw6sQDdwzbWOcQq3cXvsjIs5lt8WlwCVC0OMYMt5gHGFrvYewsenmwkQE3gQNIzgblylHKIqwNAEAi0rB3tWFZvdWrBvCzNzf/rO1u0T3YRJlVOUQCaNnCSgAfavVvEHYhGr5iSnDJgEqA50Y6EDpPabUv0Aj/dFxAFaLP4r29qk7zAgX1d73Cr1Vf66P4F+fqu9qpL1wRolmc0x6py3/72t78Xu0l/1aZA++qengJvAJwbBAjAxOwVPOD4L8ALVMHgZV+1Ix3HXpSOo/a/8pWvvGdIxzblYPWZ7d2lc6h+bV3P2cIyxYrEsuEkC1KkI4fZ/M//+T/vU0dIeXCy4qQakH4BO+tDPuRD7n7t137tHkygo2SdQofbYT97BmAYMzSAOZ3lRLLr7CqHclM/rKMKbGW3CzSyy2U0coRjqGdz2y7t7UdAKdEnAgbAF4AdcN5v6TS0DTiuz9meuQNQxVGWZgIgTXd0q03LNjNPSp8ChPUcc96CAAsWGbfpknNuXhVcAthgXfUs35mTMLYbi82HcjnTPT1Uj8Yx5jqwpvqy2d0+vcDeMh3Nz0ATOlMX+tkAlnYtM16fLnC9TFLvFG09AXNzovEhKNM4y65tcU5nfcZGgDnmOgc8si36WjYjljD7AlQKhHpXrX2wvWV+AsAWdD0BQ3Z+ArzLWMxm9rN95r7b1BUYtKke+h8L3vXmTPU0TgDK3rPmXPoEDuqXBe31cXoWRO1Hmg/jMRuUO3/HsfzQxqc1w+pDW4DxghlsVLvsnGGHa6/GuXFJD8bh+a7d+3aO2p0igL1TR2dqhA3+rE0vsLuyQJ15iv56XmNbEEQQ2PjZ9ZO1hc82SEb/9VnlFUA+QX/6d/2+I7TZ+5w9niDpMtqtJ/XpgrRsez8/Wddk/2cv2m69sYGKnu+QRCB36xj379jY4IH/t5/18bluPYF//b1pVqTvsjapzMaNuqjvuRPC7g9BK+OajTdfVAbm/Hn+xCWXXHLJY5Fr5rvkkksenWARWOSvo3cCmMt4sbBfsBQgCRjZQ8wsbJNlMtlSj4EF+EssYDkkCzL73uLdAVe7PdhC3GKbs3puX+3vzSvHqeAkL+hsm67FdIIJF/iGEZbjsPU82S+AgOodUBHLqNyotbWcqEBzDhv9nLkPAUlAF9vPOcjysNEroCCnV1qHygn84wAEoDnEzPdsw/Y/zwXqrzPVZz/7sz9797KXvez2WaxTwEqyuTrpJUcnNm1gZqDUgkbqoP8TztKye9ZRXbYOhwrYi6G9Dt+y09NFIDWAx2/9lu6qI50CFDhbfV5b0sXmxxU8OBmXAIjq0vX0VNux4QBiGLMY7wsq1ffY2wEufVY7Api1FXgC3AK6AHWMfWDdnpwOUFmmGgZSZQcKBJRn+4Hk5o5A1bWRdBM42bUJ8DdQvGc1jqpPNpHO6g/AmPQg+rR6dF/tff7zn/9e7EhtMJYdlJh9y9+9uazXke75+qHPN6iwLPGu7dnY3xxvzD1giHmvz+l5wbkFKIAzXStYtEw5Y5He3f8QeORaTLX6qPQ2BSzoxlih767RXva+QIxnAIt8n5j36NVhkRi97NpOiW0LsEk6lPS/W47Tc/+XIqPnZBf9bq7S1q4pWJEN9Vn6a24172EuAnHZtPfMMr29R3wnz/uCh+al7aPtg/NdYx7a9+qCu8rYgxR9d4LpCw6zI3MR2zKvLAtTnQVIAXNrh8uyBBh7xwN87WY5QTrvow0S2VHT/1LCqJ+5xDOr075j+t1cJQ+5dnfvsne988xJDgLFtNZPy6C0zll25PadvvQOWkDT+sn40g90sixPdTBvLGPYuoDd7d/7/YrAHKZmdr9zu8MGvf/M5buLyXxs7mDnjavu3xRIJ1C7gQN9ZmwF7kopdI7vBW43eLBg6LZ93+MLlJ5A6gL/3onu2XI24IYwUH3ZOH0JtPvf9Z655a4O5PD3Dtgg4e4UECzcuWHfAexw16MbRMbapQfj0phAyrAzbeetSy655JLHJBfAe8kllzw6yRledsCyXrFzAQELmAJrN4cpMM526y13GTHJOjkAAdsqORUcfKdGJxwlC3UA0Ob49EyAjXsxafrNEex+QGZi0W3Rv4DsMq3W0ePY5BQF1naQFwCq9BELDi4rrud2T4BuoEqs1353WNDmDMQ2s7j33N3K7VCaRD9JE+F5J1tPOfVVIMiCMJ67jMzKj/0XQAb88Z1cwj2n7wOL6r93vOMdNxvbZwbscfD3eR26FpNFTmAOj/xz7AtDx9ZbttA9gYkJ5175fRewtTpL1/KdBiDQT/0HQKl8h2X1vOrdM3p+fUvHe1gcMMY2/wCNfhw4xaaNMWk0an9pENJBNqA/uqY6YADTJ71Ja1B9FiDO7oClxkrl9TwOJNBzt6rKHdv3GPnLDl5Wkd/9yPHcvQFrmPqAVAC8shpjgibGrHQV/ZSepGfLHx2Qa6yre7Zb32H2s5n6pfuAdlis0j04lMycsFvizTPaBXRYJtmCHZvCxhhsHrDdfJ10IL4t7cv2NabSXXWvvcAG9TPPNr7Mv+Zg9XwIqOv51acxINCRrtWr/7MfB741NpRvTkzM68rYXK0+ByzIOa2P6XSDBbWTHbM/KWEcSOkAN+0JnK7/CrI01zRuur9+7flYcY0T6XyaWzHBHSpn/PUZPZqXMXjtEvC+WABX7voN2K3+HwKuNpBEliG5gPvOJ54pQLnAKDa1ceX9rT6bc/zcsq3PjKkF5Vy3P3Tk/YIhqw3s2rtA7mts/WWzCnZgXiuDnrHc6V652id45h51whZfYBHgtQCvAOUGT+jEfWxz1yX+dr85IBEYeeg9q7wd09YjG2RaoG/LMM4AfzunOXyxuVau6uyXLgHPUl8sGGq+Tae9G1qTLBjMnndeMWcJAghA98x+HtI/e+gZ24YdH9vOU4c7dtYmd+xsAHLruuNsA7vqnx15Z6VTc9UG95dxa0eRMjZAs4QBY0kb9Ld6LUnAe6h75II3n+4adN/de9aD8rvfeLMu291qT0bo6+kgT5d6XHLJJc8suQDeSy655NHJAkXJbv9a9o/F7gKsHABsM6wHzibA5GQwAEo4OAvK7ALZ9k3smDNnpO850kCDXXRbzK9zeQKt/balzwK+srBf95mcDPXJsQooqdzytXaAVWVUB84v0Iszsvro4KMP//APvz2/bfO//uu/fgMYAyGWxXGyv5b5pTzgifoF5uQA5LgAYxak8ludAjBzLLqm+5zyLCVB7XjOc55zOyQtUHqdU4Bwz8/BVL/qgOnJ8Vuwfx3WHMsAzkDhDl4DPCTpMXAZgMDhW7C/+2MA03nCnnJ8lwmEDbpMI3ULRGTfDr+yZVWqDmzqtTOArnG0zjSQcx0ywCOAsHtjO2PD+ml8VYd+OMfA0gSjLftZ4L+DpQJGA7ewzLouYEyqiq7Hik1v2F4bxFlQF1OLs8kxBayU0gLY5hCv+k19AWGYnQtedk3A2zKWur/61gaAHkCLHrOZxuFuyxUkAMADHOq7yur51auxWl0T81dlyne989/aDkd8wQ31EQgBVC5gw9Z3u/4CbwDUfjvwcHc7YJ5iINbmyrJNnainsUI3HVLZ8wHECy53T6A7EB0o2zUO2jOPyo3c9cYPlqWgYPfLAZ0+bH3vut0x0PeNs4DldJLNN5aXfZnU3sZAaUsKgsjzbcs6Fp4UDNmL+cPOAvk4a7Mt7mzJ/Indru+xlL3n6Mw7wXX6fnPLL8i7LEB9xLZWr8tk3Tn+ZBLu+1XdPAcQBBzdgB/QegMPC6QlgOQFIQkGuvrTsTlgUyIAsbxLF0D2Ttw0DgCtnmdnD1B5GbDmDbnV7VzYsdS11WXzdBsnbIV9A3rZpJQ5+nrB7w1uarfPgMvetfp5WdYLNC74tyDv9otnr50t4Anoq60CGOa2TZfFBhbclxKjejfX7HqNDrVV32ijsbEpQXbXg3720/99v7uw9NkCwcvQ3bXOyq6Ddm7dH+0+WbsLCncNkJw+MF7tCvOeM97YjXl5x/TaqfZsGqllGO+8Y72trvQoiLQBGu8CuqP3ym1ebS7tmdjdfZ9NSPtwySWXXPKY5AJ4L7nkkkcnyypJzpOYl22woOgCA7Z65nwv+Guhu9tLd0Hs/gUJOde7DXZzJHY9xlD/22K+oKW6qrtt+a4lnNyel9OKKSYnaYCebY9AyXUYFszu78Ct7sFWTLBGHwJ5uhej0DVy3+4WbU6ZxXrS4h24ElsQC6o+CMTousDCwKyk792zwiGpnMAY4NUCWoCHfgIR5YiLScdmajdwcgGBwOCci+rIUeTsLaCAYVQbA7gD8uoDoJAUFJgrW88Fz/VzYJHt4n3f3xzNbdvaIjtsCzgQMkd5mbPVC/CytqAe2tLzbBX2DIAcG3AvFljAdvmGjUdjA2gCoKpe9eWyhZcJXf9UZ1t0MYxtJ+5ZAH+gb3WvTOCwLdYOclvwAZjHJtjRgnq2hK5egOlJei2lwgIlQFNt01eY/f3GSMKeEpBJ3va2t92eX3qIUlPIw71M3D7rb8BjZZTCos+z1eqlb7ID6TXYi+cb/9Wxewp8mEvSYWXVjgIhHHo2kxOOvcxZNy4AXgVJalt16Eeag53jujdAHBixbH2gP/CvgxWT6lNdCioJ5AH502nPSjc7r7GX3Rqv36WssQUfmLFgo6ABMGuZiLtrpLrKK10ucAEih1AK6jVHlgJGSol02WfGW3XvO+0XkFBnzNCe01jpWkGWzY1svG3+2U1htEDVOZdtEPNkHrpmgwcLdm9gZQOTyjMGd74BFprLgG/G/+7GMP8uM3jZkgskLdC8Y3TntWxnd5YAncwLG4hbdm02Zd7fuQVgK7Ar/65xrP50BPw2jxpPO69veXYFmCOX0WrONRZ3bjuBWO8RZeo3wN7+vyz3c2eMflXm7jzZ8b6f6Xfv/eYUQDaWrBysa1vuUe9NsaPf9Lf3JZvRrrVj11RnOzHWPve9sYSBXacJinjGmWv7XM/pJ9f7jK63fP15jr/937wkeAvMVXfrRu+3s8ytm++Mv30H7309Q+72bcuuiwQk2ZlApPqxSe/C3mHeP/V9dW0sFKhvXXi2/ZJLLrnkMcgF8F5yySWPUmxdBNQuM2idvmVJyffFSdhcqQlQzkJ7HVRsQg7oOpPrKHEGOFgtYHPGbSVU5i6wE05Gz9+tqrbeAs08zzZdjkP35fgDC1cPFvlJn+dYOXCn+wKWOJqYyICUZasCxgG82GsBG5UZQNQ9mKdd33MBIFgZHERgyLOf/ez32mauXwCEwHKMScBM5cvfW3k5wMtgC0hSn3Tf/4FQu+WXc8oh8n/17L4FxQOeMWD1HfAsIDXQBihr26g+BPQE/CzIkv5sTVxgBxN3HfwEqFNd+w5Apq8SB3r1nBiV/fR/9dvT2QFi6wA7jI/zuvkaObv9b5sykEp/cAhzznIG02PtzlaykWwnvQAPAoc5yBz/9J8+GzcOzQHa1o7SZfR3de13aQEC4wNJ97DA3eLM2cWwZO/1V23sXizqdNkzMOyAfemxdi2rDTiTXgEVGGPZSm122BugpPrIe129OcHVYdmPdGqsbsDKwXd7KBeQBIt1GZQLipinavsGwwCja0sLfuyBdtjtywbueylk6jtjSgCqsmwpdpjfyfhzoGJ2IjBjyzvW3u4SEDQB6mjDAom25QvGAGNOQE0dMNqByObj1Smg1fzMDrquPg90bm7rxziTbqR+6pr0sH3Q/OSwTTaLiVtgCshubJkz1Y3Nm1+WRUcPC6pu+72XgO1sfkHJBUJPkNjcaS5a8P+hwOgy7DdYqv7mmg2+ml+ItpFlmm6d2AQ2LL15xxsfnuM9pH2ezRa2bQIk0tGYZ9jEtnHHsOvMA+ojaHr2g8PbXIfxuEE3dk9nQGN9a3204LVnL8in3dv30h+sPS1gusz7Le9ktrKF2pLtp1NpK+z0yN6tYdiC+cc8uroEND6Uk9m4ONm3duacbNYF7621FjzduWVZwsabflgbV666n7pdHe18TNZmfK9PznukZNiUMv1IqaQNa5s7drTNONmxtH9bQwOXrW37kYZIwLHfrRN2hxK9qNeCy973ctA/WTnX1k+lPF3qcckllzyz5AJ4L7nkkkcnCz5aKC+Dx0LXllWLXeCcxSfwwYJ82SDLflmA0+JxnV3P7jMghAU0RgIWyrI1doF9OuG2pQKUOBjqzUHbRbnDW9YB4yAtuHAe0mR7qnYnC/C4LnAUwLLMNodz0VPgg0O+/J/It7qOVY6qvJH6T/8CZm2r3tySXROLsXq0pR8opNzA5sDUrn37299+A9KWkd3nAXYJMNOzK8s225zQ2tb26sqojjlQwNsP+qAPutdR9ci2AoL7LKAVUJUDmx7kkmVPPVceUQJw4DDR1/YHRmr1qNyeCTBz4JstsLUhFmT1X4ZT3y/TrzYLBgDNao8t+GtzDpHaAwmNHQydcukmfYaRnk6AZN1XH6WfPUmbvheIk+qgewPCAn4XBMuuXLupNRawBGZs2pTq0PPZpRysnOGT+QhsByoss7NnApgwihdsoTtgaGW88pWvvPVR95a/V52wddMPIMc4rIwP/dAPvQdJbHMGiq3Drz4L0Pkb8NmPcZ3+C9jsXNd3gc9yzy5gpR1yWVaW+aX7ADe2jzemHYrU9epkrsLExapWVnXt3k2HseNigzb0b+zQzTISbWFeQErwb3dFANDNd11nWzjAGGuWrdNH403e4AXrpccROGkOrOzsMNvvc2k9jC+H4vW33K9s0T0n8GZ+ppfdNbBg0QbP9n32EIirP9YGPAdoue/MfQZgdVMtbAof/UDPdkDse/kh8GZBM2NNueqxOzwAknuf9p5rAXOf+aL2bRBB8HLzdZvH1JVeBaLNWeyCfasrBqWAn3vply2ZzxYsp+NTrGeWQXruSjFX7btowWwgoDlx59C1Of3v+w02P6RHoCA99rzGU+NMAEV/AH93/D60fttDeH0nyLM2ueu5fb+aQ/aQQICx76299Muyn3cdttefY/QheV/fkdXn7j6iW7tVNuXIgvRb/8QaNZEjesHyMwCg3/YgT7rDKlYXuhBgOA963HQySWOnseEdfskll1zy2OQCeC+55JJHJwtyAoGWWdLiEkiVBILZ4miB/lAeuXV8N10DQAvg5nCnZWfswnlBBPkmLWAtgnfL6TodPgcOAUQ4SVsnzgWgBivRD2BC+gN6WyfGM5MFyzluCSZFTN8W3QEvy/yxZRTTpgOEyqVqQR840f1YZxb23dd3tsBWdvlo5cXEigSWYo1UVkBP7Q0Us7V+nU/b0AG1azfAJrLAO4dDfuHKbCu7LedJ31dvIBbmDgfQoS2xQAN5OPnrXJ/A7cmQWfvi1C+wCvjQLgBiUk5kzMHdpsoW1+kFmnDqA+ttne0eeYTXtoET6lcbMX6A+oTzl76qu5QHDtaprBe96EW35/RZKR8wHjmnldd3y74HqAaOv+IVr7jZW/UwLrRzAwebm7rv1Hn7QroRTOfqgmVpTNkmzV7MO36Mn9oawG+e8rlxkn5LkdLzAqzf+MY33tcFe3gP3nto27H+M/aJOWjZlvudH2DJBp6khKArINOCqpW5J6pj150ggHnB2DN36iM2snW1U6Ky098y25fVp77ZOtbrycBcUNHhkVsmoAyz2udyJEtvQudrBztn9J3UG9Kr6DfzWXl4HS5Vf0k9UWBIcMm4VrZ85PIRNzYBvcB342EDZ8b4zi1sBxN0gxPaxBawOxc4WvbsGeBcIIsuF4zUv+ogELN1Pt9RAn170KG5eufznS+9D70j9e2C0ecuHPer15a7hw7aXaKewFxsU2kZBHcWENy8pss47T1mrMt/7/3lOrsB+m3buvccm9133NkW+hLM2XQMDwWvV3cCL94f29+7w2nXE+zjnG/2O+Vmy8215lP6tGbS/w4brA7LZN5gw76/6V27pWXxPtr1k7Hi/pNhvnOZPqF/awJzBFt/iF2+AYqT7X7KfrbXsG/jNLHr4bQ3zxEUX5B71wDek+x55419/q6T2RyQ/gxCajOb3/dGv+3OsWvBfNA8XtDE2uCSSy655DHKBfBecsklj04ssE/GUWKhbqu33LjAiAU7FvjhUCbLhvK/7W5YHRb4npMs8wjQzJlv4boOxDrXy/jgJFgcW9DbVq7eSWU7TRkgTAccWc7PCQApt0V1oBZQx8K9hTdnisMS+NpnGFLy8bbNHvgUo1UeUc4C3drGhx0DlAmYCwzF3Nv8i9hx6qi+AUovfvGLb8xVLGAOxAlcLKC9OgdosKl1UHI6f+VXfuUGVnP0OBx7QBVHavtOW3NUXLPA6gYjFmQ4HaQFgNdulkG1zDqAZMB0Oq3u5RhOp1iJCZBCvwowbH68hP0od4EOjvQGF3I009ummajOZ15dY8PBL8ZnZeX4BWIAhwAbQG1bUOv3wP2f+ImfuHvBC15wOyywdmd/Djrq2QFim0cxYYfreNIF5lP2373sp/rVrpjkxqr5ZMGUBazoetmQxqd5CqiHYaU8ZWfnyyBeELP/2aKDuEptsWk7ekbfASQ9Ox0uYEofAIFlP9Yf5h9gdaC/OQozzOF6GKddm77S3YIAWKcE+63rslnM/dqeHWurrdzqarwHBmTny9I0voFg2U9lAY0EjdiV8Vy6j9rW91JN9IwY5aVJaBylY+Mcy6xnYOd7Xs+X1gUQ23fNX4Eb6at7A5PbcaBMP8aIcSaQs2kH1r7Ma8uWXbszR5+sy5W1mx0XQDO2ugexLXDl3XOyhYHVO3a8C5Zte7IGAfneN9rr3aB/tY19C4aZP+lfe07Wq3LsBNg50dy3QaO+E6zYOdK8Lei4gNkC5traPdmNtEaeY2xuSgm5aaWh8dydc1b3G+RQB+8bY+V8vyzLedu2/QBI3PfTAsLn2mnBPfpZe8OUt4Oke9KH3UuCyNYLO64XTNTmXS+xk2WG7zuW7ZpzBR3OgwYB7dq/ZS6wvO3z27zNdvbdbrxtG3atcor7mlOkU6J7v81n5lnlWz9aW7GHfgS9TpB7+3rXUn3ePLbA/NbZOkFaH++sZM8j2HdgZTcn2pFyBpU+UHki3T0V8nSpxyWXXPLMkgvgveSSSx6dcDLltfX3gkoA1Vhb8tJKx+CaxOI0WbbSgm4AtXPBv1s9Ewt+5eeIATIToNNuO10naVk0WEC27ybLWlMPjOIFrCyuseHk6+PYLsCUxCQLmLO1VC7SQK5+lwoB0Itd0++YZ4FHwKV+0nX398wFHjgiOQX0vcxTwBEgaAGCnh0IUn1yADgoldfW8QUP9C92DYedA8NB1EebikO/BBT+9E//9D04z1FJl+tUJdgxCYZsz06fHGnPWobn5sPMcbTtWh9jAq9ztM6/vld/TDNAzNr5MokEH5YFt04vUGQDAlhjQAHtp7fAKSDYMvPoJwFiYJB5BhZY/Seo4BAqYJn8u57Xb8zYxnf9hfndwVwBcAtkLdtOwKc2+a4fW6oDdQP5Kjdwr++WtQdc0T+YYfpPuhHjvLobb1jBtQ9Y03PlJLTdX19vIMKYOYNEa8PVocP+tAtQ3//LQjYma6fAEMZh9WqsLQPUfMTp7nd6iikesFp7ShmBsZzuMO7MG1KFyBu9+R3prp9sQHqS/gemGiuBsstoTrIr+ZuBpEkgav/XB+nZ/FPdsZcxQitb6pf+75CfrvH8bLt50EFD+t0YAnqeuVf1G+Zw98XkbVdAc5lgFmC8a+jZ/GscLRiqv40HB+v5fufCBcMFNNncgrDaskAPkHXBqx1bOx9o9wb3NgCy6Xk2IOvdtnM+FrRnuG+DtABQcxFRvuuMBQcebgDLPEenqxNl9gwHUC77Xr3px+6SbN3uHTs86H7BcO9FAayd6z0HoN/zm3uwUQV2dhfR/gbKaZOAr3sW6N53hHqx2wUO6eZkbG//77th11E7XtmJH+PTu1SfOuDTmiPdSDtkDcgGvPN3/bZrqw1mbB7lBcOtRZoXrU0WMNX2Ze3SEZvZti/obK1Idryx5bXhXePtHGMny+4i2nG3Y5T9NxdnOw623PXLCYbuWNv3GJ3umN334gaI3Ws+3XlJ3XoXdn/vef3ce9y81txYXVvfXXLJJZc8NrkA3ksuueTRCTaOHI4Yg0kLS3lwsQsW+MTY4Tif29+WHZkALTF5ll0EUEgAGRw2i19OvWs5lesAcQw4LRiRfefAJA5M13IkATLAGQ458A8rUhn0Ix9qi+sAk3WuA+sCaBaIeelLX3rTdVvI1XmZURjQPbuFeXXbA8cwn6qPPJyA75NRsw7+shWxd/t+9bOsx01RAfSgO0yWBSY3x14ATqBO+UdrQ0BQAHbM4u7LmSotQW2IMcgxliMQSMSh2+3rPkvvGIT6aQH3BFBAtwsKYztxjJPKlF+56+onjhY7xvqqbwHPnGb22me2R7JvulW39Fn59W/lcS4xbtLZR3/0R9+3Vzti2srXlw31eexr4FZlsonuDYDrGoGCRMCETnMGObbpZA8rcn3fN/4chgUcqS+r67IiY2vXdgBYTr6tr10LbG9sBPBV9+6p7MqLedq92X2fYbrLQ1tdzFdASGC3PmDrrjHWK2/bpY7sYtlVnokJZz5RB2V0D/BoAb5ze/sCSCcoATCXSkYwBZhvzmIPgjcLtpijsr1sufmozwI3a3cgu0MdsTgX4Ft2GVYYMXaWNbns+QU+6R/oLtjh3uYyaUbO8o2X1e8CXguasA/PUo5DiACpXZMNOrDIO24DJwvSmVe2r9jVBtQWaNm+VN/V7QK0G/A0tyyY57ls+yFArL9rBzsjm7NZmZ577pDYtAKY/+cciSmp/dsm9+67Yu1cXTffOGYv8ImNYWZ7DwiiCLp4xtZBfwHP5OMWhPSu9py+c3hb1zce2Lr3mzas3QlM7jP1Qd87tG13MXm37u4QgJydSnsI7YKEq1/vtw0iru0s4Mtm0p15Wj3635phUywIetm9BLi048gc2bWbygaQ7zfdsb3uKSi0uWCBjwvesgly7oCgE+XuTrOH5JynTvC1Mh2q6VyA3Z111sG6CKjcXAysNh+cwK7+2R/j3lgyPtzrGcZTfWQHjIBa7+muKWjY+3vTWrAlehFIEUTcdc4ll1xyyWOSC+C95JJLHp1woDgmFtyBBLb0c5SlIcAY9BnnygLfwpWjzila52Rzty2jjbNhAc0hl692nWcO1R7I4XnaxnnYLZ/L0OTI2RLMsQBS7OFBABvpKgIYOKr9DrSwvdohYRb3ylFXuYw5YBiXmHDahY1RmeXtBcZjsmDLnKzbBeIXOKAfTuyyx+gJU5KjH2Bb3twFsdLd8573vNt3m4vwzW9+893b3va2eyD+hS984S2vZ3/biu4wKY43xpzUBPpGP6fXdeg4+m3ZJtrhIDZt362ncg/rq+odEL3bm/usvknHQCigkXECNHOgmdyi6gHUBLZwmAFw1bN2bg5R6RY4lF0fCJ5UXs56deK0Bdyy8Ze//OV3b3rTm+63ugIbMOAws3qePLhy9PWZMV2/BLp+zud8zt1rX/vaG/i+QOQy29kHnUsd0HOSZR73HEAf4EY/EuMKs52uF6gNkAEsG7dAE1uJ3ce2F1RfUH+dbwCvXJXqx5FXP+Ntt7YvCHZu1TdHLfixoMwCgwsgmWfNVa7f/JeARcAM5l2pE7Kt7NXcgAmPMQ0sSZ+Ye4ILTnE/gaat7wJKCxJqCztMpFcQyOnaxk5jq3Gz9wIoPG+3uq9ezfUCHdltoEef1UbjtjFjNwMAe9m//Z29b87tZawCXcwBGPt05fln/y6wv+C0Z7Bp42fB9H1vLpAnuAYAElhio8v2M25OJqjy9eEClSc707y5gTzvbH2kruba9JxNJQ7jM76waht/2LjLMk7sXlkgHIi1OgX07f0CZpsi4gRrtWvnFM9uPvXc7GbB7s2PKxhwguB2KJjzN4izQYBt3wZz9ckCgDtX7LPOsbBtEZhqzlV/gZae2Ttld194X2Ht+1xf7Y6Xc646AxgL8At2q5eA6aYocZ8y6Y99GYcC28B9KTg2KKcu26fqS5fZIHZzc9DWe/vrHCfmZcx1QYquZ5sLCu/9Oy/snKD/yZbhHYN1b9wZC9ZKbLE6bQqknpP99n3rxuzZ++DJygleP5XydKnHJZdc8sySC+C95JJLHp0sexMrCsDJabHotADeHJIng2e3HPrfwteBWwkGhcU8kMYWY4dPcd6WEbiLbo4cBinHbJ0mi/gFPoE9/S/34zqEy1CpfYHLti9bQAdYto07cKGckhg7DnCxAFfvymshvtvqtePMA8tR0D/p4N3vfvftWYHH+qJ7MU3dC1huUc+hAjjaiigfqYOhgAqciQXQs4n0X70DaoALv/iLv3h77rOf/eybE/Ff/st/uTEx9X+66dmBw7FMOTq1wUF5AgnJeRDIsnz8vyzlZf4kwL11LLf/tBGba7dBLlNvwQW/Mc83TcSCXwuicNA2mLEOKwetPgUuccQXyLaF1pjBWnVYYAB79/yv//W/7nOMLsMUKw7LfFlz/e6ztsoHlAMGcipj0BoLAi/L4DdfYP01DgA5ckYD4Tnv2FtSJ5x6B2DtVt3At2VVBhpgna7+NxgDHBcoAYa6Xu5Zz2Qf2GrG7LL0NyDCZvqbbiq/sbbjVt7hAgjLKGabnPU+dzAUHfhbEGTzbZtrjVMsT/OprdlY20l10Ie2I5uDd27HJOt3ICjmcrJAz/lDL8voA8hUFtB/ASc5QQE47OAEjBPg1vaJtrCj+s/7CuONncpn3BZltto19c/uyth3QtcAcczNZ85Pf29e6p1DyIKEwEftcz9b3vfFgrbmcfcYW8rbnwVg9x1jflLGtkUdNiCmf7a8vUddBWnNWdLA6PfKYE9neqNk2ffKbq4DBJr/6M29m9rBd9YuAsP99v6UQ3zzCa89GodAWjsa6FRbdp2z7ydz6IJy5i7fb2BV3ynb+Gfv2rbg475nrHtOAL/707/cu+y2/+3GMl/s7oTNi+z9ANBU/x2n0lTsfAxoV++tk98Lgptz6XRZpuYW89nOufsuWiD8BGmB8cD/7GHXkGTXC6eO2U/1EMT3nXXrppPZ/tLmXVdsANLcZ8eYQC8Wr/HV/wXKdz4075ov6t/6VjmAcDoUfLnkkksueUxyAbyXXHLJo5MFMgPyWjACCHdhnliU+lm2CWeFY7Psl2X47KId2yZZMAFAmmOUc47hCfRQt3O7HpbbMnmdug7IsajG1gRMrXONAckppYOcnoAb9eTIlnoAQ6bvAswsyjnndLDtX1DWD5BvHdnu5zCVq7M2laezz3Na5f1Nb5s39GQpJ7VNGoLAPKkytl/Xydp8d+ss9MzAEvlTgWprK/VhLNfyZAau5HCs08vRBFwswLAO7eY1XUZJ/eM69cYi44TJA7qMr81PnL42JYit8bY1Yu0t8+gEDmvHAhQLbvY/pzJ9ATi0aYGAgPvsq7KyqXT23Oc+93Zf4GY/6biD+NhV13ftls0e69/qhrFoDBkvGHOVlx3J0RdY+cf/+B+/e+tb33r/3Oyco8ou/PRszK9lf3O406et0TuediuuAI3/9379awz3zNqNQb82iwEsaAEMZONYZGyMMy1VifmmdjjUho2yG7oPWA/Qrj4FPrp+DxpbWzYed2wBN+qfBe+AZYANc2j3avPmmgZodl31WNuXL/vDPuzD7gMVQJ7daWF+KBiT/bRboH5Vl/TddY2tzSfJ3vvcuMRwxiAHkmVH+h2otqlTbCvu+uwRqxBr03jceT/bLSDhMEG2nr0a47W1vnKavDG5gOjO1dV507+Y95aNuMDSbrXW78mOdc/Y9voRtKgsAUplmn+xogVLzBnK8B5fJrD51DxlDG0gc9nRZ73YxQYu1lZ8t6lCjPUNvO77x/s1yb5cZy2w86oy+xtbeVNP7HzU/7atKwMouHOIe6SWYg9AOgAZAHT1se3Y9YI5BBgtd75dQWdAhl4EZ3y+QY0NInjeAsP+ZwPbz8bI7mgQ/Osd7B3Qd41bhzCyNzsozEHG4QYh6dS7FYBunsfk3V1hbHT1uOsF3y9IyvY2wEU3+66gK2swtoq1u4c8ngGkXWvs3KzfgcrY8ns9nWiTd/ra5Y6vXW9voGfXfLt+M49JRbPrH3OLeaH5Tf0Ejn0nwHfJJZdc8tjkAngvueSSRyctBOX6ahFoq3WLSKBlcjpxFqEWtyer6Yl+3O/wlMT9Fr0tagGG1WFzbAIkLWzVG/CovGSZM55dO2yL5yQAd9IDQK97sYB63rKRdlEtDyTWi0U4h3Edt2VH0ac2b/7BkwUHtKKjQA1MPdtd13mlT8JB0s7qHauvVArpIjBHjlTg+gkaKA+TNWfJlue+757P+qzPuvuFX/iF2zbxnHe5MLsnsNBBbQGJOYP1c+2tbRzDBbo4c4Fu6Xnb0/Oqe8IJtKW6/6WBqG+UY6s6YF1/LsDNGeXo7xb7nncCnNnneTiRQAfnmr1iNtGha/rB8sTa7T6MM/2QrpcBlW5zPnsuRqO2AxQcPMZhL0AQqL3BnMB64FLPeNe73nUD+gLk1FX+P/amTeYKjvvq1P9yThL26p7KTbfAWECG7zm+uxW9HMiBjtv/GJzpmX4AZsbaycBKuh7oCSCQqkAfCUgJTqjDBh4WGMlmpfkAymHMYVwlcn9uoMV4oHu5dAGTy8oFOvR3ts6Rx+pWdqlUkgJBtUOakWVaArHbOcGOeo45Q33MJ3IEL0gBVJADVHv6rJzcwAfpdrqO/dCJed2W6A1O2fpvHDhYKHCjNqXzHXP9XTtiuxv/7G9z2C7juDKkM9mgCFDvDMphbS4ATB/E2AdgLVNwf/sO0LZz127v3/lrx9zOZWTfvxtQWhYsPXhXnsCZ3TI7bs66e7bA2+pngbUFuU52vLKBrOxiy1hwddcC5t5dj5wA+AZQtEFube9/4L/naLv556HAkz5XBlZz18o5vusR/bJrkxMYPMFPYGJibbFAqXuMo8Z2c4dgjjnNzgus1mXXAtL7ThoSax51w+zdsxEKCnknqufuYlHPDdJrG1BzbWHtUABw+189HKS4OZc7zLG6s8NNf8RGt06n/nYMCfSql2u3z5VljG7O6JXTVk7xftDm+k1+513nWpMK+ApSCFCYm6uzwJv2PVnZ+eyplt/JerRG+qt/9a/efdqnfdotgFgfdPjs933f9919y7d8y80ufrNS3/U+6oyFfl72spfdvehFL7r3Xz7pkz7p7nWve937Lad1+2d8xmfcru9+B7q2W+8Nb3jD3fd+7/fe/cAP/MB7BZUfKiN/4gOR7/iO77j7vM/7vCfR0ksueXrIBfBecsklj06wF5MFKixwLR6Tdax2octB5kQly3ziLFqkWyxj0ewW9t0i3G8sW2AFxx6gZ8EMhMCiwNK1LY2j0sIMKLcONIAnFiUGXuIEe04GABxDJQZf1wIxLKKxK+huHU0OqR/fBVLYxr7sQaBA9QZwJB1iEoi6zCy511xDr4BafS1tQe2rDIe0cQps77fNNbBRDtDAvu5vCz3HyXbWT/iET7gHHaW1qC/ZWeVX7+oS07lntcjsGV0bYAPI9MPR2+2oCz4sMFIZ0mAEJHPubL3m5K8Dv847gABA7OT2BbdyrHJod1szAdavDa2T7BkBmljUQDwAdzaIERXQmh7rn3S/W2PrO9uK06MUBYGKAGo5m+XTpkc22LMqo/JtU84xkDM328CWPRm5+hUbvTICFhM5jrs+x6Mf4GupRowd4GrbT9W5zwMkCxI0JirHdnp9FYBan+aIVY8+Aw5Xh67FhuY0p1OsUXOBuQODUyAEoIrxu2w5/Z7uMNtKdZHtZTfPetazbnWq33K29CtbMccCYJbZaT7YXJ/AQaAMm/XbAXzaUn80poAOmw8z3dbu6l19P/iDP/geeFrwpOcE/DvgDkAg37d+FxRYFuwCJMacHQ3GHKBCkBCgDJBRxgaW9iAi83x6zgGnU3mtl13c79oKuN45Wbt3Kz4GKoAHYEUPO9+coNOmhzF3e7eyT3PPBjGWha5M84XACj1tqoJlB/psy9938gZI15Z3hwMGoncT2908xeq4uxQ2L+t+hinqGbXDu3x39xCBIIxlKQL0/fbb/t5DzoyjBRTNuYl1g/r1TAes2tWAOV5ZCxBuWxeo3kBS7bOmWDBz1076w+f6S3vYm4BzsuOBLAh8rrmUYS1grAkqNbdvzn8s3+qPtdv/AnT0qH67lmhepdMFS42jTcGz4P+CuOq48+QyaXcdoz969jvf+c5bO3tn9Z56/etff2tD75x2OgFOl12/Y3YZ+mvfy7jeAMZedwYtNs3OsuM9Y/ttbX+Z9wLo/SAeCDI628C7U6BKTv7aXJ/107xvDZOURuyS9y+f/umffvfd3/3d96mMkt5NjZfA2C/4gi+4Ab8Bvr8Z+XN/7s/dfed3fuf/Ux2/5mu+5u7v/t2/+yBoX+C5nwgX//2///fbmQrWZZdc8hjlAngvueSSRycWlCLSHJ5ly5HdUr3OrfvWyQ0EtF17mXycKyzE3ZrJQVDOskRsk3YP4FmOQQvkvU6Oya5rAazuGKcBjAC8daZt3QycWeeCEwK4A1Bg7mmL07wX6DjZOq5Rx64NMK1eAVObCqIct5iHtSPwKyemeyzyd1siUEt/6Ss6B+o+5znPuU+voF+AhwEiGD6cZE5S96abBTADs9gT5k/1qE3dG7iS89Vnnpnz1d/YjsvidfiXNAScUcAQYAloAFjgwPZ3zwsgzFFaBvTaXwtfB0EBLdht95Uioe/SR8BnjtWmjCj9RM/Qj0CU2lQdq8/m+hTUsJUeq7D+xNrJeahNAYCAwr5Tr0CIZcB3v0N1kgD0PYiv632/W1kBsAHhnHk5FPUHJxez3FhgH33f31jmWKTLZk9qy6Yz6V5gEzvZ1ApA5H4qfw9dE8Dou+4jbMB4Nh70rWs2GATcxYTSt+ykZyccdwD3Ovu2Am96Bs44JpX6AITNkxiwJ1sPyASc0f9YyzvebQU3f/WDxZ3tAXnOnRJ9V87sbLy5sD7pvk0BIBCBla7P5DFO+q3tu61dSonErgDzIZDd/EKMf4A9lm33Vjc5u4FueyCW3Ri9e3q2Q+UE6YwVKX92F8UyVPcgPocUJnK1Y9vTtXlHOwDenmd+pZOHgFlztCDI9j8bdkAU3flR1hm8WjbkCSR73gLC5/tiGY+7JvCO23f+Al071paBD5Q3hheMVI8NFtLrgsb7Ht1dEgBhOyLOMSWwLGUIENZ73+GV2rJrEqAi210wTzsWOFS/ZeFu3b1/vIN8r52JOcxzz8D4vst27Jhr9FnvsN4Hdi25RxoatmxOtJ6whrBLx/b+zVu/c4r12LZndbMHHdqpYufAEgkWGN+A1wLbnln7CqxJj+Mda67qXfOa17zmFnCL1StdU2uR5oZlhZ+yrGnt2dQRu+bcfvA9+13Q/dTPMnr3WdJJ9D0ygmA7FrYAJ3vvp3ZVfuuF/jefYza/LybnJf+ffORHfuTdq171qlsf9O7/+q//+tuBs80bn/u5n3v3RV/0Rbf35Y/92I/dvfSlL72td56srL3Z3Zb9x8L9QKU1W33d83/wB3/w7qd/+qdvgfP6unRMsY8xhH/qp37q7qM+6qPuyQBPJAHGP/zDP/yE32dzl1zyTJQL4L3kkksenQBynMprMcrZ4JBZ6JNdcANal62BedYCk7OtjD0BmIO2Tmhii6ofdQEiAGc4Y5xbQEvftaCxiJbzNaBhc6k5mMh2bNu0SzPAgdwt8Rbi2sLh2W2fgNBNJ5Gczv06bpwcAItnJ3Kpqm91k+NvT7oGuAEZORX03wJtnx/LL5ZHIFlbxrS9BWdlV0bfyS0KWAUQJ8tSXruoPcAXgEL3S5HhVOeub5EaGyJgpv4J0Ka/2lpZMTW1pzLpoTKxYDH6alPtkK8UCzQBzMprGatF/wJpXNv9AV89o3JjNKbD7S99jUEGDFgnHADIsU2WzbTjDAC/ju2yndi27XyA/JwRbLeuwcjdtrE3jvAGG5Zp6HP9ExiAfUi2XYBrwM8C1xx2+ayx+U7ms2ev3gCMy0JbIA2DdPMlA0w9n56B92xz5x7zHmBxbbV7sTiBFLt139jWZmMUCGSuWVbh9uUJ7m2fnzslAily7LAsq38grS3gQJ10Le+zeSK7BSxpfwBI12TjgiXqRRf0vGAecFQwAONzT5nvGiDDztGYhQsQLpttAW6H/gkaAN+X6Rqo4f0FAE8nOzeYg7o/sKvrGhvGGLtWxw1ksBtALR0IhggI7e6Izde8aXGWObvtXRBpDwDrekD2pnEx9s4xpG6bI1zwyxyCDQtYZbv7LjrnAfPTbpPXHwtWAJ+XAbxzoHeggFd94126ZdLFgtNsSpnqZR7btFHaQ8e+yw7Mj/rHc+TOdfhe78sFqjF76d2YJj73mblm54cFKoHNbHtzk5/zwb7Td/5a0JC9brsFZDY3+KbKseNA2f1u10R6ADCydXOAvjCPL8jL5qwFNwCxweP6zLvZnKPPNnBGZzveXde88su//Mu3elqTVFZzpHVMQFzzQCBwgSwB0v5uHi3ALYXO+a5dHZvDF/RdQHY/U099zrYFIM7AzhlI8TxjyHvdLgupnmq3eV7u8uZCc7I52prDfP2bkbXz3+3yTd/0TfcpTT71Uz/1dpAwCegNRP2Gb/iGm219+Zd/+d1Xf/VXP+lnvOMd77j7K3/lr9z9j//xP+7e/OY338bXV33VVz0pgLc17t/6W3/r7tu+7dv+L5D5jW984933fM/33P37f//v7/7Un/pTNzv/si/7srt/8A/+wfsss3RMb3/72590ey655OkuF8B7ySWXPFqA1+Kf8wJQ4RBgFW2+u4QjYRGb9H2Lzb2fwwMQsoiVv7bntlhdx0FeNYttzmC/bRO2hU09OGEt3FvsA2MsdDmRuyVQGRgSgWNdr26AGMxeTiIgEIBhob+pIxZEAE453CvHg4POgQAwtqDfA0uwG22tznHhHGHXYBf2eeANEIJOHDhUXWPgxqB98YtffLsvxzbwYxme0jPEcu3+gKD0Gih6OpMryyBbFhRGdrbRlnxOD6Ck+rbIbPEa4Nw1PSPwt3ZhNtNn2xHZDlbg6dhzlumVo8k2ARpYQwCQBQo8I1mQXzsTbCjbijFiu2b7h82x6X7aTvcH/+AfvAcWsa0ClIGegEYgffbhMJ8+T2cxd2x/DqDAXBZoCawP7K4MuYmBPcY/sLbPgQPpy9je4I9ATYxy4M7mwa5u9YFD2Nj+spjo8DygT1/k9MjHbd7o+tqRLWSbjaP0mL5KaaHfa2f1z942iLQCnNDu/saIrfyehzUKkNp+XCBDu9gcOzHfqNeCaK7H8BQYWZ2svoD5GIBsDAM6PWOH02d60acAGIB8PwIi2rNjx3g2P6mLeWLZkdIImJeke7FjwpwNfFAOpuAG3goAVZ4A1skO7u/sy+nwwBupdvadtuzJbGFTHXinqUvfCRxive37QjuxhjGC6W4ZpwB2wK0A0ALZy+7z/X4ucLAM+p2XvJf2fsHTfgSDzjlLPcxt+iA9si1jZlMrbQDmZCHuDhl/77xHf3bkSCEDXGQ7+mKBNv3CZvddy0Y3pyx78W7elEXK3b43by97V0AKQH32yxmAWRB9y16QeecF40MwXCBp55DzXaZs5T6k4wUN+75ntF5YYL/yAlm7rvnZu3CDieY2654dC9YRyQbTtMs6iV0Y2713AFL7vJ2f9529rGM67/6Asdrl2Vi80hQpv7bF4G0OtyOrdUPvrJ/7uZ+7BbnbhXOmT9kc4NJyPZE8FOBeINd8T1+7W4wN+b0pLnoP1RZgu/Vmc1jvNu/cpPd9f/e5Od6c2HfW1Zc8sZR+oRRjyb/6V//qvcBd8o3f+I23PLTPf/7z7770S7/07mu/9mvfK2jygUjAbj//L/KVX/mV7/P77OVLvuRLbmkasuHSNLw/gPeSS363ygXwXnLJJY9OOHC7qAawJha9GCbAX479ycjlBLRIDRCxAAcIOtgJANTi07bAFrJAyha3ARnqxSmJXcNpUF9b4bu2snNcOK5du/9j8th6bDs6IC0WKRBQWxeotO142Yy2iwO2l7nCIQMWYBMHPnfokG2UDsni7NU+4BoANn3QLZaBZ3FOseZyYGzxc1gHx4FenFif84f1xdEDZtXWctxJ4xHgBijVDxz2ntuzcpoq97/+1/96A4Nr/0te8pIbGFd7cro4Y4FLOV/ppO1kAdMd+tABcIG9AUMf/uEfftNv9cReSc+Yuz3fIXEYfYD17MuhWNpemdpZXQANgAM2i6HLptkEO+pawYB16rF008mZz9o4ETTAVI4REsAOvEvSnS3qxlJAXs9PB4Iu/aRHYJOxqx3sUD7V3cYLRMQUkueZoxrIuQw8zjaQbrezL+PKdf0d8JzOe8YyMJfRhF0kGAHAMmcA9wQKBGMwQfWvuhHglb7BmDOfPMSUXgG+ShnAKceuBPgBiJeRCuAz9pcBt/NC19pZkDg5HThYrt/ubTzEWktXMdAw1Qq8JI0vAIe5Ud5hjHx93jXZvsBXegkkWfYpO8kuMd2AH4JPlQHsNy8Ezpo3A1dqe/a7QSll1YZNqdJvaVDYrD5YILUys3l6lZpnDyvcfjIudlu27zf1QM8+U2ksExVIsikmpOMAvgPA9DFQe5mlJygKzNqdHOx4bX+DsNILeS8vq3Dno5PtmZjvjS9zG70LVi1DVJBAmQtQLUPZfHkCyWQZpsBL/Wq8+NmAgl0a7lMv48znApv93/zF5rYfVxd279gtUB+aU9RXShnjY4H5fW8+xAal637Y8wLY+97xmbmHvWxQSH8/xHw9WaXaDbg3F+mn1lPsiy3v/daDO2c7H4CtbsoPtrBzMZsRMGcXy5AWGHCvcbbvG3YbQ9G4FTA2FyvX9ws299u5AwVVBVFbb/T+bd2CKStwsu+SfSeccgK7e+2C5vpKoHPTiRhzS5awTt31i3mwdme7rQXqR3OOsxEQAqzjHmrLJf9/CQwl/+bf/JsHr0mX3/Vd33X3j/7RP7rNLZ/8yZ9895M/+ZN3T0fJ1lsvBFwXxLjkkscqF8B7ySWXPDpZZsrpoCQYApgtCWcDoJgs2ycBCDqgo8U9x7GFM0YS4MG2++5rYQKUBRJZGGOJyQ/KgeDg5fQrM2nhG2gLLIoVKkcw5wQoAJwLzNh2WbT3G0sIUwxgBWDlAHE0OL4cpHV2MYxqE6YbB36BWMC5rYm25HFMOYR0y0HlMK0jzrGVV7btirFhcnAAS8ABfa796s3xWfYWoBa7LQau/LGckv53eAjbw5KqLViSL3zhC2/gd4yb7gkYqm6xnuubPncvp7vnppucnuriBG3gO+dKf/gMo3wZchtASPQj4IJt7bhwH8BiAa91ljm7u6UYe7x669/qk04A7eoidYAACXsHjDgcD/Nc4KDvGlPVZQ8wTHpm4yEwbrehY8wt2MMe+kyAYBm95oaudXCRrcjKrP/T4Y6ZBBjkswXmOPlsrnGd/cr9TDc57hz8BCNQP2TvDrFxiErjlSPdTwClOnCYjSe5EIE8+l6u6cZAjOLKD6AHNAGIs085WgVejPMNnGCmAoeqc0z2//bf/tvt/wImleVAxsoAtpt7BIkAkMYwRmn3Bmp0XXrsu4BjoFFlxAgDqGuHnRXprJ/+rt3Z4jK3AYbYmgEp/b85dG0J7z7BDcw8gN+ypPu776Xi8CzzW31X/SpXgKPvgfDV04GEa8/G9gbNlpnHPndrv2faHbHb1wWdAFVrh927qVrUYXfOuMf8soDjye4FErOlDZAsaEaWKendYPyerPRlgvp7gzAnm1S/b38tqL1M2p1r2UBjQPCPDgDpm37JPMzGdm1CT+xduoVNF0IAxNqsPsbijoUTeFR/Ol6Afdn6C/5tEMn3C+oucL31oT9/b7B2gfV9lmv7LY2B9cCC9439dGTe0W72ZFyw72V8e84GIfQ/YNz6xbUb2NJmfy/Izb4rqz5vLip91DK+A9mWtbsM5wV62UvzdPOuQF/zX33d3NRPu5oKqDlkdeeAEyDd705g95w72KLcubsbRJ03+ND8Zh1p3PX85i8Bce8U+fDpT980z/V3z7TT48nK9s1TLb/d9fj4j//42+9s45d+6Zee8LrXve51939/3Md93NMW4E2sVXfX5SWXPDa5AN5LLrnk0ck6XLslDiBlgc9Z2NOIsXhOEMa9nDJApnKXudL3AU85GRxAW0tz0oG+LXjdD5QDAHAuYn9WVkBgC+gAEekXelYL5rZwWwTbxg6wAYxySCyUOY0AMc8E+OxhIhzfBT/PHwBTkfXu4UwAAZaVnNATR3OZmFJZ7Pa/3U6/jCP14aQFkmGzKofjBCTfLcXJggecGvWkOwASHXLcsezqpxbFfc7RSbqn79JprESOaaBTh5DFYHQydvXeNiyYkH6q/0PgQ79tue852UD6l4PR/RzCzXsYeLi5Smt/DiOQGrPJlup+YkUKSKiTIAVQA/i5OXQDXPvtoKjqvE4z1nltSAfrWAtQAJKMGYBWZTp0kD0v6A4EwYR0L2Z511QGO2jMAayMRf1ZnzuoCssRmKDugJcASwAfwL2ccA6XCrzTlwssqNOyeI2lBTzSc85ZdfqgD/qgG6CNKQvIrm6CLE4qN5f1jPo7ezT2zG/Gdbros9oSYJBILYEx2zzTZ4ELyWmn7ETaBbYC9BXQwMLVRofyLbMOq+081GzBpQW12AhwNB1U7paFkbrBv4fYrWx9QSFjEGN7GdTmke5JN8tGBgKaQ/rd3CHn7gZvNjDGLhfwSv/dZ54G5hnnxvwCUL5ne74zBvb6ZVeaW83fdLhl6JedS/W7oB2Ahp76bFmV6sUWBQ7Va7fD+1lgeVMv0NOy9tVr+2sBWrKBtGVUAuk8Y4Niu8OncY8h3t/AXkx5uYDVY9MheY73o7GtLg7mXNCMfhdEbf4MFDOfyCV/AsH7PtzPXMc2FvD0HgIsCyyY/zeQqE7evWsvdLe7JdxLlv2cpMtsX8qBDUYIvva99AvGs/lnd2lt/wNldw7AsHffBhQW5F5QeMfG1r+6/fqv//ptPhUsrK7Y2UDg3RlBb94D9KIuxpRDNMtTms29613vuv284AUvuL3vFzhevS/LeoHZlZ03eq5dN4KeG9zYsdJ89hDbtnutUbNRZwMI8PYsqc+A2A5ck4P5kieWDidLfvVXf/V9AqLZx3nP01Fae6pfu/Den5QX+O/9vb93v86N3d4uvH/+z//53Zve9KbfgRpfcslvj1wz3yWXXPLoBLDBCQHwcn4t6JPdLsipcQCS+3b767I1+t2Cs0UqALLFat8F3ABZHKqD+QVs4LwBWRdIbEHsROEYul3XIsypsRa+SY5bz7B9HouvZ+7WxW376qJ7l4HDAeCoAAz21PTToeG8qRMnc3NQJnTJMXY/PQPbgXOcjwWDl+Wz93MElsHEAcCQSjecNqAZIHodnD4LkIn5os0LgPi9zqFt2NWdjtkjUKTn10/vec977h2i7CcAP9l0Cd1fWoqcwNofEBz4xQakB6i+nKRAuBy7bCdWcOB/AiB2X5Kt5CBjFNJvn7WFPbZm9e2n5+ZYZVOB0YGJld11HHzAKSfb1nDfYyousESP6gTkqq3YzgvY6Df2s7qyhV0OSKkUBFnYBof9DFgY48BLuZ6lUKlea+/GPLtmBw4BS/y9rPhNeXHWC7NQMOFkgZ3sK+OC6Mf9jK4XLNg5UHuABxjXygFcsmOMdr89c9McGKP1Y5LuTpZdc0R2ZH7o2TlwfY85C3TOMcsus4llaZpj/I2hCzwzz9KH3ObmL8/QJ65fYJgsM21BG/OAz9a+NuVFJ5QD9zDaak9zQc/sf++dxpvgiHnMIY7K81z5Zfu7emevxoB0KQAi9fIeA+IvcLPBBWND2wQ9N32OFAPK3fy6+sk7b8HYPSCQbZuPpaQBaG8wVV8IhtC5d8LJHt5AITsAnu3csgE1Pwv6qTOQWaAWoLj9QIcCr8vM9b/xmk3oB4CburJRud6NHfPHebiqftlgs/db9pNt7A4QIDHdVv9lj+uPZUou8Lnv7gUF953ve+uZBXp33to5eOcnfXIyrrse29O7a4MCAgrsqTmIbZjLNngHnBToNqZ9vgE/trZrDP3mHa6cTe+Q/gv4Bu72bqtPqr+UHP195s6nxy3LvL/jYYFeaYnSeSmoeg8WWCyg3M6m1glPxH5dfWyfn5+zg4JlUiyY4ze4INXVjn8AfOsH7wc6l8ZsD0FtjFRG9V8yRAHD3y1SkPX9Se3/QCU76H2a9P58X1IQt/6oH37f7/t9d09X+Zt/82/eBzi+7/u+7/1e364g0lhoLVug4y/9pb9098/+2T+75RzeddwllzxT5AJ4L7nkkkcngAqLzHXaTqfD37uY3RPuLfA5YADaZNMSABdiYLTgbdHQQrXrgYsJ58lWMwxCB09URvdwNgMYAwH6ARJxSrE1AEe29rUYji0p5YIcbHSzTBBMRA44J9NiW305FRbdJxsKEEHnwDjlrvPGyd28g8DdBVkX8N78vUAE/YZlqh6BIx3wpX/3/hZ4ORXLsNK361BvH3PaFjhboGJ1ySncdBvLKOxzB8AEYgGvA3IDTpfV0rXl7XWCd0Bv4G31V4Z66hOs4p4pDylWmP7iHAL/OeT04SAWn2FfAcHaUpp9dU12KY+rvgTA6t8FlPaAQHpUl8Shd3KvJqt7ulygDbgDPAVKKnsPm9HWBSbUBYNwn4P9Zvs/R7pr6qc9aMgcginddTlOyle37HBTnhhfrrGNd1l5yxJbu9qf6ldbgVDqj6WG4QXUMC57ZvaXXXGke7a0DuZBIE0OkvEH4KpMgaXtz4JT6rD1Vwfzk7FbGQGewNZlM9cHmMDNsXRiDOzcQhdswBz+UNBOH2QzDgEyZxjPtmVvnsllKdPTzrMCHTtXGg+YwBtMk/7AHG5e2mDYAnbGY8/W3+wFyxyIyb7Y1ubJ3LqfNuM645BswBPADowVzPQ+4pDvWNu5dFP+AEo33Yt5RQqMBRQX6GQL3bNpIXasbIBzd5Es0xKAS5cLNvp8meJrYwIkyw7feQig6t1It4Ilm1tX/TadwMlaNvd412/gb4Mc9CC1iTGrTwH1mOyCj55zsiU3wGo+Wt3uvWdf7Fxp7G3gTf+eQO8JJOuf5gw50ZeNbs1iXWU9sfnojW8gKxBe2WzJ/KPck1mvPcbvgrTK711Q0DRwt34JnCwYZU1AH3LyW4PRtefWJjtkdhwm2i9lkH7t/w7R6nm/8Au/cFtXlnLK7om1ZfPA9uE5P+z/1ox7MKJxzY4XHEZ0aP1jLDXfAcC1eQFoOtw0UQKuT1a2v55q2Xp8IIeUne+Z9yVIEgl7eV8ifdZvVq+/3dJ5Fn/tr/2129+tD7/t277tCa/Nzn/wB3/w7md+5mfu3v3ud9/GWAD6p37qp959/ud//k03gbz9/rN/9s/+Drbikkt+a+QCeC+55JJHJwAmh9gskAIsIwtkAn5sPZdDdRe6LX5skdyFvm27LV4x4GIwcl72wKv+ti2+hbbFtW2+AMwWJi2aW5zt9myARotiW78T7MjqsVswOfecO46hMukMk1idd8sdIGIdMs6a7bULsO33AI2Es7RAKt3uITmc0/53QBbQnFMvVyodLUM6ZmAslYDIQEiOFjAe86Nr1rlcfZz/28YfK0JZlbP5QgFI8sQCe9maQ8U6ZC3Wboer1Kb//t//+y0XKdZjDl92lH3EwElvOQDZH2cOcAkATAD2HPWTXbiso91Kq2/ZQTrjTPWbg4C1hnnDceaQLVApPy4nGDN7GaOcLX/LOYt5TG9yWNdmKR4WfHBgm7Qc7Ds7kCZDe+llgZ2+25x/TiiX13ZzNFdPY1xKigWq2c4GippLcl7pUAoTTEz2tczZc6vyAr76EdPU+Kjt8ssus4+OAbLG+UMpUASYajuWm7EKlDXf1S4AfIIhqL8x0rTBs9mrwAiQoL+z/fTfPXJyx6bf//W1diwgA2ABqAFu6G2ZyOZsqQMWJNRPQGD3mau6PwA7oEJARzvZmXQttSsbXJapd4269pzGu/yq0njUn9Wj55y7Ivq8PnfoYlIZ7LJnAF7O+dt4pQNgmneG99aC2ebCbavt2HRkngM09nzjc0F+tuhdvUE91y14ZR4FaG6wA1CrrhtU2yDv2swJ2qqTOdwc76An7OUNMulLgK5ACwYygJV9rb7dB8A1hjcVQ3oDeG+wbPUomERfy9hegBm7ePvXemOZsRs0UGdijfQQw9kcs2sI8w+weufHfRe5Vv9vYGIDv57jum0PEHrHmHRZHQDr+ZWdbr3f2C2QcVOLsIet765p9v22bHvBzOrWuA3YbT3X/Nj4Nq7SdeuJ5jzAf3VsTJtnBZDpyXtKnRaU3bphfctV3HxiR07vtraqp5cCyz1/AyHbv/uM8zdAfw9v04btT2uVTW9l/pB+xPpXf5q3agNWb31kXrdj7ZKHRaAq+UBYqpuu7ekmBf5/4Ad+4D64/hf+wl+431l0SsHq1tDn953L8RM/8RN33/It33L3Uz/1U7c1xZ/5M3/m7lWvetXdf/pP/+l3qCWXXPJbIxfAe8kllzw6sSVvt+eezCWLUIyjZQ8BRDA/drs/x8nC23YxB3zZ2r3P5ST2nAWS+w7gBTDq/hbgOQW2u8eESoBtCzYBVzE+Wpz1fCCARTsG55nfD5PWYpyzzrGzwJYjcxmfwF1sNE6hhf7J2uDMLgC8W3iTZdEuQy7HiDMKgOeM2Y6I7WSreNd2mFks2KTy2p7YIRL9TufpubZ9xEd8xD3zir7qL/2QPtu6FgsAqxBLLueodjjFusVo9RdMqP/OtAUBltnEi1/84tszal9OYDYUKC1X4x/6Q3/o7iM/8iPvAYO+D1TqWqDJAg3bb9W5a9MBwG/ZK8BRYBDd91kHwlXfwGgLflvAOVWVB5g62V2J/MdAGAx4tqMOC2z2u/bre6AT8E9bPWfZbMsmpf/ubWy0RXHzai87atNsnACEOuxW7w2OLHNdm4DnnsP+6d08w1lZ9rN2mY+2vdtWbU//7KDfDjlT5gIXrgcMm4s2J+OOc9/F5FUPB33tQWpJdpJj1TVAyPQeqAmsyqESOOg7NmPMcvAbL43pxqOctHRcQEaOxoAbfV27KrPxKRVK47C6NrYcUgjkafwB15PuB3LY/bAsNrkf/V/d6OUEoKqXd0Flsp/mISy0BdRqnxzTjdc+c4hb19gJkn4LCi0AU71P4HN3WtiKv6zHZaiftm1buTkeuMie2Iky3xfgt4f2xag6d5SwFXpTxr6TFpgHynqXeIbvve+XxbksUH8v2K09C/guAI8lbc4yb2AtJ+c6Y1m66m3c78FQbF5QeHP+O6Q1+wfY6rd9hxpD5jK624Cs39nRMj/NKxj7wGhziHZ5xvavNu0zyAbR3LdpDJK1S3MZYH3XAeYg/bYA/dajMVTQUXDEM70HGpNSNLAt4wMRoGdgzp/vnp2ntZlt6k/vAp/JzR+w1NZ6ufHrg8Z7dW48b05m5e6uL+3cMbvvC89bnWifuurX+rrnN183f7U26CyAcrf3YzeFZyn/HDPqxdYEJayN0+uuE9iFuaQ29zfAe7+rjOompYedFT2j9dMeCMvOfzdI51e0rvutkgW/PxA90esTAadPlTRuf+zHfuw+dcRXfuVX3r32ta99wus3iP2QlI841m4BDnl6L4D3kmeaXADvJZdc8uhkgazdYo4BiuXTQsZ25hYRWBUYoRhsFrEcNIulnAYLbYxfANaCUgCuBKMiwRzBMpODrcX3yRTBNJHLUnmbtiBZBtAyJHa7OMBynWjMV84kh4vTsE5RssyqJL0BTIB16yic2/QSQKocxSfLb50JjjMgjePMOQacLCt4c+GpL6AEwB7wE6gSABEAo94xP7Vlt3V3HyA2Jy2dtvCsz9jHsioTgAOGsdQcQOpYNIFf/a4Ocufl/Nn2nhPUc97ylrfcg1yYPKtPQH+fVQ+OkuuwxE6hH32/7G7OKsfyoX7k3K4juACKIMHJ0iPGZ7pNp+mGvVd/2w0bIzl5AALsoe5t62s6qe846oICdNBzMPCx7jigtvSrV/rrPilXBEDoiY4xsSq3azGX66PaUL8uA9a8RDZoUn8l2YE2mjcKQrh+gzcvf/nL75m0HOsFTHy2Y2j7HShk3Bh/5il9kPQbcwo42D21O4DFnApoa5wsQ7t67rjYw6V6fn2YvszhjasFmOg9HUsTAhigJ+0DbAN42AIAqjY4zG9t3wGW+lcgz04KDF3jfAH/c3wALvxvfsFOM07SCwDbZ/TooDtzPfsEwgUi6w9jbUHWTeOybL+t7zIhzdnmKWDmplfYcUJ/5oK9HrBkXq88OZIFG7TXc+lp2ca+Z/ubUgbAjoG2bTwDWn6bh5Z5q210uwGdZYjTa2NB4GwPiKPPDVKe6QvMBwvO724iesVWZy+rF+N1dUg35nN2nN53R5HUUDs/79xvPJ3BLrpc1q3vly19zu9sc8exsWE9tvlrBaOBk/v8BXk9F1vV2oaetENw3Q6YxptAljWTeUiaI/PH9uOZqukMaOiPfjeXvfrVr76NzwJP1qH93TgH7G5QZQHW8x1rnthA4Y5jY2TZ29rPPuwGcIhoa5/qVEC3nxe+8IW3HQDLTjZ37/M83+FqCzarg37YwIR1mcD0EgLYorW4OTYQuveLd5hxYq3zZGXnhKdath6tfZ5Mjt33J841SD6QtAtSnX0g6Rx+pyQb+uEf/uFb/vrkG77hG24//6/ycz/3c7ec1KWb+viP//j3CmJccskzQS6A95JLLnl00gIlpliOJKdLzksHismzmDy0tcxieR3xdcgr2yLaQhULiHPRAtTzWqwCARegXCcosMFp6La1cjZ6lhPm+5wzwjHBagK4eDZ2MVYrgI+zA3TkoKyDtizC5ARvlq3nUBMpMThAnKPNXcn5swXUNkpOse85rpvLUF5OjGH6dx+g7GSy0kE6ft3rXnf7u8UdxzOdt61rn59+gCp0kANUXWMBaBt7Yl8YXBxxQG6ygOICon3mQLdst//r6/Luyh0cC7XnVhbglx1h7K292oaacwTQAOQva5Wob89lq927gKg6Sy+ScNy0iV7UxVZ4jJzap5+AK7/0S790n09av8a0DvDk5GO/pc/Gn62dGLGVAZSp3n3OmV12HNszFpexCCzSDrqScgXg0vc5npihy2rcNB3V3wnuxgjgJVsEYBp3tqPmfCyTps8D/Ndeznlnc0ey+f6XcmJTQrAR9y4Iqf7AL0DlBnsWiNMuYKgx2XPTDWAphpgxXP9hDi67r3JKzwFoBsYSqRCAa75TFyBuOq/f2UblAf1t5e53toRZt/drK0b4AhdrFyeo0vXsQ530a+1foGUDHm94wxtuc1D2oFx6FXgDsktHcAIoxmL6FoQEGG3f6Xd1Ma4WpDE3SDHhOTvP0gnQZkFewPoyX+kBsOfwQW1ZENfP5qJeYNkzjccFoDjrJyBljtt3eaLeOzcvYOY9uDqsbd51WPTLRqbj7Rv9rj8WwD9FvY21U7/qZP5UV+OGLe6OljPdlB0/7Fv993v/0xXb3HqewdzV+eqC7qxDFsTcdDTKWb0voEoWlKnc3okxZjenLN0JdNUmKWD6vzEnwL0pWpLs00G5zQ+7u2PPAtDGHUMBdaVUah3m3mykucZ7S2CALZvPmhcFK4Chdp/5PLGmkcpqg37qtvM33erzyqKHgseV9c53vvMWXOxdE/gr/RT7NV7M1daRxHd2lZgra9OZ5qu6dd2mRbEm7PvuKRjfb2mS+n4PbHs6phN4uohUWwUT2l32voRfIb/t00EaTx2k9imf8im3///Fv/gXd3/rb/2t37Ly3/GOd9x8gGyo9266uuSSZ4pcAO8ll1zyKKWFIOZQYqHOOSK72OR0tdjELrI4ToAotqkv62W/t2Vt0w8A1BYkWMfVItgCFyBlUdvf2IJJC2/pCfZ0ZznMOGLdLy8m58ACWg46bJndqsoJ58AkADCOSIvuza2GRSa/pbLUhbO++QIt7stDF2AWIFQ5tnB3TSCZk6G7PubeOuKAPI47xjKHJKBnGXaYJ1iZcq2Wi67n5IS96U1vuteBrY2xZ7uG4wRkA+g6YKf//9gf+2O3snKW/vN//s/3NqTv9xChfgDD6WVZizlgOYpOAbeVOwn8DQysvNI4APUwOCtD2gnOfLqRdmK39a5ja7s70HEZyFiLgBmHA63jD5zag6oAO33HmV6GYzZaXTmhwGHPAk5sQAVg13056h3CUTlYpmw3B6dr2mK/LMYFhJZRx1l2snfl9V16WfZe5dqunWy+0UR6C/XBNAX6nSkzFuRY4NPYW2CHaMMyvQQcdgsx53m3emuzZwMq9MMJlLAp48gzldMYXnAufRU0yUlXZ2P+Na95zQ0EKRd14MK2y7Mb5/3+kA/5kNtzpTfpM6xqwA0wETAUG+1d73rXrR6BFdIv2J3hWRizwN0F5xMg3gYj/GhnsnM80AE4h4FZyghzucPwsIubgz7swz7snmFYWyvLfJh9O2yz+gi8CGSY17rWO2SZ8guEL9jjXbgA4QkCspcF5daGzvI3X2xtB5oDcau3oBWg1+4X744dU+YP+j9t3f8LSGrXCTqvre/4WdDSu0l7fLZsQe1bZv+mNzFPbUB363MGlwCznrV6XVBzd9Jsflxj0PjaXUs7X7A9AQbAojpsuhbl0plnr32srL2dQPCC8p5nzJuDtG/1JaezMbo6WWapYJQUVXtIoXpsypHGTWMMeNgz9CFxToJ34IKnO8+ZH/qu8gpQFWzsOc1dDhu0ptkdWILRAsLeg8rFEJfeaQkE3seJ8eJdb50luLdjdOcv80TriIJu7Z5Ib83Ngb0FpZqf0+fuDEt2/bvjSb8ss1z/0GG6NnaQBHaMWNti6qqn9tH3BfC+fxDzEz7hE27rVnb8kHTgHqnfn2qpb//tv/23d3/iT/yJ2//f+73fe/fFX/zFv6XPuBi7lzyT5QJ4L7nkkkcnLdiBtruljjOwjEPXrTO2eSsd6gPQrYwWzFiZFu0Wrg46W3bKpgpYpxQLSD6yQIhAAGCYreecdqyRnIDAqgAkDhUWlms4G5i8Xb9Oii3wFsvr0AF+Ld4X2OH0ANiwQuWwW6dqF/8YH5u7cx3F2h5ABBCxXRNjr+97XizWHFR5OgEA2IN0vkxTTuICAJzQtpVXZgeZYUxzJpcZxrFjP5xpot0+q47yTdLBOjyc0nWIbb9ccEG+vNpfX9Y3gK76N3DIIVWbj3LZtstu3FxsG2RYwAo7cllswDEA1OnQrVOOmVSdl0nEiV5WJfuLLZRdG5vdi7GoPa7fg9qWER5Apm/0hby0lZXe6KJgwh5wBZBcgEGAyFzA3jmrAYexmLVnHWa6l18Z+A8g363bdGaeaP4qH9/mRgZe6PsV4PsJgCzg2PNz8toGinGsPpviJVvbHLyA9QX32KZ20Ll7Tuafa/SZORR4qe7qIG+ug8PUYbeNp+f0pE4bXALimG+SBdTZ0W6NxoRT3yQ7A06aPxbgVQ9zzJbtWRsEWjve4FfzTxIYLqDknYDpnb4CvANcdmu5/lMHeeMBp/p++03d2YuAn+s2aLDvDH+z003rwZaXsUlf2NLm430H9gPg8Y7ADJT7Vj22bmwFyAlEYh87NnZHimd7Ry3wtQzNBVa1fQNMdEcXAlHeNfRqTrADYsfnjnljXT+ag9mOMbK7avTlAvB0pF+W5e595jo7b/bdf9r3Cajv77Vlbdr76GztRn9vUNi1C36rj+dsIGLtc8HEJOC2caJO5mPzS9c17/Re6B0juNC4aT50BgNm+KatwaLVjp2zBIoLxsYixoAtOI0xq8/oQuDCGkHahA2Gu0fqr+1j7/Jdc7GvzblLjxug2LMosITrFwcjVv+eWVtidJZCKqDXendt4WTW7/tBX7HzPWRzAy3eNXTqHAuH1dr9Ixi967onKzsGnmr57a5HqQgCeLP3l7zkJbfDfB+ST/zET7z/++d//ufvnmr59m//9rs//af/9O3vH/mRH7nlzP2t1tXzn//82+/GXOu0Sy55JskF8F5yySWPTgAyHKLN8+h/ThfQjRNiwbsMCQ6nbeJYutiLFtDy9lnQclx2mynJyQDiSr2wJwmfQJFciK4H7nFwbIcGjnEosFMdApfswVz9pq/K7NkAIA4FECx2R85QoOjm68LEWLbYMpeWUbWMmnUSAFtSCnD8XKPdARwxAivHqfQYvZv6QN/WP1jQ0jssY6t6psfy5eXEaHPtC0QuJYKt3unACdTKBSAmFqC1IbZv9wSobU7DU09A+b6vHAAedl9OYtemj0BJYFROF4bPMsETbZCfkyNHl3vAVgzGZE+23kNfsAt7TsGHQChjaNlvC5R0XzYn0OK76l2fLYtQDubyy8ZIfs973nOra7rv3p4N4OweB2sZ29U5u+UIAqgrO1vuuwIHDl00fqUIoPeeGVhr3C5wJU3KstQx6IG97BgzaUF7tomBhbHmECUsrgUQ6zfOrP7brf+c/2XdA5z8nMDMOt2caHOMuUCfcp4BAe4DBuh3oAcwC/PZ78rtd7oFyjYPBTYHIjTm6BhQh3XWdc9+9rPfi7EHhFQ/wQSAGPvbOVmqg9Ux8Jgd61uBK/2QHS4rdwM5fSbY0DxI391Tnk3jWN9l33vwkBQL2TyWcuXsPO9dICVLelH3BW+9w9h03wlcLDi/43QZlnY16AMMOiALfex7DPC1uzI2fUd1oDeBVsz6PVTKeABI2oECqD/HmWvZ6QlMLhhrPj7Hwd5zvrfoYwN7q7cz0LE6XNDTGN9D7Pb+bZPxszl3vau0Z8sAWi7w7Tn0al7RJ9YB2O5AZXpYRvE5X9CTupgnd77YIJ976VowYAHePSzWLo0FC9nB6vcE+7ePvPsbK9kuu9350rxuzdLc1JjxDtlAtbzqeyaAPqO7risAE+uxtULv0w5ODdiVu9ycs+vLTZ3QO27TcLEJz9ugwQYrtAXTtb8xYQXtNpDKnjY12QL4AqFyk3dd73u58VtzPOc5z7nNbbtjam16AfcdG8Z/5dO94Ji+TLxPzNHS6Xj36OPdnXLJE8sP/dAP3f2dv/N3bn9/3ud93oMAb3r883/+z9/+bl30vg4w+52Qb/zGb7z7wi/8wtvfP/VTP3X3yle+8gmZx79ZecUrXnHbPQQEf7oA/pdc8oHKBfBecsklj068rDntHHLOxDJcOIS2smNAAYNs0V0gBHugBSpWHzBkAeJ1qi1a+x5LA1PHQpdTmzjIiFOzoBPgUv5c6SgWYF5HSB4zwHCyjGXPBqoAbDhgfSfKvQfaAASXCbrMxNPZJRzVzVmY2MYYuMUx6ac6cSD7voVZ97QYzbn5tV/7tVvd+llWGn3Zal87lS/PLFAhUBlIEcjSQV3dX+oD4J5t1X0XaMh26m8Mm66rXt/zPd9z+0wO1ure/zlOwJ1lNmHaxLRWp65hl8vawW6NsZrT5dCi7U8givvYI5Al/WkPwV5yzbI8Fwxb590P0GDBj81z7fNzOy6nz7b7/W4ZYeyEPRhzbHmdP8ytbCN9fszHfMwNGM7xx+I9Qas9XNCzOKu1AUCAhYTxuKk/lNOzTlYq0G3Lxug37hdsAWjTac+x7Xh3J/S8AMXKpgfz0gJxy0oHFgJEHWqzjDHlm9eWtQ3MtM2+67JrhzgGCjQ+5MFtDADZs6vGqTQkXVM6BeOb3QJVHHgm4NVchqVbwEOe6cqtLuxZAIoNCizQeW03v+sTuyl2TC6YDZDF+vP3eSgN212dVZYgm35oHAMw0oecmOkjnVVOgafukw+z+wJbagMb3h0RQKyesQdzrV2bd9jEjskdcyfgZ15nUwJF7HKBc9eZUwBJAPKdOwVkvCfZvnlcgHZzxe+YP53zZTkue1MAaP/feq2c+jJ30pu5YK/b6zc9grG5YLJnLPi4z/L3zp/A0Q0W6vtdzyzrHlNyAZINDu18s6Cttuw8+BDQvc/ftcqueQQwMTCTZZXSp4DGvldWt+bqBeIfAuYxV0+AHqiqX6R98p411qWhsnb0brW+k4qnvxurv/zLv3zr43YBNabli2Ur6m2+Br7K337myt16apu+WUY7oLm61g5zJftKl569fcCO9cO+p/ofMF151bHnFVivvIJRpaAoIFXAf1Mr0P85FhdENgYFfN2749O6UnvZiXWqe3ZX1iUPS4zyn/3Zn72xeD//8z//7ju/8zvvfvEXf/G9rvnyL//yezbrN33TN73X+wC792d+5mduf3/Hd3zHDSj+7ZKv+qqvuvuyL/uyeybxZ37mZz54KPD7ku7pYLYnkmz33//7f3///7d+67f+P9T4kkueGrkA3ksuueTRCWB3c5Qtg9ciedlBFsnLDEywpCw0Nx8uoJMDdy6asXLkdvO9nJ4Bc5z2daawANdJ5zD6uzpi/Va36o6tmQBmHK7UPS3cLaCBJvTgB8DCcdL2PURJ+51EzXnZPKO7+Mae3Hy+e3gRBwMLc51hTmx6wpZelkg/LdiqSwxTDiSHtkPRYgkCWIE78nAGpFRWnwWcpOMYyph2y7gJhLH9PwEw96yezSFZHZyOFb0uOJDs510fwzFw0sFeCf2lJwdopJcO0AgcrT59Li9v93dPTEn9y5EyDhYEki9W/2IIY2TSq58F0xd4EIyQ+9lnmJCeoX/la64ttRtbeEFYIDCwzlgIsBeY2W361actpfXp61//+ltb6v+c0q6NhbRBl55VX3a4GVtPek72UznGZ9c21oBuOcI5vpxbAF/t75lOUWdrfmpPDnT9tlvN07f0BeatnoP9tGBO99X3ghjK2O2wwInKtA15t8dWdnUEDhuX1S1b4ogrtzKAR4COnuFz40BgyDxcucDhBWYWFADmyVu5DjzAZcFSbdQmtnYCrJ6zbWHDO+42MHYGJ7ae+nABrx3HJ3i1wbl9VjYSMNQc1rxjZ0f2JsiT3QCO+iyw3PsqAZ4DfQHexsUZKFG32pMOzVWrq2Tnhr1n04qYr90HlGJf3mWbD39BRP0H4Fv2ItDdWNlDsKRyMO8sg1BddhfKgtyCQ5v2RZ3oyneuXRBxA5qbOgCYaQ5go8avefcEeYHs+07TX/u9tcHWwTjbNBzA8K3vzv3sb3VKZwsELzC3O2RcuwEy+txUAd57AmTeE7VFQFMwnO4FUdT3BOmXDWsc7lyC7SrHrrzpOyb1j/7yfrWesc7ZVA27bqHjgN3aYWdLY1Sgne42UMa+K9MaY8E0ejsJCXTkhw3tHOxza9ddy23QHYBM3/6mY+0UTJcWyE6UgtutK9761rfeUss0b8Va3rG9QZNzjaMP7BKyFt050d8Y1mtTa48Cdk9WHgroPFXyO1GPL/3SL72Bpdnmq1/96ruv+7qvu7F069vP/dzPvc9t+yu/8is39uxvVv7CX/gL7/V/5AjyR//oH73ZDontfqaC+Mt/+S/f/f2///dvf2dbHaj2wR/8we/zmdX5BKRjLb/73e+++4//8T/eGMuVlZ21Bvsjf+SP3IDubDt51atedfeDP/iDv+k2X3LJUyUXwHvJJZc8OpGXFVjAGQLKchg5M8tAzMFu4QP45OhZQGO9cVoSDryFxjqMnp8sg6fPc9hz3pfN1PdytgGxcgQCgSo3MK/vWnTnWORg9Pd5+noLcoxCB2QknKBl0gBMAlW6DsMY4KPuy0ZaEJYjAljchT22sXolFvR0ugxHuV+XOeN+jvw6bLW7OrctkrMQqybd1a7SN2BOOjE7fbXQBeJVx0/6pE+6B/Za/HEM9XXPzTbWecX67Zldn6Mj92X1wjpsgcm5drp0DmFtTWeVoy4OfcEEXkeT4+sQuu7tELdsqIVwz+mznPsWswGQlZcjKudgbQIIrnO9jFiAACexayuz+gQqy/upDziWlVsZ0mxg/+6Wyk1JIEACyGSzlYvdVDldL59hfVcd+n5TFOgjW20xA7G0BEa6vjpgxy+Lc0EeYGX6rIwOndk+BFRgncmHSpeYdIAM9rtBEkEYB8MBaRdoE8zZ+WsBmZ1jlnm5IAighxMvsLWA1LIS3Q9sMUd69gaRfK7cRCAFAEm30j1w2OVY9Xzt2nQKjQUgYvNY9lAZWF5AMc/YH/Xe+dt8U/sDRvfwLp83f2gXmwGO6McdK5sOw3gVPDvTCgBNAScFD5ZBKd2E4AVAU6qIgCH5vTEK9YU6mjMXPGdD9MGuBN4W3Nnt9MaEcea6necXQKZr7EK6WmYhO/IO0dcbNBLUYU/6Q9nSP6w9mw8ESxb4WxD6fB8vQ3efr4wFi923su8kf5v7jdl+HJi15Rq7uxY567KpWfQP29p3qvG18/qyTRckZHML+J19vnrc98MCeLs+Wn0v4C5g6JkLsgpkb+B2A+q7rlrQ0Lhfdq+fBWUF10/2sXpKy4JZ6/1obOy8xiZ7JxQ07B3fe7z3vgC0OrHtZUtrX+8uh3meNshG6WH1ukHWDTaZw0+w1nxnrbp2be6w3gMar23qr+YeQcd+amtgXfN7qSmap2L4ev9vfyyYegaZ2OWmNbLuo6tNq0M35tdN93XJE8ub3/zmuz/1p/7U3Xd/93ff3qdf//Vf/yBQ+mmf9mn/126UJyOxe59IvvIrv/L/uvYEeD/7sz/7/u/8nA8kF3B2GKP8lFI7fcVXfMX7vDfm7l//63/9/T7jkkuejnIBvJdccsmjEwvmTSGwzj0WzEPMk8CjFrNyr8kV5hqOHifg3Ea5DvcCIhxPDnhlyJXLMUswbPtMDlGgXQBXi/GAgRyLrm2RDKRqoY3ll3AANwcgB6it09gqDmLjfGEKWWRzTgHPm5cTUACo4yQti3cX9ljBHKEFiHaxvg75glALvOx2v5yO7old0snBWNIcpQUB15kiyk6wHYEG7u2+nDqODOajbZItKvtc3tgW0y0+3/CGN9wzlj2re+i8fq0/MErrj+6XW1idT/stRUNb67KRtqvnaNJX4NULXvCC22dt8/7RH/3R23MDwtk2ALbnsyOMK4et6OMEqOS0ewxl9cbSFDzhxC7IBuBbR55jZ7wtcEvYkH5Z5tyyeoyJdCh3MjbQMlBtz24sAZuBav1UxgYZOKNyBgOtduv4AhjmCblhAajYyguUARkxv7DF1cuYkSNSe+nQ+Fh2W3VvLCTmhJ1jtF9dBUGAHomc3gukqDOQHxjguwWtbHPuukCCTU2z7F3jHhBhfDfOgJ3619gQTFqdm/fNYcswZAPK79oCZI3RBZeyjdizWHQLLu1zlLGpaOhvgzI+Z09y6mKfFriI/d2cIec2tqdcrJVhfBe4CeTtWgexFXjBttvdGAKVy2zWFm0wN+67c3cbaJN3yM7vdL9lA7b1F/2bQxfwkbqm79L79tf+0OXqk60b8w4j1XZz0wJr5zy0jF3j0+d0cY6rtR9jic2bLxaQA5xJK8N+rUm85xZYpYcTyNt5xTt/A0YAU+PZ/cv63XfvCWyr8wLiW6czkLQs02UL77vdj5REuztq11/Lpt5UEWdqibW5k3W6bMj6onm6d4A2nesKdrzrBGmvzL3WEeazyvtv/+2/3XKKC4h7jy+AukFoz+6a7u+ds2u0TQ+0dnW2SfnnwZfqvvMfnZq/Tia696S5nG42+LjzhpzQ0l9I4ZQ9N/8URG4d0a6ZE+g9+2fnAOPbdXYiCJr5XB9s8Gz7/pL3La3/2ikSmzcgNwA1O4pJ+/3f//133/zN33wf6H6my2d8xmfcfezHfuzdy1/+8lsAVQCmcdda+L/+1/9696//9b++7da65JJnqlwA7yWXXPLoZFmzQBgOim3eQKkFH7s2wK57W7TmlMnJC9BZlgOH04J1gYJ1LBckWUDSgnWBAk6aHLcAnRYpgT6YS30WKCBvLSeCU2TL+YJqy+ywyM9RaUG+W7GBl5zqnof1idUJ8FywDYCJlbMs2NMB2rouo9DzT2YGJ3LZMMtC4RBW10DMQJOukWcWQ25P2O5/IAN2NIc43W4qD7bTdVIHJAtQB6j1fI59+u+60gJgSa+TA0gBptfXOY09p1yjG5zAxtpDm9JZAFWL2J7d82I0YCHVhq5rG+Uf/sN/+LagTS85YdjSOVTdm30pU9BiWd4Oftr0CmxOAAQTqP8rD0Cszzj6OwYcrgMI2XGi7P7mFDcul+VDqhPdA+qyaYDz5ritnjGe+1yKDXqur5LAP/bf8xp7ux0dWOtQKza1zK36AKsLaLzjDzgXYFdZGOaVI1iztgqQXnbfgo4bRKmN2VDfBfZL9VGdOMv60HgFzJ9syxPMqs8CKtLVgjuEjoA5/S8nJtBlHfTmIIzq0m/0d3Zdvc2NQB3bvCunazYQ0LWVjfm6rEs2Bwjpt/QyO467r7LZ7sk+U4ZDFneO13aAjXHq8/p7UwY973nPuw8EZas9t7IE9sw19Y/cw0lsucax5/a5VAyVA9Sy82HbcNqOdj8RUOfaBXeX9bxgHyDG8zY/tefsuDW2Fjz1nnXN6nCftePeVnQgurlrA7m7zd59ZxD2ZHnuu+cMUi7b9SwHYHXuvADwmyOA696f2k936rvvds9QvnWNezbIbGeB65dVqS0+WxY3Haxtn3XZ57CPBU0XUN3gwKaFkibCfMUOF2wFAHpX0t2mcNixqQy7K8yh5hHvAekjdu5PX3ZmmFMB5uaDgrXWYuaKnfc21UbPcDguILn5HgtVgHOZuuYGaxzlGG/ngbb7e8Hw7b99n24++T7fA9rohR4fCoI0Hzn8rLaks3SR9I7pcNneY6WFEjw7QV7t3P89d9d+2z52vrb1mwV4d15/quV3sh7tTCnfbj9PRl73ute9V589kXwg17wv+eRP/uS73yowu59LLvndLBfAe8kllzw6WcB0Wbe7cN58aBaKFlt78veyGM4cgv3OgTiZLcs+4fQCYhc42b/PbZjucyBYYrt512En2lIFrGrR3d9yf/Y9PbQ4xy51sFiLcFvvOGALZGMBt2iv/oFR0gRsntpkgVtOk/QFQLZ1FsgyS4Bf6zyus6IP6Wuv5xjW7kDPWG9tf69ttRPw1/c5IN373Oc+994+0m99XxvTk+ezDexd/bPMp356XvoP+ApEBfD2vMDM/gbgBmoBER3MFfM4HcmbLE8Y1mnlV28OobQbGKkOz2IXmMg9J+ZfzuhrXvOa26F0/Z+jWj2qZ3rirHLeADKc4erfdw7qM7Y41A6n4QBunsV1zDjZnOn+jpHukC4OskPpjEfgLsBnQaWkdgJbOIO1jVMrBUt92DbZ+iVA3FgJXEz3yTI3z/HAZqVx4LAb00CI/V9Z62yzL6yk3RINyF8ATL0WPGHz65Cb+8wlylpG3c5Zxione+c92+A3h6wcyfVfwQFgSzpUZ+CyfpPCoyBK99YPALjsVjoSAZe+q++aY7KNbUvP7TT3xm7SWM1OzG/a3v/AjMYSwAegYYwbv7WhsrMJgLi0LIlUH0A8gKIygEn61ef6s7FfPWuvHRgY5M0Xm+4DGGX+7fra0/inC8GrdCTQ4N0GLGZ3C4zue0xAZ+flBWzNfwu8mf99VhuWHaqv13Z3m/yyFc2hJ9vU4XM71+172rtFXyzz0/yxYwEb/UzfsMDtrgGMB8DS5hZe4Mx3C5AZMwuaLwgKzDwDhRsIljphGbEPAXYb5KGPtVHzlOuM403RcbKwF4Q7Azw7r63Ods5bkB+IKnDhfaEtfaZ/9R377/P6rTlGf9CNMtVPMMQ7UV/13m3M7WFgGzQTdGnsAp2lBgE8W7+Uz7MxXOCpaxvHZ0DM3LIHuC1IbEeCsUIf+37cQKe+Mcf6bp+79nz21QlmYlIba5suy3u68tn0GRRhG94Btak+Eshr3BdE72Cv5rTm0uZe9qF9pwgyWEsQtr4BiT4TKDP/XnLJJZc8JrkA3ksuueTRCcfBInXzyAIHl/nC8fE3x60FvLyuy66x6LRF9mRxrVPHEeYkLOOEo8U5W0e7uudIxDTMQXOojsX9nv5e+fIOq2OLasw8W++7bpmaewDJ5kRdsMMhPz0/R2kZMhxoulwHHxDAYaATjszqQN8ku53U9esYeL5+XQCe82OLag5IEqDZj9OtbcGsDeVWxcipzvUX1jSHB0DBIQdwqAtHD4s1gLj7lMUZWeZJ5eUMccy6R5vobR04TjM9Lnt2v1u2HOfVYX5Ou88BC0yN2StNQ89xUB9gYIEvgIL0DAv6LdNp7zlTByxQsTaRXuVB7HOHz6ydrG0C45dxl43aQkpfC8IuAyjAAHi320IxJwVE1K9yAZrqDaAE/CTyqy6oJaiRbgVjKtu1lZutyse9wv6Md3OXgAaby7YxsfQVW92DC81ZDrjRN/2/+XL1oboCAuiiMtl6utxUFEks0myuNnVNY6wDV6pP85LDLPu+3+UIFABrjum6dNEzAzT3YDjM+GV22SKNGRjguIBnAReBk929oY83AFEdHBq0oDZd9fza1485rjIx8uon+TjXdquzAE0gkTFa3btXipllU7JF9pz9pEvpfczJ9UH5t6WckKpAUEkZO5+eAbOTaXcGG439ynCY4wa8BPxsh90xvnbV8zcv6gLiCyqfAdo9LMr4P9l/y/BcEAlQ7H21+WCXibwsUWuEfbd41y2jOMF8X0BZn22+XLnwsXm9n83ZC4gvALsMxg1IL+C7oOW+lzFI6xt5y+Wb7Tu5Vatb6w27g84fdrB13PUOffh81yJ2Iu0awHtr9XXanANP9yBa/eb3vvcqrzEukA5IXVs42dD6DlC4wXZrpJ7T1m7zEfBdG/XFBv3N8Wd+5BOsZGvaYpyc8+6Cr4BpejrH6ROJeV0Qjo0odwHWXRvvO3yD9Im0XXTfPFfwuPmpOal3U0HkAlTNT5u7Xxnq3v+VVxnGjXefnT6Y1NY23dMBXpdccsklj0kugPeSSy55dGLxejKV1tm1uLRY5gyc2xwXCFkw1+eAAE7Bbgd0wj0HT512kb5AGeeihWsL4hxoTkOAAqZE1y+DaoEw+WCxfIFcCTbnLvAT11v8A4ttMe97TGAnH9Mpp2F1ujqUf5STgs28LJ5lmiyYezKsdgvfQ0wVfb0gfX/LRRtD1gFO6bY2AW1+4zd+4x5wjdm3zGhsoBzkZMFtzrLDdGpveXc7/GzTZ6wzl2CVYfDVv+ou3x3wBPsoZxOrdwMEp6PJGQJeykfYNYG6wKYOSIlhkwPGbqvPpm9Q3/4HRHEutV8fA1L2cCzb2BeQxhTH0jQO2AXwNrsNTMqOl70u/YPx2GfSTACH5eRMX9l8/VHdgYWBbMBvttj/6QWQYtznsAZ+ADCAm0D/dPuud73rPmestm6aFON7ga/0nR1Wr8rob7ZdPY0vwKjDFl3DDqsz5iogoLIWHNiT4c0zJ5gBeAJqVF56PQ+n3O/Npwk797k5KFsIZFUPbLvK6rRr9l/b0nPllYZASpoA4PRol0I/QGrjgP0LklT+irzMC3Jg0wkMYV8CPgSKAEHAIM8xzzWO6Z24zlwUo7mc2dmdOcQ4lj+38qTGEZwsH3AARz+9ExqfbDfdpreulw90D4YCPJsntdv8ag5bkMxcqi+BTNlY9tdYiIV9biH3PnoofcPOz8tm9f9DDD19soEqtqpvALsLzG4KiH1/ACbtMDC/7C4E9aEj/5tXbbXXFu3EogbYeu8umCWwUP8uWKcPjPXtDyxLICV72vFKdhfNzjcFAMzD2ZlgTL+la2nuWDteRqi/uw64tgEsbaSnE2juM4FijPwNnOzOgmULb6B4A3nq413DRske7GmeNFedAXb6shazDmQTrmuMtT6IkWrtI/3JpldgJ7t74mQee+4Cu8vUZpfmXJ+v7fts3w/nOupcT+3YMEdbIxl3y75esJ7NbU59ujMO9Ed6yeaSyAn1Teumt771rbc2NU/1I6CrTvvOzg6zlea8zctPX+buXQ89GTlZzU+lPF3qcckllzyz5AJ4L7nkkkcnFrMW4xyl3RKX+I6zvk6rBfAy5TCJgFMW7JuL8QSCd+sy8TlmZw4EYEGKAWAbZgRQDEhqYc6B4AAD3Npu3v+VndjuKyWAbW7ADNKC2cnu0jasM77A6W67WxCdI7ZbUDnZ66iso8DRBaL4/HT+9e/We1lfFu8YVdg2ARM5tIFI8oGmTwcq5cAFZsm9zBFeIJUzyH7UcZmcmInYoUkODYfcAUl93ynBm/c4vdf3cpRKuVBbAgAXyE0CaOUKrt9878AmzExs7MoOBO0wuJynwLR+d4Jyzmv15GD2d/owPgBGckNru5yK6rQAtj7lOAMy0jHWqjQfdL0gfj/Vr2tqS393jQMOqw9Qi/O3zm4/HEUAdXWqXekf6N19HW7VmFkbW1DztL/uaVym0/5Or+x7Aawd7+q0uUmNrz0Yatn8DwEfyeasBjSY35Sz4OsCDAB5DjvW3qYG0A9sItHXWLbGESACmOhath0gmI6kEum5r33ta2/1KA8tNmH1C9h9yUtecvvOtQG8bCTbUe8FovQ91ip76bo9DNG8tQzyM29sDHfpRRIAje3kgi/mW0CZ/lr2WeUHcGC60YkxtUzpBYtqI6Zwz+gwxQCT5impeNJrILignzrFftb3m1Jg50vtxq70jtrrBEACp6uPA5T2UEIgI6At2+j5dgsse9hzdw47x6u/dw4wn+i/vt8DVNn/zs0nYK0PF9wTUFJPfbM2bRwCWdXf3KZcYJWxIwBlrOlvgKtA17Z3QdpdI9hhgBm68xB7Yz8L2u24b65tLDfnLau/d03gvTVCz7OeoUcgn+d63/XMM8hyzn36zk6ByjEuAbHe52tL+pY+zLlrG74TWNk1wQYvak9z9a7v9PEJSnd/9QNW9nnBwd6VSfNCY6A+WZBZH61ty5m/ds1+XKcfBIkdxmfe2WD5E4G7wHTv2QV3NwDvucse118bhKZ/48n6cg8T3iDCvpuyL8FhqXl6t/bDTvsuu/NcgbZ9P3a9QK9dQ2sXmPinrV1yySWXPAa5AN5LLrnk0Yl0Bhb8FoVYd8su4RwCLzijAOEEKLoshwVkOBK2KHMyMGABGJyznh/A5HAlh0PJIQcgyBlsS26Sg4FdG0C1bBSsGM+2cLYtcpks/Y09saCyrY3Yo13X90AfIA8ghgO0Ti+nDxNugbGTfXQ64+vQ+YyjAthe8ESbOBf7NyARAMGRrBwHfwBsqmfMuN322GEU0hh0XYDFAo/SMySYdLWd49zvHJSAHWCT9gDFAlQCTvq/emUPttD2f33vb+yWZXb1d86g3LkAlgVf9me37WZLH/MxH3NrS+MkB7YtqIHggTj6q+uwrjh6QDzt53hzZJdJt86uvq3ODpDSjxtwUTYGU59xGgFimI76sz7s/wX110YAHOwAU3YZxsZebOZlewFx5K42JwC6OeVYz4B44BlQCsCHVde1gcKV23ju+T1b+2ur3JlYn2zAnARAMD6MA/PM7kjg/AOeFqTU3wsi9Dud7biwGwDzHeC5LCxzY7qsTY0tqRjo07bxnp0esrPA9cYEVtYJ+LGtZRQCD3cuWZBpgS7XrU72+31XmMf0t+uAOOZc7w1zg7nddvwFlxxQeTIxvVcAeZXV9emjMdnf2Uk/XRsbPXtLZ5VZHQDudmKw9dXfBsG23YD6bMx1QOn6uWf1f0Eh6X32PZmeA527vmtqV0GzyhOI8W5dgNlz6GE/38Ch/12zdff/zvcLgi1Ya9yYtxZgZhfevQAl8+9DaRysIbBa2SV24R4M5n25AYndJXAGbzYosyxk78DNUbvBrZ1PAb0+y1aynd5l0oKoa3a286WxsuxCYy+RqsYcZJzsPATo3oBX31sXAHn3gNV9B2zQZW3k1NcGizdgs4GB5pTm2B0LC7Ka441lc1hjuCCqHVXe1ebnvt9gWb83ddAy0KWT2rmKTfTbelCg4AT8z4AHvfhs3/l06HvP0bZNW7Q63bXcgrveGzvHsv+zT7x3jKnatYdGAvqtM7csc7YAHhLFBld8voHNSy655JLHJhfAe8kllzw6sRg+gUPArW23nBaODVlW1W5z7j4OP0eeI5hgOHDwMVhdt1v7AYLda2u3RWwL39gPLfgTTkVgW450Tr+TizF3u9/fyyK1CJfjM+euBbRtqhbjscFqd3nTsPosvOlyGb8+d/I0/S7bCVNEWSeAtMAD2byu+mTzuy6jmCO31y4LhcOXqA+WCUcmXS7DDouw79J/fQSg4dQCDT2Ls6LdUhlgLarrto+u2BG2XE44BgxHhy0CcDlqdCqnsNQTnE362m2Y6tfzald2ETDzP//n/7y3n+ykMvbgNUEOaUOAqZXXNYBSAH/lBtgtEFT5ttgDbAM4A5UBh8AIOWexl9fZXYadrdFYiPr7ZAP6DEgVABWIVr0qvzEIfD+BcfkrjW1lS5XSs+WlBeoACoH2sbO7pu8C9rs3XfbMALH0FUMzqZyuiVlXX2ByAnrVbfvgZCyad6QCqZ4bXEkEpFZn+orO2N3mGW2sLKBxpqcB5lS+nLRY5AJML3rRi+5z55bSRE7XnhWjvLoABpf15nCzZbaZT/QP8bwFOnacLrCwwbnmQjpZ9nLBNsw3OXN3jrftHegDoBeYoL9ltmMEm2Pq4/RbSov00vMqJ0C38Wg3x7LkBC12zlsGKtnn9133Vma6wJLv755b6gwHv2W72afy/c6ufvEXf/Fm4+ms8VfdClRI22C8GLcLcnoH0PPZl1tvdQcgncHAHfMLbG5gc8FtoJn7PVNgc8c3QNB7zhjc95R3UdfJIeqeTSVwgpYbzNoA0gLTJ9BnTGx6np2T2GufeT4We/Pf5ofOfrHbd5204N1ZD/0IXDa3Y/9KAQEo1VZ/C2ZjOmuHOu3a4AwQLvC/QP4ZpFpw3Fxn7mO/5ooFTrtPKos3vvGNtzVAaY0Alvqs36vHBbLPtc62b99FAi7ppXfAvqcXBCYL0vp/wW36OgNOQFSpXnZNtKxnY3R3j1g37fOtQXYnj4DFrr92HZxOBTx7lwmWbTCCbZi3gd3WZeys4PsGFZ6srF091fJ0qccll1zyzJIL4L3kkksenaxTAFT1+ek4nACjBTjnfxe/65gmWFL+56Cu0wScBLwCuTgXnud7TNicb6ek+87it7K1Yx0yC2iAMIeh64G7mD/LpEiwUmOqJFh2nIkYMPKzAi84tcARzrSt8/LdLtOGA7BA8YJUZJlOAJllbuz1y/5ZRsuZfmIdIJ/HvrXFvjrrnxySD/3QD72BgMCURI7VBR0Ab5iTyu7zynYQknyznKRd3HP2us7BMtqbHQgunKCtunCu66PVI13JMcjBzRbqv8oNWMTWDEiS2gFwKv+rMrb8RMCCo+ZnnU8sc33vAKl+A1E4fUBxW9oDnLJfbKjuY4eev793q/Uyu2pLoGlgFDvcOm/qhGWJncAD+wLubQACiIpRuQ7oCTj1d4BgduLAw60rcBDr2QF4WJHL3l0grZ8CBV1niz99YT5j4AOBAern9me2rV3dV3ux29kFEAHIEkDZvXYp6Es22HcxxwMmPTNdZP+lLknSSaxyAFW/s0VMQPZvbBpzgit03PNrY3pIH9KBYL9WLwBm13zWZ33Wrf6NgfQOWI2p6vA2QYfuMc+ZgwEixkTPxKr1TsL0A9DZurzzhz7CAKxtgczpTN8GpgoUCj4JZGLeeY8sqCSAUD3kpu46gcVA3cqWKmPnqcrt3l/91V+9vS/KcW63irlNoHLZuP5mZ/te3kDrguurD98vULdgmP+BnztWl924QPW+G8xZdmFgyJsfAFr6xVjddQEwz1jYQAi7c59x43PM3F2bbOoCgBkAzLy5DHpgMXsXmJbne9MOJYJ2uw3ee+1MefPQmmmBOOl0MPh3twfd7vrD/CNNyIK8G2Db4C097Pt+wdTmh8bFzmXmagGXtSUHArK5xny5+gMRG2+Bu7172Kj1EFu3Q8N4N8/tGQ3WeDuHemd2Xc8UdE1/fVe9dsypcyLgZz5fe2aH6iQY4l27+lSnDdjuGMSg1d/Gdj+7/tsgu3vPQCOGfJ/tIZPe23s/G9ngnN/WlvUzUP2SSy655LHJBfBecsklj044t8BSrDOLYfnqFpBYlphFO7Zjslt+93CRxEIVK9H2TIvjwIH+z4kJGMFoWycMKwKw7DRhzN6ulR82cRo3534X7UDFFsFyK/YjL+yy7bB4AQ79AN8snnP4q/d5eB12UPWubOAN0MmCfBkd9LWMQ7LbEpeJsgv5ddTpatldy+xaR/Zkf3LkAzEw+HKA0zsGYmkWKrv+A9TQOTsAemrXCTraHronprMn+tz6A+vaNovNt4eJsW9OMdatVBSAwlNP6+xyoBzulFPpECw5NjFbOfk5udmBctdxdejWAig9I/sFigBdAHkYXj2DM6fudCeNAUBTsMZhWfS427cB05W1eQpt1QXIlddVUCPbro8wIQFIgK2ely3EbgeEVlZ5UTukDvhe3QMG2tbL5qVdCODTzzEj1/7r5+oZaCaNRKzq3dLLfvYwNe0OBE1PC55Vp+rqQLralzS2+3t1LgUIoLLPuzeQOADPXNmcErOzeqdn/dpzu6+21p/ZSvNOc0LtTn+bpxrT2+FUsdcqz/y0aWGkCACC9D+9LQN5QTN2QR/Ypg6/2vklkeJktwPTY9917xlQw87se2lfAEg7DjZQwEYXCFk7WHCktn3ER3zETRfZXdJvY6H+SCcFoBq72rTsaYcpGkNYvr1H3v72t9/n6g7M7QdoWD/W1+m6ua92VsaCpT0jFja24wYY2IO51z0nEKvO53Vn8M4ctgDvEzF+l3W4bMJldi5QqW/2nvNgSO97AFXXpRfvwA3WbYBkgdcTtFzQ23PsLAHMu2eDdOYHc5N7BVgEbDDvzV+NR2Dm6qt5ovnIgZ/YlRvk8ZueToCcfnuOFBcCIYDQBe6STVelbzY1inZv8NBaQ9/Tjzmse4GHDuqyprJ74mTXAjILeMREdxBYwV3zunWYsSudzwZA2bv3Hbthr97R5nK2I/AJFN+156YDMb7YHj3XzuqzB+Wys5Pt7fknIGtesn5ZlrN+Xn2by+nw3Onl8wWGd5wR43jTcez1+87AqpdKZgO4l1xyySWPTS6A95JLHrm85z3vuYEQ3/Ed33H3eZ/3eXePQRZQXCaAbdQtKOVLBfIArRKg5zLOgE7KBBBizMhriyHjOZibgQCA05wtbK6eIZciwBeQ0fUOybKgx2CoHrakA6SA2PI61kZOgjZtDsplwOxiGXDrmbb1ceyx59ZJoz96BpTTkwU5p23BUPpc5/3M38u5OkFbzscJDJzOu3s5EwCcwBHOpLrGYq0fA+vSf0DXr/3ar933SX0n9yvnE6hhK2ii/fXTblfWV7//9//+e0AKgxTLqvrEkHM4zglQsEOC5d13HMcFVACkOYRAZcB8DmN2w4mSA7i61X6fBcwCmwKEOHM5uFJFsIGeH/PW+FL3gCJARmXXtj2kEFPOmIpBtSzAvgPWYS0bm3KX9kwMeuOAjnpGQPW73vWu22eVX5vOrbWc+6R2NY8CSdW1diyDEhOWI84W9fsy7oyBdLBgUdfU7uoPoAagA2DUARiwoIgxsDrFDKNfB4gBWneHAUad3QB7sE7AYDrINujeGOv+bCIgXMqBAJPAZ/mRza3LNpVrmA61bbfkAqv8TxZE0G9rawuQsM1Eyo2ALWUYK/Qn5Q1QpLYGXNtajhX7SZ/0SXeveMUrbtd913d91802d95aoMqcCYwDiEgdQT/eV3J8xrCvvOYjKRs8pz7pp7rZcdFvgYjKKFjUuOjwOoBb80rPrD/NdT3DYYHsw6FcQHf1d7jgzmkAOHOvOdx7YsEl/ekwSO/ME3iiq90RsPPBbn3fINMy4hd43rKJezbPfja+jEbPUCfzjhQxe8ibd7+x7126IOXuavH+pXftyP68C/zQ565HjCfsz81ZjiXKlk7GY9/1vjPuazdWOWDa3Li5uL1XBdiWbS2QJj+5oK81DhvyjrRm6JrsVnB8+2eZs/pDGqPsXyC87+XyNn7Ny8211n3VtzmgIEdl9A4TUNVmwenGivlUgIV+zAcbsBEo210hPZ/u9P/qUz9uqph9fxtn1h8bGK4e2oYVvfmdN5jnneg77wQEBtdvzuidF5ddu8H3XT9v8PVcs51ArrWF9pyBkgJUdkKpr90Q/y+HrF3A8CWXXPJMlgvgveQZLy28/vgf/+N3L3vZy+5e+tKX3hhFLUhbyOTkt53qx3/8x+/+1b/6V/cO+AcilfcX/+JfvPvkT/7kW5kWEzn+P/3TP333b//tv70t/k4J7PmMz/iMu0/5lE+5+8iP/MgbSNMCpcXiW97ylrv/+B//4+3e3Tb6vqT7/+pf/at3n/Zpn3ZzOFu0BCZ93/d93923fMu33C8ML/nABUC5YMECfLuA5KRyYpZlwmkBvHK2OE5YW5wGTodF+OnY5jzvARKcEs5c9svxxnAD5GCP2h7adbZDNkawOBKHGgGqknXGLdQt2itbewANu9C2PRpoYGs/J0AOUnpc0GQB6IdYW8u4WmAhwVQ8mRqckgWKl122gC6nzP22UC6La9lenPT6O/AXw7W5xqFSSTrrHmBjn8eQay7x7JzlHC8OfuVgSgcyYi05qEcqCI5h5VV21zsQi3Ck5ePkxFbf7C+nV77lvgsASrCROfGlKwB69oye1X3l5K2M5ifbRfvOgXD99DnHEDjiZxnG2+eA5803COhwMOICC8sSW6cwcUggJ7F2A0sBYMYFHTvJnnON9SxtyjIpzRXqals2O5FyQ0oJ19qizjblbjT2yAL02sSptt25vsAwXTCo68wfC2wtk2+ZrevM60uHNTZ/1AYnxBvLgX7ZQdfGKDa39F50UBNgkT52XGGGY5pVN0559Q/8rfye3w9w6cM//MPvwbB0HkBpHt5xvoDd+cNuzrnffAoIY590B6hfcGZBPvOq3w7PNFefDLbT/rt+U0QAXMyXO0+qS9I8kDROS9NQP6V776LKBZaZK/qsAyOl/Cng4gA7AafWUvV3zOzuE0CUmsMcr84bgKt+mItrg9rLlrE5d3wt0LU2uQDs6jNxSJ3+WmB+AaITyFXuCUTqp/1+7Uc5yjDuNsXElrnBqQ1Q7jOAwXvQ3wY+6dc84Z1M1+YwwWfv1gWG5duml8alFAzntnZ12vIWxFOfBWUfyi+88yUdbRoSufo3P/+yP40/KUEEABb8lMu1d29/Nw9l14KoAvb6b8HV5pnuK6+u93plSM20OtEP7F4Q3vvZOABYb3DSroRNE7R2sHO/FCDsiJzEBO+OTePi0DJrrsro3Wc9KpWUMtaWTvDc2DF+7DaTvmXrrj93LHtP+wGg7w6a09bJro83cKO9+VubXkbAbufgSy655JLHJhfAe8kzXj76oz/67nu/93sf/K6Xfz+xaP7m3/ybd3/2z/7Zu1e/+tXvs7wWC9/8zd989/mf//nvtdBIWsTF6Apszan84R/+4ff6/gu+4Avuvu3bvu1+wbSSs9rPH/2jf/Tub/yNv3H3OZ/zOXdvfetb32ddPv3TP/3uu7/7u29OM2lBleMWAN3zqkuA7yVPTixkLUI5v+kXKIOFacG7i/F1tNYRAVLsQhTTNUBkAU4Oim1+lYEN4n+Aav9j+7Y4D+zgvHEKsZ0Azf3upzbkqGDAaP86B+q7bcQI3pQVQOtEmz0zAaYlGMxAsgWO1XtZUct08be+AYRwmHcbZsJJ3jK0h87JOuAnG2z7bMHuzXPoc4yg/m5M1r9bDnaUbeM5mxxT+XDrR6DrOuMLWmBJqjewO50D/Dl1mzfVVvzKw9wW+PIM5QGsONvAEVtDPbt7e17PBfJ+7Md+7L3+Af4cUzoztoAk1T3weHOBcoAXUOAMA2uXSVdZjQl/q6+2y5ms/fWD3KiVh3XVZ4CP+iSwMbZp11TP+raUDQ7U0x/sDGv9BE8aq+c28QULfGeb8QIBCwqdDvIy1nbs7PZvNtK1DsfSR8Zt+tgTyOnN921LxsJdFr6twtlC9ut/rOYFyeRk7F6gYHoJfMHkw57tGik0jEvgb7YtEFJqgvqELf2v//W/7scOW8LmXdCAftjljqUCsF2L/cVGdlzrc2kssv3+x5w2v27gKvb361//+ttn3aMuO+dmf7VbWh3j0PwPIMU6dMp9z+0nEFYgJ6le7ABzHuvUGNGOPitw3TqpMmordmf/pw+MbOOefS9otQEEAR3tYGOCGUDCk8HOBhfk3YAKUGzH1Kba2HG2ufXVYVm6K2xtwSU2vFvfgVw7djcYtkCbz4BTxgL730OkBHvZnPcZ+z7Zi5vPHOhq99G+47yjNn2U/sFeN+c1lhufDr40tywAjLUvV6v3wh5ytWzzPVR2t9+v3nqGAKQ537pFmVuf1YuyNn2VOURb6XP7yb39386LN7zhDffvo+c85zn3KYJW71IYsImuScxdzkSgE2NuUy+Y6/W5+W8D1CcYbo3Ibk/Ae8eBd9fa2rLK/W1NZm6mX2s8Y2j/32Cg5wtK07H609cGDH2nzjuWN+C1ujjH6c6bAnxSGz10LVb4JZdccsljkwvgveR3hcRCee1rX3v3S7/0Szdnr5x9veBbsAWk/sk/+SdvTtCP/MiP3ADhX/7lX36wnBYDP/iDP3hjBCcxdf/dv/t3N9ZuC5m2l7bdsjIfEqdDt3j60R/90RuYXL7FnL+A4S/8wi+8+yN/5I/cFpE/9VM/dfdRH/VRN7bNQxL791WvetVtEdj9X//1X39rY4upz/3cz737oi/6orvnPve5dz/2Yz92Yy5jpF3ygYkFocPCknXSbMFb5uEywDiQ64B1L/BzDw7aLWnLeNgtxtmeHJOc+xwuDiy2Wv/LjdjnDmzDFHW4BKaFtAwW1bY6rrO7jkvi88rkTLrvZMIBtP3twCMg3T5TO05QimNm+zrgxT2ns73CYaLTdZg4IxxHZQBDes7m8+yeZR1xght/gTMBMUDBvpf3tB+s6HQWszbZ7Y4cRHXZA1M2x9xua1w2mFQczWMAF9tDa0s5Adut0PMxbfvMAUkAfYwjrK/V2TJrOYlsm8ONCSgPYXNt4GfzVQGs8s42H2MIVU7OL2YiJxcDWbs4eNW/7eKArD7PfrpWeXta+bLr18bT0Tq3GK+7Fd+41k99HyDXs4HRttPmPNPJblddJuLJLAQ0rI7Z9uZDfojJt8ACNuWy1c0bgG/PMSY8Z8Fg8wpQCNPNdzsmlZHNZ3MJVu6Ccz2/96JgDmaXAJOUMpuaBLN48z4Cyo1P807zWWX2ndQC2ZxDhwA2gCIgqEDHsh13G7m+27Qx7JwtCVZIdaOvG2cFZx2ytmxc5fZd83HA8c/93M/d72oA/hmHSc/I7gNZz+3lgIzm/MZADF1M5uak9BEIDdy1u8C8XhndJ2jYc7rfgYICcj27dlZHB8s1bhsPrWvaPWReW3Yl/S8zmd5tYadzemKXO08nxky6qt/PawKfq8uyGX236TY22LdA+jJvyTL/2OQCxeaTdLPBnQ24aCub2/EErDN3GBfepQvudk99UtvtitlxvUFPevYjuLR2CtTGGt7AtHqYF7NVKT7Uz/sRcGhHUPcL/hrbC7yyWfUC3hpv7GR3MnjPecfsODTO2ZWxvDbn3V4dpRWiU+2UMonkK8RajwCSXXn/CJaqs7rWL/rBO1tQovv0j0Mcze1bzyULeM9uYGEDJQvwn9/vmlJ9d80kHUvXSx3FntmvtBP6RbBGwM6zAKXeW95/u0ZaG1iywLZHna2bdp7dOXmD7qds8FA7HhrLG2B8svK+nv87LU+XelxyySXPLLkA3kue8RLoGdvqieT7v//77z7zMz/z7od+6IduC5ev+qqvuvvsz/7sB6/9e3/v793A3RYIX/IlX3L37d/+7e/1/Zve9KYboPp3/+7ffZClm3Pyj/7RP7r7xm/8xv8rfUMgyH/4D//h7p/8k39y9+Vf/uU3h+prvuZrbkzhh+Sbvumb7nOkfuqnfurdL/7iL75Xm9sy+Q3f8A03kLfyvvqrv/r96uqS/0+wUOSPbaFbn3MkEs7Bgm8W8w6+WMcLONa1nO2u4ah0HwdZ/kzb+jm2fd+C27ZCzrftzZwv2+9skZMfVY61gJjd4r71WUYRgNl2+gWV6GkX+Qn2j216vt8UFfREj8vgAsL5e3VLX5wV12ImcwCVu8wrzgIH9tzWu58vEKfPOCzY0MrGuK0+OUqcn3UU10HPScbM8UyAo3qv7XgOQOcEKDjZAUXyOjqkhjPW/b/xG79xsxEBBD9A+oSDbu7CxlTPZdQsOx3Ty3PZRcCerfrNjdnzC17wgvvAVfqqPsDRtckEA9TnxglgSNsWrN9ylumzn62tcSwBh7sFGTsKwGu8s3X6SAKubV9XR3pThlyWjT82g025QRNA48nMY2/qsXMOoHSZ0r43bwFwgbMAZCASvWByA1NWX81NAYabdoP+6LPdK7bVV6dAqcASNt+7DeguPYP+NIf0TEw5gZXNHYnlDrRQn55RAKEgQGMCkIRpWB2z1dpgK7AUNvS8+U6lkZB/0py0uzswtwFS2MTsYIMxu7WefgCx6rM2zHbYk7nWPKEv+91YMdd3XWsMYKADDqun1Czmq57ZLh91II3fc+eA3LnqVR+xjfoi+zUul227QTZ2A3ADVvW/+QO70dxnZ0Cs8epdGg5zwm4zr83Vyc6Ek4Fu7lpZ0Gfrxx60l23utcaklEPef+f7R+BqAS1BT+8ItqyeiblmGfKVJXDg8DZ6ZmPqI9gl/Zj7BQ83IC3ImVSm+QEAWOAkOxIIlHZDQADzWFBOu/2caSc8i60/FIjauc9n9LPBg9W1cdOPcc5ezUvqsO9pgKr5tznk5S9/+f2Ok12rsDn13XWTtp+7KwQysNS95/XttpEdeJdiGy9guWuAtWXvgPMdcTKjNzC8jGJBUv3rZ3fXIDhYD7jHPKB9dCC91AaNt393bHh/7fv5BG61i2089LnPdkz7f+ekSy655JLHJhfAe8kzXs7F/ENSKoVYuM973vPu/sAf+AMPXtNBJV/5lV95+/tbv/Vb/y9w95TNU0X+6T/9p++3Ln/7b//tuz/9p//0zbmKWVyahTNKW/qFT/iET7j9Xe7gBXdJIHKHogU8fOmXfund137t1z5Yp0v+b8mZdPCGVAHYtkACTrIFLGCMQ7pOivyemB6JbZPSa7TAtj18DzjCVuv/bAKbC5gHoMEmtu17WR0Oo6p8wKvvOOUW/rZWspVlDy/bKCcaOKCOGI2YYRwPDj9Aw1bNXZhb8HNQACAAmITzgfnnOU6CPsszbgBLy9Q6nUT65LhgDCbrSHKWOF/qh9mLhas9nE8swHQfa589BJgEeDkkausMWAA+6pOzrQA51/RbHtT63pbL+p9deVbMuwUGFkxVZnUsuNA1/XbqODvANgQqs/vE9nA5PAN2m7+WoZ4EEvScs+82D+M6kQu+7JZdjhvHUL8CTCuruvR3zn9jvXIxMRuP/Z+ugKnVTa7Zdnjs1n328axnPeuml/RZXQJDAps2UEPH9XfPCHRptwjbkne958p5GUjZc9Jj9a4/N6cggA1jWUCCM+0QtmW4Vm737SFDe/iaA8Hs+tgT4I13+ValFZCCQv132zGQcFmTbBsoLWiDlZruYnybW809q6eAZAcL+m5zAQOuNx0IYFQ7dneFcXsysNXBvC6NDbu0lZmdYbEtKGHuAx4pi+0CeszNchnTKeATIxLAZKz0w8b2mQ7ewyaW+sJp8tl0oKlx1//mNvXJNqQVaj2RjffT5/RonlqGKnbk7qLYA8N2zvCera49SzmNPXnpCxR0cGS2WZ8HNlZ+6YWqR/UxT6n/7uo42YPLhl9gydx9BoUW1N1gVzpqjAFPBTY9e8H6BcuIecG7ZMFRY1LgrnlqvwOq7q4bgYmT/Qt88xsQB3y1FsF4FnSUK10KqMrKhuy8MTaNS+3b3TjWKdrjfWeMuHZTZ7CrLVP92D07p79ltW95+w5Y3VjjCOYlzrHIxh1waj2zqauAoupHTjDeOGUHdhAs8H+yWHdt6R24wTRro2UC7xrKe5BOsGwXiDbPNOYx0AGxm7N/gVL9uuWc42PJLd4Z2w/A8l1/7c+u0xa8t07Z9YDr9x42su1cfZjbHyLhXHLJJZc8Brlmv0sejXBwsRlPKeUBJ650CL9d0mLz53/+5+9e+cpX3gMrJ9v3sz7rs+7//jf/5t88WE4LmE7ljjGcM9dhcD/5kz/521LnQOmv+7qvu/3dIXEB1EC5cph90Ad90N13fMd33ADnF7/4xTdGcQB1jlmAT6kxuj8wg5S386//9b9+Y1AEiHTdD/zAD9z9w3/4D3/b001wdJz0nqOzTgPmB2d1mS/r+FkQL/MPyCQFAEYMBhoQr+fV/zmyHK1stLa3IA/wAdZUXp8BcB0UBajCxnDKtXo4zA3wbEHMyfT/Omm2z3O+LLC33ufieVmnFvvLbOJUrIPSZ5uvbx08OrdolxdwAWL3rNOwjKl+Ay2Axtq9+XTPctf5X2Yd0fZlEyXGQ+AENlXfY6+WzqC+CRi07bcUMpjJzQOVKTfsptZwaBnQcFnBfSYPXfOIfum+tp1mR+ssSVHgYK4+6+9AysYgcImTi9HXc8tVKH1B9rgMp75nl21hr71ASIebpfc94KX54CFgvbrsNs7diq+POYKxsJYd1E/XB2rayi8404Fw6usk9eywdq/zDQRVL6DJbmE1VwAvqjN9yBtcn6VbdgIgWZBQwERKCltp13kFOrBJoMKOlaR61S/p2tbrZTdro/lqx7TxpC6YxoAIp91jkFaWXOD6pGcDoOnGjofqs2kzApIqJ7vBiN3AV7YhR/ACGvqo59SHDpdc9rL2GR8Anv7e0+7p+QQKiHsAP/UxexVEMLb6fnNq7pZ0OcoFvbxb0hc7DtzcdBUPzcvaTr+9N5tDBJ1616Q3Bzc29qtXerIDpIADUGnn+NpWTu36IvZs4Hvv72XB7TwIcGObQDU6NVZbm+x8XR2MNweB2jrf/Y3ZbKV2dV9s7T7r4KtSW2FbyptsOzymuPouwLpgPv0t22/ncf+f78YFrBZA3byx228YtAAzAPkGFdhP7QDCeS4QPB1tsGvXJ1ufh5jDggT7DnftpqlZPQFUBQ0XrDUONlDInhes08/GBLa1uknv4IeO9KF6AV333Qzct9vHMwV2BBGkrLJLwDs6W6ru9L2A+waDdr481xqrN8G4lf6X+qu2WlPRrb4QSLTeWlb7rnP0l/5ZZqy15u4G2flM3YzRfa/q0xPg3flx58Pt3w1mLLgrTciZsuEcf7s+XADX98bhjuOdgx4Cf7XhDLw8Wdm6PtXydKnHJZdc8sySC+C95FFIjkE5IpOYvA9JgGvSKboYL4kTdXPA9jT0/xexVTV5aBHy8R//8bffLVLLK/xE8rrXve7+74/7uI/7bQF4SwPRoXDJv/7X//qWR/iJWNMdYvcv/+W/fK/2BfR82Zd92e0wuE/8xE+86TEA+B//4398v4BNylH8FV/xFXd/6A/9odt18lf+dgjWH0bY5my0uOOsdi3HgyMgl2Jiq/O5DRFQsowGi2zsrhahDkCzMMbQ5KjsYtjC2lZxbOCurx0ce4t3W4uX1WThvywJALat4DlFQAXOCaey/zmfu00WwMlBwjLcLZKeSQ/qsuCFOuoL4Mm53e5c1K9jw9FZNh+gjCOVuIfDvVsefQcMZS/auEyUrnMQDXsJXAkk0Q7A/Nve9rbbb2xuAG/AcIBsfZbD3+8+Uwd6CvAAIOf8214NLFzHsP8BuQtkc8o4k6sLziaHlAPufmDagiRYtpjk/W6eDaRp3i2dDCDEFloA/AJs6nGyjIEsyTKez5zQyxYT+FBv42TTY6R7dVhn3rhaBlflp28HJdaHgGDOeu3GwOU8L6BinAFz1yln0/pam7CsABvY5Bzonas42CeQlV3tePO5NqjrBkqWAdlP7yLtNibl3fW8Bfh2HgBcpJv+BxZXjnke491uBXNh11X/vguwpUP1bq7qc0C8utCVcjaVwtrvjms63AM49Yd20esCQ6dezznpTIliTlzbar5oXAfa+m7Bq+Z8YJCARQCVfKnL1N3dBwV9sGgdjmWMAby7t7kKOz2gt9y7L3rRi+4Z5Du/Aul87l1Fr9LZODD0BMoKZgWQ12+/5/f8nvux78DIbMwch4FuvmTH1TO76PtYvz2vdFXmp3QjZ6o543w3LPDJRk/AyNj2DsIctnbYdB/LZgbWy+2843zTkiSCQOqjruxzmefL7lxZgFWd/D6fLdjw0FyDsdv/9UHtkD7DrhrsWLuDjKF9hy9YbG1lrjdWBbTMj64RXBPcpFPvBUHhZdXvXAgY7rvGhCBA3/V+6rtICcbK6vwEPHcu/f+xdye++m5lecf3f9KkccDKJId5noeICnYAgwhKo6QqkFI7aKo1adVUsWLVJhpaaIkF7AAyz3CYRwFDbe34pzTfN/nsXDz8DpxzFA+/s5+V7Oy93/d51nive637uq91r6vREQvUk2v7PW3kpDVXOLrrf/Nlwd5lYgNhya866pet59Zt18Pd3yzwuXss/WrNt5fgOFz9tcCnsVxHwp6MAPAfnWe7ppCV7feV63XYrEzpb3Jnzh6dM74705nOdKablk6A90z329TmKuPhB37gB67+4T/8h9eG8q3CKASwBTCWujylZ2OtvvzlL78YPqU2E5/5zGcuMXS7iO3epjYtsVdLsc8yXo7pe77ney6/M1y+kRd6wWrv/GWlNkl/8Ad/cPUTP/ETl/9/8zd/8wLM3lXqZvOYvdW5PqofM7B6/8UvfvHF+OrzGMD97mbxf/2v//XV//gf/+PS/694xSsuIPAdd9xxiYVc/3+r0h6h7WfBkpKNKFCjn4xSY7GsHsCNTSsmLQDEJhVwUZ4YK5gvGXiOIduMuxiFUc+oWQNIPfoBnuzxuGWsi8Wm/jbnJRt/cfmqRwYzwwRw5L0jq3Dzs9leQGDjeSrnGIN0AQB5rSHFUFX+kQEiATrXebBAzhrwC6xtOVsPfb55LbADPALK9r94heIjl1xAVZiY5oYj6+rhIqmt217StscOsZtWVrcPt3+O4To2fvRe4gPMXfAHMAOQ1XeMWaE/yuc7v/M7LwBNwEptCwjFTM+oztB2FH9Bf2xGP5xoQC3G5YIEAMZ+6ndHbBnNgWSVCXx15H6Pc1ef4sYCKgCoQEtjuUZiABjAOaC99ukfjLfAkICR5t2GpFggG3CxRqr67VitbC/rdi/6W9b8zjFj3N/plupiPAG1G/IDk9R8x+CtHxqT/gcsrjG+oDBWnbZuSJPq4ARH/ZOstPY1NjFP0zcu0Or7+rJnMH3LD0N8WZR9ByQGMCzwYO7vcXB13iPKK+8cgAtMLlO6tPIBMKw8x6ABnfXbXjDp0ri+KwSF8eXwKD/OvmX85uyh4+uvPXIuTEq6pncDZfvpdE3rVqdqyrv+F+NdHyQXvV+Iqp5tnNo3NTdydjevCx20lxX1ngv6hBTai9QavwDi3mtt31BI9jy9Vx2AuRwk9X3jXt7tJYDivVN/uQxLCJH6giwEZldu8/JBD3rQJayKfnWipn7jZPKeOUQv3QqA2nUACB0btPfTC9bk/q9t/l+dChSmM61/WM5CZezc5qigN46nXuS785Cu0AZrlPkCIKcfMWGPjH6XldVX5AlAvACnOUaOV+f1vTsFjv3IWbNrO4ezJByR/BbgA4Iu83fHboFnoGrPJufLhpbfhgdYB5B8FpxcUHX3PNsedwe4+NG6yhlgza+9HCFO96zukZS5p1k8s47A3cOsQ0eiFz27oU60cwHnfXedlesU3j3bjvXu2Xbsj0C0tG1evXx8zvdbLz8LFLcen+lMZzrTTUsnwHum+1V6yUtecgkVcFep0At/+Id/+HWfF3dOagMeMxYIK7XJeOxjH3sBKIvR+9M//dP3qo6FgnAreRfAHRP2Xylj5RulNi+OAWdk/GWlNp3/8T/+x0uM4NI//af/9BI64RuljMhCTzzjGc+4BlRKH/nIRy6b2RjSL3zhC6+e85znXEIxvOAFL/gab/0HPvCBy23j9XtxiQN578kRq4zSb5QA9aXKdTxvN4E24Y6BMi524+iYG2PDMWAAFGbEXkDR/xn2NuFAldKRVeY7AOoR4BT/z7vAD2ygZW0w2hixNueMMOXshtjFc2uMALA2/w1T4DnsXAB1aYEzoJPQCfp0jQIsjDWwjuEi9McCUvuZcBnG6Ag4bzqyZZZVd2TG+K29xtglNOoJwAtETM6EOegn47Ij0F2KtkA8hm/yVh0yioX3qJye37jM2NTL7llmMcaQ+LLaVr0CWcSELgmf0TwAUJB/rGQJSAykUpdOOsS+77K15nt5N84x9rGZXHKD6cZQdITeMd3mCpBr2eXGcY3t0oLC3gEqKKOyHbFXB8+TGYCE4/K1QWzq/g/g6DRI4xko44I4rE8hVNRF/y5L1twxT/YiQ84hz5p76misgGU+4ywR3sP76zDC/N3wG+KxivtpPu28NGYAdezp1R3b5vJ0YZq5p68rJxBLuJmAvfowZ0BlBd7tJX6lPS2xDHIs2+ZLbDxhfZQrBi3GoTBI2th7gVYlICV9KjRKMlTd9CFZxhxf2QHGBUJyfOhHYRpao/U/vbFH9+u3yhOuhbPB2AaAlp/wG71XHoG/4j5Xl2JhB9DGoM/xG8jauzFyez5Gff0SkNozOV/Lw/pV+wJ8G4+vfvWrl3ilOcAbM3WtPtWrOVWb+10f94x4wJXRGHsW2Cc0Uv/X3uShZwD49V/O695xoWjvFdqhfgRUVpdAa2tEsc/ppHRc7W4vBYSyhgLk6UV6nZ4Dnpvb5kL9ZT2rfwr5YnzXqZiM0yX2GLvuAG3JSOuEkCLmirG0Vi+Dcde6W63JuwcArul/zlknl9Y5vHrWWiksRn/X3sbL873rtA8gbp1o8jl+Zu+x4J023srZRe6A4wBmfQlEpPs4lexNFuheJy8HqHQ8NbSA7zL11fVW+wPPWOOEoloHjjYBd+kOY40gsCDsriN04fafPQxCwDqK7aPJPV29+a2DDwN6AeUlBxyBVmXverp9sQ7oBdTXOb2yfQTMN8TOtmvlaeu19ROa756kW4HJ91X6dqnHmc50ptsrnQDvmW5ECnQIWC2G5K1Sxo30spe97GI8xNbt0rUuOGvjGDAZ8zQg8e/9vb93MUBioN6TlFHQZWg2HreK9etYYenuxKJts40B+peR2sy/9a1vvYA1bb5+9md/9gJof7PUswGzu2GWej+AF/ujsTgeMez/3//9378AvBlmge4xHe9u+mZg+CbGXZsnF1QAAgCDGFFrYAFNGBAbz3nDdzAyGTYZQTaq5bsXcPS5o4o2yurh8jKMMBtmeS9ro/HPQMYS0teOmzPwgFXlU/uUu4wL5a+hCLQBFrncCKtwY8yVvGucGdZYlo5NLgC0m/UjC0l/lZS5RrNy9rijMZPnAt/LEN6y1hhao+7IeAGIuoioMXas2PMBEuVX+wDx/QTgiMuJPVp+mGyOs9ff2DEY1Gs0BnqsY2OZ5AvoL8CtX8RBLAEnY9xtjFf56QfgyjK3l9FcXeqHACSgUmBT7RVT03Hxnq39tVldNrZrAJULD9cxsezQfqcv1XnBP2xJ9dVO7Um3mn/6zJzamMYuHWpuBbjXtsDs2imuKVkUGgII2GdAhz4XUqP/62tOApeGAcUY99UvvQa4Xeb8OkQACMoHhJKfUsBM7wYEAqvovcDQQL7KDNCLnSx/OqMxEs/yOMfJPB2VfIqvXN6cFv0G2Fdfl/xxYvR97XT0GlBqPh2BI/qnMlY/GIuVz+bKgm21H3MRUFi9y2tlRfgH46oOgHhgEPAESL+6A/BtjaZ7yLvU/Ko8oK75hwltPSgfOlN59VWhFcS3Le/ATXq2PU7jZ40ov0Bb81A9jCOZfdjDHnaR+9iqwPPqVl36vn4VX7uyzdnaK44y0K16VM8+x9aurMLWVKd0RO8lq4GeLvni/LJuVF8yZe7pA6cI1jlorHvHianmQf0DFNt1h+PMd/YI/q9N5bOMcOO9zhd6e+thLS4JF0Re6hPyf3TUCjGzTkrlrwPX3KLD9ZH1pyRMiPfseRYg233PhoZIjhoj9dMvJTp6YxMvYLcnVjyrTQvA79quTn1vngPH1zmyF6UtqG3vsUzUrdPuH/Zz67Z6qttx3ds9ib7f9ZZcuaSSXu7vZJlsrBxx6q1TeuMe953+UgdrsrWAI+I4p+1jFqxegJW8k2V9dARmj3up3V/sPorutu6p7zrfNy0Av/uYBbmPwPrReeD5+jnH+JnOdKYz3bR0Arxnul+lgMnYcaU2VBkwf+fv/J0LEzVG6qte9aqrd77znV/3nmPU3gtY7NIyYGUbnje96U0XgDiwOMPml37ply7xZm8FaN4qlW/sX8d2A04zmo5pQcM9ynxXCVOy/P+iqc37u971rsvFZ230YkTXb3cndXnLXcU3/vKXv3z9d3GCbxWW4vhcxyvvCcB7T9Ju9jMagETYiFghbUoD8Ry1t9nENGR4HVkI4p4CZVwis8fRjTMjq9RnjKndYAtpIA+GdoAQ8IccMKSBW8skARQDfV3ihqGCRQLIZkAxHABoywiyYV/wY40lho9yASbAIkZRyfOYT5gwy2JcVicDeZlCR2bNGrxrwC37qeSZZTAxxI7sFfOSYR74gHF7rJuL9ACkjrD3PMCLYSR/TEsXcDH69iiksQFq9F6/sV0wY8XnZLSWV4xHRhB5LmFlMsTJUCBjZQVA9NOccUEWeauNwGvM18r77Gc/e3mmfgjAIYf1YXmlc/pbDGngm1APZIsTq/rFKKzPa2efCZ9yjKGMBYzxuJcBYa7V19WLnFbX8qv8ygHK+b661R/mAYC+vBYQF+cyoNtFV+VVmzr6Tqf0TGxD7MbaJZwLoHpZrMf4sgta0Fur4wBbzbvK8x62IuBG7NfYmMsEx0wXe3cZWhvug4FvzBb8XEbcgkelBazMP/kvq20BAfOALtDve0ycDjNPfaesnadHkGFBfzpvAZdbAUXmaCxHOkRd/KYT6ClANtkiny5o2nA7fWcsAib3Ur6cIUCUxjrnQWxdF+Itazx5cDwfuK7Nezx6nVmBwJ2AOQKAGP7JbeUn6xw66QhgU3VP32Pi9l1zv7w/+MEPXupSiKfaW8gmLH7hVQJUsWUDfumigOC+r53lL348hiemqnAjfVc7xN52imDXWk4R+re5KVxIP0Kx+GneOKEByKs8+TvtUH0q396hNlm3yxdQ1vscwr3bc2TJfoJM+LGO0Em7tm08VaEO1BNDfAHcjUe8oaBWv+58MY/IFLY69vXGBD8CcCv7e5JmLx+0ngn340SVPVDlLiAodJH16BhmZwHBZb9aNxawJQvWxY01rc7KBjTvfNo1tsQpSB6s6RzydKu9Dx29+5Itl+5dsJVz0H6NjtcHexLq+P46uo35ArurH48A8+67loxgX7F7syM4fpSLlRd1W7B7geHVtUfgN0b/Jz/5ycsdIGc605nOdJPSCfCe6X6V2gTaCJYCZN/85jdfLv96wxvecPW2t73twtDt7002hdIv/uIv3hK4LSbcv/k3/+bq537u5y5GTCzXt7/97d+0Xm2qCsfgorcYrcc63KouG/furpJN4N0Fmu8qZfjceeedV9/7vd972XDGuA3svbsp9tBdpY2DdXefWybz3UmBNN+sfZ/73Ocuf9vUAmgykAMwMlAbV59j1GG1Yl4xWhylteFkBABlGOsMKLE9N76Z4/GlBUuOF4L1DFZnBiSnhHhy3mOQAImAVhhgjPJ+AxABYQwVR2DVjVHQO5WtDGydPXoP9GSoMBpczFYC1C37gzHBAMCiAhpJYu4xoHY812hY5seyQtbIKG2YgzU4GLNrzPV3oCYWc6l2BALU9o5gA1VyVnzpS1+6/B/gIvah2JPpptrh2Km6A5WBhrHd0mkMr/qOcd7vWKY92+mAnkuOPYc9BzCorL0cjEwxNrWZgdnvwEyxBMs/+S3fng2YqD+wDRnkjl+Xf0BTfVE79nh3oEj1Ko9SMljdytvf2K3VJVA6kKfPMtw6Lq+uGweSYQpw6e/aiN2FjYc55zj+hjwwroDE0jKXi+8Z61C5yvK/fhBuwFzaY9HmnlACCxKaa723l8Wpx8qjtDqE04D81hZhNxbgWHmnpzD79Z2+SM8ATc1bsSU5LrAXtwwxZ5006R36dR1jxo8uW2CJg0lfOK4NwGgOCLHAqbUha6p//WxeYR66BBFjzc/qpGXTqg+9Qr8CwvTp8Ui6d+hKawn51qeY+U569Cx9R9dqd2tlDqVS7Y1pW//UFzlHa9sxxraf5tyRvb6gzQIlxlpf0hMcilid/Y7ZnoO9ugGl0xmVBzAsL8ziGL+NQ9+nC3ISV/++D8hNF6Q7xQEuj3RA7c853k959t1f+2t/7WvGZE9kAL+BtEJgYZUbh+Zb/1sDxeCvfT2bDnMao/9rW3LdvsHaBjAl28m/WOK1HeBcOcnkhmHgxN1495WN6b9OKKCjd/XvsoYxc+01KnsByQVx9ZEx3nXTnFxW74JxvWffymGylzraQ9kL1I8B/f1vj2D9q71dzFv/AKTpeW2wfpgL2OT6rjFIdqyT5iHAd0/57L5r2aXaueODQb+O31279cfmvfOr5zhbrQ2A9eY6gF/a97bv11mtffaSe0keXXYM0XBkyZonuw/ze0HWoyNMvy4gu+1dWZN2jbwVkCuPI2lC2zdf7ZPHtrv3stfSDfc0HXXgfZm+XepxpjOd6fZKJ8B7phuR3vjGN14997nPvcR9/Z3f+Z2rP/7jP/4aFunGaWqTUDzYu0rvfe97LwBv6RGPeMTdAniLC9wFYqUA55/5mZ+5y2e3Lncn7AKg7+6Ec/hG6VnPetb137GT7wm4W1oQ7httUr7RcwuwLMvr7qSMxbub2kxnnDkiy2Ct7zO63Hy8R20BEHt7OnauC4vaYK8xvsf2lsmGzcCQYgRhGfZc9cPwYkSVxLjcEAyYJhgcQJ69zMzR0ORkj+SWNxbM9rtNNgMBKOJYs3ZhFwLMFlwTP9Et3NXdMUubcUblGgaOHgNY1GOP2B+ZfWQHm68ELFmGksToWcaN38tSXAYdgLZxwhASoxOjDfsMeMpAdDQ6w3SZLkAfrDPH9R1z74dxi13bMwEV9T3Qs3HNoKmvhScoLWuLkU7esTsdG9UXAMJbgVYAcRdbZZBjyEmeF+ezn+JzP/rRj74+Hlzevae/xHgVG7v5DChSlz3aDMCLQSfGJ7ageJj6pR9s4UAh8UrLP+agmNMM8wVHyfPOi/REgHpA84IcO67kFBgBPKtPYkQGhgFphOqorMCiI9igv8wv9VxGaX8vk58cAy+MTwBaZVW+MVrmZrIXQFgfbgzoPg/sxygkY45i52Dj3NqjukAR/bOxjo+sL0zPZagBbMmtcU8/Vhfzp/lFP3BsmIcLhJjPQKtlfznNgB0PyKH3d2xL6g802bjjqz8WwDuGAKDLF7RLTskEx5n1AcM7pxInI4C9MU22XPJ1ZHquPl8mMfnZeKbmsbFcHVxeTn+on/nS39i1jUNzTazj5mFtSGeVyFjt7vlSste87Lv0RgBNedBjta+2NfcwgQvr1N85myoz3ZTTtn6srNpQGYHe2m+9dIkfR4/1zEmD+jc56rtkDjAqzjjH3a3WsdpbPwU+AyN73rpeXYWBEhIqfW9Ock7od3PKhZ0uDXN839jRV+aaOQNgNf6cVn6sl4Bm+4ado1se/bO60Qmd8qvO+mf3UfWL0xobb3v1POeGUzwbrmovIaTv9as57XN7rAUalwFqPdE/6rKnftRHW+2ldq+x+6cNJ2Q/s2EYWg9qE8fjXs6q39T7WF+yCxy2dzRXPbuX+20enJT6xPt0zdH5J9Ele/ptdcRx7dtTHcpfdjT9ufp3wXz6ZscJ+Ltg8PY72VYvl4ue6UxnOtNNSyfAe6Ybk2LvBvC26D/72c/+mtADGQPHi8vuKu2zmCDfKP3u7/7uhUFcCjTt72/klXUhTIb+N2OlOvZ7rNe9SV1wFnMiI/Gf/bN/dolB/LGPfezq/poY4220Mw5t1mMOZTRmfNkgM64YaI4Ot6Hs/cZBfsfjrb2PtbZGmk25y6owc/cilGXm9n0Gq4toMjLEIcRyYFD1vHyBJDbCgGHMM4wg7zGGV0bVeS/eWmbxEeQ6MirF+2RULztoWRclRlR9DAAU1qC0QJ72qMPmsZ9VX2D+MlbWibDHNLXZbwYJJiRjEwDtuQVEGJMLYmEL6hthBxZoEq4A4CoOZSk5BQBhZDKceqe5W37qC5zLkMS6jfmKVVo+C0YtA2n/X7aQtvUOAD/5J0fauMBX9a7M4rvGfq3eATrpOfE4Ad8YcLWFIQqAEBKA7FafABjy0Y+wEYBR7LL0OqMZmAUUF5d2wc5lEpmPZJYTLv1cvNo1cBdU8y6QzxztvcbE5wDz+gTQsgDoxtBWP8fzyQZ5Oc5FYxDwAkCpnRvaomcao/4OWAfAijNOT3B80VeAV/IHPKNfMMF3TiyTTz9rAz3U74C/xieAbuetd5b1JW/s3tpy1AsLyu4YAz32wsF1wlUfrE1z3mVbvYuJTScm0xsjNNmiC3ZeOb6+cYHp3ebDOpCMZXOlfqmOXX5VvZLF9iGBqIC52r+nErR/wWbg/7FPtJuDkM6Vz8ZtBWwCVYBuwq1w2tCd7Wma1z3XPK1tWPWVFRAqVIkx75nKzrlQewN8naLpAjmOksoU57g1PN3Ws8KtcGYBxoBk9KIxohvK32kMjPF+ylcsevLfO+azvuZErp3CanD6LUPSRXtAbKzeZbY6nWUeWaOBufQix6Q5tfsNMmaerUPKe0A1859O3GfM311r7W8WVOQcWVDVPKMnFvQDhCYjdBa50E4OkfTC0XHr4r49GaQPsYrNATK8DkzPqJe1bvWw/RGHIn2684ou2j2OeWMubUzk6l07Ab7Jo7mcnjmyZu2hzMc96WTc9nTE6rkNaUUv+n9PTaxz0bh5dy+v23VtAdfjXmqdywv67h5DW+qDdYZbe9Rv81z9tkCxcU43FPLlTGc605luWjoB3jPdmOQ4YylDYlMX54h5+M2Yo/s9A+mu0q/92q9dLmQrffSjH736m3/zb37Td0r/7b/9t6snPvGJF8B1j1gd0wMe8IDrv2O0/EVSQMdP/dRPXX34wx++GBvFKg4IL4bV/S05Fs9wyOjYGJfA3uQh46WEXQVgWiBGXMM2pwxnm/xldByPAi7zS6w+G2iAJICvjW7PZPxmAGQwOiLNuOl/YGqb5MAGBsAaZYCWysFEAsgw/IAnDMndiLucjRHgSGlpAS3vLhttWSWlo/FZqg5Y0bux3+OTy7bTz8aF8aHNjmoCDOV3PFrP8AZSrfGzDKC+w/Bm+BwZiUfwOtAGIM/Y8lsMx8rJeC2USAw9dSJnfdbcxPYFNKwslbQTUBWI4EisGIBrxO/4rvFY2qOSywQl3479JneA9HUOmFcd3S72bPUQz7r+SPawsmobpwfQOIAHY864rqwtGxITd50OC0hre84w87q+aWxWztYg3RiRO7ZA6P4OFF2Q3BH82hawXJ0CbhzLxe4D9u+li8teAtCTPcfHF7Dddm7MxhLwvXpUV2FbyDD2qMtoGisnW+rzwCzyBTxJ7wQ0Nj8b89ZSIAw2WABbwJaYp/SLvhJOgU7dGNBAndrX+ibsjdMHZP4IbNA31RngBXw9Msx2Xhpb7HgxzgFrxo8c0/dOGdDLnH6cG/SN9UW5/d94V0Z5A8E53vqhW12cRu/X98985jMv+RbvnrxvDPnCxOwacwRTyNKegFgwamWHrK8uW6fBxvhcAL+2N5f7LSQRXdL3nJSx4NNp1Z+zob3PgoZ9BzwNsK3/ixONzVxf5bSqvNi91SHgt0tatcsaQR7oWjGLd23yDmB39Y3TBtsXdFzAXG2w9ub44UgRLmAvhMSwrg7A5mXnGxvjocwja1RfcWTSH1jIQmDIy6mQytiwK0DtXYuP485xZI9QG6ytR2egOqzzQJ+Ti+YAGdL/q8M48cznvdMA21h/mnvWSkC+upiPwG8nDxYcXH1ExvcUFdngzNEPmPnmzcb1Ni84IYG99hh9JkySfRXnSHJD59Ml1hl9tG0T5mGdk+vE0jfL6l0Htvx23jthYq20D1hnw57eWUeAzz1Lf97KyV9q/Fo39Dtm9nFtPjrhfb9zstSaV4zve5qO+dyX6dulHmc605lur3QCvGe6MWlvmz8ydNt0fOpTn7p60pOedNkMt/FtE3yr1MVtdycswC/8wi9c/aN/9I8uf3fRUCEijrF+vxGbNoA34+COO+64vH+rVH2ljkD/RVPG1dOe9rSrD33oQxdj8t3vfvcldMOnP/3pq/tT2iNtWCYBMOKXZni0wXRxy7IlAGfysZlnTDFEGNzAG8cH+20jjsXFUO+32+cDRjgcGEYYrTag2D/iXwJ/GRRiYjIE90jwMkQBeEAXhhkDhFEsAU3XCHLZ1PYroOOuwMMFnRmuylsD4ggMM7w3T++pj2QMSow6LJ9lE/a/scYe2jwY3htbFXiN9QWEXBB5mcwLimxfrSxpH0AOgyWwfhlK3j2GodgYz+Jjlk86rZSMiwsZ+AeQIR/LYnIxUv/Xh+LYAhHERWVoZZimE/fCn4zW5DZnVeUF6BiDnu+ny8xi9wboxW4FRMq/uvjMOFU3R/IdxVWnvmOE1x+MxP7GsDSuGyZF29Sf3KyRLzyEcsVxrd2MazLf94FRyQWDFeOM0Qx4792tN6fPGrMLNgEK6RntMHba2DvlCXwyPhjY/W5MOq3RezFmY4eWgPV9Xn1dnhSgBnguPqq/+y5HautIgHFj3noJgAKUrtNJveURqIFZ3lj1t3cdTSdv9AHZwJysTWQXOGK8tadk7i1IA3ilw8lNfZFu5oDAcF2HxupiABC975mjo8AcBsK5/LKxz/Hc2FRG4U3KXzgB61TzgzOqvxdsJzPLlgQC0u36csGYlafSOv04IZKdvXiU/gYmYe2TZXo82Sl+tZMZ6aHCpKhbclretTtdVd8nQ8lB8mBe1KZYvcmrSxm1wzH38rOGYh9ivdP7fefCrl3rOTutc+KFy2vXtNLG7sWiDuTlnMUurx0LsC0zle5ZZumWQd+t/HjH2LhwM8dATgDhWAK9648urgWY19fdC+GSN/rGegjkI0dH56w+tO6VD+e5dY4zZp3GQEYOEiFQxPbXV8I77Hpq/QMUGz9rChmwH9i44+pS4ky5FQN093vLeFWO+bCOot2n2COuE8na2p4NmGuvaJ9W4gQwruLfa/c6sDfcze6FVs8BnMXF54jSz/YEqw93b0G/YbrbJ9jLAoEru3Ve/qtHOCo5NXtGODN5c2r1nL3J7o9W7hf03PFSd+NQv50hGs50pjPdxHQCvGe6MalLw6Q2ucf0n//zf74GTJ/3vOddve51r7tlPj/8wz98/fddhTB4xStecfXP//k/v/zdxSExYe9JjNy3vvWtVz//8z9/+fvHf/zHbwnwton5sR/7sWuQIObtX0bK+OryuEDeDID3vOc9V894xjOuLyi7P6RlyO3xMoaHC1lsMIEEe/zOpt2N3DaiwFN/M9wAhgC/fnfjuNu0sSvLJ2PSLeQbnsCmf48AbgzV6lQeDISe2WPUC0xvWxjnC0Yuu5NxXF7AK4aLfpHnHufd5/xsObs5t+lnEGPJLqiwYCggzWeMF6AcQ9IYL+DFeHGc8dhX8l+QFjgL0AdIMN4XANlQAtobM0Wey2IDmC0zpgvFHCdWbkY6lhc5Ytgb88AOt91XfkBVv3PWiEtLDyVjAScxZMXFrv0BK3vxmzYwmLGr9UUGa89URmUHwpRHqXcCnTLYqnfPYDyS1fo7IDAw4v/+3/97qd/DH/7wr2FZpd+AiuTNBYfAATGBGd3VERPYJXOBK70X+Fie9U/zV1zZZVOREQCVsRPaglOmNrvAq/bV1savNqYzA1piHjaelVf+PcNwFkKj78uXoQvUrt3Vd4FqoP7WuYQBtqdM5LchUvwsiICJDSzlrCKDwOBlkK2jYY15TEcsxdUJy9Bbttk6slyu1bqHAbsOn/0N9FgwoLT6hj7weQlDFHCgPys/ILe/G9fagUXIsZRDIhmPvdxYrwMtBm15J38cLvr2yI7ThuTGmAGSG3dhMDq2TvbFmO0z4YVWXun0ZSE6Ls9Z0pytPc0L/bdMfv21f9Ol5VV7Vg+uft2wDoH9tQV4mHw2B2J4u0Sx/ul/Y9J84tRqjlV2spD+q705D1z42NyOqdv39PCC/+qofRxU9KbTL+Rr1xVODeCVcVumqrWSM4yjk9z3W2gYziPrm/42F4yDfcMRxDJfl1HNQblrKT3THjdZqX3pOmPU39bS+iOdk8wCsAGZG+KJI8ZYL6CGsW7NLh/xZJf9uXFzKxNDuvquLJEfoTqMn3W/ujT+5mTf2wNZ348xh3f/tCEMPA/oXP0GvNyTK/YMyyhdp/WC2AviV17rmr0JPdvn1X0vieu9PhPvWbx8eQPTF/A+nq4hn/RL79Dl5JuM1se7fnhHiA97F/W2byTTLukrH6FVkAzMx+pXe/bUgtNx9gH0q5j6K2P2Ietc0c6V/a0jwPnukmrOdKYznen+lE6A90y3fXrJS15y9aY3velrYqAe06te9arrS85iVN0KmP23//bfXli3Hdf95V/+5Uu83C7k2RSr9sUvfvHl7zbQt2LNvvSlL736V//qX13+Lv5T4Ohe6HZ3UsDAnXfeeSnvZS972dUb3vCGr2PRvvrVr74YN6XXvva1dyv0w91NgdKBvB1vajP+vve97/L/F77whav7Q1omB1DBcU83aS84sUAo1oHNLSMUwGmD6fK7NphtYNf4ZEy2EW6z2wbaBp2RhDlkswoc6fO+d+y7hNGy7CpAmKPoGDjLrOl/wA0WqrJKa2QCUBgXDEEGkY229pcY3S7xWLaJPmQALftV2YyJBduAF9q0cSRL6seYW6BQ7Lwj6IxlB/RR/saS3SPc2qgPGc8BGssICnCtri6AwkgCyAau7rFD5QT4kMOeAyQHKtFz5DUAallR+iGgNQdCeXd6IWYs43FZu8vCWuPU53ss9Gg4YuWUXPT03d/93Zd6ZcipF3k3Lgw8BnRgVpcrpWvqk9rZ53uJUfmLy0reyHQJe07fi8fp4rE1kAPmFrTdC3DohfJqnBZ4d3Ed8H6PCddmFxiSvfIONAlAqe7KItP6Auupn54nxy5oa01q3cpIBogAwYAALj0zJzc0QWBg7+1lisAUQJaLpHqv/u95F9TtEeSezQjvefprAYfqEas30K38xJNXV3O53+YjcLj2GXuM797fOMDLtltAZgG3rcuy7xYMFr5k9ZI60rPirgLjOcICzlrTm5fpYGwz43YES3fu0Cel+pFTqueTkfIONE4OmuM5CMq/+tWnLiSkC+kuZa9eAtLph42RjuF2ZKSqO50JoCOjLrYzt7yDIWi9yykREB7LFvjLedn8MyblUx9jwGNPtyamF9KFQhjUJ12oVt/XV/3f3OB4XN17BIFKQuSQHfP+yBSsfJcdenZBpNUJG4u6tOGUqntt3SP+dAMG466H6kZX3spBsSFodt0DVNb3OcqOF1TWlwss05/Gq3Ykh/UpVjgm+TqW6Vyy5m9t67dwFPp26yG0jXHhNKPXKjMZWzAbeCw8BFnEfLUHMJ/lu3GGd57sWHrO+Hl+Tz4B028VYmvHh14yTsbQ+gN4BuSu03lPG/Rs/Vc/2L/Is5+NEa5/N0QEXWBPCXCn3+hAfW1/JtyLkA+cj0dHPR2mzunodLd8gLv0kPslOL6tmfpg11cg884J7dy0n5Nl+einvSvinqR1bt3X6dulHmc605lur3QCvGe67VMXgr3mNa+5MHALbZBR0WaizUIX+rzoRS+6evzjH395to3GT/7kT95y0W8jE/O2y9cCRAJZf/VXf/Vy2Vgbs1i4f//v//3rTeTLX/7yr8vjh37oh67+4A/+4LLJaMPzyle+8rLJ/0aXsbUZx6Db1LsByG18A1h/5Vd+5cLSbTP8whe+8BIvF4hc+/+y05e+9KULOP2BD3zgYsRWh8I39PntnhbY8jeABDsEm3RBLccIbaoxEF2yI44gME8ZNumME8e1sXsAu46zLxuFgWPDzoiqHr0PqAJCY6JmpGFcMVYckV5ml2QTbyPNYGQAyWvBOszh3ewzPhjPjJvjMULGB9AFu3gNv2XEqJc6rbG7wPoRQGZkYYtoJ6MQuxTQjDWtXcsmkz/jBODT/A5MBUYJkxDQVT45ijbOccCNy2JKDMNlZOnz44Up2rpMLs6EZd36v3wCTzLcA46Sy+QW2LfsKeO2hqbvFlDQtwtWmRPl37HfnEEBMQyx8nN5nH7r/+oXWFP/BHjF4Ov/+rLkiGoAdUBXc6z8xL1dQ7IEoFvjXv0cOa3Oxf9sHKpP41dd92gy1hXwFIjVc70j3jU5CsQVTkAYhNai5Lq2ZEgHWlU2lmJlMUIZveRkY4JXToBn/dIPxxPn0s5/8V05pjY+p/aROU6njb1dHVu7HJMVt3TB8/Ko7+g+IDwnCXkkx9j5wBGABR1pfLDAqn8gkFAN4mmuHsDaXt2xoFNJnemm7dMFXuggccw39re5VBmYq8miI96ALPNeCJfVrXTFkZGm3jFYa0vzM1Z98ogVp+/7LH1ivDHQmw/WCHJqXIQAav0GUtO/dNTO8a2fPqITsVyBcXvB4zIDgYaV3T4qoLS/048B1H0X+FtbkuUAbJfiOX2QDPYdAKi+FJ+776tLwKn6GpcNIwCYX7B/1x5y54j8gnO3YmSu3PjNSQIwU/6yyxeAtW4D3ejcXe+2HP8f14d10iiPswk4uPMaoz5Zqf+b39ZSMYXN62SqfuPksBYu4MwZWeJYJKfiqQtvxWm586B6pQ85Ba1V1uPK7Xv6LXnrhwOBTtkTOhuP11hvaJLVD3ty4MjE3X0FWVl7YcHOdSgc5cb6uY621hPOdzKhLzCTtcV8ojudZhJiyZ4VOK0eAFbjuevtngaz9gB2zRnr3IbPWOf+7i36m44xF4DC9HW/PWO99z7ig+fKT9xdaR14u+85Ar7mk+/168ngPdOZznQT0wnwnul+kdq4Btz2c1epi3V+4id+4hsG3X/LW95yMUh+8zd/82Kc/M7v/M7XPdOm4Ud/9EdveflYoR0ck8ooL7zBN0tPfvKTLxewHVNA6gte8IKrN77xjZe8ApuPKXA3ZvI9Cf9wT1KXIhWD9/3vf//F2A7sfepTn3ph+N7OyYZ2j+LbkK/RUGIsl4B/jM5lp4qL6Cg0w6dNNLBTTLg+x2rYG+zbIDfWewFS7wIilknTRt8xx2WgSRvzrLyBKcAMQPOCHkfDsjosw3frsMAp4GiPx67RVVJmz4n7e2TaYehU79q0oOjRwCgxmLFEAj2qr0uzGNrGUZ2VA4hnwDJytq6OuOsDoBUDrHEvvmFjGKt/y2vOiOPoeL6xWbbt0eBkLHEE7CU82r3AqzIXUFgWYX8XD7K8YhUHnsWUjV1HxgA+xtzxZPoMM63vGIZHWQcu1SePeMQjLjFEGXEbW1E7SuSrPAPCk//6M8C0camOHfNW3/qy8QX0ktXaCnB1qZExWueC8auOOQBjtgV4uKle//qtH2sv45pcYF72W0iI+iSnHQO359773vdegLsFpMg1oB1Ah13KgcTJVLm1OzCwOpvPnEyrZ4zDxguurOaVmKTYeMYfyLwOk2W7LhhqjlaHBS71mdisQExHteWhji6lVNfKE9qB3kgHODKe/HJobZiGZQua55hgAHpyoP7lI2yKMBAYjHRK+dKf9JSj7PKtH9pbALGSU6y3fgLJ+52MVSfOQPop2W4+PvKRj7x8n5xoW/pDKIMuKQQgOxHUHsU83djs5oW1qfrsWIjBbT6s03KdRIDQzbu2H9dKDgfP1I6cPFj89WuAbnO2uuSIr939HVheSJbewV6vr+rXQOFA74Bfa9MxpjIA07gKxcB5WD5krDYvOOR5suNHO6y1O6fMB3pWDHb6F5imbhLdbG5h/67TZYEu/+98WXDX9/LD0CzlDKhfk0sOshxETnukP3o2HZt8ClWx+mmZ3PUhgNDa6vl1POrH2tQYOo0EdLU/kjZedolO4VAQcmbjSq/T2pjQL3uaApBL35Njcm5ft/uQdWCRN/N+QwH4fPXN6qQdF3MsmTyGAvFMqblgTdWv5iuQlwxY39ZxseEZltl6dAYvC9n+aWPS74mz5iMHof5Y0Ns+kJzTbUI/tFbVZkCz/XP/A17prvJOZvpJ77mYcvvS/zsHtFV71KU1OPnHmj7Tmc50ppuUToD3TLd9CoAM5Hzc4x532cQy/ttoZGwFlL7jHe+4gLdrxN9V+r3f+72rj3zkI1c//dM/fWGwZkS1UeqIbIDtb/3Wb13HmPxWp+r94Ac/+MLmrY1t2tuM/a//9b+u/uiP/ugCQN+dNv1FUkzm+jgGb/0K5C1W7+2cAB0lRsBuJDFxbeL7bVPq+GIJe0EegDJghsukGAgl7Ko2sW2iscswDDeWJQNcPD3xRPfiij2CCnxe9s8Ca0cG5h5pK234A/2gPoCiNW6WBWqDzZjbY/S7QWfILDhUP2KyYIkx5pZFghGjX0obJxCwtwzkNVD2uLn2GBssR+Uua4Qht2CHMhrLQAjsWIBpzwTQ9LMAgb7B8tN/6gg43+fWwF+DZmXYeDIqyWjtCcyq7TmwMupj06UfA1UBlb0fUN08Nx+AVcBCY8apsYDGMrcb30LIBCzv+JBbfbdsOoygZS8HSgAC+zw9HAOwudP7MfmaQxjRsWXFFmVUioO68Rcrv3amUxufwCiMQWAG2fIbmAa4rb6Oh1d2Ri3g1dhin5V/fd+zjYV4hRtig3Heuy6gW9AJk7O50vsuglww07F675ABR3IznjcEQe9Xd5diOTqOodoPdlk/mFjJUPUvdvKy5TAFk63mhFix/cTKFK6h/wOa6guxP2sbFnTjm+zUTvO+cTcXOJqELHB5Ue3igBHKxphi4DcWtdlci80tpnJAZHXDIKensAl3nvlfDMlAy2XolYAwwHA6GwiV/AWGBuzS7QsO5ezob+w+Oq52L6iD0UjH9J2YzqsfSkIzSBiwq8fXcdgYuejpCPZwcnKacTTUf/0di/17v/d7L+NeHo1re5nKwOIkc8oGCgV8uyyPHreG0XPWtgXohEzg0NjQPHTQAtLG6XhM3/pvrVmwTF03NJP8yMUyhulQ8xswTFZ3jdS/K0PkQv12TeqHbgJeP+pRj7rIVLLeHrY+TT5rO2a+8Wk/K+RGsmA8d20s/97rxx5l20zHkEkyZx09juEyTpMDcVutFZyHy3heQHz3afoTeMwZZB+zJwfsW7TryJzWn8fxWAeIz7DG90QTORLD3N6P7JWc4inVbvGbl/W6gPnuQTfEgZMkwldY68mIH/ux7X86zNqR/qQn6ROnNDght05kn/PN5Y36xl5qY8qLI+8ZzHLjwVGK+ECed49Kx3nHmGlzuoozvXbn0L6nacf4vk7fLvU405nOdHulE+A9022fOuLXj7i3fxmpizwCeO9p6kK0fv4yU0Zu8Xb7+VakjNtvlgpTgV1zb94/Gix3lcQM/VanvegEe2FBQWAuRuMyKLEbe95GkmGTc2GPvJUYvjahDDwsSCAw1gowAAjkyHC/+57R3vuMJwAotqeNuM0+cIAx6cd73lnGUZ8DmbCOfb7H5PTbhkfYI5H9AKeBwSVAgCO9QLzkTH9g6ixLSnsZ3ADn2upmauDEMtG8J20cumUv+ZwxZcyW2bNGOKMSUyoDpbGrTWQMY2+ZQY0l8HtZN9iYjigzlI6hJzKMyAbZAT5j/22oD6xGYT2qX+8DDDOqxF7UpsaktpB7IGvAnYvBjHEy+2d/9mfXY7EMUYYvo3sBgluFeNCfvdPR7GTChUDkKXCwOsTSiTktrud3fdd3XQNEgYz6zmVUwAuGr3wDk/o8JyEngcvkgJr1Xe8EmNT2wPHGqT4rj8CSWEvVxdwuBeD1ee3ou/5Wh/Ksri6jA+66lMb4GWeOoECByu6dwPqAl/ofoLvHawGwgPxlcrmwallsxqf6Btb2vXmZPAQUMeZdsuf9/S7wEhDZ341b9SyfnivPyt/Y38AVbLcSBt06fOiLZVMC27DbSo17sm0erUPCnF825l5suEfo6Sp1wu7k9AH+LAjntEJjBWRJbqvT933f912Dm80nIXV2/dsY6srFcgbSLNC1oTDIDMacde7Yz8pZkFRZC6LSoQuWA172ZETlAW5bD2PgavsCp70jNANdLi/jgWWsrv5eFjr9Q9+sQ4aTjM5ZPbTApTlFTyYr8rYe6Gvzhr4SQ3tPyOx+YvX7to/cbNvWAbigqM/3R3/V1+0RXTrH0VhK7pyCcTmfOM/WAOAehqk9wrJT6cojuL17B+Crz4Sd6llhFVbWzBn94kTSxqm9Vbm7v/Kutdp6qM5AUPsOc5/cLht159ICuTtu6u/7PVWjXPoDGLmnfZSVPkr/Adnr/55vvuQIWeBf2cBO8fhXz6jD0dFhDu/cW0ePz4GuLuBbB1ayYg+5+6NkqXXMvkBZ6gCo332hEF/WS+3YuMCtCVj3ZH/3nv7ftU17y7++jL0rjvMyxs90pjOd6aakE+A905nOdOMSg4QB5rNlYTCYgXg2ssCwBXjbqAaEYMw5jswQwPJsA93GtvyAkQAZgF8bXaEVFrhjMFa/ysVk2FiPjo8yUoCeQg5srDb5Lfhp888w3vhljP6SvBcg2U24jbzNuKOYG0dzY9P1PIMQuCaGGiNxAdKNN7zHHIGqa7iVlrG7IEEJKMIQYUCWJ5BM+/QXJivACZOld5KDWKYZrIGF2JC9D3Dd4/hYLlvPHEwBQctWMUZ9BmDMWO83MDfwrZ/q0mVn/Q04Njb9X6gDhl31dYxc/DsGJiMOi4eh5tIvbKPaHYAHCAVGVp7LzjDNsWrF2xQPcgGsAIvA2XUk9DwQt+96r3zFfKzcQFqXAgX09ln1r+z6rLRGLKOfPPoMsJYRjsnW32RdWI/6PaZiRmlAdDJV/N3qlezW9srOaK/tHYmu3guMrTHbyQwgJYOeTPd54wYA6ZnaW3v6PFkgL8aPHC84yVlDR2DvLpC5x26TAWzf3q2tsVzptsrm5AJIiDUc4B2LG8hbnxS2o7Ho3fLEqnMcGAiKiaz+mJnVpbEw5ysvGQ7MIr/6K5kBsmAm9myAuD7kxCPjpb2ch46NDRkTtbblUFjQd09DrL6s3ZwT/VTuQx7ykMuzQowABhdEBHwdGaML2iyYaR7Rh8uSJ7Ob/5ElSmcD+TZkw4bp4Ow4AsLGR78LkaA/kw9sf8CVtWwBGCE4pA0bozx9Te+bR8aZU3OZld4TpoNz0TriGWv+Mh712eqnZedaI+hGbVsnL9nQz9pjThqTZV/u2JSsS3vqpTH//Oc/f9FBym1uFM5jgb36NX3tMkDjaWwBrhvShXxzMGDF0u/6DqjrOaeTgPD0FweD5zk9+luMVrp7L10zxsYEaLvA+LKgyRN50Qf7DvnYPtp5YW7s/8bBHpGzEEjfWNAxtaPPcp5aR2pvurALntMh1bkQQe0R0onpfux/JzA2PvF+LvSK01LrzFkW8PbR6pXjSTW6r/puWK++F4d+nSXl0bqzJ9P04a4d5YP134+LSFtvOPDEUN+4wU5eLDBtTpmr5ts6djpVmMPXXuzeXrJ2pjOd6Uy3ezoB3jOd6Uw3MgXAif0G5LEhFnNyj8RjjTFo29gzhjGxlmW5Bv+yp4BfDKmAMSDugsuBA0Aax7g7StkGGSDK2GBwLaPWUV7l74YZOLkxCNUPC8sR9DVESzbcy3pd5tceSdV/WBmMO58zUPp7DTqG/pa9m/1lyy3jCDtYG4EFR/asfAEsa7QBEBiUfuuzbZcx37KTnQAwIQwco8TGFlsX46rfG0d4jzpv2BBpWYjGT5xaRhB5YAiSi/52DHxZOtUhoysgMvB0mXEMKm3fOsi7JAQCQxoAghWpXRvzecMQAE429vGyg4+xdLHiAwtjCQJFGayV03edCsgh0lHNfd+8JxNrQHLSkJtlpckbECFOK3ZvfRiTNhA8ADggDzsz4NIJALLluHx1w6jD7hMSgYw7jtt4OfJeXQMIzBdt2DHkKFpQ1N/l3ZhjyAJea5uYiBn+1b0yhJYJrMWs3bAo6hr4vDqrC0PVsUQOA+A7BdKcaRwr721ve9u142sdGy5vKu/6V0zVvYTS+ANOA5nLs/r2ff1WHscwIeYpGQUW+r6xDJAJQCj2PYeZ+Uy2AGWYoV/96lcv7YrFnSxw9mz4HWuBPjwyCYHuRx0AwMWwBzaRYaCMua6Oe1x+Q+8sQxroLRamseh7MY+PJ0D8ny4xHgAjc8V8A+xv2AfPAc0BXMsilXY9UC99w3nF2UkuOK36zRF4BA+XNXhksdKjuxZyfPVu9ffc6gv6ilzSd9ZAc1Ys3AV96eAFoslDwK4TFtqQo0doCrrEcfvWG+9yQOwFvxxwdMGu5+qvf+mQ1Yd0Foc2AN9ppV1HxM0VLoZuAfJam6yx4tGus6rfwqNYw6Uj03nB3l1DjmnZu7uH48jddRF7u5R+STfUBic/0hf9CNO09zRw8qT7rLk9IwxN7f7rf/2vX7d7GarkDPCKAWu/h0CwJ2nW0buA7PEi4XXGmYMYu31nX7UnlMpHm3cfumWtE2VDCa0zeMPb7Nq7+76VSU6t6hJrtz0QVnvvCglxT9Pqlvs6fbvU40xnOtPtlU6A90xnOtONSwwzbEIGxMauXOPIxjWg41bH/hjbmLKMACwe4CZjeQE6m/5l8DC8gLJtngNKgBaMHgApIILRCnxm9CwoyIA5HuVbEOHI3FXXI/MDyLzP2XzrZ4ay/5d9xmhpI+4Zcd/WeFgmFBCr5xnky3gCEm58W+PVdy4uW0BoQQB5aN8CyBvygJGHvQTczBDCxgbIYdIex2UBkmWfLfjKCN32MTb3qOqRRYMZuiA8uQ/kYiyT8Ziny7ruGUf1l/EJAPG5vAFMjEnlYZ0xjoH4GWMMvB1DzwB3qlPs2OYew7HvARjNlb7PqBMao/y6CLI69l2gB2ZVoEh/B0KZL0AX/ZkM1p7A4QU0MEEzyCvXcfsMTfFlM9oDK3s+VlbjHSAoFjcZqo7APqx9oGEpwLj6AVzoJqACw7gUiFAZALLq6IRC5VSHjd3N0A78TP/Udxu+hSypj+PT9S8g0MVLYtMaG6BBz1cfR8LLJzBjw9WUAk57v76szT0LOGrMK/uoN7B06xOXfokDqY9chNbf9Xv9AShZkMAPYJaebO5iA/Z5eQS+AMPpXeFvcrKIUxpoHeBQ+wOjY5PnbKDjOPPoEk4lIBidQE+vfuv/+omDCBOO8wjYvrEuvbvgVHV3+kRYIMCr+MBHeagPOTU5crwPqFwgtnoJPbKgj7osW1QbgVK3Yhx6bwHX1du+X/29LGZrgou/rB/GYU9VkPN1Gvq96/vqcSzlY/xe7+zxdzK++frburfg2L6z+Vrf9bf2kh/f6ZNkNFnhvKFL6fQSsHAvHxRzG6C9850uAq7VD+lF69yx3UBLOsdcXjbmhnegs6xn9gY9WznJsT2WPcLuS1aOd600H6XdEwHh1/Hq72Wi9464sa1p9Hh1zKlbeDPrTe8ke30Xc7fP04+AbfHmm9/9b447jRKA3HcY251Q6FRBzwJe6TAyuPPfOJlP2u/73d/R7Z7hGMES76dnqo/x5Pzx9/Hk0Z5YEEOentJv5MC9BeuM7rPKBZi7C8XdDbuv7f/6aZ1CZzrTmc50U9IJ8J7pTGe6kQl4JxbpGkE2lowyxhrDBsvIBRKOY9tgArQcUasssSflb6Pfcy4G6m8GMZCLoepYp4vUGDg29AwQBtwyYRk1G4YCULztWvaETf/RMF9A1PdraB+Ppq6BusxeRhiwqu+wFW3KN96hjTsWoHzWQGfQMkS0b41DALxLOJbNsxfIHdm6QIdlV2HjlIAmLr3KcPvCF75wAfySE4YnMKn6CfXR31iuC3Rg6viM8b7M02WN7xHUIyCBPbZGeb+TNyDaPk/mtG3ZNGRJHciVMdM/wOIjwFsCRh4B6GX67NF3Bj95ZlwzbLEPAY4uecKQL/V947L1dwR/ZUV9zJ9l02HMZ6By3vRMY96867OM+YDAwD3xFatLMgckIWt0UHlgGwEQlYUlarz7rPZl7CZfpQDEQgcAHbH46JUj+1B/l4+8jck6sRjrAeV0FfCrPGKZBaYu4w5AFNDZu373U5iK+qG6l3d6Mflj1KtrzwTwuvyssmpr7SRXADtxaYUFEK+8+hdaoTJc1tbf+mEdYvWXy9f6v7KBl/0duP3617/+0kccJPVtz8eg7vvqF1BdWZx+AdjG2zpD7pYxqh3qRsZ9Z27WZjKXXgEwp3eWJQms897qSnpbfF7vLLPzCIaTB+O8l5RufNXVw6srVwcDRI/gLicGJ0vzCLiOKckZeFxT6KoFfpXt8wUx6aQNG7RrPpb9Aq9+m0Pr/NMnxsDeQNsWaDIWR+Bd/61Op4u3TXRf/dNYYS6WksFlLTrZgL27cXaF9ykfIJ0j8z3X5/YHQgDtfmBBdH1p3SrZw3B+WktdunjcWzjRQL8Yp9U3u9YbUw6fZGYvZTVe66gli3TgOqyNLefNMsf73T4PsOmEjnyMY4kOdMKg97CY77jjjuvnOMnKv/AChVUSE712pEuqV+PU3+n3nrUvcPGhSzzNG6SB+sUecvcpO0+O67U+r5zq1w8gOr22YwLo7X2hb5qryVRrgjVUP1vDsbutM3u6hJOiME1A7p7tt4tJgcS1dQHtkn5Idj13pjOd6Uw3LZ0A75nOdKYbmRjWGHGMxo1Nx8BaUPN4ZEwc0zbZyxoBHDhCt2nj4bbxZwwCiRaMwbrIgHd8c4869r46byxZQNcymgBia7g7Enk0AgCANv1rGGn7ArV7NPzISmI0+54BJp7jGv9ArDX898go48bm/Rhrcesun2UvY9suS9GYyRNAvICAtODLArwl8rQAaqwbwNgamo4RMrLUSf+TzwVXgUrKWsY5Q3vzKDGqezeQTl+WOBTqkwyzkv51RH5Bz2WRxcYEYmE8YvYx6PuOY8PxccxIl8W4VMZR0YxiAIU2l4fx1xfGDXgKCNk2A+17PsC1ti5zTAKWkZN1UBjHEkBQfODKzcAlc32OzShmd88AMJd9qI4ArT0aXSK7GFfmrblN7gJd5CfcSP8X67Wk3zbUiXmTPGDXibGpLeogzqRL//QJvZYhvZdLYmQ5hZCcx251nDgQo/ccZcayFtIgIz4jvWdjaCmv+jriH8gLdKBTAhTqiwAJ88wlccDd+q+8Mce1R8IE5GzpObGbAfHmfoBLz1aHftLdvR/I8T3f8z2Xi197vvZWD/NkwZQFnOjj4zjRUxhwC9SW7zpsgDkLGAKjzBMOA7KhTpwXQo+Qed/TDcbYfLaecVKQS98fQVC663gqQx/QdxjnwCYyuWzenlsWsnbQ8esIKh1PC6grsFr/Hh16dO4yh9XbOGHCOvFjjaQjjdGuwUfA/cjWXnBZfluf9FmhP/77f//vFwAsYC2Hi7LS0clmc6A51nzr/eYJlr85LD7vyo7ylglNJrXdnEj+9QuHhvA7Lu/krLEmA5O1bR3Hy3DfPnbxKmDPugXwLNVOdbWOW9et+ebbys3ud9Z5xIlYbHwsfZcnlm/93v+dGrGOOfUQ+/aDH/zg9cmRyqNz9WH6KWfgnXfeefXgBz/4ep4BSI8hQHbd4PADynfqpLjMnSJxeaNTDrs/WHB99Yr5igDgwtdkrL0M8gC9Yv63DiZTLgHeEAyAfw4qY9BP+bcHSLenm7u4tL6j10vpUrrLBZPKJp9CH6Vv08GVU184CXRP0867M53pTGe63dIJ8J7pTGe6cYmR5QimY4U2yjb1JcdI92gx9tPxhnPsM6wZBgvQh7EnNiIjc8G7NreYvz2HoQUYXaafG+wdt18ACAupMvt/WS/A5/LbmIQ2/IyiNTQXhF12FOADe26Nho1ri9mzcVj3aKa8Sowthrf+ldeGkwBO7zFhBovx3VAAvmfMLINugWmg0rJzlj21hv4RtFCuI6vGnKG4Fxotq3eZon0OuNRuMoIB5TmxWtWtv/sscGoZ0pid2wcZ+xg0xotxWt5i1zLOybk2Bg4IQbHGs4t1jLV2bqziyo0dmSFWwsrZY/mV68hq7dl5iAEuZqwyyEN/ZzzXVxie4tb2bsBjxnrv+0z/+5vDBVOfPGHlZ5BirPY/Y7p6BfgCP1wqh91WvcxjpwG2/jsPe7/697u+LvRD75rb+pqDp/4LbPi+7/u+y/hsnE0ybO4AaBoL7DRjrZ0l/VmqnYWFqKz6xNztncqqz5KzPapPh1SfxhPrNB0Wy1ofGKvKAESVOBDEdAWycBZh7RaqQp3qowCHAAQXAi17ckHFyt+412QeOFxd+huo2v/As0A1zOLGpMsAu1Cp/ky+gVj0IIfGAswAxQVY9jmAi7qKMUtGNpSAPAF48hWKYeVA3hjmZN38Mg850bAOzWUAVe8md/WDMCH0aAloVZnWNCAXeVwA2nplrPaUyYKBGyN46y2tc3bXGOOwoLvyhEBaUB4ou+VbX9VRmCdg5q6XZM26pCzlrixse45sU3XQnvqyPmgeNa8KDRLIlfw1v3K+fPGLX7zMj0DexgpDvXr2jD7UT/SXPlB3pyTUVWgbOmMd0T0jnId90TL9tcvegdytg3ZDlvQ3PS12rzU32ePUWcdpP50eaK7S43RU+gPT9hiffNdHbcmhUx8DTeu/2l//u+Qydm79+6EPfejyXiFdxIbtOYz78t17DqpfpwACUKuXWLcLLquT/aUwGNuX5KN8hBFK9xUDvN8caRyVK0/1K11v7ycMQn3XT/lhp1sbSxzN9X8yyHlAxuxfNm54v6tnfUNnCE8hZFD1zFGZ3Ggfh6NxdxqkPYSLMBErAoZ37TvTmc50ppuSToD3TGc6041Lu1kuuRRkAc69fGdBXywPBsSyjtZgWyAUEOd5QNoCOmK7AYsY4svYdMQSG1bMNga/75aNuIY1kJAB5fid2+lL6n3sK/21xiijE8NK29foOBqn2Ms2/ssGcSnL8cjt5rEX72CbYYMsmHxkIC34WDkAqD2+bywW4GZELluGMaM/jI13gRiObGdwi9lavQOhALqNVUaNNpVfRnIGIyPbWMdMyRj0PCPLpW1Aa3HxgLUYNIF+GLVk2Ngus7X+6YhkhlUGbTKUESWWraP02h3IWaovHfnvu2STUe/2dSzp3s/orD0YV/pS3RiF5kHlkIdl6C04vcxvLFuGuGOzLuYh/xnKQj+sM0F+nCsYpGS98an+5V9bsPgb257F6O3z6o6ptMwnQHl1dWEbBiIZU17jWqxkDGl9sKE9zNnK+PSnP31hhGkH+Vp29+qy5NV83vm0+gvwmSwDVVyS1PscLRnp2xbgmrAkGf/JSnkw9HMmVO8MdYBvMsfY75mYbtUtNh3wUyxewCFQFmOsegnPsUAccJF+r/8Bybdy7mA5Bto0FpUZqBOItmNG1jAK9emGYuAQA9gClSXAvTos4Ol/+s18U/7GMcbGXSY6eVj9vKFP6DljDRASS1e9xN0mG7VX2/Wfei4wuaChuYvduP2+zoYSp5Y5evx7HXDWB+9it5esgRu+SPL3Mjs33IQ5t3Nky6JLrTO7vvnbWlL/WYfSs0DhDUdwXEO11e8AzABGzsvmSHqnn+S0uqT367vHPe5xl7nRd5XXHDzmvc7bvUjVmoyBqQ3mHpnl4BF2ap0a1hdrKOej/rMeOU1EBq3PHDecQ2SFruZQlF96vksOxaMvj5xJ5Vkf0E+xoO1hANKcMvYK6Zvq9eQnP/nayQNMrk+FnClPDvbqxOHX2lg83kLUpI9c2MtJ8aQnPekCpq4sWTc/9alPXYczqN2Nm4sm9cGGZ9n9ZHqqfAN3ewebWwx6Y13d18FJXsUSbt2pLu0znMjB5Dcv+o4+EpM4nVldksWee9jDHnYd/uVzn/vcpW5PfepTr52XHAUl+w4OE7LKaVr5tS8nHjC6vgowbq+08nOmM53pTDcpnQDvmc50phuXGCiMZpv5NpOAzjaVACzG5x6z9pm0YAmDZllCwBCbcMdhARFAQRvtY4y3ZZuV2kBXxzbqYuUB9FySs0yfZQUBarRBW49sVkbcAtVABMdil728gBDgyfeMfn3EcCxh/+1n6tJ3DF7GnzErn/pB2pi6DHt9CbTQLmCQejLOF9zFnNkfrONlAGYk6nMxS8uzccmY0j+MfgwTDgThBvYiEuzKBRT0fWnBDAwWn2lj72eELgiC+YR1W6q8DP7AAuNYEtKg/2sH1s0yoY8xgNUX+HZkO68sAnZWrhekPB5jX1agPMWOBFJsGAxMqf6uf2KdBrJuSA8ArL5bxjiwtrpkqDO86ysAkMvftAUo0vHogBcAOx2wMWYZ94Dm/hZDE0hgPmZkB6o2psARYViWPX7sw0CFDPsFT+gB7fZ/fUOnOXLL0Nc3xlg8xo2nuc6GPRKNYU7PChWSQR5gQSbIHxCY00UbAzRqczIdO44sb0zj3sXo6znPVOZeCEf++s47wHSg5Yb3qK4uHaodyUPgRe3Ym+yxoTknGv9bhenZeWGO6WMM/73kcB0Pezu8eU6/YiTSh95Z0HCdc943Vpj1dNmCqutMIRvq3+f1ibm4aw3HHF1+ZM1af1yURaaAXcBFYKA5uo5S7VpAckMjYLlbn9VpAd4FH42Fti9AuWuLOQFAJId0bX83H4CBsb05mNLBfdcc4BwS2ob+kv/Ov+07IWK8Ux2bR8krEHF1fwBj44udbs8h9RlW/a7hdPqOq31E4xb4z5Hi3oJk1JiRUc4psm2Oc66uA7q0oTOO40rHHPdfzdeAv0DZnEjyqV5A7epTHyUDT3jCEy7tLrRB7HsnCuq/TksEkJMdOrjyFiRtHJZpW2qOuFiz5wpzEBjpBELrSP2QY6t3f/iHf/jyXQ5gckRPamP1zakEtMa8FcZhZce4V4f6obqLKd5Y1U5OueSvOtRvvVs9+90aRp448oTWEK7CvsQpFPGQzTMgdWU9/OEPvwaAGyes3f4H4tprl+de7AncTn57p5/kuZT8xditjz/5yU9eQN7mWozee5p2j3Jfp2+XepzpTGe6vdIJ8J7pTGe6ccnxwgX39pjesm4BoMvE2XwAjowLR54ZLMvkYUw6pg/U3U25Ta7N9Bo4y/wRdxJzpXQE3jA/sab8BqbukV/tls+tWLjLuvL8Gl8lRvceN/UDLJOPMrQZ4K4M9Vyg1btiBy/Yd4yfx6gD5HhvgeTjGDJIXeyzYASW7gL9DKg9+vwIuJoAAQAASURBVLsGsBh2GD5YWoChZIvMqP8RwBFyQBt2009Wt8w97qtfdhwc51XfZDDGi/ijABPM6I6PJmvVNaMwY29j4C44T06WubeACWNwZZ7xvODjMomWgSrvZWsnV7UHcKvt+1wM2gBCDGkXspnbx9jJxrFnMkx7L4Oco8CFMsBFYTgyWvu7S3MCVwNNgewZzRmspd6tHn3uMrHkQEgYctL3vd97+gJouXK8c211jcvOqjs5XlB357lyxT3uOWFgjJ/39HXPijeM3eVyHqBh7XMRnXAxjof3PGZy4wMUwajt3cCCns1o//KXv3x97NZYlF9lq5vQJ8vK72/hKsgVAL++VVcxqRuLAJHKxsgGegJty4/8AlPpK88aT7pi2fP0OdCeLjwyCHc96V3lrpybi/T6goA7vvv/zkugjQtElzG89VeOy7D6bMOYyNv8Ue6ClAtY0xlCnhx1G7BZOxdoJn/0NIBeP++aZT1cp4k+2vlzqzrLB0C9MXZXH2k7Gd9nxIrddqjLhpGQh/ktfjI50nbyv84DIL7LvZpX5NrRf3olme8nEAxAT+dzLhnfXf+EjlpQffX+MV6v9619ezKjzxz71851ZHMkSLtGOKVgPRG3tTnbepX+Seevs05dOTTUK93S+LzrXe+6+o7v+I6r5z//+dd1K0TAYx7zmMszlRF4WDvSpz1bHVofnvnMZ1765Z3vfOe1fLRmCg3EkVJq7ahuHAyNU3n2fu9wAHAa+X/7eR3Z+oGu2L1tz9krGUcOsoDkdG6gtjw5xfpdH6ZXsZLNKXuq3R85DWX/VH+13jmpEENZqCztsC9z4oI+rjwO7fIOAK+/S9Un4L7+c0LBPC0sSXn92Z/92bWctf6e6UxnOtNNSyfAe6YznenGJbHzGBWAjjalbu4F/hwviQAY2WAzSNZgLdl8M4rWUCphJDHk5Y39YiPM+GMAukinnzazDGwGFMAaAxgYBJSRH4NgL9RZwHYNyWWbLUOZMQpo2XzUEXiwAJqNez+MSWyfPW5u447pyljB3gV+lz8GFKaUI7TCXogBDPzAwtnYsAwxbBjAooujAJEAdobcAijqi0kXk9MlVb1HJpKxZQsv42YdD4AJ7WDQrlNB3y+oXtJHDO4jGEHuGYjaqx/EPMSwycgS+w/IDRDC5FuQvu+WmbbOkWVgLVAFODj26REw9gwwFnN6WcGO3ns3ELG4tC7+Ik8LfJLZEvBIf2RoY5EGmNS+jp6WBwYoUMIlY46x92zAOIZihieGNCdBYCaDHuvNuFeeMe1doNEy5MwLsWn1d+MVyBuwUJnkiyNEHuvAKa/eO8bi3Bi1pdoXqNI7hfUQ6xbzr7oGzPZcedYHyT5GWDJVOdUr9lXGfHo4oKN+7pIi4UrKOzClsQNkAuuNX4BVzhQMSSFd6ov0ZX1c2YAqoPmOQ2OK/Zi8d2mauV/+2MGx+6obWdjj6BsaYB0VK//60PPkUN1Wn1injrF2V3YBkD7TZxxr+5x5Cmjzv3l1BP/VuUT30S3Lova9uYT1LiSGOi6AqQ7rmNjTMD5blubqKaDlOjGXVS/uqfVz17NbnRRQ/3WgWLsWiN310Tq4pyzWsWZdxYDEKLbOrHNq+1wfAILJgXmaPCaLwtykd1pzxFrN4dTfgZF0cYx+c8QFr+Xf/zE9q1MnNZqb/axjTtuB68tutqbZv+hr/bSXuC6jvbpzcG2YBGvfkUFtPbTOl2Lop98D/oDU+sz6sLF90wXpDjHBOanSDems9ET6Epu/eVzfFF+3FMj4e7/3e5f8X/rSl15+nJipDkIQxTBN/go7U70A7eswLozERz/60YvO653WmHSm9Se9SA/Xrtbi+sxpFPsZJzIw+IWkIYvrqCiVT+2rLPFsq2syWl9uyIt1fvj/KO++73/OO2VyJAj3YuzcM1C5tb++NnZdFOf0R4A0nRaAT7cCvxtHn9X+Pl/yw5nOdKYz3aR0ArxnOtOZblyyyd/blBmQYru5FdwmfEEwR5KPQFl/t8le9kvJu4xVwPGCxfLG3lxAeBmqgI02wW4U3jAKy/xS92VEqheA81bsXaDZsl4ABMCzZW4uq3TZgYxTny+71FFkxj22pA05gGPHZuOxLpgshjKgh9FnjIG62g+U2CO/WEULoC6IL20oimPc4TX+FzBz7HdBeszd6hRoxZDM2DTWGa0Z6AxdTC5srhLDlWwAJ5QLuC4texPIoP8AouSbEe7iHGBK/1dfF55hh5WPI/76NKMLeBSgQHYYlxlvGcAcBDvu+s6x+thA5EObhbHA8sJGFuu376tT+Qd6YIJX3+oSeNFvZXi/fsGSxB7NYAzAIGuFfAByALfEEKxtGaSNn7FzEVV9kSFbuYEBGf4AY3OudpcXYHtjzW7cbmPbs8kJII+cVGZtxrAM5K0/Frgit0Ay7FchAqqr2MdH9tUy7TbszDI9nVTYI931KScanRWLrDJjiP/gD/7g5dmPf/zjl+/r/+rgsr3q4Wi5MDbkqs8CZwKdHR93JFzoB7GOe2edeeq8F2QmB/UBMDlwrL/Lv/YGNgDynZaQD129YW3WgdSP9aZkrOmO1f/LXj0ySNe5aPzFYhf+wLPALuEjjqALwFEyN8kE4Fb5GMt0K+CSU6/v5E+f7Hgt2KtvFgRe3aXdnuO4wwI1ZvptddrWdwFXMYY9d2Tuyu/4/s4fc8LJHO3yrMv+mo+1aU/OANHEA65dHIpkwrgtwGkd7dmcVslj8u3is94L1O2CLe3ALA+o7Ideqm7JeeAmpqi5KWQMB5q1EqiHLcx5uc5FTkrjZL1PJrXXOuj/jTtv3V0HzsbA7/vmL/0bKJ0uTM+Za8ukNx7Jfc8W6qDP77zzzstnPd/79Y0QBcs0xcLVn/UNoHKd2IDZxuXpT3/614Xs4ni0pm7MZicGKt9pCJdNel/IkXWC9lzvrLN3TyvR0faD64iy/zTXMKnXAesdaxB5xEyn3+kPJ2p6/k//9E8v9xCscymZSjaTs3S/fULtCOBuzAvr4PP0ZGtkoLUTHvY3SA+9Wz+5PLW8+/ueJnrg2yF9u9TjTGc60+2VToD3TGc6041LwMJl+yyA2u+Ag71YJODDZhdjjtGJNWGjvpfnMHiXrclABtbY/O/GmZHJQHGUvM1twFBJrMsAnAwDl1H0eWUCuxZstHGv/m2alwG2AOAeiV/D+VYGrj7Rl2t8M/IYbjbmywha46nvMg4yHB1nr54MkQWeGUrL0thygbDqvGy+fW4B/1sdTa3PMcyWCa3NJf26YP8ykPuuNmkzo7GyMij7LKMkAK5nA1CTncAlxnT90I8kj55jbAL4HV10tJHx3LPivS7w7XIrcr3MtphMyjNuGciBmHu5C0MfEFM+vVv7ks/yq1whUZJbsVwBANXbZW7Yf4BCYFXAKUO9zzMggWUA6b4L9AzkCNytHzMYmxOcKD2bURjzVBmxhjIwe/5P/uRPLv2XAVp7m3cuD4vlWZ/HMO275lx5J7suCKycZKeyAMy9b85WTmBk4HftZ9zvkX/joO/1R3OjvgP+AWSwFgETxguI+b//9/++sGQBj6Ujk7T66svksZ8AVqFUVhdwKmw4jNqxbPLy2zjhlYfBDOQBvMur9jUG/ab/SsmGUA5YxnvRoosMxXdc1n19Tv6wroHa5omjyBvWxeVH9YeLgwIOYrn1eXn3eZ898IEPvO5b4Bw9bo644A8IXH4bcmNj8nqX7l5wDUh61N2cB9pm/ntejPC+AwgCc9ZxRY6Ev6gv62912hj0dIB6WjOsQUeW7MrRsvjJB7lYxrgLmNQZIKpd62grbZ9uopNL2sBJtJd7biiJZc4uiLynXfqxBvuc3LgQSwgOx9eVRU53XM395Lbnky8A4xGMdkS+d4GVrTecvOpSOY7Ea4MwLADBPV1Ej1SHxnJZussIX53gdME6kP3N6cKJbayXoWvPsvsVddrTFNri1JULxbYefquzuWMeAOQB7Zw2rTHAw3TQsvN7J92UHm2eCZtVfYGzhWx4/OMff1kj6M0FOFs7ixlrDeSQpetrSzrYvrPnGs/yd1oE6ApU5aQTmka77TfNUyCxfhY/WNgVIL+1g45vzOqX+jH96sQYGTWWZIPsCN1DNo2Xi9KcFOrv1tPq0jpVTOTWzZx+pd6rX5xMqC6PfexjL2NROKT6tM9/9Ed/9BJWozXrwx/+8NfN/zOd6Uxnur+nE+A905nOdOOSTelukpdJuwb0bvyFAvDd3gCNYWFT3eaVocbI6bkMhmUjMXYBcwt8OmYJfHL8G3gofm+b5jbhGRsAM3kvI4uB4zj3hlXQpjUG1QMwUQJo7/Pbzj166Hi6o3iYiN7RFwvQVm4gAkOKwVwbgTPHPl0DewFqdQUUegegsADiMl4W+GQgbRgJgH35YJgsaLEgBiA5I6XxCoz0HGArQw4olFECKMGWcbFZZQdwMaaxLDMiM2zLK6aMGKKMPDH4gKaOxGYwZmjVzxlLvYvddQRh9VV17b1+Z4wx1rvMJKMvIwtTtnwYZMA/wFOpMveSPMdEMbq8A2zbsCoL4tQW7NgFJ+q/velbHNaO19aPgauVXz2NJcZhda6uAb7lt0xUDNLqEBhAJoVryCitXEAEMHpZ8EC4xjtQ0nxJTrDe6IjGgZyb0y7iKpFJrC6GtXkG6KoOjvcGRDoKbb4A+eoPlzcB+cTdpBs5qhjz3q9NxR9m7AtP8uhHP/paXwKR95QBh1RjWSzM8tFenwMm62f6pLyBN+tEa040vpURSzyZxSjvSHTjZt66NM3JDWAlmcd+bHyqF6AHEN87AdbNE8CzPlqA1mf0FgANiEK2PGc9WVAKAEZnrr5Zx9I6KVc3Kx/Ao493bVynWPKbfAJxtGUBOY6EZSKbuz7b2Ox7GWaf01WYiUBWsVLXaYXlCBw1LzkkyP2GcthQCcZuGc36cuMjl+gN4HLPV4fjJZvH9zfchjXNMXLx2qt3zi+MemsKkK9nlhnPmbPArpRMHuPFY0nuyZfdbxwB4v2pnmLHmufytB8hn+a5vDm36ZLtZ/3FsdlvQC1gccNg2Hu4iLK1hL5Q78altS892lq2uiqZMGYcy9VPzHMnG8wX8tcaJixM45MDBps0Vq7xLLlgtTAKAcHVMdZu+i49+va3v/1S5rOe9azr0129X31zENW25KC/rWH0WWPwf/7P/7nuRxeqcRqar8KQ7BzESjd29IuTO5jQxgmbfVm92oglby01B8w/87gxMn72PeZjY1T/eKZ67jyqD3Jq07M53Pp/L6M9no7Yix3pi9rw/ve//6Lj66fyONOZznSmm5ZOgPdMZzrTjUs20XsE1KYWWGMzvKyNPcZW2lifDP01nkuO7G0IBTdNM1TEBGZ8L0t4jWDvZ7hgtgGdMcmwPRi7y/YBrlWeo9ja6rnSggQMBp/bZB9jMDLyFoxbA9yxUxt1oRn0kfds+HuudmLHYKQykPbo+jJ2lvnDkFiDBTjBYJVHSegMBqqxBF4x4OvfDD/H4+XnnWUOMdIDJTIUKyMgVFzIBaXXQQD4BO4B9dyeLW/MG5fMdHHKsiozMhfYyVADLGNBYx6RN3U6AsT+77vyiakE8MpoLr/YsNIyThl9O9eW6afPlVc7HSf3HaC1NgGMyL68zAfHZAGB2F3l22+xhTty/+AHP/gyNgzeZSv2bAAXkJsRXT7itDq66gZy4Llj/GI/0wE9Wx1rh0vZ3EjuyD5WV2O7bHIGNRB8HS/+118L2pJ1IG95F1sWW5Xc1saAkgV/9IULr4A0HAYcJsAg+kA8xAXdNk6y0AYlQDgAk+6t3wCr5VG/FM+xZ2JWBwyIt1ufl2qfS9yAIT1fnxtPeru6b6xQ+qPPONOAWsk2FjCnFQC4PqNTAWsb7mX1AZkQHgCTGbC/JySWDdlzR6BSvc2rlf+V5wX2nEYADq0+BGYCN+vL+rzxJ5vG1zyWp8/3pIZ6YZgDbIQIUj+yo47e5/gQXxQ4ZR03DnuSQFvpTHPUugMwt25vyBvv0n/m3gKbwMk9+WMs9vi7PK1hHHlYswuUqWsJyL3MZgDz9qd26MsFY4+xU/XphgeSN9YpcK3f/c+BbG8DVDQvV6cL0WDdVk/yBEgHcNf3nEN7amYdB9VbOBXzv8+SyULkAFcd2e8nnSDsivmyjuXqHfM2vUHHioscyzr9GKjqFEnr/CMe8YhLn1WuC9zIprmdTqo+z33ucy+/ndaojPoxp1SfVZccgDnYqkP1F+Io1mp1dmon0Lj1XF/aM9Ze40Q32JeRwd1zmTvVGTPZe/0upAVZtmb7n950asYFmuapPS9njP2ifu93bcqxbU0g341DKadm41zfx1Kn/7s0rXbKc9cGfX8ML9Pn9VnygWl9T9PO3fs6fbvU40xnOtPtlU6A90xnOtONS4wW4MZetLNGMUPc94wOBvKyowCD4tQtiLVAKDBljcBlDO+xRcZkiTG1bCaGJSOzzax6LVtkWcoLbAMGFiBTh2NIhmXqYKUtmLRsjWXZLtOHMbCGMpAcwOOovtAYYogyaBmGGJniw4qBCSzHHlY/ZR0v89F27VowdENoLAOvcjLaMt4qT/iBNfiWNY2RXIoRmuGnr4AM+hcgUd0DDF3I5ei/o5CMMMaSuIYbRgRDeo9q+mFUA1L6XRlkR92X5QwQih2ZUcjgD6T84Ac/+DVHw29loGCOH/teP5O55HiBdWUvS9o8BUxhJJGvyuonJqrj8xnt/ej36l19A/wCBooJyMCOYVWZjTEQibGrDRwsAQrCXvRM7wIVN34lBwImdJ8np2LLitO5ThltTuaaI+TGWOgzAK/5bM4CzUuVnSxiWwVkFMKC7NAjQI91mpA3c2HnuecBKIEdHBt0SDebu6AP+7y2urhPGJbqJXyC/IBynBkAh2Jo1ueF0mgca1/9hI1LPjP2yXMAb98lw/JdcGRDsQDy6N1k/iEPecjlXbGEAZCNYe+5DI+uAOoqY4/Yl0d5eY5ONKYr904vrM4+6iyACvb7AhWr082RZcKXeq+5AlDtu5iFWJ17wad86En11TaAvvpx0GzYCjJs7nqe3l9wvfGtfHOOzFvHl+W8LFrgvXotU3XXQGmdhNtPjZu6m5cbZ3fHe51k5gtALvnIGcZhBCB1WmdP2RzrJt64PQQ9aB+jz0v1F4B2ZbwUsNa4lt+eLonpvieAql/zUTxydTJvml/kM2dV3wvJAcQ3LrVdDPXtFzpywyeZA0LybKgQACXdvo4h89Tzu4cBDgKU9SHHV32fs4+TrWdaH1ovAgwDY93JUDmcIJVTH3XhIqdNfcGxhaVqHmEj19fl2emc1nc6qbGo3p/97Gcva1b7hZ43h8qjEyh91+dOhW1M4+qVXk8POhGDsVz4gsqrjoHVMZPlU/lOSyRn69hAQMDkJQeNif2b+YZpj3BAfxmfPqudtZ/DofoHgvv+eJKu93uu8uzJOeyPTOTa/YAHPODShy4fPNOZznSmm5ROgPdMZzrTjUs2kRhay/BZAw2wW2J8Opa7TFPGs2fbVLqsiSHLKGQwYjMwwvciDwYZg2oZbcCs8s+Iw8bby7Ycm2f8Lkt0je6S9i4opx+WWSmPZegBdYEVwHKGt/pg6rmQIwN3Y4AyTrDfMkSARxiMjiGKXQhI1+8ZZQy6ZXYtCI1dts8B0I3RskKOxx23zxg9gOQF1zaVT+0JAOqd2hBI5Hi+ccpwiYXomKZLpDCAFtgoLXBSUjdypj17JFl9yKQYpOSf7HoOoOYm656tPuID1r99lyGMlb6APhnauJbGBsjqu63DJoCBS66WsVMeQB8gGlkC0FXfL37xi5fnYmIBAquH29P7HVsqI/3hD3/4xUDE/qltGKzq3VgxugMoM1arf/k44g6ocGkMUL02VKfACcA8IHKPZgPlgbEAVHPGceMFKrDkMKnoCwZ578ceqz69FyO134XawHbT17WRkW2ecUwA/c0tdcbwLX+X52BJOzVA52Jo6YvKq48DVMQSBaw1LzbMhxAF4kBiZANbzYXqUT6BGea50A3lWXv2iDGQyVypHoEh1ozHPe5x1yBn+QKCMAyBu9jn4o1yHG5MSwy7gB4g1c7TUnWqXXTcgpL02eop8x0Y41lzcQFUa4QLQ7H50kn0tDzlqx7K2zrQI9YGeXIguQiNjqTPxC6ll5XBGYd9yTl4BLixhfW3sdFHyl8nnX4hu8e1bfts16ddS+neBc2t6etU0YfJeX2ezKRXdr+wfSctK/M4DsfTOdjTZIWjs+/6nWw2R9bhuwzL5lFzL+C3+aEcfUT3H8MjLGhe+eatUyYcJLuebhgV+sY4cjhgeVuf6rsYoP1+3vOed3kGoNx7OeYKL0QOc8SYA/oQ6Awo1h5z22V19kJ9Vz4l4SqqV/2TTtBvyUY6qxiwPddP4GIhiwIsc2ztnMyZ2PP0fgCvyy/tWbQhOSHX9oZOcLUPCuwWxql59JWvfOU6Pi/ns371uzJbr4SgIPPCZZRX71ZGepK+wLztudbI9FYAaqEQnOb5kR/5ket2FaanUAnLHjdXXVYJ3DUHOBwqr31IdUScqC70AVY3x2Ht4Yzt+yc96UkXYLy1J2fjmc50pjPdtHQCvGc605luXMImKWE+LVt22UUMFwYi43gv+Op3m1GMyzawNrWOjO7RVcY342gZMY4xM9D2KC7mgs2+Y/ViErbxBfhsjN1lf5T26OiRabVH3ZZBuMB0CbuKIb9tLC9x8JTb/2LDLhNs2b6MMSw0hhEDxFFmzJKS47n7rmOhgG/GpaOKjNM1zvXBsc/26DHGkTFl0GaIZXBmOAJC9BFjETCtTi4/yqjqO4YaozNgMznLiOw4JxlcMAcIsEzKBSowTne8+9+FUj5P7pKdZUfrh2SZLGoTJwf5ybjGsFyj39+NlT4DTjhWvKD1hovABsaWxWRmtDL8ts8cASZ39av2kTVGfu9kZDI8A0CawwFc6rHyhGVrLgD1q6MbwTNCsUWTv0CTwEvggiOtmPcbG7MykqNA0cDmNbw9a+4t0KNOy9g9xoYG9HJCeN5RZoAF0NvxbUexOTjIRKBEbe1SvgCLjGgX3unvdTiUb/2bTAtdETiB9dVPbOJCRmDEYdqVZ3UybwAtAQzCnNQ35dv4NQ+rb0B2fR+Q2+c91zOOGHMQ0XEbQqPvrQviYGIn9kxALrY8Wd45Ta71244xfSaOtRAVexmWOdHY9BOoZF2i/+gs484BgPVofhyT/jIH1tnHOUBW6RWhGYDEqw/NNeNDD/lsnZSY2/K3zgC+MSKxNwG/QphgUOrjZe1bd/ZkwD5Lvy/rn+ztXD8CttaNIyN0w5oAX4+MUfXR/uroUi6nI/R79aKrNy/zsJR8YWPq+wV5rYlOB2CnVnZ6KbleFrL+XVlap+kRYO5/TGFtKm04pv7mUGoubix0Y7onD7RFDHGO2uaFMDTpmwBDIVjsf8zh9HyAnv5d8HzHYIF0/cchtJd4lk/6o/XBXjA9om6Ac/Fw7cs4aoSIqV45sawR+qn8cib2fTqPYyx93LPpxtaB9Fb5pWvTn5xQfX+UXzqjPuz7Xfdbhx760Ides6WxjKuDWPPCd9QP6dbW9M997nOXPHvfHQT0bzqwH3Lc5zFyl4RA5skIZ2PP9Rug21jWv/1O17YGYxD3bHq3+vZ/IK5Y4NXXqTWnU+jeng+w3xMKdzftyYf7On271ONMZzrT7ZVOgPdMZzrTjUsb8w27h4EIQPP/8Vgpg4GhiuHQEbyOzQWeMYLEV1xQjqHECF4gLAOh59vQqoN310AFAjAQMcaAZwwRRpC2qIPfR/bmlrOGr88ZgQx/+ajLguUbbxXLF5CyYOAa345mAkewqBjzmD1+MKj32Kw2ORq5DFcgg3Hbo+Vr+C2T17u1ofJ9hqWcURHbxvF5sQq3T4FCwAVM5X4CoTJaqkeGXM/0mQteyj/Dr8tC+s7RXuBNrCvxY0v6wA3Ve1EKmWyMyhv7HJP5CHwADgLkli2ozwL1AKoLepQyvDIkk00AeN+7pKV5UjuxvZbxm3GNnY4RnrEdSMGIBvbtEd69NKc+4cSR9zLagcSlZCWjltHu+2IiVofyCmTr+Y61lmJp6YuYsBnjMYdiZ8dq6v+Nxdi7Ga0Y6dXTxWH1SeMsH6ADlq44goAKgBNAe+c2fSVGJga5savvMU1rU3kETgeekEG6A0jXOC9YFuAacFHd0nk9U7vvvPPOi1xhMgKL+2n8e75x33AOGfPJQYZ8eqv+wZwDWIjFLV5uY1ibfG6uAqjLO5ltrDpenU7FVgT2A7Hp3/rY3AZKYLMFPuzpDnrXcXYg+caoLXHsiDvKmeBnnTN0EP1KF3Eo3eo7feSST3WvzHUgyMd7gMsFYnu2dmLy1T9YfDGh+5uc6R96Yo/XL0ho3aCvnMxwgd4yGxdgpM/pfeAlXbb6fx1PO0d2nVtQV//R8QsEWmv2vQXN9dWR9Quw9Zl1WJ7mo/qmUzjs7BWs4ct4PDogpT3Gbo3fS9qsocZAaB/6VH/JmwwDWTetbllnkXlXfukHjGty2N/NPWEPmuPNEU5o/UMP0I+cpNYTYKSYxcYEcK1POcK3XnvqyfPlYQw5Dl30Vvmcthu/39pfao6QL8+RgZ5Ptl24m07v1Ijn0++xXuuLdFxAbBeylX+fpfs5v5797GdfdOsnPvGJr4k5T3Y5TpACal+gcCl9ntOt8vrpuwDb2vvhD3/42llFF5MV87Y8CwORvHBqkc/KFi6rvks3ANXNLXtOzln7QmAw4H7vO2gMyrc2N9Yc+vZcHML1Qzqp/J3oIQP6qL7EBM4JeaYznelMNy2dAO+ZznSmG5dsQIEWe2TU9yVg2DKDNjZoibHT/21IM2D6u836MmkYXY67MUYYYQCfNrduP5f3GuUMH2BDeWU4MQwZjtg6eySSsbbA7R6LVSYAY0MzYBn7G9MS4AHAcKR2b3n3I57bMgl9t7Fxt28Zjdg+9Q3jDbAjTMWyivbYsP8BCX4vK1I9sIKE12C0LLsaiOsHQInBtsDDsmqXzVUiS1hMATMZL4x04xLQGHBVWRlTGUH6KQMrcKrjoJhEAOWMa7FBjZX+y2g8sroX8AAouMgmudQeF00l457FJlv2V+9k/Fc2EMAxVE4I7LWVoYzc2shgWyeBsBvLUl5w2rgvi4sBvsAJ1pYYhozm6poRn3EeK4wRX182twPUy6//xXJkmDqmqxwMJUfeMcgXJCIfABsX2OxlguYV2RSPFRtzGaH0FgO4ugAnVn/0fkBCfV39Alj1ae1ZxubOS0yt6l1fmCvJFVbXXtT2sIc97PJeDrDyqJ+e8YxnXL3rXe+6lr+cFy51EgLC5XP0LlBWXs2F6g5AdknUnpjo7/ImM+XbuNV/saTFVTYe9BCZcnFUsgCULlU3LL3yrR8rr7kJTF52LTBrQaPy9EwJQKTfzTVgIX13dOR41lgD8BagX91/ZLfu3O/zZIHTLF0Uw3CdVWQBCLfzfcPYkCXrKnZnyZwA1lsPgH36wPwC1GEfLsC66/U6Ia3ZnLnqZs6sQ28B6133NhSTteTI8tWekvVEvxib/m9eWK/6nBPH2sIhowz6bn/MAWvhOke33uR6HRiAzQWw1c0znE2+X9D8CIQrR/86Ip/u1G85kNIVrU/Nl9aivk9viCW/TkgMTePdD4ameK5kqnqS1fL88z//84sDMP1SGwM5Xa6ZbuRcoCNWfhZoV56y7O2wUa019SWHzgKW6bB1wPY3Z1P1C3zUt5///Ocv+XQxW3k/6lGPuvryl7986TeXbjYH7b16l5yJ0X+UyT6rTjkshZ6o777whS9cA6lIAPYudKA5kX6r/MpurGJQf/rTn756ylOecj1u+qj8hMgBbgdeN46tn+anMDz1lTBAe3LOpaX0yBIq+qxx4VB2wW3t+fjHP355X7gr62WfHWNKn+lMZzrTTUknwHumM53pxiWGTwmTaBlqNvQbQ3djXe5v78do81nAF0OzDelezGRjuhfDLONoL0tZI3INPYAHo9kmOZBjj60CGIDZGxbC7y1jGWoL7jAKN+5ffcMAB54tW4uBs4Daso6WCQyQYxQ7ou3iJcfhMQK1zzHENcj1j77Vv34v88p46HNluxAEK1l5QLuSNotZy1gCqpQY1MtM2wQsrZ0BroBB40MmYtpkxDJ4M2aMQ4ZTIO/GnsXI074Fi3d8twztX/DC3xiTnBTiADIsGeP6uLzqD3FcscuMU32Y0ZgxTB7Iq7Hbz4yxeWjM1uFQWkayebx9uoDFssiWFdV8rW0Bk47qO/rrQpnyFb+275OXDOHKydAN8AuEBNDVXzGJMpo7guo4Oj1iLtMTLjxb+aRnzPXqmSxgbws/ULn9nYwkF1jJ+m/B/v4O8FwWoviU5dn7/V9/VF5t4aAKBACy1Hdf+tKXrkEfDPzyjc0sb3LYPH7kIx95AQaEljEu9QFWGEZ/5VdezG7xgWMLk9OAiGJ0AgfIfJ+Xdw6SPuv/vcCvuQvEbX55Fwu4drqwDADGMdCPEA7iM3Pc6b89IbFMw3444si5eeOkQklMSY6PXbeOaxAg+HjaREicDavgvdUJpcC4+rz2NzcDyZadS78qewEwOke+dIf8lzVLFuhd80H7NlQLYI9OXd1Ab60eWhDTSRGf7xF9n9GF2ISAOvnQL/YIRwbwjseuK8qyDiV31jN9eCtdv87BXXvXSViqj5bVuH3c58mQPQ0nzBHcla/6NpedHirtfQPaYhwc7W++06fCnPS72KjppvRRpx0CLYUwaX9kb1U9xWfGqHXqadn5AMm99Fb4hwDU9Kr5U6zs3u9z8mtcgP4c0fpA7Nt0CzC+vwOMhZdSJ0xncxngjCjQmpz+TafEYu7/HLAc0b2f7gOcPuc5z7k4our/4snuPKj+2NdOV9gfGf/anM603+z/xqbnY/Wm5yqrVH4AVeFCjClZssbUD+0pY/+mE+rPxrM8d+9Kv7ztbW+7rgfAlk7qHbHUa6s1CXuZ/JAFDGH7I5drumjN/rM805PpifZJ1Zf8BP5iNd+TtPPxvk7fLvU405nOdHulE+A905nOdCMTo5gBg3FawnQUL3MZu0egiPGDTdjvNrC924a4v9scO4YI2GFsrJHdhh6Dj4HM8AFoeQ9LjIHBmN1Lcxive+x8DW/G6xqSjCoGsXwYJliUjL9lGwGQsKUWnFpgRFlrPHqfIYZhWzlt+hn7LlZhbO2N8fpV/zHGJXX23YLQ+gbQsAxkAO3KjvwAEMpfIP4IlAIRNhxB+QJ4F3A4GuGOtmK+ejcjzZHLlStHUxegXrDU/8uGW6B2AfcjGOqZDMcjMxoI69KYBZyAQsCd7adtE7lbQF5995n9f4Fq9T4yqXdOkTlyVFswogI9MeTUkSwCTTDksYAdxy/vjOmMzjvuuONalgKAMZDoiECJBQn0bXUABqlv+TS3sbgcJQYuVH7Gd3KwR8qXSQlE3gvFlFvqe23YS/MARIDayqodlYfxBgTDtjefHvzgB1++66hxgEP5Fk8z0KC6BCJi11V2YGmX4sUcLUZkzydL5VHbtGfjotN5GPT63I3yGf7pYsAqZ1cAhri/tae5FBAVQA/o3iPH+qu6O6WhDMxSIQ5cgAeMAdAeY6Obm+S8dzC1zUmxiMn5zpWVT/pMXff3OsLMpw2L4Nnan2zWN2Kpbugc5ZnHCxhjSmvH0cFkPq2jq++Ff1BWMkQmAEH0kLlsPQTIqtc6OPXzrtu+Kx2dk8tqpqeFHth1Xz/oF/nv3+qzJwp2D7G6/ehsW/b36rmVG+vJrU69WJv0O0eE745luaTSiQOfa/vug+wVmiv2BuS8esSMb573k75rvvWjLWS6/1vzyqdwAuZmThzty6mTDD7oQQ+6Buro6A3Pk7xgLfeTjqzOwuRsGIWdJ2L6G4fyq05CQeQY6n9xYL2D6eySTI5rTPXaFDu3edS76bT6sbAHvROoWx3LK92Us7B5l84JGI5tm44pHyF4miPmk31EfdW41ietN+nSdFdjEhO49xoHwLq1pTrRafZUK6N7wqi8q+MP/dAPXU6oxJROl+a4S/+nm+n66uBEVXVv/Lts7vu///svdfjYxz52HUu35wK5xVdP95tnG6+33xxemLw92xqd3PRZl7nFGm6M6uvybuwAzGc605nOdNPSCfCe6UxnupGJwQtoWjBvL39hYAEwgJB7fAxAI18bXmwwwEQ/4rMxXNugL4sQWLthGBh3ADM/pWUztVF3U/etGELLMDoakcu63aOrjl8yzo/xI/ueMS6Pff9o1C+IuQDFMsEYAPJU5oKFjFsGviOoQO6NdXmMS7gssOMRZkzV6mTcFjCVN1BoQQL5HAGMZbIZa2MHAMDA3Qvutm4ZNhlEyUtt3WOMG1Jjgc11TPie7K2Rv2D0MreBKgAEQAjgZ4+BL7NNngvoHtPK2jpMsJaWEWycGHrLvhLvmExgAzrqrc07j8xf+XNcZKyWMFYDDVzUJn83ePd3RmuGeZe59H/xFWMUAfWwTksZ8bG5Mnozwnum34xZwEHlipHc5+WHYRgLrLbEknIRXfnVBxnesWg7SRCwUD2rmyPE2GMA/ePcrw+w8ep/sYArz7HcZUk3N3q+vN0yb66uU6R291v4hoCNPlunQr9rQ+CGI9/GIwadGLfKFA+SfBnPnbsAe+U2f6pfoHp92f/1Y4y52hkggK0sVA6w5/GPf/zV//t//+8CaFRG3ylPzPTGorwDVAIZHKVffaDfdn5aQxb0w8Izn82xPaEARF/dsgx2fcvZts6KnZP+ptewFde5sw6x1XOY+fLfuK9Y6eW7bdhn97SDUy0YzNjhjQ25XT2infSm+bBr6Zap3kcn1zpV9jnjsg6QHaPVlUdHrzllzVqH067ZxuL4HsBywwMkU3S3NW3DIflcfO7kn4xwzMSkBcQVLmBB136am8ln4Nk6TMx9gPHqDfOvEAROKzUWwnssyxt4V74bCoRuBtz3Tn1QGwDJHE4YvOmAvgd6Np85G9Kz5K5yNq5w+rS69n39gXlbqszK6Xdl1U/qJ973OmjpH44FAG96N7BVGKOecbHpd33Xd13W8Z4PuO6ndqS/a2d6Jr1VKh/xu2tz9RH31lwoL/rIOkGWj6GV9FN1ceFta4p2lLcwE40RsNR4tq584AMfuJTZjxi41ojKTF+nS6tD+rP+eNGLXnS9Z3EJcWW3DjS+gffkRNx59eHcooPEjy/me7q7eVIoiNraOiQ8ECdz5Z7pTGc6001LJ8B7pjOd6cYlcTOXIcgQbDPpmD4Dd4/9YlLtpTXAKMZWqc8Ch1zmIwGKGIWOgS8TEpvX82tgrjFZYogxlhxJXeP2eOzzCFwDePborPw2rqDyGDnaq/4bPmEBWoY7wLu+3ziVjFkMDkznvtsLohbcYNBgmi1wu8A7g1Hdj0xshqXE2D8a5lisxh2TeA33ZaMy3CXfLVsY0MroAcYskO7dEsAggwYTmixmzCyYW94ZiJig4sxmBImLy7mhT/XHymv5B1I6lgpQ7X8Xt2CALYgOCHMkHutoDeIFcvV7qc8zhAHrxsv8WxnGQAOWOOJb2/fIsLwxoMgFFlispOSQLGWclrCbeh+bDWstQLKf2EN9Vr86/lo/l49QBhmyGeaBuv1fv+jHysqodpFQ9aucjNbGVexCsTodu8caY9g/61nPugAYX/nKVy6fi4Pbc+XvkiUyBywR35TOMRbAjmWv9W6/HWmOlfbYxz72elzM9erhiK13ez7QoM+8z0FEB5hz+hioGwO6n9omdmt5Nm6O88acLu5i7wN361vtA+wBRuki60H5OfZb32A+BrIIRdGzjR1Awbwp/8o33tUjoIweWQBx9dHqNkDOfo89uexdTiVzjT40X+hC+hgTztrnb3OILhb7XZuWwb3gqT6Un/npf4zqBUzlBQyv/5Rd/ZJNrGtrKT1B92KqixHd92I+a/+tQhzturprH8DUcxyP9DQmo3asnjeOC1DK/7h2L/N4davxXxa2o+30CGdH+iPmJbByT2XUf73TfMc8t9Ymo+kQDokSMJQM0K31ayBiulN/iouqfepaG6tTqfIb1+ZiMk9H9Ls5EThIj5Nnca5dvvjQhz70uh7W8Rj8la9/7Us2ubw03evSzhLH2oaO4Iitj8on8NWpgsoJGN79TGF1yMjREUk+jS2gePcD9GH5p/e7hLO+76fwAXRuOiPAvTKNc/3X/jFdBOB28ag7F1p3ONhqW31Ru3vPWPa7tbS/YwZj+vZMfdbf1aN+CJylSyvfOovtuzqkMmtH9eOMqS3JQZ/5v1AdOb4C+8UqFxdXeJzAYkCueO7r/CtxHsQIjkkcG7j+bP0JKK7PWovrD6dKKq9TNPc0rfP7vk7fLvU405nOdHulE+A905nOdOMShsAyjmzaHW0E9jBksQNt+AGYNsDAJswaYBTAY4+fMapKezR0DXYGFWN7Acc9/nlMgMHeY0wtc4jBuaysI5gJfMHOWDaXurUJz0DQ1jX4ARLbVxifDG9GI0AcUwTrDPABqF4Wx/alo+razcjWR8AgbG0A8DJkl1kLfFc/hgbwdIFr4AP5Kd3KabDHgBdA2aO2GW0ZPpwMf/Inf3Id7xe44AK2jJlYSIzRDBpAlTH0nAu5GKkM5YzcBcMX6Ku8BZYwmsR+JdMuuVoGHAA8g67vMt6Wxa2fkp+ezcheoJ1M72U2wKf6EdDmOUbozp/eDUxdOdSvLntbFm+fi71YXx6Pu2NFObpbHQCrtTEghXOlsrGGerbvY35Wfgyo+q42x9QKsAyAr0yOo2W1A0XEM64P6s/a0HgDYvrpb/ELgbfiNva7cnum97DeMXM37iGmqKPzgSYBENUR6AwE7z1Ge2kZ5ct+VwaW1rJuxUsMvOj9/idTnE7GC7usetMHwI3+BtaUb0BT/VDbOe1qv8vbjA0Z4HBwoZ7QL4EVAR/1uZAk9QtQWEiL8q1vyrvPC0PRGMfuNqfMkU2rNxbQMP7KWn298eBXjwHw9Jv+pnvMTf1FbzrevuDwhu4BMDo9oHzzeeeY9aZ8gHxAX7qVA48u3zi/xkXaNYOcbdgHeevHZScfnVfLSF59uOvpguXm/uaDpUke6Va6Ql9gLQNb17EgAcyWuSuu7V4yWb837yu3Y+n00ToONkwFveR4Pz1hbKyz1kx9h8ltTd510f/2SL0jNEnvxYYFzMUQ7Xtzz9xysWftSlbNi9a92iucQ//Ts1jFu7aVV+zN5ldlBPDVdxive5En5zw5Lq90WTo44LH3F1zVBqxbfWL8yIt5UhtioPaZCys50hb8D3htfale73vf+64+9alPXT35yU++Xp85+nuvPFrf0yFC7uxpHOzs8mpNMU8f8YhHXHRg41JfG9vWmRxr6bL6LZ3FCdsegby5ZJQOsS5aa8qjd3f/wtnds0JStN4FJgvx8J73vOfSR9ZI86C2u1eh/8klR5N9MeC579/0pjddxquy7ElqR581fvVxbWw/1R4A4/dMZzrTmW5SOgHeM53pTDcuYY8woo/H2BdwdZkDABi4uHEZgVAM0SMAyzjYmLNHYNl7ywZaRqjPJWzS0jIZbbZLQKMFzeS7gDXjRx2AAwzoPZ4PHMGu1Tf6y/fYWY5xM44dJ7WJX8B9GdGOjKu745aAAsYqA3LDZmy/MX4Y4ozmY7+u4b1Ay4ZCYNzt0WLGrzHfi4j2t7Fl8B/rmbGTAZYhn6HS70CjLa9nM7Dqu9g7gMbGoaOWCyrUTy72OrKU9ckCowCNjaGqfvs58ChjT5v2yDH5WTbWypb6ucxsw2UsW0o9AVMYqz4XpgBgYD5qewaum+rVRaxPAAiQouexHAEEezwayLRhDpRF/pWzMabVvzFrTBvfDOWMz0AbcRnFK86YzuCtD8yJ6tW79XftDOABXphjblRPZpKjAIzeF5OwOpEvR3M3rqiL0Vzyg+ENcBWqxRHhytnYsgEtMcGwwjHqFkykd4HP2KXlwaFE3wgBoh+wPQNyhLWpXvVBfWseYGsDJ+iWvqf/jLfxJDd0njnqAkuxr8kEBnv93ecBKoDgyml8qrsj6AE1xSGmw9bRY87c1efm7Z7IIMt0MDnb9QPAuKGDtJ/O54irLzZ+sHK919+1ZVnjyUGyJZ7x6mGp7znm9pIyc4Ku30sFHatfFjc9vIzTjS9LB2//rC5aB5518siyXL2476yzcNnWnF7Ny+Sv/9V1gdxlPBoj9fXs7gGSRwB3eqKUHsMur7z0xXd8x3dc5ri8ODIB3Rt7tHo6haR/jLt6rdOYHEork3Rfn1V+9aGv0wHiqOb00W6nNDBxxdSvnQDe2t2x/sDB8vrjP/7jS7iZ2Jpkwl4GGzcmPzkk50JZBArH/n34wx9+fSIifVQ5AX6FsYlZmr4VH71nasOuz+vs2v6oDPJNnyzztzZVf0B5DqPA39K73vWuqze/+c2XZwt30KmLPflUWdXVnKdD6790TmUFoNpD1b6ez5FU/9Xn6aLaVnvFRk4OaksnC9Kb6fD6qLLr+1LtAjgXM50jxqVmjUEs2fYllZPObyzr035XfnnXv7FszdPGymVz1SPA1ikXpyS02z62OgOXVzdWt3Ru63/flTCv6eY+F9v3DNFwpjOd6SamE+A905nOdONSG/mMAzEY9/hfG09MqI2BuDFiSzady+hgKK2RzUAvMTDlveDrGoBr5B4N3BL2GJCU0Xo0aOWvHXtEVb0YfZgbNtEL6h7B6gW5xVkEhHlnARN1cLwdKNUGfgHS7W9gqSOWe/QXO4ZBC2hacPgIiGv7Md6ixHDH9vXcsjkZHup5HDflHFl6azAve9iYbBsAYgzVZZYBvBcEAoQd2WdAB8Ds8Yj1HrsE8K6MbszEDPYMtz7f+KnyW8Za9QiccPnUglJ76ZG+YJxjyGJQMXqPIS36HksS4F8CNAl3Ubuxt0uO/ANzAyj2grs+X5ZgzzDagQvrDNAe/dxv4CmGaYlh7KIbBmv/VzfHpTO2YyUF9r7sZS+7sLc++MEPXrexMQD4l/+GjSGr+pz876Vk6TuOLacOehe4V76A1FLtSP4A3/qyOgDzhJsIvOhZcSfVMZbcsufLg9yR60AiR3v73pHrdEPPraEecBFTqzICKhz1Xx2bTq+tdKS+E2qj/IHG2ty76u0Cyf4WRoNOF8vbTfCcD31Wvj1TX9BT5iK5WEfa6gHzHzC4p0PM29UpR5Ytfa+edM7GgO07jDesWY6KdWiUdr3aS8uARbXR2K+eXyBQO/dSUfqXHjiGeqAbyCz2tjzpFzJFf9JZ/QhRtCCqZ/3vt8+W/brrEMbvhs5ZtvQ6WOnCHVs6+qibtXF1rnmYPBq//sZwp1eaLzFPA9MCVI1P8yMZLM+NC8+5ugA1Bi1ATf/3PR2wTmh1Ny+cnOH8o1uFL9EeY4dVX13NO/sQsYWrR3o45mcyU2xa4HD5CzVElwCxMcutQ+mRLnrruZwrgcRCSaRbhc4qbAEGfo7Q8nABZM5ToV3IpPlm/7NOUe3zfeWVj8s31b8507Mxg4X36TI2DilxboG75bPOa7FxsbDruz4PUE33pjNbn8srXdk+txRjuH53UaaL1Xr3He94x6W9D3zgAy/y85jHPOYyvwN46//6LIdC8hIQXJ7lI74tR5swPo2D8DTp4fbXgc+tBeVbmz7ykY9c6vewhz3swvy2/sunfuz5fjvNUd3EyG9N6O/yyLHtZIex6nPAd2D4PU3HveF9mb5d6nGmM53p9konwHumM53pxiW3ybdRbpPtiDQAEpuIwW1zj2F4ZLwwqtfAxd4oAXzFGFyjbxmG+/z+vSxWxqdLpBYQVfYyK/cW4QWU1/BfkFL++zlDVt9UNmBkgS7MQAAhhoW+YETafDPMGTHbh0A8BjcmDSDe8/3G8pHfgqBYe55dhjEG5MZiZNwCHtQdgIjFqY5HYH0ZQCV9uGUueAq08DfjThy5fb4+J4srP5sWkA+MY2TqlwzZlY8NC6C+wAChRfou4yyDEiDgmQU8lZshKwRAQAT5DHxr7MU8zNgLDFY//biMN+AbmWeoAm6B1aWey0BObtZZUD1qt1jAQGHglqOzx77VPnJMvvQpZmflZlwLL5CxyZgGgCg3ILfn6gs6oT7pCG/tiN3UDeXFpIytV/8ENvS5mI3L6HQpH1AOcFs9ewfohDkPJDEHsYTNr70MpxQY0TNYVhnsASgBCeVZKI76obLMGwzE5CW5qX/Nu4z45lBtSsbFVuy95AYoWxvqU0xDIHl1c6lj8lJ+DPzq1E8AgMuegJd0WO0AHggxAbQBKHCQlGc/1bX3G6P+7z2hLmLC9XlgRQAI4MqFTfqRQ2dPQJivnAieWwb4cX4vG15ICE6QzW/BKMxJc5qcS3QkOTFv6n9hGZID7PLmNPadOU9+tG3ZrwBFbFJl0Ul72mOZusBL+m+Z/Qs4Lgi/IKv+WofaOph8v21WJ88vQK3fjfGGb9i89fdxHbB32FjT+qu56OKp5o05XAqExBL1LtlLftc5KW41vVPePYsVb83Cst2+wzyvLpjJuw8R2kd4HuXod2EXnITQf7s+0N0bgseYl3dzaGWMM4ADwg8nHqCzH3sMoVkCI10U5vSGuVXIADKrD+qTwiak37Sz/AKKq4/7AKxtZA+g3f+1rTXIKZLeD2QU6qU2FUqhz/u+GMViSqdb0yXlETgq5E+6NB1afzs5YI/QONWWvm+9L7RTY1PftLetPLq59n3xi1+8Xm9r0/Of//yrt7zlLZc8/tbf+luXEwj6P9C4/8ujC0QDgrG3e756VQ/O1HUq1+/1S6cX6o8ukQtMNkZ9HzgbuA68x4our9og7nDtap1pzcyR2PN9n6z0njAM1pHqziG67OsznelMZ7op6dR8ZzrTmW5ccowrI2BDFSyjci+8salfJg4W1YK8R1YvoBZAiXm0Rp/ESAIqH9m4G4JggQL5AwIc5yttfbbMBXrXAAasMXj22OuCXIx2BtyymiSGJGbPHsvFLNKnDANGcwkDCJizF7MtA9cxz55lVC8TSxmA8mVWMUp6Dgtzj2cyLBluycvGUVymsX7Tv0fg37MrM3usc1mAGTWBWV/+8pev31ungTosiHF0ECwArO+XUaqe2rzsQp8B8F3CAmQr/4wsF1BtSJBSxpeYkfqhumdw6wPsVZehaQuWIYN5gUesyurUWPSZI5j6B6udPAMNfQ/EKE+hD8wLgKs5tmEfODQWDClfcurSnn5nhC6jH2iYvIkZ69hrBm6GaJ/Xx9W/mIX/6T/9p6snPOEJ18dsAWq9K7SF4/Li7wpfgDkrhEqfi+9cf/S80B4cOHShnz4PPCDT5edCrBha9VvHnAOhK6OL/2JjAUSSAWxiR8/JSyAFsMfRXHMccGre9x32VuB4hj7mr3AP1cnN8+XbkWtyBHDu+dh8gR2Nj/FPnmtLZbktnnxhQnLsAJfECwem1R8BM/3ceeedFzDH8Wbgw7LRga3rVJL8Ty8qc/UqZuwChHTt6hnsePOZQ+J47N78Wx0W+NTR5/q4cXVhY+Vgry5gqHxtsH4uW9v4rONKGCQg5DpRzBk6D6BGx/W3i5p2PV1QfEE4z6zz0v+3yuPI5DOXAdLmt3fpBSxl9d5j/vTxOm439rC9iZMIpfq+fJLB5qSxiM3ePAv4Ki/x6JPn5DjwUMgmDkptrs+x0NULIxaASf9ZWzmv6AyOHeNkLKpf+q15sCEQ6FFOtABDsuF3TNLewRDW39YqslU/pcs4p/Rjf9euWM71Ve3Y0B8cb33eWlJ968OeTy+kO6t/DGIXqQqNwGHU78I/AJfLI52NZVv5/RSmoPbWzp4rz+pkz/S4xz3u6sMf/vBFrz3qUY+66LbYsuVXmZUtfnvjXb3S4zkBqluAcOU0VznsGg+s1dosDnO/yy+ZqN3W79i1//gf/+MLkJuu6tnq+rSnPe0C8CbnlZfsNaaB049//OOv9VogcnUqr9rJ+dD3vdM4/Yf/8B8uctW4psef+cxnXp6tr4yR/RQHdHUVV7c61fbal65tzakdwvlg9QvRkez3f89WzpnOdKYz3bR0ArxnOtOZbmTCjsBCAfKtccxwZvQyTNfoY5xsPFOGLcPa0VFH0Rh5y9BaZk/pCOCtgXr8THkue2PUyxtQB0Be8FJee4HaArvLfDoCk3t8UF2WFew7AIL3gcXbj47CboxOx+YZxNquDOCHi4KWzeVvR1L1A8CmBKwRxkD/LkC7AJfnS+KG7lFgfbrhKgBNR8Y18EUe6urvEhb5jhc26NYVq3PZxEBpxuTG5SQj8l6Z28uQODGwiRbkz4jcNmNl6WMxYLFEyyujsvr0bkZdBmpl9blxayyAxpwAR2BaLFT1cyx7x4hMM/rVQwzm3mFMmvf6DfinrGXfkX110+f6TB8GUCxLzfzqO0dpxZDdI+eBFtUrA7ZngM5AY+AmANqR1p1fPYNt2XOOb7u4acFsIMDOaf0mVABmvuPGbk7vmHMgb0wszC7hHCqz8Q28Ln9Hz2vHMlZ7LpAgw1zsSfUSAqaUzCR/tT1QIqYa9ljvBHLon/LKwWCeYvoF3uyRfcwzYG7j4YK1EmZ2fUe3lgdgOLBC3Ep9xxkRsNBnjWX5lo92H5mkC/DSU+Yj3U1f7vrBuWFtKQECMeLW2QPcWn267Eo6sc8cv25MYjQG9sSMU4Y6ATfN/WX1l4dTBxsnmb5YsFu59eHOe/0gX/ORQ25PLFhD9dWC5Ltu7nxedrD5zdFofkt0ysZZBwKuDqeLStYHfbXse3Whk4CI9Zl9Sc8nO/W92NjJdL/Ty2Q3oE+/k41k0+Vdy0qm43rGelYe5U//c1zZW5RPycWatc/FYemq9A35bj73TnpCnFxyWz7mXXXoPfq7eYJpbI2qLMz62pW+dFLCfLM+c3zlNAv05qCybtUfAYUBh8kjvRw46zK33sXure49EzAb8Fy9q++ecJDP7uNcRGru9b5TBs9+9rMvAGRjGiu+sgrn0O/0J5mr7oG+MV+FK+qzxrn8+r/vCmlRW2vHG9/4xuvLHhEX7Bf08zLPOQYru5TOLK/6N+fOxz72setTAEKCtT4FQpdvDNr0cO2N+dw4pPeKLdx3OYbe//73X8ddrrzy7hmxuXuXk9UcS0YwzFtDchAkF+lmDtucxYgDKwe1xd/1W/1xT9PRsXNfpm+XepzpTGe6vdIJ8J7pTGe6cWmZaozpNszAgjakGS7L2GV8LvtoDbcFOn3PGLVpZ0S12RWqgaENzCwtYLoMF//vewztZaqqkyO06r1GPFB6WUwb7xSIcGQoLZvMu3scftmYmM+eY8j2s/FBGR6MYWAtoEj/MsrLcy+QWxBajElGfOl4UY4+OIIsGH/GQrlAr4wToNMCd47Fkx1hHIwPudKfxk8fr1w6Pl896iPvbv8DoFYuycYy6bBpyEAp+cuIy5A1HoDfygQIJ6PlnSGKrb1tWIZv/RXY5zuAWp8HiAEyKhsghhHme2wqY2WMGHB7BH1BeoxE/VKdHA/W90AbSdxW7LDqsEz33tcWgCXgiWxhUApNYqyFesBewi4yHj2fblmG8xqk/g48celaZTFWAweM/TIesViFLKm+4ghXl75TV++TN4DbypZ2An/7PGBEDEcyWfxHDqViK2IFx+gNJHAE2eU/fb9MU/Wvfi5BEueRc6Rn3bge6BJAALgJNAic6XPss8okV+sYwyxzxJzObJ7Vt4HIlRGYVvkBuS7T2svsOKn0GX3h8iAOp+aQeZDsrxzSPUdwd+WaztMOcq/vyIpx4+wAzO1FWmR7HUGr5zdkQP/Xr/Rw+dbH4i7La0MRHIEIzFyOHyz21TNORZjrK7fmxoLJO56rQ4/OP2NtngKQVy8u2KkPgLzm7a6NwN1lkZawWheUVx/P08nqsQCSvQHd5eh9gDqgTj+ktzkjG5t0Qd8HqGLdJnP0DIda9cPk3TV+4zj3XGPej7Y2p/pxUif5DrjTtuZLTM9AuOZ2c6/n6U9ALDnuM8x37WqeJgO1WQzhXaePMupiRM8Ie0WGAKFCMgi/U78BsOsjcWh7p37NaRSDFtPVeAnjUn4cZ33/7ne/+9JXsURz9NgD1c50i0vcAnGtX5UdSGlvCXwvjIHTOevwaDxbBypT3wPm06/V+XOf+9w1EF5+dJZ1c/Mk14HEHIvFAI4Rm0797u/+7ovclcpL/2zYrZw99U36Mtazy1KTheSsvq6N1UGopPK03+AgtPduHez92lo79VXtCCB2meCe0GnNSW4Ct3fP3TgIo1FZrQOVdaYznelMNy2dAO+ZznSmG5cwQrBdsHkx41yKs5flMKSPDNXSxjllhK/BzCh1vFodgGQLvtqwLqtpgdVbGaDq6Qgp8GZDMTBuN58SAHeBacexXVS0z24MVkaufgFCLJDJsFjGI/DIkUlxOH2/7JM+FwPUccMFRxh4gCP9ok2Ys8ZlWWZ+sIYB3uSBoeyIZ99luLiUSz8si1v5JUeNPcdIWuN0QXmAluOu4up5v8TABzDGbsnQzDjbI+7q5Icslb8bvcl/PxlHWHWlZfqSXUAgEBAj1thWjriDAOIF6nrPcc8Mvt7v79ooBMMalMtM9duRe+O4DDztU3/l6uejTOpX4VOUCSTJQJc/eXc835wHngsD4Xi254H0gR8bc7n2Z3y6FKxUH5i/pZhSsbQah3RTxu7OcQw8ABKjvvqL1ZgsJR+AlORl+29B3vIDUNMT5uTe9K4szo/akPwFFMSgws6rjpXbvCWX2GnqtbFc64/eB1T0d8/2vn5Pf5ZXde2ZwIqAGwy8AJfqWZ36HGCDMV0d6pv+BvADi/uu94TQMCbio7qd3m31zaPyKa5lQE4gh7Ah1aU5lWwHeNBNK7fSyiY9W8KuJMO3cgzR2ytzQmkApfZ4u/eB01iixos+rm/LAxOy5zkwOLz0D/BqdZ8TMdpjjP2v3pwUjcmuPxuewvzHjl3HgLVmgVjzlc4xL3Zt9fyusU5DqJt89v91eu4eYp2znH7+N167Pu6eArjd70BbjoHkzjH0+j0QrjwCTrHygfj9JONYktrrb4D5kZmvjumWZLb5imFZ+S52TObT7cI91I6ejcH5kIc85Nohov/7ER+bs9Z8W5a0Sw33tIP+IQPVg47GmN3xo+dc9uakQd8Hzta26hqz9Ctf+cqlXs1X611AKTapsDbG28kFTjTzNx1VnoVXaJ4L3+AkQ/0FqOTUF6aIHrMf7P/eSZ/0PWdfY9czjUFrxMa0rt8C1gsVke4rvu2eYti13xpVGdXVKYXkxckKc7nwOs3FgNd0Xe/ow9pSfbv8s/XMBZbA1C5oC3zt2VjJwPD6sD5uLauuyA19V//V58ktdnd9zxFsHhSXvn7p2epfOeVVnWrvXsJWqs86WWLNOtOZznSmm5ROgPdMZzrTjUttGEuOrZWOl34s82kZS8s8W7bOHr/3PHCs5Bg9EIqhJy3wd2TwHtm7e9yb4dPnjLjSxvItacvG7sVyKh1BacbSsl/3aO+ygoFM6iZt3OI260BtAIfjpkBWDK8FgOWpzj4DUChvDfOtJ7AK2Kst+nNZw0AKhri2Z+xkQAAMtn4ll/MBLPo8wwMARtYW+DLGgGcgnfpnyASuOFa/RlrtYKT1bMZV+dbHjuyLsQrccBS+/wMRqgtgPMOKcdtv8o3tw0glp3ubOjnLWCQTjmUv6xZ7q76rLwIRMrKryx67BkwaY2yqDYGwcUXJL1a45zAZxfUzpxnhG2/XTfUuz6qe9QnnDwCMwwQQtGEjyBbAtHEqD/Jdv1aOuKHl0fhmhAYGABQd8SXrPR8brLEJ8G0MgUHYcNqFPQ9AEPakOnZpW8Z0bXaB0IJo5F9aJxNA2KmHZMLleIGe5dOx4drb//UDIKbPsKqqh2POjXt5i8lr/ouzmIFenWKtGS/He3umPKtH5fVT3r1TXi4AIkvJEOZzfZPcNdbVrb4NKCi/+qx69D9GGEYrMLx8Oq4dEAKkCNhtDnqOfNIngTPrmDG25pP5AWykt2ozAG/BGmMD4OJ4IHv04YKIC1gqa50ReyGXscLEdMS+NizbVf2Bv5wAfuhef295krVEzFeM7XU2qf86DtfBujJr3cQg5iikh6zJ+vD4Pp2/MWsX7LO2WsNdBLZ50H/125ZlPh1PxnCoCkdg/ve+2KfN+/J1+VkyxSFV3zUvWqN61wkSOoLsW5/KR9xUZQZW0mfNo3Q+513zsO/tDchpbUjuK7+6itFeHTg6AIPN2QBMjO4+d7nk7p92PwQYFrqleb2OJuNiHlb/2hSzs3pVn/orEDJd0SmTQFD6Hfu8/rFu913zvjktTu2RtZ3e7sepBg6o+iBgMl1beeVv3Syffj796U9fHELFvA2cLS54/VeZ9V3j7IIxzrxlmdNhZE7/ChNjPyYebe1qfamdyYd9U88hG6Qn05c9p+31bTKyoY8qa+9EKP/yNOaf+MQnLn3f+068VE7/17c9h5Xe/QK1Uf3plvrQaZ6e791OgginVNiIRz7ykZe6BygH/DbGLgPtvfIr/+ZEYS7uTTqeSDjTmc50ptspnQDvmc50phuX2ky6aXiZOG0s14izyWN4MCB9znBlYABNNi7gspqAWAwaCRDI6PPeAjDLNFoQobTHWRcUE/sVEOa5BcXWUAaklBaErm4ZWo4Ba7tLyvzvAimgw4LJyyLT3jW+gYP+rp2OPm/M2WWr6csNkbDhE3asjClgBODnKDUgjPEjfABGLfDDjc8ADSwdAEB/A5wwrPQ/WdGmBQiXaecoeAYt0A4ztr9dolI9Mv4zxKpLRk6f9TsQSrxXAK88gJMMQoY/oAbLqmfFU9zj5cAa4948ymjN4MvwzbDKqK5tgEBARM9m1GNOOka7N8ADl8ROBEYBrMwf8RoZ/RuSo4Q1CbAR7oMcYx4Do40zgMRYOKqKuerWczJpvuo3eQDse0bIBkBwCYAX26l+w2gLiI0Ri03cEdfeb5yF8HC8Fzue7GNZ1n/9ZLAnD8llv3sGaFRfAzYBrcZgQ74AuIU/KQHAyU5HdwMzcoaYK+Y/QEddHSfmgGCUl1cyqo3p6GTF/HI8ue/dEg9EC5xI/szH8s7wj+UWsxhLrnfvuOOO64vgKrP+CpApT/UvNY85S5LR6tY47cWCxrDke+xKF2JVLzFVhSXYtYQ+WCDnGM91wc7Vo+YCULbfle/UwQKJ+nDXL/+T58bGBVlA7j02LmyOcVudsL8X1LTWmBvrLDGvzN11YqoznbxrsfXW3F7duicoFqRdEH2Zvli3+nuf0Tf0wY45RuG2EziNHXsERRcYF7rCXAU6bjgdsXRz9HXBVd8lZ9jZpYCw9G3f5WhLzpO9xrGfjtJX59Yz4HPfJ6scRqXa0neYw37UfwH2PR3UelR+1mPzsznVWlDbnIgSekJIFo6TyqETcl5yeK0juX4VIqQ5LpEdMcmtaeJuC01Ddjlkyf6yqqtH5Zvzzd/Kc2Hd7rusd+ts7/naUL6t39i7Pdtzzat0ZWxWfRrQW3t6LtDys5/97HX7tZm8uIxQGCJrVPkGVKfTqoPLIsXNxirfMCUuJMOQ7gc43/rT+PVZOiCnl3Az1Wlj61ePyg18tYfYixtrV3qVs61nhLsy/5OJnsOgDgCvrABcY9/Y1s7A20De+iynpzGyzgY056QIaO/EypnOdKYz3bR0ArxnOtOZblxqo56RZBPtuDO2no10aY3kNfyWtYNBu2Duxp4t7WVNjFxl7xFQP3vB0DIIGS++x/5hvAIxsQ/X4AZM+nyZKdq4R0mxQDEQN87cAhGM4zXatY0RvhdfbSgGBmObdbECGWJ7KZB3jQfm8o7ZxltcluwCvsbmGL9STGDAeLKBdeKoae+4GZwBjXkLqMbcdaQcOEk2xANcRhgZAVqTNeyr+iRwL8Ow7zNaxRjdECMYchmdfScGniPoG+cWaCY2Y+3E2lomm3bpx+reMVL1BmIZK06T6lf7sHSB3gBmxjyWFja348nqDMAjAytXWPH6eS+Uww71DoZWYwZ87HtHh4EM/e3YOWY6WQqUyPDURmCCMsyPjX0KxF8GP9DY8evyrO9jqyZrGeVAyoz7yqs/68v6OmNZv2z8akBv9XHJWr97lk5wbHnDSuwcESqlJO5qCYtO/OLq7eZ0MS8DNAKYlsms/zK2K68j0sriOOIYckxfSIWYvD0TuNUxcCxo+oiDxTwo7AUGnnigpfrMxX7yr3+re31dvYA+2GrqZH4nNxwKsa4DDlz6Vv/ShdptjpdP9XBDfYkuPIKgHIRkhQNqT0ysswggRcZ2PVgQbtev40mI1fkbwzMdgvkOwCJDGOhA5AWql3l/BM+UUz1XV5t7y6glO3si4wjO6j/rz6ZlLO+JC/qvtOuC942LvMUAXWB524p5uGC58VoAfFnBLh0E3tfvyk1Gk7X+xyDvvY6kJ9PJaPOX3CVXvdccBML10/glo83b5NzYC09CBukN4K5xENYBCKc/00Hy00bPcYb2eTIf6BdrNoB5md/9iPFK53D21Ce1hZOsOtmDAJCtncaSDq5P+7z3Abz2Es1/TgsAPXnbsET1a6B3Orn60MOYzOmfwN7ySd+4KNNcqh/aW9bP6a+e7X8xu8vncY973EWHV5+cT/1+7GMfewFV6QFjW92SF5dG2o8kG/Z8yQv2shM/nDxCV5U2hFXv91PejRWdEbhNx6Y3K189Kq8xSM/3vRMPlVEbxcDVx9jt/Z/M1B+tY+So73LgJSNixFeH+j5wufzKv5AQO7bJdCB4fVks4uYoR13gb3V74hOfeNl3NCfOdKYznemmpRPgPdOZznTjUptJIA2wwtHHZWcyuo4sogVGF5xj6G1MvgVFfVby7LKnMN82hqqkHhsCgXFaGW2sxW5lCHkPCLTH5uW/4A72X89j5wIAj4xcF6gs8wkTmpHrCOn2kToBevWtvB3hZBjod5fDlDZPxrg89eP278ZF9v0e23UkFou1shk5vbfHGrGa5Ck2HsACUxQTBWAIhF/mkL5cIxU4ubFRgZIZR0996lMvxvsnP/nJC/MT4AZYAQ4teKQ8oKDPga0uCcKkwabEPhbfEBCS4ebSKHUPTAC07g3ZjsdnrDXvAvi23/ciGGDVspnVtfEAUpBjc1U9zElj1f+9ByxYgGH7QDzJwgyszO2x8n5niJYP8KNxAbCbX8s0BUxlCLuca0HqDYkAAMyQz/jV//3v0seA9RhwAf0Abkz6xsyFT+Zt32Uox2JtXjcGgS3GCaBZfV2Qs/Ke4SwvAD5gLflOBgKlA5ySSbEU61NACEBwL+kiM8mROcwhUdn1qxjOtT/dHAgC3KkczoqY6vVv5Qac/P7v//6ljQG3sbj28koXObk8LICmsvWZMAELaupb86bv1RuwUTqC5eZifdRntQOLbwHCDT/A6Uf+jvqv/hOjcnUaGfTssl0XFLXO0JV0MHCbDNWf9dOuY5UvBrRTB0f2LrlfB6a5XV7L8t01QfuXbe+0y/ECzj3Gv0xd39Of65gB7Boba4M+5Dzd8AzL2gW46sddO/vRb0A1IOeu0yWXJmJYmmeBX+XR941v8rjhJep3lwxaU/oRA9rFgcKPGAOhWtRXnF0x5Dk0jYF4yGTZ6R16ornLydHnlWsN2fwCAPVhbUpvikUeczUdWj7YwdZVYxNrs+SSzuoD5NXny+avLBebNd/+9t/+21fPe97zrp1+1QMgWh9i2Vuj9rRS5Qe6Nsd7hzO1MjFMnVbq+3RT/Vo7OZoDk8tXaIKY17U/p1Vt4bBPdzb29Y/9QW3ftgHA0+OAWJeSiZPcT4zW+kCscSEfzFX6SFzb1hH7YHvO6taYOm3B6WqP03iIwW0fZc5VfgD1Zz7zmUubhMwy/ziqXKQXkPzkJz/50n8cbH3f5+nufvd+OrMwFgG3nCn2N9WpNdE6nOMt+e/SuvqrvhAi456k1aH3dfp2qceZznSm2yudAO+ZznSmG5cYSW1g22A6gr2Mo34zLGyOsWM3Ph9DcI+sH4+AMq7XQAVWbUza43FoxvkaxTbUjCNG67KHAL3ydZGG/xfolEf5OaLdBh+wwfDaS+E2vqHj/sAsvx3HBdYuoLHHixltlbk3bjMyGeKAU0avfhGjb4EzP0DJY1zFBe03Bq6xd7xbG4x7IBPgP8DKkVrsF+AYA6Sj9vVbLJPyzchzAZPEyF8mXKlyAqgAWxk63fKdgZaB+oM/+IMXw+dLX/rSJUaddnBcyEf/MaD8z4hRNga0OLRCEdS3ayCS5wzRjKiA3eQG67bvM7Ic+XcBFnDLhWoYkr3TZwz1Zd2t7Cx7m7wKN7CAUHn2uXGqXpic9V0/wkH0G9iXQZkMAviA04Dc2mrOYOH2N1CkZwDPfVYyB42N8CHkBYiPYSjER59lpFefgEFzrH6qP/uu32IaO+rMKeH4rXbX/47eAgObN5w0Gyu08eg9YB6WuvlGh/U9gzywAEjVZTrlXZ3EcgQUAC6qX9/3Q242DEfPxljEvGtc68tAMfMT6/OZz3zmZWx6j54T4qS+CywAfhYvM4CpugdykaV1fJCrQB1M7wA5sgEM54xw8ROQIgCDPgxwAZL107jRKWTJ7z5PX/RO7wfKB9JUFkdLciSWuXHcmKTWmAVeFgwuqYvnVt+YV5Vp/lnfME73VMbqFWxe7Nx1oli/rA9ihHLGrM7eNXPZ+KvfF/Te9XRPzaxOoxs2rMTq+wUN1Vc56rzhVqypya+40hwmJbFl6QYncoC7WMH2D/SAUCn1JUDSRXccr+uAwPwtP/GSndSwnld++Tc3G9OcWF2MtnsPP60v6XWXdZWXdvdsOsVFpytznFFAZzqWvm++tib0TG10egP4LGyCSy2NVfk2/9NfmPYcyZj6GMs5PJvf6mVOL8C/F9CuY7skJENl1W8f//jHLyxQIVk4vOzNWr8QA+o3LOUYtL0TyP2+973v0pflKf46VrC1ov4SIkbc2NrT++kgsdTFLF6nZX0TwCk2cbLx9Kc//aKT7d2USW+ai9WLszaZLD/OOXHUG4/qV9sLhbAOpsbXHKg/nvCEJ1za3nvJCd3CCdXzy6ZVh8p3ciUHQmOAdd731UU89z0Z49RRZafna0vrQ+F3XMyZ7K1D6ExnOtOZbko6Ad4znelMNzK1oQRarSGHeYDVZFO9LMY1zpbpcwQwGW4bjmFDBSgXk7ONvRul19AsKSNjwC3yyxRS32WFAqjUZQ1YbFdt0n4sn2UCC9UAaGDwi8fGiGZ8qhNmK0N8Aet+M9QYXPqTQQmoEMpgL1LrO5eCbT+tUbHtKy1TetnExhCYrW5bV8c7GRhiJtammCLA0d4HDmf0ZbBk+ATYBJxhrQIpeofRql1AbLEZyU3H1DPCsKVi/nTsMVCtspIJcRv3eLCLnQBDDDdyVFmNeYbqOi2qS0bSXiRWe0pYNurCEdKzjhL3d/0WaxdwiIUGIGSsAqrIxII9HAqO5ANFsK8Al9qHyVsS9gH7B7gt/AIWJoCiemFouSldqABAEabrsoA5PBjWtQvIVJ+VtzoCl+sP88XxXY4lRmr1IEOlD33oQxdZwgY3zwCnxq/3e6c8aoOLxDhlzK/eqc5CHjjyDRwgq32fzmRUb+iX2tFnXWjTXGD8JyNuR8dsDPyI2etiLcfUS8llAGyABWAYmBiYY67q4+rwpje96Zr13fvaiY1mLrjoTNgD49jv6rkOs367eI+jRYzryi7ffmKMAev1V/JeO2s3UMlRf8C6+JnWgOrVHBH+pXw6Jh7oE7BSnwUY1m/C2NTWZQ1bM5bJuqcoOBnXMbmOMHK0IVqsXeLJrh43bpyh1gWxp83dvcxv18tlFK/exiAFEHpOvci4NUadrJtkG6AF+N9Y6nQ/4Al7fFn3G7bImqAN6VjOvvRov5MXpzY4yNIbwtCUH2Zu75ZHMpRMNVcdtS8BSKuH2N3l17Pk1DzG8BQv2h6mlK4VikU76c+er5x0dc/VvtaQvXSWU9kY2jdxkAMEeybZ3P7qOezQklNAjUFzUcxxoT4whTmvyWw6jD4ybqUNmcRZ5sdpEDJYPQK1sWyrC9mwbxNqqPoHOPY78NTpAPLEYSd0Q88B2vupD//0T//0Ang++tGPvvoX/+JfXMY98BLorL/LK0dW7e+zZMkeK52tLKeKkAzMA+EXOskj1EL1aUz1FZZv/yePZKnPnappHef0NH71mfjJ9pr2sfaF9EXPJg/p7li89Y0TK0enE+ccXVzd3WvQO8lq+tYdGdYYyV6GU4XDq7Ftf5RcVa/WAaFHznSmM53ppqUT4D3Tmc5049IeR3YJlSOOGH3YScu2ZFzasN4qhuqCVJif0rIqbX4xebHp9h3GOwAUCKiMPR6JQaX+y4gCZgEb/M24sglm/IsRmGHDuDhegoMJDFzy/7JCGcRABPlgselPgJDPl+GFjaWs8nS0fVnSC5gwxksMRt/tM+qINbRgBEAfa0pMU4yt8sxw6v8YJI1f/wPRAASVkcEC0NS/bt4GVh5jIgMkACgZYf0dSykADKBS3wUExV6pXntxoDHD7skAFH8xIzDwEMhZ/VdOxRcVW7H6Oxrau4ENklvJk5cM5f52HBQDmBFWnQMoAaaOuzt+im3GSMf6dAGiPsW42vEgT251N/59Xv8ApsxvMWAZvT3HIeESGWEKAMFiQwMdjBOACOAgAWk4kiqzNvfcXhJHfpOL+tbR24C92ldcwo4OZ3QD1QMNjDGgogQcaLyqVyxrt6xjQwFuxW8FogJW6LKN7dxvukGbgXK9J86tuLkcVv2NuU5H1DYgCd3VcwEEwG0XyTkG31gYMyEFHJ/nJKArMP6Nrbb3u7KT1drdc/1fX1Q/F6jVtuQ0WQ8swFJs7Pqd/DQWwq+U9rIqbdz5IfyBo+x0feNVW8ipsCjpHMfVq2ffBQgFIGFnmq/0yDLgOR8wGFdfOr6NBdyYcj4Jp0E2y4PMLfCq/5ZtD3BRHjCInBmb48mWPUFjbtKhuxbS4Ucdfzzmr47eNUbaxZnGUQJoB/ztei5/4UYA6z3XXHWKgNMpOeqzgMJkKJkBopM1TMmcBOWbnJGhdL01QkgRwDDGK8dl9e3/fpJHoBgnx8axLQ/Mf4zwADFgXKCa9Rewq53l3zpD/5FV49BJkpw71v7y7e/qL747B0dOC+vT9j+ZFWKi7x72sId9DUN8HaO1rbWVTupES3lXHj2ZLgl8bo3eECHCCJEVYTCA67URC9ppptoiJn51bp4EmprL4vfW78WI7cK0X/iFX7i0o3p2CZm1fUHL2lzfdRKnNpQnWcSkTrdWbixfwKWY6AB7F9TR/e0V6q/60x7SmlOd6xNyoRwnXwK3OcDqQ/OSTqjt9JT5XciFZOTtb3/7tUPV2uQEU/UyVxs3F4jW/n6Ln974Gh/rqDkqb6GSqktrXD8cGvW3eXlP055suK/TX2U96r9XvOIVV9///d9/kcH6Nh32lre85ep3f/d3ry+9vTcpGXnAAx5wCeXRT2FLCqUBsE92PvrRj97t/JLjn/mZn7mEYxF7v3n+zne+8+q3f/u3L/J0X7f5TGe6L9MJ8J7pTGe6cQl4ZHMKAMMkEQ+xxR2oyPhgHGJJ7RHT0q1uBAc6HAHJ3sXW8y5DGRMFwLbGqt9AT2AU9pIj0jb6AExsIGw/sTgxsAATgK3SXtqzDNM1tLCnJGyrZRMDTgEoGI4uEcFYZVB4vrRHQuXvO33quRKweWM/Gjv9iH3CaPEOwwu7pM+wjzwLGBFbdMM89F5gpXEDKjre3Vg1Di7ocly1H4ArUJ8xBMwsL4YL408fkDGGaYmxb7xKwilkgJPxEkaefBylLrzEjnlzJWPTsdrt/1Lv18bGMGM4AAS7DMONAV1y2ZuxIbPlE6CKJegHuAiY1z97pBvjby9v4gxZIJ2R7PceOQcIlRo7cTZdCBcox7EB5HVjumfMtdqCEWpsgJWOZpd38h94X59nfAdSJF+V72I04EtsqfKKxV0ePV85GfiOQVdGgEPyqE2MffrBxVz164J6G18ZwCNea+U5oozB2LMBtJWNsV77A2CrR/WuD4S+AP6XT/lhvgqZI0Zm7arvk7nyZhQai74zjxzX7v/yb65k9Bnz8gZs1l56hjEovmVzwrFlTDnOFgz6vgvMcKycc1Cf9bn5i1EHMCL7y9AsYStjfzZ2tbt6lkcGslMcdNKGPTBHOGisI7uW0XVHndZzyuEo5EixTh5B4pWfjScNGLS20IHy2fAIy6L0Gf2jz7AYzUnrr3VAu+kEbFO6VBmcPcviNe7y27VEPt6xViV7jaN1Mz2XXDVX5W1tL+yGUBvWDfo6uet3cgRcba5gHxoPciNMAgftssfpnMqVV7rX5VT0V/U01uL6Aj57tvyFZ7Ee0ZXlx/mqv8gY9rZ+L//AO6EA0kv9HXCYPtoQCnsqauP49156z9q9+6D6orlB/poblReomv6he11O6oQGYH3Z2tpER2EOCzdiXT8ChuXTWDW+gan9nd5LHtI7gbE55nq3/zlf7dXq3//5P//n9R5CLOV0jNNA5lp1aVxdzlZyUVnjJU5v9Xc5Iqcm3VSqfo35hqsg9z23cY05A4Ve6R312pNhpd7rJERttNapu/WVnhPTVzz2yq3Nwi3QXRxH9JDTIk70VL/0bGPfmimOff0jDIZ9z5m+cXruc5979cY3vvF6319qjjaPA2P/7t/9uxcQNPDz3qQXv/jFV294wxv+UuoaoPuud73rsvfZlBz0U11f9KIXXcDe+7LNZzrTfZlOgPdMZzrTjUsZ3i7LYQAx1o6x1hgVxzh9DFDGid82rMs88JwNLwObwbXHnEsbX7G0ANrmAbhcQ9qzGMHi6GXgZLwt20leABHgB8OH4bzHNrE91jDXzt2QbziDjZ8KaCkPcQOBdIxUAAWDfusMmF0A3Vh4bhnMwgt4XjuO8XixhrDSMrwakwXBASr977Z54Q30TXlkQNW2/hZDEwgDxMbKcqRyLxtjANYmoAhWW5ta8rjsY2AHZ4Qj28kytuOyRAF6Pque2MeOpmNzYX4zwD/1qU9djFrgqFiILt0Bgjn2mWGaAQwgE9JgQ6GYV4xOoBAw0PiJGwhEA5hIwAztAFKY32RhL/lxtBlrMOCR0WxMKgOLTAxG89P4Yu4BL6pH/2NA9R52MXYq3cOxlG4K2AVCBIokH41X4G9GO4A/kDngBPM0udtLxLQVMCFcBPl3FNdlYNhr+ozTo4TV2rhVXuAjIB7wpE2VYe5W55wJsdPMLQCnEwLkEfsM+BLwkcFfO8u7emXAcUT0XIARmQHI9Lkb3rHU+i4ApDEBbHG69LlwFrUDKI/ZynGGvWcMhYgBdGEaV255BzAHqADuqn8XQdWu8g3EJVs9V+q7+tm8p2cBux/+8IevAcBlWkvrwOKw0OdYtMBHLDgA364t9MiGAcJ8pJc2hAfZ4HRUj3W6AePU07qyjhjryIKqknW3BLAyf3etXb2v7scQD/rO7+PFUceQS9YxQB8AHPOZ3GJE6gOXAVpHxYkFYJGb3ikvceaFusGqbg6l75qnG+tbiAB6mA4Xt7q/AwI55xq3PelgrOnbZBToy9EI0LU34cQWHomjxL6jutIpPZMOqy5OJZSvtd8Jm3VSKKvvxCQ3Npzg9aN1ST72c81Na3RO2nSAkysrU2TEKQMXjhprjHt6OkC5EAzprcDM+iUAv/AP5izHmP5z4Vpgvv1CqbHtgsjq1j4jXYCFKnyHkBLWZ3HF+8x+Td0Kr4R9TqbJlJBBfV9ZZNu6Vb6NoVMDlWt+21tgPPdZcqYd1sNiILv8bxnu9huVX19Wvvjv9qbqaO7IZ+MH9+OCULq3suungP30J31ffpjjezLpTLdOD33oQ6/e/OY3X/q0OfOrv/qrl3Um/fLCF77w6id/8icvJ2sCTB/+8IdfO3LuSVobJnnpFErzJ4ftPUmNZ/UA7napamGakqWnPOUpV//kn/yTi86tPV26mpPlvmrzmc50X6YT4D3Tmc504xKwc5l74mG2ecQEwFrCXAJ6ABcYpstGOoKxR8YTpl5lZwgBqjAtjnkCWgFgADkb/wVigbwMQUAFAMIx5r1khBG7bNH9XBkYiZhSngHoatsyPgBqy7IChC2A5OjdXuRVUj5gDRCGpepn+1mf6SNMlTV8lhnMMAUK9H2AJKYhY6h8XCjCENoLsZTr8/o+wxrQIY8du700ZkHcEuBHuxboWBlh4G/fAwiqAyBnL8vpfZdnbQgLQBaQoWfE3FVem+eO2LlUCwAgBAHwR6xFRyod+w7EKwEvqmfysKAQwAR4w9g2B7VbnwCqyBQ2IfYvecAMEjpgDVjG/7IPe7666BdsR3MC89a8wJL0mVvsV6bN0/oEELRxnetzR/rTD4GKgamYURho9Z/4wthbjgtjPtbXyWBs34CD0rIIF0zSF5jJ+sgcx/Ay5pVLBoSK2PAJvQdAcly6Ogu/URuqX2ULlZPR5gi5eskTeCgsSu8nizHkXNKXHHHS6ZvKANhgyTUG9Vd97PK2yqjtgVGADJdoCY/S3xiWAbW1x7hXZiAJJjwWJHZz7eidgKQAkvJqXKqPuLrGR+znUu0LCOrzwCr6MFnZNYCuwpSjN4BY1p8FWDmaMPGAXf2uThs+YXUEuQHu6ltjbj5wqix4CkgE0jvpQMdYI+g4bQTkWX/MGcw+axdwTf6cOHtKQ14+X4fl8TQCHbmfGzN6rbFrnOiy5kPP930hGJKF5DZnRMAgB1zPCN9S/QMtqzvZ7Jh/Do3kLHmwB8DQdPy+712+iFVfmckj/c2RJrRHct6PPqi/ezbZbL4C5JM1DpcNCwH4F4Knsqt3QGP16/P6vs8qMxYc8K+2BNZxrBaWoPLEut31mqNj2cv2OPpEaIL+zjHrMtPmmni61cF6YK3YS/Faqza2MiDbXg8L1mkOaxdnNH0hPvE6O+pna8I6vPsugKs+J2/p+tqT3NQf1oz6tzY3pnR5dU2e6j99VTvJlHEF1toTkD1rkMvL6rfKFFKnv50CctLGfNjTaT0TgK3fjmPocydRqmOybg4f92jrFNKO3rHOlYcLSGsr4kL9UR+t/lp25t1NNy1Ew2tf+9rreM5dWvrpT3/6+rtAz+bUr//6r18Az1e/+tVXv/zLv3yPyyi81M/+7M9efe5zn7uEc0kWfumXfukeA7w/93M/d6mHv3/jN37j+rvq/ZGPfOQS6qHx/63f+q0L6HtftflMZ7ov0wnwnulMZ7pxCWCEvek4YpvENgaOtTJMAZr+ZhTuRSQMAkxSzy0z0c3xbejbuLqki2Fe2mOzjNFloNoIq7efZTH1/7JpXYyCvSZOWc+5RAQoxPDBPi3tMTlGur7TN+oqbhrjf0NTYIvV7j0ieWSFSYwWxiYDo8/dbL2gOjCwpP8WJPf/xnkEFC6AAWxew4Yx4uZoQBXmJQMbCCR0hbEFKi/zWp0Bs9oOMBE6RH/qkwUtMbG8k9EL5Ny+Jw+Yto15xhCWV8/0LqCEYbsxXhnGGfFY4WQtgxRjreQiofoko5RxzWDH8HXkkvEL/NR2rCQG+h4L1ke1ozkFCCwl3ztXgL6cFSUsfiB3/VXZ6yggf72DUWVOLjAmFmL/C3XS84x0cyGDIaCHnnBUHqO53xmxAbP6IACy+sUWC0gqXwBWYEzPrqNCrNmAnozh+rg8sJsBQ/04cp5eEB6DYwirDtMX49zFR4ERlS/ubt85ki3P2pgh7hI5ziAsa3Kmv4CHGe2YwI1lQE2fxwQ2D5KxwI7aJr5jdcIk7nPjSC9VP/lzNhkD+qs+adwCnB1br++Nf22unMoQA7i6YiDGJuviw+rcT7IbEAh09+zqlOpen9QeoXnqC6xtYSUC/KrnBz/4wesxWmfc6pK+qy/qs9pTPOddO/bI+7JWhfAB4OyJD2O6OlFap9066Tg+jvOXQ3PXE3XbNUDejqrTdeRR2Bdr17Kegcz6BmC0YYN2ndJ/vvMeFqM1SGpMmtPFfu3o8J133nl5N/mgu3smvegSzPJb1qt+xkrs+/RZMheon6NnHcrJitBLHAkxRRvr9EPvqjsmvDA56RZgY/LNuUMfVL/kl37jEBFbXBiB5kggHZA0uagfei6wr/7t0sUAyPKsf973vvddZEFYl5hx1bW+6Bn7qY37Ty767GlPe9q106hLCWPXqWdhGIRAENqidldPa2Fzv/lXmRw5ZNUYVC9gL2cL57YTDsLr/Jf/8l8u/z/xiU+8Btw569WDbAPxxcB1OiPdwOlhXgGJq0PrauX3frqhspKzQKja3HhyiGEROxVBf9sPAKU5zDGpscRrV21vDNM51t7q0+d0s7LsfXZPyNnL+Qqc7n+hyMqv8es584DDRN80fvYole3SzPLqt5AgzY2ecwrOPk6oip4/012nQhEkU6XXve51XwN0Sq95zWuufvzHf/wS//2Vr3zl5eLAJRzcnRSw289fJDU/ipcLMK5ex9Tpstrx8pe//BLXNx3z+c9//j5p85nOdF+mE+A905nOdOMScAhYY0PoeJ4YoTbjy6RkcDoqyMDF8FxjwbFohgoGg2P8jDlMjwUrMUBsnEu+2zotMxBja1kQGBoAW8/UxjbRwiVsbMBlZAL8lj0MGABoSdhYGLo9s5dsAXKXTbXAcZ+7gXyPHTPil0HpGZuuZXweGWuYIAwPR5X1N3C5VN0DVb74xS9e2paxg93IkAFKYqwtSJnxkaGSgY/lVJuMO5AZwG18MrKwPTeJ4wu0AJgYU2xXjEuAWL+10ZH17XMGXTIANBEbj5NDrFbt1+fakaGMwRgYIawBoKfvxFsEUgF0MKHLQxuERCFTwlxgADmGX/9iPrvUCEC37DwyuTF6F6AB3Dj2fAR5PAeUAnj3f23eUAzAJeCpo8L1H/AUU70+CuTo/0AIl+Z5V/3rs9pX/oGkZKlykq+Me7fXi+mMkbnxOQG5QmcAUl02WX0AsObosrGw0+o7gJLLo/o8gNkYAGwDLwC/fS78Qj+O84uL6eg4BqeLy/RDfUZm6b2eb671W7voGLpdPGTAS33m1nhxyzkJxMDOyYHp6Mh9bexZ42ZuYN0qv7GMTVz+5ZVxGMCL/YeFDtx0QRa9Upl915wsn+ZOgF3gHTZ5crDOCqEOFqAFigENA97qw1iTPZNcCRPAuVV9N+wQVmL1o2+3PPJOXoCVxnCZw+TMnNxLNo8A8zq56GVOMeElrOEcqEAojhhM3tKCu5vvpg1HUFpAGxCO6c/5JASOkDkdORa6BEDX90KpHNmEdH3ri3XWpX6VA5wMGAW89ky6pPySDw6GdCinYim5yQnR9xxMfZ98VbfWomSzvsnZBDjWzupVu9Sv8gDEzfXe67OYco1JIG4ODbHJ6cba5SSM+LdAwQCWANsuEbRvqn7JKJnJmbFsyj25Ya3f+NLktD7xd3OxZ6uXEAz1iRi+e0Hssu8bx8bAXgVD3ZoYsFgfcYCJv2z9ttZURxePcnLb0yxzlc7yuzWhfq2+jX1gbuNbP5dfc9oawMm0l8MByHffIhyY/uk7dwL0XWMrVEJ9+vjHP/7SrkDm3kkGODLdAeCkCt2JMWycsZqT7daE2vT0pz/9Uu9A6nRRY5Q8Nyf63wkHoK1+4qTkQKzMwjP024Vy5mXtoffPdNfpec973vXf/+7f/btbPpP8/Pt//++vfu3Xfu2in2LFvv/977/6q06V60RC8Xzvit38+te//gLwlp7//Od/HcB7O7X5TGe6t+kEeM90pjPduGRz2mZWqAbGGEATOOF4NjB2j4n7H+DT74wDDKAF6xjuYnweDVwgVGkZuctE9V1pQV8bbcY1Q2UBGmBzBoOLjTA5lom1x9qxwLRHzMQScBX7BENub1lfBqX+AjwAvLBzGWuOout3ABVDao//+VvZC8KvIW+sgcTAjAVFSpgwGcBijjIkMUawTBy7BTJs/Dvx5nomo0b5WGOOuBpDwEngTW3FVAFOZOT0PRYNJhy5UKfGtu8CocQONEaMU7JMDnuecwM4vbHxsC/dXN2zGWn6LQOqdwOigJRYXXtcvJhnbiT3nOOfLstSLjB+nRNr5AOW+lu/A8HdGu+iF3ODHKyjYFm4O7fIRmWLVYyJBIwgnxtHU1iKxjwjtToABAFeGK50TkCB/jJGnEzAXOAFtnL9XX/1fmEZGqOMc0AKJjmgxDFpMWrphcZfv23oi+YHZwuZXadL9Ywdk1Gd0d9N9wEQe8Q+Y7wyhRog5/UPYHHZmFjJ/QRuBF4AXwC5xgaYiwGNeU3HVE7jFNOY3l0HWP0VCw4wwwlQvs396tI4AQvqs1g/hSap/gEefQ4IIsfmIyC+tsSazVkEuAZCL4vVOiCuM6ce0I6TBoi+lyeuM8uaUTsAUuWTHIpd2ZjEfirvZEfe2HnLwsXU2xMk9Ki1gR5XB8CxOXG8rAkTEpDFgcMhRBaXXWkNA/rsyZYFzAGvq7M5ZvYkzPbb5gcIW0YxfWVfgA2aXDeHk/vyC7AsBAegsvKb23ROeoDzqn6vXwO11ulYLNeO22sXgDR5DCDrHWFhku/mtYsJk1fgsr7st/joTp1UZm0L5Oyd5KC5WhniC5P9ygmAdcFbn7/3ve+9Zro2L1sL/NBNzbfa0Nwqv8BvYQr6vPpWbuPZ5xzpdP8yx/3u3Xe84x3X/dIcqG+xNs0TupVut1bW541ZOq/va3/P9P6uv/2IR1u/pd/qMzKmbxt3MpUeLF9zD4tWmCwsVU5D6zDgnPyZG+ly+j/dWv3TOT1fX8bkrd7ppOoUUF3/iE1bPkDSdQ6vHCSPLkqlKziZk6vq1dgIddA74vc2vrtXLNX/Yvdi5pdHZdf35cUBZk/Tu7G9XbaZHCbnyRWWd/1V+8RNL9WfvW+fJEb7OijT/bVdXe9J2v3GfZ2+1fUIxC/Vf1/4whfu8rmcOVKxbe8LsFNdj/U5pgBdjv/qeju3+UxnurfpBHjPdKYz3bi0bFUG7oZVWJCSAc4QXNaQzReGRxtPAI3ve09syDayy9pY49yzpQUw5c949xvoBOjYC9oY4r4rr8puI5xh4/KoNZRLe5mWcpaZJZ4ho1UcSPlgEWJ5MJYzDmz+9bWj0fLbI4xYt6VloXgGkItpuKzeHReAD4DT2Pof4C3PnndRB2abMoC96gEUxMQTe1T/M+gAr3sUGAPF0UhtwbARQ3BDUzBqMWxcNAbEcOnPsrAASkcQH9AFVCPjPS+ma2WJSw0IdHmKkB1tkDO6MswyCgG6+m5jV+ojMVaxBIF1wkcA++QPqDVvzVdHeo/xIT0nDMMy2Zf1DvT12QL92mleb7xeclJ+wCis1cYTCN/PXiRTvwJr9A0mqjFjlADPlOVov0uYKjujOeO45wOShBIIaFFuBnXlJR8Z2OXfe4EFAQAb5zS9AMzTHxxe9cOCJr33iU984jI+vV/ezRlOAoxYLCr9hO0lxnn6Uozm2hdjr/q6vKl8XPhUffvhZOi59Eo6zaU//Y3lVdtjN/d37Jva7ch1ALLLpIS8AGzXB8lyzzaWQq486EEPugYUAljqr3e/+93XMrgxOQMXhN/ZsBS1v7yExQmQq2wxOzdUjGPL9LS5JLYq+a/vygNbrrKSAQAtB5CYxLUBKzmQCtCrTDqUU2EBIjK5TrsNdWDOmKd7wgToywGEjY2dzaG64TT8AOD2si9rxoL7dM8yKcUIpSesC+R4QzmYD46fi7ErrJExKs/kLLmqzEIFJIt0ij0CXV0fA+Dq91jd1ad+tyeISRsg1jOVlwxVFiZuTF4XINZ/yU/zvbEP9AsE27jtwnH0PgdTKTmtTYXtCEgUY9yeQR8GNhsHJ38CMqtX9XMpGEcm/faQhzzkUhdhjgDPxqL801fkNRYsWUk20wPpko0Lrs/LZ9d/IWc4p+hdDqRkI0CxUBHVU5gZ4Yp8Zi2t/ys3vcBpam1yoqE6Nv96PrYxHe1U1IZ14HSzr5CPdSp9Rb+khxrT5AFgWzsKh9T36azKq/9LTp3YJ+lbIS7sb+xrdy5xzAWm7mks65O2dirHiQv7LI5N83CdIX2Omd679V0MW+tlY1PfNl96Lj0lJm9Op8pyUSswnsNyw3c4+cDRmZ52AsLJF/ur/j7TXafkq9R4kaVbpdaK4zt/1alTB7eqzzHVjtqTLrpVXW+nNp/pTPc2nQDvmc50phuX2iS2kczQsQHHXBIj1KYXS2nZoL7bDW4bdUYcI7XvMCDcjs5QXSAVMAf8w1YDrigb8LNgqw08IxuQh6lXWQzLvgPqtbEG1pUY0cDBZQ47lguU0l6AHpab0Acl7Lz6pLa3+XZEVTgBBr826L816sUqxuJidO4Rfn2zIRz0mbFc0HefERLCMd/qkPHjXYCE49PA2X6AeHssc8FoQCMDqCQWMlYbUKR2AxfEntWGvndJTUYZdg9mGpDZTb/GtBT4Vd4ZTFi4lVMd+i3G4oZVAKTESHO83kVTwG4gk5vSgQ7i40nLLDf3sNaALMARICz5rg57uRj5JsvCCmxMQeEGAEfGye3ynDVbN4CUPgeIYYj123gZayxM80BbysdN5Mp1jLi2Af4cY21cAjTqO7KGuccwx7oHIAGayrtymlfeq20upAkAMp/rwwCZPgsYTsaB+b5vHOgcc9Q8qJ+U2+fFBiUDAQ8BSvVPcz2jWhxfOgRDlAyYa44tp48AHphs1ScWTc92rDdgSJ4uFMKo5KgA+AIqKjOQqedqa/JpHLBs6z9z0PzD2Kx+vRNQVD0CJcghRxagXvze2Gf1w4Ke1gDsQWzU6syx41LCvu/ZwBE6Z9nqAN/+V2fgb+OaPHHi9X3PY/QvwxDDPJZmYFT9ts5HbH/6Ariya5a5UALsA0uxBjmg6AHrC31MD3L6LAsZkGzOlj8wiixu3F36b1mejY++qq7iq1avjd3dO9irnHh93rhggVtnyiNgtbEKfAWupyc5V5LF/jfHsLSt/c2f8m/+9EwOif4HWAdQcHj2rLYH8mGZu2jKCQN7kz5zmqi29n5l1wfJMCdZlwkZx8rpu8CMxrvvxCnHPK4fmnf1m9jAZCsQEignbmt15EDkFKVPA2wrj94p//qyd9JRLj/88pe/fB3zHZhLFjBVrbPiC9f28uh7MWArQ6gTQDAd2TzYEyVYtvVlY9w7Pdt4qgdHU88JrQHA7bPa5tIyOopTm9OqeZfu673AeCEF1KG5eccdd1ycX8lHbaqujQmZ1SeNi73fnqJZfcuRW92Ff0mXcxjuqTLAtbV6wbB1inre+pcDUexbjF96pPKAu/WNvUvvNQ84qKprsr0On8YUwz057kdYqd37ctYJ13J/ScnKN0v1791N9Q8AnOPgrpLL+zh37ovU3rdUPb5Z6I3mSvqzuUX+b8c2n+lM9zbdfzTfmc50pjPdzcQQb2PYZrlNbZtQAFNpQV1GNTDC/8AojBLgMGPCcU1l2XhjyjAYMTL33WUUAt0WhNu4uAxmrMJlBTN6K+M7v/M7r/tgWa2SvAAb2FsAlQ1N4bKT7StHyPfYe8+72El/9VmbfPU9guz6VJ8A0AALJYzNBeyOwN0Cxb4HUgNNgBAZlS6P6qc6iz97jMmMbSq0gL7pOyA1FgygYoFsrFRACueAo9TAMaCjC0McaWVc7zF7IBO2ELbNXkQkz2TeEWOsQWw4cle+ZDSDq/FKjjkOgLL6RJmOkTse6+g4OSS3wJnyAQK5wM4cAG44ZgvEARaYk8ZQf5dvhrxjmpXZZRviIHJGbMxcoLywDNrFGBcnmSMG0ItR7EZ5t4/X14E8mFj1eQaaC7bKp+9jygWkZMQHkCzL3Bg09smAeQt4K8zAn//5n1/qW/vKB5Mb69CN6slM5cVO5fRw3N+lPADj97znPVePfexjr1lSnEpS7ycPG74FGEAWKmsZh/VZdQGyAOX6OyM9Q0zfi21bWzPSakvyjqFlzPrhSNqj+Ix6dXPEmk7yOcfVOukcI97QNgEvXahUPQIZ+l39A8zXsUX+yWf51k+NIxCWzuIcqA7pZSBV40Pm6EbglnkOMHeqAGgKyGXMNqbiVXNkBFDVhi6Wqf4ZrtiLOXTEcy3pL46hBeqshXQ6pxPQujEEaHGIOTEhTjedtOE36Ib0gjm+4C59xrljPV0AmZ7a2KTGl47rew4qFzglqwEkTqbQB/UHpqij/QGm9VUg5a6LpfIxt/q7eV8ZTrGUhPHBMozJ2o3y6dqANqCkPq9eTjVwTGoTAFvYA46FyhWapbw4gtRDqBtz0X6g52p7ugk73FwrpWuAusbU+gx4qb/EbLXmqgsnh7AG1n9hJyq/n9oeqNPzgbzGRTsrW5gUY269aGyqQ+/3W/zrktAEZMZ4Wr9L5VWe6SWgtZAWdBigH1O7VHnp5eZWY0/GzIfKFnaI86CxpdeA+PZlyUbrgkvTOPrWCVOy/optLz+sdOtG3ydr1T9dUP4dU+9Ye20LYLe+bJxr82b3CJwg9G55BqzVfoA1wN1JrsbXvgS7np6t3ljRPnPyrX7NieizxsUldQA8cpRsNL+2f+4PIRruziVlu5//ZknM7hJywDdKyWD9ai/yV53U9+7WVaq+SBu3W5vPdKZ7m06A90xnOtONS+Kw9hNLAGuozVEb3uMFLhsCALMCq81RPrfPM6YccceUskHA6Fum1LKPFpxcYNDfjN3SMp+ALerGyLPZt2EuYVftsXjGsboAqIENpY3PqL76zRH+Bd4YChl9jo1n2AFBGFl7VHeBT8fVFxAE2DLylxWEQbv9CVDZcAY7nn1ePQC68mJwAGAZI94F6gIY9D/wgny4rAhYCjQoLZhpvAHMewQS667PM1zXGcEgFKNyj/bvLfVYa8baWAUmZHS5MA0ojkmIiZTxx6DtXeEVAiUa255Vf0dkzRcy6/j2Hj/HtHOU3NwBbskL0OE4u7HaS52EAGHo96w4o8BBc6vfjnaaV5wonAtkkRPmKFtkiow4JhwYuQAB4F2eLuQxL7y7gCsAjUEbWF2fl7cLZpLZxq2jhAEUMbICZRyTrc39XR6NTzeXZ3QD8Sqr47ocSLWlz7vAx7Fl/VMdAe71kZvqXdrEceP29/SqW8zF4sVYxFRdJmz94AI6AGHARmABlnd5Zqg19rEMgZwbk1rYk8rGOO1H7Edy7+h1ZTY+ATL1DRCFbNBb5V0fYMIn93R571en5tLqAkx3sVY5P/SVI+Yl61FldFxfDM/GXexn4W3Ih9i1GzedszDZ4oQDQgUk5WioreLrcm40xzmQqq84qdYszji6UP3XceWkiHi/wHdrlHVnmbqASSA95xg9LG+63qWDDPiVUXNHeBaXPnrOOsqRuSGFxGKlp/dED/1lDS5fzop1RrrILyAqcLVj5xj2LqKq7tibvdfv6miuunTNXGjs+rz6WWcDu6pn86H80wmcbQHVgFgyA/BvXDkmxaLdfceusfYL9BJnmFAC+qO2Wdewio15fcCJ0nhZC4H89CvdjtVbGbHX+7961r4cPcJK1I+f+cxnri+y7PuARQB+7U7W6ydOUI42ThZAoD0CPeBSQXuO5iI9X76cP+vQIsfFxG3syyM9UX0RCJxuqa3lka4hlxxgnAz1I72WXATsiWFMLvekk31efSdUWPlY45x4qT/SqcIz2f/lzPujP/qjy+dY09pfso/Y/dk6VY1df9f+/m48qnt1rA6ByXQp0Jejr/fIvzsEhFxpPrgnwx6To6J1r3Fr/ZE4icWq/kZH8G96sg89nvq6q2S+mCP3VX3vSV2P9b3d2nymM93bdAK8ZzrTmW5caqMJqGKkOQa9RyhdsrZMwY1R2PsuYbKhZszuEe2Nh1jCupLv/pQw5mxAFgQsLWDI0F/mn03tXvYhBIK4bEBMx1CBe9g2G7MVG3WBVgYG0IthXX6OCvYD/CvfjDMMM+/1eX1YHXtWyAHMEIACI0v/qpt6YpNhUTHKMZCPYIDvMrgD3ITQWDB4DUGArzZviAjsuwXQMWmWQeLoe/3DWCNjtT0DDBvQOBgncQ4zAsWbI09ABkzSfmqPi7iEjai95RE4hTkUYyZjE5iCSevyl8pLlo2PeKcuywKoYnsDZPqeUbuyxKjEGDuyyIQWAPY6diuUBtBo4wpiEwPb9WuggDF3/Fb5y7yvDS6yc9R+Y6Fi62JXlwDMlbvhGzyzx8Hrs+pfPYF82gzgyyjvp/EALupfz1em2JvaJGyAUCj9LUQEWaS3ACnq5jJBfUOWygNgsycB/J0MJavJZONb+10mSMaxxLBtM9rNEQAqOQjwKA8xiBsDemNPBNAzQgb0GbDbUfH6KocFJr3jzwHfgHQxQUvAsurvkqhAZXXCPiW/gUl93zvNnwCN1cecNo4JNyZAOjqgsnpO/7uQCBOOAwZYKqREzzb2AA1zoGT+mgfWmOrtcs/eBzA2N6oTPUnv1h89l05ojLApzSm6VCgi5QJkVidZxwD/TgxUtwCfnq/POXCsx80D7FROHqCwGM3WRODzsrP7qX5k3wVM6gRc6qd3N2ZxP42xC/eso5UbaNXYBT46Qk5fA61cIId1Tcc0BrWrfJKbvi+/ALX0Q3KNPSx8Ej0lvitnbe3hfEwWxY72XGOsTsBfsW85ojd0iHi/xqJxL9XO3VM0r8qDHqUvlbuyUD+4k0D4gNpWXbFr6eY+M2Y911wgD07WlEeOCXHlXQRGtwkDomx1rk45XsSg5iDjsHFKgixwNqzDD4B6DAEC4CaPjYfLycTITT9yNKR3aovyneQob/OpedFzyu6CRuxjTGlzo7F0wqLPmrP1efLBAdHz5ed0QvVJ5npOXsIkuLDN/gPjOD3MiVffiqFOv9DR6UJgOkcZkNeJIcAyoHrXXuFJCsNgr2dvB9gXxzdwl5PInJZ6h6Ohdt5fUg6EXbv+ookjrWSP840Sx5l+/6tO6ntP6nqs7+3W5jOd6d6mE+A905nOdOMSJtIez27hd3sxRtSChRiZWCJt3l3KgbUpDq5LuhjQG3JhgVx/Lwi3x3O9i9EI7GNAilvqMyCfI/nAAmAxQAwQDfQFrGDnqS+DRgzUBdoA1gsUAxcWvHTZSEZWhkEGgM/3UhtMpmXkYjSup92GXx84pnk8mobRavxK2g8EqNyAJ0eZ+70MYfkvewo71vHS0gIf3sdQAnLZTG74jn2e4c7wxJ4rAT97FhMq5mUGb8YaJhFmNeNLHNDqV99v+AaX4my4CvESMf76HHOGcccJ4NguRh1QxFxxaZi4j82V+hHw1vsMff2ObUa2GZ0SMEvIAmWI4QdI1g+AfLH4gAjYnQBkl+o4Ul7fcy74jCwAjcih/nUxXixZgJH6BRYy4CszgzmD1wVJsar66XOMs8ZO7EuxRIVFAIRhM+vjZJnxn3yUX20BYjQPqwsQr+cDFByPpsfUHfBRmdXVhXpiMjuCjM1dmyQXmJRHwAP5A5hW/wAucg/gLI/ksKPCWKSAm/KgmzERAcJCQ1T36lh+5tVelEmOHLWuvL4LeKlc4GJtDUSigxr/8s05snOUXJnjWHfJdXXKIG/c6j8yqn1Pe9rTrv7wD//wej5gAIsZ3GetJRwYwJTGFlBXfengI8ihvdaP5lvAu3iwdBp9SLeVAGEBTI119a0MMmKeb7ziXSt2zfO8eJocNP2fDJKf6iU+ovWUnuTgqP17MRvmoFjKWPGVi0Vef1ZOIFVtcEpH6Il19ADW1/FS/v0G9LpMqjpgsRtvDsOex0au/HS12P+9I+wCPYRZXt2AcxveAFhs7XN/QEz28uudLj4UxqEyq2PjiElrnSrPZMEeZdf1daJhBCfPJazjxu5Tn/rUpe6xPznFmud93wmA+qGfDTdQf7hksTpvfHbzpvo1VuZ08xM461RB60ifO27NEQk0pSesWZiju7ej/0occxyUZFaZe1oJmFrb9r6CfsQlr7zmDGcoZ2s6hrzau1XXEh1XrP0+F5+2sUlOOAmArhyQgNDyedaznnUNINvnVU5rSykZTB6qS3OnPmhMAvJ//Md//CJvOcJaI4TYAM6Lz70OoeSpOVZ7arM1rWcAvZVR/ODyclrDnHbhYzJsL8pRjEUuZBjnUPq0n+rU2AiZQ5/U/9ZqAP/9JURD7b4nMXa/WaLjSncnBIFTV3cntMG3IqnvPanrsb63W5vPdKZ7m06A90xnOtONS4xZRjPQ1mUrDOBlgZQYrC56AooAehhXNs4lxiPjmVHNUChhOSmn77FpAEnYoIDZY7gEANLGenOkFROCAYSpBOg9tpdBo657NBCTjsEEzNOvbeyVJ4+MFUbwXvYDkBNrF7hUwvQqLat2GbnYmIBsR+GBFJvnAhoMIMcy9Rs2FgPPmO1FRS5KcukKudhy6hux4YwPIxY4tTFBtXcv4NIOgLDj5r2fIVW8zIymBz7wgddMImMjdnBlJ0fVe+UnIMmN2dimy4AF7O4FKFjuLjBjqGmLY6XLDKsvY6RWvtuysd+TBcZ3/7tUrCTeZW0CzDHw9CNmmSOeZMLzxhTYzaAu6cvKdES4/gkIwSg3D48Me0wxRuDGewVSYZT1P/AEO5lsqlMg4kMf+tCLYYp91o+jzI6SZ3RnZJuz/U7+lsWU8Y7VBjTXPxsb2tH85AQTnAMIo2yPposzWzIX9Hd5MTx7t/aUp3GvTbUvxuiHP/zhS/lA1MJnYLNXdgBEINXb3/72qxe96EXXBj5Gsz7jIOqzwHQnFAJs6rsu+RHPsnrU94CX5k5lYo1yRNUfyegTnvCEC3gVUFJM441pW5srK2CaLIjXzElkrm6MdXqErDQvantluIjKeAeYAHAcUQbwiqtsDIW1cPTfema8AI6VzyHCWbShalZXSuZZrDE6ltOQnjMm69ATlqV2mSd0Y323DP4+c5GN+Qw0dZoDiIa13bP1W3LGqUKGe785Yj0WfkloAaBjeQekYlNvWCN1NU/Lu7kXGMXBUnv7rP/tHTh5AsLNBSz65BKYVf1dTFne/a3f6Ux5ugiz8QX4WwN7nwOKA67xF1JA/c0haxCni5jJAG0nKep7oG/l9DcGrTWk/IUMqL3Nm+oawNt8DNysHsIQCMMh7j792FpqTnD+WXv03YadajyFStAWYWOcEnKCqPFxMWgOrXWS6xdlO2m0Y1De1dcei8OBQ6f2Y2WTdezk9HDlpT84QqwP9hPWfHsOF6Hm8OtCyac+9amXtrzuda+76BuXhonfbw2whlsr12FrD9X/OXZixpJpctKaV//U1spPBzeGnNj99FwgbP3emCUP9nLWzf53MqG2kAFzxrg2huXv5FnxxznAKt+4ckgAcfs8XdgzzSd7XPsJJ73oReD83WFp3tS0dzq4wOyuUvrLHEke74vkUjSx8L/RRWsuRXM56u3a5jOd6d6mE+A905nOdOMSpgA2C0YXVsMaAht3bI+Uu6Xa5pORi6GKgbLAYmmP/vvN6AK0uBTEd23s2wS7jRhIWJLvHlnvXWyj6prxw0jG1MF6WFbxHklkwJeAemJxqncJAImNI1aitktunwZCMEKBaAscLCiuTuqyxqu2MniAWcoAZmwoDIadusU0NM7irAIuGXPaxhAGDABVgf6ABfVm2MgHS8xYMPYwJZfZiwUHmBSfLuOoemZoJQ8ua1rQTT/2fMZ35QISAMAZSoAocrUAfuX10yZ3bxcv1faMt96N/ZMsYRe3od7wIZXlqLs6CVdQHdpkV1+hUcTPWzBjY7VWB8dpjzFJl+2GUaldQj8sKwnD2AUtQJ/mjXEVA3DjKQNZOWAcMca+Kj/H64FyAPHyYOA7dioebu3uNyB8L5jrpzEPPDAXxC7GiBTzlnGfQWTcxausPTFA63cguPIB/C4W4XSonlh1gbkuPuudZKFx7HMM5+r8nOc85/L8Bz/4wevnXAyF2eUCMo4Lx5BzWmSAiVe57HGOsJ1z2qu/ADRYs/qSzti5RebFOXUxFJCVMSkUS33KQYXF58Kq3iWHmKxYh9jFHDhdjvfVr3710hcBQUL5CKuChQZQB14CIYUu2LmV/C7L3TpnPSoBTPXlnuigD+gwaxgdzZEldmZJKIS+B7Q6at0zHEUBO411IQXWueK0g4slzUmnL6xDjo1jDYqfbP42fq1z+hdbv7omv30WGCc0SnIFTBYjubqXD4djCZO/eiXn1aG50DiJl8pBpH/F9O1vgFy6QZ+THeGOOPp2bDBUN6yTtcjeBRicwy59XF0AvULn7B6Dvup3bXAKBUM9+QXaAVHNMSC/ta0+5QytrekUTiwhYhztF9fVHK/tgeC1sf4xNvJvPjhB0BiSQSFU1hkQkNPv6l5ZyUb94ci/PV77jz19QW87QVJ+zXNrzZ7+sG7Zl/VZwGTtckHrhpqo/hzruyZZ67G27TXpF5fIkT0Adn1T28iD/UT5946TZU6MmL8923ut0f0sq7cy00HJQW3JYVLM4Bi8QjFVbut/+fQbCJ2uz3GW0yTgeGP9Vveete5aR5x0o8erV6BZsldZ9OOeJjD/OR8b4+rbGAC1rctCYrjg0HxcJ/qZvj4VJ/yJT3zixVGzp56OKRa2FLngvqrr1qc43LdKtaN15q7qeju1+UxnurfpBHjPdKYz3bgEMAG4Zay0eQVwOMq48Wo3zuAamzbjYqva6G/oBwy0NrLYOjbjNqOV0WYXCxJI1vfAKYwFrAwGEZZlCUC6+bcxxlZhNBwv6cAysblmIGD5MPAdBY6d41j98RKpDCHHaIFsWKDAAkaqjfyybLFegeDK3hALwNsMUmDbEQgQH3BZO4xSbDZsUiBQfSm2MqYcsE4cRzHk+q7nF9gGhDPE5KmNWN5rCPU5BhIWqL4DRAFwe7fv2nwmExv7VD8xYuUJQE0+ex5A7pg5wB9AfYzpDBADQmMs7YVGpQzeDLeMP3KsTwJRzAFOEMdyxVHFoGeAkwNyrV+WYS48AcOWjAHFjW9lVD9M1gAGjKvKbQO/rG2MMqDj9gPggGMHKCdcQf/XrsYHGxnr2fFeR/H3ZmigSvEFMS6By1hj2JiNm5AIlRXw21HcZEqYFrFUjbHYnUAwjoyeCwARC7F+E/oDwN141VeOnPcsYLN2BRIAdnrG7fMZUfVfwGggVPk61h4oJMyNuMC14wd+4AeugW3hMgCG5DNDn1MKo7B5Zv7QdXTGGnH1X23E4sdkC9AIdK3c+sOR+j0CjIFKFunX+kMIig0XcDwl0vvCVQBnyW7fr0Oh5Gi+9cp6gQHp5Eltr2+rUwCXsQWwkF91APQEiBmXdArdQS8B5H1OFuk3zEhjQdeWHxYwJ091WadL/ycnOdlccEXP09flq4yHPexhFxlTjguVgIOOubuozNxtLMXvFTt8j+IHbvV5MUSXubusZXJm3eVkA8C71BGgbF5ZL4Qr2PwA6k5BiEPtZNCWtw5T6xfHhpMWwIp+YmLWD+m16lnYBOuEsCNiLNf3Yp5buzn9rG10nou4sHID+zhuOUXrhwc96EGXfiWH1pvyT7+lu3qvedj4CY/B8dN6YT1y6qh2mH+covYSwHfOP23k+BE73dpBtsi5y7v6X3zw2t5crZ6tpa0ZyapQJfQH3eLyTLIm7FFlB4Yq/3hyyrrXeNknGKfqlE4EtHKCGOP6cx0u+rk8Gqf0b785JoVDUV91EK4qfUC+3Ang4jMAfk5mJ00C2M236mgMOXs2rBMWMrC7tnHO9lnrF+b7MpGtES64XIKEfa1Y9cDv3nFS5f4SouFbkT7+8Y9fwM7G6Y477rj67Gc/e8vnnvSkJ13/3Smb+yJV163PXQG8D3/4w6+Zt7eq6+3U5jOd6d6mE+A905nOdOMSAw8LoOS4KAbWXlQDDAH+YDQw2NqsOqLO4APYABwBGFiA2FMYaDbWygPSBKo4roqB4mIegCgjpgTMUP/qlRHAePHZMkKWHQssqe7YNSUGTcYXY8jFL44FL0sIQIi9sfVdAMYmnmHP8MLAXECCwQlYXzBijxiLA6wMzFj97lgwRq58M5w2xp3PSwB07DoAmroBugEyAFfGE0BQHfU5eTE2WI77vGcdcXTUFbPKLdlkG7ABxJJfhmLGWcAaI1McZPOhH0Y+w9/xUuBDz2TYAdbFwe2ZZCoGZoZwxj/wM2NyjT1s6/oI0zSDsjpiYmZoYy5jXgP2F4QHzAJNgD8bHqGxCsgSGgMAkKxjhognjNHfey7fEi8YIxMwUptqZ31am41L/VH9sT6BbAxxoV2Mn77cCw8rlzwCLqtDAFL93xw2l40zhismZb8bczFDAynE3uy7+sAFb9UHq696933gmDFbB1fjWR2A7MICZKQDosmT8UkuFqTSn3QVFr3YtgvWYWRyfIkf7TkgXz9kmAMKWOOiQEeS6SqABKDBOAAHhL8pD2DVHnkH4HM2mOPVCdjUGDniXJ2rX98JmwH05zSgPwAYZAIrv1ReWMecUKXa0Dg3PmQMCKR+6hCzVOzUnnfCYJ2cTjb4AY6aR1jC5ImzzxxufgilwakBOGys+24dIMoWDqXfAVXCMVQfF54FIlpXFvwpBWzlbOr5ALplY5dXeVSP6uc4vxAY1l/rAFZ4CUiVLq4OscXE93UBorAhtVE4heoR0PelL33p8p2Y/0At8hSQFdisPI4ZbFLhIIBc5FvYluRBCJ7y1z46Tbx5pwrqG3OAU6v9DZ1SPuLalsgp0LrvMWmBo/UHUJiTlBPDWlqezREnGSq7tmO2Wnf3JJTvXMxa26p/ZTvVwjlm3S2Zy/Kq3uYnnUTu12nZ+/aIdCTHPdm3RtMD1tPyq22xZ/sf29b35M1+pjoK+xTAzWnS+3uJnJMry9Y1L+kbMuuIutjVJacj7C/6XT82RoVkSbaEtMGMFZIh3SlWtn1ieSVfQPr0SXUx5tYNYbT0F2AfscDaLeZzz5g7taHPOT2RGrR19797Ag+gf6Zbp7e+9a1XP//zP3/5uzjMtwI7688f+7Efu/zd/C7U0n2RPvKRj1xkIL3xkpe85Opf/st/ecvnXvrSl17//V//63+9rdt8pjPd23QCvGc605luXML4w46xCQQWtYlctsEe91qWJOMKU45BjD3bM26sdvyyjWnlMGKBZnvxGDZOCWhwKwDH5Sx95wKUjUfm+55lpDBaHXVTJpBxbwR3gVMJkMLgAwAxQrCJ9M8aB/oPAIPFhG1RWnAX2LihDeSNcYJNZHO/Med8v8D1AsBAlL2ETcgEAKK4mlhYC4YyilzCtKxO8oMlyWg0nuq/YDWwKgMK8xjQ4nhieWfYZMRiAWEOBiA2/hnVDKZldJNz4HafZagld72vXxrrygASbIzjZRXtkW9Ad/lgMy+LG1C1t9oz8sl97RePNJkp3h85xoA7huEgi3thDKMZoLVMn+pb24VX2dAO1QG7MBAywNeR2fJ36Rw2WvJffc2VgOOAm0IXpAfEBy25mAxg2zysneUXMOHWc3Upz8bmMY95zCWWLIa+GKsAo/pWaAzxDAEP2J61WZzbyu7/Ysx+9KMfvb6csGddWONdLMs90ivMR98BjqqrcAYcKrUltiCQJXkl3zFLAXK9H5hfnsJlcPSUf30GuHERojAp1bvyMvQaO2ES6ldyKryCW9TL0+Vl3nUCoDELRBEb1bxZMHrjdS745Jn+bv4lBy7JAhLW7sbP/MG+dBHcOkcCDTnO6KTqCzgFIPY/0DJwpvYF6gYoceYAZfZYP+ZteXVEu9SzjqdzYGmTdzkzq2/9JKzHXoCnL3zXTwBy9a8M4XaA2XRl41sZ9Z1L84Q+wCwMBG5eBtgC0cpT/wjxAugqv46cc8xuzNCdH5ywfe/SwZKxK//qIryDGJ/WiEDiZLy8xdh2USCwuv6obZwGMchqSzFR+6kezfnq/eUvf/kaKLdXAe6b59WrMv2NEV781kc/+tEXBlv9sI4lziWhA5wsIoMcjRw2y9B2AqJxbxxqG91of5Sese4BHAMXy6d+bY7Vb7HEk9H6quP9Tm5gvqubtCd39iQOJ0x93ZiRVc4hF0tyttIf6Z/jnqCf6la96A3s88a1MDPlwZGGkU2eAbUbLsda3xytjX1GL+ylburW58lz8tBpiPLpgsPkJt1UnwdWVXbfVxd7MI5NfWDvan9Z39sfmScueKvc6tgYpKeSz55JzjkoAf7CNlWXPseqRpQwXzgPC/eQDKbLe9+eyJ4pXadP94SMfZS9xILFTjklr3tZoxNV6yCiR8901+lzn/vc1Z133nlhtL7sZS+7esMb3nD16U9/+mueefWrX331N/7G37j8/drXvvbagbZM18DX0utf//oLaPqtSI33b//2b1/94i/+4qU+/+Af/IOr3/iN3/iaZ9J/taNUnT7/+c9/S9p8pjN9u6cT4D3Tmc5041IbWDdUA24yRoADgI2Mut0sl7CfAGdtJo+suBJGAUMEU0TcRqxKIFqp35UpHqAybGIBrzatfef4vw2xI9Nij2GubCgBBh8Dx8Z6Y9MBfoEbfmNrZRiKrQeMY+Bgz2EpYh4C5oCNLohy5Fh/LaBq4w9cBebuUX1H2wEM8gJSLZsDI6ffLhoBUOuLAKdlqckH4Ip95aKqPXYMSDSGYk327IZqcKyakZ5RaawWMGYIYsGsYQckc6t0xjfwyFH62sq4AwwCVsR/NH5YWtWnd4EiewkeJwLAy3hV3gc+8IGrBz/4wRejFGgABGOAVY5YhfXdOjt6Dht5mW/Vi+wDFgFEAEdzQlxKMWuxf8XwFRc1UKCyzNvqUD8WP7F2czAEXDj661Ibx4Ars/Ho52lPe9olv3e+853XoEx9GMhUn5Al4RLSNyXsfrqE/ATWMG4d/e3v9AMwypF5/apvyDFwNjmrbQE/ARyxbKsX50P9W7sA7liMjHmhYRZoKR/MfI4i4KLLh8Qt7Xb5jhNXn8rNGVFZ9VvPAHLNJ0ewl+1cX4ip2jj2mfm4YUn6rnzFQK1ty7wFcKW/mjuxrgMaak/1AuKt00isYwDYHrXnCFgnDocJ3VTf9gynjRMe1XGPtvc5x4A5z4EiVjIgx2WVlVvfBqT0vliv9YGwHOkFoVIWKKwPMPnKN5kENIvrSUY4RjgG6P3GGiDJQUCekznrgDZVb2C+C5vSfeVTWcA18YbNx8AiDiCygCXbu/WxUBrlAzzqGcAqBqEwJX1WOeZ4YK15uKcSvEsuamtzqM8qp2cLOyAkDvC4eVxfBWr2mbi72tf3XehXPQPthPwRHsTJHP1mTqgHeRYTt7nWGNQO+pl+aY8itAI2JCC/cQhYFFLBJXL0FQez9byfwI8+w0wWXqN8XUzIidu4BFJydlePQqF06qH8a3vhNxqnxrmfDdlkHjiRgsHc2GJ3JrPVQ+zY1naORgC++OvkfR3Z5qD13pF/oY5ql/kjrMI6ejjYOBtLjWvAPUBTnO7VV74zTj3fODQ26c3kQ11zbvS7+pA1YHJyuOE+yHdt4aSv/JyQ9c3qz466pycD3O1hk4l0v1MG1mYg7u5TKsM8I6t9lhzbRwW0tS945CMfeflMqJT6NLl16gpLuGcKL8JxS5fXzvoQGcHeoromN/3fBXVOvWj7PUk3KURD6ZWvfOUlBEEy8b73ve/qV37lVy6M1frwhS984dVP/dRPXZ5r7X7Na15zr8uJdbupy1elZz/72RcdIbUu3yoswq//+q9fveAFL7g4kfu7kx1vetObLjrxKU95yoWZS65e9apX3edtPtOZ7qt0ArxnOtOZblzCggI2tmnE3GDw9gwAk7EExMMebcPZZhmbAxACfMzodJwsA0F8TgDZMj+wCLGDsJf2WDfAt+QzoAPwCjtK7DhAaW1h4AATNpYpw23buTdpY5tsuARgOLC4VBm1NaOAsdPmv+8Z7/uuI3t72Qwg0aa/H/VdltDGad04iID6PQ6qDCC2S3nEpMVSZXQB4eUjlmW/hSlgcAKF6pf6GagqFh4jXT2Ag8vwAuyUn/hhgFzjDCzPgM8IArKIMZkMuMSMjDDCxMTDeOzHcXxM6WS5o8GOvypX3F9zAbsNoGOMAjkyygILMubIFMdG72fMAUAY8Rjf9cNejJMMi2etjsCi5ixAvTx+5Ed+5MJ+CzACQpqXDGHOlvItLYOpNgOG+3FcndEcWNXnAPaAFYYmNvInP/nJ65vHGd4ZIsCaAMXGJpkzP83F6pFRTX8s+0zfK0sc40BeR87LD+NKSAwxWOvD5CXmChlx5NwRfBf8bJiVjdlq/tZmcw7IseFjlilP9mt3YI74jenE2KPJSeACpqCQICXMyT01sc4gYJGyhKIB2mM8BxA6Cs4BAmQMxKrvfJ4xB/RhJC6rHzDEkSa2rKPxPd9xT0wyIW44eMg1J4O+612OoD0JwQlIPoCNQI2NDdu8bf5hZBqfknmyTkHHx7Hs6eZkqjkE2NmTH0JulNxkTya1WRvEwEwfArWBQRjsQHjhBwCmgZGcX/+fvXv/1W8rz/r/+WdMjNpKKezNGVpgAwV2oQULba1VG63V1HioqYfEQ9T6g8dam6gtKlYpUM7lvDmf21KM0ib6o3/JN+/5zWvl4umGslGE3TVGsrLWep45xxyHe4w5xnVf9zX+9//+39f81ng0nm8jbhzq1g8tU4d6rfQNezaH1E4OHyRhsZrVHD10Sxv7mPONr8rZ82r75gcaqtqgZ8XCD6zgROrZWPscl9lndpodVJbVTgayc271eZ91TW2TzWJ6V1aMaEBmc1ufN19w2AUU1s49lxOmfJurek9UD3WpfOWxURyYkT2ruWz7l15375LmKe9IkgO1G11/47a60V8t0U7FdO1e7GvvK4C3dZtxUfv1f7ZRu1sn1KcA9f7v/ZRt0kv2TjRuuq92aZ4yTnf9tU6dylKqbsZW8y39cDq5y0YuT+sbTjj9bXysNEr30EXn7Db/Vf7srD61xqhMAbbNvRv91RxR2es3zgLvpuxSFIm5zzvIGqbPshPyJhjwG+0BEA6o7ifbq2zeSyKx+o5efZ85mI9d9ozK17jrGpJPObSsQ72vup4cU/lkM9XH++Skr56SjAk0/ZVf+ZXLZn/u537u91zTPPPyl7/86u9vNMXu/WrpZ3/2Z3/PtY8H8Pb8yvG+973vsu+AWGCsVP//yI/8yLUe/FbX+aSTvlXpALwnnXTSvUvLisSMsgBv4dmGTegYdiugaMMDaSe2kFy2Sb/bILWIFkq72m/yLGFttSlpQY8BJNRU+BkQtgRgAKwCOG1YAU50yrAuMTpc71n05ICaLdiFYQu1BvAK0adfZwNikw1wsfkvYSbakMgDq04oHmAOmIUpgsEB+C0BQGwWsBaXFVNaBm8JCFVbxKyqndrUYzOtnmttYNNZXwImaxMMRoBXbUin2KFcy0C2CcbIvj3grATMwxpcaQv218atzTAAqzIFUGHSklaw4VV+GskY3j03kKnNpAOsagu6jAClPYyoNqie9Pb0TXVrE2cMtBGlcbp1Z89Y0kCDEscD4Fo4JoeHvD0TGAscqmxAbNdiUrEFTNFS9cU+AxR4ptBcDEvh420aAUakIIx9UgQOl+JowBisX4S+1lax1rqnfqSniYGIRUZTEjCGXV3dHLDH7owvAABGXcAYx0jzWkBA92A92rhjXQJ+1RPwhuFe2R3mBaBaBnaf1w/GEdZxzwj0CXyKrZetFRaJLVm+bdyBcmQJOG1oQFcmYAjw3RgH1Acmk8MhZ1Db176AGWB15aiN6EYHfnVP3wk/Bn6XnznMHErao9/ZR/cAXzcSg5Nw5yP6u5jqO952PuIM9Lf+KClTYJRQcOWj6862bw/8CtQJpOQcMh9xhvW5g63MrdWJvTq804FdnBXqAJgEZgvt1k/mefrY2r3rY/qx9d7FtdPaR8CbKBA6veQtKks2F8DYHN/8jmXqXcduRJWUH/3XxrrQepIV3reBT3RlvWcATA5Z9a7SV7Gqm6MxiWkPA5VFBmD9YwnXJoHt2Wfse2sH7yus0crdMyp388rqz3O4NmdXzvq7ex34Shf5Ax/4wAWK1G7dTwpFmP9GC2FyAkMxnDkD2Wb/N6a8Y28PA8PEJifCMQ2wjZ3X9dWt9y19WQ5DUgwBgdVdues37wjrD+/Z7q09A4e8jxyySobGgYkAy3UqWKtgylqbYP/XLtmc9ZD3ff2oXwCizYX1Te/zylx9A54KLTffaq/yad4UwVU71aciLxojnEO0uWNJZxvlrz4OKfS/NZT3HLaz8exduvNK75HK1TwLfOaIWxkRNlgfv+AFL7iuq30D1TcaoHrUVgG4HDSN5cpI2qnEkWzdw+HAyaZ/rb85NE76/dOv//qvX5FGMVsDNVuH1T+N37e+9a0PfuEXfuHOKfOtTs0H3/Vd3/XgL/7Fv/jgta997TVuEB8CfpNUyPn1B6nOJ530RNMBeE866aR7lwASvbxbWGPqAlsCP4AVJQtXAB2GbZsWm3uMN6GvLawdVGGRYMMBfGmhKpyZXisQw6J7N0Q2mhbaFuAALFIFmKjLhMW6BGwtCAq4FXoOzLC5sbhfzVKhb4AWIJ9yAo1aYNMwtQmwacZg3c0BQNDGFyCxAOkeZKZ/lkkMZFd2afXcME+A7TaHNiglGyyb+NoEE6v2rI+XuQRE3zbAOFzWXddg0mLHtPEiF8C+bKKBRNiADszDLAMkqqONKQahNgDaAH2EXwOpAaWAiPLQ9oAQm+zqCxQmt9DvPk9DF1jUQpv96yMAP6AK2AwQwqRif0C1ZXOXb2ykFveBGl/84he/wq60A01BAIV2FbbP5koAQ4w/tq08lQ/zSV/SHo6BZ6O6odVsuPaggdlGAphs80obVP2AmAFN2IdA6w2FLZU3OYq1few3wEzPLD9gS/2OzYzVC6g1D9hQszf23Zy10hD0LwEkjQ3P7R4apgHMgUmFY2KfCSMmjcLW6GjSPTXP2viLjHBgD3A8Fjl7697q8N//+3+/QJDqLLxZSDXmbXkBP409oCU2IXBk2fCAHsCde0mUmJOBSSt9gzHed6R1zP3eGUCX6lIZyXv0vNotgKx+pD8a6FMZA50wCtkJdjNJChrIgYm0P9ld9wHzPJ9DpWc0BkV5aId9V4hiKdUWDu7Egl6bo9lK1oBWKkfrhrH3jMAlz1k96voXs7f3es9vbAa60Zw2RuQHIK6tAg8CQQv3xeIWGeMwRHM51nVtSI/YvMN5DODup/Ha/Ni99Vdl7V4gbCCgcd0Px51xbC4HYtVHlblD3gL/sBfZePdbFzQeK+8e1lY5uh7bNcZb7dQYFRrvvUuaRjttf/R/95h3utf7sevM7d4D5hZga1qYzV+l2KEcmt1XfyQHkc5nkgUO2uKULI/mM4B1IGH3ZDe9G+o3jrkcBLWJ98RqYgPXrQHMn+vQMS+uE9l7s7/r256hbapvLEBRJdvut3mQrsjuG4vme+CyKA7t2HMCp8o7rV5sfO9k7xcRI94V+/5bkkH9hyHrM+uXfX82hppryTlZy3q/WBMC/G+dPdq88do4aw6pnypz7dd4aP6m4d91GOkIC+QzSHcA3Ws78453KU31J5q+XSQa/l+m+iLt2X6eSErTn/P9a6Wv55qvN2UbSTT0862o80knfbunA/CedNJJ9y5hoGIWBczQ2GtB2EKTTuyerGzh3v8YGZhuNvIW5i2AW5hirdB1A3xhUFUOC3hADgDBgsj3CzRjItmoYu4CliprdbEhcOAKMGEX38vexay0ULZJKK/KKuTS5hwY6VT4FupdU12BURhr7lP2lajYhXpJGZdptVIHGM4W8hb+ZAOABliNQEUnjC87UDgt8Ja2X9dhD8b4aXNIW3IP9cL0WoYxQBvbp+Sa3SQ7dI1N3ILKwD7Aj/sx1QCEgHIaeiQPAC80H/U/YLg2EwLJAYFhxBkAVOh6B7EBsNo89lP+tU+/96A3fchm6T9v6DmJgX4c9oMZbiO+4ahsF7N8pT22H+q/8oxxVKrfPFO51NHYdWgitj7QUZnWRh3s1UbV4WGAK/n1GyjqMLEAGaAf/VpAHzsX4g8w0y6l1RzuHpIQ6m/uqB6BLPt8MjLCedlu4wGjV9npsMqrH/qKMV3Zr815QBqnBS1W+WCaxrRrHqnMXRuwYAwHMmF3OZiuOVR7b0REfWm8V67aiq56oNGCwdW7PBvDtVtgL+CJE89cpU7VkwNobWx1tNmc+UtodmCVvqTXXduSOQCqN2ey01J1jkncs7s/Bp75l42SEvF8/ckWsBqN1e6tXUnB1A7LZMe4NL/IDzOWFAswRRg0AL602qUAQe8gkgHsiDawtukdaD53gCTGufb1TqzvaExzpuhD722syX4qX+AeiYqVtADOVrdAuOqVvQo/7/ts1RitjrVbqf/VqfI3B2CcVwaAN33gwLju71oscoekidho3uwH2Ntzs5NsorwA5aRS2ERjgr1tWdhr7ZPDLdCQHjX7FRHCiUfiw3uvHzICnEM9gx1WJrbWdbUfoNszmhe7ruc4kLE60OmvruWRHfb8yhs7r1TfYQNzMDiQzNxUHZoLuq569pzA/+pKRonTSVSLKJe+U3brESC68WGNJSrDGGa/HLi1S3WtPM251SunUXX3vjVGkQg4i7Ll3lGVp8M1A52qg/dzfeOH84jtll/3IxuUagfgq/fYymiRjWA3xo+IluzLmpfjjGSL9V990d/GoXWq9WBzjvezdTMJnub87us6Ml4938G8lctaBKtYOwOasdetaTn3Vpe4Zx+JhpNOOuk+pgPwnnTSSfcuATCBGYDVAKplPGK72LACLmxIgFOA4L5zaFCL6ICfgFWhwv3GeOma1bbFbFiGTsmGCKuthW2bBmCGsGrh6uqHfWhD24ZUCJv6LVAAVCTJ4G8MZYxdZbMBqn32wBIHAQGJVst1geqS0Fbh4TbyANFlUQAabN4BdVgmNmWYwzZuwrGBX0BPYBeQqf8BEgBz97dZDHgRsmyTDAy0WbQZszlasBr7BoAEcLCBoRu4DOcF7ivDhmvTaeQ4qH8A+hLWr80kWwaYktTAsArYKAHOsW6AqU64xwbqs2zcAUcxiug1ZuP0FpftuGXrp7oHDAZkYEHbKLJt48/nlV+Ipw04m6VlrLyey5ayRyH3wvDl4TkbAq+t23BzeJRqO0xKgBxW1LIEAWL9YEgBLemPYikbKwA1dg0kcLBQ963sBebfHjoG4DT+yToYN7Gm6u8Aojbx3/3d330dNtJntDgxZLHOAIMY7OYsh1qRYtA+Xb/9B/wq38DWQInu6+9SfdEcjEUHSIztW14LomG89jfNVUB8YEv2RP6hcgWaLOBqnll2uQPeAC9AEiAj7WygiLG99llZNuS5vDDTfI61DCghG1E5jW+AiPI5+JL0SW0RIKjPRWAELmVj+kb4uzoBPDhxOH26PhAQMLzyNBwE+pa+LtB+IyX2gDwsQoC2+bX2qJxdG2vYmPnd3/3dr5ANMtY5FYxlYFv92KFRlfUjH/nI3TgybmmZBrqTwXGgFvmAwF1gf/1fmzZOcwJwxtCbJffR87qmZ1SG8vY+KZFxENXgfVw/dC05ka6LbQpYr11KjQv9zC4rF7trvHMwVzZAcbbAeWHOJ4/U/f2tDM0lWL4dLkQXmFzBRnRkuwHz5j7OjPrQfC2Kg51ZP9XGtb/+2/WOd3rtHDu3/g8k7UAuQD4HYm0iWoAEg+f2DsrhVF/VjspNQ7oxoP+ycY6n1WgnCyECY0HRrndol/etenZdbQM05ahP8qN53vyO+et9X//S/6WHbU3a3OxANw4/rFUs8my7dYu1mflfn3tvc/IAWfutnuyu5H2984+5wBqtugHF2WnvwN6NpBi8o2sTESXy5IDuPhrZ9Q+nQGVAiGB/CxBzUmWzImewyp2DkK1y1mxk00knnXTSfUoH4D3ppJPuXbJBwZ5ro2MzuovLZQTQwhU6DVSyCcaUxUoQDl7C1sRyFNoo7G+BtPJuA4k5iBkFlF4GpA0DwGcBvGWA2ljRdXNvaRk6gDshpIEkrluW5OpBLnu51IYA4GJDtCGOu1jf8NzSgmPLwF3wFpMNoC7ZWADy1LW2XPajDRXA+n/8j/9xd6o7xskeqkRv18FjDlizocJsWaAcKKYNAN7aErBjQwekZpurb+qQMe24+p/90NfTRw44wWzpfoAQnVgbHwxRNoJd1ua0+jqYCrBYHgAl4Dhbs7HumW2ubbaMtQXrV1sZM8uYKK18Bqad/gA29ncMu57bRhprG2gAyGozGTMMEJ9NZ9u0Rfu8cdnGEYDZZ90HKBEOmi21+Q5cCTAMUKjMlbEylydt0fLuOUCaPu86BxNxtDTmKr8Ntf6rDv1Nwxb7GHCz8jHNL4Et2OQrRYGBLbQdmFHZysfBaw6XEhrvNHpAknoYY2wWw7V+IKOAVVtduz8bAlawt2wipm2fB7q0Ye+68sPyzDZIDNS+sb5q49WD7Pvajw1jjGLakZcAfgBhHWAkf4CHMWYuYlecLpVp5162WWrcB5CvLdcP6scBQKqAQw8QHxCFMcqGPQt4WVmxmzn9MJT7PJssH3MasNRhl+zPfF0fl6+oBvWpDgFnDoczZ/Vd7Ufftet6bs+szgF6wPPyJjFi/ux3jFZzQOVxqBfQqxTwWd/kbCAXRCLF4W0BXOXJ+QBQBSaR8nDYUj8O+svW6Tqbx7s/wIoGa2Viu9W7Z+aQMF6bfyoz+YMSmSe2pd0c1mZMihqizWt+8I403/b3ww8/fD0vfdY+C1DDerf26P5AThrCpeyucjRnWbtUt2c84xkXY5TeafN9z+Og5BggQ1U7cVCIdNHGPQ8YLxlvzVXveMc7rv7O3q1xOEnZ5qc+9amrrKXaSIQMBia27sr7GFs9ozYkfxJIXNt2beMCoM5msNjl33UcpQBkfcCh492mruquL7MH47u8u4ezYucda4bKQ9/bfOD9FkDfe6Y6cDZ7d2I5V9760HqQrFf9YowA/cm27FoSUNzv2oTTo/tre+91DrKNHOMo8f7JJpvzjCFA+LOf/ezrHdIzGn+NidooZy4WdXZBQocjGLu6+tPqBqhXvt5v2qP/K0/ttax5znGM7Cea9P+3Q/p2KcdJJ5305EoH4D3ppJPuXQrcaHOI2bIbJUywBXUli3AAm4XkHn4kNLCFmbBthxphvnWNk+v3MA3asnt4iwUrQNI9mHlYFjb/Qqlt0m28sG9KFu8W5T0XYw0oh81TuW16AI/LWraRxjCxkbCJwIgElGhHgGpJvsDDkrptuJ3wRCCehfiytgA6CyZXDsw5odO1fxuDNkMbjgnc9Sy6l6UNbxW2CNCn19gz21TVTwvKAmlWBxd7RrstkA/4Fa6PAQ3EJzsBKGvTHziBPQZ4FaLcteyCHQLOOBnaLLWp6nf5OWiI7fR8Os8YjWk/bnioDQkgntNCu+1GunbCxAvUW1AoIKXNXqAFm+j6ftrYxTgFyLUpNU4CmGKAuUc76ONYxj0rQKFnZ+9tRhur5dezhUgH3MQe1R/GYZqQ/Y1ZWt5t2GOqVW5AGHC/+lWGvgMysYHq3EY3INRmtOeaj8iGaEOA7oJFlcEG2mY5+wPyLtuNnEqpeypb5arOjz766KV/WBs/8sgjdwct1b/ZRGUEctRu2RqWFabp2nzlzDaBCqXy7FrSNNo3JmXlCnAASHMQGQc9t7pm03QhOYG0F7srr40GCDAI/IwpaNwa46QBMPzZDbCeHIFDoDhcAH/Ap8qH1bhSJdW3vsGs1efrsOva6iXEuTKZ20t9BiB1+BWbBxgFdGWbnIg9r3Z9z3vec9fudKlrD8zY8q7dgfI5L3wGbHYYFqAymwC+ZZ8Y02uXnB+1SXUrn+yotjC/VcbsqvHYXFK7BO6WxzJvF2Qqr+rYT/lXj+xo2ZnauT4KbDMXee/Vjw6rqm1aDwC9zWMOD2MDmKLVu2fWHsLxlbHEcbQRNiIOqrtDoYTr6/PtT06V3lHZvFB5cgT9j625kR+1Q3WiU9uzm9uqS/fWpl2bXQVM0srOtjB7SxzZ2J5A2+ZOwKzICOPQmM8+RSuRW/D+qR02+qB8mq8rV9dXXxrSK6djrvT+5xzGzq3/HKzU/en6dl2AKGd6/QQgNB+uI3z1270PRVFYF3gfOzAyB0R2yHHl8DxjC7CrvqRgnC3gvdQ92RdngXtJh2FIV5eiierjrjVf7TpDxBhJEwcBY3Bng+SdrE+7r/zZOwd119SezS908x1gVns6fNb8bl1RVAZddbbQuNWXmN/aujq7N3tNc7lnBCBbs2UjvU+w3TkA6Mmbz/uePMdJJ5100n1MB+A96aST7l3CymyRi8m4LNNlAwJxN8RQEpq/IaotLG06Cj/95Cc/eW0AXvjCF96F0gq9b0FtcQ0IJXWA/WPBbmMDkF29M8/eE5c3pF0+C/ru4VW0+GidAWQcuLXs22XvShbtNsLKZFOiTMA9zGihhpWHNMRqqC5QC/S2OVTn3Zit9ANgz7NsQmzi2xS08bfZxnKj/aZtbYAANcsGtOFbcFaooRPt5QlAUg8bKaeB02ZekGCZ2iVtoR9JEGCwYX4Bt1bXd0HmNun1N01NYAOmVOAuNlx5tpm0ccK2a4PVT/dguW5IKeaavlsbqN4AvNq48dI1lQsg2JhxyI666P8SVlLX0qSszQLWjC82sikGUUAA5lLtsP1c3bJJTL02qnvIUfNGG/HAwphLn/3sZ6/PagMsSIxPm1BaiZWn52LtAoKBZ8rR822e+7t8li3v8DF2CiQg/wKQ0H/lQV+xzXq/q4/IBbbRIUv1QeWqXnQZsRz3cEOszHXyBALo78oIkDSf+M3xkJ1iEr/iFa+4Y45zKtRumLZkQ8x9KzUACMfiJYHQfebLkggK7GyMVYxaIC02p7EL6MCKx/oVbVBblHd5OkBv50h9ZDyz29qnZ1Xf+q4+p5/a/yID2LFxBJCj5c0pVL6Nl1jZsT6bU+p7LDl59LlDzwKJjD+AZyBm9/S3g9/+6B/9ow++4zu+4ypvoFl1El5dO5QPRxrgyPuINm6/cyjQai1hRErmrMZhNtK1ohCMpViOpWy1+jWman+RBaROas/GqvdAbRRzFUu1Z2CWBhB2XSDzQw89dNl/12XTnLE5j0QxYIxyuGJ1mq8x8b3/vDccHtXYNnbYtLZwkKUxFEhvLgnA5Tii4Zztk5rpbzbhXQFIZic9J33nnB3WH5jEpID6rDkKC9Q6qDat/IBgjsZsCJO87zDUHdznEDlORnPWav2TDPGeBYx6l+9vNlOfY/x2QFyfN79jfjpcL8cVZ615S+SId8tGOXkv7PzTvc2fQP2uA3Sv3Ne+s7FI2SA2q3Wj+av+KC+HUbJ17/Ou7z0TYN5zG+fGCoB629XzRcIYP7VVZenz7D875BBi2xuNte/WnlH9sZUrU+3bOMyxhNhgzcmRwwlRv1gvZK89G1PZHN57FbguEsrYKv/eWeb3Zc2LTBIxZIzsev2kk0466b6kA/CedNJJ9y7Z5GK5Lahoc16yUV2wECgLrGwhimkBYBBa3iIWu6+NZuzBFtKBTG0SVjcU866EYacMAAEbZmxOLBsAQNfR8bOgBwqq0wJFG/pu04sNDPCrXNhyJQt4zLMFUN1TwuTazbvNA0kIDAxsHBrBWKCAJRspQGWftfi36BeeJ5QeyLTM1zYmNrikCISbYk/3DJuEylU/LMDvGmAwdl2bsOwpkEF4pDax0QYQA2dprgJDswdyCz1z2YP6TX23HwHq2q9Nm2eVD+YRm6AjDHBiP+QkKlObwDZnATqA/w3N7W+bKm21YDJJiPJqQ2bjzFaEctrEKkf/O0xIeUsYnZg56scJ4nTt2rLrAqM+97nPfcWYNzYDeAKEMEVri8YMULSQYqCevukadQ8ExUjU18ua2vEFPALEZC8Yv5i0WHpYa9ql3212y8umWsg5uzN25SNMlzyETTmGLUaXugZ0kmNpo/75z3/+YlBi5QZyZ0MkAcwDgZgx2Jad3d8OPastAJhAN23Zd/Sns5ue0XcBG7HhyBk0VxrPHEWcbMb0MiCBuYBXoApb6frHHnvs6ruuB4hxGATW7wGYnB0O6qtd67s9tAiQDyDqmpiDfRZIGiDITo177xKHtbFnQGltDTxz2COAA/uwsgOkRYQ0Zr2Tclz1vslZAoAD/tNYre8DdgJY9JUxBCwHGmN8rqOt/ABLDvqqzUkfsAdjvefQPAVgl2qjrq/ve079X/7Nheb9yh3IWZvSbGW7/V99kyGghQ3kp6PbmC+/+rjvsq/q23zdXNHzAng7FIujMcCq8nQ/Zmh/e59xgJZv5fKuUV+yFyQbmpdrw+oaIFZ5uyawnDSUOaRyBa46TGrZsjtnVt/mrvqYs4LkReUkXVD5s4/6pmtqy9piWZrZSt/RNuUEoWVcnRqD5dNYrd28K81H1QP7tDJlg+VT32bXAML62BjtWaJ/ANzmzey63w5X7Jry73lpL9Ob7lnVFajcIWO1Mcd4fVJ7Y6KuvZcX502fk9fw/i2fftdegcS3EV3e7xv5Y52G/VsZyefUX9jhpBu8R73rWtvkZG0utj5q7gngbT6pHBwvmKsrUYBEwJkkCqt+rB4iSrquNqx9azNj3vvHoYLl0d87dsg81a9Jgjz96U+/m0uBx/teUKeeSzIl26hN6udsRZ3NbRxs1pXb3pwgZKrqt/qWBrh+/0ZYvEei4aSTTnqypwPwnnTSSfcuAWTaFGBnLMsM+8rGC3hLO2xDsIEhgIc2KW0WbXJaXLfADzwJRMEqCtgANHVtn+/z91TyEkDVgg9wBGQFnmGlLNvTBsDiHcMWQKEOnoUl6zMg94Iby47EImnhD1RZtvCyQpaFgyWGuSjfZf9iPO0iP1bQhoW6ts1KQAIAacPCsZ9pkWoHsgOrn5ttCMUWni8st2e1yel7AHobtDZJ+lI9aaEKs9TWmClCywGXgHW6d6Xq0IaM3inQHRhNf5Z0gjbXVxiBWGixJGkgAmT7jSFWXYWcAu05AgA7PRdTLhsXPtz/lacyBxhgWrqPk6R26vPGkk2osWZjSMe259KDXu3Z6kLTVgg5VlRlTlsZKAgc7/NAjpe//OVXe2Dy0rrFim7TGcjS7+rUZzaatFG7vw03AFF7qaP2sDEGplQ/YwTTuDZwejnAsH6ySXeqefl1f/UqX6DuHoJlDgHYV+5AithzHDnAUPMeW+sZHVYVG28PpRJuT46gdi9PciMA1D1MB0AO5DMXAapsvntOG/3Al9q8ObI6xi4EUisjRvGtXRq7mGqrUQ1IBCA5vEmotJPbOXl6ZuO7MjYmAFAY+w7RNMbNl31OigHAsSxyrEr22/xfvhh+PRdrLbtkj+YH8hOl8q7Nsr9s1IGCjb0+C3AJyMkZEbDVeO7e8qkcQNQcOCXsxxKpBwAQJ2IgZu8t4d21AYdKf3PcrYa9urJhLHfAWv1dPSq3qAL61Bwfla32qL28V2uv2ulpT3vaVzDH+4wmac967nOfe30XwItVKg/AW2UDdGf3DpViYxyr/Y9dWV3rL2AdDVDvVe/Rnf+9GwDkHBDypitb3oFc7GlZkQ7GE/GRfXGK7oGINIsdeFo+WNvNK94VIhIC2QGz1cX7urYArla+ohlItQBogepdt2uBQMjspXL3jGy2MtT+2qD6VGYHEyp77Vq+9W92R1/cPQ5Ew7Qnj4RtbO5pXJMGqa+rW7/1E8DQuKLN332V0UGrPaN7a9PyJj2lz8xpzmToGeXjfc2ZVh3MR3Swe6b69V3zHvkwKfusTXpufYVkUPkCRSsXTeVlrHoXWbsiFXBied87fFPqHs4s86X3VWVs3DYHeHf3d3NN/cK55xnm5Z6NIczBYy6preq37m/eyoHIeWjeZR/mco4UTOLaITkH7F3gvrXdSSeddNJ9SgfgPemkk+5dwrpd0NHCGBPHhgoQKkwUm5EeJHClJFxzw9VbuMYwAIy0uW5xL482DoAL4KcFOQDABsLGFMiK7bLsXgth4fHqaYOkbML5XG8zAiDaDRUWBHaUcgg7Fy66zODSAi02CcDbrgeW17Yt9NvkC9/FrhSKXDuppw127U+TsY3PHjKGPQPUAXbuYVMkEjDByrc8AbI20fLAOAYIrmSHDQlwXt1JawBdV18XKxS7DkC2TFhhnOyw8mLq6D8Ho9C4BPICA2x4VvMPCIMFw/YdFvaZz3zm2pS+6lWvuuxwARH1r32yZRsuNs4u+35t14aSjm7lVm+2a8MNrAzctrkEcAAtsg2hsgAiNpkTIHYcnWGAXp81BtPwrYz6bxlC5RPIEqvJYTjqKRy6tm4jyqHTBhZo43R7ocnYYsL/HTiFIUm2pE1qQBN7WAmPfjePLBu9z7P7lQzoXhq86tyz5G1OaPzQOw5ge9e73nUBMW3ea68ANZqrgFqhtOaO8qe3qR/MnezfBp8OpLmma3o2kKfftbFT0rvWoVKYfOVB1xwDVl0rtzEh/B2YwkGDjd/vHBA9NxtXlj7v//KkUYtRDnAs6WftUD33ACSM5J7VHAfM5igUwp+NAfBiwAW01E9vetOb7uaRBcQ5EzhWaIbTRa4+1eNlL3vZBcJ98YtfvNOyDGwrrDvbxeTMbtnqM5/5zKsssVi7BtvWnNT92QlAss8bm5xNt3qw5ocAZkAbILv+oeWrbSsbUNV8qm3r68Za74nAXvNaIGLtWth6/Ut2SbRH7VmZ+wkAo/NuPuWsq1w9H1OTzfZ/kgjYhdlMQK35tD7PkVRZSHN4T3nXlehAk7CwRuAk9r4255XosXKmcbJwnogS4TzCWKzvtHW/s7HKVj7ZNrb/RpKQxCDTUTLvYO2Lluizxoa5sraqnBxNtLW9T/q8Put+EQGYso3zPjO/mze0j/c+ze6u63djPeC3vMl07IGtfV6fk18qiYDQfuar6gSYXJ167+DGkeiKnsvxuJFVImOs3crLWQX6tDZoPHAWdV114fzCjsa+9pzGc7YLNAfu9uz62rutfvbO0f5sonw4PRov3lHyAJZzTPR3dbVm0CbeTdkE27SWyF69s2jCk5/gzOUgL6/mBTJAvY9X37sIN5IhOZ5qf5I6SZ51f86GysghTt4Co5xT23g66aSTTrpP6QC8J5100r1LACKAZ2k164QeYsdaJO8Glz4bsBJ7YzUWbYxs5st/D2Eqb6HCNrfCFbEvbBZXZ5auJMDTtTYwTkgWHreM3gV9gYbAQRsy9aa7qm2weYG/ElkBG6bddAJ4MVwAwy34W9hXDwyoNtHyIBmxp2BjT7U5CyhwgEibt65rA+IU6ZW/ACD2f5uoNhrYbBgqmCU9p/bFCmojI2S/+9vga1MAPJ067VDSvgvYY2tiXQGgsI1rB2Cqvulz4Ln2XJB2wzSB5m2eALvsPSCwDSKHBCBU+LgNbRtRmzQgIDsPMKDniSXdNQEHbbIATzEIgcdY0uwLSAEINp6wkTe0lB2UAN1OKQc0AyZocbZRzA5oJmLMljBOq+NznvOcq25Yb8Z4bYetWj7CghfgJ51Bc1cIrLEAmKo92Lby097tWW1EzR9dU92Ev/bbyfI2vsLVyTBkR80r2M2cNDQsOQRK2XFlLVyandaftVfXYhsKpQcCkENpw11dHMa0h0Ia493nECXOBjagfmQRlgVOh9aczP7TQ8UKD8ghbwHM3nmRFIJ+4Zwp9be5U1sD+QCnHCLYizs/AgGrE0Bb+7IrhwTROuasMrd7BqmF2n1ZnZiN2VKAZe8F4fLmxNqPLmb2jeGKQYkR3vX1cwAInePKlt0ro4gCh1Xqr3XUOM3e/NffNExFLawEyMoUeB9yYvVZNkhOJqZiADEQNGAVE97cZc5MLqH26jkOsaM1Wx4cSYFxOUHoAdP3pslqfATaYshWt54t0qVUW1S3rivPyprt0a9ufqsM7373ux986UtfuuREYkM3XkncAADrT3Ouub16BVD27K71Li+RUKjM9V91D3wuX5r4XR/A1U91SL+VREj20Q9HFCeTSBMg3+paAxmtIYD0zZ3qQfvYO1iYf8Aepw/HTW2uLfs+1rB5iQMYo53jvKRtrA9aD1ifBK5j59dWzXtPecpTrvrkyIhBSiKEPNaCewBM2rql2lOZMZhXB7fyOoQUsFkZeyYJJHrK7J6zbdeQJXZgDdYzVtpC35PIIseUDfY7Xe1sxZqAFAtHkLmKfId3s4ghjvGe5T3T85qDrOu8e2vDyqFdzKHmcwer0d5HdFDnnpn9NvdwaFfG7EJbciY27yVFxKFEPovtcjA19jixHBbXM/udfVUfcyxnQ31tjfVE0pFoOOmkk57s6QC8J5100r1LKwOwTCzgAUAOOxawJXSz7wFLjxcCZrMmfyzJALY9cMuCdAFe4BVm4W05MW4AKsL8Kh8m7YKM+5xl1gCsPFeYYsmzSg4ksfHHGpKvDRJmFDaOELmVIsDmWD3WPSxm2WEW2RtS7pkOS3EyeRtup0TH+sOyBehgrvZZmx5MOu3qtHc6hk4YB5q0uZCfkEsgrc0qABYbxuZyN+7AJAwdn7G/242u//V7yYE8mGKl6h1g0Ia4zdIycrVXm/PaEqDrufqzDRwG3jOe8Yy7TaTDtDYMF9CJ6dPvxoNDztrwOQUeWLugeZs/odauAxCtjnSJrqvN3oYya3uAREANsLm6BkIItwccdl2ntqeVGlOojSEG2zIMK3fgTWMfSxLbmlZxeQOw6w+scbrRWPUbqg0IZAc0dzGe2pTaxOo7Eh50FMlZYHNmr8YvgMEGvuvSy+x7zL5sNzuhKZyt1/+xnmkrBjK2+aZR3PWV7eMf//hXaLM2trD7GoOAfOMRyOfgKw4sYBPGK+AKy9580ef9BGIJoed8qi32sCLsPyBJCQMNqG3uZj8Ogstm+yF5YDxX/+yVnu1qsHPEKWt1CVwElASI1q4OzGO3Pa+2BTDRRw4gzMHQswLG6HmSgzEvYnOqA9C8a0UzxHzr755TX1SHvq88C/ybc7sWE858SH7APANA7LvqtJrq9DvpeXunYK4DXsgI1U7lXdmyiYBZEg9Yie7NPnu2Awqb4ytv9wd+fuxjH7veAc1xjVn6tA6AMj7L06F+gHLAJpCzugYY9q7u3v7PueG9C+wsv+rYuOi+nl27A8OBZOa0yhNI1zXaCHM/9nbfc1w0XtkgRxMpk+a0GLmNBcBcDM/KVBuYJzjhgNj6s/o3XrE/S1j+nDacHZjM6lGduo6+enmsxETXkuipzLUfB6y+917rPges0o3lXDWOG6dsjBOapjGHeXN4IHzPCwzlzLwFzQGmIkSA3OZ07wG6r94XHOWVrXwbu/W5sa/c6wSXDzuvvQPj+93/1SsHozbhwCabw8FeP1fm3mvkLkjgOMCMPjjHzcr/ODSU08f7U3uSYPFeIuuTrZWvd3uRCfV9qTmLI7r2Ng/1LAd0csqt86/76yss78ZyAL35xXyt/N6dnGfZvrWVNmoOAvgDtemnc15Uj5NOOumk+5YOwHvSSSfduwTYA/It0xLwWOpzoX0YXdgqe/gYEBaTwmITawZ7qXBOwBZmUwlwCNi1mS/tIVQWwjZAyugaiQadDSCgbxfCnovZYtFf2tBDrGLgNwbuhmqXsDeASsuCUK/VsMN0wjoDrAKOAH82NFhr2FVCTfdQqjYilae2FaIKoFQ/eo2VYZnFytwmySZ2T0zXb22I6MpiJ96e+r2H4+izBcSx5vwAzH1nk0umw+E1yqkPhUVjErfx7PCZ7gssoklZOQE7NvL6pnYNVBJ+mixBqe+733jhTMCYrI49u41X+QbWAbaBj7Vxm7k2WdrW4WeBJvVT31XGAGparn2HJYuxW7nZHU1lbQfEYEMkWGilAq71TWUNCOq+vqM7DNioPeiptoFtIxvzvs1oTD3jClOdNAKHCtZ4f7O9nutgo9ra5pvUiHoC4W1mKxPmFB3RHXMAnvpHfxnHdB8bL13Tc+lyYgP2bNIJO3Yam7Vx9WbXDlqqfOQVVnIF235PQF/mus34skgx38lJkGygC4lZVvn34B4Axc6H3evzniO0F5Cuz6pj7WB+5yhwkJiyA60AZdiNxiEtU3OGA9w42fa5xl1lqp7ZGyAT8FKZAyzNyeZf4wLD0tzLWRaTj4OiPqZvSd+WxA7nCPbdOgx/+7d/+05fuDww5zgcMSmrS+Ci+X4liczDnI0AKXN3QFzPqO79Xf0rY+Ac5w8tag6QygKgqsz6A2Bbqt37PMZ30jIkUOrjQM89JLJnlcw7e6ApJ03XBA5zRJSMx8ZKbZuNBGgFNjfX1gecwuYUgDC5kMBZB++ReOFQ7jsa5D2nOaeyeRdVpuZ3ciV0UHtWLN/KDvCnXe/9JWqI3EH9txJDJA2qW20MSOU83nUGsL5nkCGwVgASYlPmqKjdeufufMheSFoYG5xC5Y+h3TOac/u8du65IiYCPStP/9cXJFfUt3scoAmUx6auLKI9HCqXE4kNL/hKi7d6iD7h5GheWqeLNZvf/XiHN7Z7z1X/JFE4wIzxEgmpksicnAfm5spceXPc5IQz93lvGOPGLaY0CSpRL5wgtfke8Jf9eoaItIDZ1lLVtXFrDeKd3N8Op+u5tX9tZl1CqoyDP3C352QfrVe6PvsjWWJe7/reQz2zNnaQnrWLdeHKoZQQHKxjTjrppJPuWzoA70knnXTvEgBzQUgLe2CmgzWEkttk2lhbvGKjOlQDw6skfLYFbIvfNhDd07WBSMoCWMJOWwDORggrQbnpy9n408gEOGO00dXFSNtThrF0gS59tmHSCz4Cb+XtgBdginLVZhi3Nvbq2aYR26WNaqytFvTl1QK/tsPI28NBbOppAKu/NurePm8jUMKGFO7eJkZ/BAa0MVO+kjoBK/rfhguoWN90j0NBlNshH9sPAFAsE6xbbCdlAbDr31JlErrsx2bdgXM2NACa/neAn1Rb2oRj7TqAaA+oCkgQOom9WR2xWoFeARPaFsN22eWY0D7rd2Vt480ZUX8AZx3kAjxja0DOEgeI8Vm+q3O9+pRYQispgrHWPdlf9ta4A6b1LHISWOdYUMbWykK0wYzdXPsUFrryETaYDmXDXGb72F3r6CCFIQ+ngNuYA0fVsfLQ7qWhWNli4dLypaG7hwlV3sChygUgB9oBeoARL3nJS666f+ADH7iurf8aM7/6q796hdXWhjuOyR8AaziPSJhUv4AYDiKgJSfAOsv0i7FB8sGBOjEbA0kCPCoHR8ACIpUhAAEgq305ahy8BwwGiJInqGz97fT62jwgQt2wHWtTYKbxjrneZ/WlOTRwxBxjDiD30LMwKUkwBN5gHRorZESE1Mu762kgVz6yDP0PjDM/Y3euU4/Wp8O1MB8Bs/oM89z3bA/Lks023nrf1ee1U3UhU+TdhkEeS5YjxZyqLx0yV19W5/IKEO160RQkZprDaouey/HQvf1N0qT65WCtL3pWgN4f+2N/7LqmMrLfbKpnrR66egvTr13LszI4KIrtqicwrrrWRvSqA6Grg8iSylzeOSdrsxxs1SfQtvusGRxqCETNPoG6ZAT2fcAxhA0pRB5g3FjWr9YJQHy27x3c87Jn473f3jU715ItoLVrLHS/9uz53hHKyfHZ95Wrd1njOztNc7XPa6veO8aueTE76rrqURvWF8q1LGk2zREfsNvcD2zXBt5h1kpAcWu06pFzrDmRc9n60HpkpQXqt0DM/v/CF75wF+UkKkWZ1hkMQE8P++GHH77Kauy2Nuj7GPkiv7K1ZSSLlgGGlrd2AcZnx0mLiJ7isG6t1H2cAzkusst+AltFsCwhglPTGpqDmvOoa7OfUuONg4FT2PtW2/U/zfaVxGL39Q8df85u77KVMts17hNJR6LhpJNOerKnA/CedNJJ9y4J99tFagtGG4kW9Q7XApxgmdrYCh32syGVGLnA3zYebUC6T8g57ck9XES4LTAEg8KGo2RzZcOPnbLhlbRXLZYBS34AuCUbw34DAjGjViYBo9aGoHJgN9lU1m5tBNrgAbGBbsIAMT+ERQME2jRhX5baVC37xknbwLw2TpgvbdqFBNMWLGFcVwabaWwcWr425Np9T75mG9WjOtDps3nEVnZC/batTX5J2O7qSy5wY5MCwK+sDtiqTau7DVdttNqzDhrbkHQhwjZ3MW8CwckqtIl2crdQffqXNu60VMsj4Byj61af9HYzZHNXGYHoNlz1dYebVQ6gpzJhI3UtXUaOEuDDbho5VdrwVvY2n+wbYFy+hfJWlzRJA+poUva3Q9KANsKuHYpVGckwsL1PfepTdw4KDGNAPHBESDMmH0DPXIEJr6zarDzbzDvoDpMPyGbzD2DDnM4W2jR3TTbucKSuS7YjIAPAV7sA0YED2rox+OlPf/rKL4ApcKl7s/+YZx/5yEfuNvh9Xhs6eI8jALhQEt4M1DGPrfbtatTSTsSGBZRjZgP3An/q766tvSp7/5MyqH/7ziF65hzzl01/Y4RmbmUn51E/BrTVDsZ6+QfqL6u5ssQurO0DVkuV5ROf+MRVfprY5dmYy1Ybh30eG9GBVJ5Zu6kXmyCdwFnWnGmOU7bCvzljaoPGq/vZGoZk9/XbOOonhp52AESXgN5YpV1rTgaiAt8rB111zOfaM2awA/BoulbGgJveFebbylweQHOOLfrq2XH3ZpOAaHqoGL1AxfLAGBQRULuXsvH6r1RZs5/65f3vf/91Tz8cY5j35pttewBa81bliJ2/MhzlUx1zSNDu9e4mkZHNN45IrFTO1XvWxv0E6HnfYauXHK5lnFUm86cD54S0c6gB4zgTA7izYfr9IgBq28qX3VcP7GQAZHXpfgcUkjnonlLfZ2vVq7Yxb7F3hzd6N9RmSec035DGqh71XX324he/+AIl+/+xxx676gIgFK3Cvmgsm/dEl2zkVoB/c0nzWPdylInAwMzl5OUg8xzvNWAukNScVrskv5H9V36seWOJY9e6xXu35/Q5BwUNW45/EQd+yh8TmHN8JSo4La3lap/mo35zgnd/9tpP5fM+FJVw6yC2rhN1JfLNO1A5S6RwOMjYUL+9T7zn2bf3IhDYmOGQsC4X2QJ89z4vifg46aSTTrpv6QC8J5100r1LQv93g2FD1AZ79eqwXFq4Wni34GwhvKCcRTpgBxukz9qcAY0AGxveXALilAAkNqxAsJ63mxSgrsU2gBHwtrqu/vc3QNDv0h6eheVpwwBgFP4uFL+0oKdF+YZm2jBgsdbODpnSvhuuiOkj7FG5sd9sjm1kADg2FW0msSsxmx24BdgS4lv+bUIBXUKva3PyAuVhswN0wp6ykQLslQAqXStsErsKYG3jDtTEmMPWLL9AtdqqDVxl4QiofpURyylbxICuHQDpaarugYIYcYGdDiJr823DBMSkixfLrfJjjfas2mNZlsvuBtSxOYwbDEcs39qpejmspXoApDHMgKd7+A1wlO4goLK/sSTd1z1tkMs7ELtNfIzBnlHdMUbLc/VIbc45SthfQAawjUOI02fZq0D7dQg57EWYLwcC9mR21Zhx32o6CgmmRYqhvABQc1Z/l0eAMHvs8wAgIIj2MW8BzJW5/kifmLyJ0N3sD8My+zEWOFKwYzlysN+x9GorUjeAXE4VjCvA2TKQl7nqoMHaMudOToueo0830kDdajdMSQf+dF/5LZC18hA9X1h2ZaPhGiBSHeiwmy8Ds0huBBg2x9TH2bE25DwsXzqy2gKAhGlKMxdYBxhc2QcOxNWLD/gCnHXfyrgAYcsXyAeIAWY65BGLD7DEVjlbKldjoXHVey0nSePJoVaA9GW/ZvuYkpxoxrDxjmlpXtmD9Kp7QHH2jGmJLVpiL/vOqsyBkpWrPtwy1k/C+GNX1j8x8wFTJEXoMWMIrranOdyBXRyPDkYrn55POsN7HyubE4bcxa4t2HFtVBsDrXauw/hPaobtV4/6l7SM9+SyZ2nJZrc5Meq/fgKoe5aDvAJZH3rooas8nEaVr2tIE7DfjeIhi2Ae6//siRZ2tpmdlWi8lh9NZtILOcXTVi6fpz3taXcO9/JKFqNrsdQxm61nzE3sqT6obQDd/Z9To3q/5jWvucpUm5GHqU9WR381lWtzbHZzH/DXms060NpCHiQGKke/HdYGMOdMac6uvUh6cIiuHn3jM9vNHrLnwGqSJIDmHT/eaZwPnGHmJTIhjZV1cPRZ6wBjzfuuZ7ztbW+7a3drMTr2Ipm8a/ad0xxXufWpw0K1mzkCa9v7zhqyZ1sbYCNzMLL5ykmi66STTjrpvqUD8J500kn3MtGLxPQgLWABjQEHPLBRvj10DOC6oNcy2VrUFnJIJ3RDWTHMSgA/ZXMt8Gw1XjEkgYOASQdoyNMmu3z3QCBpwd1l+ArRAwbRscQYVk6bkz1cqoX7gsvLaLWhqO4W7MAOAKNw6ZIQz/53YEn5WrRjjdkAr3YjUFH4ss2lDRktUZsF7QYIxeSxoc4+9Gf5uZd96ANaj0BeoIB+xN7RVyXlxKAlr1AdaiubdSB+dQ0oKl+AKwYToMDBXvoi4A94RTaiTfoyg9rcY65i022Yds9uc4i5vDISCzYt6wkgWJ+xG/2zh6Y1DruujXZARPXFSKwsG2bLTh0SQwIDuxz7HeDTZ20qHbjShpW0AODU5lR5jI/qX74xDKsDKRaA1DKjsE9rjw03V27tY7NbH9OAFO4tXJ8jYsGywIWARpttdh1QUd3anMsHO8p4BeL1GYaUeYUmbOUIzMGkrU84rvr/pS996R0wX191HeY9Td3yC+AKGHBgV/dgnK+TCVAABObsUb/CgwMSHXpXPeqrbKrPA6D+/t//+1eb1y76FOO7+7DX6KU3f3OYCeHWTpjM/a6t63fsUyCx0Pg+CwgyhgOjaF1XPg4qfcl+V14FkInNWF4Ba9lczh2yIj0nAAeDLdCDtit77V4AKkcaTU3gPKYtO1emkrJyMAGXaW6ar1eCo7bpJ1ApJ0r29/a3v/0ucoAkBpCGxEp2UjsFMNZXsXPNI/UFpmTPXqdAfSIqwlwKUGMzCzgCjLCoOR21X3VszguEI7UDoDan6t9bFiXHrugdn+nPWK/rTGHzdKwdGLhOBozuPqOF/OUvf/luHqNfzznd/QBywHFlarwFkpobOVg5SF1D3sF80PWVIRtszYJ5WTvVt5UnQDlwtP/73PsBQOm9bazsQW7e75jk3ddcTNu2n5i5ZAx67/bOz1HZcxrP9UmA5upQ9xl2e33YPWQrzK3m+j6v7l2j/NW/94NojdXAJjuwbRVrv5Td7jrH3w5Eq+3IfXDG0XDeQwizBc4H8lY5YWsrB9kZG+Yo+ve1UfXnsMFgJpOxzlHvEQ457yZgdH3qILjsrjlcXcgyaEt5WY/qz5VM2HMIsq/sp/xLJCi6pwgEh/PJf8eydeCuR1fWYyPTOL9Efhh7TyQdiYaTTjrpyZ4OwHvSSSfdu4TZ0WazBTQ25+qJ2ZACJy1eSzZhGFMALwtUm0FsgzZLQjVbfLexdTjX6r25F9hQ2tBsG6Q9+GZZGEBFi+4FUoBqFsHA4lvpBotnzEWLZQt8YPFuah10Rb+yDREwCdDlWf0fm7LNmrDR6o7ZuMCPUNX+b2NUH8U0ArYvawjIakNLFsEGGDjaM9rwA1VtGGzu1JWMwx5qhIW9mrG70WcfQCMyBUCjvgc0aVsgLAAJMFq70KajqameWxcAXgBXoFCfYUYJmwWYC5HGyAXIlfrMgWkkOZwuro+FY5Y4LDCdhDLb6AGiAruAHm0csdDZOqDTxhPIAfC+1dfDAK891CGQRnhwCVjUNcZw7Vk72HRXdoxMAGPXY2Y/+9nPvtMYZQtbP/l6pn7BIALKYJB7jjGonA5h4wQA6AJPA4ABrOVZXZ1K7+R4oEJ59ZzGF8aXcpewreTPdoB7AE+h6LWXg5+A5xwbgcoBvklWVKaeb44APNfOTkonY1KbYpiab5f93UYf+MHJRsrGOOz7nvef/tN/evDDP/zD1/Pe8IY3XPYVE6z6YZ01XmuPEsAJw20jIvZApuqPsYklBkThmKAVXh/1eYCKcZzNN8dr+9qqfurZMSA5Q9R5QT4apzvn9vlznvOcO3ZprL4FDmtnY7L+8V4pr+rkfdXcaW7neHJQkvxW0qd+M5eYszAiOTpqW3Ovsawe9Xe2yplgXq+fHKYG2JbY7S2IWh6A3IB97z0OgfoD2xUgX+r5DldjQ5U18Cqgru+re3azmrMcFmzV+DXmA9awIbG9uzdgLsdZfcQpxzkbcBpwVp4keGIm911rBFE5nl19Wi9wTHmfc5ZWH+zw+onmau0FNCe/w+lb33NMcCRaO3Rv48p7trZpPJZvDqD6nNOp/Pu8+bq2q32Sz1iwubpU38ovAqU8ekZ1I/OAad736WtjuzZmSLOUWiPk9Anwrf05G8kH1e45Gxr7dI+zs/7O5rwf+6lfembl6+DP1mfmYeMlILn6x44HWAKHX/7yl19jiz6++T+gmD5vz3/zm998t7Yy9ze/eD+ZS5ojepYxVN1J+3DkkooRHRDQ3vyabVsTlqw3rNGApA7T9KOPcs7U37/8y798jQlzfu3lveBaa69SfYSlbX1E2mkBVu858hM5APscU7qy9fzmTOtocye2fG0tsk57GpMcNqQrrFHZ/EknnXTSfUsH4D3ppJPuXSLFgBmw2qLAMBvdZb9umOCGpwNmLGwttAEXwgOFAbZ4dyK4hagNdEmeC+L2XRuBNjzCxG8BLWUQErc6uzYXt1INPl+2sjrTolMOm0B1E5poY7w6qZ6hLTb0ViirwzPKw4YLU3H1ONsYeIZTxEvaROjelrHfpBaAr+oo/LUE8LSpboNQ32BxKT9AR+gyLV+AMoAD21k7CeXEtNt+KQlrxhonHaCvtBHm2gKkwFgb6p5LiiKgwQYr8Kl8Ap7Ks3q2mWyTaBNdHoEeACUbUAfYAYvUce0Wk6pxQaaCvjKwRz7ZLqY3GQ2MoNoxxiLZgUASIPK2KWZSz6xuNpjGQfWr722KAV5AS2HHMZYw6TlGgJ2BEJWRnZJBMD6EnmMZOfyFFAOJDvaMaW3MZ0e0VdkHULvndh0WIIYsgJHuaHl23Xve855ro9/8Up2wu8g2OKBH2DsADFPfYUJ0TNURy71nZjs20MDDyl9ZAzmr4+te97oLLEnmoee2gf/85z9/p0cNtFsnExAcgK/9OAiwswGKwv7JrcRsrTwvfOELL9ApoIDTJpDeIU+lwKPKWtkDVAJiRFoAHHtufVk5aGAqD9YjgKPyxEKrDhwelatxVd1rD9ea72tTWq2kC1bTs2c4TMnhUeZFh7hVPvruHGHLNOz5WLgrH9RPY8q7Jdt2ACE2KSYgkLVrG5N9HxhJOqN7qmvjonLVlpj8mMPeIa9+9auv8qVNXP/0TDq4AX0LUDrYFHi3B1Ri3QYEORCxfALi6vvarHJmf96N9XO22XOb6wKlOG6qSwf3Nc9hP9KlDdzyXvR5QOZnP/vZK6/q3SFtdD9rz0LmA6+aBx955JEH73jHO+5Y0/V97NTm+gA1cwaGefUmZeC5ZDFI53CieZd5lwC6AdLZTUAnGQqO4cZw9a/81blDv3pm5Smf7KYylndgdOC9CBes1q71/gXAlze2f9dnYyRr6tfmomykaxuvZIQ4M/sJtO271dDfA1dXqudlL3vZnVwER7H1mbluDwYkmcLu17nb3Mnx5X29+r0c/g4fLdWuAcK9Y7M7Y7F7+ikPrHX6y+6rLwKim6f1HSCWzjPiQE5b74n6s7yaT+s/Mk6l7LI8STl4DukSa9zeF9ZmG33WfQHTtX95pxuMtIAR7L1YeTgbm0+1SdeTfch2HG4psqYfzgtrpPq38mQfAFpRbRxq1guVuTazZmh81gccfuzT+kX6Rhi8J5100klP9nRmvpNOOunepRaxG85mowzkBcQAjDAp+20B2uKzezEKsXyx9DZkjD6lcOZYbzElWrQD/lZaQBg3PUHsCBtgIBHAA/vKs5R7gdyVd9jQes/C2lrGXxuD6uh+oKffK7sA5MRc3MNUWnALQaUnaaMBGCkJJW6jaSMB6KTVhtlsY0SHtYQJtyAVbVcbyTZNbfjKTxhr5cIwoUHb39i6Cx5v2C2WIs05bBR9AZBbUBwjxSF/2rG66xN9pI0wUYDNwGSbX0zMNlZt0gIfbHa0E6COjbVxAoR1uEztiO0nPFo/9bzqaKOqTZRLP+n7ZRJhvwXwqpdw1DaB9U8Jg5LOoNPl1cF40A/YTljjTukG/jqtuzGHJdu9xlE21nfYwoClAAkMZlIi7Kekj1aTe0PwOTxKnCNYr/oZaIu5RuuYNnHPDIyJmZVt0nHsuQBZmpzNJYFr7B0oJzR/bQiQykbJZgD5gBn1e+AO4AigX8rma5fArdog+y9sG9ASqBorLvClcmFOAmXrFxIc/U0OhawH9j/HiD534JkxBPwrn+c+97lX/3fg1S/+4i9ettPf9Cex2TC6zf3sWYg66YXm5a4N2MQS79kce0AKgK3Qb4BJ7db87v2AVQkcrW8qAz3T8q2+5FkqVzaRLQTc6KvqyJ6w2c2/2sRBnuY+76MdQxi3QswXtN53T+MH4Fh/11/dUzm1fyBL/zfvmPebNwPhsh0RBLSjKzOJj3UG1h5Ytyth0udCu73PAhAdrklzNvsIJGSf5pVAocpcPqQp+l0ZK18AvfHRfZx/ony0a88vT3OSwxorY3qx1bFyBfBmM9lQP42BUn2XXnTl8Q41/2p3YBx5HQCj9QPAH/M1sHWZ0ebddRQDKqtLY2J1kOvf2NDVtWf3HugZ9VmAn3cjFmY/HZLZeAusdzhqshzL5u76QEfrhvqmtjEGzSkiUbKtWLK9jzlrMW3XoVHqvVT9m/9rT+xZjF/SCJW9tq4e2RonYQkr2rXslgxFzzLfsDvgcXOCCILaxoF/XVu5OEvNTa03RBQ5/LDPtu9X5mEdYRxGnEz97r3AGVnqf6A2Rw7NXY7rjb6hUf+Zz3zmmpurDwZ6bVL5Wkc0/3Sd9RVmM0dHNi86h3P/NjJjHXq7JnUQbNc3PpwzYF1XAuj3PiI/ZL3Jvr23rIdI36z0zzcicXAkGk466aQnezoA70knnXTvEiAR4FNatgDwasN3bchsSoFAFtOraYjdaJFpQUovts2ew3hiS7Q5EQ7seiwJh0rR3wMkl2zEbTiBdxa6AIzbtFIQyzq1MJeHjSFNYPkuu9XC3YbGfdrQZn03tQAIz8JOBWDEziC3YOMg1LSkrjaCWF42cQCR8vCjDk6F7hqsPeCMUN/dKNuk6G96v93rADHMUOG9GIMr4aFfbc7pbpIDAUwKTwdw2fACwrThatduO2MKAsoDYMoPOxd4Wjm0E2Bj2c/KD5wDQBsvgDZ/sz3h27VzzxJyDhRqU+iEbhq/7KDP2pRi1zl13Ga8zwEWmN/Vo3ruGAi4cEARgApzyoFBjTkgcv1gbHZvm8nK8T//5/+8YwAZ+5WX84fuKc3I6tPnQCFzjXHN5rRh92PZYu3a/Dpkp9/dR4fRYTLlEbgSo9Dhh7W1g/aE4PcM40MZy6s6AhCWgV+523BzsOhnz8Sgza56VkBHfdKmX2gwu3AQWuUBiPe9Q7/IuqzeOSkT+pM9P+CIRnr1zJZqM4ei5dAInGoufepTn3qBOjScC6V+4xvfePV1fY5pXR0DWhx0pH8dNgV4r0zK3/3Cl83PC0yXV/Xo+p4Xk7TyBvp1X3ZaX1XGbKLDompD8gNspGfSFF+d2WwzUK//G1+1ve9qA3NI/R1zFViEYUwyprEhhB37jWYzrdAdD/KtPIGWNEQDrKpTbVY/lG+M2A3D9g5Z0IRjz/uR42zBZdcKLycXU0oKYMel0O8AK1IL6hwL3qFeQOTKk00Fbjl4rLrFBF4de7JJQN/qSBKleYyjqbavvbO7GJblXbvQs/aeWuZkdpC95AjgFOIM7bvG9obDW2Nkm+VdvQPiMOr3HaVdsYe1sQMJ9WVAbfUpr2ylw8wacx/5yEfu2NmNNX1WvconmQQSEN6llaXx4YBOfW4tVH3W+av/HQwJzAVyagtroOoRmN+4+c3f/M2rrxyGR2u4slfm7FGZKz/2MOB/57V+r+48B052ke1XL/Xh1EAMMN+tg8KasD6qjbMxzoLslNNlZavoPm/kE8C/dmuurr1EcGG6slUHGFoDIBpUb+9E752+51wSOQUM73tnIPSjXaxhrMXIIDQGOO05EAG7pFX6vD6zhuHoaixxNAPFrXGsU0reqfWj94q+5fA3vq2xjLlHH330K+RNTjrppJPuSzoA70knnXTvEjAB6CFM1sJ/F9lANQty2mqAQwtTAEHJQh0Iihkn9AyTsQ1X9xZe3SK3RTd5AotjYCKwY3XwlHHlHBZgBfQtCLzs4mVZLJCjPrvBEk4NMLjV+JVcJ9EmxGJUbqmFvM1r4EGboJhYNu1CtoFLQnx9BhAr0cwFeugbhwQBGgGGTsa2caieNmA9X10AZdteJcD0hgECNbQNe6LfZ7NTqqw2hViZQqSFXiuXtrdJA4poazYhNBJIitVDpgJ7smcGiHR9IEgbyZe85CV37PCu2QPzKpMyCOXW92wJ2N2Pg6awZ5VRiHp9Y3OoLYAy5edwq3UUNAYClSo3hpsDZbrO5tSmmj3Xjg5x6x4gKTAW0EtrMHYSrdgdE/VDdiz0HEhuPACTlVloMbswJpUJ+OIz7CqMUwxkDGJzVan6F2ItfLd+rD0dCkg7FpgkjBpwBiDA8ALyYpDWd+Y0LHjOqb53WFE2EzOwcN0cMz3HQZQ239XDHBpoWqoPAALsH2imLStj4E8h+e9///vvxgFnA7AFezsWafcGjNfetQ9Hz7LZzYXNt9UTcFK9sPZjFALwSRB0X+OKU2AZ7A6xMo5r6+b3ADxh1/Vlupml5rju67tArgW/gf4cceVb+H+AtPLW55wYgYy0cut7NmXu3cPGSg6t23dW5avdaFPXBv2uXIGmMTAd4tfzuy4wl3Z54F924m9gEwepuZDt0+rcOdY7E6C24CWgVWi/wyexO7uWlAz9+OppXuw7UgMOOY052nzy0Y9+9OozQJpDKM1FNK45FOqzgMTmzcrjHdU9yVjUzuzAYX2VxTzEEQhc615rEBrR5vAAfQeF9UMjlexJeTfGaqPGv0PfKvMzn/nMawzlSCBJ5f3RHCmZw6t/dpdNVV8SDxzcfVb79n1tAEDG0m9s00kmubQHCJJm8P4y9zdO9/1X+1c30S0O3QtA7hk9v7mitugaOsFdW5v1nD4rr+aPxkpzU33nnWqeYbPsjnRG7V69uqY8OU4rS39zvHDAekeYZx3iCLxXv9otm+v5lceckG1Zj3rXNOZ7tjWjswRqGw788sXyBZBaf1hDmke8g/Zd1th+8YtffNly8jreDTlojC2Ox9qz9rL26H6g/EaGNE/RJ7fWcH1zBgml2sl6yFhwRoK5qXyqP91hMhTa1XoEyL11r27Z9EknnXTSfUsH4D3ppJPuXRJW1gIRU8DCFdhSsnC3ScU4aLEpXHMBKhtJGyY/5dOmNzZIrC6MtRb1gUnp3j3/+c+/2/TYGAM4MZcs3oXnA8WWIbt52DAAtG2wMW8AUUC9BYqBmTbVQv7V91ZnVzmW/VmSP9B4NTi1L9Ci3y3025QBYfyUYkkBG1vQY3/YcOzmyOZGiOcyfpVVaH8bCJqqbU70sTYHErchW7kGddBeC4wDBgBY2Jfl0+YG+A+01WZ7oEn5Y9l0LT1R/aJOZBSWId2mUWi0w3L6u017eVeW6krvMwDgve9972Wnws4rV5tZWq1t8LGB9LNyOKBqnROBKHSBXdvmTXhwdaExuKw90gJC5h1WBFAXcrvAZJu5UmXU/23QlcmBOECvZaRqs347qEzfrxwGVhaAExC3Y5OMgpPlq68NOQaYzat76DeWAjH0p9DabNRhTjas1cOBQoEdlQsTNJsBClWGwEkgH6dHdSTlgPHITus39s/Wqk9lwVAzFzSnfc/3fM9Vlg984AN3eQdkONiuMvQ37eXaoHILDQb2m4sxujgKspXssrZcR1PPp8NJI5g9VObui+1nrtLP5h1sW44djFnvAeXLpkr1t8O1yJIAThwEps3Mv9mlORBY39js79qpOa1T5HNcicwoL9EB/WRj5rnKWRnMld4RJQ4PDj7zL0kKUSIOoASSGCMBT33uXVA+Qt8L6e5dxTbIKWRbwDu2XfkcwtXzY1fH5u6nOQdDuDrTua7OMUOBSrRLzQVAouyI09KcWJ3q69rj05/+9F1f1tYY5A5vFL3DubJAVfMUEI0ESuXoWdUzINJ7oLYil4QVSg+8+XQPkJJ/9a7fOTVL5iQM0uy4H/ZB95lWfH8HkjW3BbonMVG/5CSubcneBNjpY6BmbVu9un/fG5WlPsvOMdixTTFH6UWTpqr/+owGtzUG7WoSG8ajvoz5D0w2NozF2tNhjeW77+stb9e+/vWvv8ZF47vyVLbsDCjd+6wyNLZIVZDp2PWC8ukP+rvqoGx9z07VjeNLPuWNeU/mYYFjxICVMuIE3fWTyI5sNkdQToP6mGOSlA9td47R8qPj74wAkksbSdZ1AfyB2M3ffV87Vbd3vvOd19xc+6/+/x4IZ17MjjkNOc9KtKnrA4f4iXIhqRELXxQZcNp7CDNblEBz5DpI2RrnNftafWoSF0ei4aSTTrqP6QC8J5100r1Ly3btd4t5mzWbY4tNzByb/q53+A/gT7IIBWAC/GwosLKERALC2tS04BWa7/N9LmBDXp5n87HArOdiNwBLAYB7uNUyfjdf4C/miM83HL9kQwLkAJDvIvnxdNG0HyACCKuuWGj0TQFTAUm1E0amk8AdmLcMYptXB6EBSLRR/wM/sAHLs2vafAIbAJ1t8JaRq5+3r20QsSPVFZCpjYEogEqAFVBkw19rF6Hlu2lRvz1kjfOiDXSbsp4bGwe4jG0G2GszD3TWTm0eHYxi8wVcBbhuugU51V+YKVaXfqa3i6naJhWoWrs6lGhtjAahzSvGEDvus8Zx32OA1R7Ccrs+kDsworzoFvas2oBUQcnhgsaA8YOpBhTA+sTkpeu5bHFtSGcaY4m2az90OYHnNL27X92BuACGnhGgkyxBzFWSBOysRAKDbZdPTDbsdcCmMF5su2VcGpPsqz4LWDAXvO1tb7vGRaBWY9N82P/kHgD1nC21Y+2Dndbnhbf/4T/8hy9gsCQcvPtjWNZ3HGwkLNhUQMgeDFc7YPtXtkAUbM7urWw/+ZM/eYF2AWGBW8AQTOLKV74BDACkAAt6vQ6Y0xfVsXapzbFLsQNpUJencHTSCLVz83/3Vx7MaQxogFlyIeUb2NFn3RcQQ0uYFrw5H5uTDBGb6PrK2PeAXe3S82qb6rxMuNqIbEcAWvXEODUG5av9A5Cy+cCpwOEvfvGLD77/+7//6ns6uT0zMIhcR8/vObVH9TBXALe9u9mmd2ttWT/Xxkkk+C7wCvgDbDVnOsCLg6H2bs6v3gHNypgtZKP1TwBvbR/YFmOdpE/31p71nbmZ88e7qQO5atfG7EZGYFh3LeZzYzawkpOva7uPtE5t1XjpedlD9XvWs551tSXQ7+GHH77sw3urezGma+/mvNrXIaU9j/Y9B17loANOo17ofXNW7Vt+rV26vuuAfTT5uwczWT90TeV73vOed+eorq7/+l//6zu5DA5w74zqmm3UPoHntMrJWzUP0cmtnTk8aYRnG3TmNzLEWqHPOHvZXs/pOtIs2kri1AGmYt831xQBUJ4cQpyYlcd7EkCKcQ7ABvTnCGpOBeZ37x78aJ2wY5VjyLwuemkdPv0dcJxN0dnu2rTTK0/2XTs2F/TT9djvq5nffZWp55mvdl3pb+vmUnNydasODiHtf7IYnGPmSHM3lm7t2XOAuZjP5bHv311jnXTSSSfdt3QA3pNOOunepRaRTljGJrLRXQAUgEBnE/PHpgAL2CIbKIURAvjE9irUuA2v/JQl4KBrhZ6vXEQbGYtYzD+brF3cL6i8ILNNAwARsLkhknsvkAuQCRReGYPV4i05+Ro4BFS+ZftiAyqjOm25W8TTEtw+aDPRJs0mqkR3dEP+HHgkjFUf23gClmzMHWoDXLORBfIDzTZEsv+Vccu/TCNhxBgp/dSXQDsaiUKzhbV2HYBo68L+bIAA6PqSQ6LvFmBx0Iuw6p4h1Bvzqg1x7RDA0HXkKcqLfiHGVmWozesLm2Bh3aXVJmYjGKAA856PDaqP104Btmsr2JK3etDaXxgrBmGbdWULOAM0AEvZVPcGgAd4AHtsnGur8sAKMxfQDQYossfdyDtUx+ExgHKay8Yf0Jo0C0Zm9cXKFX66dmNsBbT002Frgb1kGpbtRIakz+pP0hG1d21DWqN8MVwxhutvepPA6eqE4Y2dWhi4uSigtntj9pL/0M8O1gFwBmD0zOxJGHypNq8dCsPu7x039B8x8zgtgDr16x4yuHIj7KBn1Q6FsRdBIbQfIF5/YLwum3ydVl3rOfQ/e47Q+T7/8Ic/fDdn6ReOQ7IOC54AjNVnQ+5JZ3DOsD9zAGcKjVhzOQapvnXQYAlY4h1DHseBdPUf8KoD9GqbPgtwxj4EujYHiPiobBj8gG6Ac88Srr7RNCQfekeWtr1o1hqHQKDKWsKgJY8BVCyPgE+HLe58z3b1Ydc3fjAkA/bYjvdI9wUiA/uqS6BVbZVUSdcASbOnxmZ6sRzF5WNuxLjunuag7CeQGQAPKKv9GtvNUTF2P/axj133p5n7ghe84M6ZmI32Qyrhk5/85AXQxe713L6P9Vr5el4/1bFydIBa9comqmPJPI0lru+8A617anOHna0UB9Z61zQvOzQrEDE7cviXd3HlrQyAOesVfeTa7q+9OV1rt+yGFBanakA4R5v3GbmodVabY9kSBwn5JU4gcwpHGvC5djEOrNOqWw6r8qjdKyPHdvlxIHBa9tP4i+leW77rXe+67q9NgcKA8342MoSD0G9a9bvWY+/Geu9hztTsKpAfw7ZrmiOrIwdlZciZWBvX7rW/uUw0jHkNc9e8UHtyojnMtDVF//e9sWWe2LML6Mpz8CEDVM7+LjnAuKTe3iUnnXTSSfctHYD3pJNOundJWBfAZ5mrq7mLWQJUcVjRrc4m5qxQS2G7y3zr2gDcGFwxMzASWwy3WcEgbINTslinfdmiGti5oPLKKlgQA7+WobLSEaXVP9yw581DPdWxtEwTQJg29axl8G4ZtJeFOiajdsL+23ZzyJzN+WrV0c6zmbTRBL5g1wCBMBNLwt61A41X4JnN/t4HsFymN0BSSPdKaOhf9QGaAsQxbsrTYSJYyA6WEzrPLoED8iotu83mD4sPk7HNHM1bGzKAMbC9TTBgRzm1HeBLuLSNKrmS7DrQp/pgKwKHMWVJNQjBvm0L8gBAHEAnANIGXAjssqj7u+fqz/IMWGlcYZaxva5j79WbhitQRdsIcW4T7mBE7OEA9H5jMwu7BkhUB+G6wsWBLMYx1nfPza6BJxuSDgQIEAgswi5bLc9CbQNNk0jo2le+8pV3TGZArvGpnbGoscPrx8Cevl/N5wBYwBxwwJjovsreZr2Dw0qF+MYEq85vetObLpDAnGj89Lt2w4LGMMtGjRWH8FWuwu6NB+DcOnrMFZx2pCnI7mBkByBWnvrg4x//+J3d1U60ipt/+yxbDjCKIamNtN2CPOZLbFPAHidMZcR4xfA3V9d3AcwBJcK3+zz7jHUYaKFe69jp2sBMwJJD38whwA3jG0BKH9v8ZAxz5DnAKsBFfoGFleGRRx65k8kIgAIiYp/vfNR8YzyUx0MPPXTZb/Why1m7LvgjzJ38gzHLDmvXnC31VUCn9uw5lUuETG3lSeNvAAEAAElEQVTNAdR3JD5oW8c6NccDizyHfmttld0L7w/UEm1RHjlqHTRICqT5jyyLEPbKAqznwPN+M/fRxw5cC4gO4OsZtWFjgFMrm6h9am/MzAUetYewdRIS2XtzQ3quDtkzlrCAKy+nQc/t3j7f9zVmrf6urcgsVAZSKBi1HBb1l/di+davwFqMXHa/DFESSt5rHEu9U2rzbKA5h5Ps1a9+9WUHMatJSADgreFE/XS9NRPnKe3jntPc3rNEovQ8zHPMUpIDff6qV73q6uvaud8dfNmcRXs4u8Re9q6t7etrLFWHTVYnska1C6kNzv9+N796PmBUm1oLVU/zjGutc82dOQrqg9jl9bs1CkC9tsnuVvaK5E/9bP6wLvDu45TWtySwMOa9ixqbyA/uNQ8vYL32fSs3gZnMTvan53I8P5F0JBpOOumkJ3s6AO9JJ51071KLpjYB2E8AMwvKFqHAwRa12J4lGx6b2QUwgUibp1BDQFdhiQ4H63qbuJ5XGF6byv63YMe6wWDEhgEO2fz4fKUc9u9lnjn0Azi6J7hj2y6LWDlKmLHLoOz7ZV+61iJ9JSSUdWUytCmgxg+gzMJ+y7Rhf7QWsR5JRWzbdR8GjgPt2mxWZ2zBPfSqDVl5ARkxmbWXMrZpdNAbwFaZnNDuYCDgMDae8mEdsRdlACxzPABtbKZcb0PiXtIT/W4j1kanjX4AXnbfZ4CM/q892nwvO9sznNRdW7GlNvTladNf/QI7MCulygCEWxCsZ2HbBaQAahxOo30BCzbUPR8DFuunegMGsIE4DYT119aNq9paH7ShJdcBKO03NigmN/3fPgdK0qSsTEDnZeV2fxt9TFnh4FhdgQ+YhhjH+o2NAkQ5WOj6YslXdoCmg8gCSDuMrBDzwEx2xD6wdIFx5iSOJXMIpiiQWQiyw9MwEenpVp9CkuvLgKrAv9oqAAgIsGx+TisseEB6z6hO1S3QrPs++MEP3jFja5/AkmVPYnkDFMiQOByNjVdX2rUO5OIkEM5cfjSW+z5HXE4CDo7GTXUCYjicD1u1MdK9kjr3DPqpWM/Cv+s783L31q47v2NuB4gKee/a7Ddbx6CrvNk7wLH6kntwEBp2OPkMz6zeWHH1HQcEEDq7ClgqZbfVtf8xj82T+zzvGVEV1au25MQhN9BnmMsOJMM+7h7OCQfuBXjp98re/FC5m8+Bnd7V/S1SAThqTFTP7Kqy0qYtsfdsB2uxtg/UApp5bwQEArKxMwPfMBkduNXzs53u6+/KzNlTfhi0AeflZ36tPbL17q1O1QWYbY0iCmHBSrrIAXcLnAIZzSMkIWqLylnZzXnkUep7zGmOrwWu6edXxj7bEPzKUJv37rE+6Hdl6dkdQrha3xwRtUVRAJWlyICeG+CazdV+vWt6hnHJvpqD6rtsxPuza7IbYGN510a1b/eaB3c9RzqghFVc/rWRw0tFRPSM+q25r2uTq0iSpO9Fu3gvYj0bs7VVdkarlxQVJxeZmli82SCNZQcQeneTX7HuQR6ofN55kvnb/Jl0Sv2+Zxhky+XRGDXnVw6yT9Z3bMLao+fVn+RAzHUAbmsz+uHOolDvruXgdZin9Y3x0pjjwKtu3lMr9cBhGQM6myny4KSTTjrpPqUD8J500kn3LtkUYI6UFkTbDWQ/ZBmEgAt9LVnYAhowEQB5DkuirRrQ1OIzBhkmAxaGA4xaSK9GnI1UC+XV1wXGAW+XZbsaf9LKPACS9t4FYwFsG2q/i3psNtprGEXA5GXtbhmFBG94vTYAUC8Y7W+/beBtLLA+gHTKgMUChLDZICGxJ2f73gElC7DZwAM3F+jGTBJK3MamZ9LmtMGyAVl9U6C6DTfA6VYCw31tcICcy5bZtPZAV7Lrspv+biNZe7ThtgG1oey67G4B/b53yA+gFKhYnQCVwtexpoXH2mADpIAMwsm3X+jYYkKXVzavDdrYYqMCIDkKyqPv12nBabCsyUAIYCk7AOKUjFk233MDoMwZMa70T+3C7gKKamOOBlqVaxvGJRvEygbg6QeH0GHsG6ukZPQDIMT80OcBe9Wx09Dp767Tyry0Dhfjhy37PEAloEl/7uE2xpT5kgOh34EFbbQxY82dWGCVKwDKgUT9xhYL+KdpDKCo/dgMUAvQZh7A7qblSq6lvIGf5oq+qx9LMTPpNmP2pVFMc5SmY+Bh7RFQtMAwfdXKpa60PLvOwV/6OZvpeQEoPa/nYIWXsqGuiz0cWIuhrg9rN6xYYOrKmAQy9Tlm6oJ5npdNsHtzqvGL4Qtsoacb65X8g/qzwcZ0duheB3F1jYPK9pDJnts8s07MQLvKjeFv7BrH5gV61vUFdmR/91MZA9cCDUs0hR1yhklJEqOE3Ylx67BL2roOFsPsxiCuH7rXmMX6LGFCctiI1iHF5B2YjZiXgIcdctnnnH479+ufnDcAMusX87UDIUVbGHuVkz5z+fdZrP/6rnrUfhx03qNFFWknB3JyHGbD2Wdjve8qSwBkgGTzgMP6tDunrgNMe1YOqEcfffS6vjHHGVAdv/d7v/diHPdd4GbjrjolG4HJrE2Axhx61evnf/7nr7K/+93vfvCMZzzjYsUGFJdf83layt1TviRrSBpgmnJILjCNDWvur17VNRkWDpv6TqRFfdhYF8Fh7VA7V07Au/GVbZHGqBwAy56XXXF26xN2s+sGEU7WpNZ9omnMg+Z6zi2yNo2RfsrXgYx9LlqBoypbrh197nnla/1a3ctfdBowmjPJu6bPG2/GAv1h33tvcniRPaq9Kg92PtY5Z51ol5NOOumk+5YOwHvSSSfduwTQKFk4Agda6NLp28OWgJHAuV0oC58vCX3d05IXrBNGWcLksXmwccVSxBjc8PgFPy2sMTmX0VlakBfgBxSwOVqQddm+visBhzZvYLa0ocvKsmDvlg2AAARe2YEF2G7D025D8PZkavUAfJKVwIIBCDgN2oF3ta2QTm0G2NfOmJkAvK4FUGFm2hABKIVwL7tZGbTFHtgFyNAeNus2OG0c9wC2BdG37/XXAtI2UaQNKidtOxs4p9PbzGHIYPkpt5Db7rvV0MQMAk5m29k0kLJ8Akq6phD0ymLDDnDuWuxkbK9+hNiuhudKD9A47ZmVu+vrVxqQbewLgXaYE71jciycGmxAWwQOBOiUj0Ov2Ds77jfdZm3OQQActdnUR7QNzSUcCQBLfQwAdxAPQJetCTfH9M7eMRPpO9P/vD1cUcg5u3bwHNZWP/W3sOja01iKLQd4qO5AEwcBcSgAzfagw+a1+pR+Zqn6v+IVr7i0hNXfXNK99W+2k6TBW97yljvnTXUUBaEt6y9OltXKNs/XPoFNJBxK5AY4JgJssPOrD4mKdfIAKGl8bjhxeZAZ6P9YkoFr1QE43U8AkbGK6eawI3Id5VH+q7EZCAIQ63/zoDbArOUEYIcAo/rYgVPdV92zcexsY7nn16dAm323lWrn6gkgy8m1DgNsV3YD0DZv5kRQ//Iw9ktdVz3VqWu1i3nVnNG9DlUrEmb1VKuXOW4PEct2HUTW/V1XvQLf6Chzzlbu7Mac3Odp1lZGBxz2k+50AGYAqfFp3ADWjf/y9B6t3SqP9UCfxT7s7xih3Z/tZOvmPHPXvqvJhNQmGKqlxkr14zjArjXnAXv1S+OjZ9SmwEQH7TnoqjbLYV30AECz+Ufof3WszQN/axN2b3wFisd+bV6u7skrYOD2fbqwPae2oV/f95XVnFtbkO2oXt2XNnHXAUvLL2dO7xyRK+YL71/2Unv2rshuA56rV/akvVxrjVTfJ09hTcSZgU27Y4/TDyNdpEH16ZoA6KQbRIxwmlg7cAAZl9kjzf7Klm3UVpxK1hvZ82tf+9rrs5x/aTPLW58CzDm6+rz+yCbqvxe96EWXvVpzVv4Y4uR7rGUqazZmLDeOHB5pTHvPWZtw3nG6Nuazi+q3xAHRDVi/1Y+GM4DYPFgy93wj6UgjnHTSSU/mdADek0466d4lgAtQp8W1DR62A9bFXrebqhKgFHOyJNzTYndZNgDXNkG/9Vu/dV2PxYmFJKyP3iwpgn63UAYaAExKu8FTjg21b7NAu4weIKDA/cDXBQ0xAwFLDopaIAswCWy1YZIXIEz7bdutJu5KDdjgPh6YWdoDOLBaFxBWr9qnTVH13dOvMZuA9F3nAKKSOgFXlY/kAm1e5RVCiMkGAGjzhyHK5pbtvXIUAGphnzaGWFQO9tIW2tqGZu1zbXTZNa7B7AMArsSHPsVsY0OlNvbaG4iEBUfiApij3+i6StlwdYlt2H1tGsujNsXAVo42esBdoJlDkRxORHOTTIa+0q/q1sbVhtjGvE0sQEQ/S/qkZ8X0aszaWJOAsLFtvghkAPZicLFxm9SV0WDfbKPyAfSw+fWJ0HrsSOxKLNOe37W1Vd/VJmlABoYas7VNYCJwxNizsRe6LOIAIFo5yJ9gYPfcGHFpx9KHrU1i28XaIgHg0C1zSWUNUFt2PxC5MtY/7K/60aMGkHRdAIX5GfBTfTEeRVdgp9/O1cLPAxAqa3UOkFgJDqB3decE4HAD6q7Mg4PP9L8Igp03uqdykzopOfipPqgO2PL9APTZE2YwZhrJhj6rHcqzdndAIzs31xg75v1+tIW6sIXqUl+VtG/XdOBd7ZAdcfJgMmO194Od7sA/DMnua7yXX6CT94ID+zjVOFGBNpjbO3aMA4cAVjah66VAOYAbaQzvdM6o5iAAcW1BXgHzVlvEihdFU6pMvVeSEei7WMOBgeVXH3Sdg+KEnHOqed+zA2xhbM2eqf26LrCxaxp72StGvX40TpUr9ndl7foOV9v5vfVNdXz+85//FdqnlaXr6aXWPrUnuQaM4gDn1i3GZXnEkO3zbNB7oHIGztZ2lZMMSfl1mFygsPcUqYCew+manaTfzV4Df7FUa89Sz/6v//W/3s09lUFkFlZ1dft3/+7f3bGD6b7TMTb3c+56rwFRS9U18Jiz1iFw5m7SMSIrtDXpB0Cq9+i+Z8zx3vcbdRHYm10FWDfWOUtpmu/aCrDpWZyu/u6ZtWnvlwBk8k3d43C52s96r3d09t/3fS7SYCOGyosusHYz3jht6fPvu2zPFlhtYGtI69XWwpzR5qnyIwmEbR0THJDtQFJOQc7Sk0466aT7lg7Ae9JJJ927tJujFpZtPNqYthht4brAZ2nZrX5KrrOoB+C1yLT4JmHgHpsR4IL7sHTb5HQfpo6w1Z5PS/IWWAb6bSg45oL8AbuAxg3tXKbvMm1toG0iaZ7uQn8ZwpgYPt9nLIDpcwt65Vzg/VZyYp/nGmzfEhamjaCNev1Je9QmG0AHgAJs2aC02S4vofYA4tqiDRcQCeAH2OlZND77zIFvW0YbQxtsIaGrzVda3VbtJB99E+DKvgBzy4KW1A0gheGyAHWbIWHkXRvjqs/bDKdhVzkD9bDcMWCzz4ANB7jZbJJxYCvslkag8G3ayAuCrC4ipn35Zv9s2FhqvLSh1O5YqqXq21gTnk0fUAIsru7vHuzW9W2osYixYI09WrjdZ9Os3zGLjBdlttnVP+aA7tOu2E/6tg0tgBHLlpYuIL3P+r6NfIda9fz6C7DQ/FIZ+7s+jTVXfYT4KgPwq02+78o3kIbchgOIAj7YcGASe8dKrQ5Y1zRahdgCqTkEAj8D/YzTGJDmXeAPIG6dKrV/ttc92QE90/q5zwGH5mAb/8BkTp2AL6zEpz/96VdZyVMY4+UJeN4IhNo5sBhbD2APWAXgBAxh6BrL6oIty47oVWYbDr8DFpWqa8BfZakP2D7pCyH5wDaOFGXesGzPzc4XWDSfYpYHHNam3Ruzzzir7QLtm6/6MbdgD2OuslNgbgAsxxqnGLa/d4G8ODo5JnoO8K/yxiSsbWnXVt4YqA5ZEk3Rs3NCdH15AOwc0FZ7VpfyNJfURjFAAdnrkCw0PydKLP/eC7FEK0N9Awzew6X6mzPJ+zQbCyQOxEsPtbr6DoMY+L5glc+AwqXWDOREHAJJiqrr+j47iMmaza7jFWPZuwuwC/ysfQKH+6z7ONhqm8Z7bdpzslWMb4eXNZYD9Tkmyqt+EUUiysKcJzqj6+ov65qVlaK1ihmurzHqy7f+wBank013vfJlo5jBtKeNmZ7ZnNeYMnasK0RNcJRWrq5Vf7rWG5nEyUgOiQwEKQiHGlbGfrq2zytfYGfAeO3h0EMAJ0e0uc13JFpEaXRd8h5ppGef2Zw6dF/9XXuUj7m6z7MTqfmULW0EEABblEpjQf9zSuozh+zRDO/zAH/rBc7O6snGHRZqzb5SFxyVfU+vn0Mzu3Jo30knnXTSfUoH4D3ppJPuXcKgWvClDU6LQaF1u0EHRlqQY0MCGhdkxa7wnWuX5VsKNOuzNtYtfGOpdF0bJSxJZcCUtGEA/ik7YM2m1yIY4LynzS+4u/dih9o0L8O0hGkhD8l9NgoW6a6RN6Bz22bbbcHqZTrKQ3/pP9/v9bfyEMq+MgK1nYM+MIec5K7vgEx7qBamDHAPIEoH9PYAOocaCT3e/rCx3vYBqDhwigREG7E2KkKe1TMgoR+sSkDwV5Po0Lb0MZdF6f82lm0is0kHAQrZD4DrO5rCbe7KFxjlecBoOsfaa/WVsX6AxPQa2Sh2sk3wHvoEWNLv/Y9FRYNP2Gv3kj1ZJmDt27M3rF6YNlu3Ka2egGCOmTavGPbGBAaok+OXYeWgncqFRdjf5hJM7Q1X1WddX37lH9AAiKYjzEG1EhvNIdoFQ7pnVn4HpgXWBLZop9ofi6//+7s2ItUBtKh8Dz/88B1L8VnPetb1O4mGwNGYw5UPEFoCsDrsiyNjbb56VM/KBOCtDpwFJDrYj3kIa7P/A0J6RuVlL7Vl/RUIRc/X/AjMDgwD+GEKV166zoA5jruNcgB6Ary6vnx7Xj/1HxsEyACnsyXs6wBPkhPyBrBXR3Xv7+aDwPB1GpJVoEdJ0gJ7uPauXZozOujTYX8ONgMeVsdAquroIEHzVPMCBjZg1NjgEKNFnH0CqYRj10Z0ZY1T+reAOoefYo1zdphngPLmFZqd5W+sAOpqM8+qLNmUvvauNo9jHdIgdQBU/QNsZbfeDVjS9UXlThqgfOrLyuWdAIgCnpZ6Ljs1l5BC4IjTtlir9RXNaExymtNA5IDArsfc7ZmVlf6s+SGbZA/dn9wEdn7X91lOvsZ2eTe+OWxi7QID3/e+912/X//611/P7RmAYnNytkFKwDNose4hnMbjSjA1tqo3x2RlSBKieiY1UBvV5gGxtTUHT+XtO6xWoG3P4Fwn5VNZyDFoH8zrfmcz2VOOs/52WB0HWXMOKZDyy55Io+Ro6G865SuFA9SuzIHutd0jjzxy55SqrC984QsvPeIYtYHd2WZtks23ZuE0M6/s4Zzep7Vl5Ujqg+45x5J3DlmVwNme/eIXv/ga6+ZpUgyc45yrbLw+slYiCcVR6PBK0mMOEiRHwkFVcnCaeaufbNW7hCyNdzqt9+pcm+yhopWh8fJEk/u/HdK3SzlOOumkJ1c6AO9JJ5107xJwFpsT02iBB0DhgptYRQu8AtY2XBKAuUAbkAKA0nPbaKcTh6XbRhFrCBhls1cCkgl7X8biAnu3bFwsPhvjW/B1GRHLbAYMrO7kbVoQFjNj9Spds8xbQOcuXjFdbsHcWxbM9sm27y0reQFMz6IvuSGm7KGNAFmCNmolYeuu2QPbAFPkA5wqji18CzirO4aW77ecQGh1yC6wUhbwBujQ1G0j1ibIxk2y2bE5skm+lXAAsHEGlFebI2y2wnILF6V7qkzlLZR8dXMBxoBbm0xMZexEbD52umwgG1X1AZY6aIZ9A3/1K3C4zSeWNLC1zWt1cOp4G+RCVssjBhbgv4T5tVq99Qe2vX7rM4dNsX9tq461EZAGkIzZSA/Y3xijnE+ALuH8gRnCu0kXAKppjwKN+9mNNbCtMgCYsDh7dkACxhO9YWNZuwZwdEAkQK+NevYSWy793MrYZ8KzOYmwNCsbtizwPidG4AkWo9Be4w0YAvzeQ3TMT+YorF62SDYAmAGkYut0HbPT2mWdJIDt6k2XeCMHAGiAWyAwW6FvDZB3YGf1ckAhwKjyJz9RfYXhcwwZr0BFESf1T2AX0LQknBlQA7Azp2Af6uPaAsCykQWrZakefnpezw84N0/RHgfCCZcW2o613/+A88oVaNV9QCpA9r5faMnufAmsC9Shkdu8DYgFHPc9ABQQi03afV0fCFV7BYLR4K8dAu/7W1RPdtX4M7+XR8/sHY4RXzRDz+9z1xkrJWPfgal0k2tjOrjLggZ89yxyLEA9DqLslAZ5Thxzvh/zQU7lAMTGWuMsGQWSEDkjkmUo/0DdysDO6O9yPMW45NDgwPrgBz94dwCetjF/OTgyp0BAau+V+qI2EKFRft3jswUt96A37FCOxz3wzrj76Ec/et2387t3Z9c997nPveagAE/ObGsM6wVtWz7GuLma47Yy1s+VyfxeXvVHdlJ/NLfVpgu2rzSKd2dt1D3eZ30WiB3Y3N85zurDn/iJn7jA4D1ToHtId+260xzIoZfdd19zhneGecu7rT6vjpxo+x5weCXwVJ+JcDDOOXrdX9mM/ewhsLp+44isj6q/swwQLawJaLCXN+Dd+OAk6Cf76P/GrTYhlXPSSSeddJ/SAXhPOumke5eWhWWBCsjYhf4CTC0aHQgjDMxCGHMigAKQVbrVXLNoxXLF0LA573oHvbRQbSG7TOEWtEDf1RoDhgEgFgS9BcPkVVI/G2chkjb4QEWh28tklo/yWWhjYrh+gcQFdYGyjwfM7gZFu7ju8cDeW5YDhsn2L00+/e877ErhhLV/ZXfITPe26aDJx0b08zL+NkRwZUAW9FMv1wE3gTSAKuyxbW8bsv6miQfgasPWtW0qF0wDbu6GawFefbCsSLqMlamNWH0rdBxTVTvUbjkceh42sTZ38Ji2BzDZ7DqMTrin5wPC+w6YB+hY+9C2GNcl1wCEuh8r32FSgRlAlsZ0dQzACJzAlGa72UF5tjnGKqIjrA+xNrsv+wGq6kth83RilWtlGIw7YyyQACjJ5s05wC2bX2wy3zmdPfshXVC+AREAJHIj1Y8EScBLwE9904Y8phsQvmvojlaO2JAYmYHjn/jEJy49RCewYxovO928pc7Ge232jne84zq47Xd+53fuHBhAVkxSjGUMcqx7bcYW2DxN0PLHGDU3kOVgE/XtHvTDcYedzR7ZBVZbeekD47k6Zk/dDyA2xoCq5AQqU2BXEgj6BihjLGVvxgbgl9RFbVY7NAYfz2aMcfqaxnSp55sHOCJEJfRsgN5qk8tb2wm5xiYVbr0MSe1e4ijNdjC0zau9P7E+SeJkg+xFH5HGSBoBO7e2T56g67Rz9Vld1K6tX+iYmh9jpGLO9ll9sbI5WO/pcFf/2g9rsBT41rjJYRuLPAmL5gv63AGn1aPDuHKEmBewtQF/3VP9ugcju+f0N0Yx+QGsyOrZODYfmiOyaYzZbKO2DdwVfVA++ra8a5eua53TfFEZSZzUFxyg3V/bVNbeQbUF/fPaOF1uQF75B7CXR/bedYGvlc/BbMrQe6vnep+Z5ysbwD0HFJ37nktaZrXDm38cHsaRLpphHfL1R3IFXVs9y9taqDbgBMAS7bqAyWyQXEtlqJz1Odsh0VBdyNvU9rVbzwHImhNXdoMTs7oGhndgXwBx5fjxH//xy16aK3K2JrcguoB8T31A/maZ0T2DdjKHJQC7+2Jqd192BDgHyvd57xKOD22672YRSepl7tAnAHLzFmdF1/Z7o6U4LTeiTDRTfUImxXUrKbPrO9EYX42YcNJJJ530BzkdgPekk066d8lGtyQMfTUzF1Ar2WxgJwFusTZLwBWgBpbBgjNADYfZCP1tkSyUurIACoF/mGvKsycQK8OGvQOKlEWdlyGrbMrsR73kvyCkexZEtsnaZ20I9K1chMW3DY78lHk3dysfIY9lcPl/NwPLFhZ2CDTR5zYGQrYxntq8ZQ/9jolVWZzUrfxOml89SHqANlD6uwRUBXDqiwWz2aNNDpbrhgr6vVIMNlv6gabpgru+W/a439p1ZUVsVNt01TbCS9uc0slT38ooXBL7ziYVwFrCbLbB1g76ASCgnuwae0zdaZ+6Rtj56tqq19pT5eqnDSLpDjbSBrY+BRj2WfmR5XDIVUBFm3davrHcKl8ahYFaJXqmTgLHksWcxRoFOJg7sNhqi/LH3KYl6NCg6g6wYlvaI1CiEN80Qduo77gFVPX5Ap9CmmlZVubKVT1iVQUkdJ1NeIDGW97ylqudutbBc4Gz/d11ATlACiw8m/vauftKtUv9UQpcqc4xgEVUNB8L4XeQVmUt0XI01gCVXS/8GVgLuOv5wr17dv//oT/0h+5Yn0B5TMvA6to58KM6AeNLQrOBu0AMcx7wDTheWvYvcNhhddlTn2VnQNOurTw93/givQBQ7pr6PYcFfWYHkNFbBhJ6N9QutUH9wBEE7HQIEu1fc0B90Xf9nw3VLnvIJ814rFjgZd+bk/YAMfNp5eqn/GIy069nr96rpGAqE1kE7+vqEqBa3r1D+6wyVKbGKymAyrugXb9r+xwKtfGLXvSiC1TLHugOc+xhG/e/+cg8zA76/m1ve9sFHCa3xLnloLLYioBochPkeHqW/nNAI33zWPlYreUR0CpqwjyJeemZpa4LRPWOz04av+VlviMn0zwGgOXIYMsxgivvy172squPatN+arPyCcisXjmKcvTcHo6onA6IE77PMY7dXpstqA48BEaSUWiubW7q2RwRnAbkNXI+9X3gaFID1ggARyAyLeC+D4TltMhOrLvqp370nTUFXWvzlLL2XojNXXlqm8pBFgjAmx2rK+dPv0UH9U7iKGFfvWdW4sQBqNjt/e3wvupSf69EhTFbWRsvDkjLKZKNZXf06kXgNB7MGdZ5HGTWqJUDk1u/ebdW9uyh8pTo9/e9KCH1sz7iqOSM4WAQlWE8r9b5rj23rx2s90TTrru+1enbpRwnnXTSkysdgPekk0661xINy9ayqbxd6NlsL9O1tAypZUliYlpsLiBaAgx2TRsbIcMAKywFTGBMYYt7GyPPEWp8K8+wMg3LetwfnwG2gKa7yQbKLkCMxWZxrVxAKwCfDcwydBeI1Y4rzXAL7u6Cm8SB8jrEA0MNm9o1WEe39bH5FCYOZLHhFrJYWkasDZ7NXvc6UVootE0rJpF+sBFalqgNEaDUZmf1GoWlK4M2XiDfBgyQuv20YZObFvTXnza/bNzhRLE7hdzapNONdOgRcMzn2tjBatWta9TNwTJdt04QoIT7jRnOkj5rc72gNpulW9zGl9RGz4+1F4gBtO77NsP9xMAK8KrPMb16Rnlh1bPxyiU0WKg60IlERP/TAwZ6AwgB6svGN2es0wBYwwnRfdlXoIGwUyzi7onRFVCarQOlPCfghQODLQPoKn9gTW2AHVtZYupicweCtdmvrQAL5RmQslEBAWaVtzG0TNQ+C3BwIBFWZN8L9Q2QCripzg5qAizUhtWDnWLOAs4BrOby7jWOuj5woGuyi4Cm+hNgtMBH9Qgkr7yBPOZ87wzzf31B1gegTAsZk432LqC1PKXAcOzk7LLyOmQuliC2HK1YwA5HUWCasVs5e1ZgXmUBXtceyR/UvyRFMPEaO7FU6WUbb+qGbdt93jHmm8aIcdV3tRtb7//qYx7D/DYncWhmR1jYq03L0UVLF7iIQZmtmKMApEDuEg1pIDeQruv6zkFiPTNGYz9dU8g7m6L3iY1fGasD6RJyFg6iqr0rc2Bh1wWWGQ/KAqhtDLELAKh3vDm79mPjIh8qR32ZvfacGMHayTxfPkCzvmu+rszNB91TG9FaBpR7P8kLQ1Nfc34bNzlEGvPZWnUlxVL+2WjPIs+Bde3dWl92XTbe3xxYG6VEZsIBqDkuMI0dIkj6RJuLbCLH0TxoXsV89k7ybqk96zc67Pt+3gPD+jxbra8BsNYH2qx7kj+ovgHgr3jFK+7kAbKd6tBzzReiVzjtyCPVp2k4k0PYSJXar/7H5M8OetYP/uAPXnlnM1i8lREje9/vtU0gcQzq1px9Vr9mk7WpdybJH44kGs/Nl1v35o/uZUfJSWhbbPQcf13zUz/1U3cHpXV9819tgNkrQohcBlsQFdQ7D2vfHMGhjMkNMLcWWGmhk0466aT7lg7Ae9JJJ93LZEEPEAWQrSzAApAOQVq9tgVvMdYwjhYMxlzFbPSsNkhtvAAiWIw2rhbogGOLbJuqks0gNlXJ5mTlFVa/8JZJugzVDV1dFvMygZexuyCsfLBIl/mrbZcl7XvA44J8C3wCgxbo3edjbNkoLpiNcaJPPFc9SwA0ocTCE2+ZsA7MwfQBLNcXNiTuWaZsadnM2lm7aR9gFvtacBzwBkQE8i5I4/4F6bePsUcX3MdKpDkLhCW30XWBTzaWGD3LkLQZxCzTdn0GEFT/yoEtC/wr9YzyAawL6TduMDiVDdi+AJXDZzDgtGPfxTwE7AWEBGDSuNSfPQPrpw1ym9PupXeMyUmLsc8czhW4EThnDvBczpk20I11cwAbNl6wM3s+W3ToUBtb2qLs3pgXJo2hihlfHrUBtuaGxQJCa4/A3RhWATg924nqAOuuyb7LD0MYANM1gQvdEzgR0AEMByDTePXM7quebATrjtODRmlgb0Am9m92Ub9xEHQPqRDOG2H/G8Lb7/Jjw+xkQUBh094FbBQI2fX1Qf0P6NVvGGfAaPO4kHXgfvdnL9VfHV1Hl9b8vyw1jjtzAQcLG3RQW/nVPyI/ek624ZAwNllkgoO1gL5ANc/tvux5NWHNIQGH5tFC3ANrsJb7DUDt/+zS/Mx5gpUIkFrdd/1P4qNn9T8mIRC9n+phvIiqEEVj7gccZ4flgTkbSNlYVPaAy+rf/FZ7xd5mV41bh0Jx5AB1S9735lbMVA6zlYrpmV0LXDTv195913NIU3Bc5EgJHK7tOHk4MPx4j5pjV9eXc6FxSye19nIgqIM1G1sB3s0HdHUxMEkNmHe8//sJ2DN/OUSyawITu785oe97Tu1cPjmCOpAxkLI5c6WxagtlFJ3R/ZwtWLX1Z8AfR3fXZPMxUlcbdtdEUqCraIuuAQRbw2UnHHOkhKxRNvIFSFt+yYX03NoRgJr9Z8P6lnTIRmQto58jGgO6NnRYYf1AJih7CCTveyza8uLoL5/az+G83Z9tV6bKU50qY3N3rPCkICp37VqZOUYc8qjuQO7K5p2JybvOfLZQvb3rOF9Fj5hnfcfmzckOgCQdUz12LW2dlo507/YcB9YC8iiZU0866aST7lM6AO9JJ51079KG+wOpVncTCAckswjv+zYWQMo9yARgAZRZsBG4aPErP0CbU7/7EXa2rESMqpIFPwbJLZNnAVahpu63Mfejrsv29Zl2kqe07GX125B/3wNk+9ymQN20wYIit0Cqw8roAG64OWD2FtDdvlUemwNMGSDt9gugw/cLHGFu0pNc9qwNB3AUcLugNTbosmyBDq6zccYUwiDDFtZHAI09qO0WiAfUYAnpZ5rK206YxjTs2gwJidw+o5nJ0QHAaYPZc2JNATNvT7lfjWoAMMAaeN+GlAbyjksJaA6wdoCSdtMO+m6lIdgH1p32q23bzLY5b0w7YKvv2wTHIm0T3QaYvjS2fc/rOyxg4JMyrf5lnwOG20QbKzbxgG0SH+qDscwOqhPQR9hwz/vYxz52bXDbpNdG5BaMIcBu5Q7oxRrEWAVAZ9/GBtAaC1qIfnWjdWx8dl1ALGY6wN84wPoEAtWHgRTGfO2kfHugI2aoMWN+ACQCihcwFyrte4eakQKRF9kCdSJL0GdCrh1I1N/1NbDYYUvK2HXY7BxEADDtwHEilJ9jA5uaswRIwvYba1ir3i3GY98JMW/u2gPzSgFd3df9DubTp8Bn+pWrSQxE9kyAOXmQEicUB1Ds7/qq8YTl7hA8cxGpG3Okd4j25WzRJ+beyhJ7EXgMDMwB0DPLD0Ab4GPuwJRf7etsuc+bt/opkXLoOVjrQCEAYO0LyBLRYO5ntzlJanO6u/2u3PVR4zObqXyBatW3MH6yDLWbsYfJ653W87qeE3hlDNaBaM7Fwu03rWGSS95JlSP7q2zZTWVPEiCJlOY4c5e5t9TYyNbr10L8m8t+6Id+6MEnP/nJK9/mSU6DHA3pEed8IMNSfkm+fOELX7jaMYdQtovdjcnbdYDMrvNOMScGCgd6V9ciC3pmbQMoz46wmL0PvQNEUWhv7zTvc7Zef3cN4NK71HvWvLYSJTTX9Y2xbc7KxjiV9dm+I0VciEipPXqv7hps+7H8rZ8k+Tk0ExOWQzTWbfm+4AUvePDYY49dfdq7rr63prJ2q9zZSG25jGZROrte3vnBvG9dReeXxIKoEv2JRd3nHIHaziFpa+c9q7YWQRPz2Zole+cA3/X2E023a8pvZfp2KcdJJ5305EoH4D3ppJPuXbJYxLYDeADwlpW64K5N9oKvgLBlH/gNvATWLIiJmeiApGVbrlxEi1mL7L5rEQysa8PatW0oaSXSOwQabKj+grq7McSesYHZ36VbkPr2Onn0TJIJNps2Uistod70RLX1As7VAfAK5N4T1jdc3/82GgD2BcqV1eZfP61WaX8H9tXmNuttZHs2zT9hhOwCO8vhOD0b2GIjdtvOuzlnR5iGXWeDik0KNAEgAV9KyrKMV+wibQbE01eS8GmgEIChz+gJA8YxiDk8AnVib2FyKgMACYDZD+09m1cb0BLNRgcrsQk2jolnE48d6gcjDoMc85Gtr90FOPyv//W/rrKQFyAdUd+1oSz8uM1j/R3QoK9sHrE2gVI0awM12NUyxOmZcrgAZtWLo4PsQuWw4a3OABv5Shi/MfNi3QUqx9KiU0uPNPsFaAKHgeSkNBpjxgdQo//JJ5RX4HB5Y1gDI2zAax820m/AhboDNKtD/VX70hx2aBL7BDas9ArJBHZbfuWx7E9SBhizlaP+ruycBMKqyX9w1Gnf+hVzzMnu5VUdsexEDGT7GHTAP44gc5ExYVzpf6HDAVZYs9qbDEDPDCT0HggoXKCve6tHtreHFAHLOACFqZvnvOuMZY457WJO1AdAy8pZnzvoCzO9Z9cXxqc2bTxhtlZ2mq7ZqzFLwsAhi1jq+24073OEdm/94MC/mLjN12ngdj+GYO2YfTWmc7IERjanvf71r78AVmX9pV/6pWvs1F70sM0txhHgj7O08vXc7AvbNBAPOMoZhiFdvj2ja5al6WArWrC1ZWUlvdFPefTD1vewrA536/7eW+nN9negXaB+n9XXMa37rNT3zRkdhtaBb3sY1upJA/trv55V+9IwrqzZVN/l3Mn+6tOAw8DiN77xjVe71A+Bh9lwYGzXYXAGJHPGkLLYCCfjTZ37vHH8lKc85SonsLx6ZlPZJ+16a7LyYJfm6tq35/f+IolhvADXsaird+1OfmnD/zndAL/VUYRG/VIeIkY4LNi3Mdb/tQ9HVM+vXbwfc95993d/99WPtVV1pTtsnee9bY3qvcdRRO6rnxwh2Vtt1TM+9KEPXfbYu9C7nEPZO8Y7tLbA5hYh8N73vvdOxqN+pXGOsUxGw/rWmo8DiZyOOTS7J03jHWDOwo7OsVM5sufqUfuZJ9mnaAXrh5NOOumk+5YOwHvSSSfdy2TDj2WxAC0mhDCyZcdu2HfJQtXi30IbyLSsKxvfBSOFd5YsrJcNaPMPKGihS4uuZAMGfAMK2rBgS0nL9rTBVZYt07J51WnrsezkZRX13DZQgDUbt9KC3Mta8bkNBVBB+XaDBPh9PAmIZRQvg6RNA3bklgVovZsJIGfgRO1eO9fmwCMAWpuZla2gE4q5BuRZsET+t31hU4UJauMI/Ks9yB0o74aKloDamLA2eQAJGphYvcKBATz9OPTERgm7rmuyqfKojrRg29z3uWd1D4YvMM5mvc0bfVtAuZBVG791IgjnFErsbyChcYLFu4C6Dd6Gv1bnxgoAsus5REoYrcYo5ndjrbLtITL6zsYc6KIMDu1arUUMT/U2xwAv5SMsuB/2XjIf+B+IUX8JT3WgU2nD2nsuTcgd11jXtGTXuVI7CtGtn23uq2d1E4bbprtxIrSazMOy+ruf04IcSnZTmwL3Ahm6JxAHoGBsYaUFmAQgYaaZY/qu8YlRB1DAgDVXcyIBDNc5Q+LBwX4cEF0TCJTtAuYCJYx/sgPC5kVNYAvSA/UeCWDp2YEgPa/6BFpgQztQrvsqQ/ljkWKOY8RyTPZ3QA3Gm7B7IOoC3zu3YtexK2Ok69XDHPDQQw9dY6G/qyvwmwNn9XbNi+WJdWvc0NHkBGhOU6cN1d+53pxFHzSgkDZqZQjoqd8A9Q6VowncwYC0rQGwHEacW7cOWc/GZOzanm3e4GzNXpsLe051rywBaYXR17dJSST5UBmSIwBoBohmCyJc6hOh+BxdInq8q7xL2Vrt3rNp7dYG5rb+r9zC87u2clcPEQYkGki1lH8g8Wtf+9oHn/nMZy4QjRODZM+yVfvcQYvZQ9ILlasD6+qDxjRNaWuSykCDWeQLQBxzFUBKWoR8Qs+rTNnoslnJwmRH5pa+7z6sfHl7X9QGldk8AyQ1bwGWzZWkjMwJbLjPa5vGsL41l2YDwGJ67iu74n9AvoP8mhvqD4e+mo/qq+zN+ip5ArIvGx0VUzc7yiYrh/nY2qpyxnwteiXwv/ubP3ZtiMmeDfV+KY9Aeu+igOjsquuzP3NtfZvTIcAVq9fBfsZw12Pusm/zARa+d2RtUBsFQLu/37UDlrl3KaayNQL28kknnXTSfUsH4D3ppJPuXQJGAaYs/G8BWD8OkliGqU3XslxXI3WZrRsm1gIVOINxZTNtswAE3cOaSg7xaXMC4GwBLvytzYwNq++3HkANZd6wQ3+ri99ANwAB0GjlGFyzrFRtA4S1wbeRs0nyXJtcbSWc12bfhrL2xWQtdb0NoucCNtV3Q937bbMKVCktCISJWxna+Aj7t6nse30QONemDODQ96QWlJV9Ad21wYIKQFzh0xhdGEEOl8FyWjb1Sm8AbAFjmHnsSfgumQIbdhtum0wMOjagH3zXtW0kAynaWDtMCtut/AGrfR4QKMRfn+wJ3F3bBtaGbPtS+6lT19YenCt0ed2HAbj32KxjnHV9fRYDEaCFed3/z3rWs+6Y8+UXkAEQAyr1Wx8LNbaRNrdkZwsOLbimrdi7/tO/Dofi4AAGAeSw4WJyAhL0E4cIdi02pFDmkk1xfWJD7UCu5p1A+dqrZ1SObNKBN56BeS4EX12WdQdgIaFReHzjJ1ZgNqSNgYS12c6FNuyVszKUZ/VabUZAI/AZaCD038FPgHyyDRudkT3qr5K5DnvNfGVMc0LUJqIoOFr00crQZA8Yy9rFGK9PSJQA9xwi1d/ZO+1RtmEOzJ4rQ8+L1RogQzqmOgvF7nsHJlWGxi0GO0cAaRpgTaH3+rj6YzDTHQ8k4shabe7y2sPxzOt9blyaj8kTmcvYP4CoMYolHWCYPRv/66jt2spUewRGBwot2y9Qy9xUewVQVf7+b8yvDAcN1spQXt6l2NBdX1vTqQUq9wMAVk8A+Hd+53de+ZM0ocu780ZtX7+IesneOSDNw7Wp+Se5gsZT11aXEk1nEiLLQu675mJzVPfFbA7Qrawd1Nh8Eru3d5+x1/3NAeaf6mHOjUVZPXpW/ZTNvOc977nand4wLVvjj8Owdku/tjwDAasD1mm2lg16v3dvoGl1xvLss95Blae26nflyEbqh+yl/Nmdcdm8w5kBNC9v/e6dWplp/XZ9fdnYrQ96jrFdm1amgE8yAitLsO9h+sgcSuRZsF4//OEPX2M4eymv5uHK1DjA5C+fz33uc9c9tTe2PoC/smGJO1i0unsPVbbnP//51z2Vu2sru4MAKxPnBJ18jGRzgXmSnIqxw16tY0QRlX/tXJ9nnyI3NgKMLETl7fv6sWtLSA21Yzbf7+zOup3cjbUoWZUnmo5Ew0knnfRkTwfgPemkk+5dEj4JHMD4tAmyuO9zC1IL8gU4AQKut4i3KAMISuUHhLFZo0m5h1cAMoEPfhyqJOSQ3mkLdof3AJqF8trIeX4J6ABIwTazscbIvZV40E57UAiQZFnPAJsFe7WzzUxpw86XVWcj5qd6tslxkjrGHOBZ+TZMUV17bhuiNovqLSxQ+ReUYgf1dZudNkqr11m76uc+a7NOXgDjBtvR6dCYqzRCFzgSaknbFDiiL1eDVz+yNSHW2ha7xYZJe7oPOIUNBXgxFpa9CqwA+LDpBWWAD23c2jACnbBubLDICaweL7Yl2y0BArumPMobE1h/28SV6hdt7yAxDpVlpC7rFpMZA6s8Mef0qY1012AZ6Zee19/0RitzQCUGV0CwjW3gRPkDJGuj8m3DWtnZlfBozNUdN1jnwPe1d0yn5oRCjgMg2EmgBEZfNlyd+rFZx1IkuxAQ0pxSWds00+hcFmP9Wb3ZW3UtNTZdw46rQ/8ni4ENzKkB9MOqXMZ27VNdazvMeCxfjEsHv7EVY5lTyFgzHmrvZfZXZwA7R47/KxsNVjYPYG9O4CCqTdkMeRynzxsnDmcK/AG+kJXg/AAE1jcOFsJ4w7AGyAT6mPvW+RYoF2vO2MbSJfMAaO672rc2N+axe72nHO5XeYDWlbVyYTd7h5IYoP3rvSHfQJieF1AYmMouF4wNTHRQmfpwZpT6n0RBKR1X0j8r7eO91d/ZjigDQHXlIKtSv8Q2DYDEmC+v/tfn66QEaAmtN+eYHziwMOFjVhrb5UNuIUYv1nJ9jBG78gjmW2xQus3eq+Uf8FafVDfAN+Zr5a0eAWN05dnCrSQJFrxxVhlI09BHbfxyFGQPDrvss57RNb0nu7f69Zw0eqt/32Ptl2/31Rd9Z46rHwN1s20OnJ7dPGS+YAvZbHN1dX3GM55x2Y4DBrVb7Vp+3n/0s9XZu6Rn5QCoDTHiRaNsEnHR+qHEoceevKvLPxsor94HPaOx0TjijAMG9+zKxElMi7j2qx2yn418Um5t4X8O12USWz8aO/3UZ6RpAK0IAfVH4wS4XV4veclLLmdIaxtrCI5ZDpVsi7NKBBmbTQLEmqr8OX/JS2BcWwdUXmzj2sR83TOzmezdYZ2kXKpP/Yy5XPL+wb5fKauTTjrppPuUDsB70kkn3buExYO9ZPFvQdhClgadhb8wa8DhaqFhjC0AKpzcxpPOG+YlgGZPHrZ4posKgLaB7XssQ5t/m8yVjRBSaYNA39NC3KbPsyUME5tbGydtBlwDpNGGXcAa+C2k0UZrGVE2d/Ip7aEgGGrAVJt5oesLRANk9Q1wu7y6z+Zd+WgWO41cKJ++p/eLKd0mMHaTvG0Ie7YQaAAAMEZoO5C2fHsWDVdMbxtnOstAUf0PeFlmm/9Xaw8zUp9seLO21XcY3nsYTOXQdwsysAG2BRQGErTBC/BrM658pTaQtXF1LmH3qEfJIVjVY1lixlkhnvSX6cUuk3w36tidAHN2y5kC8NevARLCg9skAh2xGPuuzTYNSAeX9XcbVrqh9RltWUyk6o012kY/EEDovLnFprP6BaYCWoxpoM2CViuVol/1RSAMRp3vgZ/YldmyMgJQMKb6vnkuQAIQ0fUBc4B4YGWMrj7v78quTnRj2Ym2CbTUflhmxiJ2HjCMA2fn4toooKGyByQDosypysV2Ag8czKRuK1PC6bJsL/Mqve2VCdhIiFe96lVXPQNTKyuWc4kTsLJXB2O9H46Qxnn30MwNoCqcv1T9uofkTvXmTMAYxOrndMRqBPIGzFV/4e0Ye2ygfLpP1Ag2oj7TJ5WF7dQupX5jMnZP9tJPf8eorEykXcydMQuxIL1f+g7w1efVM0AS27A+a851mJnPjenAqpwZfV/bV5fmiq5LVzZbeOtb33rlWR9lO43l2jTgsWv0b2OT3q35ciV8vC+8Q8x/Ig2SIDDee07jor9pYevL2gaIbf62HjDncjaIBlipH21Hz7fryUKQyuCAEg0k6qHyVY5SY6d+6fvuE8lC49VBee9///uvz+vXnkE3mEPQGgWAav7O9oytnpltcEZgwHLkWmvUbunM1l/ZRM/n1BOiz8GjX6pbAP3te748RUk4DLdn7rvSmDHe9AvnmrmTA6b7yCsAZrUxZ0Q/AaQcn+Yk4z6ba67sXbOyQfUBULSypBXdHPTn//yfvw68W13qlcZaNjDQuPsbo/rI2iMnC4dXP9ksVnft1ru6srPzgPOHH3747lDG6ljfJBlhLPZZY4oDcM+l6CfGNGmn2g6bvL+b+2qjbIX2O+1kevHakGyEgyYbqxjxaTybLzkGMMU50/TjSSeddNJ9SwfgPemkk+5daqHdIhc4uqxcGzAMM5plABNAD3BA6F/JAvdW8oDWKaAVG8i9mEEYFBbWwiGxfGwIsbJW5sHhIkLMAbnKrNwW4jaPG1avbNqhBJC2yV5gd4HTbYPSguFbDhtoeXvmAsXYwtqthX5sQafGd02bR9p4tIeFoNIa9AOwBJhiurWJwS4EqCtPP5W1TUgbXcwzAK/w0GxJaHbtLkR77QiY0LParO4GDcgK1GZby2LTR9rWxrPUtcLHSzaMqx+44delNk+0DYVSr3MiO6L5iXGELUYKoCS0v98YeT2LdmQ/wmbLD8Ot+jb+ALjAcQAZjdPa7Dac3tjpvkKD25yWaJUCNoCAy+o2Bpa1RWag1KZ3ZS2ASsu2Z+OVN3DOQTYBIfpC/UuFOrcZps+MkW1TahOPTc/mdx5gSwBxADcmVXasvYE0Nrglth+AghUMaCjf7levNt4OCqRxSB9RvQpvru7a2lgm0dDYdCjXO97xjqvusbqMKfMI3eKeJWSbTWChsvGA5cofeFZ5ajuyLuoD6MJOc7hg84a5us/l75lAtg0bXqkPQPHb3/726zdtz/LDiNan+s/8sPMw+8FM+93f/d0L+Kn9lRVr39gEVlee7hHZIUpgtc+BhECX6reOHgcUNZcGptDFVH7yFrScSYKYPxqzPY/mJhsx1jB3yZ10PWAyRqB3mf4G4IkQMO8HxNYXWKYBO+ae8goIK6/PfvazF+ORBEd14gjC2vU+yCZp1gYqGtPuf/Ob33z3jhXWXplcTyplNT05YkQnxDQsr0A10gHl0fvDfIABXPs2f5V375DaQ78JT9+DEb0rHHQXMEcKyDzds/awTvc4NI1MS9c215kjAlizsXe961138xKgrbbftQHwn7MYk7nnNAeSn2jOK4+u18fWFgDirk2GoL7p/hxi+/4yn4kq6X72lu06WKsy1MbGfr9JaVgDZE8Brd3/2GOPXc//nu/5nqudOAhqZ31knuJc5AzPruqfEqdWbVmfBDoat+ag2iRQvTw72K/rgL3ls+U0Vze31u6clCWHgloniDYgc9T1SwhorDdXZosBtrGCa6ucSuXT37U9iZVs8bnPfe41tjhXAN/lm02YX+iDc7h4R1cW7UiuAfu569L7zRlZe5dXcycwurHSfdYjDpQDwFujtBY0f5TMU/pJVBOd3sbkE01HouGkk056sqcD8J500kn3LgkBA1YBKktAD2GPmLrASIdAYErYPEs2BjZ+wmO7P8AKi8nCuYSVgMFnw2gj5Fl7eFrXObzDxhRAstqpGJJA1E2AXxuvZe9aWN6yBm3EXV8CGAO1bdQXqN4QVyHRy2jcZ9jwC49f0LdNAMAOWExL0AaEtITD1YBTWz+h4au7WfuSBvC8rm/Dlc04GAoA1+a1zYrDT9Sj+mHQAE7awGyYOibRylBg+3E82IBzPvhtAwN4wQgC8vkeAA54A7h7NlZlP208qyNtQ4zb2DttBmsDDEjhmmwTwIbV6kTwnlN9MLExkWpj7F72CQSpTWuLAKHK3mYY0wf4XDm1o/4HCKirsQfQt0kHBNuckwtYpjIdQ/UFMAP8yhNg3fdd1+ZdfysrsCEQmiMCCxmDDnDhFHLjTX8aT5w9bMdzbLz7X8jq5z//+Wtj32Y+UFQYq4O5ur+/gaTGv+disdsw9zed1ICD2p9uMikCDP3GQptzzOr6L8alA5DMcZja5jhtgRWIWV2iG9lzA3a0BwAQixVbC0BlvsLqZSe1V3advWZ3lR9oBNRY0AGQRZLBuAG4keAAaALlAZolbGkSBz0/G3RIVHXeMnevdw0Ho/oBd7QxQCLWojHc8+sr4Bq5BTqpO24DwNk71ix5leoScFoeGM6upcNLZ9U8Zq4NdCJVQiKHTWOMclJwmpj3jd2dlwHeWNnZVuWrvrVH9c32ssHnPOc5171911ggrxF4XF6191Oe8pQ7+R/2XZ+/5jWvua7/x//4H19lEVHhYNDVOS/pF/MrRyA7Lk/M38rZfBBgF9DeM8u/srP9Pl9b847gmAOq0fhWRvIbnEOAXePE2M+uem+96U1vusqWFuuyM72na+PKw7lZewfCVrZnP/vZ13OSdjE/lLAqY5TXHp/+9KfvtFON/cqULXn3VvfaKcdRdalM7A/QvNIg5vTqQbop+1Lu2p6dARAbG2ygzyujtVJ5OmTOmkVEzEZXcSyWqlPj1nxZftaStTNdbGsJc2T1NM8ASjl5A2Frz56JAW9tl81itG4ERyCtOdh7BfDdPc0zOULqt6c97WlXOckh1Eave93rrnZPT3rZrli1XVPbrTbyrnWX1W2+ED3Rd91TxEPgenWqDQL2ObXNZ6R9HJhYOStPdahNzIu1KUmlbNN91nm1DVsUwXDSSSeddN/SAXhPOumke5dauNr4OJF4N8o2AcLhAA8LEGDSCmm+BTsBF5hlQmtp9TnoBpCCOYgZ0QJ22bFYo1LXYI44Gdwme0E+7N+SOgGZgDo2qgs2W8ivNuLWzX0Yvn4DNhY4x7C6PcDOxgbrglzGgsXycEAQZqnP5Y9RhHWovDYyDmWqXADd1adsU1k7AjQxlkvlbTPeJqs822SsPAA2sM11aZnOwtXLG7OsDQxgf7X1hJ6Tc8B2ZGOkHKQ99R0wQu9Y2+0BStoFiNzGqw2VnwCrNt09xwE2/bSpBWCTWNCP+grjXWhl9+8J4hwpwu/ZDKdE7dQ9Tg7XjlhRq01YArwD+csHwL6sMQAzsBf4TZ+x9nYgTNfRF8REZ582qQ4NsqHHwC0/oby0WoEFQIq+p33KYaBtzBnGCiYrRwwbEVJfal7p3o997GMXI/EFL3jB9fk6O4QNs5Vlc2PK6pPsFKgitBprEIvYJp5+cnlUJxqI2Ic/8AM/cD2rPqKzC7x2GJAwc2w2bU2bunJ1XfnHNAugKNUm9b8DhbCjV7O1MvQc9tv/AQOVPcAK+NS8XGI79EsrG0aZw41c17PKp5/Ye11b+wB8aV4CrwFHQsrpk9LlpmOt39gNViYN18pdXQO3uj/AhL6pw57YI0cCFt7as3dD7QrkKh8ONnN9z4lBncOAU9K7I5vYSAMgiwPuyou2rXcSe1lGZ8mheeRENnpGWb0PyRP1U3uQqaH7TCO1eVt71mYBb6XuCWglI5BNdu+P/diPXaAZPVvzWnUJNO76rtWe1Y2N7Hst5mD9aW7yQ0KAMxYzGWBcuUnsGI/GlQMORQIYt9q+8ldfDH6RLZxCpT7n3JCX91ZAXmMdCzd7EPreNYHStVvtmu3Wfr/5m7959Vc/9IJ7/pe//OW790BOptpYfxq75Fs+8pGP3MkVcLCROgFuqt9GClnrlCp345PzBkCcfdYHgaox5s39OSw9h1NwWfDeryJqrJ9cDzhuvJE1EvFD/oeOMacAliu77ad51efZJumXZA6a57y3MZV3PGRj1Ztd1e7VvXngT/yJP3EddFef1k4dGhrImoOjZ1Z2h2+qU/dh39eWu3ZqPql8/c/hY62yjvV+Z6fsWltkw9YznPTaxPxnvt9DLdcZ2w8n6EbYWKtZ17oP8H3SSSeddN/SAXhPOumke5cARcvcBdJijO73y4i0ERPy7T4/pc3XRh4ACuRp0WsxK/TWZh+ogbHooCVsH6GKnoNVCDiwQcc+xJi1qd+T4oHAW3btA7jTZtKCq8LjMBFv87WhotMHALBBA0Atgxq7TBu38QBw1U7CkG2ogbZtAOnSASf2hGcMHQeDtNEAPtoY0DKsT2ymlKv8aWO2AfHcUhvfNjFOgW4TBHTqHlp2gFghjH1uc1KegAUHJNlAadMSgI4DAqOWjIA+WOcDdpb23zwqext04dm1Ny1OQNctE8bmip2wb6GTykYz0g97Kf/a30a+/t57Mapoy6qj9gk0YEPYZvSEaU72u3pVVpqLQNfaSV0BTG2GATGYiTb/PQtoGNCWjdRuQkTJpHDc0Ex10Fdlj0XV37F9185LgGG2CCS2Cd5D9LD3SH9Uhuylw3E2dBdj0nxlTAB7gccOx+O4wuSsbcw7tZ2DhjCyMTppLdKoNk4x3zDaAg1KgUuVATgLvAEQNL6EG5uPNtqhazhiAnzNMeaRyqdtV1O1+ri272gjc+i4Vj8aK/UbgCUArXGLXZ+N0YvsmeXptPnshHNQG3OecWBw3LERbMvyND5i5AXm1F/9bZ7HQPSeyN5qu1jJ5HCakyqbcbMOJXOu9jHvAYkD3Va6CLjPIYfRt9rvGJScdVj+tYk5kb0GGHcv/WLjH9McK7LyY2jXJpUt22m85ojq3mxrx29lz0YqZ/1Q25S/CInySz6lcgYCkp6g79m1AECOp/qg53K4VdfyqPyNw+oZCzMb6b7f+Z3f+QoZp2XGZx8ODFvtbAB/9wdUV6fuw/zEBOX8wWDUNuZTh4vte5BsSEBn9fihH/qhu/nVfBvLs2eWL1kA80LtgyWOMQ58Fr3BmZuzqc+bk2KiOpMg8C/br3/q/0DH6tYY08/YyD27/g2IbJxnD8lJZDvvfOc7L6Y1p2v930/9/Za3vOVyStQePUdf7Tu+cgSAsjOyHaJZsh1zZ/UStVN7AbP3EDTrMXOzCJTq1XfmycpKq5oTEgOWbFd/N1/2ztKHtbPosMZP5aw/lKHyd23PffTRR6++qQ2qf9fVB1i+jcPq31yRrdONXodr/cmxZu6rHvWpNYa1m7XhSokhNGSz5RXgX5mSgOCI5YAtfw6+7sseKmvXd6gip2A/OTBLtR2nyq4FV6pHfz/RdCQaTjrppCd7OgDvSSeddO8SEA/rYBmoFq3LNiwtiAsoXGaMhaT/gakbIk9X0CJeuGmft5DFFAG+ACM9q7yAEoAkYBRdSgt4m+Nl1Xo2likmJ2BkdWGXYQt0WsDFRtX/mEIl9wKvsKAej+1JXxLTFBiyny3DCVtGPmQKhP3Sy/QdUBnwXbLZUy9J25V/Gyz5AnrYA3YjwIMuYZvCrqntsUds2j1Tn2sD9gcM8Rzgdgmoz85WW9embQ9d0WfqtP2iTZVLXwI+qn992WbPYVG0OjkGlKEyC7Utn66vbQqJduiMz9UbmEMKou9JJfTMgIbasc/Le5nY2JYO4wLW9dvhdFjTpeyPXuICixjo/d33q/m4QACwaPu+hHFPHxWYio0VIBHIxnnQsxxqQ48ReLDgvLlHeD3GtE3egi1Yl23iuy5wQ5jyyoOIBADIc1TYCJuXhKq3KS9vjDDj02Yc0y+AoH7qB+jW3ORUe2xZz+bM6rnl3X2BUPWx8F/scnMgKRvgSPUCKgKBAgfSdqz+9DH3UKw9wK68MWiBDOZsjPrqZY4AvNDkJbECfAbO1N8+c7BYzEaM3JVmUS9AK6dU1wA6gB8BhcvUF47eswL/zF90cgMqgZ3lK6S88mFpqq8oCdqW5tadMxv3ASpkABqbPU8fs+nVzqxf69P6ButeGDwb927k0AB8A+85M8zpjSOMd/JEWNo929gn/2PMOYy08blyP93v2diDMZS7p3ByY76wddquXdN3HHqrq9y4c8iXg6KyU/ZOl7tQeGHnfRf4Rwu+/iQlJHKi8gmn1z7mVGsJOqUcNd4l3sfmN3bjkDBsUGz77qO5S2JFebouANH7yzPqF84E72jzeu2RPfY5Rqd5t8Qu+x3btPnuV37lV+4c3Y05B3KVb8+JhdozA9WrT30W6O6QM/bYveVdX2Qf3v3ZJmdreapjQLsxjDXt3ejd2tjk8AQe7vvYOxWTt36uzD0jRrjxkA2Q1TE/3q6tKrODxqwB2Fr3lK+ILecAmD+N4Q9+8INXv2ZXxk7/7+Gy3oEYs413mrW1Y2C0sopqwaLmPO5d0HcOlDOv1OfY4erATtigCLb6TVtiw+fAxSCuTs4usDYBkJtTgbvVw3qAfNlJJ5100n1LB+A96aST7l2i/4dxUtqFIgDY4hC4AwjGhl12wMoXOEFZyKCwTCdqAw6xnVrMtyGw0XJ4kTIBsuTV5q5Q0dWetNjFXLO4BiaRmuhn9XEBTaWVoMAqXRarRXRpw+cxmnYDB7jUdphQNjOuseFfRtke+EXXDYihHMse7m8bzL5zArQNPRDCBupWi3hT1zispw0m8G9ZIqWucQBMSUghBim29da5z4UDqzdpidVmBkIJ81beZZJrU+yskvBP2oVkD4Aly8a2sWTvXYMhVp7ZbtqpXWdzhVncteUNjGjT12e1cXl1eI3QbqDOAtZ7MAvmsj4HNCkfAEjYO2Zom09gnjo15rQFWwCI1F9tGoFcbdbV9dZ502/sXf1n807Ltro3DoE7tVEAGEC1sjg9HCBfebNNh9ZhHGO+rgMCyMb5wv6BYzs+AGSVwT3GqvoBRdkU1ueGlbMx4D+gKPCjPLHc+qwfgHZt5eCutS9jfkOTK0+b/9qta7L18jFnkbYB3NvMA6LIm2BYVt4/8kf+yJ0jCLDJ0dDnn/vc5+7GMda+sjnQrO8CSgIYACUkb6oX2Qhtah7quvIMSHHIUO3b/413bauswNzuyxYcYtX/dK5j02lXsjOrjVuZSMTUPphsxlbAoUOKeh7QAwid7a8DqHqqh3mfvRqH5RPItZEnQKrV4KUdS2Ob/ZFr6Kd+AdyUV30l6qH7ycY4UMscA5zqd+OLHqwD48yt+r+8qytmoP737q0/sGGNSwAjJ9IevJVtaHf2DYwvYbmLJgCsWkt4R1W2+q05rTk20K9oAOMglmr3vfWtb73qReMVQ3flWipjZcME9111rD3MgRxi2QWpEDr0NNHXGVQ9u7bn9ln1qszWDg5j0w4OGAVUpsEbO9e5A9XDs4Gk9GDVgU529fzCF75wJ7fRIWGveMUrrvIFXKYp6/3GmVNZAonrgwWbf+ZnfubKr3ve8IY33EWk9Oyexwm0UREcWgDw8t4DJWPRA2E5n6xDOIu893KQOIC11Bhn16KUPJP90eJmQ5UhG+++xk6gau1YmwZs05D2nk2DPXvq/dNzaclXlt6b+w4xt1af5lc2TaKougNiOa/NZd4z3s/kRUhqeI84+FCb9hP433UAYw6YxiG77JryIBFSubKV6lFfc1qK7uBIsoYlt3PSSSeddN/SAXhPOumke5eARKUFQmxmATvAwAVbAGgW5gtgru4ufTMbwGVwbdi3zbmw6H2GzdaG2HdNebcYb9G/i1/AIaDRvctIFIK97N3V8lvAxyZyGRLbLiWsU8zCTTac5Ca0AQYuLU6geGn1SDesdRlmwG6MEIAggF14IRDLpvfrTT2zDQswCiion1ebVj+32SoBUwCPtESdLo09g61NW04bYFKxL+GQQNpbsBbwihXjsxIHwLLLAThru/QaS0CUNlIxI7HRbIBJEcijn8rbNf0doNLmvA3+b//2b9+xbmzEOEgASljiG2YPvBQ6bwNeSG8gnINW2iyzMxtrIBr73PEJQNQO7I2tVTf3OZRoHTlslDPDQYecJkA0DEFgvXBmACGHjvBsADtgEwCFeYrV7tAbfW+eakMM3AqEWpYwp4tNsPKXbLr7H9i7c0d5tOHuOgctcRTVF4EF2Js9tzIYq8YfWzVOaTfXHvWv8Gr20mfLUDem9UWp8tX3MfIKMQ50KL9C4gEr3RfA1GcAGBrCAPbqVl/1/OaMwB8gKK3m6lp77nthZSO6P9Zu/wf8mEPLs7oaO4Agtiw8G3Ba+WuLjaDQxyQbgEIYcgsssWfOrgXfygNQWF2a2zgRsEMrQ9dlS9h+WOIcEPRBG4P9HxDp3tqBZiqGOKAvoCnAqfDsdUzU3w7pwjoX8fL0pz/9cshgnJdXc0tzEm1ijpvuzRlXXQIUy8MBdvrNIYbAdsC+dmPXGIYAonU8VT6yChx7nF7l3buAzdP+NBbM+0Cv2qs+7z62QSLDGFo97vIA8HNAAqzNq8aa967x7GdD13d+rN70xzmBSRGw9dXH5dDNXo1RjrDGIrvx/iuv+hI73lxU2et/9psDKTupfrF1a4vaqGcDoM2ZPSu7K9Un1S97xJ7vWSInvH+Ak+rIscFhuWsUazY6xvVnY5pcDWkM86W6mveA9X2X7u1LX/rSqx0qA4epNR87WoKBaIXaJaZyfYEwUP1rK0QFZSj/2qLPc3rVdv3P7mrPJDhIP2T/3e8ARhq+lXEPpyUpsVEWMX2bW0vNxeY2rGKM38BYY2qd+z23Mufg4ARxyKHD+ziLSs0B5obsznrXHAb8pTEuooYdPpG066tvdfp2KcdJJ5305EoH4D3ppJPuXVppABspm4yVL8AgtODbzVLJRnyZdK5tcdniOv0/GyKMRyBTz3Vdm6LKhEEEnCktkOl/moIrFYAd4xRh5V/wVSjhShSoA1ARCFdSb5vDXXDaTGovYNrtovqWTahMNklYmkABAAtGzTJN9duyo0p7cJlQVcygBdS/noRxFlum+2PUaY+9pg1MZXLwGtDWpgu4XB8H/gBSAdjLaNHONnCAJP8vexd4t8xMz8ekazO3J4/vqdXA9ZJNrQPYtJ0DoxzIhHXkucoCUDImek4htDbFC+5jTAFUyY103YajAsXa1Bo7wqwXXMHObhxUN6AWhjCbw1oM5Op5bR5pczr8CoPUYXZAdmAapmN5OFiL/m7liUUFtAUWZ3/VhX066MkBUTb05o51WvSzobRAX3YB+GcP/nfQFh1fus6VVRl2bC+ItVrhwOg2923gqzc2pHG3LMDGC81eTgTgGgkLBx9V//Iqb+0nxNf8u+xrQGXfVbfaGYsaW7+2CiwIICi0vj7+xCc+cQFGmKIOOaxeL3rRi+7aGTO1+2Mik0sIiFmgULsBMEs9HwAGJCpVXvrC7N5BU7VtbRIDlQ2rd3lnl32eVmrtsvrrxmxzTmCmd9ftWBRFwKaVK8AlgNfcDbzhNMTK9c5QZ2xDc5e2XI1nAE59Wz9UBkA6oGkBQ+0gksHBYZUnkK5ydm95Y+02FoV0F6qunpiJldM8t+9PTE9RLeW74GT21H2cVd5pHKZAMvNhc0y2Ur6ucQDo5rvzswOmhPyTUOn9Ut05aN73vvfdaWUvA793CAASsxZQxz43ikZ9vJe88zm7/I95zvFgzq6M9NH7HwvbvMIp6Z1cPeuzrqu/gd99Hphf3wX0lmegonkhW8lmOPxKol16XuzbfkoY8pUpRm739Ywf/dEfffC85z3vuianAuZnwL+5sHFVmcqbI2dt3TuW1Ib5vHI2NpoH+7xxWX7kVWoL9s7Rk+ZsNhYQmpZx/fDCF77wKoN3b+XKWeIQSGPIQaG1b8/snpxTpcZ85aT/H8M5Fi89Zofieb9o/1Kfp2VcXoHOnDLlaWyWh36mMa+dzBfeL2yNQ928TL+4uca6sf4W0cPx3GfVo2dYD4joQHywFrRG2XHF3o3xXYuv4+akk0466b6lM/OddNJJ9y4Jmy6RNsDus8AXbrgJ6LAAhMWkje5qqbXw7v82ohiSK4tggQr4bYEMNNrNGA1Cmz4b6d2g9L3NiIW9MNpl2iqDzaqNLM25LdeyCZe5pv7A75LPPWMB3xJQj+TAHpqE7apeyzy2Ka+ebUTaFPR5m782MyUH0whj9GzlxU58IsnzY8q04cAIwnoEHgKC6XdWn9Up1EZt3IXhA+iwUlx3yw5azVt9JtnkAX/1BzYP9ucylwECG4oKnAEU7UnlbE+dfGYjhS2LYdnzaMC2we3vvqvPMNDYCecCUA9bpzzJI2DJClffZ2JBqyO5APazdoxt2ebURrFNqTGij2xi+8GWqx1jq9KOrY8dsAcQyBYDmIDklR2rFJsLgFdbcG6szrZQcf2MYVkqL6AEIGgPGmRDPR8Q+Hg2bzxo+53LVtpBWzS+NtS4umTHQGD2BkCx8d9xX6ouJBUCK2rDwE2gX7YCZKVnWR2MaU4a3zUPBP53fwAPcKTPAt0ak5U30LL2yqZ7JpCyMtAUrdwBNuZeGqqBddj47CyGIKYyGwz45kwSnsy5UX0dKPXVWOMcVAD92O/dExBWn69chP4SQt39G+5NR9OYp4dKh3jnWXrLdNv1WeBMqesBMOYlc1ap9gRWGls9fwGp6t0YANJyDgEdq1PPwP4zpmuLyhc7OwDLwVdkH/ZwQNrQbLf7+ilPOrXAV/ZvXGHXY8Zrn1J2VdoIHJEWfRZwR5KktgEebuSNPu5zIBZnXveku++dbt3gwDJArrqJWqjtsteHHnrojr3sXW5tsY5XkRGcbd1jflgW90pRsNHakVQGANY71hgFBptjN3olJ0v2mB3EvM52OmAym7CmwBrufxrTDjFr/VSfY5Rj2tKH73rRBw6tM176DHiNHR34zMFi3bSRGpxRIgz6vjo3FnvHN+8AM7F/OWW8BzhXXccm/tt/+29XXtlN7xPzauMEK9z7T//kcGqeomVcvn3f57VZbdt8h/HqfdJ1Advebz2/tgrc7bOA8MZ9AC6wWT83zhrLOWk5BbFyaxuyCs2tXccx0FitPs2R3hVd03e1X3V3+KT1QsnBkPokO+u5txFF5njjpFTZWvdis++6ZqVdTjrppJPuWzoA70knnXTvEnARs2lZNsA3G4QFNDfU36YUO6b7Y2O0McD46Po2cS102+S28G1R2qYVI0mYLbYMwADY0w8WVJ93D8CBpiHAlA5eG6o9SMWGB7hYkvctEAtoxs5ZRtC2x7bLLah7G2aM3QF8tQnGXARUAKlsMmnJ2ly3Ya/9gLZt9GrHPcSodthQe+X6RkL1bMIKwe65bbSAeitRULvSxbMZXrmOZS4DUIU6Loi9wNaGMtrwAbYXHOdgwCID5jjgBygNdACMaHffARX3hGt/dz1Wsn4BYGyfd231cyiKTXf/A+RKNsTp6JUv7V4bZxvTviufvm9z3j0BqRhAAJ5lVC6QthIhWKVOm9c/2o6TBss2EKXvHd4FXGt8Zofs2xyiLzDjHI5kA+q62rj7K0ObbmB2z8UiBAwGGmFACVPO3runzXp5A8T6rHJiyq4WZW3UWDE/rPRKZcCQDLwhK1EbVL8AP0xdQBhQpXrQc+2zygxE0ZbYtcCiru8ZAR1pjzZXVY4+D7ggvQBQF7q7jqFtpwAO/fx93/d91//lGWi8p9TXXz2/utZ2AHAOGgcKVo6eAUzRr+VbmfupfNWnuRiQy9mCfcYOjBlAD0AWSx9AX35pONdPv/Vbv3XNOTERa09zogO6nGiPBdt3lRcQzGHioCPjHhu991TPoKWbdEJt3/yWfZd3/b1sTmMMaFPdYp4G2Em1BQbg85///Ksf0j82z3GM9Lu2q27d/6Uvfemu3QE1Dm8U5cJOzV1slk14lwhR9w5zSFfPM176GxOdE8oY7Hd1rC36vDFIjidHbe/p2iIb6nr9U5uQDOAU3XciZ8I63Ko3nWnglHtK5lMyKN4D3jUlTtxYo5xJAN91qBnvolqUzzua7iuws/wbi8kD9FllNVfXr+zN3ApoB/p1bfZMUqQ2rNwrdWWO4WQAzDWPBT42zsrrZS972WUPSQL4nJMlW+WAqFzKrw3JZnAuY2PXbhxmnJO1jXa21uPkrY+ar2ISc8yqq0PKPH8jKxwK2PNj8vY+qzzZj/WBtsg+6f72vMpSv5I1MbcENHsncFwEsNbeHOFd1zhvzmtMN34arzSB+1152QWGeX93mGBloMNbqs2RBESFKE/51Ual6mCd2XfkVDgRvI9EB9Hf7/Pq6nnss3qVT/nWz6IPzDervQ7M1ubG9RNNR6LhpJNOerKnA/CedNJJ9y5hADmEBNMCuwg7Dlhmk7sh5HTFhJD3WayJWCclrKHyaKHdArsF6VOe8pS7jXipRTSwVViiTYPUYhgI1jWYbxazJYtpIKJ6AW+xxfYALuUE2tio0QjdkO3dmO2iE8i5rNll+5YwjR9Pi9J3NjGYPRbmgEgMD3kKg6+c2M3uX3D3/zQBeTHJ6h8sPhsem6M2H/3vsLwFmm3IsKZuJUBsQIEnQFRyEViM9PkwRVdTF2AhXF/ZgZjaUb/TBQaKCyFma1g2mKFAXiDFgsMcAX0GQM1Os93uM3Z2TPkM88j9e+AW4JaNdK/Nd8AAgMxGdVnKbB54DXxuDJE1UabKWP85pKuD4oQu6++eH8gT2GDzW1kCJGhEYiL3eZvi8qg9aAaW92oUrh0EXvseqEcyA2izYalYyiuPAVig3Yk1DszkuMJ6bgNdHR1E6BCiygJAKy/ARG1VnkD4+rjvSuYtwAiGNlZpc2AgT/d3z0YRAMexO2vn8q4MAGZ5k7Qp/74r3+59//vffwEa3QucxGwF6lTuwFoAAmdc86cDfhwW5GAobDqgBQcDx5PDfLw/FmBauZV+ix5x0Fa/A6Gyqf5Xt0Aa9a5cHEC38yuQF+ufzmj3AuIqZ+3S/fVrQFX39pxA5O/4ju+4nlPYNqcOWzLn9nftFsBW/SorRxYt6q4r/8oGzOudWBsmm1HZ6tsYfdV32aY0OWvXwMDaE3gLADNWlCtAqHercaENvJOrPycJFqDDIYWEV9/K5xAsIJw5qucCIKtn9wbys4/6v+8D15JW6Jm1U+0DNDW3A52Mj/oJALrzoQMOSaps5IvPVx/W+Ol39ajPMaLNj9i27tv3s/mDs8A8371kFThcanNtRFaKk61ym1ti6Iskavz1fWWqvK2RarvqX1uaH9hSeTQXNY7JCKQd25joADFO8BxM5CNq92yvJFpC3QD+++4C5GoD7UxCovc97Wbs/ljInFvr4AfYclbROM95UT5A6MY2J8jHP/7x69r+7r3jvci+G1s5Yapzzh5Ou9q8+SIba5xwfjibofrULtUHEM5xkexJ5en7fteXXWMuLm9AqnlLW60dc67WP91X3fubRASN/uacHCWNBe9u7zoHKnLOKyO7K18OYsQA480aynqTcxvgLSLJPH3SSSeddN/SAXhPOumke5cAA21eWgg6xZuWHdkGICggsgV5i0wHoZScMm8RvIe5tDkBeGGp0Scsv5hjQtzo1bVYLtwOGAR8KTntHZgmBFMoP42z6kNXULg1gNWJydiHWKPLEivtAUm3jFxtsvIMyz5ahnFl63f1vgWk1BHoKPTfdUB2IJcQ+GXjAu+U/Rth6v5+CbBAE7LfNkfLYCbZ0CYxG1l2KAadzT2bWnAcuxKYsZrH2F/97zAg7OH+ZrPAVoxam1AyC6tbvCG1bewqu027fhQuaQPFNmyc2QFQgo40m5cqf/XGUsIyXn1LZQZk03IkzbCsc33OgUECwKFYAKf6qP+BQMYSm+t3G1xyABwchdE2To35T37yk1d9sfDbePd/G9jqj6G8sgbLdm9T7cBAvwE41cNYxGI2HowX4enGLqDGs0gLVIbVAO3v5g1ja8NjPWM31eVfm5UPgH3BVWBfCXggn2WuAmyxXPVZ5SRPgTWt7wOblaMxRKMzYFCkQ99XtthznGIOMuz/xmXzOjYaRwlGe4Cf+aTr6Zz2E1hoHFXOQJAAKKHfAUhY5xxitF0B4ea1BZ7WUVaq35W78tUe9Gp7duBobe6d0+fGYflWHo68tZWVOPDe4fDAFAfwV7cOMsvGMd+qs/mJfZGqqE2b92L7mu8C6gJ8ywsA2rP7vB8sPSHcGLh0rCsHPV3zE01dwFnjpvbIjsxd3UM6woFqwKP6q7FZfrHw2RdAtbR60LURB10AWPWpvb/zO7/zeh5nHacLELb/q0fP6P7mga6tnvUVHVg/5lWH93EA1w4OAuMY0C7AsJ5LOxqgWn6Y82QjWjfUR+voMg8Aw4DEXVff93+MTY4H2q4cZrVBzM/KTBLBoWL1S+3X3BfAXR9xWtUnpGh6Z1o36cvqUz81HkUbGKc5IJqDaEwDAmOJlr/1T+XnoOT4BPQbL7tesHYyj9TPGNDqbGwB3XtmfZrzw0Gq9MIBxuXf86x1KksArIPQyrNyA6Urc5FdIqya60RmWSf07MpHe7d2KzVGn/3sZ1/Pql9iNdeWDlBsTASu55BqfZkdNna7rucFGseIzl76vj5tbVYZA6T7vAPa6gPAqXGCaLBOWXNP17QONm9wPnA0eFerM114/1vDan9rwPqY46Hxsg6RxkDfdx2NfQ5vWuTWsyeddNJJ9ykdgPekk066d6mNS4veFoRCvITotXgEPtjgOKFe6CvQFQPDxszmGYgDoBFKiPmHdYDZKCSe5mnXYVX0P3BDmKxNLXDHwU1tAlroCr3FIBJWh73YYln462ozYrGUbKKAVMsckydwaIEsC2zAlcOFhIvbwPY9xg/msEU5AMkBWLV37dFmBJhwC/L+30q37OTbvzFB25gKeQZAVheadUAzrCWH59HExLS0OSKp0Y9Tv1e3Wbtih2K80LDVN8CknoUtpB/Kz4njfd+PQ1YCNAFGADpMMPp7bUJtuErA0gUcAa8cJxwJq6tsE9zfACRARPcZhzZ9wDESKjZ/y1zbvvI5+/G9umDPcgo41b4No4PRsKiE8Ne/n/rUp75CH1nod8CgQ9kATQ78w6DFFqssAHTAJ1ZobdJvjiYyL+YRG1ttD0Te8YDBp+yATYAn5plweyxl4ct7wI0+AiauDEjPMEZLZAYAdQD51VPsWXRVAzqwQT2L3bAZId9scpn/5l9jcudiY8BcnH0HomC+aUNzU0nbAHu1wwIVjZ0Oi/KuAGB1HztaZqb7AbPst7r37sH2rT5AYTImPT89S/Nl/zt807WArb5bRmapZ2U/QF3vtdqyfANqzQHGVKCfqJPqEEjUOIk1Wd9Vthwc7K52ChwETAFz2HHgVABTc2UapPUl0B/gI6Sck4mtY4U29rBQbw9Zwsgtr8re34FqDjatjwDL8jTnmhuqLx1gcxy7X8Ct+gQ6GsuiaBwAhflYewEA2YN3p3kfGN619VHP4/QAxCpvKT3U2pJzojJ3L83a8hauXqIPi0kdWMfpWhmrb+OhNst2NqKi/DnnsFExmPvp3vpFWHxl2UP8AKx9B3BTvwDIri9xXmNq1/+Vh66qAw5Flez42WgGER/1gSiDlSjiNCGN47DFntvzvDN7fsBo5eodxzFL/qZ8Yro3r64Tz/2Yrf1kz+Ufe907kO2KDmgeKh9zBBvMgeTa+puMTuOud3Tg7sMPP3wBzp/+9KfvCAIiRRpvzXO14aOPPnq1d86WxkH5VsfsgS55z6cZ3v/NC/rMGK98laX26hqyCxzX3pV9XjlF79DFFwVhrqOR3XywY9hBi9YV5evMBTZqXume7IkOtrWKuXzH0f/pOvCkk0466cmWDsB70kkn3bvUAt8pz8ADYZ0ANhuxFqgxt4AewFjgMNaU8LUW8JhL3d9i1ealRbcN2TKlgD826G2+6LICgLDG2sDaFGAneV6/21y0EXWgVAtoTJWuwRRxivTj6dZuCPDq7pZW8mEZhqVl7coXAKx9lnmp7quRSoMO6wMYhl1TvVrYfzPTshABl7epDVKb5z28S5sI/+4+YckO7aFPC0QEPGKU2SwvsxeziUYx0AZgu2H8GOScELRGVxuQHnL3tXGLNe7Ea2UREu5wI5vr7EfYuPLbpAGKMHmrh+/Kr3sx4vrBGMQIZmONk+qFBWYTv5tO993KQ2hP4Cm5CaA5xqOxUf80pioX0AUYg4FZe3ZNY6v2oEOJdUtXVIgvx4pDZfq8/geSAhbIMQh3JhVQ2eUJOFkZGaCRsckpAvysTzkV2uw3/gGobKB82/gHTtcumIRdb05cdjWZEDYSOAsMdUgU4IVMhXFsHhOyD4RZuQmHIRl7gQAiDwCTgNZlllXm2rN7KhN9TIBw+QttdmCbei1I1Rh26JZ5MEZkbRzoURsWmg6QcpAiPcyerb4b4p89mQuk6tochl3G+QXc4HjAwiU34fBEbY3ZqV8dZicUfCV5yAt0f9qqwrjdq3+ANn2nTWrfyttnbNrhSBs6XRn9XRvUbrGEy788yg87t1T/FNpdOZtPOK/K38Gi5hxgFOCw78q//GojjixzSOUG7Huf1e8xvLHOA9PKK0CvfNKbJRPRM4GK8qyPe2bflU/rAn1lrm8exQqvDWjF34LvxnBj5dZJVqrsHIU9bw9Brb3MmeaFnhHr2P/WJHtQnzmitnXYY99V79jLpG22zhzX3s3GjTYm9WMuXSYnwC5QsTwcLgZ8dwCW8rm3MS2iyTvQWmedXfRnOQi9e773e7/3qmdOBc5h9wP7HYooeov8St/Xz8ZAdej+ytXz6hesYWs5zvwFQn/t137tmvOzFwdkcnxU3vIS9SHqiqyPQ2PLM/vNzrq/vJL4Mk5rU7rh5tXGRfn2nBi+HIXdG7AL1G9u6x5rnOrfsyuX5yElYGp3jTMAOAbMYdYL3kUiUcqjsQJox662zlu7NCZElDU2raMB6d4XHHqiSGjT6xPA9B6ceNJJJ510X9IBeE866aR7l4SGCT+2OLXBxNDwOWYIsIheIAYskGPlGYARgDQb0JJFJxaRTVKp/CsTthuA1qnHNkaAI4vbng3gwi4T9lh529DtJkldLJ4ttBdIupVkWBkGIAkwZbUaLbJ3YW4TcZu/BT3AV5mweeloAlyFh36zEgCtNsOwW63ZvaaNlHraRNqobx2rUwAhNjKJgu6xaRFG7Xkbzu9QphKtPqGnbbQcKFRaJqNDY/Q7YB/zSNtimzrEy2aJhic9V/3oEB2M8pVKWBY3hna228YY2LYsNkDgOhB6LjDLBh6riAQD1qnQXGHUbFJ7lWpnh7WtnQM6ab/axAJiA6Ta2DsdHXO0dgwYxZAWPks7EsNP2H3gVdcA9c055pHuMW6BpbUdABvQKQSYk8SGunTL9MU6DMTtc6HrZEQ4DZoX2EJgQtdUru7TT5UbQL1jv35iY+yoBABycn2AARAHGEZOJjZvedO0pm/e77QngVxASnq6wJn6CFjS/Kg+tZ35rzpU1sLpuyaWW2HItV/lE/a+AJd+DuAoz8obILjhyADEfte/aXSal4054LN+NT/E4Ose7xVMcwcYcQpkR5jQwOV1/JhjsPhK5gfzNtslc/DUpz71LpoAqKWN12Fp7g4A5SQA7tYenDULvBm3/V+Z63vgG5trPLAZ7z5tI7KDjnC/A6MAauYoUiWctKQPhLwDxXceqi0dChX7EXvWtdUjm+MsDSyrfIHL5pbAKvq+bNAcTuMY8MX+KmN1BoaZrzgp2CtQ6ru+67uuOgW4iURonFSexjH2sqgf87LPyW40NmI7us7cQ9vUYZc9v3wbG31njHUfmyJlccu43+gEesbGJ2mR8gtgdDbAyqbUjo2x2ptjUUQK3V8s2v7XvpWzNolV2z0x6z/ykY9cZXrlK1952Xh91f21PYdxeRi3Dtwks2Xe5KxTR+WxjmrcBo6yCWBmbdWcnwMl9nvP77DH6l4ZgOqrI9vf3hP9X58FTDtIsXZKOkGEU3X9whe+cL1/sodAXNq7HKPVqfySgah9sqfaoc+cE7AHAhqHDujl3JScybAOe3q55GwcWmd9QhZK5ERRAM25HA7WBSJ9OKV3buNAFbFgjvG+K9/amKySdY9nr87+SSeddNJ9SgfgPemkk+5dwkrcA1ds7B2UJDzRhsPCE9sAAClk1mbHplvIp00D0KAFdGGnws32MC3acJUJE00IMfBkQ6ydYA/ssaG1mQW+Af1iS2HxtiAX+mgjUQLUlWyy/L0sJHIEq7fp81ugWJmWrWxDazG/YanasaT8dI+xfr6ZSZ0CMQBeNhGSegnnrC+cMH/LlATa6lftqr8XZAc0rL5qCbiym06HrS3jiqanTRnbA/Ss7jHNXxt+p4LbqGHaAUgwG40bLC1AhvKrbxs/DKU+i8HVxhRAafPVpo+2ooPJbPBouDrIi0MBO4cmIBusbHQg6XXuQVDaudTntJLbCGN10fPt3voVANVvB48JOcXEBHw68Rv7iXYh0BITvb8DVEgd0KdtA24+aJ7AEAU46kvhwwCXDUWldw14o2cK5LO5r9yBFZwzmGP0DrELazOHqqlD/V/5HIaHcVcb1f76tu+7T5i3ucYBQdqoMtUegOzapbbsu+6tPFi4AAayAd0L8CvPnCn6Q31W9zeAJLA2gKjPY9251xgB0ALfC4l20B6wMXAlGwnQEXqOYVnSHtkqEHFZiRx+2R1HojJXlvIG1kjC/x3KVr7VAdi4c5RxubJDpUC/2qxyBOTToA7cpP3Lebnj3vuo/sSoZ4/mn/p15WA4CoRdO9jUHIpRig1sXq18gYWVmR4tx2X2Vd+xaXl5D+s3AFTlUGd9ETuwfLJhus0lTGIRANixDqlj68ZsKf3ZWKr1Q/0bWKrtAIbyUZ/qoq+WYUxqqTLTu3WgVv30gQ984O4ASFIX1i3lQTu6fuxZ1VnUAedAbV2Z6d8C5Spf39FLV3ZrD4BkzxElgfGc/XRvbVmZvDdrzxe/+MXXIXscOJVJO9Lw7boFVrPd3hVA6/7esw/20L3y8F4lodXnMZoDhM1tAay04vubw67/i2LhMDJWOdM4JfvMfO1gTVIi9O2be7un+mYTAbzNEwDegN/K8xu/8RvXuy65heYr68hHHnnk6udkOTiAzOWB2N6nmOHli4CAJIDd3H3ZWr+z/2zIWpYWMBsiLUVypHuMofKojMaw+UuqTQJyu0b/cdqK4vEetuYxv5Kl4hDpe2tsayTRTfueNSdxPG80z8qFLFD99aadz77V6dulHCeddNKTKx2A96STTrqXqYVhi2PgAM1SYbot3jF8sBcWlALcubcEpGohbDPiMJjybpPSBqwNW8kGlGaYDYpw6PLDqHHieuUVzoylVhLiBhylFWqhXn5tdtpMAVcApsAxC+Q93GtDPmmMAvZK2JWlBYABncBnG14bA6CuMgNyd6GOhbjyB/LeZ/3fTuVdewtxrP0wava5Npj1KUeBDYkNztqMjXGfYVGSIcBGXfCn/+lAr4btao0uW1heNoV0XTGi+w6wAOSsvIEdABkgCyDYxhbT3MZy2Wg2W8q0zO7aJrtzKBY2O0CAffY/wBNghSFLxxDbD2BZ3jaR2FjZs7B1zFebV8zp3bjSruzZgR5tuitDYHT1bOPad4AGbahP9Hn5Na5snrGA6RViWJkf6HViT5H6EKrbtT0fG7K+KcQW+N3mH8NwpQ7oTZZ6DlCbzdHepRcJ5FhnwIYzA52E6Jef+Q2ACVxsXkvGgNOh8tEJ7W8MS3IeWHVdX3vXbrV/yUFZnt+9nF2cHLUXBq6611fN6yRnhPQHZHRtIETPqTy152OPPXYx5OrTGLjYksbGhz/84euAooDKxlD3khlo7qsdYvMF6GzbsTVzKzASqGeOxZQHxnIu6h/M3/LmXMBeA8wYo2sD61wyp5h7m9forZIIqZ3Kf1n1xudq5npHdZ82dogfBxQZF/MdqYISbWNOpn44yXp+Np8NKB95jYDD6oKdKzqmn/LMxrJvkTTrTFmQr/+xx9kyPU+RC+VZuwIcq7tnSI1dchgA0fLIdsjTkDQxZwUiAw8rq742R5tfNnS9awNi+107l3955aDwrjYPl5cDzbq3tsjmG5f9Hfho7izVzmyCw4zsSJ8vg7JnZTd9n6QDh5W51Dzj4LbGc+3c38kKGAtdF0NVHevbNKFrW4e4lW91qMwclSUh+ZwBu/YRNdQ4BUrXVqJwKiPWq3MQgMHZVOzS9G1r1+aErqdNH1DbPRxtnBS1KzmeUnXN1rTDc57znDsnWfWvL/R7dlO9OBRWPzntXPM3qQ9gZWXRxrWR90rPLb++I0UjGsZBoA5TLF9RU9ix3q102ZvnjLHVQy/VrjlGagcOUAAuEL1nITGIZKCTbO6vTekwl0/2SN4Gi97aExHCvMFZZm1Sm1rDbpQDh8BJJ5100n1KB+A96aR7nj72sY89eMELXvDg4x//+MUMuQ+J1ilgzMEvNobYr0J36cDS5qS7t4f8tJEQtgYkAqTZgNDz7PvYtIAYC9IF6togA/CwNZ0sr+zYSpivNuBYKv3t4BobFMzjFtzCegHMJXkADpetpHzqvsCS+29Zuxv+uqxCWpMW6O4BdJSAlA6LcvAXDc9vVrL5r4/alAvBtGm/BXkxm2LnVC8bUUxNfWTDYcMsTyAjgNcP3VogABbvMliVZU+1BgyziWUJej5QVHgqxhZww8Ya24ozweaYJnSfC7Gko2hDbpPWhpO0SXXOtgNs2tT13DaL7ASgAvAoX3aqHcvf2Ox6GqrZNGcL2RDODawf7Y05BCBtY+8+IJdxg6nVWGoMa9/udRhifd/Gl5wILV0ADNun69j/gHI6kH1fOxSSDnjCdOs7B+JgDguhNmaN4w0b7kf/aWPtayzuIUFdC5RdR099BUgFzAamxmytXfoukCFQpN9C0ul0Vlfjm+PB4XLK22eBWY05ttI95S9ywUF/5U2OoT4G9gfaYlKaozCSG88kc7rvGc94xtVvlaHDwqpjZScP0d/9kEnAXOXA6PnVjYROtlFflme22DUx8WgSY1rTsqV/DNQ3ljkMcjgIga5da1PAH5a2PL1L/H3L3uzedbqpA2mf8gLoZlucLMB69e7e+sOcsRErnAsASZI6mIXVE1hEkgSzvjwB2vRvsTvruxwawrEBZf1kg4DS6pcGbuOHRrR5hKOEIzTgDqO9snZNgF3zAHY4mQbgG8cCUMpBf80RQLd16nGqYHfWnySYsHrN9Rxz9UHSTMBxbbWRPOZxY1e0CcA5m6utsxsgdqlnZs/NU4Xtc3JVZ46rbLc6l2cOD2PlVqalflmd7PqnNgusZTMx24GH+r+kLyr70572tKs8jXkHjZFtMh4anwGbZFww+is3J0X2ml0kh9Bv79LnPe95Vx+8973vvfJwgGW/+7/nkq7JZkhAVAbga9Ed2Utt8rnPfe5i0lrrmVfpSZdWazrnkfn5/e9//7WGq/9qS+3ETs235UcLt2SdRE6l+7KRnlObZXtkQACr5v9+G0Pm38Yuxrq5h7Op+bz/A/HJgTWeu9cBrQ5mpcdbyo6A713vHaqdbtchxqX5bA/6ZPONq+yKM63f1TGGfPlX1gB9bGsOJ3ZjTJ100kkn3bd0AN6TnvSpBcP3fd/3XYd5tFiMoYPV0+Y73b33ve99D375l3/5WoR8van8fvzHf/wCPYUetSiKoZTW13/+z//52qR9tdRC4yd+4ice/MiP/MjF7mmRGbAXO+Dnf/7nr3J9PakF3E//9E8/eNWrXnW3gIwx9M53vvPBv/pX/+oJ1emkB1+xYLZZW1Cxv1t8YzwAWLGwgETC0Z16D1ipP1av10ba6dxAqoAP7A+bc6xDLClgGEDJgTc2zKvLBmwVPi3k0/02njaETh22yeweG+FbJq7/AVQbqueaDZtb2QjlBBZbwFvMk5aoDYX2Cg+2CZAn/cAFQ79ZCWjb5hOIIdT4VnN224bGXpsT0gLZRJthJ3i32QLg08oFiGChYOxxNAByyGKUV5+TDQDO6Gthv1it1aMNY/OOMmD39dzKyXFRwiCsbG0IA6P6LvvrOW2OexY2a5s/cgXCMktsoHmMNq58yQzQWNTPgCNtWV263t/aHuCIGSkMWT7GKJvhWFg5AgAs1pCxw6GgHOQXAJ7Yh9jHPbf3A8BDXwJK2Xl1wHLs/WFzWh8tABIYhBFpXLMDcwrgaA/Kwdx3wE0b5GzE+CIVAkxeQHCf03XKDgADnrPVbCa74sioPm3A2a1QeQxFIDZtc9qWPbc5NxAFGMyRJiKhawHte7gg4Av4UBIars05Azak31jqnYqhCtDMxitj9eFcEGLfO7y+crp79s5hECgcqEX7sc8dMMhulQkrfFnonFacJPVP9XLwlGiQAB2gUaxK0QWVmw1xwmCY9px+hJnvXGwMBBgFkNN5ZWuAbaCxUPzC2tmn9yf9Vwxp49C4yx7IANQ+2Wd/Z0tdk24ocEe7O+gJq9b7tescxgjgKcVY3OiQ8sC+7hmV20Gk3ot9h9G/c19ryuyj+a7+0A4OafUOA3x5t1fWylx71H8OsJI3yR+MWu+YbIs2+0qxqE95VM+uwVbuGYHTgHqAMAb37XuNU8G8ZKzuIYO73jGfPP/5z7+eZUwG5Fm7AKwBwt5hlRNTmKPA2Cf50d+Vp3V2fdc1Of3qHwzz8uCIqvz1f2v0ypDN9O4JTMUWVdfmAYAtJnbvwfqSE4DUC4YoyYTGf+WJ3ctxt+8qTqTarbm/+xo7XdP/1gpYqBi1nHTZOAmw6tq7WYQLx4u1jsM8k52ozg6I7HnePSRNRAKYb+XXOCJhRKu3v7PtriuvbLVxG3huvvCOFQWkPa15FpDnpKivtT1Zi66trfeANu++ylxZanNt4jC3XeeR06jtq0Njs4TNvWNA+Z5oOhINJ5100pM9HYD3pCd9euihhx786q/+6uN+16KvnxiqP/MzP/PgR3/0Rx986EMf+pr5teD4hV/4hQd/9s/+2a/QmSq1IIoh8vKXv/zaWL3rXe963DzaLAQqV7ZN3dvPn/pTf+rBX/pLf+kCnX+/ugXkOsRHapHXTwBywG8nIJ/09SdsvDYVdHCdxgugBZTa9GOQ2TAuCATgCQQT9gaMKh8HeGDTAoWW4Ue7FJsNq6JFbwtgTBjsmd0sAQeAMqvTK1wRUIj5swexYZHYlK3+LeDWBgdbBTC17AyLahvtPexHm7oec0PI+h6aJS8bCaChsjuY6pudMKtsYns2IIJ0A0D08e6r34QR2wiu9iKgwiJ+QSqgDXAf+EhDEnsXSEcD1UFdmLiVj4Ynhk/PkLcDxIB/gLV+Y/di+9i8Y/Ji9QEFSEQAfbfdjCdgEZDAwVXCxEmRADd2nJWWrYjRqqw9Uzj/gqlkVDbkVPnYMFASYxJIwqZXE1l/Nlfo39X/I3VQWkAHsNmmFEs1UCAAAWDb/YE1GJy0LtlUm1ttuTIAlaHntFnHKq6dy6v8S4BlDK/6MADDPKR/dn5zCFUbbyxe7NSeWRvQ8e0acjT1R/fRudXnbKNnaHtAfnbV9QEvK9VCn9i4A8qQvwCCYIOSaqDXDUwA6Dj4KxZac3LtFXMx8Ko6Zi/VBVseCKr/MQYB1wHTtYE5GpgFNKodahfO2By+rREw9Dg+1hGwh/AZn40VkhPd21rC4Z1syztrZWHM6xis2s3cbh5eQDm7NNdjROqzypJN+YzOZ3kqr3nEoXPsTzmEzNfv1YedkycpmYfqE3IkpWyhsnU/0In9eqfvYZT7PqtvY1FywlV27x/6xsZHdf/Sl750F37OAVYefUYjtjmLrVSO/s+eSDYBga0TNnJFH21UQtf1PzDbAXvZmcPutG1tnh00L8QuBYRypBjLQDL6wMq18grkZhzoysHaMzkhaUIDimkltx7OwQHQ7Nr6NaZpkgw0tBtjtIz73WF3nJ/9rk1b32D/lm/tInKkfqsdzOvZqXHe88y3K11DisG6J/tp3mMXzZlA+u7ljCQl0/xQPeSbjXFUsuvyqh0c1GnOVw7OpcoCwA+otVarfM33ZDXks1rgDmvr89pHxIC1bOUgb4I9nw3Q9iav1BxrnVmZjIfeFfUBdn7PKvW/NSnZLCDsOqYXzMYI1gfWMSI9ur9nVh7vn/qlOc5hl81/tZe+rszZZiSbkugK8+2+d83Dq19+0kknnXRf0gF4T/oDkVqgJTVQmGULNzpYLaBe85rXPPiBH/iBa9H07ne/+wJNC+15vNRC4h3veMfFCC7F1P0v/+W/XAuKFjMthJ71rGddeX611HPLA7j7tre97cG///f//lqMdaDC3/k7f+da5P7bf/tvr4VTh2Y8Xqrs73nPe67FbguXf/7P//mDX//1X7++e8UrXvHgr/7Vv3qVp2sKiyuvk76+hI0AqLQhtBhv4YmRgDFJq0x4MbaK8LFYJP1df9G1BcC1wMZs6p7ubdPa9w4ZAlxYIJOFaEEbs6NntjkLSMAwqM/LG+uzxXKLdKwxJ2ADvrA+S/2NUURrr2SRjqm0erFCh0uAPRtDn9ls2zguSwxoU+r/Fuc24UANQDI2TT82SGQfbh0v/y9T9uBgJ3qigKj6vf5cFnTtYVNWX7VZB8ZsPbXXsrkw34BgTrnXxlhcwGR6nJh+Npj9zkazjUIvC2Gu3N1PAgMru9/ZsMNw6mOh8MD6BWiBV5wB+melCfysZETzcSAC29oQccAGEKHxCDwDhtPYxJgFXAPc1q56Fg3MrsG+xH6tfzhfaB47iLHP+xHqjJ2sTHQUsTZpUzpsraSPbOQbt7Xt1o1tA4y7p806TUqOE04Fm20yDaIKgE/avD5WN8w5m3usp1unjjBszp/aoTyzXQedAQz6f08/b77ybHOkudWhk+x79cI5UnrvZacBa+UFqMDgB+RlO6RBajvtyTZ6JkmDQIva5ZnPfOb1XYeslRoHq1FcXTCdm5/ZVmXHRCZ5AVDHeOboMY8CvQAZZAhqw344rfxdMv8LWQb6kYvBYq2sQC56smSClv1XO66cD+bmPku4f88M8MasZBfr9MOWdlhYbdXYqp7V10FW5iX1My+oM9ZfqfVaZej96H1Dv1cIuIOvvG8Cusja0AA336qL6AJ22OckHmIoZsO1YWs7jpyVN8IONs8L9+7/5kdM+ACp+jdwrvwK5w/cLa/6pnppS9IY5nTOOePBe5tDj1MKsNx1jYnauL6qLo0Dfa9MmKYYv0B/Y776NL6whNeR4b1jbDdesruAVM4z7Pf+bo7qegxiaxsSRMYMLfXsxbsFSJ3OtfcPvdXavvuyrda51bn2slZyAJ0503uovCtTbd8z+rvPSOG0hqq/+5xdcmSUyFR4R/uOjvI6ETk8aDivNru2pHXrnV29Kre2KY+Vzsr2++F02HVE7VDdq28M59qGE7+yZRP9r24A0vIRVSJCpXxFc3EuJu3RtTkL6nua7aXKzWFQBCG5EcBv4xwTuv1X5e3/gPn+rk05caxz+p+2djYGoPeOElWxTrPqFOnF/GOdrJy7Buk59ctJJ5100n1LB+A96UmfAnZbWH+19Na3vvXB93//91+LghZif/fv/t0HP/iDP/i41wa+Bu62SPipn/qpC4Td1KI4La+//bf/9h2L7DbFzn3uc597/f1v/s2/uZi6UkzbdLgColt4J9XQZsXmetM/+kf/6G5x8sM//MMPfu3Xfu3uu1gP5fGWt7zl2kD8w3/4Dx/86T/9p3/ftjrp/08Wqi02be5soGyyhCNvuDVmwTJjWpC2uA0AWeZR1/bZApJC8ttgtvC1YWxB24YTEAB4wYysfG2aAbo21uXrtGThtG20s5vys1EAIlp02/j2fFIBNi+Yv/2P5WtDeruABuqUbCBXjgFIJ39/3+r0Yi3ZjNBXBJphZwht/FYBvOprM8OWMO2A7w6kkqpn/d1mBAC3QAp9W6AEcARwb3NoU7ssIkzKrgGuYZja0Dl8p2sD0AIlHKjWxp0uIQCwH/IzABsansBs2pqYoNW5+q02Lw3ABYoW4CeDgSEfMID993jOmNo9e7XZxtgDopMWwJ4CzGDNtUEu2UxjRWt7Zes5DoxpfgXGAM+NVayiZbgJKy/vxiaAUl87YM3ckXPSmKkMAEeHSwGZMbRseskxAFIAg/UDYKEEQLfhLY/GGfsFLnNWNX9w8uj3vstuyMxgsWM9A2kBSbVNv8mA6FN2jvHMgVbbkWtobuxZtTsgIHvFDjUOgWJ9JjImwJYMRz+Bh0Dh/g8MCwSpfgE9lblrSpwDJE/0KRsEJPh/mevdUz8FfDRuOKXKP5vjCKD5CpACcAEwaQLXvoEkRemUl4OPOCz0V31V+bVl4xCT3tgoAeSAhuZVWvTkT2hekizC6qdPX7vsvN931bfxUF/3d3XpULpSdgu4X9tl70D/+ihATt9mszRlRaY0N9Cepjnq/QJ8IoVk7GHeAo28w2Jj9gwSKh2GRdOz/ig/DjjP8Q5zT20MeKfTWtv1P1CYs8D7EJjGKcRZ5d1ozAR69V3rWmxf4CypjsqfrXi373sVmF6fxxbv8/qGs9mBlwtQljhRvBcAg/1NTqK+Ff7vYD4RUew5mwTq9iwSEl3T7/J3SFzfff7zn7+Tt8Hm7FkY1bTvY56SsPB+++xnP3sX6VTy7kmb1TzVPfUL8J/8jcgCbNSeUT4RJmJDNzeT9IidXF2rT+1e+a37Vi94HWXWld5f9XntVh79OEiTk7jyNfc1l7F/oH72Xz/kpOr5HJc5KIDF2UH3cvCs4722K+/qn4OrPsy+tGdzozFoLbxaydYdZC4csuj94n3fdbUJm+Jo5dhji41jxILes2R6rHMA45zlnqGelZn9WqNqZ85gYPgTTUei4aSTTnqypwPwnvSkTxbtXyslpdBCqMUu8PU25RH/2Z/92evvX/zFX/w94O5t+mri/X/9r//163cLuGQhblOLy5/7uZ978E/+yT+5wqxe/epXfwV4W2rRm3ZvKYbv7feA67576Utf+uBP/sk/eZVdKPVJXzvZBLVIbDHZgrH+AkwID28x3iIcCGtDYPMHsMKecFCMRT5gCRjc9fWRcGPAS8yJFu9pyNFq2xD1WJdf/vKX77Q22xSUbqUQgBsAR4fECP1Vd0C2v7tG/Syalb/2wbRbbVcAB8DXZgYrRRsDdUqYQepWUicbLJ+1edHOwunbQADfvpXJoTZCtLGGMHMAr4Bqmz2ApzbJ/vQ3BjZgbkFwWtHYefodiGxDvJqQG/KLSV6Z2+Q177R5rS05ENhzNr/AITCI/QI6bPCANqv5t0AwAFG5gVSVEbOzvByQpn+NS4dtNQb7rg14dcCKNk6xmwEExp15GhuTXbZ5rv1X17f2X+eFfsBCq45thGsfsinKCFDGQtzDkIDnrgkI6p7eBW2GAVn0wFevsjIBp7GUl/GK9Q407rkYqPQXqwOAgiQIYHw3kJWRTQJRKh8GIU3yAAcHj3nndA82LVADE9OPscChoJ20UfWvn5vrAmS6rnrU39kuZnL5CE8XYmwOARQLZQdEdV82n5O2egbmiaDIprDfO1iq333GjlfugO3qCyy3oiwArXRFtS1QAoBKGxf4aD7DDAeC7zvGOAbemkdKt8AzWweA1ja9nwKqatvaMpCoawLjMCYDkjkSvJ+w06tz7VikSmOgzwOga9/WTj27iKf6COvY3AZoAcY0jtSNTjFQuXJ2T9eUzAfGjjq6Z/sHkI3FWlsZ374HFPVd7dH/Dr5y0BemMRAci9uzONKAVc1dgYI9N2C+6wIyAVJ9HvBW33P+1e4kHvZd2HfZfmuC6pcjgp1zpnDu9N6uD7qHfq66dl9lyD4bU8acudg8uBrf5vbWn9YE5UE3tXdc9oO1X13LF0O8fLIj65PayVxjvsR65qjuXVT7dXBZoKx6kCrhgHYgY3kC/QN3W9c/9alPvQ5Ts7bIPr0vyienUcB0bdL9WOXlXZ9k92Rb6F1b9wBJK295iBrI5gOm6XdzOlSu8vWOr62A683BzWW14Uc/+tHL7kTLAKjNWwGy3QdQL8/qUn6VKfspj/KtLJxhla16msNLDtil+95P/U+LmMO/Md07qXZ8ylOecpUV+GsuMQaxzDHMq0e20r6kPqntWrdWR+8BoHPtsESAxmjPWQe+aBTOMu8lzrmcaSuP5Z3tnWasOq/ipJNOOuk+pQPwnnRvEqF/4Mht+nN/7s/dAVkBsN9IarFK7zB27VdbXPzH//gfL4C39HgA76OPPnqn7/Uf/sN/+KrPK58A3q7tnqQgvhkp7eI3vOEN16LrM5/5zKVB7KCJGNRpHH/84x+/DqRrIxPI/cgjj1yL5zZNbfz+wT/4B9cGW2rx99f+2l+7Du5oEdhGPgmKGNb9/c1MgFCbqzZ7tGAx3VpoOtXZBtXilm6pxSRAQJgg1mmfATA8x8LfwTfC89tYOInZhsjGz8ESLZxp4Cm7DZ3Qcmzbfvobm6K62Hhg66qPzR0QgT6wg+CWpWuRDlSwUC8BC/1s6Dd7toB3mE3J9aQpgNKur60werE7lMX9/69Sz6yPsn9gkbDt7BvTrvK24Qm4J8OBTbonPjsUaxmgmKKA1GXy7gnqQvlL2FbkByRgX+3YRtDBUf3YQAFqAQzCoYFunAHbBtk2kKP+CKwobR0xNReEBiYDuGwQy6tNchvUrmlTKYKh/LGjs4093Mwms7Ran8tgWgDD5hEYDHjXJxiEgFrhudqlMbzartiD8qZvip2Pddz3AWvVrx+nlO/Bc+XVD53P7KY2CRAxXyyI34adHEFt23MAr9XF+0e9aBk7pV1fAY7YgYMjgWtY1N0PBM/OKgf2adeRMQKIYWcCgACV+5yeDzjeA+gw4mlSNpayY3bmutqqMgR4AAEqI0BRSHn5l5/QcD9sToTAOsvMRwucCSFfVuwCRsYk6QCfGZP02c3X5kiMaSHXHCDGvDlv50qHGpIaKekj4O/qgeoLzjSH7WFXc6TJv/t6Rp/FKi3V773TzUekdWhxAi2Nycpn3DsUFHtRGWqvwKSeITQdGx/QytHDbkQzYOZmDxiRtZ8yYZyTQsHW7ycwGQv1TW960/WuDORqzjancc5kGys9Ul80Lrs22a6eXfkx4AOh+gyzOrakg0zNrean1ZYXzRMAT2pHn7DBxoE29X6unSoLfXSAYHlWJqx9dmE81w4O/OPk6prarL4me9B7o/kLa7N75eFvsgUOfzTXA+mAwEkyBGC/5CUvudNtj73OXgFz/U1qCCPYusu4K7+cDkXC1W6V1aF2JJEApGy0+1undk/5By6Xh3kXAFqqPs2pfd/vDt1rTJRvn9UmzU/NexxcxiMHm0MTjWlRET2HjnnfZyPeBeVX/g4k60C5vs8x1fOLBtwDyQJNOZDNCRz7HHecotVRf1kbeN/U7tlR8y17aBwYM9aM3mmcug5wC2xvXJV3dWhcZ4/ZUm1VXcjOcfKRmKhOvReN08rsO++8nuUQQ7JV1bV3AWcmbfrqZZ9y0kknnXSf0gF4T7oXKXAsj3SJQP9teu1rX3v9brHX4lBqsdLCqUUyMOWrpUL9pE984hNf9bryilXQouzZz372N5zPflc+3wyA96d/+qcf/It/8S+uxV6M4fSMvxpw/cIXvvDB29/+9jsApBQY1oF16QYH5lbv173udRc4vR74FpR/4S/8hQcve9nLrg2TA2i+GQk4KOSMDqIwSEwTAJuwa4ykFqwBA21UhbPRZitfLDmbbge5YUwKna1tuj97KE/A0Goylvq8BXKLX3qpK5lQAjbT2MUCtnHsGQ7e4uTApNqT7gGzWB3Ca7G6bNyBNjarmHsACWUAVO5G1mcL0KqHDSPGZ/m1gdIWbSRayLeZxs67BSC/manntFHKRqvnY489dsd6q06F/2KcYWdmK22aaFcKJQSOYocBPAAJHA8ADPZ3G3ZIJxkDUHsDgXdji8HWfNiGC7gKaO76NktYv5WnzxywRSe3dsfMpu1M4sEhXIA++rvAeky6EgasDVp9Wn8KpcdQtal3+vwyj9fhAEzDMlpwkZ1p7/oFw0/byMeGsnbl+HCd8Qwgrg71dd83xoXBV3+gWvXYA3hqr57fNbGm+ry6A2AwttvU93d2le0DheuPNvjCxpUPAxhQg61ovHiO0+CBTNrE/23CRQOYS+Stb5v/6ieAgr5yYN6CrcuM9gNg7u/qkg3QQ67usbToIddelal5MqYfkK1yZ8fLsKRHXfkqSz/1UfXdsZGdVr7mxt759U+h9tW5n/Lt2ViT5j9tsrIN3ifmU9qTJXIH5lMgvf+NwcpBGmUBXesOwLJD9ABnmPZYj6tZDmBbbXTscECP+pgHvPfM5fIS/o7ZWFlr04DOEtZtSVn6oYWMCUqOpc8daAi0IRPCcZJUVkBRDuaur0zJU+mbwKdApBi0ZBdEoWA8lxdngH6sPjEwG1fZWbZSHuYM/Ue715wtyqLPOlOhNVz3B051n0iO3tUOQ21uyMkNhObkxPrUz8Lcq+8f/+N//CpvYCX7M7+wKe9I7+vWCOmyVlcyEaKTNpoBE1MEQu3OIaGtfuzHfuxan3A4tG4m6bQh8LSvl9VJ/sa7Ciu91GfNaT2jupJRIR2VEzL7Bsy1LnT4JFkiURAlUQbJlgW+Vjcgr/nNGM1m2EZtL1KpeuacJRkEDGbDlcea0aFzrU9p4XJEOKiXk1Kdvccqk/Zu/eAdA/zMvrsm+47lWz2yhcpK69qhc+abfrK57DWbo8m+rG9zh3cOqQ79lU2VP715DtDuEbFSnUWYiNQCpIoW6fqIMtW/elQ2fQC0rZ6rL66NswMRK80r2PPKyM7N8dbXAHXvZjbmnf/VpPS+VjoSDSeddNKTPR2A96Q/sKnFQ6DKK1/5ygd/42/8jTtG4L/8l//y91zbJiOPfilmQdf+zb/5Nx/85E/+5N1CsgVe2lX/9J/+0+sQtcdL2LtfC0je79sctIBdJt7m0yLsa8kutPgSEhcb4f92+nt/7+9djNrSm9/85ksKwgb5NrUQjbVcmf/W3/pbD37jN37jWvyld/yX//JfvhaWv/RLv/Tgr/yVv/LgjW9846WX+M/+2T+7GAkteP/Mn/kzd5uKDpR7/etf/+CblWw86tPaEOBg4ypcDWOvBTCttBaUFrcYZsBo4BQQs4Wp09i7vkV0CTBT/tU3W6XdaPG82n0bso6xIUzRQt4msGRha+O4J6sLHe4ZTkm2IC7tScTVB7OvMrYpc+0ymIXeA+6URVjfAhtASt9jzG0oPSBwN6KAARsvJ0M3bhtD38hC/v8kVaYY65XlU5/61F27C7munQMP2nwJdWzDrw1sVsqHbu3a4W1adrUN9IbaA3CxnbBB5bcHG/UsodmYuDSX2Z1DbvoMaMIhYOOFJeckb3qxJexAfe/At67H0AdmA033wKGVWcCarByVh94uEBXryTMcVHTbnjbExi9HB6dC9TP+aVMCZBzoAyiUl2Rc2XBiy2EpAdgApNquRI8Tq0tZmlf0QW3Vpr953qaXY0P7e7a6AsXNGTbkNGEd+LMgCHC8cgSe6cc+Mx8272nf3rGe22dJIH3oQx+6QAthzxw5Nqtsn1PJoZYYvSQhel5AGoBBHwP5VzKBLRmbIi2qHwCLjVkLVH8suFJ2yUnmMERg4ALijZmeGVhRPUmo0O3FXvRskilAOW0M3GDnJAy0DwkTY9J7AJhB29J8XKrc2IOcCTtnsD/MYWCwPv7/2PvzWO3Xs6zjXtVXNETUxBgTYtRYiKF0pt27A5RtB7HallZoCxVa0WJVJoEmFQuIf4Ag1rahIKBoa6st1EaklVI6j7tzd7tLgTgkaIhoggkmKIr6vPneeT/rPffdZ9x92mevZ51n8sta933/hmv+XddxHudxXfj/MTnJWpTHyiNQrjYZmEnzu7qhG4uZOt8DwtmBO1iwZAOwCLuGlmv5qx56L1Y3lScnO8dEv8+ILPWqrfc8DHTOxv4HKhtv6L5XXkDwKcGhnxQuH4jNCVtfa47GIVM9N75zTFZW9QvvJCAvjVrALB1943NlVd9qPuqepAkA/jO0vbTrQ/qHdqJNqStOOPIT3uW9m6aUTO25e+VEqfxJNVRuNGKru/pWLOWcU91LHdhgr+eSetBOjdV933N6b5fG7tH7CHO19yTGc/ft936L+NB15aVndJ/aSeB687jmktVV9+AMmWN28iu0ryfIXD2QTsBw7draOpa/eV/z8Z5VJJv6qSyMdUXx1Xf0Ywz4zuvZpcPzXd/zyTiI4AHOVnbdPwkYjPTK1JiFOdu9PvjBDx7aJymbyqprjbG1//qstHZtaaluO4DGIgjMh71DOdsQEEr3lDKZG9MZj3umSAqbydV+7JtSWmlnlwYa7j1ztnlzJu/UGTVG4sEc2TtOna2tra2dN1uAd+2msjY4ixl6KUt64V/8i39xWWC2CVbM2DYzmNZkIa97DNU0er/hG77hk+7TJJEJJb2U2dzFJDsw6Pg+V7qH+7QwaLJ8Pa0N4L7pm77p8P+P//iPH8Duy3mTY0mXh5jEWEhZE+EmZekRN0Fvk7rA38c97nF3YQJX5k3Onva0px1A4Saf8z5XshZUlzNAfQawsgC28ZFJITAU42eGmtJma+JYGgPwmsT2P3BighcZkMN3TWrp8wkNFlrtfACS50vvZMJNZmEmrBHAASQDfDgXqEMr8Xgib3HUb9iBWQsXDEwgw9RYBTybmHsmUM3C367dMwwSs3myWivXvhNKmk1tUuHXx4yLzxSbt7zGSq8P5rABTmoHJDICSTrqI+XdRl0taIS6Y9JlmGjKRJ0DVz0H6I3BBWSxmBTabaMZu1vPcOkWRkB0aQOMcjoBgXueOs/IbJTGriUboD31F8uaZingwSISmCUU2sJ19lHPAWyWfwxiu6pjFgmFnY4omxvpa5wf+jewSxqMAUKVlT/WLpBI35q7fpM3wM6yuMeA1TeByF0nnBpAZjfxfqvdBGIEcmEsTn3YAITeF/I7gWd5lG791GaOyk565MH/Ftr6Hu1PmsPT6cAxQ8KkSI2eFSAiNNgxN7/jqMr0mQny17b6jia3Rb72q94AV+VJnRtXpvNrAp3125h7mIx2gNf+5nhMh1n0BbYq4BzbEugO0CXFYoMy6QOi9kztAjCn7ryH1C1GLtBWHXimejQWGt/Vn5B6jj0Mw8kklhd1MTeQIlfBsYJ16pjvpJ7beFdbnhIAAGlOGoB340btuPd05z32sY89ee1rX3uqqzxZ4Fjh1VFgUf2hQ5lJu825tHPtRnlO+Q4ODGMeLW9RL96DgMX6I3C3fDSOq8tARhIlnMmBobUZfTOQDsgWC9TcoO96lwBE6z+0bEuneZ5xBJjdb7WnyoaEA3DM3EwZ6mPkK6ZcQ/VW+muv5medW72IQMCoL73du7wHwmrXnMfVJ83Y6qnouMoo4LTfyjvZquqPFjRmfPnp9/JIYqRy717JI4msqmw5vPpcWoX+6xeuJ1VTPpu75TBrb47KZ84xAO7GHHIszWdr02RYOKPVwZRV8j7WBjHDK/MIDrWj5geiHTgo5txUX54OG+SE0tS+DT2ndHXP6i0QtzTHAhcVRArijjvuOE1T5yGZeIa0m1eoT06G6lqUgOgbDi7vGmOQcRlwXB2Uf1EC2kv3qHwwuTGgZ6Savmucwmj32bzSvGy+09bW1tbOmy3Au3YurMlgoUN5uC9mFjxZcgJNAGPrtnFZYXxNUpIOiL0bkFjYYJPwH/qhH7rLfey6fRyueDEzGcks+o7vc6V7zPsc3+PuWpOxQPJ0d7Mf+IEfON187mrkHC4GygaI23CuSX2g2MVkHv7hP/yHB4C3CWUAewu8q7WrAcOZBbvFJmDRAqi0dTQhtpgBYFjgmJC3IMEynKGUXQtUmYucJrHC4Jrs9l0T6hZVwmDn5Hfq9QGjhEcCIICcMzQdK9aCYTK0AHgWtYA7YICFfmbxi2E7wzNJWgAvbBCCreF5Fiyz/E28lWNmQaFeShfGjTQDkabWLPkADOjsMzWxr+3k1CjdLVyx/GigYtzZUKvFCxAkFssxU5U8AqAV+GKzs/p75Y1hqK4weZWj5wq/JhlBpxcTqHT1HGxtC8jJpKx8+0vDubFGndNUxZ7BzAZqdu5kmatj4CrNWowf7LmpIQpMmg4BeScbwGEi5BR7DyiFrUurFkBO8qByoiWoL08AD2M6QNWClVMEWCNcvu/kFbBNy7dn2qxRGVucAorlX39sjCiNjRG1MWBD1zaG0B3tHv1fGwIuKz+6pFllA8CSPoCqaJKeMd9nxmv5rl45lIx7olwa33vXYqcpE+OujbD018rbGDz1WrtfeS495ZuUjLrQHgDqyrzy4gjKtEWOAGO89qbseg5AFkCTqW/jP/AD+FyZ2YTKuCjfpA7m2Ew3tu8CmMtr19sUzPMxfut/1bMQak6VgCLnyt983/Rc7NqeG1jondC1+nfnAGD0tT6XB+N3ZZo5H6DW3Kl66f/Gl9JVOQDbKtPZFssfrWN9AJu0c2OO9jlJg65pI6kY4SJppoazNtlvvf9LY6BVOqAismzcxIkU+JcDonaaxmljIafkjAyhpV5eAfukRwqT75yAMWVfXgKyS0tp7750dDlrOEfn+NhzyZxoax0TrPK+6G8On9L26Ec/+nDvHBL6Xu1KeHznTM18zjBAIWa+aCLvWGN6dQ/wq04AnqU9pmss2d5fxpH6afmvTIyDnJfaP8d2oGr7NvRczxdxp+xJFGF8V9fJIfWu7f/6TYzcyq46BaqLfjCWcHR2jyQcgIn9loMncsfcINPRdzYYTPqgo/v8zM/8zCkgboyqHrDMayPGqtJQWXGABLh2XuB25ybFUFrrr71XyoOoMNIN7lM5kbMAovZ8LGhzwzk2T817f0nvGLN7dv3KHMP4OPcUMCeT566Z80A6vP1We/QunY4nB810Y5p5Kmmpri3f9LZ7FoetMdG8wDvXnEA5z7KoTK/VVqJhbW3trNsCvGs3lf30T//0waOdNUFokh9gmG5sm2j8jb/xNw4M0mPDynFdMg2FX1tANOl51atedVi0BhY3gUq6IMmBCVTODdwspi9lQgc9c5r7XOke8z7H97g71nOTWUjWIkva4gd/8Aev6toWZW94wxsu+lsTXpsTFUZ3KfmKJuwsVsany4CPJqEmxVgzNlSq/GNZNIm0OdUMI29BA6ywCLSgshlR7aUJqwk2rV7avk10LbwAFlNeAbCLWSd9FmnOBRpgLljUZtJk0WPCj+FiMT51NKsrLKipaeaePRMoYRMRG6FZgLhv5/abRRsAFBBmQYUh5PsWmRYjFjE2WxEqCOyySP1Mh+UJK20TlHRtW4S1wK69lFftDLvV5lbVfee22CsPQmDnIpO0hgWXulBX5DyA84Ar5WejlT638AR00svr/pV5/dOGL5md3oX9ZjbomoCSDaQs0GxWhcE7GVGYt9o39mDPAGZM1qiDbuh0TsjTZLpjN3OOaAsTXOw8gItnY+ACm+gITwcKwH3qYwP5nKfc/a4uMP+mk6b/gYlCY0s3/WMb8vWbTaeqq9oZqQCaiJUpRq2NlGgnVk42PZvM+9IOwDT+dfS86jQg0MZhk7Ep3/KsXI0l+iVWJUZgebCQ7/6lvYU7fWIMxQwIIJ02DqpNcjRgdrmnc8tfZTMdAthzQvpt1GSzM7IAxnts+J439bK957tPIMwEWkjxTKkQ/wNG9FtAvnK0AZTx3XhXPuSp+sVq06ZoA3MKGG+NwxOczuiIao8xFoHCAW/dN9BtgtBYmkBSUQLuQTPVeaW5NsSBIGScJET3JmtAqoDTioxG6ayeMVo5tCofAGvP8C4kdRDAW5uvHppflK7uI0SdhnztMhmRmIzJLgRSAo+7Z+2SU0idl4aOAOHG+e7T2A3wAow19wRYdi5pIzq0ygFIXVpiXeZUIvtBr5n+OrCzNlcZVVcBbznmApBpuwZad10SAeWheYf+w0GtHKZ0Rd+JsDBmczJWBoH1lWtH5RFAOSOfyAFxHhgbKnt90SakvetIW1Ue2iD91/7W7xo/ApWrUyBhR8B6UgWTSc7BINS/Z1Y++gmZGrIQHfJV2XpHG9s41mqnvc8DlKubrGeUPv2NDI85oAgU8ikcI9OpY7ws7aWh55OJueWWW06jLirvyqN23PnVcWXMwaRMjEGYrqTAROsoP23LO6o8NsfmZOQcqZzUKUY755t3WAC9OWtlXT86Zh1zuJrLyLfxgbMZy9lmi3M/CPcCctvTgMRJZq4BcJ565xjGa1dngeGRdNpEm/OqcaY14Q//8A9fcu+Va7U2Bo9w1VhaW22sSGalSNH2ebm7EboXs87/uq/7ursNnNs8fG3trNkCvGs3ldGdZC0w0o6Njfqyl73s5F//6399YOj2/zRgA/vu7/7ui77MmnTGMo2N2kRRGOHF7mORdymbG4wdP6v72D34SuY+n+rLtwltL9fYV02SkmQIwL5aa6FyObM4m1IUFztnpudabMpjXMxaVDSJyEygLWKwmqovmpv0OIEEWedgK/gsDA0IgzVjAdSEFhvEJBWTrKMFZouGJjqYekCtCe5aqJvMCqUFAmNtMhNqE38T9Bla6/sZjocx1Of6EoYKoAmwI3RXiJwFvnBYgOSUugBIAC1b5FSek+ELELBYnOmySAH0ZhY3k8H3mTLtoLoFrMTSaSFayCTApjqfQHhSL9W5DXDcQ93SDgXmT7DfX4xewCIACZgnZFe5Z7RAZzi1jV1oEWLMeC4dzO4pXFkbxpYNfGrhX167HhBEZ3YCvLMdAv+FVHvuDFeeTE19wYFBBfieoexYyn7P9HOLQG1ZO50OB2UEjJ6gNccbGQD17NnYRh3eR5WHMukaoIs0V2bCpQt7DmTps42nsPBsMuiedmyvvWDIYYQFQgkBBhr3W2Nb9UYqRX8VXpzRW5af2ce0Tw4i5xjzYlyKPtGOA0mA3vKOAQvQUr+u6zOgtPoECsyNAyeAkLkf5iCmMHmJ2jjwRxvjXMpqy7Q/M8CM8qmeOnc6PABdHG5CyefGbpjFfe5dxMknmiPrO/q0EzyeAJG0AHbVEacZhh1WuHeJsjF+zo2JgErGE+80h3xq6/ridF4ZmwCStS/9rTzJR+0CmGksKL3y5T1wnE5AOWcqQLJyCMwq34GcjBZx9+VIMI5m5VvUh7mWfAIF5bd7pbNenxQ5YqO1ANV+D+gi3aAuO5+MAFAKAKhdBqo0xtbXAZK1QeBXZde5lZloguY6gSK1Iyx/YHnSKHRsu2/5MK/wrm28t+lc35Vu7/Pqfzp0aIvXlup/3Ts2K2dBZVaZzI3UgOPkfzLvltJOXiV5ADq41V3jng1YS3tl3ufuTyYCGMjpVl0E+k5pE44v7V8f4xQItDLu9vzAcMzRyqJ7Bb4G7AAgO6rnZMaqi9pxG7uVR+91jtrpmOzZNuPVT2sTInAA4N555BTo0ppzekdoH6WPPn51XNorwz4jHnD8AoK7b/XQfcn8GPs9KxDZfdUlQDjjnNCWHQBt7w3zTBup+Y1UhvrigDW+zegGY9KUp+CMm7Ji5NU4mvQx9bt2ZWsT7Fe84hWHtsW054DYZz/72QfglxTL3bHqKhC3e01rTOh4ylOectgo/DnPec51Yy43Hq6tnUdbgHftXFgvrl5gT3/6009e8pKXHMKs5osfuydrQlEo2KUsliq5gV58E+Cd96GjeSmbrOFjKQY7Sl+N7MKxJuDdtXaQZj/6oz96TeBuNjeJu5hZGF7uvPlSB2herbVouVrDgLWgwrIBNPSdEPQWCSbtQIUZTmkx2MQUi7TP3afrYjtYSDUpbfLd5DhnQWmujjEpsDaxZaeO6GTLKacJUgDsLFItwCcoqExNoJU5IMtCGlMRcwMoWN0J4QOwmZB7Xv1K+qc8g+cLH7SAVw+A7WyCu54NLLSok475nNmOPlMSDcrOxLgyawHcYjQmWSDbL/zCLxzyWJtqAVV7a3FLU9EijcbcZEFPhxUgsjKwMRXt3MmQxa5pkYyJhzFHogCQ30LvQQ960GmYNn28DuAzlrCNibo+cMOmUtVDoHbX5LCo3Ws7mMT6jrwCpkg0aCf1CTucA3eUCwCCbqs65wCwMVRljLlj8UxzcjKgALTHfQPIBJAEjEwGrI2hgEb6nTrCKtc2LeaB04AMG59hNWJ11n5ymtWfOqdyAZYD1egzYx8qg5iEHDIBAYBAoCCmvDBeAHagkfMLl3Z/ZiOd2hWWJT1f4B1JFfVLssWi2wZMymnqNQIJjMM+M+AysEJ5AoMnU7Sj5/abkGIgoXoCTNgMrHxh2AfcAGG6Z88LXG8h2r26b3XUoV0Li+880hLAI9Ea3TcQ0HjPUTUZ6BwNE2QxLsufNjsjK7o3B41+6xrOEPXindb/gGf9vfbhXeLdaIMzbVc/mAt+mqTG5g6M3cle1C8wuisvzpDp6JtjPs37ACpgcICWiK3O5ZAEnpeeyZDHvFZewOfKrHuRoNF/6Xw3fnMYNO5pC40z5cPfGKd042sjIndi2tIY1S6xQmmGYzdrJz239PZ+qAwCV9VvefIZu7tD26sfYsX3/KKmANNTd9gYR9PVmEpv1ZhX3hvXS0/PrmwC1bt3zyvf/R74C5zueQDu97znPQfAmWOk9g+g7eh92fU9xxhTGu53v/sdntOY1HjEkVd6lV99tHtWB9ol+RXjtXdU6UrigrxN9dTn0q9/9X8M73R5S0PvtfJl3sEJY+zmaOBw9X622VjzvL5rHphcQyQD6aqsAs28y821+tx9Kzsbw5XWyrRxpfYELDVXwCwu/RFYfJ7AsvT22XU9k1PGZowAYu9EfznnvEMyfdd7yXxaeZoHmBerF9FhlYHNXWvPxnDkBGOfiCF1ZD5kDOQQmZurcV5dq503iYaY6hGhahP1p/aqeetb33qox6/6qq86sG2brxb9mszJ3V1rfu/3fu8puJse99/7e3/v8P4o0rZo0aR1vv7rv/4w/j3/+c+/bITu5ax9cnIWVfcvf/nLL3tu8oEdVyOluLZ2lmwB3rVzY7F3A3ibmBQikmTD8YZnWZOMy73A5rktNi6lA2u34UuZjQ2axBzrx/aZVteVzH1muu6ONflsQtTENg/qO97xjkNozs1owsiBzlMSATOi8qdjitXS7y2oLAwnYwEgZbJs9+3uY5LW9X2HMYaN1DMtNLFVJvABoLWY7zfPxeJ1/wnomtxiNQBZZpgeMCGbuqNzIe+3Kc8AHPC38hHmnE0NX4t2wLHQW2kWSmohMbWMsXDUEY1ni8EWerOM5P8zacfPKw3V46233npYaAEZ66ONCTGTLN6x9NUv9k6fAyy6hrYgdqv8d/7cFGzKh8zNquzcbQGXVXaNMxZ+fW5yj/XVdTQXWzyXbgv3+kcLb3IAPavPwu6xlyZbFrABBMqmxELn0Dy0qBO2PnX3lI92N0EyjrHKvD4FCAPYcGIAIKdkBNPnfI9VfMz0nSz+yZQHHM5zJ5PKAl5IqsVyzyGJ0TsIs67F9tQBVnbqeu5sXvkX0ks39FGPetTBWWkzvcYi4xZgQnqBnu5Zv6M3rI373U7owEhsbKCgctdeXafc9OspYQJwsNCfTGdMXVIas8+pWxIGIiNKS6AR8Iq0BaC/vAHGjU/AyK4NUKp+Ata7trrI1F/XVpY2BSMf4V1R3myCCAAOlLOhpzGt508Hl3J2nX6knwt9pp3sPUEOwLg/j4xDIuv6qcdau9F/bH4GkCHDQ7NXP5U+eqecKLULID/JF/Wsj9i4sOsr11iR6ZEaH0R8zE07+0wSBpje/YCoMWh7Zo5qz6EF3DuisTYwao4JAPnqmlOJwwMAWZ+prXZ+gKUNEH1XeHrPru2QPnjGM55xaI8RCeiTVy73v//9D2kgWRC7rPsYa43DXdOYm4OwuSq5J32zeWf/927gaBPVo5zKU1JjoiloOwMp9TugbwaYr53OyArOq+5RW6lPlKfSbvO1Du86USo9o3oNZOmagNy0j5tjBnjWDhqvyKG0AXL9iDOhZwb+1MZ8X1rKf3VaeXdOdeQ9QYrEuCQCqTZLekv/B8RWh4Bfm/V1Xu3Whqjlr+fXBkobxqsxfrJhjYXkX4xp7ml+U7RP9TSjEDgCRW7Y7K55YxIqlUXppS9femdUDtbsjFDxvtMnjTv9NT8NaNO++q30igiY7FrvMRsk0tEVsVI5i0Yxtk5njagfz6rcyQ1hzXPqmE97P3cOiR9RGJyLlWPvOyxt84X65trl7cUvfvHp+/dP/+k/fdh3hgX05mhOqi+Q99u//dtP/s7f+TvX/IwiHZ773Oce/s/JUV1h/Bdp21jZRtuRpiJQ/ZN/8k8+iS18HKF7MWtsCdyV9isRf2p/OfDW1m42W4B37dxYE0TWwm9aLzBsnisxR+fvFtusULH5opmassfW71mT9GNWa/fJU9pkuoVHk/2LWZMzzME03z4Va+HSwiTNoV6QsZ6bhL3mNa85udkM6Fj5WqhYAAEMprYhwKlrLMRMQoUNY75YeGJ5uG6y7wDELUaxdfrcJH6COJgXWH9Ajan/mVmsec48JhAEOMaiwgAVduf+Qr6bTGGJCOenWyc/wA4Lg7mQn6xtLA+6cIALCxPhwZP1a1FicWEBbvENCJhh+xOsu5FmgRk7u3S3oGwxXpm2sI/5/5jHPOawMAEcAMUweGY4NKY+sEc7xVzkiJjfYYlqc9pABnjNyDoAwAJNKtvSiQ2F+VZaG486r8mxcFpOAZskcUBg9GC1m6DrQxisGOEAHUBhNlmzFoyAMACF9t9zsdlcm03mPfAYwKEtHzPOsbyUl0X4ZIllgDbMWn1hSkkoB2G4M+Qd6EDOpfsANIBk8xnCUj1nbvQ0w1cxNenxAoawpru3MPy5GDeeqUP5siFkVtpqE5U1FiKQUx1iVQKdao89n/yN+tNugQRTN1GoP0dI7VTIvzag/m2+Bcg5rrPaNWC655JuwAhWX+oeMKSugaK17ymXILLBeAZs72/vZWA1aRmMbU4sAG/XeF+UVvfsuY0Ts60DiTj4sFy1Dyw2bZ1cREZSwVjc/bE/seS1UeA4djnwqnlJ/Z4sEAYox+hs37OsMFBbvANjREDUfgDV/d99aLdjoHoXYDD2/uUA8D6szTTedn1zu96z/d8zRFJ03+ZgXVN9xuBVR95ptZXS03wI0BSbEwDGCaccMWw7R3vvqOwaK5sPNq/zfphSI42p5bHfbXAW87b2ExDofW1u0HO6Z/cub5Vn6dQmukd5lO6+A9pi5prvTifHjAbynb5BvqS80ULmoOLEMXaUrvIe0PsX/+JfPPmxH/uxQ10EtAdcA+sjMWCR977B3PcO6n4BS4FAwMHyG3CTnJhxiQMvwBGzuf+7D/Zt9yWPUnnWxjgp5ctzySLUNnKEik4IoOYosVGgdwdA3HjTM3v/k1DguPL+6xnp36uTytEcUjueDldyEDZRrIzp53ePxojSacPSGUk1o0rMtyqL0odYEKuSI2fqRZsXGtt7x3M0eQcZTzn0kFtcaz6tDSIDiMSonDtoIDORJ3TZjY/z3W38I/1gDO/7+sjapS1ANbA1+4mf+Im7gLvsBS94wUHHtg0Jv+VbvuXAxD1e+17J2v8G8P5N3/RNnySLWHvo+57fed/6rd968o3f+I3XnJ9nPvOZp///s3/2z675+rW1m8XuGSvhtbXPgDX5YccM3V5Wt99++2HC2CTWQvBiZnfm7Ng7mCYX616FvVzMWhw1ac3S6jy27uNF1X0uxaTtN3ax+1yrxcJrd+ZA3sLAYjk/9alPPbCfbyab2pvAHaAScA0zD7AgtJG+oQm8xQMgA9MX06iFBlaLRYBJb+drl92H3p00TXArm6xZmm0m8liQAK15PabvlHywMKkvkI/ASjJxnkwyz+szoAPzL5uboQEWAA4TYKahZ+LeszHPLCiEXcuzReoMm51h/rQU54Ys0yxwpizExc77dITUle6A+xa2LcBjldWGWsy+/vWvPw0Nruz7GzBR2+EgCDABJshv6bYLe+U3NwUEdAAn5yZDEwixoLQ4tfjtt64JcCgtASg23QEwWWRhsgGlLdxowdpICIjVYiuwEWAjn9iLgGl1DVibQK9+Y1E8WbL6MZb3BJh8tgA9Dv23ANb+J+g5w7b1Lf3Kgj2bzpmuK28WxRnd7Jkm4AvQTf8o7/VNcgr1AVIcTFvonQWYCbSobLs2Bp8waoD+1B/GTlbmyoLDoHaHHd3/6afHiKot1zYKoQaENP5V30K1a+MBOoVnA8TciyOH1jzAmV7tsXYk9mBjZU6SyoBDbm4KaazUvnufAbGVv3MAHZwBHCJTZqnvAsr0tX6v/1bGAVP1EeO98bXzSmPAC/AZiI11Z0Mo/Q5I0nX9X5oKm7VpFMZu+TEGAGGAOd4tpYGsSHVETgLwzxFgPJzAdWUIwCcBYlM64zmWJPbrZMj3GeA5wXXvgM4DvOnDjS1C+GO4FhKPza7+tRPOCBtGasM9u3oCuALsAiSa1/Xc5lucQF3T8wr3zcHe/asTLM/6jnbXmNW4ODWgayMdpSHwOEZldVa+RDaU/liq5ad79Lf5In3mzqX9a9yojICM9a3moN4DPbu66H3R/LE0dw8bCNZ26nNYyjYy7B7luTSYY5jLaAO1Z3Ob7mleJB99z4k35XZKkw25OjewsHbWOIFdST6isgjYLW29D4sYIwvW87wzKnOsY79VRvW36qrrOYA4a7wLOJorZ+NCY5G22H17/9R+ep55hUiFgC46tsaW2H2BujZRrG76Wzn3//EYLj367POe97xDXnpWbfH973//qXxB7Gbz0NpY7b+6yBHAEVFbxLytn3R+7TZHQPXQGNR9yPh4P+QUqG30DugemOQY8uQezBPUF9IDZqx3q/eDsYITx3tanzPG0sCurfZ7bcTc2j4XHF4Y0fpAZWUO7n7m45yZ6tx7XZSE9tn18np35nDnRaLhyU9+8un///Sf/tNLpiGw9Pu///sP40Pa1G984xuv6Tlf/uVffvibw6r+dDHr+8aIHG+df60Ab+3jL/yFv3D4v/Z3M5KT1tau1hbgXTs3FlDJmvQcWy8DgGkvvbyZF7M//+f//On/hVpPa0Eb+7aFxdOe9rRDOMvFNj+L0cD+1b/6V5/0e+EqbebWBCrP6aUAXvdpUtQ118OaJAJ5m7D37K/8yq+8i9bwWTcsCZqwTSItGjE5MJdsjmKSTOvLooEWWYuv7gmYsMs5fUih5CbLk+FEH3GG3ALUsglEAp0m8JvRgJsgVDbDpQGrpYlMxAyZp2uHfed6gAwZBmDHBH1N2C34MW5bVAl5tFjHWgR+ydMEv2h3AteA05h58tA1LbamduOxdX3tukVwQECLvmvdxO9qDDMK6DiZ1FmLqtpWYEMT3SbJOWZa8Jee8pEDCVDdvUqrxY421/2xw7AihKIrK+3H4k1dzVBdi2eMuBZZngGkKU8AGcBs9wqw6DuMKJqPtanuZfFPFqJFeXVAu7HvhKcKawdaYdv225RzAApNeZXJPJV/oNTUxJ2OkAxIPZnQrreYnc8+dgh1cNocp0VI9NQ/zEgWWEBOwLf/WwT3PbZ0ZVWaAiAswAM5sESlGcCIORcoUXlboFvckwegi6hNSDvHEaYgMFweagfuV5sBtGAFd/7DHvaww3n0J7HNy1uLfWOmdtJ3ATXHThhlPcfAnlt/CKwC/itjQJlxF5BKXgATrutytATmad9YZPqHRXX3rJ92DS3rKV9j3MaErG+QPgkInyHSIiJKXwBYYM4cMwA6nl16SWooj7mZGTb4lA4BMGN7knjo+bUpkRcBLBiBWW2mZ5funkeP2/MwGpvX1M+FxmNNeqcAdvrbPYSYZ95BnVf+OeSwW2sHgVLNnzo3QK+yKk2VefUV+DUlkgr75XDFFi/dtb/+DxCrrnNINJ+pntJ5pNUNyJsh4o3BHG7adOnEfjZ2dn39qDIkx5R2Kwan0HCyId2rc9/85jefyvcEJtb2XdP9AovV3cMf/vDDtXfcccdphJnxuvZRGrumOqlsbOBX+mitq59+ry0HcPYdSQVa8d0r0LB64EgiUUObu7KgCTx1mLtX6es+0ynT+V2bDrXN4WIad211V90Wik3vv3rwlzyQuUhlRvcb6E1CofRic5MDMUfiiKYVXBnlhCotlUXpqZzIdtWeaqOiuHpm5dt1nNKd23fdA5M2U0fTJtg750pTwkc+p0RTbR9IPfdA6F6l17hLxqB7N7/BIi5fyV+o/8psjtdTwoksHZZ299ef5QGgWlpqt1Nf3jjR/XpG9yR5Yr5sHuBdZ37EidL9yZdoX+aRc05F3qTfm0fV5oDu/a+MAb69L9YubcnjZNV/joJLWfIJ7JGPfOQ1Aby1Q0SWeZ9LPSeAt75VO8tRerUW8Nw4TIf3SvvCrK3dzLYA79qZt2c961knr3rVqy67oVnhIW1mkAVMHAOzWRPNhN2bmKQx9LM/+7OHBfa0PPxf+7VfewoSX4w1+/f//t8/3KtJRyLyhZ1MCzT9ju/4jlNA+GIAb175f/7P//mBxZsG21d8xVd8kjcy0LXfsjTOLiXjcHcsEKGXZS/bXrKvfvWrD8B2ZXIzmM3VhHI14bRLtYUe5lMT435rYtnkFZBioW+CO1mvGLGkDppMB3bEWGkSO3d0zixGjpmKwAFhdsfs3Akimqyb4LIJVgkFtgAsP9iX3ZMmqOvpWk7AoLwBKoDGnmsSDnTp88U2XaM7SEIAYxNrBlhnQSP0vnromhbFwEj6hJdj43bPrgH82exF+V8PA9RgSSp7Cz6MYSy6GFot+tO6tnEP7c8WoEJf+2xxVhmUB4s29a9cW5zSGp2Lzcm6smByj34jxSBsFGCD3Qkw7v6Vf2NkzwhkwB7u/rR4bSg0Q2qBM8DFyaIGgAJwJ+McGDydIsdj/WT/YvdM4EFdzLB+TgqLazIS6moyh7Xl6VSZjhYLV0Dj1AmeC9nZR7C+tB1gpcV35RTAF7DSb9h53ZecB+YnVrYDEx/rsvPqL8AT448yVy4iEDipgBPyURpoUdYWG9N6z9EYbTHdO6Nze4eIXMCo5mhQXj239gKIUb7OAS7S48QKB1grY+UmYkK6+x1bT3hzz+gzthnpAZv7ySs2njDunld9GO/6vfKYkRTaEgZl51cOWLicVsAT+cOa5Azsu/JR2WLKdl1pVdfYbvrFrMvMu8d35DRIEulz2Jx0QjunujVOuF/flRdjCgYtwAXYPdtcvwGDMaEri+4ZYOv9W5rIXvRbdcEpAKDv+YCjgMkcYcBMzN3mdsCg6snGYAGkIiSSPag9Cv8vXaWj+VNAU+fUjiv72nef7YUQSCyqglwREKHru2fPxMLu2uZPsVUxS2kaBzSTl1Ce1QUWpk3FumfPKs31za4pn/UbeaCvHICZzq3Ijcq/a8l6AFq8w5t/clYbu2ZIf5+rl8quc6ungOnuH5Cib77lLW85PLvnVTe1Z9EUpa9oMHrXsU9Le+eURnq/9NeNO6XR/ARrs/sE/vR70S/NwRsTvR+mU7i0z8ig6pbkDGYsVq7+0P0ab42Hpd8mbtU5sJLGNBkKYPDFosG6X//XHmjPTgew9tu4Snu9MirvOULIpXQ9Jy5GtvHeO7rndn1tvvvXTvQ1DmROLONAn+vXWL3eFZwJHHu1ZfrT5sz6/Xx3znGtNPRe6PnmMNP5LKqIg9e9vN+1EY7POVfo2vpQ4zPA3HuCNJqxbe3SFrM+a6y7XFkFnh9fc7WWY/Bi97ma51wLwDvlGdpo8GqJX5GxGqfLf06fHIMvfelLD+P92tpZtQV41868fc/3fM9BIygANGmDPNfCzgNRCtngpeyF346gFrfTmux88zd/80GWoElwQvDtJlrYSJOVwNRv+7ZvOw2D/Kt/9a9eND29WP7SX/pLh2cWYtLE8B/9o390mDTdcsstJ9/1Xd91Ghba8y71Ug1s7plNmEtTeXzd6153+O0JT3jCgR2cNdH7zu/8zpPrbTFQgLxN5ivfmM1veMMbTs66AQQASf3fpLjJKIZGE9rA+GzqM2J+AkTVX5NYi1a6hiabTdRb1NgZukUYsMqCyj0x6yzcgUgW25OpiukwtSf7Druu82mIWnRje2SYehgR2IQWDkLjAGcWNDYnAYRJo78WrX4HqE15gO5ZWmwQRS5gAtA0ObEXAQgtArCs5eVyJgRUKLgw4esJ8Ko/DNjJKD1Oo7pLn7B21+YyWJflTbivEHGbcpUHjKHJHNVOlI0F62QCYyj1nbaiPbh27mAN4AIm1e77DZsYA044Z9c2FtX2AM0cIbRhgdaY5N0Lew64B2jG4gXcWzhLz9TwdQ7GmfDeYz1WTCPg53H5AACxh2b/1Edn3er/E9DXF9nUC9RXODwmQAy8BLoLUw8wEooshLb20GIbI0ueZp+YoamABUC8EP/pjJAP6fP9ZJkB0WPx6VNY/72n+q33RvdtvIth1RgqXJckixBfoEB1hEXe7zRh9Z9AvcAHTLrKg0YtsMX4YkzEPOy5mG0kM+j/0TwHMJBS4HzqOZx6gX4dNk7izKCJSSIikKb7dG5pCVQJ5CGXIC1T/kYbk/fuV7+frHP6osZPbcfYMp0P+k/l1fONnWQMuh9wSx17D2L5YmjqWza40pekwbOnTAXt3MBKzEftzVghn1ionH7VdeWqHDsq2871bm3RT7u0d+6TnvSkU2YrILF7lP/aCUdC9+z/xqna5dzsroV9/TkAuDLrvBiv1Vvn1lYCSIHgxliRPpVb7GPvLvIZ+nd9pntoX+XThlscA30ur507mfU9j5xAzjjOVWB7ddP1pa221r1FMohC6n6VVWkzNykMmlORRA/9W+/JKc3SbwG5drKvPXbvAPDatU3mML45S5oDV6ZkP7zTzEVEDpD48U6bbXqO282hKqN/82/+zekmfzN6qfx3cP6SAgogrk+Xn9YJNnoEdsaenuBj35WP6l2asNDnngP6DnDSe7O0JctQewsYT3qBfm39oHLTZ/pcWcei9h4z3gV0lZ/mjd2ztqrNAH+9M/o/1nppN/5xuOun5paiIADS1WdpSou3/8t3839Oy9IwpYu8a/qtdJkP2LDLuKVMbAhqnC/tSDQkzYwDyns6eDPge+ci6tRnKjua2ReLfLsZJBrqn1eyK20qNo1Wd3a80fexcbLVj2zsfbU2Nwu/0nPmZuHX8pzaj+jaxqo2WLsaq09Nq10WXRBxLPJVUbJzT4C1tbNiC/Cu3RTWhDTgtuNyL46A10LkLmXJETQR/Qf/4B8cJr0veclLPumcJrFf8zVfc/DyXcyajASExnYN0I1p2zGtSXfg78/93M9dMi29CJ/4xCee/PRP//Thxf43/+bfPBzTmhz1rGt5qV+LtYgC8vaS7oXXYqqd2c+yNUnBvGhCaTFpwjtZbsc7rE/JDWxTu1hfbNOjFhLVk0UnRkJhTsdatYAZWpVTJ9GRWdyXjxZPGLjAV4xV4Z+YDBZSNDexZ4HCdn3PZhjyDMWUXiyhyg9oKOwPcGSCPTfNmACohb96wDabLBCLKeAj4BcgczUgrUUIFi/A6Xqb/B7/vdS5pSsmWtEFLcZaCMY2ayEaO8VCrAUM4BsYZCFkMYItJbzYM+YCLpvAcM+rLGq/2jnwlCwJdg5goOttWAkIxVCqXrUFmnz9r9wt8LuuewgH5zwBSsgrQIe2IsaifGFFKgegqYX3ZDvOhRJAe2r0uZ/+AOB0H+U8pU/mIh/IDmycLOUZLnwstzI3wvKdMSBWoDoNkCNv0G/6sk3IMACBBxbYnVeZ1/4DeLD++r5xCHNSJADGIIawdtSz9TWOkkAAC3japfq/tgTswsK3sZmQZBECwJYpD2P8MyaROfCdttd9a082f5ryI4DT8okt27OaDwSEuBY4gw1qjLRxVens+d1HXXOmGDfpqqpLz8awC6TsM/Cmv/RdRSNUjvXLwPPSYRPV6h0zW58W0i3t0jGlYoRMBzg3p9F3hLJrB80hsHFjMzUPmrqW+lL/V15d2/kkLThbSPFotzaWqi13Tt9VD40JNhbLGd67MeBKX+59JEy/v8YDYHXn9hfYWd4C0YqqAsx3DWYt9mN1EdDqHVJb73m9RwNPA0hLc+mqPoHJ3vHVV9cGjGhX2mFpDlyongLH+lxaKi9jcvlJiqLn0lWWXuN66S4N5hLyok8bk22o1efAkK4PoMaqz2moLtRH59X2a4sB1xiapbFnlv6upZ2OuU5epbTY2KzvS3/sXk4bWuud272mc1X753QGsBsjOXpsymqs5HwjP9OzH/SgBx0Yez0bO7dn1FZyLImAMEYrt9o1GQxSDLRppUV0U2ngNCt9gEpjL63YeR/vRU4S0RbyeOz8894t3zbU5Hztu9oRZiuwnjNlvk8mUWS+a6RTFAjncYB87V0EV/Xb95Vv1wd8caLWJ6pDEgnKSDQDooDIKvME461zbKTGkaWd69ucH/oJeZ+5fwQyQufXZo1lfU/2Y0baXW8n/o20SEdXsmsBtadM2fG+NBczG5ySpft0PMc4mV3LcwJ3PaeI1itZz0nWMDwg1nDpakxPpjHyVuPEU57ylEP7fdzjHneXqMi1tbNgC/CunXn7si/7sgNAEmAWMILt02QBYBLzNfD2Ynq4x/YjP/Ijh9CMb/iGbzgM7HQiC3cKkH3Ri150WFxczproxM77+q//+pNnPOMZBw98k6EmSr1QXvziFx/YHleyNmSIrdDOpQG5LbyyJqhtfFZamnh9Oq18B/JWJpVFz41BfLUe0nuiCeWzYYvFcd8DQZp0Amp7uTex7XA+FiqWUYsLDDdsLiH1TaC7BzZRZdr5MWFahAC3MCUsbIFiJrcAPgtWC6+uB570bIu2FqMt3i2yTfJtlNE1AO0+C6G14zHGJ11QYdF0REvD1NoVggdYYhOQAeZN8BHggzVmd2XnW1RgSk0gDZPlcptplL7KA0ObXjJg8+4yPY5tsh8BuBZwl7LOa0Ol+ncRCACn0qmessrGruXdlwYjBrYwT3UsZHECldgt7mHXbqxEu6GTywCQVd+1peqERITNffpce21MpJUpHLPzbXomZDurHoTIAoqArkB+EhqANJu6ZHORzICBAKKuK32lw4ZE2i1QdbKDlaE6A6gAa6cUAxCZ1IsF6lxMagtTnmSm1eJ7thXyEs5vwYG512fgIiCx74Tddx4ZAtIIQBHAdeOF8aR3Y84nYeAWzqVt7oDOOUODVv4DBDHctBeLoP4vfd1TyPncvJT2qz6PldXR+2yWBbAdKxCzGdgJOHY/+sW0uctnC/+AIE620hJTziZsmLFzk0tOJSHZxkHghfaibRibAhQnIxjw3neVX/esr3C09R3ASz8tnfRfG9+Ni4CfudN9Vt1jyBlnjffZ1FrmrDBu9H/Pb25hTOzZ0nQMspPq8H5w7xnFYeyo/IF12kXlWH1x3DUGcLbEcMQW9w7CEFdO3klYgsq/78tDbTxAtvnK1Hvve4B0baJ6wiLGtK49NIfUlgMKOzeg0ntiykpULjZ/AwQCtmj6Y3N26F/SUf+uLOoj8gtUrw4C97pX6aJdTpOZTqtxs2tyRnTf8la5GRtKc/ksreWl6x7/+Mcf2lbvmuaT9bvODSBTtzbq8w7pnPovCaAAp7QuS2vn18doJZv/1D7KR+U/+2zX2DxP29X2p164yIEpnULXt7SUz8DI8tz7s7SVn8B+UUIcAo13nWtc814pjeVz7ingPQPYN4ZmnVvYee2sCIvm9RxTx5vYVSfVg81TgZF+N3aW9/e+972HdsMh1t8kKcpb8+7SXHpyUHCskHvBircJnzLFavXOw3DnsPOO0n4DfisfmuXy5Tp6wOQgjLdkfbpeHy3t5qPmzaQgyEzYt4ITaY6B5huiLjgQMMfNV0S2dH1/Y2jbiPda2abnySbxYm4WeykzjpvHfTqeM+W3ruU5pBOzNoS7krWWpas+LfLSD/3QDx0kYCJZ3HbbbSd/7a/9tcN3a2tnyRbgXTvz1su844UvfOF1u2fgawDvp2JNNn70R3/0cHwq1gTtu7/7uw/Hp8MCb69khZXNMJtrvT4T5nYlu15g2+UMCNskkHYaIMnGQnNhIYSuz4CLCUDQK52TmZ5hMy/sJ9p3LbJahLToaAHQ0XVAKOGwJtc2PBFu2AS+BSltYKzUFg9NjIX3d7S4aCGJJYhhmVlkSDv2HRDIgr2JtV2uHcoJA1e4JWBsavkBAIRlT2BkhskDWLSDGaIMxJhhe+QBgJSXajtdQxPRoqiFbPcTdviptjsMnSlzMI/LWde1MGsRT1tP+U82MHYlQG5uFDafox4scrRVoJTvAMIAWIvy2mjt3GKc/isdaowgbR1QDiyzEC+tgZJdZyMUYI56pZtn0UuHEYg2gVht9FK61MqLLAQHnw1+KmOgt0WxheWUu5DvKa0wGfSep0+qd+CU67SJmdZjuYcZJZDZPC3DpKZ9XTn2PsDAE5qtfWDMcrJU9tWVsa7rau8ttgOVsMzmZnDVL7Zw9w5MsJAOpGlhVL7rP40JHAcAB+MDmQXgBdkGbRBjT+RD6ZyaxPKkHU+dV4CjMGggaudrP6RfOjcwBoMf+JQBTjH9+t2Y5nnYYp4JzJVW41lpCfCp79S+absqD+8PoChWW2VC/gQI2bO6j2eTnOi5mHTeS6IlgCPKduajo3dE8xoOAxETwJ9AKjqYk63PMYaZ512n/EuzNlBeMGzlsf97N/UuLKKp/BWVNDdfq9x6Ju1QzkaMak4j/S3GrzYNlPN+6LvGqhbmgU2Bev2OkQyo0qZ6DwfSVTaAvbnxWUd9Qh1hpPcOP3aCYrF2n55rs7DZNwGv1W95qp3U3/q+88tHnwHP3b+xq3yWH2N9kR/VSYxLoEjl2FyitOREru/W58uzjQTr+4GNHMv9H6hNa9r7mtQOgJN0lbZCsznwkdwOhjeHbM9oM8H2HuheRbXRHZ4gJ4kmgH5tRb2WvtJVnQBrvfvLW+me8web3vV/5YXJX/1XPpEmOBr0E31FHXKkuI89FirD2kqkizaTDCyuvZenGYVSWo1zNoyqzh/60Ieesn1pZANKq8eYh210hW0deQVDvzbo4JTBljdW9l3M5hxafV9+GwdrK/pxbau20T1Kl7lhfznby/cHP/jB0/buPVZd9pf2vnFwyiSpC4f3ffVSWYlAKe+9g47ZyN475npdM8vMeFJ5ll+yD+b0vd9sQqiv3h27p0g0TKv9HO8L86kYqaLsasrJO+9qiFJ39zmTqHG1z+m98ZjHPObwf06S8IAr2cXAXda8sajbmL2lt310FuBdO2u2AO/a2tq5M2w1E1WLnSaRNAPJEGBDARD6HkO83zrfotoGMk04WtBMHT7h003Y7RpNoy2tvxYCscqAshlwCSBmgtyCwEKaJmWASxPfJuqB6TYA6rrJEMtMxgGtvsM65Dm3wLXwA9wds0Ppe06mkpBGQMbUO3YvC4gZ3g7MFaqKXTxZaaVP2oQQTzD0YmaDKaBXBixpoXM9HAsTYD3+7lI2y6A00urEPju+F4CIviJWC1Av4yAQ5tv55RtoABCfTG313CF0OQO6StPUH8ReFSZvoWbzIiAtxqUNsLqHDV+wLrFgLaYzjgjtYwLUk8E9ZRGAgn3fM2j7BQTYQEx7wToC3mmf5Fnm/TJ9ZQLmE8RVRyQbnGvxOpnr/nouoH6y0Y0rQNIW6dWhDevIcmD/C5m1CFY/lTegIuMY8Fyht92zscSGXPSZgeCVX4yo2hLdSuHcIgkwQ4FtpQuobBzD0JZ3Ydv9Ro5DGU0wt/+x42xy1iKsPqOdA3iBmtVx4/UM7e/++k15FfZMYkC5KdueH5DFGUGqBviunWN1dmDWeddgrYl8mPIcjd0cDrXZ0mJTJe+RjEOyNHPEiXigt65cOQ6AIpxw1a+8AkwB7JOpTv6n7wPSgEpdg93X80t76eE8dGAtZ5wfHE6Nt70jq2tRBQGmGJ1Yvu4fqFZaRLjIFzmXQNqs9hv4RntXFEsLfqCbzaaE4Wc9s/N7VszQALHOq61w4GJp2jit9NA51v/mOFC9iSLzLgN6VrbpnPburj8VyVMayi8d3fJfemrbgODSUZoAc6UxYFqbFQJfWno+yZuus6EaR0rpqmyqy+Yf3UNEz9SjBrJWfp1XmQqdN25wMlVu3h19lxRFYK320X3owhpnMdnNt4DlmbI1vmO/clAw74dYyX0fuA7w5TDvb2k39gWElo90fOWVExzoSKLC+6Q8tS9G86vO5TCeAKe26f1V+dbOa8PGVP3RXEiaqo/OKb2Nmc0JOZVmmjgRvV+UJ33cjuqKQ8Cczpjmf++p7keSIqdAddT3pA5sKDjfeeZq0jeB4OnoDpA076X3mtXOu2fPc65xonYfON2zgdXaT/+bt3ffyqk+hVlM1qJ0At5vFqssr6ccHyfb1cohWEdcjZzD3X3OXKtc7XOSTDTfuhr27tVY75Q3vvGNh+jg2mB983qC62trn267eUa+tbW1tau0Jn1CKG3AAUyjbQhcBebYCd2kFghpYgvc7LsmAjTrnD+105owCF0GhDYJ6rcmsdhfJq+YufQZmwC3CARwWgz3uUl9aYhp1/U2p7mUHQOQ8zOwiu4WdkV5x/SzyFZWGeYEhiQAcbIVTchcJy/C8i2IJxDWwmRqFjeB75pLscunWSS3UAVSA56vJ2t8LryuxspbbbHD5mPAV8Dv8f0xnUhi0P+zwRgAqe9qi5wWwBFSJMpiOgG6vjYodBbwBJi1uAfsasPAqwCIJsM29LHoA9xa7FUfmOalM4DHQhzwmglFB+xOVtFk1WqrGXmCvjMxB46ULotbbRcj3b04EICuk8XLLNBniPpk/9rcZjKsZ1pnfxEy61oAtHuSlJHWgIXyUftvPAAIC6sWMmscq/4D6QCv5c+GUcKru2/jStekzRkw01iC8Q9kqc/b1ZzmNydWNsOpu7YyL539b0wADGGBd33XkWewyzsZDIBtwIN0zHbMeQTQF+XQ/WpXAXyiM9yfY2BKT0xmtbYNpJ3sa0DjbAdTnxWAqq33zMb80lMZ69MTnOdcJLtR/XB8iHSonAKKhOZPlqlxdabTO0cb5CSczhkOOeALaaL6RnVdmjnzai/qlsMFMDZlLLofaZBYu4CWzv+SL/mSk0c/+tGHdpd0Vv2y+/W+qq6MgcLzKzdjlL4vOoBUiTG8sq29iSKobwQS9q6cwHgsSekMhKz+Y3mXvq5pXO0aus0x5+Sp64DkNoSb8jBkN2wmSY5jOixpJWOgxgQFkva8+h+dZnUPhNS2s+5fOWDc124mo7I6qvwq457T/Tq/+5eHro/xVvi/PkgbVd+oTVaeNtIyLzHeem9wwMRE7buuqbxrr4HLd9555yENlc90/AIRPXc6J/TD5krmEfoxh4H3jk22vJ/Mocga9RtmMgCH80ka6MNrr+ZUHC76S8/v+iQqzIWMEcBWzOssrVs6xSQJsoDo6i4pEJIGtafGkdJVfQXgk5QhedT9c0gA8LHJvSOrpzaHFtHASQEY9l4SFeDdwznU87pH15aGGN49v7ZcmyXRRIqpfNdOekbpbuwyX7NBaO3ePg1dQ9KpcpyRQFjw2OzGLmnmpAVa59DJyYft730Y2/hKUnrn3Sqz2l/vzSvNoUm7HW+EdjU2N1a70nOmpMbVPoc8Q/l51atedXK9rL4XwJv1flqAd+0s2QK8a2tr584sjumI2l0eo8HivO+FrdvoBLBgwwtMS2YzjBYlgBG7l2O9dT/ayRZmASr9nSFMZCMuBkxPsMvi0gLzmE30qdi8B1CAlqRw/nnO3IQD8ALImJIQk/0xGSryA3SxcLT4AxQAh+ggX00emshWzhjJTdpoPF5v0yauVA8YgaUN0GNn7MttEIIpBXQV7m7xCwjA2K08afO6BgObLh6WKAbdBFIB+3020cf4yiz4sdoAMZiB/d+BWYcRPHUZuy8AUJ3OMFrlKuR5spCAq7PMgQTaWenKaK5OgF8fmjqA7sU5MZm7GJzSPqUYpFe4+wTfjgHj49+keX6XYTFhvNGpDqxpLAmQAqIav2JH9R2GHwCx+we8FM798Y9//FBHMVTt7N65Pa/7WwC6dwvonl37xAgszS2maVZKH8dUjEdjX2VUG9C/gevVTQCQdmzDHU4G5Y/FHYjQfctH1wYUYLErx8bd7tFCsfKhoz6Z2tqJDdyMv0Dy8o/xj7lGpoHjagJHxl7yB5wj2qi8GKuB+Jxicxzn0JrgEQBWNIVymffMsJmVmTaFKeqztDUWYhlz7lRfORgrl+qSjnygofGge5GV6N1UHaqj7l0brK44PgFOlU31R9Obzmf1xCFZPT31qU89AGkAHUzc2lttEODV0f07pzYYA7C22jm180Bdm0aWF2Vb+09rkXMkMAJzjLNRWmqTgGebTNHu5WALpAt0ynp+wHFpbqNa44ZNJ8kLBYTSJOd8nPVJFzlHBcmcytSGrUL6SbYYJ4xX3YsObu+M3oGBF2ke99zqgWa6dm78kd/yWRvByi4NAZPVd3MdWsF0kntmwFv1EMBZ+nMclg4yDsZPwLF51RxL+79ra2ulczpDJpu8z7UJG0pWvj2jsb5r6c3XRrF/lTU9YFFYoj1EPXRt71LjujlhYDYdfMYBRD+7/hKb1maH5FpqC8kgiIAgz5XRlO0av01nlw3yALylmROke7bRXm0sXX9zhGRR7F9gjtv5WOzdR79V/zaRe+c733k4r35iX4ny0TOQJKYTjHNsOtWmo7P0mlsAhs0VbeLYdwHd3s8T+Pd+IfukTWIhi7jo/7vDeJWPe4J9utPROPCoRz3qVHvce+HYGtdY7flan3Gx+1yP58TEN97mMDTHux52T2kDa2t3xxbgXVtbO3eGJWhCK6SuSaEJqgW2BfBk6E3pA7p6No4xQUq3uEVXYYsWWv2NtWHX5gxgKuQyo63YYsRkGNONPpmFZ/eduy/baI3m3tT3vB42ZQgwKmjnAh0sKuVFOR+DgcoeqEEyYIYtAtBn+QMAhRteTR4ByAEOFlItIADS19uk6WruLWQSk5z25+XypewzoBhwa+rc1jZbDAZczA30aq/KUT10TYumrEVS1wqTbSHtfi2ksGwBsK5VtgE12QQxMQj7XF9zbfe0mYq8YxkKs51hqdl0akxd1ykB0tECly6itABh9cvJvPVMYJ6yoE8IrOZImVIl7gG0BK7NdqDtT81U6XEPfcNhfAJkYdgBSOvvyjywNwAAmBpgi00M1Az06ntASGHp3avvAnKMG9jTFunKi4QCxibGop3sAa2cV7ULji2/0Z6sfWEgkktw3tRanhqZtY/SqV2WZyxi7EqMyOqnsRVAoo9g2U4md20FO9amQ6XPBprADxt8Te3m2j9NSu2n+2HKpXsJfCDtoE9Mhxj5h9JBSkJf8B1QHeAjVNzmXfpbZaR9YqBi7TEyH927MmysKN2dixEJwMVo5Hyx8ZmxRhttfIiJ1UGCI7ATuMbB9/CHP/xU97jy0dc5qgIQAwU7bLrFsYhlj7nX/bwrAvu7L7kb+pzAwL4HQNV2AiDLE6dF58aq7XmlGwvXob5omfYd4BnYVTrKd6Cqz1ilbQaW1U/1eexOoCp5nQAqUhmlrc/veMc7TucRnWezuOmgMhZqr4AwkR2BxbVr99YHuo8IEOx92sXlp/TVrtp7ofpNYioGqTENGI2tWxlrtzY9M5YCBau37iFcv+85OTtfyL2+Op1+JCO6J3mT6rLnY5h2r6kdbQzisASuVz+BsnP8Mw8xLxE1UR69/4CTPssnOZrO7ZrGQe8X4z7W8HRKzogu+uf9z0HHSWO+pSw6yodN3Xpef73DZ7SU9woNcyxx8yRjmndNbbY2ToaDZnL5xEjHHq5Nkg9rjkUyiIMeqDzB2+5pE82cdpVzDgVjqXdXabWvRW24Z/R/7aC+MefO14vkcDNb9RrAW32mlZ1G9cXsS7/0S0//f/e7331Nz2g8rm6qz3mfi1lpych0XMme+cxnnv5/veQZWM45Zj67tnZWbAHetbW1c2e0AAE3AFebdmGPAaywDDrfZkcWlQFVWDQW7v1vV2qbw2DetVhpsmDB3Hc9ByuyiXCLmO7bpMgmIp0T8wYTEjsM+NKk3HcAlxnqfr1tevunLhwgBuN2MhKBanOhATjKAGYAICw/4G9mIV95tCgAOE0G3KWs3+wYf6ydd73tau87w9kne/Bq7kFDU5ubOqA2kLIgb+GFWQsUBJJUni26sOmEXwLhAnw4JPSdfrP5E0AM4CKUee7SPUEDzO/qASjady3SMIyntim5Cvk9BniBeRNkAuCRrLCwli4Am+cDBixaPWveP8MYJFmi7Wvn8jsZ55MRNKUmXGOxD0TIXDM/H4O/FuXGkQASGp7luTGkMi3fHD49owV06bJxUQsvm22RCLGpnpBqQIkxTlQCZqcd6Y2n6rT0YpHRSQRKWdwDmNSh506JEjIIQA3ht8AL+ei5MQdJNXReY27gtZ3cgYg2AQSyVl4BJJiCWfmURu0Nyx5gaBxu7NYfgDTAdMC8zcvo1HIYApS1LW3ZOO4azOTSU3g9Rqe20P0Cy+jt3nrrrXfZjEh70xYBOOQgprZvaVfOyqP79J0N2aaskbLpGTGxkj8IiHzb2952eI9VHm1WAwgS1VLagWtZ6a4uC7Pu/v210VnXxFKsTVdfpaE23n0wogO1WpyTB0lqBBBNWqF3aXmMWds1lVNprO1U5rWN2mFtRv+WX+MIJiPJiPpff2kwqxes09JVmm0q1z3LZ8/1nsPyLa3e/cYu79h+6z7asXfxzF+Gcewcer7NK2ziV35p0dPCpsHaOCE9hfyX3xhzj33sYw/3Kf3Vc9cF5HVObGv5qF1UfqR4SP/IR4xfjvLyQ/oBwFgagIfqtT5XWwCw1rcqO1EZAGTRA7UlQCnWvfbvnVVbxtKna49ZzPHmvZHURBt3auvdIwkP/bt81P+MtZxk+mD3wXx3b++d6SirXsqbNJae/vfuLf/mpqQ8GrOng84mjvXBnt/RuQB2ETgzIgyIanzgUOv/2m3/t6FVZdazA+/0DW2z9iQSoGfU1zjFvHPl19yDDjAiwxd8wRecAr6YueY6yk4/Mb5O9rgooanVvPbJFrP7b/2tv3X4/+u+7usuCvBWV4DU2s9b3/rWa35OMjB//a//9UO9NtY2Vhxb3/e7869k9Zuv/uqvPvzfmNUmjtfLmgM87nGPOyXrLMC7dtZsAd61tbVzZ5hmTVxsugWsApLSpLNZQwuVJqRNsm1WRFeU3uEEMgG4NPqwU4C3ABxgnHA18g2FNcUQsghqsdViCsMGaGaX5f5ODdfj3Y2vt9EKbMEF5J46lpPplQlNxxidG6MJe8+AckCbyU7FmrSDsoWYTRx8fznmxmTuSafvb6QBj67FLAynfMDcIAoY2P+1nQCPFmRY1n2PNWwDNkwu7RoobqNBwCJG0NTxxA7D/MFGtLAmwdF9Wqx3b7IkNluKueEzyYbZr7SfKdMAGMOEVo5YWNI8d+vGXJwsaY4Ei0UA7pRv8BtQYIbez/BX6XTfKTEgDdJpwTttlu8EfifzzV9M2saoyrNy6387xwec9H39VXugoW0DPRrL5A4CRmLokYXJGpvocgIBMbNItQAhK9/aVGnsXkJ7MULpiQKQ6Xa2UAPoYMDVbms3pZ/MAj3y0qDtGDvspK5NACBESqg3mwr2bJs82SwMS1O9TO1QLHlgNyDfZnLltzFcnwzgsOEWcGuy/WY4vTwAeOnRkhoBKKs3zhIbEJWf6q90xM58xCMecZcIlKmXDhDWz4HAnEW+n2MzLVjMav0QQCQf3gnYkUDP6jLwtbrsXJEuNsACwFV+bYB12223nTrxsEMDfGtLypOWdOWW5m/5rq6MU0l02BStZ37xF3/xARTqHQsoMm6Wjn6r7fa5tAqFB/RzOM1IEuMdzeXy1T1jpAExc0oGEALVa4/VWwx645SNovT9nhNgaOwpj8DMCTwbL/TN0j9D5st/5VYa6er23K7tN+2j+UZ1F5CLuU2js5Dp2nIgLhZ09fKwhz3scL9+a54C3BZhALAt7XTWex6HHiC3sarr6K/aIM07iZMcsFf5x+LUd/WdCWpnHPfKCfhL+1WbJbPBQdn9C13Xt2pvGTDXWFB9Va617Y7pwJ5Or8neVV8A4Dl3MuZgTWMZIxp0vze96U2nEkf2ISB5om9XT6J8YmdW35yVcxyakirmYhiz9nCwmV59LYdJ5UFmTD6A/v2vzuw1IRpO+o5144HW3b/fgP2i2KSNo7++VDqqG85rUkL6dNdfzeZh51mioTZSREDj1F/+y3/55GUve9nBcTjt27/920/ZrC9+8YvvIkmSxcrNiZe99KUvPQDFx/aiF73o5K/8lb9yqMOcfD1vRpLUF/s+q+46/0rWhoecWa985Ss/KV2Xsic84Qknr3/96y8pR1Gbes1rXnPaRn/kR37kqu67tnZPsgV419bWzp0BLGisWVjPjYAwHDFqmyxiojSJb1Ek3BbAOwEoi5ee0UTUpiYtNmf4tU0jmtQIsW5B12QcQ8xGI6WjhXGTeQwFbEsMDQuPuwMYXouZPGOdYBszk35AwGQpztBGC1thrBauwCJgA1ac8F5gi3DMFl8tFFpkNkG7ki4vhg6Wk4XAjQZ6r8UAlxOkFI6L/agcamPVFTZu5QUoxTCrDGZIeN+1wKsNY6IKtRVqnWHPqTMTbSHHACsLYtcBCS0qhXB3D5v6dK1+CfRyH20ICzmz6Q+GEmBPGgFRAFN/PUNIqEW4donl5MAqmu2MBMWUEpFe6QTMKgP9Ytpc6M/F5gSKsbqAqUL1Ma1jrWYBTS1+AzY5R8oj2QGAnTLwzECe0tk4ZyOiyWSeiyN6pEDT0oERVxkZ44xzNnnTzhrntAvpwkgELnT/xj3ADTaXDZjKlzY2Qdqu6Td51C+Mzf1fHo0zHBHaJjkKDGDhxTN82nuEJMUEiY4Bee1ihkVn5GY4SoDImIPSbvMtIFnPbtxTfkCuvqOHDBiZC2qOEYzinIlZ4wI2b88iETQdJOqFI1P7BvIAeN/ylrcc7tc9jEudizEO/KvOK9febQC8dH67/j3vec+BHYopWJ7a8CkJhZymgYKBpt2jNj41tSuT+973voe/H/7wh081t0WISK/zaYR3YIN3fgxI4wLGpzoVPTLB9+q+93jnVK7ae2kPaEszst9Kt3aWeYbICuODTdr6H4g8pQYA2UzbmZI0XZ8OsQ31uubLv/zLT8Hk9GTplsbQrGxrZ9pM79XmPX1XXbXDvPlL9YN1GSBK2qIyqG83/5nREHTXgXbKTmRF/YyUTPMc4+Vke+vTjTOlgeO2tqt+RZSU3gms2luhc8tX39dGvX+6tjlEv5ffNkgDts/ol+Z0XRejPLPhmDqsfqvzHGWNMY3FtdPuha3aswOpaze1OeOQSJLmNqJyplMc+F36RVzQZS999aXe3d7n3cf7asp4dH7tvfqujOj9iqJBfOg5lUPlE9BvzgF0V1/mAV0T4Ey6pLLtfrWx5iDYtpyDPbO23X3Ki7FP+/NOprHdb55bHfVbbU00k4gRIP7ape1bvuVbDrILtYWf//mfP/m+7/u+A0u3sv6qr/qqk+c85zmH85KyecELXnC3nlHb+cEf/MGT7/iO7zgw3nveD/zADxzG1mQ/nve85x00nrPOq69cizxDwPTVWkBybSQQN4mZ3iH1k9pdDsXya9PR9Kd/+Id/+G7leW3tRtoCvGtra+fObI5zvPimbyj82GKjSa2JY5PRJqjZZIiZFAPDAClAogyTB1ApZLGJaM9pQdRCVhgiIKYJbRNhOw57/mSrZJgpQBHg3wQX5sJxgsEZ0MiiFXvsUgZMaVEgJI/22WRGTUAPEw34SF4CKGhi7zO2tIWghdrc4K5n2qyEpMCVAN7qtMV3oHrXxVg6a4uB8lheyXZwVgAxMAtpCZZnmxO1COS4wPSeUh8YUS0Su6/QzxZo6oB8AkZ5BlwD1itToc0W61OLVSgtJmc2mUjyAryabZqjJGuh13WllWbpBEwAYNi7GaAN0wnIp21OYHDqfQJsgRMzrH4yH7Gz9LXp5DhmCh1/P1nm8nwM7hq/MvkrPcqvfAHHAmKEs0+nlHsLNccYU1Y25zMuCGMWOWBDL4vvAOH6FTAXe86Y2N+eoz3MhTzQU32XpoAPetkA0s4pXZ5D69Q4B9jgsJsMdPXZMwHypbvxOGCKRIey1xYC6XLQTQkTrHEARt+XXtIOQtJFeNCbnEx0QIvnTecDgEp7mhEjgPTZP7CUO8gMzFBoYzJGMqZczHn9fTrhMPyxnrWP6tAmbt276zC1MfAxbPVhsgQAcJEX2q6810ZLF+1ekgiA7Rb/nAaBDj03ELFn/dRP/dRBHzYAuLT3HBIgk9VLk9Z7IgBC+fX+7fnel/3fdTle6f/qOyIMOhobq+/mCHRfA047n2b03Eiy932MWcC5sdPYVnuTX30De915cyzSX7UV45OooUA+7T9GnvkHsJBDp7IJeOle1QW5qUDAzqvce3eK7gggKe2B14GdPS95jja3i2lauU0tYmk2lpJkmdEX2dRCN04BFKesjvFRudICxmbmTMhsZtbvT3ziEw8gZOcn1RHgo/3WziuDzFwGcFqecyx170Dzrg8k5YAzLlZGOYZiNPZbY5XNzACfWe2t53VN5wPayayQSSDRUPqrC223/MecJuOhfOqT1Ufjf32fDEx5f+ADH3j6TMCvaIaMDEb3M9bX5ytTTt6MLI08G1e8n6SFrI/3n+vMNYyR3aexnuODM0O76Xt7XvR79VCf8s7QbswRjeNrl7YkR57+9KefvOIVrzjU8d/9u3/3k85pnP1zf+7PnW5AeXfs+c9//mHMiSkcmPuTP/mTn3TOP/7H//jkO7/zO694r9JZ/83aKDMH3rVY7+hv/uZvPhyXsn/5L//lybOf/ey7OLbX1s6K7ci3trZ27qyJbhPAJr60FU38bbplgthkG4PJAqpJa4tNE3sbjU22r8Vjk9cWSDa0wLxqct2E1wK6RVBMjhZzGA6dX1qxhTtaiPdd5wjfy8pHz+n5fd+EP+aIyTNmCoBEXi0uWfloIVj++r2Nbq7Eam0SXTkIsxUW2uKEviBQfYbyAiros7n2mK14MSkAG7/Yebl8Nnls4gbwvpyVDrs1Y3GdJfZuVnkEHNQOMXSUrzrOAAIdLTILwYshV5lhUwFeAEAApD4D9mwiSFsXgAoEnbIcAEOghVBmi/opC2BjLqxI4K8+hOnT82r3U9JDXjkV9Mvy1rmAGBIUQmozWoST8Q44oi3KQcOZQEdQCKi2KT1T+mEuLoFzGRAe4DEZ2BcDgI/lRCYAOJnC+ov7df/yXZ/AcuIAaoFkB3Y6m/LT710XwNQ1pBAah2zsBFgHngBbLOrpZao3QCO2nM9ZbTjrHgDG0ttYF3BXeTaWAUinpEHP6ZwAieq78/oMpLUhUHmwGZN8Ai/ICdgorfw1ngGUMsCsjX/0FfVKz7c+A2QHpDe29zngorSQhiAJYlzzfsFoo1mufLEnSfOUTuXO8dG1wJOssm9s4KAEvgBNJ7NeG+K4JL+ALQc0JL2BxY+pX3oA/T1X/+991GeRJhNs77Pwbf2ntins3oZNHAS1wd6bb37zm08dC51TWwMY9azGuWRpqneOh/4n6aPeYpPZ5Ks6r466V8ytzgsAjNHadYX11rZinOn3pcF4ovwnoNmzp5Z0+Si9gaK0+5V5R4zj/gY427CPNIOxCfsR25mTIbB4Os7ouHaf5gaT6dlfdctRxJHQ59oxJqYoJXnt6JkBuOlU9n9AbiBp5VM6K8PKLwBUZAHwkMON08A4YFzF3sdaBrA4F3PXef3V72wyWH1zaGjrxlBjnjR5D1R+/R5btbw3LvTM+nz3ry2QIagPuK5+qe2IFLHxHo1mY7J35NwvoXPNnaonziCs2O6tjZF9qI1zrHaP0tBYqF303Np76Y1VHSBcv4lVzHmi3jlebKpa+wS4d5/aCtky7UC9iCJQPxnAtz4onxyL3rHMvgDadvn1DsSo55AurTmoG2ur29q2zV+9G6Zs0d2dz50niQb2ute97iDhEps3ILeyrX5bj7z61a8+eclLXnI6z/tU8hJgmiMluYbG3tpWdZhUxI/92I+d/NzP/dxV3eupT33q6bjx8pe//JrS8axnPesgK9EmnzlsSkPtqz6VA7eokYtJVaytnSVbgHdtbe3cmRDruTEXvTnh5J3TBJV+KKC0CXMTkqz/W8jxaltoAStZE1QLcQylFhHYbVhGmKj0ywCwFuFNeLGEhN9ayLeYarIc6wTDF7v3GOAFLgEwJrhpQUIzs8lP95lhuJeaOJMMyADiNI6xBAFDk4VoM5O5iGEWIBacwDFyAACH7tMC5mpZuMCpyg0b5SwaACUQB/NLiDmQ0QJZ+5wMR6Afph2WeuUC7KP/Z2FXm+h6QBtQQAirto/9K0zf4tbikTwHMBjIMDV5sXL6Tah5vwFotOMMe6tFcu2uhe0EJ4ApWI90YDs/FkgL9ABCwJaQ2MkgspBUburA8wGQMxR/Sko4Xx8CDE9AF+g8F5qTfa/vTJ3U4/OV4dQuje1kYV/fBp5NDVKgFJC3saSxqmuNA1Ma41if1dihXfYcO6sb86ob44k6m7vQT2ay8Up5Gp+wwaq/nFA9nxYjQLT7YFFm2qC6BIQAgQCvQuLJdgjJV2eBb+Ut8GFGPACXZuQEwLh7tqANaCk9H/3oRw/XAsgDkWwKV3skITMB1dJGQoHWsjHTe8u1c5zveRP0KC2lXXSFtoNVOzWIq3/Oue4ZCOadQ7NY2dAhnc7Myiagq4Vz/as2kFV/PWtGqDTG9KwcnVMKQ1l4H+aYNfaUltpmsgeVYenrt0JvY6Z1XWkgJ4R12vMBBKW5hT4QuOurMwDklHHhUCzPpddGhdVtTlWh9z3XZlrYzqW7cbqyKM0BpIwsRudU5pi7ZCzKm0iZzjUv0C7IQdg4q+fWNkhClabq3FwlIJY2bWMep9t0UPUcUjTKTvRRQPQznvGMQ1mW5kw7ruwCdrtn+eaMNpZyNHDoiXIQRcXJ0V/O8epLfxNN4S+HSmnNcel91v1rSxOUpAPb75VXTEIODJtIBozXP+kPN8dLZ5jutTG3z21Q1f2aK3KSdk3pDsTXdqeDumuByNrXlGaorOyp0LOab0o/ELTfvMO8A+lQO/q+Ntb4kSlHToBsOmfrBzYGpm0KtFW+tcGAQCzkrjGe0Gfn8OKwD3ieMkn6rTFyvjd6DnmM+T41/pDhwAKe+sGcITSdgedrV2c5ptLb7bgWy7FzLWB6jrKOT8Vi+nbcHUtzuGNt7Wa2BXjX1tbOnTVRxF7EssWYELLWxBUbt8lyk3YsJZta9F2AgkWlMD1sOGBFE/YmoBbG3a8FAGaETUOEL3eUHjq+NqeiG9d3LUIweAG9gKoWmk3QW1BjRJCZmADT1L1lmL1d128tUjBtO6/FYPkE6FzKZvikZwGDMP2AaNIEjJwAmPBqE/wpQ1AabcoBFLta6740Z7HazqoBPrAraSxOsE9oaO2638h51AYxo7TFyqXfAyGEFlucC5MHGE0mGbCwemlR2X1aNHCeZJNxitmm/ZZGTg9tQLjlZH0BfztnAp++w7As/S3OSwcGnP4iPf2P8cnBA2zAbDoGVydI6H9gJ1DNwl0fkHegtmuUBZDNM2ZZAYj9nexOZryRPoACEFHIPJY7djQnz2T/9j192dpL41B1ygHgWVMXsnEii93YswIlyEQ0HulnjV/Cwek6C8WeofwZAGvKxPTcnFy0MDmwuncgC2BRv5De2cfnODEBzsnkBnbZhIrESYadagMigF/XKBNpUOfeLzSlgaOcf5h58j7TZOyMQRgrtTIgCeE+UyZoSoxoE5lN7IyXkznpebRotf/yPgFu7F99dOpmA7g4M2huel8G+nQ/jjWs6j4HDHnnNPZol/1Gxz5giYRG1vuu/wPLkgQAfPc9CY/SFRM86zfhxpVD5QlME8GDPS3PHLscXp0XsIWN3P27pvuJFqAH37kYyZV16Wg85DTu3O7V0Tk5KmoDhdVXduVr1l1jMWBU/QLBAjJLozYjukJfAwCaZ9Q/69vlIacwrWUh/sbf6bQjEUHyon0Csvp+Y0r9T1i/cZ0cCX1V7Flg3RyzjMnkFfRFmtKNXRwrlSvtTO3SXKx2NjcRM8dQDp1bHcXQK182nKxtltbyUXqqj/pbIGntl+MQi7l0pDvMMT+B0I7uV72mWWujNfmtbQLNZ1kBcfu+9xdGb221+u+Zyrgy7T4A4Oq8fNXnOt/4Vn0ZW3omdnnlR3dXXXPsSZOxoTRVBoH53QuzmPPT/AtI3rXNQ6qvDBhrrBAhU54rK0A/2ZK+J3ODyV65df/yS36lOa4oMaC7MaV2MKNj1tbW1s6LLcC7trZ27qyFoA1zLJCEu1m8Y3U0ccQQtXFDLKzu0QKpCXUT485p0mtCKURXGCoWQguXJvxN1gEQQlYtNjuEvQIOLHosuGzGZiOSJswxtYQX27jGhnIzLBUwdxz+BdgoL3RSbSRiwRTrxWKoBdflQFVMrmPQCogBiJoMUte5r98xjEpPRgcRAxsDbEouXM4m2AIwPouG1Vx7FBqKCVM7Asiob+fXZmJ3tWAFzpABAY6oF2WJ8Qesmw6Lyt2u8Bi/M4RVu8acxDCrb1gc9qy5SRnJCWHOgGT/AwrmQtRGXULZc3TQHLUR2AQ0uxdWK4cKQA17KJvarRPcBRpMcJYT4lh6wZgyv5Nuz5hALhB0skcnoDwX1vN+2WzPdiqvXhozgKIAutIrlN0Y1jXYgDZOky4sfZqPyrG/GJldI2Qc0075Vi/C+wGL8tJR+6qfY4yRXaFp23eBZQD70tFiPkAkcCZgTOgyx4NxhxMgm/UMiAVulYfuSxeS5jdwtnuVP+DdZOCVfv1ogvOVQeXNiYW51v82aOp3OqBTNqHre+8EZFZ2hdQCYieg51qbp1UfgDRtgR52dRR4BVjTZrXn6QTsfAxfILp+WH5sjscBQzbGBnn6ibFfOvssTLsyAPwIjydxlL5r1zdmkQvJcdD9MVuxrwN9+puzwXigL/fc8lI7mZIg+n3lX18gM1IdYzUrY2C88bHvvYO7r/JU3n3ungFk3at7li9O2H7ru/LW841/tS0Mb87oKU00gV6685WdDc60M3sLGGMq7wDhAMz6VvfrfNESwLXKqX6GOau/cxz0m00SRfwYOziVRGFUT40hHEdZz6wc+r62Ujo6rzoxJmSVdWU1HfFZ5Vk7wHJtzGhuFRu7a8kPqSsOt8qisWLqwBo7e/att956Kr9FaoEEljmjvtaGf0BsG8iJliptpB5EiTXva2xRhvqQCCbv1p5jc8IiUXKsk6HomspL+22863mcmLXBCAD91jWYxJyxnBiVVTI82hLtaRIpc07A8We8q0y6pjz213t2Oo5EEnXfKUmUcSJ7/zjHmEAaIm1VTtn5zs3oXPfsqffetfXH43fi1dp5lGhYW1u7uWwB3rW1tXNnTewtpC3sLUqBTBnGWdYkvYk51kULsibKZAz6XpgZYLf7YPpYgHY0GbfQBGwIV7RZhYV/Ezx6kDZxoznbgrDz2yCs78k3CNvsGUJ2MWIwNTFHjhkOfcZ47NlNlAOFyFIAc66W8WrxDDAwYbVgmJsZARYAMRaoABB1h7k8F450F/s+1o16upSpn/62gDrLMg3lszKgZYqlRbuSBi+grnZSuwW42t1eHUyQfbKoLNwwFAHsFpZCrYWNA62ElU7JBSCftjhlFIAWwDYMcmDVZMJi8U6zSY50KwOgA6kKDp1ALiyi2nkACBaT9tn/2GKeOdm02qv6OHZqSCPmq3OOGfRTamH2mQmETu1M1052rzLL7IJe+QPeY+wFjgEd699AhdpJ5UFPtPGjxXzPaSE9pV36rWOyb7tHv7Xw7zNQx5hZGXEoCJ1vzJo6jrWjrk+Xr88Bm7QejUkZFpsNsehR17Y4eyZgPxnTwAfg8wyfnk4QGuzkJrQlbDQMTbI+nGfSyrHQ7wEqsR57nvGm8gOU0LYG1pRnG2NVjtVbY753CCeg9g4Itgt97dVGUVnp7V3CIWPM7PvATCCh+gjkq85qH/ozRyTnQM+eGzMGnPW5vqosAehTeoWsRWWMLZrDNMCJfiunQBumBXDFvMUeB1SXlvpqeY1dSDYpIBzADajynqhMayP9Vv57nnIINNSfvEM4dgGt2l7375xYnDagqswAUaWJDnRp7bz0fN/3vvcdZD60MxE35R8bmDSG/lsf5GSo3AHAlUtpcH7l3z1IUHFWi0bQtmoH+uEEZ+n7Y/mKvgCScspW15XVJz7xicNROrCtOcTVK81VLGAOJ/cjDSAN3ad2ADSvjwQmV0e1f304HU1SB+lm6r/qsvq1ARdnoyitybTlJLPZpn0ROOsCwbPyWH+oLkQevPWtbz3kp7Ka7HfvXO8Q7bLr+mzuOCWngMP1xc7tud2n/tx39iow/nQvY1/50MbljSSXd5ExOgdAz8u5YD5pLjg11bWbqQVevVfmdNgzeve0t22e2LNq5+UdI56chvLVpjPzYaz5yAS1A9E9tQPv/eoAIYJjiBNk6iG799ra2tp5sgV419bWzp01OW0hZNFjQi/8zkIByEGzzcLAYstiCRjaQrBzbAxB447EQpPTJu30dW2sQ9dUOGGfm6Bi73VeixYAb/dvIt+5fR8TxwYqQvFsKNTCw2dpAZ559gRCLcqxZDovRowNqyyur4Yla3ONytoCwjFZiMCpyU4EME4WXFYeJzgslLg6ahFYfbXAbNF8OVauMi59wgjPslmcTj3ayZa2qVPl0kJJOdU+sGDUPUcF/UvtpTrHnqmOsD0tQgEF2o/FHEcHsKrPwuxtCiiEl/7rsSNB+LOQ9rko5RDAEBLG3GebO2F0cg60iCz/LdiBUvWtxgB50MYAFRNwxi6WR+OFtslxk0mH3dudO+Uq/D+ZwOqQ4wNQ6Vx9d/ahCe5OGZX+BhoAymN1lZaYXrWF/ufAmhIZ9SkMy64LwJqMaXrGIhTky0IdYNLzAefaGGAyAzQAsEnDYNBp2/o7hnHgb22487HNjIEYgccSLlOOwTN8r613b8xL0jRkTwI41IPxStvAEi8NHYVKA7/S9RT+XX4awzkX5Q9wBsh597vffRoeXRmJMAFgPPCBDzzNW3XJaSFyg0PvWN4GUAKM5bQQol+++773VYB/37/lLW85HUeUr77d9fVvgGZjzGxH+nF5UN61O/qcmJGdF6gTmNv1PTuAt/MCfOr/2KXAy55hszztsXbVmBQ4rYz7zaZapbnyjyEY8N73vVdJMXn/YICXvn7vvpy42Nz1q0BKkQD6m3FKGXRN1wf0dq/6Ayko15TP0vZlX/Zlh/MCLmlEc6DJd9dx6nIuqYPyyxFiDDIelMbe6Zly75lC6oGN5bN0itQQPVO5mZOURjqsPZvcz5TvkZ7+TsaqcYNUk40RyytQvGdjtQKuSaJUt+UfYErXlcMTIzuzmV+/lcf5fhJRUlsDtAOIjY05jbPuB9g3P+x6OtnGGKAkZ+VkqMs/HWia5fp8bXDKTGgT0tuY1+ccGpir5bc82tixZ/e8+iH9Y049kg3apGiIxpSph4yFj1AwN1Xl8NA/sKUrs0D4rqn9kTHpPp1jgz7vc5tMckr1uf4vCoIsQ3noLx14Yzoyho07OX60kbmh29ra2tp5sQV419bWzp1hXmG+9Bc7AEuxyWoLmsmK61wL4c4DcmLemoSTJqDLNnf5xQihVQg0xRTMTLKBTC0EM5N4CwPspJ4ViBA7qMk6EIB2oPBpQJEwyMvtNDy/bxKNKeI+F9M2mxqOQjrtWj9DLn2eG2QAojBTJkjlGgvbCfSoj/KC6Xwl4Nn9AN5Xc/493QBW2qsyBnoBpFrcVU61gRZFNgNqMUbGV4Q+AwAAs7ZJREFUQRuxKM9qLy2WOC1sJtP1LST1I8xcepzqU8h9YAhmrzqobQW0TvkG4eHSYsMn4aE2W9EGshmG6/6Bt50rZH2WTf+3YA846p5TDgFoR29QGduNXhsEMAODZmgrMBxIATiaLCb3lf6Laf76fYK7k33vGgb0mmAererAyYDAwJHZz7A7gTWNMdVTY4+xazp1pn7mTIP0clr1/NoZhlvPFz7ed5iSxk0AeempTQasJD0TOBHIyYnQUdup3gJ5gJWZPg2QNf4pD3UrNNkmSCQjZlQBoKjnaUPK3lhnc6F+b7wF4gB2KkNAtnYwHRKAEu0iMASIE7iDjRugQwolMAaA2LNiyqW/nrOP3ntH6akcXVOd0imdToTaOCdH9SKKpLpqs6859lbuQHSMvQ7sbIzMzuUQ0G7KW9a5dLp7Vu+tzkk6oDLvKN2ljW4vVn3n9TwsXONW9yLvUPlxrMhj7af2l56v/tJzAjsD4oWKl25h9MBJ+uZTNqa6UT8cK5w7AET1XRowoLPKJSCre6UFC6gtT1/8xV98AE4BjMd6195xWOOdc+zs7NmVS+UdWN/8APMz096nXrixzzmVFYc3LXNAZM+trOrjlWsOlvIG8MZgB3DqS/RrOeHMrco3ALY66xnllyMecO8afVz/MeYaTzt/hu2Tpuq7PlffgOPKpzS04VrRUOXrZ37mZw5OhtLaeFlbNA7oTx3V43SmchByQCpLYHNpqK9Vbhz0QO/SUJuobyId1GbInmTmqBzu9U+brnnP9TsnGYaycaW0dj5nHm17sjTVkTEd8IqtLE/es3OvCfOwynTKxNRnbTzIuUi/vN+B8qIlOLpKh815PVO9eneKACjfHEfkN2wCi319LbYSDWtra2fdFuBdW1s7d2YBZJOeueO3kPImojZBAzxhBXbd8Q69mCVYh0ARAIOFl78WqRaDQmZbXGDICPnFvMH8aiKOTTN1E4U0TmZZCwGb0VgAmuRbNFwteHi5DSswmC30PEv482T4TdYlENK950IzmxqaQAYLJxqlgG6M3P5eLq0ZVlaLLpvozc3dzpopt6nbiRmlPvw+gR2gmHBnZQwgE16OvQ78xAS3aAVOdk6Lt0CU6iXQsGsxzzMbrWifFnkWdzQtMX1aCJY2zMJZRxPgFfI52whA1kZdQkVLdwvegLHS2jV0h7HdsDGz8hUIVZuprQDEph4wZ8a8BuMJADrbuudMh4d8+N11x1qxE1zN3HMCQPoWAw7SqKUrWZkYDzm2sLwBedrJMSB0MXONRXnlywlFP7Q0BDLHngyMw8y2cBc1Ufu47bbbTttoabOYL3+BnhNUtlHX3JzymG3LsdA9ABC1QQATtvbUXxZCbmd7DgKak/pH6alsk33RfgEV2krWM4Q5ayOdp6/S6o1ViNU4ZVj0wZwTtNIBghiuAa3Gg84N+JD3gCVtRoi5fgWsLP/VXfchHdH3nUt7tvSW7s7JAM+AWPWQ1aYqHyzP+rWjOtDGy0/57J6Bh/Rj9SdsQe/QtHYDcqQjgDTQFviVTEXl8/CHP/xwn/qx90/1n4OpNNx5550HgK7vsasBtJWZ6JvaLekj77Dy3bPJPxgTJjCLxdk4CBzu+qRIygtpBPMMcg0cbSR19D0bdWG3Ytp3r87lPHvXu951CtICr7u2thzYX7lhy07gG+Py8z//80+e+MQnnvbt1772tYd06af3u9/9TsH86cz2PsCetckbmYTSOyV9jIXyXtpEIBlr1Ds9eP2HE4SOdt/RDG7cmQ6VyqL+WR/w7intJEqqn0c84hGHdw1ZlNJbO+scEiI9I1Cye9Z+OPXnxqMY0pWB7wH/9icAbtfme+/ZAwFQSufa2GSeqayV94zgMU/MKmebh04ddI5KUVkzksH7yLu1ei7fPle25Hi6X+PVlF9yP2WAYctJVvuy14S5WHmb4DlWNEkahAkyTXOvCe9EUil9RwJjbW1t7bzZjnxra2vnzppsm+jPUMomkP1m4W2SaXfqJqtCa02yARkmribiNkaz8UaT1CadPUNIncUUBgR2huuFXVocNfnFhMCWwtyQh+7ZBLdFbGBrm9MI0bPosDlKi1LA2WTkTQANWAXQmFIKFgTCdWnfzcUBpg3A91iq4TgU3TOBW+QvLKZtGGbiL0y+yT7AcDLGLmWl94477jhdWBQGHHvmrAK8E8y1yBcmisGoHOfmZHMDQGxKoISQ8IAI9Tk3yKqdtQhuYYqxLcwYq4j+tMWgHceB/hlpFAtZOoL6aOfrhz07cNCiH1tRn+CssbjvHn0XC7FnYygF+AReBXr1uQW+haN01J5jjmJKYQsCD4B1tIX1fQvvTDqBhrO+gKWzzRkTgNT6ztTdPe4v+iWbILP8WFBb7Af20OXGerRpo+cI85V+i3QbrmUYfZ4rb9IG4LEh2mToYrxxrgFPRUiU7sAV0iBT/zfD9DOOALW6tzQDezEJpUnodvcuz84HHnfUrjjXyPEAG/UXDE8sN0x3m0lVphif5ErsDq9Ojb09Qxh34Jbwcc6Qyipt2fobME6UiQ2ZaqeBeoFalQPQ0AZvPbu/xgiOl/4v7coTEFgfAGYZy0tfYFd1Uzr9hlEKfJtSEN5v1bHQ9cbcAFyAbcbZxvkWqDrB//JROUz5ohwEWMgdMTErF2xSmvuVZfUXyEzyIB3X6qqxgONT/1fPlaeoGaxmTF569epqbk5YeWY2TqtOekbgM4dT52JLV2a9r73LgLj62WQHAwVpNfeMuQEZhnvjm0iFntvY2Tyiep3SCsabxoHyW7kDIPvfe9scA7Ddc0rHwx72sEO5Cr2f7E7vfuMCABCATuN4OliN7TMCZWrclrf73ve+p1EcJEWqDxIEJESkCWO/5//ZP/tnD/mPnVv+6lc2h6ztBWqXr8pM3dY29GXsVGQAGri0x2tfGPiiWeRLv6sdc8YYRzDvOVxFTRh3JhhePWHOex8pe+/hqT1vHCGzMkFyaZtRWuRu+lt7qa+XptLcuaWt39WBDQlJLfXOrVy8x7Hp+y3dZnIswGFRRNod/Xb7BwDGSS/oOxj7fTaemtOSP1lbW1s7T7YA79ra2rkzoZ7YBxa/TTwxCjLh6PTWMHFMMmeIdBNsQEeTYBp0TT6beJrcChXEwAJKdA9hiBYyFjeYvi1iTNRNxIEn9EybVPc3Zlzp/NCHPnQaepu1ACmMF8OrxaRFqkU0MGQC3Bh9Fp42JWqRgG3n2hnClwHc/D8BKAtS5TlBIqHtU8ZhAs3YesoMy2yCX5cyu8JjNbbIDWzANjtrJhybM2IyqQBJDqAjYMyCVB+wMRnQCHMMUxADl1aikFwMmuqp7+nuAZ77zqI+Az4Jp50OF+wb7U2IaOkjAVGfAiDrL4FDdAPpBAZEdZ/AjRa9fU9bezKXgGsYdDbKwa4q7wBe4agTlOSYwK4CEnY+RuAEHScLdDKvZz+cdTilUS7miMDo9ZwJKgPhsP6AH1iQ6kEEQfVILxHTS3orO+1H35zp6X6NLZX31MHmOOj8xpPKT31Mvdauz/kE2AHoHee960ncdE3nN/ZyONXejLMAeGM+ncjqL3Bgstbkqesw7YxZAI8JOk6HVmARUEsdyzPGvDYyATn34LSaUjTqbm50ZcNOYzHnHQfefe5znwMIKzJkasUDzrQ1USrG3OpcqLnzgUgAl66rjoTPk4pwb5uWGie04epEmHrprp1g/RuzGocqF5vrBQapw9pN1v1rqzYL67dYmaUlVr6ys/FeQLtxqbTPCB4Oi/LemJQsCNDOuKfN0gitjDmWjAvej33fmOh34F7l+pCHPOTQRkvTy1/+8oMT1vsTQ/2hD33oqXxCUg0kmkq79n4s0UBKAahe3+PAKb36Q/0tm9rh5ZlMQeVHUmQyvAHL2JWcKBzR/a29ldeeUVnFiAZadn/h9JVR6SHL0XjtXtjHMdc5N5rTaEf6CQ1lcx9sUZve9nvtod9rDz2jz8a2vs/BUD5rb8lkTOdR96gOexbg2OZf5EOmbnbn9pv+a3Pe+W4whvXZe5rkDMdsz+lz/UHEi2s4MTnNOEw4yLQTAC8HLkdvZVu90OolYRJgS/8W2Az4JUvR/YDN3h3mnuVVhAMHiLG5/4HVNlvtnjNdk7xQmZCloA9uPDRn977grO1ex/rQHDR3Zz63Eg1ra2tn3RbgXVtbO3c2d0EXIth3FnRN+ps0zo0rgBNTD8yk22eMWpuMYMdZZJvkYvo1qbXYsAN1E9qYMMAjgEWLJsy2yYTFhsnoJ5rsYlVYjAmFbbHVIrbn2xyG9jAgDqPGxL/rJ9CDTTEXmxYFABK6knasn2Gb9CltlgEEnnIQFoOTRex8TDET4MoNAwUgdzk9XmxUwDPA5ZjBfBasPFsoAcPmLuXa52QdAjmEILuH8MnKrkVmR59rMxnmmDbYItSitvaB/Q4U9hn4ACiwqVHPxKbUL+ipAsb83z3tIO98m67YFC6zMLXxDnAJiAjQoXNocV3ZATMqB2AINl6MKWGowJEJfM5nTzCXdiWgbTKlnDsZqpwWU2bBs47b9GT8qlN9yAEsFG1g4xtl2nMbN8p/jD9apEC70lxZAn2MIWRNlImFcWyvHFuNbYBtEQQ9G6NSmK0NdDi5OIY4DbCYOXmw6YRIl+5AQGy16g1woi3NEG9SCVimnjejCrLpbNJ2tX8ABABUvc5okLmpZdcBANX7ZIkC24XKT01XrOcYoCQSAKPSS7dTNENWm61sMUfTt8WcFpbt+d6J2h/QyDtO++MIqv71T2nFgMWsrowwfMk1YDJ3fqAreYsAaZuOAdAwi/ueJEJpFnXSd10PhC+/dLO7j80jaw+Be5xgWecFggK9uqb2HACLNVtec5Qmg8FBUNpuueWWk/vf//6HZwQ+TikU70jRAsDx8lgb757VQ4BjZaNNVN633nrroUw+9rGPHfT0AcHNBzowVwMT9enur6ywZpWTtlrb6HqOZmBuZaL9kNggvVAfxmTvek5xshze/VOihAyBuUzP6TdzKOAvoNr7pHoQ3WRM7zzvsDS4AyFtmCUaRL2RAZjjUL/XFiub2k9/c2xLIzmHyq35UuNHeSRdVf2JVqEZW1vqXDInWfcRIQXkVG4ck94r3pveudVj96rdccAA1TFWSw8HvGgw8ylOUeNc1vecsBjr2r37i0QxlwI+H0s0GQO9V+h222RNv0dM6DP97b7r/ModMG+c73eyQOoBC572MueRCA/9SCSFMap6wuTtWZwxyuRSMkJra2trN7MtwLu2tnbuDEtP2N5cvFugYTNN2QCAIDaWRZaNdpqUApGASlhXNrDAShM2jQki/LfFe9b9Ai/6fS7oMHg6+q2FDwBXeF8LK8+2AY3nTqZFzy/NMVcng85CHsgEJLEYnAtaC3zPV1YWmlgrmI9TckHoHlDKAgiwO3d9t0ChM2ih1ALIQjfrOuHNEzg6Bm1t2gMkAEieNVOWFmY2T5PfuUikV2zBZ/MTzC3lDkyrfITn2pjI4rz20cIUw6aFMrCiZ1c/tStMRrta91vn9lygOjYOPc8O4CDQGBgMPADw9bfzbWqFLZX1OyBZ2oB5dH3LT2DG1BeuXPodo6lFK+mKGXo8JRSMB/oQICsDGOhDwpUzfco9sH61Z1EDE0QzJpHeOAZ/pwSKcsDYnGzh0j93JQ9oiYUXGPTRj370FJji8OkQ3m+spHOrLU6w2/fyA0D0PdYo4A8TH9MT49Yu7JwTxuDqtXNKa+NCv3/wgx88MPMAAcqQYbxidvoM7BUVMMFAup4ZBlpjb2NHLEQgT32lNPUdtmNtuLTXpoxZHEnKI6aqDYMCkWIcGuN6HkmS7lX5A9/n5kqY4o3n8gYIpzNvszttYeqWassdwDvjR/niRCkvZIQA0FiF6l/INidq7ygMZO/dGYKNcd251ft8f3C4aP/lRxRAaSxP73vf+05/U25Z9SPapWcG4sXcpjlrY8XuVf3EdNXfAYiVF4Cpo/NqY2Q4tCkMeDJL9JqrUxvKlZY3velNp+8+QLg21nNru+985zsPZV492gizNlEec8DE6u232kr3V1bAvMolgLTfRP90NM5JL+dyeah+koZ4xzvecQCYsTJ7rnInASGSguO3Z1VupHJKQ/OVzLjf9b0/+r3xpTaKfdocR7QQ6Qsgsb0JOAuMKdroK17xitNxrnqxWSJWt4iT7tVzRaZwDNED5/wjATWdYN57+pfxvvEGuM0xI6KleuEs63qRMKIhaLh3n8aNjvLjen2rvoYVb+zTXzIALla18q8cyQ1lPY/TC3NetID3HTYxpx5nkXONJd6Boj4qo/Lbsz/ykY8c8vykJz3pkPbyrjy7D2kIDjTEAeOD9xNgvTT0maQTJyGJEnNfcwHlaR46mbxra2tr58kW4F1bWzt31oTexN/kc4KAQist1gBH8/oZXo2ZBqilmQZkPA61tghoodPEG7hrp+6eG8O2STLAd27Ig33YIswGQRZ2NhzDIMM+O2YJ2mSqSfgDH/jAA7vFBHoCRdMs1iZz0f9TomEuSDA9MRnLu7KnPWiRPeUpLJqABxYy7nu88/csm75voVpeAhlb4MxQ8awFRQtBTDrg8lk07bE8YBMBTbWT/lYGZBNosfa3BWgAxGSAdq8W6rVRYBfAv7oAyLYorBwxooEnrPvOjQPdB/iTAbws7gA85BH63GKuvMWmswDsM53gDoAL6ZMJGGrXFq3YybGMOk8/0wYsarGLY91ZWAJFOTqwmWgnKr+pI4lVpn0aT2aYv/sZV8i+CBs2Trl+Mq2U+WS7S+MxMDzZxvrZ3DCusaC/AZUBS6Wp8ar7lKb6KvAeOEO+ABiHQW08BEYDPm3AmDOqc1ukZwBQOosYxqUv0KtrAtja/Ih+a4CGsOXSDTggiTAZuRxOIgY6agM00Y1rnBjGJ+z22kzjCbmRQDkakjFlZ51yqMmTtoV598f/+B8/Hb+EGrtOWoyt2vF0mnFmYTUbewGjGH/K2rigfIBl2pD+V37e8pa3HK7t/fSc5zzntD8DUdQ3AKVrACuBh40Ds+70b9EBdHdFrdASJr3DqSdkXX8sPYBibbT6N75gStMkBQxipZfXD3/4w4c6r+y6f+mdYeb0eTkSAti9z7FY6evXjmrDHJL95ZzoHVQbBco19nbOZHVn2JGxhyuH7hHI27hK37s0VDY2sSudpb/2Z8yZmqk9s3vKP/Z96aqueu83x6gvBnqX/9p2YG33LR2ltefGYq7PYe52j8qsuQcmtbrvu8q3e9goEIvS8zHPvQ8qF3nAeieHQa6j5yiPrq0uq4fppPGOAxDLK5ap8bnzcwplAGyOD8zaxruuLR3dp3ZXOQFp9Un1YVyrXKqn3quNUUDn7sVhVL5IUGRAbCA97W4OHPIW+ikm65QDImFRHsmomAN6l3Bkey/1f9fXhtQHyaGpjTx1g0tzbaM09X9gbue84Q1vOKT5a77maw7ayNnb3va2g1Ohcus53rHe7d238q1tGieMHz2ffJjojNprmslIC5VxZdZ4XDkjZZBuMrZfq61Ew9ra2lm3BXjX1tbOnQlRowXXZNdEEAOiybVQUAtFEg105WjzNqHE1prMvcziVrhrE8+ehe1lsQz4xZLofwuoFnMYiJhuFi4Wfp3boiQTAtizLIJs+gMAsLjvbwuR0tFidIJCM8TNQgoggNVm8TClFCzU57Mmuw9T1OIKOANsFX4o7H5u4OOZmXDRY+mAFhotKspPiwU7z08Dak1wrjKcm9adBav8ah+VBbkJYbFYXrW3vsMatOCltSzP2JnkNmgUY8IK1+ZAcJ4Fe+25RVdpAaIBXbqXBefUGcUixMg7dqwApQCaFqW+izEECAaEYl8B8AD4WEoWvQADO6BndBXrD0J7Ow+LiFNC2DrGGRYlJnCGWayt04vEKMzmpla+dy/Xs2PJhgnMXaq9zlBb7WX+j9EGGAFKtrlceQ/AaFEdCNNzAyZKW/0rm8Bj9wHKGoPItgB71S/wAiBLngVAldF8FK3g/gFRpSfQpT5evw1M6H9tLaBKGjJh08dSFYClyawFAhnflbH2jm0H+Da2A51Kt/oD0NaegBDAjK4hf2JzQG1kyiUADmlZihjJ6FlzPAS+xMDuHVb7jbn48Ic//BRUtWEaMK20B5KWHo6+6uaVr3zl6eaG3WvWnTaILevdg0VdXZM/8Sy6miQxvDM7F0gtVDuAre+6X/dVLr0zyz/929JcnQOOlJP3HBZ8n3ueMP7uVblwapTOngng5cTCAudArc2X3q4LjC1t1V/jbOPQlP4ABtNaNTZ2b2B8+ZfnwH4ax9jhgE9jlI3nykvnTJkGEiE9j3OO86q/t9122yE/gWW9H0trICdJDdJGOSlsglU+OUJKCzZxjHMRMLXdyk3f6nP1EbDHSaK/AwnLB0mo6SznfOv/2KDAdA7KgMPyUtpL33R+VC4YpcosM4fDQJ6SOpwp0gHg7Bl9rk6xsL2PRLwAUjmwMtf98i//8mHvg9oQyS5sXEBn6WyMrQy9S0pX5Udiq7R94AMfOPxf3+x5/VbZ0pmvvnN+PuIRjzh1DHGwd+/psDJW9x1nu/ZYn0JSMK/Shmlm97e6y8kqMiizR8NjH/vYw+Z03a8xqLyUNuU1I0Gy7mVsNeeSB9Jp5tW1sfJN5gyQyxlTWsh1uM+xNvza2traebEFeNfW1s6dYZU28QXAWhTalbgJsA2nGKaGiTBmlzC7qX9JimAy0YBpLQRagAGpel6TVSBXk+I+N6Gdk3LPwCprkt/EtnR2jybUWJHACUBvB7DO4hKA3PcxFEsTsNni2D0mcOUe8mfhNHVHgVZYxDQd3RugQx4AGDxD9DJhocreOdXTDCEVYlkZFn7pWZeSXQDo2kAkAwLY8Oes2GRxAmNbFJGowDrC+AF6ZjYRtHgDeAg5BljVJoE0ARW1lRb83affhO32HJv0ALL6HZCHRZUB/QGu2ppFtH4KmHJ+9SNtfe5ZQN6e0SLY5i7d0471nATCzCsjIaQ0AgGxk1mrP2PgY6OXBhvTzfabYaIbEzCeJzsI+DudI5wupZ8TZTLmLYAna93z1H82gcmpQwjEBL5OVrGyqiyFy9NgjuXV+AJsxVisLDP9Tb1iXAKzhP6Se+l5Xdv/AC39ezK6pyzM3ADz0Y9+9AFsru476KMGUFV+gSeNn7UF2pGiLaQVcNZn+TDmGwelCaON3E551w5sFpiRGOFQo8eLxckpwEkgXV3z/ve//3Bvmzt1nd3hOU3k03MCi5SPc0lH1GeqM0CPyI+scu9Z5bty0u77/U/8iT9xuFeAZt8FWAWuznEhq6y7f8BbYGf/u9cclxj9Tf2KXAy2fekMeC3vgWv1rcaSnJjp0yonERnYycLNAZ3lrXx4N3ECVpeiCaYDSb8A8mKqct50jRBz6U4WonyXNjIxnLMiWbQxdVpbnNrLHHHlq3xOHXnRQORcAOCNuSRFjqMTJiBnkzDROpzA1aONxXLsclxVl9jwgebVv/EKwzqzeViOH44+72imT9S2jO1AxtpEG5qVd0zTyo3zwNzGXAIbuvQD3+WzvJAaki4Aog3YOHTKl7agjMzVyO3kMMLWbvM7cxWO48rUmMBBOAFj74Dy3RyEhE11BkDnZKxvkSHouYDb/mJgP+hBDzr5+Mc/fgCzi6TgZOEgMY5wUk/ZFXmQX04H0kdpR9dnywOdZiB85UYSi5OWtnDttDZbP+1z/aC0Vjalv7Gi/9NNpo1t40nO49qWue397ne/w/hfeXnP9r380eHmdKM/TBqNU0GfN55MRv3a2traebOzs4JdW1tbu05m0QQYxW4CwvZ9E+0myS3OMhtDAGUtLAEigBSLNzICGCrAhSbXTVpbzFoY2RxLGF/XNWm1OYf7AHGwRkpTE2pAhWcBVoSxArowJSwMMR2wHXum3ZmBPq7NAAnAB4xJE3ALd5qFJtmzfAAjgCWfgXnyOPVDgT406jDHLIQs0Pps4zybwkxwa1qLrhZNQigtJLEtLXbu6Qa0wXQj0UCaAfg4gUCAImB36qtiPVo0arcY7gBVrFt9CNuvtgmAUa4cBEAAzK8+O2+ygyd7ESvHZoW0Bn0u332H8Rc4Qc+TY2PqAAIaqv/SoA/4TbsVfo1F2vWY/8LcMTIn058u5bHcR/ctfcKyPVMZA9ZFCahbdTVlUGbdz78W+a6f/XbKOmA3ua/rjoEyrDZtgZZleWhhb0yRD3lglbFICExXrNbK0v9CznteoBRApc/CmslqdK/Yalnn9Xt1/OQnP/mgIVqdBJiUz55Zu+gvRinGKaaw8a97e1aG8YYVONn+XY+VjAHXuYCf2qdoh/LYu6S+VTo587pvwAeWJEZs5waAcIgBKaXX+F7fDhTpPtq6jaFKY+Bj5QDEAqRJF1kMm5N19F6q73bv+lEW4JWDxphNs7TzA/mqr55PC7Pyphs624F2ilWaRAD5EeWlT2H4eV8AGKt7DoLSWZ3Whzl/gN6V35T4OX4vkRXISk/nBTjRd9cuOcQ4TnIalL7y2H1tlqbPxsItbQGnGa1xUT36Jla2MsJYNM5gc3tfA9Q7vzYjAkYeKovyRM+f/FDX119j7AboGV8Dz5NdUCaBu9WzaCRRER2VCTCufFS23TumZu0tdr+QeBEWnHTGXmOcMcg4VxlUZl1fWfZ/ZVu7FblAM9n4qx+Q+ND/AHmYp22CV957TkBnDH/nTK1t5d8YYb5UmVTvHBz9LgLBnKLzgc1z7AUw2uSVhjTQkpMHcH7nnXce2iB2Nqd4v6fXXFrSXDaG199ix2buVXkBkivv/pLI4RTzLqY7bbO9+nHtte8aVzlLK2fvUVrWxo7Ghs6b7+G+K6/Jc3RP82XO5MqLjrrryo8xR9SW8cF7WHrNNfWL0lb9dD3Q3Ka9JCY4UK7VVqJhbW3trNsCvGtra+fOJqNEqCBmkYVhE8Mm7028MXABYhPgxfDDTgGozsnofK7JqnBFO4QDeIWft8huYd3iCnjXb5jF/d8Evr+YizZWaUEHpJOGGS4rRA9r0+KhhYOdpy12ZvrnAsliVD6nzq/QVoxHDBKA0mQfkpyYiyUA9ATeMBlN3rGapaVzLZKAz1Pr9NiwKy1Iu95iHXAF3L8nA73aXG2lNot9Zhf1uTP3bINAd4zpzqveOQA4CIA6tAUnC7I22oKsNtoize71gQXYb4ASQK6d7rOp4Zppz5h2tWesPXVJisGu95hDMRa7F/BN+6ShWLvG+AGWzpBegMZkx/neuRjwtB17ljZs8yfjAh3UGdY/N63BlrVJICAQSKo/6TP66JRJOe6TFwNvgYJTSoEcg/wCJzJgFfCpOsFAbFHd2KI8Sn+AU0CjjRulpfQFFPV9ABJ9SSwuIIuyySzO1XUh5LHXGv8KidemOGAART2/ughk4KTRD7LaRmAP8PWYNd3f+s/c4GhusDZZkqQXRApgxX3e533eXULwlbmxGYiJlQkw7P61Xyx7eQu4CLSovAGVNDHrQ0KpK1uh4P3fJl3VFX3xgDxtufvn1CrsOwkLbRmLDxjZve9zn/sc0lK/5wzVfgGl+qr71NeAMwCh8mjDUG2A3MdkaQs3V1+lb8rvzAgBfQRTW/RL59dWtWsyCzaFmux1IfbGN/VVOsm1cAoA2nt2IGTtrHGOBIG+U/6BaDSB+58UjPxigXoPYmKKUpmSLeRsALdYrvKjfRrPyTxhqFbWvdd7trZY+8GgfeQjH3loL53bmGYzzg4bkXVf2tMdsS4bF2KX0qbuOZjHnSuyqDLp3hzX3h/KvXZb3/UbJqZ8Tef0jOIACLofJyZAnuP8WCbK/UT7VNf1/dLcONNv5YWjk2a09tu7zeacAHFRWt4hlRG27pQqmTr2wHug7Hw3yQdZroDX3oVvf/vbD30jkL10YMmWl9ojGSTSPvrrHP85jvqenBLHSWBzz0nrFggrfZ3LWd75HGOVS+fUdvQ90mDySAvcOFSfsHnjjMTq2tLeudqq+poseuBt5dyzlJU+pS/sBmtra2vn1RbgXVtbO3dGw8uCC+iArZH1mSSCxRL9wBmK3X0s9LFoAJ19ttmSBYkwuyaxTVq7tkXQZKp1r+7z0Ic+9OTd73736SZumB09u2ssQLrXDFkjzwAoAeaWjvLk/BY0WGgWFoBWi2SAB7OIdC5ZCYeF1NTaBYpP0BXwB7i1+AYcYFp1rgV4+VMGmFCVW/cVokkXTpjm1DBl7lXeAcxzM6hYRJ1jMTcZlfdEAwyUdwC4xdUM28+0yQwYg4UeWItNqP0DfI7BQcxaCzvam+qxBXOLQsCFdquOLeBo9FrIWZxqk0I1tXUyKqUnBqF8A7Q71+YrExSaWqY9E6uUZIX8Aje0EQBiaQlAszHQZOpPsHiy44W3WmxiIJeWFtL0kbtH/bnyU7ba/5QtAAzO9uizvgd8A2woeyxGgAgZDL9hjun/fVd5Tz3L0tvinMZueQ4cCcAKbAioAbQoP6CCiAhsbkxhGyhxOgEkMG0DiUkDAHh6Zob9aRzjEFBWgR71ZQ4PmqvaJCDWRpWzLKYDa4IumGLaIMAeA1nessbwwqxLZ+AJ/ecAsoDCfjdeljZtqveC+pgRC0KmMWbLV+BcbN3a7gMe8IC7RHfUN4F9AGTgan1kMlX7PTZmdVk5GkdLWxq+t99++ymAhS0bA1BEy4z68HvnxrLrWRj/2JyVt40dK5fAGtI9/c6RANCtD5IJAAKKUnjUox51yqiOGawNcSKIYgCGcR5qb9qr8Hht1Pinjxs3+5zDwFhbGysPAZ6BbxjXgXHkMTip9C3jxJRLqa6xi80vgFbkA3pWgC0QzO807AHOdJA/9rGPHcquPmNsb9yszwRUm4/EoM3RYMzyDun/nl399PzGwPJUe0hnFqAmUmc689Rd9yTpUNlxwpCHsmle+e788qcMOf36Xfq8sybYO6VdMmPlBIyVP5mt6qu/pF5KC/1+78ny2jhC4xpLeUY96CccSp03IwLMYRpn5vnKlwOHY017JJdgI9477rjj0Kef+9znHs4P8O2a8mEc7W/Pqd2rW6QAutPGYvnUZ/u+77x7Mu9AEhfmb7XtnlF6Zh8mN2Es6F6Vb/eoP9k8rfM5QwD7xmVl1TMx9Ws/5aexUXsg79Vzqr+phU0/f+6Hsba2tnZebAHetbW1c2f0My02hJOZ1FsA9Ptk8czNWzA85oIeO8eEl/Zj59q4rfvSHmwyigGRYZMCZ5uwFgrZZHUuAGdagNIm5Fhx9C2BrJipmMbAVRptnQMgbCI9Nw9hwGPh6BZYFuIWWNLS+UL3LfwwbydAY+Hld0C1fALPWsxPXUxaoUDrntNv/a38pXPmA/hgsY+tiWEpPBHzs3u1UJjSFfdEm+kiA3D8vQWj9nIMLNTeMK+FdNYmyGB0/QRAbY7VoTwd2hNmHaDV9YBzQICF+2S2WXhOKRGSGrRTq8vaBTYXs9O48GjgKSZaAFtgTP2k/oihz5FC47o+2vMAgBb6wBmaxD07NqE8AiyFiAKYu1cLXCAL5i9gcbIFgU9AaI6IDAtWnVjIzvIHdnSNnd/VvXI+DkflFADCzM3rjB2kQAKFApxawAf+kCkQfluZaytZzw8soZVYHzMedM1kUXddrNgW+vo7ILg2VZlX7/218U5jKRZq5R4LNBCy6zHKSIgABAMMOBUAUMARkiI2DgLUFvItlD+mK51r7Q3ojrUWS5JD72lPe9rpuDw3PtRPSmegSWkLHK6dFEIdcIlNiQkdAy5tWsCjzcYy+rSAU8BMDN/Sj/U8N9krb0n+qFtAoqiIzgXelAZ5UF4BcN2HhIH+AoQB6HaN0HzjBvY6J1B9qbrtKK0Y+o3F9EBrR/WlW2655XBP0koAXOVLXgTQjCU731d9r932GbMeS9aYoO1xegDoOFFrM9JW+5y651MeRz5telc+ALBkOQD+2KblrTYSWKstA8Wre8Bc962f9TfADnu2tqDPY5xWV52Dier9J88x5/vcXKY00n+uTQiPn1EgHFrGQWNG15mLZEC4GOWd1/0B6l1b+9Pm/J0SNiRfSAnMvg0gDPjkfLFRW2N6/bmjNtUz+6171C8qYwxg78PaQm2b1qx35DHbGFBtXiGaA5gvWmpGCmgfnHG178atfgsstaFe6e68+k2/F9lQ+XUOMFvUUWm0j4FN6kpzG7VlAfOd29hSuTa2SEvXY40DXssPIkCGsax90+X1fq2/cuJySIlg0JZLM03l8l7Z1GYb02gCawvaGOs3QHC/lbZ+r85Kkznsp8LiXWmEtbW1s2wL8K6trZ1LAyzOcHWTUuws2p8WeYBfC3IL1GyyJS2agRzC4IAztAab0NrYagIjmFpCJo+BtNIS+4bemkUm3TjpwQwDkFnsYKYATi2CA7ya9AMBLfyBbMA54FsGRAV+WohNMBxrBeAxdU4tbix8Zqi4Rb8NqiYIZuE4pScqy74nexH4Mifr2D7Ca1ugYqWSvxAWbGMWLKIWFbTu2D0R7L1cmuZCG0A5wYvyVzu1uMN0rVwAjto5hmVlRMfTYpBOLqZnC0Ys2Yy262R8c1bYiEnbmG2OkwLAVD+1uzzQCwMVwMRR4d71m1hotXUhorS0WxjXJmZfDTjpN4xWfb/7CRvVJmrfQI6+t7s3sFforhD8/gKKOIK082xKnszNfcoPjUtsyCl9MOUbAJ4TKMa2Z5Phq6wBBhN8sCM6tlb94p3vfOcBJAo8KOKg8g1YsWnZZPYbMzu6p53tA1u0Jc4G+dLvMkxem+txrGHpNl5UF51fWfX3YQ972Km2Oba/PHuWiAZ9ZDJ4AYVA2fJJDkY/MKYC2ICaPSNgqLouHzF3u8dHPvKRU/DD9ZjFAL+eHaMW+5bWtPEI6AEsqQzoX06gsDZbWrtvTF8AqXZlkyrAfWkPQOq3QPuen5OjsbTn9X6xiSVZo94ZlfOb3/zmQ1qAsZwOtZv6XGn0Tq2ui06pPisXgE5pKz2ByyIoAvuM/VNWBZM5MDgms/Bu7d+7e74DGcag6AP9eOqVGnu8n2k6T7kBZTcjTTALK6ue0aZ13pHC9m1yWl/JAur1F8xL7RCjHUgsvN39AKkZiYLafGlVr70TjeccN6XtP/yH/3BIh2crD/c1ttqQMskPcjWcujNCQ51g2SobY0BlJ4pBH8W0BIJmAMn+BkCKklImHD8iTEgg9JnkgPbSs3IW9X3lVr7f+ta3Hvplz24cj7lrPKcNa1wvjTapNd8zZpIIAGr3vNp2cwzObaAmaR6OVXkxfpen8vylX/qlp44HZVk9lb4HP/jBp5sjkiDqb0620kknHvjuXeR90T2McfVbcgnkk6SjNto7UpvvmBFYZMyMgd2HFvjx3g+1Pf2t721mW/821pt/KcPSBvgt7eWT3rjypzFe/6q910Y4LgLCSTmsra2tnTdbgHdtbe3cGSDIBL2JJQaDBVEm1NUEOGuS2qQTSwF7FWDpvLmLeosIE9cm5hYRU2vWZhSAZAu1DIPDphdN3m1uA/C1cMZyscjBaG2CbILdhLlJcYs1i4zOpxVoIYXdNzVBgSwWsybxU4MYQDXDu4EfLZKAqBZ1wD4LIDqVtIaxHIGFdlpWN4BbLEUAeL9NpmImzHCCh1MTESNYPoCNfU9bEVPFBlxnxdSz9u47GpqAeQvWCWAF8rRQq+07bKyUxZTs/BZW7o9JNYF87PnKEDteHwLc9H0g1txUqt84XizEZ3jplEfwF3gAzLNhWHUac6yNh1oYWvQeyxaU9tJR36stWtRakNKBNV6UnsaFFq4W1TaRmVIh+r5w/z5jFwJKRAPU14xXE9Cp/9fGOXUsfAGVnSdUmONE+alzNvu6djEdGZN1x0HQEWhS3RYGXjoDBqu7wL7yEiM0oK7yxdZnALXqKFZpZawMACIY1MoaQIfVpx2R+LA7PWA9owtZXdiwyRgrUgCbXLkYT/T9gFPjEydZoHSbH5HP6b42PcvoYTfuFkpNy7I0GKuBexyNpFB6bu1WyDF2eGmrnwUeGWPnZlZAwADW/nYeGZLa7/vf//7DvQDrxjxAMLav/qgPSt8EjLWVyq36nWODsdU4XXqMmeXReyfQN/BW++bwCEzqPuU1cFj/n07X7lNb67nla2pz0+7s/9JAW5UTSJ8Fhk8HoPcRIJSMjND26ZDkyOVw1A5tDljdA7RseNl5NnfsnoBzbRGjs/+7ZrZJ4xwnGhY6Rj0tV4DhdMKKNJos2e7fZmSVH3AOA9k7kNxNzwkEjTna2IOhnJGxEcY/nXLmRrURer3mE4Gt5W1uVFfZ+N9YYMzuew7oufGcuVx5rKxpYdMrNh/iqPZ8skLlq/LKvDtoNJO3KK2chhwrWL2lx9jQd+XBhmnmSRyZ2pn5nX7VZ5sXmjeWx/pH9VGfKU2NsdVRgG/3rjw6rzRyUGtP1Yd3U+ekvU1jtzR6l9ITlrcJwOvTM3pJvwAu19a1tymd4R00o17MbQHBNsrtfjl5SNFwkAGUG5uqV1FwJHi0l9qiMR8YXDud0Uxra2tr58UW4F1bWzt3Npm2wv8mw4ZuLh06i14T7yaWE9g0obaLNWCzZzRpFZopVA07sAlrJnytaycT2L1IOljcWXAJFTUxFyJM39SCwqYxTYDdC1MYQ0yIehNrk+K5GAOAA2x71gyf61rMOiHtFg4ZYAQQrkxM+o8BJYtYjD26gABzwIOFmDRl2HT9Jmy4BZ5yk/fSIzwfKxR4hwkqv5huAPUW+y2U1OVZMAs0i6ZMWwNo0pdVpxlwo2PuZG6jEzqc6tbi1i7eynf2C3IkHCpAN+0A2G/hWF2RWeiZtQksNKGlAFHgscWmdoJR1rX6D/kQDpQWjMJPW9yX17mxjnyXRwCW5wHZehawBaAqX8YQmqRYu3MTG8ARwBc7EAu39l/6hBYrV6AKHU1sZOBWNkGGCRxNGYXJ2j/WFcYKKw89J4Cq72kI2wSssaZym2AIUIpubfmKncdRgIFsUy2Al3oSJuxemJIzL9VLwH2/2TSwc6qfPtP0rGxKc+fTuATs9szaOucEmY7+B6Dcdttth+v6vnwmoxCQOXVWRVloI4BT7bJ8x6rtfqQFAmyANaUdWFFagFtpaWKLz/6jD9r4EAM6gBMA3TMCqyrP0t153at0YTkDaIXeTxCzZ8QyBAJVf+X7ta997SHEvbwCTjFJuz4wu/KgUYt1GHCtb5QWUS39PuUuOF+Nx/qR9kanGCDVd5xwxhHsesxdYwvpFI5FIC2nZPU1N7AC+k7N1wnkzQ0N58ZuXVd5TKfU1AAGRmZTGkU/AI4ZN8gDeJ/rB9VZdd6YZpMzjty5MWtmTDXPyTDbRRWYF0193cqhcXQyoznXtEmyFaJhSmP1D4w2X9DPjDvqeG7ciOXOGW5eMSMgZqSRNE4NeNeZ00zWszbQc4x5HAuA3Rm9koMwR4Q2MnWeSVqYU3Z+ZcrxwNnYb7XRxpHShCFcf+p/ziH1k2QL2YbAyyImSKWYa2H92iBtyvMUEVBZ/Mk/+ScP77nGVWXg+Tlop5Z94wGHqn5NDquj344dq8Bumz2635wnALYxkTlnKquuM3ZgYQNvtWXjVW2s+9BJ1kZF3dBBvhab78MbbfeUdKytrZ0tW4B3bW3t3JnFqxBTTJQ+C1Gcu3xbAFjATXB4hjNi6tJubdLa5BRTQqi2EGWLScCBjTK6V5Nb92rh22S9CWyTX9q5Fh0WVRbgAFYLEwy1/pZGm+i02BIuGmhmQWzRS2dOyN0Mt5wyDcJgMSsssCZLGVtx6qlKu0n/XLQBkmzMoQ5KI5ay0FmLZekJLFE3WHV027C6sJWwkTFohE5Km7BEYMNk97V4ALydFbNQ12Yy7B3A5AwPxszWniZgWVupLVW2lSeWYowogKLya6FXGbagA65b+HU/CzJtBmtwAu31UwAasAKrCxCazQ2FLK61464T6gmQtrgNaKjt0AvluLFLOIaj9qsP2JW+e9en6KiWp8pGP5zyEdIAkAKWTH3rqVs8gQlRB9ICDM/oG9e/lYMxaMqc6G8TGJl/lTlHFiahcHCh2OWPJmggZ8BH7NbqpHQVUtwzY64GANY2ABzqG+B9LBsRSFX6u6Z02ExPOwPoB1QKhe66FvuYu8aL0hKwOUP4aa1y0hgDSh8AECMRg1t/CSDx/lCO1Ysd5rXrPnMuAJAA1V1fWgNqyFoEggojp7naUToby8g4eP9IT2ZsnUAXKQuAfH3o8Y9//OFv19Pi5XTLyj/2rrbKwdk9A6U5QTNswPpHz+sdE3Ab+AskA9Rh+vte2QIea9eVGX3g2VY5B4BsGOk9T/lMpynJjsrYWA3IN4Zp/yQFyu9k6Te+AbeVH5km12ojgFj9mK6usYHzqTbgncdx6/01AWOOHWAx6SFOY3MXwFbth2NOuDvZA+OHfs0ZVZ+tThq3ujeZnvmeBkKT6KmuOJ4zv9vQS5qAnso+8LCxovOb05hjNVZiDrvGPAJTujrOqmfAsHY/WdUY3KJxjKHVO/mHbMo9yINxGksUy9u7yZxB2oGZ9S+OZI52c51AYO8lAHF1ThdXe9GGAmGLfAC8irjhCMESbmzsc/Xn3rRznTflx6TVOw0I7F2v3dRXZmTVfM/V/vSTxvd+i0ls/lW77Jh9rf+1e+2Uc1b7qf2J7KnczFerL84wMhD9VvszZ/cuLH3GbG27tuC8tbW1tfNkC/Cura2dO7NwaiLY5NBCvomnUEvMCAuafgNKAgS7XshjCxALWUwb7C+bwkx9xO5vEtt5dMZ6VhNZLDlAZffvmhYMWBEWfzYAMhEurdLWuR1A164BlNABbRLc/y0aMCLoVlo8d71FQffFaARmAAGwn0hZAKGxCidwB3S2yKH1OTe/kW4LFIxdzEuMHiGmwC0hhHPHZgtGLDyLNiCGBZBFz9RUBDZkFnA20pvAFDtLoC+bbM5j5gjmzGxH1UEOh6zyrW3W3jHxqu/Atw5toGtqW9pu7b12h6VngV5bV4b9FVbc94AlLHILeexa7EJgTW1C2DCJEYvhPncPUhTC1m2Yg+07JUl6PmYU5h85h9pDJv+VzwzPBTYaP9wfexxQhIF/LJVSOev7AGMAB/CrPNcHpBkgC3SY9Tvr+bjNAoQAa77DEqxcjTvkMhq7kmxos67YvVjhWWMJJvzc4EtIu/+xvucmap0bQITRWxt629vedvj+4Q9/+KlWbuCoCATty9geABnA1P/JA3CUdY46pm/a33e9612nDNRA64CX7kWbu3Mw4bpv7Rj4ijVtbKvd01bvWjq4sY3Vd0d9KJCN1u7UBK9OC9XWPrNA1PpcB2cMgDEJCeO0zZPKe0B7vyefEUADDNb2OOf0j8qgdl3a69vpLut3pbE2XtpKQ3XccwOA3vOe9xyAfQ4iDPhMPzOW1h5sGtV5GJDqUTudIf39DvCZIf2AftE2nYdtbWNOjM3JjlWm5gOdW95sQmYsof89gWpAr/cd8LA6n2Cn+YF3jXehMaK/3Y/OMfDMGEUaR9qlsfvXLhtr50ZTSTFVZ4BGfd+8hwxRbS+wsPYYQztHQxIs/S+PnZPOcv17Sr1ULtjy8z2S0cZOV7a0iZQAImbG/fJb/vqeBFWf67f118lUd96MNsgw8L3rp1NtzpE4YIzhyqE815ZJNmBrz80wjWXGbWXduJH9wi/8wikQLwrD+3PK8xjLe1bl0nmiraZTk4SQSBHzt/7Wruecs7IWDVMZmm9JQ+NFYwiQ1eZo1W9t5Y477jiMD9o2Brd5UWNcDp7+J73jed45lUv34kiovoH2xpTqDyjMudm9tYnGgkkIkF4OA7JeftcOyNuICuBoXltbWztPtgDv2trauTMadTNkHSNRqKcFYwt4sg1z8TdZPwABv5l8Nslvodb/NpERQtvipclvC3+hn3ZwzproNsltcWMRPDemEiKONYPp0aS7+wmPK22lsXsBC+hEYqoCrTuva4TBu/cMczWZtvGQ8rM4o6WJSYJNVFlb2GGx0NO12JtsTYCWBTP5CQAQgADgNJlLfW5Rrl6kE/sQaOM6G7FYyGSAPEwpQKDFXOfZLITesg1BlNc9EeSdYc6Z/zHaMHaAB1jl9COxtWzUR1/WIpKcRm28hVaHeylLAFyfhV4CMoW40v+bbCcMKMAH1iQmEkeLdgMYBGrOjayAjl3PqjeLUhIL5Ys2tQW6xWwH5iOJFv1+LlgnOOXIgGj692Qn6mcABfnVnrV9jGv3p31qvNIuMZOPWduzXUygRDqPQ5+B09hs9ffKobILFAJ2B/bFRqtMApg6v7G0cwNR6LZO2ZfS1HfGnNpB5wGGGzMDDtV5/TgzTvfsAI85Vs3QdbIGxvtAWe8BbFvtBmDXGBJIWD4xYTndMB37Xt60M84rMjr1C7qqgPDOLV+xnm34WBq7V9qoQFLh0t4ZPY+eamXRvQrrtlGitos1SpJGuaSjWpoCczhdsskmDaDpGcb5jsoAEOcdCMCszXf+Ax7wgEOaSncAMuci2YXZtjgmq0dREcZQ76YpJdMzuycHRvnvPdf13tNTQ7z/6VBndE2B1v1eH539AEiJEWhTQe8HzsvqgkauCBUOmYDMjFRE+akPCOGvvug2A9Lcv890h4Fh1VP3JTGhr2D51j4nsAzoN17Vl7Tj0t2chFPNO69xvPMCgnNkACDbAK/+551dORuPAN42JDNuitpR1r0LyFqJ4uj+gckz0mKmh7xD7P3Oz8Fi/kTmABjI5sZ/gEt1MuU0vC9ISXD6inroCOTsXhxME1DUDsxd+ltb0JZymsw5ondHv2PC1u+NAf1GYqjfaIunt0uP9hGPeMThXpVDvxnTSQO1aVx9sO8bM20gR2u59HB4lNdkGuwL0fNJkATolwbtTfSN93JjfA6ctIG7l7kk+aaAeBEt5gJZ5/Vd7Wc6DM0ngL/GY1FWHIyiHoxRIidmpBUCgr7DMXKtthINa2trZ90W4F1bWzt3RhKBFEETQYutviMnQI8Q6In1k5mEAlNmOJywwxYnWeeY9Fr8zB2WAZz0/rB5TGgtVi0EZjrkQfg8AKRJfYt9bLAm4ybkJu8W7i0MMJRbFPSMFmWYeZcCKidYhB1F7sFCuPsCVme+XKO8Stfc9MziDQiG2WQBKdQfq4ZG79xcxn1b8LS46v8WIthZFovAJOmTXsC+tApRntISLZar69qP3aILp6wM7okAb6bcj+sQOA4gAVZjCwFX/QbknGAiTdnKpPYtVB4LB5sHa6i2ijmP1WPHdmCPdAJDhF0Cc927c/pbewb2YxCxqWHp+kwYtd8ssgGpnA7YkOo+s0j3Xe0tgAx7cvYhbdzCX18AkksjhwJQ1vhi0Q5Uoqnt+crW+EBKZIbiXgrUPWaiH8umAMicjyXf9+QgsLJqF7HFcrRUD/SNK5/SHVBQn2yMDPzCsO3Aeha2nfXcd7/73Yc2lexD6eoe8oYBbVMfwCbpB1IFpB6wMjObvSm3DszyxovSFChKq1abry440kh90MUtrxyAPYemJKkH0jOda9ygSxsjuTZeGuiVGsdmfdLH1Ta8d3oG8ImWaKYt9R7oXhxufe686i2dz9JX3st35a+ssBUD7/vNOABg7fpYoDF8q+fyHpgv3J3DRj8GvGXS7R2pv2P6Tw1TjhRazRyTtTdAYfdPI/1LvuRLTsGz0hSzHCBq3DDmT4mFrLRO/dEZsaJdcniQ99E+OAC9S2zUGIBaOXY/7SJNZWPB1FOdOsGTqajv+k7b0wa0l8q7czA+6y/VkTo3h4kZX54C5wDypSPHQ/erTXZNn7VV7FN9rHIyhgBCRVR0z/JdO2oDxtoEGRsb13WP7veQhzzkFDh/3eted3jeTAsmu/0J1KMxoHbY58aj8uudDcS9GJvW+67nAIY5lTu3dlM/n+N8z6ocqiMOD1IE5lYcw95zt9566yHdb3jDGw5tlQzXnD8GvObEAHC7V+fmPDE/8s7tbw6A+p33ug3hssqgcyrTxurKu/LvvMbenBEivj760Y+evpsA7/M9Yj5a/+5eJLImI7v8cnxy5pqbksjgiPDe4zCe4Ox0pGvXlWHvCmWL/e46YD35s64HQK+tra2dJ1uAd21t7dyZxT4NQJPCyUwSNtgEPmtiOzfKAY7YDAOwQt5g6sq1qJoborS4mhuXWFgAEwMSLBin/q8Fg3OEyQKCOqeFSJP2FujkFWJ3tUiJUSf0G+icYTJhPNmQ6BjwOQYsj9kFGGpzB3IhpTYQKb8WykKcAXaTVe15FmOYnjZAorM32ag2W5NHi8bKBAAsFFcop1B76acJORf9/S8sdu6andnIZWratWC6WPndE2wyNKeVVywubGq6eZib1cH8TZu163qL6il7MSUtWqhXLtU3iQ96s53Xwq3zsMG0k/nZgrx0lNasfgZE0Q+EeAO/avtAWgtDYCR2kgVpfy1yAcYY8hn2VODbdIDowy2uc7LEtOr/0oqJCESozGx0hCWtnSvfCepgp2NFY17ZtGnqXs/7YYQCOY1ZmfFEW7gUs1e69ZkW81hdAABACOdU5wdalea0ZeeGSkA1bSdnSPkBOPk+hpi6xQTEUgyQqt9WFv0eeFQaKm/gpvFVPyYxkNF47f6NlT0TI5lkTM/rN/muDfV9Y6ZyVK7dS13aGBLoixmf9bdrgDNAy/JXPdV/6D1XjoGRQpXpSgL+tSXOL314ynWUBhsLzgiQ7h8gp768p/QbbU474kwQMUKKSPshj9F7sHoDBgGuaPoCvDsPuFN7ou0JrOl5NpnLej9U1wHLNsSTnzl2eacALgPEal/6R3k2PuhbPbs+SkaD89d7oLKajFQ6vByLc2ycwLR+QzfZGCCNQEmsau21azkisIc5n/Q3zFR50MYxzDmK9N85z8FkB85l3nflgdPL+FPfqn2TtCnvxn7t23xCeL5+2n0Bo6QmOEsbI3NkxPRufmI8o7tfmQVO9pzq4PWvf/2hLLrv4x73uFMt3wncGiPnBnTK3dyutDfX0d6wmju//2ubvaNmVJNN/Jh+5z2RiY4KuAV2kgoyDveb8SAglwyQ92TP7ZqcLF2PsZ995CMfOTgJ+m1u9hlb+Pbbbz/dW6B8BNSXD4A9ZjtAujIIMCcPpu5tnmqeSzrMOynmbnmYUWalhROY0wvbG+vfvLA06Qvad/+LFiNDonw5zER6cFYAbr1XapskXVxvTrC2trZ2Hm0B3rW1tXNngDyTb1q4mAW0E+lZYpdaxMzN0QC79EFbEGUm1E2wAwq6xu7Ido1vYtzkNcDSYgurx6JghrNZYGMaTgAUo6tzu2cT8Y4WLYDU0tYEvPMsCJqAN+nGsEmf7ZZbbjnorFkIAeQsijKLNmCIdEqP9JI5sIEGtuFceAEBgLYZoCiz0QtNXyxO1wKr7FAutLJzpIkmYwbk9Z3rlbuFNyaIhbcdteciRFozixZ6fWfJSnvgybGpD6D98feVeYyjqcEcqFLZY33Vrjpa4NXePAv4DygKoBPSrt3N0Gg6rRjYlTvnAABwLro5FBwtQDkasJqEOHff+uPcXLD0WuRjj/WdBexc/AYC2FANe50sQn/tlt54IPS1/EyNXU6DTHSA9t51gRo2eALS2UDJrvXT2WNhr19NUN/v+oc6nfIRxzIQHFpCZ/u9OuMIALR0lJY2bqr8Au9jmJFkicnW2IJ1V7kI3609dO4c14ApxgQs2wywDYSjK1l6SDgI1QVoAuqqy77joAHE9mzavd2v9lK4NFATg1fdkO0AsmGrup/0zmgMbdozgPilOeYi1qmy7TeOsgnYksTpPrWHytD4GLgGQCo/WMilP/CncsdiBoJziNA5BgiWR5sacjDSLgeeAibJEJW+3kHkF8oH9jApA5sAapP6rPdf9VNbqTzqRzlOSMF4j3v3tlmd6yqf8sFp2dE41W9ZabGJkzFeFANwHsg0daG1D/ODrgmsrG9WF3Rjp75sVhrJiNBv7342c5zv+eYJ3kPGNFJKWOaidpQBp9tkXdr0TppLW+PwfGfpN9OxPR2YzuHEAmjTjOWQsRGZSCPncnrHpq5cAdrdrzYSaDi1pqUBy32CswBaDr+O2hNZhsab6oJcirGh+3uPkOLqPrXDDuN1URfYzd3HJqKAQ/VvbOzg3O+82kBparyzL0DP5qivXrGe9fnJ9O1eOa8CcXs3pAHevWv3nPmlt/GzvlP7fuMb33jIb2XrHVRbLS2cUdqr6ImYu6WP1nBzwlja3inqENu+tCQZ05ywc2677bbDMwLdbYom8kt9A/rJVemv9eXyXp4AzCQkaElnxgzvuPJCDgN5QJvrGSKAjOvdU5u6VluJhrW1tbNuZ2sFura2tnYdzCIBgAoQwjrCdLE4tGiy0BHKaXIKeJiakiasLRRIJGCgdE8yBnQNm0RjvWR0/4R5T7aqDa4ygI9QSIAEDUwhjeWJXqqJMQkKrEtsFgACRlyLBaHIM9x8bvBkUQeoziyYlVdlYXMhIXWFC9o0qt/IY1gUCZXMgH4A244WEvRZAcV0NFt0YaZhp1i4Ao8Bd0D7yc7BNKF5OhcWWGmYkZPNdE+VZricHQOAF/v9YmbjH06RKZlR+cToK4S0RShQsDomiTHDK2srtYEJdrYQBNzTcOw77CeLS44YQF3P61nY3IAkAAbgTKh6bDHAEtDTZn42dhGWOvWnsalsrtX9AC7AW+DJBI8wNQGJU4aFxMpkOQuJ7nesz8mU7PwOob2ej6mvXx1LMgBxLwY0W+RXv8Ao403363nYhQBJGqLCZQNd6E4G/AsTLw+Bf40J5QXo0HhAUkPf1M5sbgU8m2N4VjnZ9A8jWwh2baS0YJIHdHHgACA6p/LD2G9sxkCLbVg5BBI2rtAH1UaAYpiNwooBb/N9kmGN2wG+ci5N6rVyClQGbJO5IC/AgGOcTxPUJ1+AORyoK9xb26k92pSrdFYOOftqNzbmmtrLGKRzgzIbjnmvVPeBZb13Kq/0TOlbT6cekHDKNWCBAtFKZ0zm3meVh3chkDmjK1t4/3Q0pksa2MahEkDF+YdNDBjXrzn9MHhpx9ZmpX9uHGWTzQmClxbvD+9bmw0aL2zwWtlPuaJM39GWpvwCB9bU6eaY1paxJM1tvLfoOAPbSSNwavW82ZekCUBorNA3px46YG9GJnk3eB90uEZdc/aRpODAADzPsP/6mY3MjP9zs0ztBisd4AwMNsb63v4IAPzGotIfCDnlWsw/lA/Ge33He0UdcSKSMyB9NZ+dAZ+Ny5jLbUbXOW9605sOm7UFjDsPuOm9+I53vOM0ssxzvN/MfTjJzDPNTTGx+xyobN6GXV47qb16rjGqd2B90Ua2ndv1nEPmbdpcz+m70mvuVjvs99JoPNfXO0e7NYfwLsqAx3OuqR15F6ofcmRra2tr580W4F1bWzt3ZkEjhFRoMIZsk1sh2YAvjEQLq8mYwUjBeLIQphnbhJh+oZ2/MzIMQDEsGemx6LE4AIZhgk39OYyNrEUVZgkmYucHYGBlAJtNmC2g+r5Fed+X7p4fMGLTnp4zF3H00jCgJsvXX3mZ4LmFKRkEDKMW5C1GLOSPn5NZPCifDCsGWDvDugE4c6MVoAdWnsXz1HbLLCKwQQARU+vNeUJ7z1NooPZH8kIIssV9i+gOLD0hyBOo61rMI4tE7RvTMbO41k+AY0BGQBfA02Z/QFPOC2klp9F9sCdtGoXdi5EFFCLrQcIFoEV/GEAsfBRI0jk25aM9SftaiHNpwJbH8Ad+MRtoCdnnwHBd/08nizFAnic7SRue/dXvAElgr/YPGMrkG6MSMOW+/e38WJfluXZQnmOSlv/As5hhLfQD2fotgFeIfXnvO4zrufFU921DoMaKAETACYYcgAzQjyVH99zmSdJPI7LncAAE4CgXDgSAiTxiptHexQqdTOPaUuw9YdfOxzQDzAg9JhlAGmFqg4p0EPI+Q6rrQ52nD2HA0f+d7aP00IitTLy7lMVklJKmoa1NJxewRXc0B2J9uHsHfhvbSQrID6epDbuM/2Q0bCxFGgRLtnYX6IzZSWPWpodvf/vbD8B4QLZNPNVBbQygl6OheugcUTXAXu/a+Z4g3QFEBZCWX2XRMwKY3/e+9x02DxMBwnmqLYqyydS9NHKUkBroKI2VJfY052PnknzqPr2jzV2wuGnldu/6GjCUzMqMIuKgND6SLZr9X11XNpxuWWme0TKYlKWl53bNF37hF56meY431asoisZZMkCZ+3f9s571rEN/KSKEFIX3gYgPUjpTrsd9AM6VR3VBtkdebUSbNceZjl91PAHS8h8QXHszbjQO1d+MXxzSQHlsXe1s7uvAGVM9J1uRzm3OKmOJ6IgcJ927csDeT6Yh54UIAoC5ca9yExmjXRs3asOlq6iJyp8kU/cpX5wa9a2eUzojDgBTu09juagX9WBM6jfOSZIVxs+ep2xJrwBvja3kyqaTAfiLAcy5wPGO6WssXVtbWztvtgDv2traubMZkgmsAaAClbBNOtcEcmrs9TvQpIm/iehkqzbZJMFg0d2kHWPKRk9NQoXKZibKTXYt1jITVwCYiW/3oCXZ4q2Jf5N6em8WYBbZwjstyoFonQecasONJuAt/k30gUhYaBlQ4FJmMYf1eDGmqHsIpwxYtnCfgCHWMVALsDjZYRagFk42qrGgKs+Vdc/BnnHtBAgtCC1wLZYBWDT/5oIFQ6U02qzmLLJ5r9XU6fEx9WMre8w4QBdmLU3ZCVa2ULZIm8w29TjBeTINFpV9j0mFZWSxDzwA2AExJxMOUDEBD+MFcHPmJ5ugpucAYjkyyhPpBmHcAC0b1mHi2pgK0M1pIXRVm9MuLW6NFZwg2NLa8ZSlmf1uSq/M+psgjn7iuX5zbc+xQZ4xVT+MeVe+G1MwfRu3KpOArICLQIvA355F1objpP4aCNCzP/zhD58+G1hnQ76pawokM+4Z8yqn7t89MSkDyDi7aKJ2lEbPDfiJTRrIOMcButUA0NLv/UDvF9gCGFW2dDd7FrkDwG3lBSBuPJn5IZEQMIOxSR9cG64+YkljhJe2rmtML32BagAkesOlq2dNwBzTHqBbfkQy1N4qo4Cu3nlJ/GDO06bNgJOYvrXlKYnSMwvXL/8xdT/0oQ8dGIw9LwdB9yn9gadZ52Dylp/ed3feeeehDVWepad0eRfc7373O/SFl7/85Yd0AlZtqlgabOhl89HSz/kDlBa2X1o6t/bc9b1zS2vv9/4nC0J+ATubo2fq6k+HZ/VS+kp739cGZr/nVOQAwRYVpSOSwjiDKcsxglFLMokzjDRV7f+YaT3HOwxmjiugoXPpsZs7eX7tLgCUfAiQu3INkH/kIx95mHPYYM24YT4VyM1R1vwgq4waVzjbSeZktMjJQwHGbW4YwGsDUM5rjiMay73Hp8TGZPtybonk6LzqmCwP0HjqOk9Hc+fQ9caG7dpY5+ZbtbXKsPvo+6WN5I1ntJFg93OO+s1o/5rnYIWX9sbczq3fKIOua06Yo00ZmhNxfpO+mZEg/Va6el59z7jhXHsgVGecudpraalOOSPcr/Oz0kOiQX/hNDPOlqfum3F8eAddq61Ew9ra2lm3BXjX1tbOnWHXZkKqLciaGNKTbDJsAdNk1UIJ+8/CwkTVgq1JpwV1C3haoYERWGEkEzARLPxMvrumBYZNg8gA2ORFOlocBE40WS8vLRKaLDfRbsJr4wuAGkkJ8hKAIsCHSTymCk1hbBXsJUwKeT5m7x7blJi43O+AKmxLk3T1oO5sfITxDOAAdrTQ7j42/QAiAg2Vs3qfIa0Wg8Au32NwAtEwryzoLNLVu1D143zeTKbvcID4bHGNYQuIENYMhKgtBqzYfb56w6CvHIU3uxb4DpDw7Moa+I9VmdUm1CG21tRw1XYzrKQZ3qm+AbVdR4uRNi89Z/1+atEC9Fggh3BZmrxdE6hDn3BKxjDMURu82eCGlANwF/OT9m99pGsm634y6KasyGT2Km/9Sl/EAp7XuZ/QcWxIWqiVR2Nd2t6BDZVT/aNxqvu34VAMP3q9nGDVJyCxaxrfpAXAWVlg69fXhX8DNDofoG6MJn8TaAAsLy0xMEtDEQw2APMOMIYYl4171ZsxuvvR3ywPfZ4bTPbc6goDd+q3c15h3hnLSrsNG6eGuLrump6BeWy8qQwAlrUrjpHS0DXaLF3PNsWrPUpz5RpTr3IzptKPB0Qq3wDYysn7Ryh3aerAUufA6bfuBRz2XioNAbTvfe97D/1kskrrM3Ojt57RtdPRikHMsaMvV2c/+7M/eygXwLP3C7YhWRcgIKdMZozJJku/vE5d8ORoCqlPI7X01wYq99KOgQtIFPVjbDKezHB3bbZxsL8AWyH4xhh9LBNFIqLgmLWJTUxLHhvVJlm1FfMKcyRttPvQQy095EKAvl3X9ZwlGNr0jqv3jLa/cPqA0eo/FmrpslFZfQtA751v41ZOptLp/Vx7yDh0ObhFPWCGVjdzvlJ+OC9qw93HJpKc7Rxp5iKATnVKNsf8r++w7c0LOCS7tjGmuVXlWv8hYUT+BROZM9TmvMZ2v5XOQO7K1ianzil9AeP1G85P7bd2VvusXVb+pS8d3n6rH4r2Auyae5WffiedpI1h09KaBzJXh42txj5zZxrE5rVtnJdDp75i7DI+zsgQc1fvwO6JhY7xy3FDJ39tbW3tvNkCvGtra+fOmni2EAdGYCw1EbXwAm4A74BKkzlHE82il05e1oSdTlwLz44moplFp53CySjYdApbRqigxYkwN2Bok+km0IG7MZpiNAjFxKABsAl7xZDofIBC+Zd2Gwh1biF5mcULQG4CQBPouRyAe7UmrNeCyCLUAoMEgkUCPWLgh/D/zqepiVmdAZ3kd4bA26G5usD8wJQCqB9rHAJVlLeFCGDNxlgWmzebYWQBqejkYrwBlCykjzeYqgw5ODBzbc5VGWLQ0W4WDpvZ9LBzpg6iOuKAmWAfkFM7s/FXC0Q6m9iK2Pk9j6yJvmTh20JTeDmdSQeASbhpaa9/tjjGzK1MgNtTFmYaUAi40cIas1MEgNBaTHSsws7HUAbQTpbvBHnn8/w2oxaMJ/O6KR+h7G0CpZ6NC7R3S2tjlpDrwI5Ajkc84hEn73//++8COGG8ZfSLMfw5XIAmUx6FDEPfVRYYeUAWDGnszdIVO/cBD3jA6QZN5dO4jH2L7ehdYEzu3vTAAYjCo5UDQJajQUh+afGuyIz1wLzuEfhhAyRlH+M15i0tX+nqt95vZB+0F5vJ0cAs3UDknI8kMWzEVDnbjLPvhOX3LqscMMcBOD2TpIYy73mTna9M9H19t/Nvv/32QxnUR4C41XnlWj8BYncu3WPPaMy4z33ucwoqNnbQt+ZQIldB5gU42X3KY8Ajtjf90EwUT2nidOXMOGb7xazst9q39xLny5SfAXCqL++izHuv8u55JAmA8sat6bTpqFxpkGPANj6o19lnPK/yt9nW1LydGvSA/8qWs6TPc74znUdzbJ9M94zThIOmfMTax9YHyMYgNTYK3cf27jMH7ow8OHY4+h6Y3f9A6fKtfwBxAaCNm3R8Oz8wdNYRJ4o68i4B5nYf7zrgrrlKf+svQOvKQVk0lwNmko+h40sPW3vG+C89QNEZgSY6wFzF2Iwx690cU14EWuz4+lAOiv6vXZj7dC7HVEaHGqBqjmWeyclXWwkQpl9vzmDT1vJVemMRd03jmfk2ANlYxTFlfDeXpdOL8WwOZ95wrbYM3rW1tbNuC/Cura2dOzPZnkw37AtMFQwdIYyYeCauQAthi4CDuYDDxhFyZiFgUzWsE6xVE1ITanp/JugtMmgSCutuUdo9bGQRO6XFRcBieWqhK+wd+DIZJkLo6TV2j5i6TbQ7J1ZSBrQAsAH0JqMPAIsleS1msQ1cs4EZEF2I49xN3qK7tFeGpT3AyAIboI7NArCywJMHOpctlLCaJ1sUIDg34sGMwvIpnUIwsWhavPTcGDbV0c0I8JL5mDIG2E6YTRaXlU1tE9hiITh1KS3G+522pjqrLIXcAkOweQAqFtydV5u3wMOI48QAmKq/vgOGahPY2VjfQDdh/QBp7QiI0HNLS8eUGGjRGXCmDwYeFJ4MSLFAz4Cn0tAzMc+BrF3XM6b+JWCs5wXkcVhNUJY0BJvPnAvKY6fKBMdpTAIhMOmFVwP7Zwh6+eG0wiTMPvKRjxzGqfIRmCSCQZoAGZj61ZWwXKAf5jSgv3OxBoHstVOACzmYnFg+c/wFKlZ2HEWNgbEKgQ2TTc5JZ9M4zza207nFai1vjTNAmvISuCqk2pgCYJqh9sDLnhfjOcZj451NKgHSWKy0nDNarQFnjUt0iyuTWKckLiqT6gUTWZsSOVGau08OQgB59+r/ygvbnu5m1vm1U0zTyqz0cSRiOgKetTf3914GhmoT8jZldoB7ldmMdun7/i9/jS36Z4B+6aiOu2Y6c232p3+XPlqmxhYSQhi/HKGcFNVz7am0AqKwkDmMSIKIeqAFmwH0MbDVvzHR+5Fjs7YECJtgmTzM9tlR/YtEaGzqoBurzhujugZ7srQA/0m1GB/6rfddbbxyFiExdXJLY+fW92pnlRcnYPdr/iG9mMmkGSrPAEMM+56hDTS2AJW12RmRlM225F3le/Mz8wtOmr7LAZUDHUvWPUlm2bQQ0EmGQ9SB/u49YT7W8zsngLM2XXvEVAVWG9M4Lun1IhcAXxtDOf05FGlsmx96Zn22zxyU2kls3jZF7dqcSuW3OaYN8Hpe/aj67Zraat9XJ41HnBJAcu+u0jH1yisTez3Y+JHTcs7BzHdrJ5jI5bt0A32NBd75HCQkONbW1tbOmy3Au7a2du5sbpQ2N1URekqHbupfAhMtYJuwY/oAYE3Km1j2e5NYk3rXNpk3eQ3MsOgRzkqLzWY8U1Mxs1ByfveMhdGEukUqQMHC0kJH6LI8YQDRq8QSsflY17RzfIstG258/OMfPywiWji2MKycbJYl3/TbsJ8Y0NMzs+OwO/p2AHI6gdLcxB1bEbBEW7hyLQ/0S2n5YdqVJwAcMAQbGuNIHWYkBDgBhE2qY4tlC0Z5tNAXPkwTEdhxsxmwjxNDKDvGGvZc5U8fsIV6dYK1Sq8PGOs+mI1APWGf2o/6J/HQuUJV60dAnO4L6AM2157rd50rjQDDgDSMR0AhmRXsJ04FYI2dxgF0s1x6vo3VhIzaHKajBXTPiTUFICid3d+Ctb5ZPjEjlS+gFTjLEQPczQAnxgHPcD5g5pgtpP9wcqjvyrT6AIqWtzlGTt1KfUo/6e9kVVX2jYOBCULrq5MZHQEck2/9FRBfOmP0+Q6jTH4aGxqnhAhPrUdat4ClxkxjEpkdrD35Iv0CeDZuyyc2H7and4uxCKCCma1N91syEbXLwKTyrGwDbQLOqv/AlNtuu+0urM/y09hMDqH70aSUb5u3TcYiUJwmbkBWzyWFMY+Mzq8xsGtrv7XV6i2Qu/7iXI6fzPvMe6t75uQQSdK7g0xR9WnTMICvfto5lQ+JD0xogE+gt0iY0ia/s660g8q3sUEkAhBKmmc4PMdFRrrCe1jb12fqr2SQ+lydlT/tggSJCIRM1ANHZkflYzzovWtMy+jIZ+WnNkLfVL7JMtSuaTIr06n1jaHdOZjM9RsMck5QgFn5LD/aO2dvFnBX+WiLWJW1X7IAzSWE1XdfgL520//dw3tb5E1pLo89X5i+MX1GGNDJ7X+OCrquoknkHTOVww+ozkon1u2U/PEO6Pnlo7IScaAtuG9903yMoyKgu/v95E/+5CHtsb8bg7DxzVGqKwxYzkgkg84NlO+dVR+wiSGnR+b/KfVV3ZH5wTw210wLGQhevvs9DeueURupXbiGczsnQPO+NojTv5AmOEk5J7uHd2rXAdIrI4z1ylx9GCNpystT/aFyAeRrR3OeqW+tra2tnSdbgHdtbe1cGgasSX+Tdww/odXYRJMF16Sx6yw8mkwCCrHnaPj12Q7GJrETLLTTtPDEuVHIBGjmhiYm6UCdJr2e0XUBD4Auiw4gU4Y5Jb02RWpxAXiwK/IHP/jBQ9g0nURh2nYob4FlkWXBPzc6mSCujc2A2djITfZtbCS8GeAgDI9eooVU9w9MwIhyTWm3cMDiAdQK3e57m6cA9Ft4BZCXNotfjGJMXWDS3KhlsitnKG7PE6KORTJBkpvJZvla7Os35T3QoXzrA/0FEmW1066lTdr9qp8W4N0jYAS7djo7epYwWyBdbamF62RAYVli5OmzQkS1GSx3Y4G+CQQBVvY7thzgT6h17RGAwKkgJL3FMVa6tj43TOyeLaa1S3mbchYZ5h0JCGBBBkyondI8zroXh4eFcqZ9A2iy2Ub1IQYECJDlwKHNOp0xwAF1Y7d1DiZlawwMsJmsM5uA0XQUoRCwQNu6MrCxlR3YA8NqX6VN3mjsdu9+A9IYj3u2ei3dAYeBnNpafzkCtOsiMwI83v3ud58CLcZi44VxSBkAiDHaAU7KGSuwNtKGU30uP8Dqvg/QKP1f9EVfdPi+8uA8oYkrLYBC4F5lhe2O2ecdF+hHYuQDH/jAATCS5vLe9YXRV49Yod51nWeDL3VRH8SsVJfGZP0LqxRADbirDwcwdo/yUdp6LsYj5w6ng/4iT9MBasz1XeemM9rzP/axj52yGCegZsM2YDBmYef0mzHO+f56fxt71Fvlrn9zQNislLyGvizChGMHoBcQCEirrEtL/YBTqbYd85JTUT7mJo3GzakvD9wEmuvTAEK6xtqoMYW0Q+d5B08JGIxzZdV5Mb453hrnsHvdj5SUTdNqJzF8Kz8gc2nCDJd+dVeeui/HF5DYe4kTwPyudlW7BmZzMptbZTY5DJQGuHvfcf7Req5+HvzgBx+iEUqzNjc3Lysd1dHUou03TPYHPehBp9IL5By8I8nKcNqoC9EknA/Vl3OwaUUDiJionqsL79rqHhMbWN659ZUcFT0fq7f2Vb8BgtfOymvjZs/RD0sH1q/3CscEcgEHeNa59NSZdsqB1+ecoNVL7am6qw5FRiBOlA59YSUa1tbWzqMtwLu2tnburAmxXexN/IWOYfjMjWwsVkyQjxkewsr9BrjMmmBicjXptQi0OYxQ2H5vYt4zsMEmeJABmWnXzd2+uz4dwvJlUt9EGJvVwsZiBBsQ66uJsc3NAAalDdsDOA0MwmgSDmcxZSE/rfsD4Gy0AhhtUg/oAJZZpNkkYzKEhN0qg/636O3+AUVdY3d4TCsgvXx0/84BksWc8QxgQGZRbOFjwUxiA1glhNUCg0yF+92shgWKaSPPgAwh92RHLAgx2S1KAZ/VFf1CQNlka2N5tYi2QMR+tGjVt2yWWF1gKk3HCJAJQ6w2BIASBtsicjoegEfCh/WP0kW+hSRA93Xv0ilst/Za/5NnoGzMN/IhLVz1SSCskF0h8EChWQ/AVkBzYwr9Uotgzhrsx8l8naDV1NutDFo0W7h7LgZxJp1zjMQcBnACNJQ/RnB1W133feUAmKN/Wz2QxXDf0kZGh95p4INx0dhofMkaI4Auc8M8oIbNrOSdHiyd0r6r7mKqtTlc3wWuae+AHWWinLDlZkj4BJMyIFUMutJpoyXSEKUhYAPAF1O18Y5DkAwBZwoJkO7ZtQFm2ixGKxCxtLz2ta89Bd4BTOn8Am0DfoGpxtcZ7s68u+Tf5naAT7JF5ZF+t8gZmsR0Y9UdiRLRLb3rOC0qC2zs/tZOOYn0tw7AGWfolIYBNNMUFvat7eorlUP35gCY/Z00QuVb/+170QXlX3i/zdnUPXCxMaDryCzoH1PvXx8x5nLecjiXRtIFpZ8GL7Y0AI5Ob8+1KWZ5JXOACdq9G2sD2GxSOvcOMEfpGZw8PUs4fUe6rqXDOG78AsT117hVGqe+r3eHqBgO+T5XVn1HFiYwUhq1R2H/UybL2Fa+MtFYE3A2LugPGKGzzujvY2LTPDe2aO/KiLOs9FQ/pTmgOYdSTqP6snmNtNs4khxGY2NzFU5lkSnmG+Q07P3Q9/Vbc0dsdkxXbd7mv5x/5qjdr/NLrw175cv7S0RVdaduOZtEwnhPcvKXB2NpRi+bU0IZGhcB4sZs+sykkzpEk5HJanzJibK2trZ23uzmXXWura2tXcYs1gFGJsQ29sESpAFnwwzht1hSJrBz857uZVHbpDRwogUSsBbDr0lzE3wL8CbTmKktFCYIIy025LArcQvdrrUDc8/CusCUwvIQwtj3WDqAoCb4FuY2JmvRAdyajGZMKQv7ueHFMQOQDl2L2qxJOJAJYGzRZQMc7BQ6nRZH5RfbR9gqBg+mX+dbEABiMTU9V0hqee+eU6fRhmgWZhlwCpCYWXA7B3hmMTrDTrUDQMrNZkJWp85rhvlokU5fsrZZOWOHkVHo+ha5gL3qp2tq09hllW1tyaIeaNY9JlscUDmZ99qxv1jn2iLWOLZef/Xped7Un82AuUBFfeJYfsSmVJO13zMDBnK0tMlX303pltmegKUz1H1qXQMC9GkbKNHoxX4XujpDnesnQN5MXWZ2lQe8zDZsDFDW0wlisT61P+e4oS91/4DL0p1TqbT80i/90mHMBOI3pnV9452d5Sf7VjRCbQUoixWoLOlZ2jzJeC+0OaBwOgBmX+++pb32C6BLEqc2WP1VNulAx2Qr6iEAI+mcxnbttnolJVL+SUAEwACSapuBxz2Pbqdwc++V8u/ZJBBKO+mc2pL3UvkIYCtPPUfYftd0//pnTD39rXI2jnZdaSqN5QvDFmNwMkCNgyJhjOlZbbC6rG69K7DbO4dWMAehsRfr0fhOaoXckXclUMdY0PckCYpMoV9Mv51Oe/kEyGv3mLbqv+eQj7ABqXcMBw4AD3hZW+ac4QDE7u+37lv7y0QG2HiVQ5aWcu1tgnHGG+2bQwu71EZy5D04aedGauQp9HeHMbTrclo0Fte2yZEY34ybHFflubY9HeAceGSb9H9jcW3rjW984+G+AFYg/dy8ThQOB5pzSB1wUkyHgjmavsGxBMTumtqjuqa9DAjnOCPhAETnJANYivgwrga+ckq4l3eAMdPYWH1URsZyzGBOx763Ud5TnvKUk3e9612Hvlnfrrwq09q2zXprA8bDqX1O59vmh8ZA7am0N1ZxcHXdL/7iLx7kFtSB6BpzMQ5+jg2ga8617lP/06ZKV8+dzlka3OajZItqdxOIn6D41PnvuupP+zNOAp/V25QwWVtbWztPtgDv2trauTNgojBTYZG+s0CwyGvCDZixadIMx2/CitVm0x9hqVizk9HV900+sWeBFH1n4wrnAWqEVluwCPG2IAgQsCN8iy1sYMBi51iIWHg3oRZC2wQ8AADg0W8tQltUALQwW+TJggBYhRE7QSeb57TAPgbbgEIWRDaumXINFhCA7sxEv4VL55XGrg0gV9YAi8lwbpGDnW2hAHy0WQktN2WnvDxvghvH2oEWPdrV3AjOjvBz5++bwYTc61PqCkO6PAPbJ3Ao5B6Tq0W29g0cEqKKcdeiDpuzeu0am7bRt+37QDVMcMy8+hpGE6dDZvGPhVT6pdln9zhOn35RmjBy63u1E+NJBrSYLGHgNuZui+NAOzuXlwbsxRlyDkyaEg2sfBkDOsdYBNSe413pwJzGsgTUuSc2caAqcGUawBs4415YcPIOdHENAFz5k70JoKS9SAqj8vQ/7UlsOv0U20+5BDD0zMCp2kLnCP0GdHVP7DFjHuCGnIexP0uSQf01jggnxtSTnsqjNmnzqun46P6Tjen7zsGaBUz1/J5VmXB0iCbwXqhuyU5wLDRmczZIR20soK/7aQOFk9///vc/pKW+UTk1fnqPcZyVzxjFyfVUBrGWu1/PKb/0eL0z5bd0AsYrB6xU/ZzzYkZEkMMApHMmaKc0P7u+90lloiy8l20WpQ9UBrWh6qrweVEWtQeMfP2BI0Q75VwhyUJapjRM3W0OBvWgv3o/zr5XH8ew5+SojLuXd7QysReA9j11p6ccDtCNQ8OmsBwAtdfSr29g4HqPcTxPBxnd2Nnn5vvOfKD6paVLlghAyVk2pTK8c7PqJiDZe2PKwZj/9Oyp+2vMo9lqTDSOG6852LzDSQU17suLfJPR6Tm9Y/oNiCx6Adg6nVg9szEh50fsePq73afx2zxltqWe0z0CVbPy2FwLacAY5tk2aq2996wcBA984AMPzkB9njMBOK+NmruIUNMnvI+bI1Uu3pW1y5wfpHI4HuRJGzF/UV/2iwhgxWK2qayNCmvvonfMl4D32vx8X3OgIkN4/3GIiHLjqABAi3YQgVPer9VWomFtbe2s2wK8a2tr586mJIBJr8ULJghGoUm9nbcx0yxWLOYsCEwwbXQi3NQEm3wD8BRboUk9sAuLFCgy2VsWS5h39PAskjJsHmw5E31gIw00iwn5aSFd2uwgT5+UFia2K3YjoNniBWPQBJ6RXgCQeZ66mECH+3Zuzw5cMqGfYLWJbyy5doFvwQTcpT1n0QQwAkYpsxZgQCkLssluwfh1DgDHQgzApaxJM9DFBNr73Lml82aSbND+p14eiY3aM5YophxQrnJpEQhEapEXENM9aIBaSNMl7G9AkfBaoZldD1yajF9gmI2bbLjSfep/cxwAUsuDuud86d7lU3i7UHML44CT7kH7D7Osa6dWsPDtyoCWd4ypgA7AlzY39XYtgDk8OJ2MERwtGPD0gYE/2qP2O0FW+cZKnE6VAMaLgbtsaldKMyDAs6ZNMEk/kN/qv3oVotw4pI4B1/1uszBtDSjeb7UFkgLGR2zJwJvGExufAQeBuuWzcaOoCpv3AD8Ck6qbNjcLpAwQVSf0yKWl6zNgnzLpOVh38m1MwzqboFbjmDzOMbXfauMYngDgnASVFQeFEObSTgaofLV5Zjq+9YvSSuqmZ9tgMNAKEB0YWhmSN+AEk98+A7yN5xi42Lz+YkKXN8ClkHsOHW0eUDn1vbG6jeXAvd7P8iCahtatftd5QO1+FyXj/Q7Q0p84Hukbc0ao9+5de9GegWGVIa1VgKb3FfC8v5XBLCvgavrA5hrK2hhgI7Qp9ZEB1LtuMltJGtFXpbVcG64uadCK7CHPVDn3P6mY2qf9BWwW5vvuW9vTDjkJyF6J5CFTY1zMWQAErY3ZyAwIqn0Zw/o8pS2ao3GIzA1ttSEh/fTcG2Ong8V4Z15lUz+ANlkgQHvX1WZKE61+43rn1fdi8fd7z6nfxbztGcYsadcfRYyZJ5KTyoDWpHu6Pxka4LZ5l/GwvHA+aMsY0EBac0DyEuWv+hZpZcy014E6qt7nXEz5i0Yj4VD7b55jA0zArXlXjqTuz6l6vBmfcjVf6B6V+5RPA9wrQ/JfAG4SDguQrq2tnUe7eVaZa2tra9dgFoETaKTDhjGIESNEFIugSSjwEBMJQ29uIGYyPNmtFsM2vel67KEWOULsmqgCKu0yPlk7gGkLxGNQqHMxdYBfFrl2om8hZnMpuzP32QYkgTtN8IUEAiEA2RiCk11TPkhJAGonWAdMw9gRwjqlL2Y4JzAaUweo3jU2GZoaqd2HLqt6tnAAwAKklCPwECCTKTcA/NxQS54mGKM9AR2mfupsHxbGN5NNmY0p0WABSkpDO6idWZBhWmO22nwnZhFgQzgnjcueQ/cWexITDpMbeFZdVe5YkbVlIaXCbTGAbLQF3OQUAVj3e6adlwabFmKBTvZceez/vgOKYCBlAZGlKeCh32JncWAAkSdbF9tcOU+mov7v/piV3Zeki43FhMjbpIycixBsALJx6VLgLuA440wCFk+mF7DH32OQeTKOqzvhxIA32psTkAmQKK2kGvRzu9HTZW3cbtzihIqhBggDGpRXoe21g8plhklXzgGenFvaAkeQ+hLOjV1GSxkYAnixWRLmKkkgoIx66JraUPew+SXQCQjWb5VZkhY2G+J4mFEKpbfnxtwN4C2dsQ4rp77nKInpywmmL5cO4fciTkQkYILSIecMmKzifuu+GKiVu9Dp0mVzun7vfWPMN5ZOhn95q+4BuYBjQCzmfOVKb7lndRR2HvuRXmrv+e6XQ8l4UXkA2Kbeq7EGS7W8lqbp1OPko8UNDLfZE2cIHdts9knv1uql+5c275C58WtpLx1Tg7vzALmTXakeK0vOI44eedK3vP+MlZifxlDAW32l+9KSLT8Bm5WdOp1RD/SAK5cJdDf+5XCp3QZYej9gZipb71sOtjkGzjnFdNh5vzd2KOueNa8vTx36MfkfTlhAYec0N5vsUnXFeUnyKs1qzqV+I28wweDKp3ZbOwa2Gh85E6c0hHGVVEhlZX8C43S/2fi1e3KO+c1Yy7lR3VXfjZWIDDlPc5ZXjzGE+81Gdlj6k6Wu/Sr/8mZDTECr/JRu76/uT+u3MquMORbMcc0pMnXFAT+dk5MlbJ4HKFema2tra+fNbq5V5tra2tpVmEWGUEsT8AxI1wTSpBJoYwIaICNEG2vQBjd2asam6/wWrXPH6xY0wp+F/jcBFuppkdw1WBlda8Js0SYUzwLZghzAYKGM1QoAmht/AciEs7XosuFGf1vYlLbu3+JH2HN5DZAKiAOamszHzrAImYxX6QZ6016bG39YeNINBLQDGcoTsKR6uPe9730XqQo7u9Pxo+tYvoSRCmG2KLIQaHFiITbTq3wATFObV5kCtdSphUiL9MpNvV0KLDurBnjF8il/AMYWmbWVficxQi4jq0220BVmTvsWCNhvtaXqguMgoK3z0g3tPOxEAG11qP6AR7UBG4TZsbx2S6cym+xWjM76g81aLBSBSBh43aM6Bra4vjyXrw4MRgAE/dPSYUfy0pd1Xe2qfB07YADRwNryiVkPBC5fQMieiYE/N1dTtmQqZrrKG6eTTc0uZoCiysB46Xvj6wR150J7AhbSBKApD/e9730PzHysvcDB/toIEQAJjKoMGyuUnWiIAIrS1/0royImGtMCGOqTnBJTo1g/ne8EDLPG7Ve+8pWn4FL3qh1iJ/ZcDMOuMT4Al7PqMaARINnu9BwhNsDkROLMqs0DWDDhq+NPfOITBwZm5wMyOycZAH2pZ9uIqfZf+wjQJBWDtYkpixFZOWPSA7y9i6qPDsB7z8UEVcbGwgzohGUOfAQ+AYhqe/X36ozThAPO5pyAQkDO3DhQG/OduqDD3v1ix86IDOfou5wz2rKxRHsnv1ReAO69WwCh6pWTomfYqDHDRiQvJKydvAQg1QZgU+ZBmssHyQWg59zk1XsGmzozD/B/cxIOKH0WMGrfAMBnYxG92L6rDaQznQPYPMf3QvUrJw6EfuvcHBG1QWWTxn/9p/adU9m4BTS0GV/PsNkmjebOMy6q+6npX5pE9dQ++0u3tbIrDeVdxBIJhymFIxKq8aG02MSrZ9TG6SMbM5QxVrk5ot+0e/Vi7jAdSdPxZezF7JYXDH7OPMz4yqb+QypCG6FNy6Gk73LKeH/QqRYFMDcZtGGpeTAnvbkpmRPyDpVZz+h/4LhxtO9IR9CTNu819pLMUSYY5lMKRp9S59qGsr27thINa2trZ90W4F1bWzt3hrVisj43SBHiBrRtEdJk1a7QTYL7nbalSahwOAtYgIfFa2aTmEAhjJkZSosdZLE22ZA+WyxgFx3rhJoIW0xjDgGiPXvqp7WYbAHTIicmTn/pyAmjb5EXoNDzCinvHAvlJuZT2xazSj4mmNv5GGAAEJp+dgIHZAFwgG0W5Nh5nY89BpwDvqoLZVodzoU+JqlFs4WBevN739EFzWhbWnhgBtN6sxgR9uo+tZ+LyVecdQPAHDPi9Y0JsmLEYha1uLYJVQBAZdVnADxGPF3bnlX7xcLSFuiB1lctKoXJYmhW/xwNQGj3FX4uTFWoNueJDaAwQrX70oLpPXWc6W0C7gLKJjjUUXupT2EkT71IwHZlZKNBmoocRJWddhdY0wIfiG1RCHicbCbt1rPm+EKSgn738fgzDeAJ1AES+43DafYn95vnZs7pN5tZlbaPf/zjp2HdZBIqf04F7O7SEZjrmXPhn/U8sg/9tTklHc/Gv9pC5df9M2NmZVd6OCeMuZ1nI7TZB6o7bFsancrQ2F1bD/zKQWXTMiAj1h72Nqceli+GHIeI/oOx2ne1466rXEqHvvHQhz70kO8777zzsMEVp2RpwY6l5Vm/KX2cgZVVbZJ+bN/TZ+86DN0MUK1flDbv0/7vmUKxbZwJuOw+2NvAsf7HdpxjPBkFbE0Ave+E4vvdNRxwwG9SRJmN7jwX+CTSxJwBs9m4APTq3tUDQLvxpM+1L/duzOrdyslCysa72jtm6hsDrzB7sXInA5XzcUYjZerQpnEiIHoGJzT2uv+VvbB+79nSXhnH8Ox6jiyO1dLW7/1tLvHv/t2/O6Shcq7dAw5tVFh7/fzP//xD+RzLT5CeMh/A5taXRA8p855vnORIFslk/Bch0X0n4728dC6dd+Mw/fHafvknHdJ3HHxAWn0D+3xGV03HFEY2p0hjF7Y6QJX01dRad19yQeYSpQcjt7+Nm6UVUCsKpbSZO3H4z7JRvp1TpANnfXUT8928FoGBI0Qb1bdKV2Nq5wTukuUgl1R5YzPb+LC/paUytzFkUQnmxoBgfSwTmWIOL0LO+45m+tra2tp5swV419bWzp0BXixcMVdopgKrYocGZJp8Cyu1QKWJJvSMTAAWj4WoRaKwdECtRRzQw+JEmoC4GFrCtt13MlGlGTPF4lWocMCABYOwO6HZpYHGXoCBBaZQuSbKLULe8Y53nC78+q4FvtBECwS7mgPJlbUJOEB36sDRsbRQndpyFuClkSwDzUqbebhGGUwGlvBdzwe8YZ5hn/RbC49MHQD+J4vEph6TiYr149mYO8D60tqCusXWzcbgzZQHQAHwMg91aoFcOQQMBE6SyhCmCyDqmkABdY8ZXJnG2qz91T9alAPjaxNd18K0NhZbEuPV5jXSCkCjYTgBIWxSG7xgG2J5CWMGcmBtAmsxq+gQAmv7vlDYdBXJUfT73CyKTAC2KbB5OonoygaIYRhjNgK0yB/QDp3MsQk8+G2CO5cDd9XxZKSx2d/dA3Dp9ynTMBlv6r380PqsfgJCKivX0s+urrsOkzTQCOv3QQ960Mktt9xyYLPG2gQ8dD9Ak3T3vMoxszEZFi1HVNc0NgI3S2cRDDRKezY2W2XeczAFa+NkdjoaIzuqy56nHJQPMKZ23XU27CoP2huJncxmngFqACqgiLbjXRcw9+pXv/rAmqTHWhr1DWHplWn9y1jb9dXBdArovwA+zNb6JmCbzjQA0TPmmOGdZhNMTkv10GdgVudUDxjqnQPE4QQQjVE+Gms4AOkqc+LSTu3onkBI7ZeuMIAVkIXpKOKDI0NbLg/Y07UteeXQlHb1RkIEeKV87QMwJYhopqp30SPdlwOTVMRk7HNqYeHqSz2fg6y23DO6f99Ppyxm/9QhDoAzNgMnyxcnsg0aqxMAaO2hMbkyVw99p19g1Oubxqru5Z2t/3lvGIOMH/1uc0YgI7Be+usntf/3vOc9h3On1BTwUvREZSxPU/e9PgSUNx7mPOn/2ghJIXOQKXVQX3rd6153+I4jklOJ3Ia8Anl7lnbOud15HNVZeUkmovkaySD1DwzVzsxbMc21t+pH3qvT0opBT85DeXKccYKZ02VIDBwR3oEz+kQbmOBwaYxEYDwnWeM9i8FOh160GhmayoWkzNra2tp5tAV419bWzp0BYKf2nTBa7AksjSaZE7SYk3SMRAueGXJsYWciLcwQiNQEusUpsDRAZ4aKBiwDl7Ku7Z6dYxJtUYD9R3MwQITOmYUcvVGLRZP5yV7NWgQEPlnMWRzE5sKGAW7ZJK6FUgtjOqozLHuC6T2rfGX9X9nOcsNA6jc71Fso2vXehjT0Wssnfdep4Tc1BoEm2MgW1xY3LTS0BwvFCVoB1DHwsJWzrqdVeAxoZph4mDQ3oyacOvT/BPUA+M4BqPZd7b+2SqexPmcjscxGRbU3obA2PQuoqs5ywnSP2mIWWAE4xQLG/lZHNFUBvNhSWMZAC2CufqW/0W8Vtg0wwaTvNxq/jSH1HaGlnA+cRfQbp7azPtCiGjBnIzuLWUBw/5fn8lh52uAom2xZwPMM2/Z87RUwfCVwF0sfwDudFsaweZ8J7vpt/o6NaKzhhLr11lsPodvlvbwFKPU/4JqRnJiRGTEHA3kf97jHHcCCyrJyDlzvAL6VXqHImGuNS4WTYws27mTAuAk+GWdJPJQv7W8y3Yw9jfMf+chHDm0oIKVzuofzaZ+XV/fGKiZnMiVpMDP7rjKaG3eWpgCf7tPx4Q9/+PC38Z1DzkZjWH4iP7R3YHHlVT/L6huVYf1VW+acIIng3aUMu0dMdqCP9jzBfSzV3ifYruWn5wRaZbfffvsh/cDKAMQYoJjC5ZdmN7amsYNeL3Y80Blw5z3EiQTgpOuL+Ru4Vx0Br/rcNTZa5GwCKIuuAe42ZlV+pSmJjq6xGadysSGpDROrN5q+GO+clZOp7r03wWLgrugFoD8n2KzPyqXn0BQHYKor9WTOBODzP53UjljjQNnSUr8CRprvAN8bjysPsjUARvMTLE0Ocfkzpve38qfD3jndpzSXt/nuxVCvXmO1k70pfd45U4e3dlWfFtmAmV174lw3filTTGd10X1rm5zAHaWVU07b8B6pjKuHxoPKqP+9S9Vz52CAc7R4X6lvY33fdZ/qxKaQnGk5t+pf5bt2XX9qM8LO63cbWHpXmGuKbhKVYJNUzG/RbN79M3qk8ik95c8YYexX3+5nbO87ziZzQ/NKmx52ToA+hvbdAXpXomFtbe2s2wK8a2tr58IsijKTSiCQiXATT3qM/bWIMJEUDgncm+H4/Y/Rm82dmn3GwhNChgWM2WjR3v2xJ7AkpHXeW3gw0LejhYndzltMkScArlm02oANQGk3dEzHnp0kQ9d0z3QxY730vL7vnCb1XR9bpPy3MLCYlEafsVICCTBaMJuBPNgYFmzAcsAYoIQWb8+nU2rhqh5o9lZGc3FgMUbTlH4iRmM2NXWl/1jHENCsviw0LU6AmhwIGI03m2F8TqYYsKh6IJWA4QU4oAlq4akOsu5X+xV2ChCam47RtsSKnmzLnAjKuzabTaagxWrXTs3fFvmYYrSqbcRTO6I1ioEOJOjZWK8Z1nvpbrEJIOSs6CiN3Q+IgMWOldW1dIuBIBb302lSWQJGhKcDfDofa15duX4CvRPQvRLDXNixkPYJJKkf52n/xzIQ0yEArJ1gdGUJTAyQCOysHDDtAjNavFcHjU2BBdUj/evKrt8LVQ7ULI0cdhiulQ0WL4C4+3Y/Yw4dXTIs6s/4zWlX/dDC7bvuS8u1zzYQ6ndh8V1v7CP5YownIREwLZQeABQINVnWwFhRJcAXwFFlGztVO+5aeqOlU93YYHPKgszQc8B1ZUJ7VXq9y8gQVPb6uLG2tJOOoA/sOc4NuC0f3afvP/rRjx7qFihLQ702Ubl0394HANTyRTc1AEt7ArLSdJ39kLOiZ87ID3MBfW2yNPvfc/VRbRrTn3One3AI04ivrGtnZA8ajzghM2MkprMNu4ylkymsjmYf8/7rwCBVx8AwshCVac+KjV7bKr3VU98J3zf/MHYIjedYmBs76jvC/UXGTFkmcx7s087Xfrsuxu+Mmuiavge8k6aZY493f5uEZY25NH2NhTMKZ+5dYL8FMlUc+aWh9JWeJArMaTi4gYf6IY1bjhoMa5rZzuf8M+b0XIC+uYJ5XXXB0WfzuY7Kn5Orc+oTIsRKu/mg8u9/m/h679WuOp8sTr93n5xbHEDGUs4ejnESFTZarC00/9OGyWmJxFEn1bO8iZAid8bRqTw7VxsHlntXi0LT77yDs9pGY5V3wZyrXI0hIdwT7J6UlrW1tbNjjbrrHlpbW7vp7SEPecjJBz7wgRudjLW1tbW1tbW1tbW1z5DF1v7gBz940d8Ct2OR35MtpxDN9bW1tbXL2c0nBri2trZ2EYuhs7a2tra2tra2tra2tra2tnaz2Uo0rK2tnQsr3JWl7bie8LXLhcVhe8f6oO+6tnYx2/aydrW2bWXtWmzby9rV2raVTzY65FmbbV7KkoCJIXtPNhurrq2trV3JFuBdW1s7F0YbNwvcXYB37WqsRdK2lbWrtW0va1dr21bWrsW2vaxdrW1b+f9bmzteydIb3vJaW1u7WWwlGtbW1tbW1tbW1tbW1tbW1tbW1tbWzqgtwLu2tra2tra2tra2tra2tra2tra2dkZtAd61tbW1tbW1tbW1tbW1tbW1tbW1tTNqC/Cura2tra2tra2tra2tra2tra2trZ1RW4B3bW1tbW1tbW1tbW1tbW1tbW1tbe2M2gK8a2tra2tra2tra2tra2tra2tra2tn1BbgXVtbW1tbW1tbW1tbW1tbW1tbW1s7o3avk5OTCzc6EWtra2tra2tra2tra2tra2tra2tra9duy+BdW1tbW1tbW1tbW1tbW1tbW1tbWzujtgDv2tra2tra2tra2tra2tra2tra2toZtQV419bW1tbW1tbW1tbW1tbW1tbW1tbOqC3Au7a2tra2tra2tra2tra2tra2trZ2Rm0B3rW1tbW1tbW1tbW1tbW1tbW1tbW1M2oL8K6tra2tra2tra2tra2tra2tra2tnVFbgHdtbW1tbW1tbW1tbW1tbW1tbW1t7YzaArxra2tra2tra2tra2tra2tra2tra2fUFuBdW1tbW1tbW1tbW1tbW1tbW1tbWzujtgDv2tra2tra2tra2tra2tra2tra2toZtQV419bW1tbW1tbW1tbW1tbW1tbW1tbOqP1/bnQC1tbW1j7T9rt+1+86+ZzP+ZyT3/N7fs/Jb/7mb578xm/8xo1O0to91LatrF2LbXtZu1rbtrJ2LbbtZW1tbW1tbe1KtgDv2traTW/3ve99T77iK77i5FGPetTJF37hF578oT/0h+7y+//7f//v5Jd+6ZdO3vve9568+tWvPvn5n//5G5bWtRtr21bWrsW2vaxdrW1bWbsW2/ay9um2P/pH/+jJS1/60pN73eteJ3/qT/2pG52ctbW1tbXrZBf22GOPPW7G4/M+7/MuvO51r7vwf//v/73L8X/+z//5pGP+/su//MsXHv3oR9/w9O+xbWWPe+ax7WWPbSt7bHvZ4ywfX/AFX3Dajm50WvbYY4899ji5XscNT8Aee+yxx3U/Hv7wh1/49V//9UsujExqf/M3f/PC7bfffuHf/tt/e+G3f/u37/Lb85///Buejz22rexxzzq2veyxbWWPbS97nPVjAd499thjj5Ob8bjhCdhjjz32uK7HH/gDf+DCr/7qrx4mrf/7f//vCy972csuPPnJT75w//vf/8IXfuEXXvgzf+bPXHjBC15w4b//9/9+OOeFL3zh4brP/uzPvvDUpz71woc+9KHTSe83fuM33vD87LFtZY97xrHtZY9tK3tse9njRh7vfOc7LzznOc+58Pt//+//lO6zAO8ee+yxx8nNeNzwBOyxxx57XNfju77ruw6T1lgut9122yXPu/e9733hP/2n/3SY3H71V3/16ff3ute9LvzET/zE4R4tpv7IH/kjNzxPe2xb2ePGH9te9ti2sse2lz1u5AGU/R//439c+Kmf+qkLT3jCEy78zt/5O6/5Pgvw7rHHHnuc3IzHDU/AHnvsscd1PWKyNGH93u/93iue+/SnP/0wwf3Yxz52l+9/x+/4HRc+8YlPHO7zPd/zPTc8T3tsW9njxh/bXva42mPbyh7Xcmx72eNqj9/6rd/6JB3mX/u1X7vw4he/+MKDH/zgq77PArx77LHHHic343HDE7DHHnvscV2P//bf/tthwvrIRz7yiuf+vt/3+04nuIVIzt++9Vu/9fDb+9///huepz22rexx449tL3tc7bFtZY9rOba97HG1xx/+w3/4UM933HHHRTfcu/POOy8873nPu/C5n/u5l73PArx77LHHHic33fE7QnjX1tbWbib7rM/6rMPf//k//+cVz/2t3/qt0///4B/8g3f57QMf+MDh7x/7Y3/suqdx7Z5h21bWrsW2vaxdrW1bWbsW2/aydrX2X/7Lfzl54QtfePLABz7w5Iu+6ItOXvSiF5381//6X08uXLhwOO5zn/ucfN/3fd/Jr/zKr5y88Y1vPPnar/3ak8/+7M++0cleW1tbW/sM2AK8a2trN5395//8nw9/b7311iue+9CHPvT0/1//9V+/y2+/8Ru/cfj7OZ/zOdc9jWv3DNu2snYttu1l7Wpt28ratdi2l7W7Yx/96EdPnvvc55587ud+7smTnvSkk9e85jUHB0BA773uda+TRz/60ScvfelLT37t137t5GUve9nJYx7zmBud5LW1tbW1T7PdcBrxHnvsscf1PH78x3/8EHb2K7/yK4dQtkud97t/9+++8K53vetw7i/+4i9+0u9tdOI+NzpPe2xb2ePGH9te9ti2ssen49j2ssf1OpLwePazn33aTo5lHP7jf/yPF77/+7//wld+5VeuRMMee+yxx8lNd9zwBOyxxx57XNfj/ve//4Xf/u3fPkxaW+Q885nPvPB7f+/vPf39sz7rsy48/vGPv/DhD3/4dHL7bd/2bZ90H1p2b3/72294nvbYtrLHjT+2veyxbWWPbS97nJXj3ve+92HDvX//7//9RfV6F+DdY4899ji52Y4bnoA99thjj+t+/O2//bfvMpHt/3YZ/tVf/dUL/+t//a+7fP//be8+wKMq9v+PT0IaJRSlCQQQAWkxdKRJkV4UOypeSvhR9EFFpQgKoigqcBEbTVHvvRZAwAcvKIggJUAAKVISAenSAokYElKd/zNz3fNPSDY5m2Qzu8n79TyfZze7c87O2XxJTobZOVu2bJH+/v5Z9rF582auRl0MQq0Q6oVQK8R0qBfiztx1111y0aJF8o8//sgy2Gu6b4QQQkRBxXgHCCHELVGzWxITEzN9RO3GLFu2TAYHB2fZtkSJEnLmzJly9uzZslGjRsaPhVArxHNCvRBqhVAvxBujlvkYOHCg/O6772RKSgoDvIQQIopOfP6+AwBFUtWqVcXQoUNFx44dRfXq1YWfn5+IiYnRV5pesmSJ2L17t+kuwkNQK3AF9QK7qBW4gnpBYdZavXr1xJYtW0x3BQBQABjgBQAAAAAAAAAv5Wu6AwAAAAAAAACAvGGAFwAAAAAAAAC8lJ/pDgBAYaldu7Zo1KiRqFGjhggODhZBQUEiKSlJxMfHi7Nnz4rDhw+LkydPmu4mCtE//vEPfavWnztx4kSe9nHnnXcKX19f8eeff4qDBw8WcA/h6dLS0oSPj49ISUkRb7/9tpg+fbpITU013S14qJCQENG4cWN96/g9lJCQIGJjY/XvoP379+uaQvFVtmxZcffdd4tbb71Vr78bFRUlvv/+e36uIEec4wIAhCdc6Y0QQtyVunXryvfff1+eOXNGXyk4t6h2H3zwgd7OdN+J+6OuSK6+7+fPn5dhYWF52scXX3yh9/Hnn3/KoKAg48dEzNSQ4zYqKkp27NjReL+I56RGjRpy1qxZ8sSJE7n+DkpISJBffvmlbNeunfF+k8LP5MmTZXx8fLbnJh06dLDa+fj4yPDwcLlr1y79u+fy5cty1apV1E0xC+e4hBBCROYY7wAhhLglr7/+ukxJSbEGX+xGtU9OTpZvvPGG8WMghTc4d+XKFdm2bVuX91G/fn1rPwMGDDB+TKRw4/jeL1q0SA/gOX6OqK/LlStnvH/EbJ5//nk9aOsYYMn4e8bZ7ybHc5999pkMDg42fgykcKL+EyCnuoiNjZUNGjTQbRcvXpypreN+amqqHDRokPFjIe4P57iEEELEDfH5+w4AFCkLFy4U4eHhQsr//YiLjo4WmzZt0rfqo2rXrl3TH6kOCAgQZcqU0R9pa9CggejUqZO+VdTHrhcvXiz+7//+z/DRwN0fr3fUSWJiohgwYIDYsGGDS/tRtdWhQwcxf/588dRTT7mpt/DkGnr00UfFqlWrxCuvvCKeffZZ4e/vLy5evCjGjh0rlixZYrqbMEAt1/Hiiy9aP1/UMi7qI9Lp6en6d06lSpX048nJyeKtt97Sj4eGhoru3buLcuXK6bras2eP6Natm7h69arho4E7NW3aVOzatcta7mfevHl66SD186V58+ZizJgx4pZbbhHffvut+Ne//iWWLl2qt7ty5YpeXkgt53DzzTfrx9TH8tVH9U+fPm34qOAunOMCAJwxPspMCCEFmZ49e1qzFHbs2CFbtWrl0vYtW7aU27dvt/bRq1cv48dE3BPH93jMmDHy6tWr+n5iYqLs37+/S/sZN26c3ldkZKTxYyJmaujhhx+2HmvUqJHcvHmz9dx///tfGRISYryvpPDSunVrPZtSff/37t0ru3TpkqVNaGioXLNmja6T6OhoWaZMGf24v7+/fPbZZ62ZvytXrjR+PMS9UR+zV3Wgfg81btw4y/MVK1aUv/32m555uXv3bj1zc8SIEZnaqK8dMzpnzJhh/JiIe8I5LiGEEOE8xjtACCEFmuXLl+sTV/VHUGBgYJ72ERAQIHfu3KlPftX+TB8TcU8cf+CoAbk2bdroZRocH18cOHCg7f2owRvHMg+mj4mYH+B1ZNiwYTImJka3Uetkjh07Vq+dabrPxP355JNP9Pf98OHD1sCts3z77be6hubMmZPp8T59+lj11bVrV+PHRNyXffv26e/z9OnTnbZRv5Mc9bBgwYJs2yxcuFC3UWvzmj4m4p5wjksIIUQ4j/EOEEJIgeb06dP6pPWhhx7K137U9uokWu3P9DER9w/wqq/VhdYuXryoH1ez726cIeUsd9xxh95GDQybPibiOQO8KjfddJNeL9PRTg28NG3a1Hi/iXtz7Ngx/f0ePHhwrm2bNWtm/QfRjf8BsHTpUr0fVUOmj4m4L3Fxcfr73KlTJ6dt1Cxex8+Rvn37ZtumX79+1nq9po+JuCec4xJCCBFO4ut04QYA8FIVK1bUt7/99lu+9uPY3rFOIoq+/fv3i7vuukucO3dOr0+n1kGcOHFirts5akStnQhkFBsbK4YNGyY6d+4soqKiRLNmzcTOnTvFzJkzRVBQkOnuwU3UeqnKL7/8kmvbAwcO6Nvy5cuLatWqZXpu+fLlep1NtcY3iq5SpUrp27i4uBx/ljicP38+2zbqd5dSunTpAu8jPAPnuAAAZxjgBVDkXL58Wd/edttt+dqPY/uYmJgC6Re8w6+//io6duyoL4akBlZef/11fUETddEsZ+6//359e+TIkULsKbzJ1q1bRVhYmJgyZYq++M1zzz0nDh06ZLpbcBN1oSulbNmyubbN2KZEiRLZDsI4BoxRNKmLYilVqlRx2ibjczVr1sy2jePx+Pj4Au8jPAPnuAAAZxjgBVDkqCtRq4G5CRMmiMDAwDztQ82sGz9+vJ7FqfaH4uXUqVN6xpyacalqSV2tOiIiQtxxxx1Z2vbv319fhVrVytq1a430F4Xj+PHjWeLw3nvvZft8xhw9elQMHz5cpKam6rqqXbu20eOB+zj+s+eBBx7Ita2jjRr4v3DhQqbn0tPT9W1aWppb+gnPcOzYMX07YMAAp23uuece6/4TTzyRbZvBgwfr2+jo6ALvIzwD57gAgJwYXyeCEEIKMt27d7fWqYuMjNQXz3L16udqO8c+1BWLTR8TKZw1eG9MhQoV5LZt26x26grl6or26gr3o0eP1utjOp5TayhWrlzZ+DER99dLQcSxL9PHRNyTiRMn6u+x+pnx+OOPO23Xrl076+KOa9euzfL8Pffco/cTHR1t/JiI+/L2229b67j36tUry/MNGzaUly5dkgkJCfKHH37Q9aK2cVzALzg4WM6cOdP6ufLSSy8ZPybinnCOSwghRDiJz993AKBImT9/vp4pp2YnOGazbN68Wd+eOXNGJCQkiOTkZD37Qa1VFxISIho0aCA6deokbr/9dr2NmiHx0UcfiVGjRhk+GriLmhWnaiQ0NFQcPnzY6UyX999/XwwZMkR/7agpB1UnapbdoEGDxLJlywql3zA3y+7G73+tWrX0Y+pjrurniqvy+zFbeKYyZcro5V6qVq2qv/7pp5/EihUr9JIL6ueF+p3Ts2dPvbyLr6+v/jnStWtX/Xsqo9mzZ4tnn31Wr8X78MMPGzoauJv6OXDw4EEREBAg/vrrL7Fy5UqxadMmPdu/RYsW+veL+l301Vdf6fOSH374wfpZpD6y71iX1bFWb8OGDa2P8qPo4RwXAOCM8VFmQghxR1599VWZlJTk8qw71V5t99prrxk/BmJ2Bm/G9O7dW+7Zs0dvkzG//vqr7NGjh/FjIWZr6OGHHzbeF+JZadWqlYyNjc3xd5Dj58i4ceOy3cfJkyf18yNHjjR+PMS9UZ8McVYr6vEzZ87IW265Rbd95ZVXsvwuUomPj5d333238WMh7g/nuIQQQkTWGO8AIYS4LXXq1JFz586Vp06dyvaPoRuj2r377rvy1ltvNd534v68/PLLOhUrVrS9Tf369eW9994r77//fhkWFmb8GIjZMMBLcvsd9M033zj9nXPgwAHZr1+/bLf18fGRoaGhOiVLljR+LMT9GThwYLbnK+oj9Q0aNMjUtnPnznLJkiVy3759cufOnfpcp1atWsaPgRReOMclhBCSMSzRAKDYUFeXVh9bVB9VUx+fLVmypLh+/bq+erX6SJu6oNbp06dNdxOAF1m/fr3+mOxrr72mP4YPZKdatWr6wo3Vq1cXfn5+ekkPdXGjQ4cOme4aPFBYWJi49dZbda2oj92r5RuAnHCOCwBggBcAAAAAAAAAvJSv6Q4AAAAAAAAAAPKGAV4AAAAAAAAA8FJ+pjsAAIWhbt26ev3DRo0aiRo1aojg4GARFBQkkpKSRHx8vDh79qw4fPiw2Lp1qzh27Jjp7sIQtd5h586dbdfKxo0bRXp6uuluwxDqBXZRK3AF9QJXcI4LAHAwfqU3QghxR9QVyIcMGSIPHjyor3JvN6r90KFD9famj4EUTkqXLi1feeUVGRsb61KtqPbTpk3T25s+BkK9EM8LtUKoF+KOcI5LCCFE3BAusgagSLrpppvEN998I9q3b6+/ltL+jzofH/WjUYiIiAgxYMAAERsb67Z+wrw6deqI1atXi/r162epk4SEBH0F6pSUFBEQEKCvTF26dOks9XL06FHRt29f8dtvvxVy71HYqBfYRa3AFdQL7OIcFwDgjPFRZkIIKcioWQnbt2/XMxXS0tLkpUuX5Pvvvy8feughGRoaKitUqCD9/f11W3WrvlaPq+dVO9Vebae2j4yMlL6+vsaPibgnQUFBMioqyqqVAwcOyBdeeEG2atVKBgcHZ7uNelw9r9qp9o5a+fXXX/X+TB8ToV6I+VArhHoh7gjnuIQQQoTzGO8AIYQUaEaMGGGdvM6dO1cGBga6tL1qr7Zz7GPkyJHGj4m4J88//7z1fX7uuefytI+xY8da+xg3bpzxYyLuC/VC7IZaIa6EeiF2wzkuIYQQ4TzGO0AIIQWan376SZ+0Ll26NF/7WbJkiT4B3rRpk/FjIu7Jjh07dK3MmzcvX/v58MMPda2o2TCmj4m4L9QLsRtqhbgS6oXYDee4hBBChPMY7wAhhBRoLl68qE9+u3fvnq/9qO3Vya/an+ljIu7J5cuXda106tQpX/tR26taUfszfUzEfaFeiN1QK8SVUC/EbjjHJYQQIpzE1+nKvADgpRwXHomLi8vXfhwXnlAXM0HRpC5Wo1y/fj1f+3FsHxgYWCD9gmeiXmAXtQJXUC+wi3NcAIAzDPACKHLOnTunb9u0aZOv/Ti2d+wPRc+ZM2f0bdeuXfO1ny5dumTaH4om6gV2UStwBfUCuzjHBQDkxPg0YkIIKcg41qA7f/68rFOnTp72obY7d+5cgayJRzw3b7/9tq6Vq1evyjvvvDNP+1Db/fHHH7pWZs6cafyYiPtCvRC7oVaIK6FeiN1wjksIIUQ4j/EOEEJIgaZBgwYyISFBn7jGxcXJCRMmyMqVK9vaVrUbP3683k5tn5iYKBs2bGj8mIh7UqNGDRkbG6u/18nJyfoPndatW0tfX98ct1PPq3bqDy21naPWQkJCjB8ToV6I+VArhHoh7gjnuIQQQoST+Px9BwCKlCFDhoiFCxeKEiVKWI8dOXJEREdH648uJiQkiOTkZL1OnVrPLCQkRDRo0EDUr19ft5VSir/++kuMGjVKLF682OCRwN169eolli1bJkqWLCl8fNSvRaHr47fffnNaK3Xr1hWlSpWyaiUxMVEMHDhQrFmzxvDRwN2oF9hFrcAV1Avs4hwXAOCM8VFmQghxR9QVgqOiovRH2VTUbIXc4mgbHR0te/ToYfwYSOGkSZMmcv369db3P7d6ydjuxx9/lKGhocaPgVAvxPNCrRDqhbgjnOMSQggRN4QZvACKNDUL5r777tNp3769nsXgmBmTkZrNoGY9REREiJUrV+qox1C8NG/e3KqVhg0bikqVKmVpExMTI6Kioqxa2bNnj5G+wjzqBXZRK3AF9QI7OMcFAGTEAC+AYiUoKEjUqFFDlClTRn8M8vr16+LatWvi7NmzIikpyXT34GH8/Pyy1EpaWprpbsFDUS+wi1qBK6gX2ME5LgAUbwzwAgAAAAAAAICX8jXdAQAAAAAAAABA3jDACwAAAAAAAABeigFeAAAAAAAAAPBSDPACAAAAAAAAgJdigBcAAAAAAAAAvBQDvAAAAAAAAADgpRjgBQAAAAAAAAAvxQAvAAAAAAAAAHgpBngBAAAAAAAAwEsxwAsAAAAAAAAAXooBXgAAAAAAAADwUn6mOwAABW3KlClu2e+rr77qlv3CnMWLF7tlv8OGDXPLfmEW9QK7qBW4gnqBXZzjAgCc8RFCSKfPAoAXSktLEz4+6sdbwSpRokSB7xNmUStwBfUCu6gVuIJ6gV3UCgDAGWbwAihypOT/rWDPyZMnnf6hFBQUJKpUqSJ+//13/QcVQL3ALmoFrqBeYBfnuACAnKjfEoQQUuTj6+srlyxZItPT0+Xs2bON94d4bkqVKiU3bdqka+XLL7803h/i2aFeiN1QK8SVUC/EbjjHJYQQQTygA4QQ4vb4+fnJ5cuX6xPftLQ0fTt58mTj/SKel+DgYBkREZGpVhYsWGC8X8QzQ70Qu6FWiCuhXojdcI5LCCHk7/eAN4IQUvRPfL/55hvrxHffvn3WCfDo0aON9494TsqWLSu3b99u1cqqVausWpkxY4bx/hHPCvVC7IZaIa6EeiF2wzkuIYQQ8f9jvAOEEOK2+Pv76z+MHCe+c+fO1Y8vXLhQf63y6KOPGu8nMZ9y5crJyMhIq1bGjh2rH586dar1x9K4ceOM95N4RqgXYjfUCnEl1AuxG85xCSGEiMwx3gFCCHFLAgIC5OrVq60T31mzZmV6funSpfrx5ORk2adPH+P9JeZSoUIFuWvXLqtWxowZk+n5OXPmWH9Yh4eHG+8vMRvqhdgNtUJcCfVC7IZzXEIIISJrjHeAEEIKPIGBgfK7776zTnzffPPNbD/W9v333+vnr127Jjt06GC836Twc9NNN8mff/7ZqhVnH2n89NNP9fOpqanygQceMN5vYibUC7EbaoW4EuqF2A3nuIQQQkT2Md4BQggp0AQFBcl169ZZJ76vv/6607YlS5bUFzFR7WJjY2VYWJjx/pPCy8033yz37t2ra0X9sTxixAinbX18fOTKlSt1rVy/fl1269bNeP8J9UI8M9QKcSXUC7EbznEJIYQI5zHeAUIIKdD8+OOP1onvtGnTbK1357goxYULF4z3nxRe9u/fb/1Bbefjruojkaq+VK3Ex8cb7z8p3FAvxG6oFeJKqBdiN5zjEkIIEc5jvAOEEFKgcaxPN2XKFNvbVK5cWR49elRvZ7r/pPDi+Jjr4MGDbW9TunRp6wI4pvtPCjfUC7EbaoW4EuqF2A3nuIQQQoTzGO8AIYQU+MnvpEmTXN6uVq1a8uzZs8b7TwovKSkpctCgQXm6EM6hQ4eM958UbqgXYjfUCnEl1AuxG85xCSGECOcx3gFCCCnQjB8/Ps/bNm7c2Hj/SeFl4MCBed62WrVqxvtPCjfUC7EbaoW4EuqF2A3nuIQQQoST+Px9BwAAAAAAAADgZXxNdwAAAAAAAAAAkDd+edwOADzWlClT8rX9q6++WmB9gWdbvHhxvrYfNmxYgfUFno96gV3UClxBvcAuznEBAM6wRAOAIictLU34+Kgfb3lTokSJAu0PPBe1AldQL7CLWoErqBfYRa0AAJxhBi+AIkdK1/7fSp0ou7oNioaTJ0/m+odSqVKlRMWKFXU7lUuXLonExMRC6yM8B/UCu6gVuIJ6gV2c4wIAcmL8Sm+EEFLYCQwMlKGhoXL69OkyISFBbtu2TVavXt14v4hnply5cnL48OHywoUL8tixY7p2TPeJeG6oF2I31ApxJdQLsRPOcQkhRBTLsEQDgGKvRYsWYuPGjeLcuXOiZcuW4tq1a6a7BA9Vq1YtsWvXLv0RyaZNm+oZVIAz1AvsolbgCuoFdnGOCwDFh6/pDgCAaT///LN45513RL169cTzzz9vujvwYKdOnRIzZ84UlStXFuPGjTPdHXg46gV2UStwBfUCuzjHBYDigwFeABBCrF27Vq9Rdv/995vuCjzc5s2b9W3//v1NdwVegHqBXdQKXEG9wC7OcQGgeGCAFwCEsC5Ucuutt5ruCjxcenq6vq1Ro4bprsALUC+wi1qBK6gX2MU5LgAUDwzwAoAQokOHDvqWK1IjN7169dK3cXFxprsCL0C9wC5qBa6gXmAX57gAUDz4me4AAJjWu3dvMW3aNOHj4yN2795tujvwUIGBgWLYsGFi0qRJulYiIiJMdwkejHqBXdQKXEG9wBWc4wJA8eEjhJCmOwEABWnx4sW5tvH19RXly5cXd9xxh74atePjjnfddZfYsWNHIfQSnmDDhg22a0VdoCQoKEivY6dmwbRp00ZERUUVSj/hGagX2EWtwBXUC+ziHBcA4AwDvACKnLS0ND1TwS71R1J8fLwIDw8XK1ascGvf4Jm1omrATs2odidPnhRPPPGE2L59e6H0EZ6DeoFd1ApcQb3ALs5xAQDOMMALoMg5duxYrie/pUqVEhUrVtTtLl++rGfAnDp1qtD6CM+wfv16W7VSt25dUaFCBV0r7dq1E8ePHy+0PsJzUC+wi1qBK6gX2MU5LgAgJ2qAlxBCil3Kli0rhw8fLi9cuCBPnTolQ0NDjfeJeG66desmo6Ki5NWrV2WXLl2M94d4dqgXYjfUCnEl1AuxE85xCSFEFLswgxdAsafWJ9u1a5dITk4WzZo107MdgOyomVN79uzRa9uFhYWJ06dPm+4SPBj1AruoFbiCeoFdnOMCQPHha7oDAGCa+tjarFmzxC233CKeeeYZ092BB4uLixMzZ84UwcHB4vnnnzfdHXg46gV2UStwBfUCuzjHBYDigwFeABBCbN68Wd8OGDDAdFfg4Xbu3Klve/bsabor8ALUC+yiVuAK6gV2cY4LAMUDA7wAIIRITU3Vt7Vr1zbdFXg4Pz8/fRsSEmK6K/AC1AvsolbgCuoFdnGOCwDFAwO8ACCE6NWrl75NSkoy3RV4uAceeEDf/vnnn6a7Ai9AvcAuagWuoF5gF+e4AFA8/O+/fgGgmAoMDBRDhw4VkydPFj4+PmLr1q2muwQPvlDJ6NGjxbPPPqtrZf369aa7BA9GvcAuagWuoF5gF+e4AFC8+AghpOlOAEBB2rBhQ65tfH199dWn69WrJ4KCgoSUUqSkpIi2bduK/fv3F0o/Yd7x48dt14q6mI2iauWPP/4QrVq1EidOnCiEXsJTUC+wi1qBK6gX2MU5LgDAGQZ4ARQ5aWlpeqaCOqFVt86o5x1Onz4thgwZYl2IAsWvVuyKjIwU4eHhIjo62q19g+ehXmAXtQJXUC+wi3NcAIAzLNEAoMj56aefcjzpVdLT00V8fLyeNbNlyxaxevVq/RiKl08//dTlWvnll18KrX/wLNQL7KJW4ArqBXZxjgsAcIYZvAAAAAAAAADgpXxNdwAAAAAAAAAAkDcM8AIAAAAAAACAl2KAFwAAAAAAAAC8FAO8AAAAAAAAAOClGOAFAAAAAAAAAC/FAC8AAAAAAAAAeCkGeAEAAAAAAADASzHACwAAAAAAAABeigFeAAAAAAAAAPBSDPACAAAAAAAAgJdigBcAAAAAAAAAvBQDvAAAAEA2Bg8eLKSUOrVq1cry/MaNG/Vz6hYAAAAwhQFeAAAAg0qXLi1OnjypBwpjYmJExYoVc93mn//8pzXwOGTIkHz3oVSpUmLYsGFiyZIl4siRIyIuLk4kJyeLixcvim3btonZs2eLNm3a5Pt1AAAAALiHJIQQQggh5tK7d2/p8Pnnn+fYtnXr1jItLU23Xbt2bb5fe8SIEfLChQvSjsjISNm2bVvj71dhZfDgwdax16pVK8vzGzdu1M+pW28+DkIIIYQQIrw6zOAFAAAw7LvvvhOff/65vv/YY4+JPn36ZNvO399ffPTRR6JEiRIiISFBjBw5Ms+v6ePjI+bPny8WLFggqlSpItLT08WKFSvE8OHDRefOnUXz5s1Fz549xQsvvCC2bNmit2ndurUYP358nl+zqOnSpYt+H9UtAAAAYIqfsVcGAACA5ZlnnhE9evQQlSpVEvPmzRONGzcW165dy9TmxRdfFKGhofr+Sy+9pJd2yKupU6daA8RqWYYHH3xQHDhwIEu7devW6SUa2rVrJ9599908vx4AAAAA92AGLwAAgAe4cuWKGDt2rL5fs2ZN8eabb2Z6vmHDhmLSpEn6fmRkpJg7d26eX0vNzlUDxMrvv/8uOnTokO3gbkZqLV41yPvFF1/k+XUBAAAAuIfxdSIIIYQQQsj/smbNGr1Wanp6umzfvr1+zMfHR27btk0/npycLJs0aZKv11i2bJm1Jut9991XYH3v16+f3veZM2dkUlKSvHz5su73hAkTZOnSpXPdXh3n448/LlevXi3Pnz+vj/XSpUtyw4YNcvTo0dLf39/ptlOnTrWOSX1dtmxZ+dJLL8k9e/bIuLg4/bhaizbjNuXLl5czZsyQUVFRMjExUV68eFH+8MMP8sEHH8z3GryqvYPjdbt16yZXrVqlj029P8ePH5cffvihrF69eo7vS+PGjeXkyZPl999/b7238fHx8siRI/LTTz+Vbdq0yXa7Tp062VpbWbXLbvt7771XLl26VJ46dUpev35dv4+7du2SU6ZM0e+d6X8rhBBCCCFEOGK8A4QQQggh5O/UrFlT/vnnn3rg7fDhwzIgIEA+/fTT1mDctGnT8rX/cuXKydTUVL0vNcCoBlXz2+fAwEC5fPnyHAcRz549K8PCwpzuo0KFCnLLli057uPQoUP6/cltgLdu3br62G6UcYC3QYMGuk/OfPzxxwU6wPvGG284fS01sKz6k59BWrX/ghrgVYO369evz3EbdWE+ZwPLhBBCCCFEFHaMd4AQQgghhGTImDFjMg00qtmajgFONeCbn3337dvX2reaPVoQ/f3qq6+sfe7du1cOGjRItmjRQnbv3l33X81GVtSM3mrVqmXZ3tfXV0ZERFj7UAOmDzzwgGzevLmeFbxixQrruaNHj2Y7GzjjAO++ffv07N+5c+fKu+++W+/nkUcekXfeeaduGxwcrGelOnz55ZeyV69eut3AgQPlzp079eORkZEFMsC7detWq53av3qdrl276tm3Dmqmc3bvreq/+v6r93jEiBHyrrvukk2bNpU9evSQY8eOlSdOnLD2MWTIkEzblipVSs/+nTRpktVGfU/UYxmj2jm2UfW1e/du3Vb9R8Bnn32m37vWrVvrGeUvvviijImJ0c9fuXLF6YA7IYQQQggRhRnjHSCEEEIIIRmScUkGh7S0NNm2bdt87zvjYF94eHi+99enTx9rf2p5g+yWURg+fLjVRg1U3vj8k08+aT2vBj2ze53p06dbbd58880cB3jVe6UGMp31+e2337baTpw4Mcvzfn5+ejmEjPIzwKssWLAg274sXLjQaqMGbm98/uabb9azrp0di3q/165dq7dXg71qsPzGNrnNRM7ufY6NjdUD0dm1UYO6v//+u273n//8x9i/E0IIIYQQIhwx3gFCCCGEEHJD1Dq7Gb377rsFst/Zs2db++zfv3++96fWy1XUjNkaNWo4bbdu3TrdLiUlRVatWjXTc2pmsmOpgjJlymS7fYkSJfSSFY6ZozfOZM44wPvRRx/lOCCqtnfM9HXWTq2Lq46pIAZ41WCos5nX9evXt9qpmdt5+R7ccccd1j6yG5S1O8CrZkY71it+6qmncnzNUaNGWd/3jDOACSGEEEKIKPT4uunCbQAAAMiH9u3bZ/r63LlzBbLf4OBg635CQkK+9lWiRAnRqVMnfX/dunXi7NmzTtsuWrRI3/r7+4vOnTtbj99yyy2iUaNG+v7SpUvFtWvXst0+PT1dfPLJJ/r+TTfdJJo3b+70tT7//HOnz7Vo0UJvr3z22WdO2/3+++/6mArC119/LVJSUrJ97siRIyI+Pl7fr1OnTq77CggIECEhIaJhw4aicePGOj4+PtbzYWFhee6n+l6WL1/e6nNONm/ebPVHvacAAAAwhwFeAAAAD1OtWjXx1ltvZXrs5ZdftjUAmBvHYKJSunTpfO1L9cexj8jIyBzbZny+SZMm2d7P6z5u9Msvvzh9LjQ01Lq/a9euHF9v586doiBER0fn+HxcXFyWwfeMSpUqJSZOnCj27dunB+VPnz4tDh8+LA4ePKijHneoWLFinvvZsmVL6/6FCxeElNJpDh06ZLWtWrVqnl8TAAAA+ccALwAAgIeZN2+eKFeunPjrr7/ECy+8oGevqkG+BQsW5HvfV65cse5XqVIlX/tyzIRVLl26lGNbNWCY3XYFsQ9nA6b57fPFixdFQUhMTMzxefV9dsyIvlGtWrXEgQMHxIwZM/TsXD8/vxz3VbJkyTz3s3LlynnaTtUmAAAAzMn5DBEAAACF6uGHHxb33HOPvq8GdGfPni1q1qwpnn76adGtWzcxePDgHJcWyM3+/fut+zktc+AqNavTE/aRccC0sF7Pnf7973/rmdLqmNQSFV999ZWIiooSMTEx1rIPaokGxzFnXK7BVRkHmJs1ayZSU1NtbZfT0hwAAABwPwZ4AQAAPESFChXEu+++aw2aTZgwQd+fPHmyGDBggB7onTVrlli9erW4fPlynl5j69atIi0tTc8E7d27tx4QzOtAZ2xsrO3ZwBk/xp9xu4LYhysyzu5Vr3f06FGnbfM7wzm/br/9dtGxY0d9/4033tDLdGQnp9nMeZ3drQaQ1TrEAAAA8Hws0QAAAOAh5syZYw0qPvXUU9Z6uerCY08++aS1xuo777yT59e4evWq+Oabb/T92rVr64HjvDp+/Lh1obY2bdrk2LZ169bWfbVubHb387oPV6jlDhxatWqVY9vcnnc3dQE1hyVLlthaOzc7dgfw9+7d6/QifwAAAPBcDPACAAB4gO7du+vlF5Rly5aJVatWZXpezdp1DPI9/vjjokePHnl+LbWeq1rXV3nvvfdEpUqVbG0XEBAgHnroIetrtY9NmzZZ/a9evbrTbYcPH65v1cf+f/rpJ+vx8+fP6wuGOZancHbhN19fXzFkyBBr9u6ePXtEXvz888/W7N8nnngixwvd5ec9LggZ19vN6YJ4o0aNynE/SUlJ1v3AwECn7davX28N2KslQQAAAOAdGOAFAAAwLOMF1NTg45gxY7JtpwbdHIOT8+fPz/PFrdTg6PTp0/V9NSirlm1o0qRJjtvceeedIiIiQjz22GOZHv/ggw+sgcOPP/4424uADR06VPTs2VPfX7FiRaaLpWXch7rIl2OJihtNnTrVmtG6aNEia/1ZV6nt1Fq2jnVmx40bl+1atOo1choMLQwZl49wDG5nN7ib2yxsNYjucNttt+U4u/v999+3ZvCqGeU5remrvl/h4eE5vjYAAAAKh/rMFiGEEEIIMZQ5c+ZIh6FDh+bYdtiwYVbbWbNm5fk1fXx85Pz58619paWlya+//lq/fseOHWXTpk1l9+7d5dixY+XGjRutditXrsyyryVLlljP7969Wz722GOyefPm8u6775aLFi2S6enp+rnLly/LatWqZdne19dXRkREWPtYv369vP/++2WzZs1knz59dL8cjh49KkuXLp1lH1OnTrXa5HbsZcuWladPn7baf/7557Jnz5769R555BEZGRmpH9+5c6fVplatWln243hf1O2Nz6n2DoMHD86xPydOnNDtPvnkkyzP/fLLL9Z+vvrqK9m3b1/93t5zzz1y6dKl+vEtW7ZYbdT7cOM+ypQpIxMTE63vT7du3WS9evXkbbfdphMUFGS1DQgIkNu3b7f2t3fvXvnkk0/Kdu3aybCwMNm5c2f51FNP6TpISkqSu3btMv7vhxBCCCFEEOMdIIQQQggptmnTpo0eXHUMbNrZZsOGDbp9amqqHpTMz+uPHDlSXrx4UdqxdetW2bJlyyz7CAwMlMuXL89x27Nnz+oBQmf9qFChQqaByuwcOnRI1qxZM9vtXRngVWnUqJE8d+6c09davHixHpg1PcCr3rMrV6447ef+/ftl1apVcxzgVXnzzTed7qNTp05ZBoQzDqrn5McffzT+b4gQQgghRBDjHSCEEEIIKZbx8/OzZmgmJCTIOnXq2Nqubt261ozMn3/+Wc+AzU8/1IzY8PBwPSNUzZD9448/ZHJysh743bZtm54pnN3A7o3p16+fHhhUg7lqdqcamFSzQSdMmJDtrNvsZhUPGjRIrlmzRp4/f173ISYmRg9oq1mk/v7+Trd1dYDXMaisBj5//fVXef36dXnp0iU9YDlw4ED9vCcM8KqEhITIDz/8ULdT74maCb1jxw753HPP6cF11Sa3AV4V9T3etGmT3l7954CzAV5H2rdvLxcuXCijoqLk1atXZUpKit5WzXB+7733ZK9evfJde4QQQgghROQ7Pn/fAQAAAAAAAAB4GS6yBgAAAAAAAABeigFeAAAAAAAAAPBSDPACAAAAAAAAgJdigBcAAAAAAAAAvBQDvAAAAAAAAADgpRjgBQAAAAAAAAAvxQAvAAAAAAAAAHgpBngBAAAAAAAAwEsxwAsAAAAAAAAAXooBXgAAAAAAAADwUgzwAgAAAAAAAICXYoAXAAAAAAAAALwUA7wAAAAAAAAA4KUY4AUAAAAAAAAAL8UALwAAAAAAAAB4KQZ4AQAAAAAAAMBLMcALAAAAAAAAAF6KAV4AAAAAAAAA8FIM8AIAAAAAAACAl2KAFwAAAAAAAAC8FAO8AAAAAAAAAOClGOAFAAAAAAAAAC/FAC8AAAAAAAAAeCkGeAEAAAAAAADASzHACwAAAAAAAABeigFeAAAAAAAAAPBSDPACAAAAAAAAgJdigBcAAAAAAAAAvBQDvAAAAAAAAADgpRjgBQAAAAAAAAAvxQAvAAAAAAAAAHgpBngBAAAAAAAAwEsxwAsAAAAAAAAAXooBXgAAAAAAAADwUgzwAgAAAAAAAIDwTv8PsieWXaEgQ0cAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "albedo_filename = \"ECOv002_L2T_STARS_11SPS_20240728_0712_01_albedo.tif\"\n", "albedo_cmap = LinearSegmentedColormap.from_list(name=\"albedo\", colors=[\"black\", \"white\"])\n", @@ -57,9 +80,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2025-04-01 00:00:00 UTC\n", + "2025-03-31 16:18:37 solar apparent time at longitude -115.3433725031462\n", + "day of year 90 at longitude -115.3433725031462\n", + "hour of day 16.310277777777777 at longitude -115.3433725031462\n" + ] + } + ], "source": [ "time_UTC = parser.parse(albedo_filename.split(\"_\")[6])\n", "longitude = albedo.geometry.centroid_latlon.x\n", @@ -75,9 +109,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{\n", + " \"dimensions\": {\n", + " \"rows\": 1568,\n", + " \"cols\": 1568\n", + " },\n", + " \"bbox\": {\n", + " \"xmin\": 600000.0,\n", + " \"ymin\": 3590260.0,\n", + " \"xmax\": 709760.0,\n", + " \"ymax\": 3700020.0\n", + " },\n", + " \"crs\": \"EPSG:32611\",\n", + " \"resolution\": {\n", + " \"cell_width\": 70.0,\n", + " \"cell_height\": -70.0\n", + " }\n", + "}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "geometry = albedo.geometry\n", "geometry" @@ -85,11 +146,9112 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "--2025-04-01 16:33:11-- https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/Y2025/M03/D31/GEOS.fp.asm.tavg1_2d_rad_Nx.20250331_2330.V01.nc4\n", + "Resolving portal.nccs.nasa.gov (portal.nccs.nasa.gov)... 2001:4d0:2418:2800::a99a:9791, 169.154.151.145\n", + "Connecting to portal.nccs.nasa.gov (portal.nccs.nasa.gov)|2001:4d0:2418:2800::a99a:9791|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 39814534 (38M) [application/octet-stream]\n", + "Saving to: ‘/Users/gregoryhalverson/data/GEOS5FP/2025.03.31/GEOS.fp.asm.tavg1_2d_rad_Nx.20250331_2330.V01.nc4.20250401233311.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 263K 2m28s\n", + " 50K .......... .......... .......... .......... .......... 0% 611K 1m45s\n", + " 100K .......... .......... .......... .......... .......... 0% 2.45M 75s\n", + " 150K .......... .......... .......... .......... .......... 0% 32.2M 57s\n", + " 200K .......... .......... .......... .......... .......... 0% 661K 57s\n", + " 250K .......... .......... .......... .......... .......... 0% 36.5M 48s\n", + " 300K .......... .......... .......... .......... .......... 0% 4.55M 42s\n", + " 350K .......... .......... .......... .......... .......... 1% 11.9M 37s\n", + " 400K .......... .......... .......... .......... .......... 1% 657K 39s\n", + " 450K .......... .......... .......... .......... .......... 1% 23.6M 36s\n", + " 500K .......... .......... .......... .......... .......... 1% 5.20M 33s\n", + " 550K .......... .......... .......... .......... .......... 1% 20.3M 30s\n", + " 600K .......... .......... .......... .......... .......... 1% 24.3M 28s\n", + " 650K .......... .......... .......... .......... .......... 1% 35.0M 26s\n", + " 700K .......... .......... .......... .......... .......... 1% 31.6M 24s\n", + " 750K .......... .......... .......... .......... .......... 2% 636K 27s\n", + " 800K .......... .......... .......... .......... .......... 2% 59.5M 25s\n", + " 850K .......... .......... .......... .......... .......... 2% 9.44M 24s\n", + " 900K .......... .......... .......... .......... .......... 2% 36.6M 23s\n", + " 950K .......... .......... .......... .......... .......... 2% 23.1K 1m43s\n", + " 1000K .......... .......... .......... .......... .......... 2% 33.9K 2m31s\n", + " 1050K .......... .......... .......... .......... .......... 2% 286M 2m24s\n", + " 1100K .......... .......... .......... .......... .......... 2% 407M 2m18s\n", + " 1150K .......... .......... .......... .......... .......... 3% 452M 2m12s\n", + " 1200K .......... .......... .......... .......... .......... 3% 524K 2m9s\n", + " 1250K .......... .......... .......... .......... .......... 3% 313M 2m4s\n", + " 1300K .......... .......... .......... .......... .......... 3% 610M 2m0s\n", + " 1350K .......... .......... .......... .......... .......... 3% 133K 2m5s\n", + " 1400K .......... .......... .......... .......... .......... 3% 519M 2m1s\n", + " 1450K .......... .......... .......... .......... .......... 3% 610M 1m56s\n", + " 1500K .......... .......... .......... .......... .......... 3% 634M 1m53s\n", + " 1550K .......... .......... .......... .......... .......... 4% 483M 1m49s\n", + " 1600K .......... .......... .......... .......... .......... 4% 519M 1m45s\n", + " 1650K .......... .......... .......... .......... .......... 4% 525M 1m42s\n", + " 1700K .......... .......... .......... .......... .......... 4% 555M 99s\n", + " 1750K .......... .......... .......... .......... .......... 4% 498M 96s\n", + " 1800K .......... .......... .......... .......... .......... 4% 436M 94s\n", + " 1850K .......... .......... .......... .......... .......... 4% 479M 91s\n", + " 1900K .......... .......... .......... .......... .......... 5% 568M 89s\n", + " 1950K .......... .......... .......... .......... .......... 5% 188K 91s\n", + " 2000K .......... .......... .......... .......... .......... 5% 185K 94s\n", + " 2050K .......... .......... .......... .......... .......... 5% 185K 96s\n", + " 2100K .......... .......... .......... .......... .......... 5% 175K 99s\n", + " 2150K .......... .......... .......... .......... .......... 5% 179K 1m41s\n", + " 2200K .......... .......... .......... .......... .......... 5% 181K 1m43s\n", + " 2250K .......... .......... .......... .......... .......... 5% 195K 1m45s\n", + " 2300K .......... .......... .......... .......... .......... 6% 285K 1m45s\n", + " 2350K .......... .......... .......... .......... .......... 6% 188K 1m47s\n", + " 2400K .......... .......... .......... .......... .......... 6% 274K 1m47s\n", + " 2450K .......... .......... .......... .......... .......... 6% 274K 1m47s\n", + " 2500K .......... .......... .......... .......... .......... 6% 276K 1m48s\n", + " 2550K .......... .......... .......... .......... .......... 6% 260K 1m48s\n", + " 2600K .......... .......... .......... .......... .......... 6% 287K 1m48s\n", + " 2650K .......... .......... .......... .......... .......... 6% 281K 1m49s\n", + " 2700K .......... .......... .......... .......... .......... 7% 272K 1m49s\n", + " 2750K .......... .......... .......... .......... .......... 7% 488K 1m48s\n", + " 2800K .......... .......... .......... .......... .......... 7% 292K 1m48s\n", + " 2850K .......... .......... .......... .......... .......... 7% 278K 1m49s\n", + " 2900K .......... .......... .......... .......... .......... 7% 542K 1m48s\n", + " 2950K .......... .......... .......... .......... .......... 7% 271K 1m48s\n", + " 3000K .......... .......... .......... .......... .......... 7% 287K 1m48s\n", + " 3050K .......... .......... .......... .......... .......... 7% 484K 1m47s\n", + " 3100K .......... .......... .......... .......... .......... 8% 308K 1m47s\n", + " 3150K .......... .......... .......... .......... .......... 8% 289K 1m47s\n", + " 3200K .......... .......... .......... .......... .......... 8% 458K 1m47s\n", + " 3250K .......... .......... .......... .......... .......... 8% 299K 1m47s\n", + " 3300K .......... .......... .......... .......... .......... 8% 498K 1m46s\n", + " 3350K .......... .......... .......... .......... .......... 8% 270K 1m46s\n", + " 3400K .......... .......... .......... .......... .......... 8% 554K 1m46s\n", + " 3450K .......... .......... .......... .......... .......... 9% 560K 1m45s\n", + " 3500K .......... .......... .......... .......... .......... 9% 271K 1m45s\n", + " 3550K .......... .......... .......... .......... .......... 9% 562K 1m44s\n", + " 3600K .......... .......... .......... .......... .......... 9% 286K 1m45s\n", + " 3650K .......... .......... .......... .......... .......... 9% 552K 1m44s\n", + " 3700K .......... .......... .......... .......... .......... 9% 543K 1m43s\n", + " 3750K .......... .......... .......... .......... .......... 9% 264K 1m43s\n", + " 3800K .......... .......... .......... .......... .......... 9% 546K 1m43s\n", + " 3850K .......... .......... .......... .......... .......... 10% 489K 1m42s\n", + " 3900K .......... .......... .......... .......... .......... 10% 294K 1m42s\n", + " 3950K .......... .......... .......... .......... .......... 10% 516K 1m42s\n", + " 4000K .......... .......... .......... .......... .......... 10% 551K 1m41s\n", + " 4050K .......... .......... .......... .......... .......... 10% 295K 1m41s\n", + " 4100K .......... .......... .......... .......... .......... 10% 506K 1m41s\n", + " 4150K .......... .......... .......... .......... .......... 10% 496K 1m40s\n", + " 4200K .......... .......... .......... .......... .......... 10% 306K 1m40s\n", + " 4250K .......... .......... .......... .......... .......... 11% 545K 1m40s\n", + " 4300K .......... .......... .......... .......... .......... 11% 534K 99s\n", + " 4350K .......... .......... .......... .......... .......... 11% 444K 99s\n", + " 4400K .......... .......... .......... .......... .......... 11% 305K 99s\n", + " 4450K .......... .......... .......... .......... .......... 11% 502K 98s\n", + " 4500K .......... .......... .......... .......... .......... 11% 541K 98s\n", + " 4550K .......... .......... .......... .......... .......... 11% 517K 97s\n", + " 4600K .......... .......... .......... .......... .......... 11% 548K 97s\n", + " 4650K .......... .......... .......... .......... .......... 12% 530K 96s\n", + " 4700K .......... .......... .......... .......... .......... 12% 497K 96s\n", + " 4750K .......... .......... .......... .......... .......... 12% 305K 96s\n", + " 4800K .......... .......... .......... .......... .......... 12% 558K 95s\n", + " 4850K .......... .......... .......... .......... .......... 12% 561K 95s\n", + " 4900K .......... .......... .......... .......... .......... 12% 550K 94s\n", + " 4950K .......... .......... .......... .......... .......... 12% 537K 94s\n", + " 5000K .......... .......... .......... .......... .......... 12% 562K 93s\n", + " 5050K .......... .......... .......... .......... .......... 13% 563K 93s\n", + " 5100K .......... .......... .......... .......... .......... 13% 536K 92s\n", + " 5150K .......... .......... .......... .......... .......... 13% 507K 92s\n", + " 5200K .......... .......... .......... .......... .......... 13% 527K 92s\n", + " 5250K .......... .......... .......... .......... .......... 13% 539K 91s\n", + " 5300K .......... .......... .......... .......... .......... 13% 550K 91s\n", + " 5350K .......... .......... .......... .......... .......... 13% 327K 91s\n", + " 5400K .......... .......... .......... .......... .......... 14% 569K 90s\n", + " 5450K .......... .......... .......... .......... .......... 14% 559K 90s\n", + " 5500K .......... .......... .......... .......... .......... 14% 1.06M 89s\n", + " 5550K .......... .......... .......... .......... .......... 14% 351K 89s\n", + " 5600K .......... .......... .......... .......... .......... 14% 563K 89s\n", + " 5650K .......... .......... .......... .......... .......... 14% 571K 88s\n", + " 5700K .......... .......... .......... .......... .......... 14% 551K 88s\n", + " 5750K .......... .......... .......... .......... .......... 14% 383K 88s\n", + " 5800K .......... .......... .......... .......... .......... 15% 1.05M 87s\n", + " 5850K .......... .......... .......... .......... .......... 15% 556K 87s\n", + " 5900K .......... .......... .......... .......... .......... 15% 678K 86s\n", + " 5950K .......... .......... .......... .......... .......... 15% 478K 86s\n", + " 6000K .......... .......... .......... .......... .......... 15% 669K 86s\n", + " 6050K .......... .......... .......... .......... .......... 15% 521K 85s\n", + " 6100K .......... .......... .......... .......... .......... 15% 570K 85s\n", + " 6150K .......... .......... .......... .......... .......... 15% 553K 85s\n", + " 6200K .......... .......... .......... .......... .......... 16% 531K 84s\n", + " 6250K .......... .......... .......... .......... .......... 16% 608K 84s\n", + " 6300K .......... .......... .......... .......... .......... 16% 577K 84s\n", + " 6350K .......... .......... .......... .......... .......... 16% 544K 83s\n", + " 6400K .......... .......... .......... .......... .......... 16% 552K 83s\n", + " 6450K .......... .......... .......... .......... .......... 16% 589K 83s\n", + " 6500K .......... .......... .......... .......... .......... 16% 644K 82s\n", + " 6550K .......... .......... .......... .......... .......... 16% 1.20M 82s\n", + " 6600K .......... .......... .......... .......... .......... 17% 567K 81s\n", + " 6650K .......... .......... .......... .......... .......... 17% 536K 81s\n", + " 6700K .......... .......... .......... .......... .......... 17% 529K 81s\n", + " 6750K .......... .......... .......... .......... .......... 17% 602K 81s\n", + " 6800K .......... .......... .......... .......... .......... 17% 558K 80s\n", + " 6850K .......... .......... .......... .......... .......... 17% 1.09M 80s\n", + " 6900K .......... .......... .......... .......... .......... 17% 548K 80s\n", + " 6950K .......... .......... .......... .......... .......... 18% 516K 79s\n", + " 7000K .......... .......... .......... .......... .......... 18% 570K 79s\n", + " 7050K .......... .......... .......... .......... .......... 18% 749K 79s\n", + " 7100K .......... .......... .......... .......... .......... 18% 791K 78s\n", + " 7150K .......... .......... .......... .......... .......... 18% 743K 78s\n", + " 7200K .......... .......... .......... .......... .......... 18% 532K 78s\n", + " 7250K .......... .......... .......... .......... .......... 18% 954K 77s\n", + " 7300K .......... .......... .......... .......... .......... 18% 576K 77s\n", + " 7350K .......... .......... .......... .......... .......... 19% 852K 77s\n", + " 7400K .......... .......... .......... .......... .......... 19% 673K 76s\n", + " 7450K .......... .......... .......... .......... .......... 19% 720K 76s\n", + " 7500K .......... .......... .......... .......... .......... 19% 605K 76s\n", + " 7550K .......... .......... .......... .......... .......... 19% 928K 75s\n", + " 7600K .......... .......... .......... .......... .......... 19% 716K 75s\n", + " 7650K .......... .......... .......... .......... .......... 19% 814K 74s\n", + " 7700K .......... .......... .......... .......... .......... 19% 670K 74s\n", + " 7750K .......... .......... .......... .......... .......... 20% 837K 74s\n", + " 7800K .......... .......... .......... .......... .......... 20% 561K 74s\n", + " 7850K .......... .......... .......... .......... .......... 20% 1.32M 73s\n", + " 7900K .......... .......... .......... .......... .......... 20% 865K 73s\n", + " 7950K .......... .......... .......... .......... .......... 20% 571K 73s\n", + " 8000K .......... .......... .......... .......... .......... 20% 852K 72s\n", + " 8050K .......... .......... .......... .......... .......... 20% 881K 72s\n", + " 8100K .......... .......... .......... .......... .......... 20% 785K 72s\n", + " 8150K .......... .......... .......... .......... .......... 21% 797K 71s\n", + " 8200K .......... .......... .......... .......... .......... 21% 883K 71s\n", + " 8250K .......... .......... .......... .......... .......... 21% 778K 71s\n", + " 8300K .......... .......... .......... .......... .......... 21% 816K 70s\n", + " 8350K .......... .......... .......... .......... .......... 21% 850K 70s\n", + " 8400K .......... .......... .......... .......... .......... 21% 764K 70s\n", + " 8450K .......... .......... .......... .......... .......... 21% 765K 69s\n", + " 8500K .......... .......... .......... .......... .......... 21% 1.74M 69s\n", + " 8550K .......... .......... .......... .......... .......... 22% 518K 69s\n", + " 8600K .......... .......... .......... .......... .......... 22% 788K 69s\n", + " 8650K .......... .......... .......... .......... .......... 22% 1.60M 68s\n", + " 8700K .......... .......... .......... .......... .......... 22% 711K 68s\n", + " 8750K .......... .......... .......... .......... .......... 22% 193K 68s\n", + " 8800K .......... .......... .......... .......... .......... 22% 33.3K 73s\n", + " 8850K .......... .......... .......... .......... .......... 22% 550K 73s\n", + " 8900K .......... .......... .......... .......... .......... 23% 263K 73s\n", + " 8950K .......... .......... .......... .......... .......... 23% 289K 73s\n", + " 9000K .......... .......... .......... .......... .......... 23% 517K 73s\n", + " 9050K .......... .......... .......... .......... .......... 23% 50.3K 75s\n", + " 9100K .......... .......... .......... .......... .......... 23% 190K 76s\n", + " 9150K .......... .......... .......... .......... .......... 23% 518K 75s\n", + " 9200K .......... .......... .......... .......... .......... 23% 554K 75s\n", + " 9250K .......... .......... .......... .......... .......... 23% 287K 75s\n", + " 9300K .......... .......... .......... .......... .......... 24% 563K 75s\n", + " 9350K .......... .......... .......... .......... .......... 24% 547K 75s\n", + " 9400K .......... .......... .......... .......... .......... 24% 522K 74s\n", + " 9450K .......... .......... .......... .......... .......... 24% 572K 74s\n", + " 9500K .......... .......... .......... .......... .......... 24% 565K 74s\n", + " 9550K .......... .......... .......... .......... .......... 24% 535K 74s\n", + " 9600K .......... .......... .......... .......... .......... 24% 565K 74s\n", + " 9650K .......... .......... .......... .......... .......... 24% 557K 73s\n", + " 9700K .......... .......... .......... .......... .......... 25% 584K 73s\n", + " 9750K .......... .......... .......... .......... .......... 25% 519K 73s\n", + " 9800K .......... .......... .......... .......... .......... 25% 568K 73s\n", + " 9850K .......... .......... .......... .......... .......... 25% 591K 72s\n", + " 9900K .......... .......... .......... .......... .......... 25% 545K 72s\n", + " 9950K .......... .......... .......... .......... .......... 25% 547K 72s\n", + " 10000K .......... .......... .......... .......... .......... 25% 514K 72s\n", + " 10050K .......... .......... .......... .......... .......... 25% 548K 71s\n", + " 10100K .......... .......... .......... .......... .......... 26% 530K 71s\n", + " 10150K .......... .......... .......... .......... .......... 26% 520K 71s\n", + " 10200K .......... .......... .......... .......... .......... 26% 529K 71s\n", + " 10250K .......... .......... .......... .......... .......... 26% 574K 71s\n", + " 10300K .......... .......... .......... .......... .......... 26% 535K 70s\n", + " 10350K .......... .......... .......... .......... .......... 26% 500K 70s\n", + " 10400K .......... .......... .......... .......... .......... 26% 670K 70s\n", + " 10450K .......... .......... .......... .......... .......... 27% 621K 70s\n", + " 10500K .......... .......... .......... .......... .......... 27% 1.20M 69s\n", + " 10550K .......... .......... .......... .......... .......... 27% 544K 69s\n", + " 10600K .......... .......... .......... .......... .......... 27% 525K 69s\n", + " 10650K .......... .......... .......... .......... .......... 27% 577K 69s\n", + " 10700K .......... .......... .......... .......... .......... 27% 570K 69s\n", + " 10750K .......... .......... .......... .......... .......... 27% 571K 68s\n", + " 10800K .......... .......... .......... .......... .......... 27% 549K 68s\n", + " 10850K .......... .......... .......... .......... .......... 28% 642K 68s\n", + " 10900K .......... .......... .......... .......... .......... 28% 2.41M 68s\n", + " 10950K .......... .......... .......... .......... .......... 28% 539K 67s\n", + " 11000K .......... .......... .......... .......... .......... 28% 586K 67s\n", + " 11050K .......... .......... .......... .......... .......... 28% 551K 67s\n", + " 11100K .......... .......... .......... .......... .......... 28% 588K 67s\n", + " 11150K .......... .......... .......... .......... .......... 28% 581K 67s\n", + " 11200K .......... .......... .......... .......... .......... 28% 3.20M 66s\n", + " 11250K .......... .......... .......... .......... .......... 29% 600K 66s\n", + " 11300K .......... .......... .......... .......... .......... 29% 554K 66s\n", + " 11350K .......... .......... .......... .......... .......... 29% 563K 66s\n", + " 11400K .......... .......... .......... .......... .......... 29% 653K 65s\n", + " 11450K .......... .......... .......... .......... .......... 29% 1.80M 65s\n", + " 11500K .......... .......... .......... .......... .......... 29% 583K 65s\n", + " 11550K .......... .......... .......... .......... .......... 29% 597K 65s\n", + " 11600K .......... .......... .......... .......... .......... 29% 649K 64s\n", + " 11650K .......... .......... .......... .......... .......... 30% 851K 64s\n", + " 11700K .......... .......... .......... .......... .......... 30% 1.02M 64s\n", + " 11750K .......... .......... .......... .......... .......... 30% 571K 64s\n", + " 11800K .......... .......... .......... .......... .......... 30% 619K 63s\n", + " 11850K .......... .......... .......... .......... .......... 30% 797K 63s\n", + " 11900K .......... .......... .......... .......... .......... 30% 1.16M 63s\n", + " 11950K .......... .......... .......... .......... .......... 30% 606K 63s\n", + " 12000K .......... .......... .......... .......... .......... 30% 805K 63s\n", + " 12050K .......... .......... .......... .......... .......... 31% 1.46M 62s\n", + " 12100K .......... .......... .......... .......... .......... 31% 585K 62s\n", + " 12150K .......... .......... .......... .......... .......... 31% 610K 62s\n", + " 12200K .......... .......... .......... .......... .......... 31% 783K 62s\n", + " 12250K .......... .......... .......... .......... .......... 31% 879K 61s\n", + " 12300K .......... .......... .......... .......... .......... 31% 627K 61s\n", + " 12350K .......... .......... .......... .......... .......... 31% 971K 61s\n", + " 12400K .......... .......... .......... .......... .......... 32% 927K 61s\n", + " 12450K .......... .......... .......... .......... .......... 32% 618K 60s\n", + " 12500K .......... .......... .......... .......... .......... 32% 1.20M 60s\n", + " 12550K .......... .......... .......... .......... .......... 32% 840K 60s\n", + " 12600K .......... .......... .......... .......... .......... 32% 612K 60s\n", + " 12650K .......... .......... .......... .......... .......... 32% 994K 60s\n", + " 12700K .......... .......... .......... .......... .......... 32% 1015K 59s\n", + " 12750K .......... .......... .......... .......... .......... 32% 626K 59s\n", + " 12800K .......... .......... .......... .......... .......... 33% 1011K 59s\n", + " 12850K .......... .......... .......... .......... .......... 33% 774K 59s\n", + " 12900K .......... .......... .......... .......... .......... 33% 929K 58s\n", + " 12950K .......... .......... .......... .......... .......... 33% 1014K 58s\n", + " 13000K .......... .......... .......... .......... .......... 33% 656K 58s\n", + " 13050K .......... .......... .......... .......... .......... 33% 926K 58s\n", + " 13100K .......... .......... .......... .......... .......... 33% 1.18M 58s\n", + " 13150K .......... .......... .......... .......... .......... 33% 627K 57s\n", + " 13200K .......... .......... .......... .......... .......... 34% 2.04M 57s\n", + " 13250K .......... .......... .......... .......... .......... 34% 657K 57s\n", + " 13300K .......... .......... .......... .......... .......... 34% 1.06M 57s\n", + " 13350K .......... .......... .......... .......... .......... 34% 911K 56s\n", + " 13400K .......... .......... .......... .......... .......... 34% 747K 56s\n", + " 13450K .......... .......... .......... .......... .......... 34% 2.20M 56s\n", + " 13500K .......... .......... .......... .......... .......... 34% 571K 56s\n", + " 13550K .......... .......... .......... .......... .......... 34% 782K 56s\n", + " 13600K .......... .......... .......... .......... .......... 35% 1.69M 55s\n", + " 13650K .......... .......... .......... .......... .......... 35% 709K 55s\n", + " 13700K .......... .......... .......... .......... .......... 35% 1.50M 55s\n", + " 13750K .......... .......... .......... .......... .......... 35% 691K 55s\n", + " 13800K .......... .......... .......... .......... .......... 35% 849K 55s\n", + " 13850K .......... .......... .......... .......... .......... 35% 1.23M 54s\n", + " 13900K .......... .......... .......... .......... .......... 35% 791K 54s\n", + " 13950K .......... .......... .......... .......... .......... 36% 251K 54s\n", + " 14000K .......... .......... .......... .......... .......... 36% 2.03M 54s\n", + " 14050K .......... .......... .......... .......... .......... 36% 547K 54s\n", + " 14100K .......... .......... .......... .......... .......... 36% 744K 54s\n", + " 14150K .......... .......... .......... .......... .......... 36% 306K 54s\n", + " 14200K .......... .......... .......... .......... .......... 36% 659K 53s\n", + " 14250K .......... .......... .......... .......... .......... 36% 1.47M 53s\n", + " 14300K .......... .......... .......... .......... .......... 36% 581K 53s\n", + " 14350K .......... .......... .......... .......... .......... 37% 471K 53s\n", + " 14400K .......... .......... .......... .......... .......... 37% 588K 53s\n", + " 14450K .......... .......... .......... .......... .......... 37% 628K 53s\n", + " 14500K .......... .......... .......... .......... .......... 37% 538K 53s\n", + " 14550K .......... .......... .......... .......... .......... 37% 554K 52s\n", + " 14600K .......... .......... .......... .......... .......... 37% 110K 53s\n", + " 14650K .......... .......... .......... .......... .......... 37% 72.2K 54s\n", + " 14700K .......... .......... .......... .......... .......... 37% 185K 54s\n", + " 14750K .......... .......... .......... .......... .......... 38% 537K 54s\n", + " 14800K .......... .......... .......... .......... .......... 38% 530K 54s\n", + " 14850K .......... .......... .......... .......... .......... 38% 174K 54s\n", + " 14900K .......... .......... .......... .......... .......... 38% 277K 54s\n", + " 14950K .......... .......... .......... .......... .......... 38% 276K 54s\n", + " 15000K .......... .......... .......... .......... .......... 38% 279K 54s\n", + " 15050K .......... .......... .......... .......... .......... 38% 532K 54s\n", + " 15100K .......... .......... .......... .......... .......... 38% 54.4K 55s\n", + " 15150K .......... .......... .......... .......... .......... 39% 183K 55s\n", + " 15200K .......... .......... .......... .......... .......... 39% 284K 55s\n", + " 15250K .......... .......... .......... .......... .......... 39% 284K 55s\n", + " 15300K .......... .......... .......... .......... .......... 39% 271K 55s\n", + " 15350K .......... .......... .......... .......... .......... 39% 278K 55s\n", + " 15400K .......... .......... .......... .......... .......... 39% 300K 55s\n", + " 15450K .......... .......... .......... .......... .......... 39% 483K 55s\n", + " 15500K .......... .......... .......... .......... .......... 39% 276K 55s\n", + " 15550K .......... .......... .......... .......... .......... 40% 292K 55s\n", + " 15600K .......... .......... .......... .......... .......... 40% 324K 54s\n", + " 15650K .......... .......... .......... .......... .......... 40% 393K 54s\n", + " 15700K .......... .......... .......... .......... .......... 40% 329K 54s\n", + " 15750K .......... .......... .......... .......... .......... 40% 385K 54s\n", + " 15800K .......... .......... .......... .......... .......... 40% 311K 54s\n", + " 15850K .......... .......... .......... .......... .......... 40% 65.9K 55s\n", + " 15900K .......... .......... .......... .......... .......... 41% 274K 55s\n", + " 15950K .......... .......... .......... .......... .......... 41% 190K 55s\n", + " 16000K .......... .......... .......... .......... .......... 41% 279K 55s\n", + " 16050K .......... .......... .......... .......... .......... 41% 488K 55s\n", + " 16100K .......... .......... .......... .......... .......... 41% 272K 55s\n", + " 16150K .......... .......... .......... .......... .......... 41% 281K 55s\n", + " 16200K .......... .......... .......... .......... .......... 41% 286K 55s\n", + " 16250K .......... .......... .......... .......... .......... 41% 433K 55s\n", + " 16300K .......... .......... .......... .......... .......... 42% 293K 55s\n", + " 16350K .......... .......... .......... .......... .......... 42% 274K 55s\n", + " 16400K .......... .......... .......... .......... .......... 42% 344K 54s\n", + " 16450K .......... .......... .......... .......... .......... 42% 447K 54s\n", + " 16500K .......... .......... .......... .......... .......... 42% 310K 54s\n", + " 16550K .......... .......... .......... .......... .......... 42% 439K 54s\n", + " 16600K .......... .......... .......... .......... .......... 42% 335K 54s\n", + " 16650K .......... .......... .......... .......... .......... 42% 417K 54s\n", + " 16700K .......... .......... .......... .......... .......... 43% 450K 54s\n", + " 16750K .......... .......... .......... .......... .......... 43% 338K 54s\n", + " 16800K .......... .......... .......... .......... .......... 43% 547K 54s\n", + " 16850K .......... .......... .......... .......... .......... 43% 404K 53s\n", + " 16900K .......... .......... .......... .......... .......... 43% 412K 53s\n", + " 16950K .......... .......... .......... .......... .......... 43% 450K 53s\n", + " 17000K .......... .......... .......... .......... .......... 43% 445K 53s\n", + " 17050K .......... .......... .......... .......... .......... 43% 339K 53s\n", + " 17100K .......... .......... .......... .......... .......... 44% 447K 53s\n", + " 17150K .......... .......... .......... .......... .......... 44% 494K 53s\n", + " 17200K .......... .......... .......... .......... .......... 44% 486K 52s\n", + " 17250K .......... .......... .......... .......... .......... 44% 336K 52s\n", + " 17300K .......... .......... .......... .......... .......... 44% 544K 52s\n", + " 17350K .......... .......... .......... .......... .......... 44% 529K 52s\n", + " 17400K .......... .......... .......... .......... .......... 44% 518K 52s\n", + " 17450K .......... .......... .......... .......... .......... 45% 191K 52s\n", + " 17500K .......... .......... .......... .......... .......... 45% 49.8K 53s\n", + " 17550K .......... .......... .......... .......... .......... 45% 136K 53s\n", + " 17600K .......... .......... .......... .......... .......... 45% 274K 53s\n", + " 17650K .......... .......... .......... .......... .......... 45% 282K 53s\n", + " 17700K .......... .......... .......... .......... .......... 45% 282K 53s\n", + " 17750K .......... .......... .......... .......... .......... 45% 259K 53s\n", + " 17800K .......... .......... .......... .......... .......... 45% 146K 53s\n", + " 17850K .......... .......... .......... .......... .......... 46% 272K 53s\n", + " 17900K .......... .......... .......... .......... .......... 46% 141K 53s\n", + " 17950K .......... .......... .......... .......... .......... 46% 106K 53s\n", + " 18000K .......... .......... .......... .......... .......... 46% 174K 53s\n", + " 18050K .......... .......... .......... .......... .......... 46% 185K 53s\n", + " 18100K .......... .......... .......... .......... .......... 46% 179K 54s\n", + " 18150K .......... .......... .......... .......... .......... 46% 189K 54s\n", + " 18200K .......... .......... .......... .......... .......... 46% 189K 54s\n", + " 18250K .......... .......... .......... .......... .......... 47% 272K 53s\n", + " 18300K .......... .......... .......... .......... .......... 47% 282K 53s\n", + " 18350K .......... .......... .......... .......... .......... 47% 189K 53s\n", + " 18400K .......... .......... .......... .......... .......... 47% 276K 53s\n", + " 18450K .......... .......... .......... .......... .......... 47% 271K 53s\n", + " 18500K .......... .......... .......... .......... .......... 47% 282K 53s\n", + " 18550K .......... .......... .......... .......... .......... 47% 272K 53s\n", + " 18600K .......... .......... .......... .......... .......... 47% 275K 53s\n", + " 18650K .......... .......... .......... .......... .......... 48% 294K 53s\n", + " 18700K .......... .......... .......... .......... .......... 48% 292K 53s\n", + " 18750K .......... .......... .......... .......... .......... 48% 285K 53s\n", + " 18800K .......... .......... .......... .......... .......... 48% 321K 53s\n", + " 18850K .......... .......... .......... .......... .......... 48% 414K 53s\n", + " 18900K .......... .......... .......... .......... .......... 48% 292K 52s\n", + " 18950K .......... .......... .......... .......... .......... 48% 342K 52s\n", + " 19000K .......... .......... .......... .......... .......... 48% 405K 52s\n", + " 19050K .......... .......... .......... .......... .......... 49% 349K 52s\n", + " 19100K .......... .......... .......... .......... .......... 49% 396K 52s\n", + " 19150K .......... .......... .......... .......... .......... 49% 358K 52s\n", + " 19200K .......... .......... .......... .......... .......... 49% 380K 52s\n", + " 19250K .......... .......... .......... .......... .......... 49% 423K 52s\n", + " 19300K .......... .......... .......... .......... .......... 49% 345K 51s\n", + " 19350K .......... .......... .......... .......... .......... 49% 386K 51s\n", + " 19400K .......... .......... .......... .......... .......... 50% 356K 51s\n", + " 19450K .......... .......... .......... .......... .......... 50% 512K 51s\n", + " 19500K .......... .......... .......... .......... .......... 50% 446K 51s\n", + " 19550K .......... .......... .......... .......... .......... 50% 320K 51s\n", + " 19600K .......... .......... .......... .......... .......... 50% 523K 51s\n", + " 19650K .......... .......... .......... .......... .......... 50% 459K 50s\n", + " 19700K .......... .......... .......... .......... .......... 50% 481K 50s\n", + " 19750K .......... .......... .......... .......... .......... 50% 345K 50s\n", + " 19800K .......... .......... .......... .......... .......... 51% 567K 50s\n", + " 19850K .......... .......... .......... .......... .......... 51% 420K 50s\n", + " 19900K .......... .......... .......... .......... .......... 51% 544K 50s\n", + " 19950K .......... .......... .......... .......... .......... 51% 511K 49s\n", + " 20000K .......... .......... .......... .......... .......... 51% 375K 49s\n", + " 20050K .......... .......... .......... .......... .......... 51% 477K 49s\n", + " 20100K .......... .......... .......... .......... .......... 51% 530K 49s\n", + " 20150K .......... .......... .......... .......... .......... 51% 434K 49s\n", + " 20200K .......... .......... .......... .......... .......... 52% 548K 49s\n", + " 20250K .......... .......... .......... .......... .......... 52% 529K 49s\n", + " 20300K .......... .......... .......... .......... .......... 52% 571K 48s\n", + " 20350K .......... .......... .......... .......... .......... 52% 549K 48s\n", + " 20400K .......... .......... .......... .......... .......... 52% 460K 48s\n", + " 20450K .......... .......... .......... .......... .......... 52% 604K 48s\n", + " 20500K .......... .......... .......... .......... .......... 52% 538K 48s\n", + " 20550K .......... .......... .......... .......... .......... 52% 361K 48s\n", + " 20600K .......... .......... .......... .......... .......... 53% 740K 47s\n", + " 20650K .......... .......... .......... .......... .......... 53% 579K 47s\n", + " 20700K .......... .......... .......... .......... .......... 53% 566K 47s\n", + " 20750K .......... .......... .......... .......... .......... 53% 351K 47s\n", + " 20800K .......... .......... .......... .......... .......... 53% 64.2K 47s\n", + " 20850K .......... .......... .......... .......... .......... 53% 269K 47s\n", + " 20900K .......... .......... .......... .......... .......... 53% 283K 47s\n", + " 20950K .......... .......... .......... .......... .......... 54% 506K 47s\n", + " 21000K .......... .......... .......... .......... .......... 54% 536K 47s\n", + " 21050K .......... .......... .......... .......... .......... 54% 292K 47s\n", + " 21100K .......... .......... .......... .......... .......... 54% 543K 47s\n", + " 21150K .......... .......... .......... .......... .......... 54% 519K 46s\n", + " 21200K .......... .......... .......... .......... .......... 54% 538K 46s\n", + " 21250K .......... .......... .......... .......... .......... 54% 302K 46s\n", + " 21300K .......... .......... .......... .......... .......... 54% 516K 46s\n", + " 21350K .......... .......... .......... .......... .......... 55% 433K 46s\n", + " 21400K .......... .......... .......... .......... .......... 55% 505K 46s\n", + " 21450K .......... .......... .......... .......... .......... 55% 462K 46s\n", + " 21500K .......... .......... .......... .......... .......... 55% 454K 45s\n", + " 21550K .......... .......... .......... .......... .......... 55% 415K 45s\n", + " 21600K .......... .......... .......... .......... .......... 55% 512K 45s\n", + " 21650K .......... .......... .......... .......... .......... 55% 568K 45s\n", + " 21700K .......... .......... .......... .......... .......... 55% 541K 45s\n", + " 21750K .......... .......... .......... .......... .......... 56% 455K 45s\n", + " 21800K .......... .......... .......... .......... .......... 56% 469K 45s\n", + " 21850K .......... .......... .......... .......... .......... 56% 515K 44s\n", + " 21900K .......... .......... .......... .......... .......... 56% 581K 44s\n", + " 21950K .......... .......... .......... .......... .......... 56% 459K 44s\n", + " 22000K .......... .......... .......... .......... .......... 56% 559K 44s\n", + " 22050K .......... .......... .......... .......... .......... 56% 556K 44s\n", + " 22100K .......... .......... .......... .......... .......... 56% 569K 44s\n", + " 22150K .......... .......... .......... .......... .......... 57% 479K 43s\n", + " 22200K .......... .......... .......... .......... .......... 57% 550K 43s\n", + " 22250K .......... .......... .......... .......... .......... 57% 700K 43s\n", + " 22300K .......... .......... .......... .......... .......... 57% 568K 43s\n", + " 22350K .......... .......... .......... .......... .......... 57% 473K 43s\n", + " 22400K .......... .......... .......... .......... .......... 57% 569K 43s\n", + " 22450K .......... .......... .......... .......... .......... 57% 659K 42s\n", + " 22500K .......... .......... .......... .......... .......... 57% 535K 42s\n", + " 22550K .......... .......... .......... .......... .......... 58% 565K 42s\n", + " 22600K .......... .......... .......... .......... .......... 58% 558K 42s\n", + " 22650K .......... .......... .......... .......... .......... 58% 842K 42s\n", + " 22700K .......... .......... .......... .......... .......... 58% 744K 42s\n", + " 22750K .......... .......... .......... .......... .......... 58% 560K 41s\n", + " 22800K .......... .......... .......... .......... .......... 58% 578K 41s\n", + " 22850K .......... .......... .......... .......... .......... 58% 561K 41s\n", + " 22900K .......... .......... .......... .......... .......... 59% 558K 41s\n", + " 22950K .......... .......... .......... .......... .......... 59% 600K 41s\n", + " 23000K .......... .......... .......... .......... .......... 59% 709K 41s\n", + " 23050K .......... .......... .......... .......... .......... 59% 584K 41s\n", + " 23100K .......... .......... .......... .......... .......... 59% 969K 40s\n", + " 23150K .......... .......... .......... .......... .......... 59% 795K 40s\n", + " 23200K .......... .......... .......... .......... .......... 59% 577K 40s\n", + " 23250K .......... .......... .......... .......... .......... 59% 692K 40s\n", + " 23300K .......... .......... .......... .......... .......... 60% 614K 40s\n", + " 23350K .......... .......... .......... .......... .......... 60% 599K 40s\n", + " 23400K .......... .......... .......... .......... .......... 60% 1.36M 39s\n", + " 23450K .......... .......... .......... .......... .......... 60% 583K 39s\n", + " 23500K .......... .......... .......... .......... .......... 60% 629K 39s\n", + " 23550K .......... .......... .......... .......... .......... 60% 686K 39s\n", + " 23600K .......... .......... .......... .......... .......... 60% 699K 39s\n", + " 23650K .......... .......... .......... .......... .......... 60% 1.16M 39s\n", + " 23700K .......... .......... .......... .......... .......... 61% 606K 38s\n", + " 23750K .......... .......... .......... .......... .......... 61% 580K 38s\n", + " 23800K .......... .......... .......... .......... .......... 61% 752K 38s\n", + " 23850K .......... .......... .......... .......... .......... 61% 1.37M 38s\n", + " 23900K .......... .......... .......... .......... .......... 61% 589K 38s\n", + " 23950K .......... .......... .......... .......... .......... 61% 629K 38s\n", + " 24000K .......... .......... .......... .......... .......... 61% 936K 37s\n", + " 24050K .......... .......... .......... .......... .......... 61% 733K 37s\n", + " 24100K .......... .......... .......... .......... .......... 62% 802K 37s\n", + " 24150K .......... .......... .......... .......... .......... 62% 764K 37s\n", + " 24200K .......... .......... .......... .......... .......... 62% 857K 37s\n", + " 24250K .......... .......... .......... .......... .......... 62% 806K 37s\n", + " 24300K .......... .......... .......... .......... .......... 62% 902K 36s\n", + " 24350K .......... .......... .......... .......... .......... 62% 682K 36s\n", + " 24400K .......... .......... .......... .......... .......... 62% 1014K 36s\n", + " 24450K .......... .......... .......... .......... .......... 63% 826K 36s\n", + " 24500K .......... .......... .......... .......... .......... 63% 755K 36s\n", + " 24550K .......... .......... .......... .......... .......... 63% 871K 36s\n", + " 24600K .......... .......... .......... .......... .......... 63% 781K 35s\n", + " 24650K .......... .......... .......... .......... .......... 63% 562K 35s\n", + " 24700K .......... .......... .......... .......... .......... 63% 1.80M 35s\n", + " 24750K .......... .......... .......... .......... .......... 63% 726K 35s\n", + " 24800K .......... .......... .......... .......... .......... 63% 638K 35s\n", + " 24850K .......... .......... .......... .......... .......... 64% 1.38M 35s\n", + " 24900K .......... .......... .......... .......... .......... 64% 713K 34s\n", + " 24950K .......... .......... .......... .......... .......... 64% 1.09M 34s\n", + " 25000K .......... .......... .......... .......... .......... 64% 845K 34s\n", + " 25050K .......... .......... .......... .......... .......... 64% 667K 34s\n", + " 25100K .......... .......... .......... .......... .......... 64% 1.91M 34s\n", + " 25150K .......... .......... .......... .......... .......... 64% 660K 34s\n", + " 25200K .......... .......... .......... .......... .......... 64% 835K 34s\n", + " 25250K .......... .......... .......... .......... .......... 65% 1.05M 33s\n", + " 25300K .......... .......... .......... .......... .......... 65% 744K 33s\n", + " 25350K .......... .......... .......... .......... .......... 65% 1.11M 33s\n", + " 25400K .......... .......... .......... .......... .......... 65% 835K 33s\n", + " 25450K .......... .......... .......... .......... .......... 65% 826K 33s\n", + " 25500K .......... .......... .......... .......... .......... 65% 1.33M 33s\n", + " 25550K .......... .......... .......... .......... .......... 65% 638K 32s\n", + " 25600K .......... .......... .......... .......... .......... 65% 1.37M 32s\n", + " 25650K .......... .......... .......... .......... .......... 66% 828K 32s\n", + " 25700K .......... .......... .......... .......... .......... 66% 894K 32s\n", + " 25750K .......... .......... .......... .......... .......... 66% 1017K 32s\n", + " 25800K .......... .......... .......... .......... .......... 66% 765K 32s\n", + " 25850K .......... .......... .......... .......... .......... 66% 1.56M 31s\n", + " 25900K .......... .......... .......... .......... .......... 66% 748K 31s\n", + " 25950K .......... .......... .......... .......... .......... 66% 783K 31s\n", + " 26000K .......... .......... .......... .......... .......... 66% 792K 31s\n", + " 26050K .......... .......... .......... .......... .......... 67% 1.14M 31s\n", + " 26100K .......... .......... .......... .......... .......... 67% 1014K 31s\n", + " 26150K .......... .......... .......... .......... .......... 67% 769K 31s\n", + " 26200K .......... .......... .......... .......... .......... 67% 840K 30s\n", + " 26250K .......... .......... .......... .......... .......... 67% 118K 30s\n", + " 26300K .......... .......... .......... .......... .......... 67% 110M 30s\n", + " 26350K .......... .......... .......... .......... .......... 67% 483K 30s\n", + " 26400K .......... .......... .......... .......... .......... 68% 515K 30s\n", + " 26450K .......... .......... .......... .......... .......... 68% 577K 30s\n", + " 26500K .......... .......... .......... .......... .......... 68% 579K 30s\n", + " 26550K .......... .......... .......... .......... .......... 68% 486K 30s\n", + " 26600K .......... .......... .......... .......... .......... 68% 626K 29s\n", + " 26650K .......... .......... .......... .......... .......... 68% 1.64M 29s\n", + " 26700K .......... .......... .......... .......... .......... 68% 203K 29s\n", + " 26750K .......... .......... .......... .......... .......... 68% 264K 29s\n", + " 26800K .......... .......... .......... .......... .......... 69% 270K 29s\n", + " 26850K .......... .......... .......... .......... .......... 69% 265K 29s\n", + " 26900K .......... .......... .......... .......... .......... 69% 270K 29s\n", + " 26950K .......... .......... .......... .......... .......... 69% 272K 29s\n", + " 27000K .......... .......... .......... .......... .......... 69% 518K 29s\n", + " 27050K .......... .......... .......... .......... .......... 69% 255K 29s\n", + " 27100K .......... .......... .......... .......... .......... 69% 284K 28s\n", + " 27150K .......... .......... .......... .......... .......... 69% 319K 28s\n", + " 27200K .......... .......... .......... .......... .......... 70% 407K 28s\n", + " 27250K .......... .......... .......... .......... .......... 70% 316K 28s\n", + " 27300K .......... .......... .......... .......... .......... 70% 323K 28s\n", + " 27350K .......... .......... .......... .......... .......... 70% 408K 28s\n", + " 27400K .......... .......... .......... .......... .......... 70% 300K 28s\n", + " 27450K .......... .......... .......... .......... .......... 70% 503K 28s\n", + " 27500K .......... .......... .......... .......... .......... 70% 135K 28s\n", + " 27550K .......... .......... .......... .......... .......... 70% 182K 28s\n", + " 27600K .......... .......... .......... .......... .......... 71% 187K 28s\n", + " 27650K .......... .......... .......... .......... .......... 71% 261K 27s\n", + " 27700K .......... .......... .......... .......... .......... 71% 206K 27s\n", + " 27750K .......... .......... .......... .......... .......... 71% 245K 27s\n", + " 27800K .......... .......... .......... .......... .......... 71% 275K 27s\n", + " 27850K .......... .......... .......... .......... .......... 71% 279K 27s\n", + " 27900K .......... .......... .......... .......... .......... 71% 278K 27s\n", + " 27950K .......... .......... .......... .......... .......... 72% 261K 27s\n", + " 28000K .......... .......... .......... .......... .......... 72% 297K 27s\n", + " 28050K .......... .......... .......... .......... .......... 72% 299K 27s\n", + " 28100K .......... .......... .......... .......... .......... 72% 434K 27s\n", + " 28150K .......... .......... .......... .......... .......... 72% 281K 26s\n", + " 28200K .......... .......... .......... .......... .......... 72% 321K 26s\n", + " 28250K .......... .......... .......... .......... .......... 72% 355K 26s\n", + " 28300K .......... .......... .......... .......... .......... 72% 367K 26s\n", + " 28350K .......... .......... .......... .......... .......... 73% 291K 26s\n", + " 28400K .......... .......... .......... .......... .......... 73% 520K 26s\n", + " 28450K .......... .......... .......... .......... .......... 73% 302K 26s\n", + " 28500K .......... .......... .......... .......... .......... 73% 518K 26s\n", + " 28550K .......... .......... .......... .......... .......... 73% 291K 25s\n", + " 28600K .......... .......... .......... .......... .......... 73% 515K 25s\n", + " 28650K .......... .......... .......... .......... .......... 73% 333K 25s\n", + " 28700K .......... .......... .......... .......... .......... 73% 455K 25s\n", + " 28750K .......... .......... .......... .......... .......... 74% 332K 25s\n", + " 28800K .......... .......... .......... .......... .......... 74% 465K 25s\n", + " 28850K .......... .......... .......... .......... .......... 74% 435K 25s\n", + " 28900K .......... .......... .......... .......... .......... 74% 551K 25s\n", + " 28950K .......... .......... .......... .......... .......... 74% 338K 24s\n", + " 29000K .......... .......... .......... .......... .......... 74% 421K 24s\n", + " 29050K .......... .......... .......... .......... .......... 74% 471K 24s\n", + " 29100K .......... .......... .......... .......... .......... 74% 502K 24s\n", + " 29150K .......... .......... .......... .......... .......... 75% 349K 24s\n", + " 29200K .......... .......... .......... .......... .......... 75% 466K 24s\n", + " 29250K .......... .......... .......... .......... .......... 75% 513K 24s\n", + " 29300K .......... .......... .......... .......... .......... 75% 510K 24s\n", + " 29350K .......... .......... .......... .......... .......... 75% 415K 23s\n", + " 29400K .......... .......... .......... .......... .......... 75% 474K 23s\n", + " 29450K .......... .......... .......... .......... .......... 75% 541K 23s\n", + " 29500K .......... .......... .......... .......... .......... 76% 539K 23s\n", + " 29550K .......... .......... .......... .......... .......... 76% 405K 23s\n", + " 29600K .......... .......... .......... .......... .......... 76% 569K 23s\n", + " 29650K .......... .......... .......... .......... .......... 76% 535K 23s\n", + " 29700K .......... .......... .......... .......... .......... 76% 533K 23s\n", + " 29750K .......... .......... .......... .......... .......... 76% 533K 22s\n", + " 29800K .......... .......... .......... .......... .......... 76% 511K 22s\n", + " 29850K .......... .......... .......... .......... .......... 76% 522K 22s\n", + " 29900K .......... .......... .......... .......... .......... 77% 537K 22s\n", + " 29950K .......... .......... .......... .......... .......... 77% 523K 22s\n", + " 30000K .......... .......... .......... .......... .......... 77% 233K 22s\n", + " 30050K .......... .......... .......... .......... .......... 77% 273K 22s\n", + " 30100K .......... .......... .......... .......... .......... 77% 288K 22s\n", + " 30150K .......... .......... .......... .......... .......... 77% 266K 21s\n", + " 30200K .......... .......... .......... .......... .......... 77% 435K 21s\n", + " 30250K .......... .......... .......... .......... .......... 77% 276K 21s\n", + " 30300K .......... .......... .......... .......... .......... 78% 280K 21s\n", + " 30350K .......... .......... .......... .......... .......... 78% 275K 21s\n", + " 30400K .......... .......... .......... .......... .......... 78% 522K 21s\n", + " 30450K .......... .......... .......... .......... .......... 78% 289K 21s\n", + " 30500K .......... .......... .......... .......... .......... 78% 331K 21s\n", + " 30550K .......... .......... .......... .......... .......... 78% 412K 21s\n", + " 30600K .......... .......... .......... .......... .......... 78% 269K 20s\n", + " 30650K .......... .......... .......... .......... .......... 78% 492K 20s\n", + " 30700K .......... .......... .......... .......... .......... 79% 337K 20s\n", + " 30750K .......... .......... .......... .......... .......... 79% 420K 20s\n", + " 30800K .......... .......... .......... .......... .......... 79% 331K 20s\n", + " 30850K .......... .......... .......... .......... .......... 79% 457K 20s\n", + " 30900K .......... .......... .......... .......... .......... 79% 409K 20s\n", + " 30950K .......... .......... .......... .......... .......... 79% 344K 20s\n", + " 31000K .......... .......... .......... .......... .......... 79% 394K 19s\n", + " 31050K .......... .......... .......... .......... .......... 79% 560K 19s\n", + " 31100K .......... .......... .......... .......... .......... 80% 344K 19s\n", + " 31150K .......... .......... .......... .......... .......... 80% 414K 19s\n", + " 31200K .......... .......... .......... .......... .......... 80% 537K 19s\n", + " 31250K .......... .......... .......... .......... .......... 80% 351K 19s\n", + " 31300K .......... .......... .......... .......... .......... 80% 483K 19s\n", + " 31350K .......... .......... .......... .......... .......... 80% 405K 19s\n", + " 31400K .......... .......... .......... .......... .......... 80% 549K 18s\n", + " 31450K .......... .......... .......... .......... .......... 81% 546K 18s\n", + " 31500K .......... .......... .......... .......... .......... 81% 353K 18s\n", + " 31550K .......... .......... .......... .......... .......... 81% 475K 18s\n", + " 31600K .......... .......... .......... .......... .......... 81% 451K 18s\n", + " 31650K .......... .......... .......... .......... .......... 81% 571K 18s\n", + " 31700K .......... .......... .......... .......... .......... 81% 449K 18s\n", + " 31750K .......... .......... .......... .......... .......... 81% 431K 18s\n", + " 31800K .......... .......... .......... .......... .......... 81% 513K 17s\n", + " 31850K .......... .......... .......... .......... .......... 82% 539K 17s\n", + " 31900K .......... .......... .......... .......... .......... 82% 560K 17s\n", + " 31950K .......... .......... .......... .......... .......... 82% 420K 17s\n", + " 32000K .......... .......... .......... .......... .......... 82% 484K 17s\n", + " 32050K .......... .......... .......... .......... .......... 82% 541K 17s\n", + " 32100K .......... .......... .......... .......... .......... 82% 271K 17s\n", + " 32150K .......... .......... .......... .......... .......... 82% 502K 17s\n", + " 32200K .......... .......... .......... .......... .......... 82% 342K 16s\n", + " 32250K .......... .......... .......... .......... .......... 83% 388K 16s\n", + " 32300K .......... .......... .......... .......... .......... 83% 491K 16s\n", + " 32350K .......... .......... .......... .......... .......... 83% 277K 16s\n", + " 32400K .......... .......... .......... .......... .......... 83% 549K 16s\n", + " 32450K .......... .......... .......... .......... .......... 83% 569K 16s\n", + " 32500K .......... .......... .......... .......... .......... 83% 311K 16s\n", + " 32550K .......... .......... .......... .......... .......... 83% 430K 16s\n", + " 32600K .......... .......... .......... .......... .......... 83% 586K 15s\n", + " 32650K .......... .......... .......... .......... .......... 84% 337K 15s\n", + " 32700K .......... .......... .......... .......... .......... 84% 429K 15s\n", + " 32750K .......... .......... .......... .......... .......... 84% 493K 15s\n", + " 32800K .......... .......... .......... .......... .......... 84% 456K 15s\n", + " 32850K .......... .......... .......... .......... .......... 84% 424K 15s\n", + " 32900K .......... .......... .......... .......... .......... 84% 491K 15s\n", + " 32950K .......... .......... .......... .......... .......... 84% 332K 15s\n", + " 33000K .......... .......... .......... .......... .......... 85% 560K 14s\n", + " 33050K .......... .......... .......... .......... .......... 85% 563K 14s\n", + " 33100K .......... .......... .......... .......... .......... 85% 550K 14s\n", + " 33150K .......... .......... .......... .......... .......... 85% 297K 14s\n", + " 33200K .......... .......... .......... .......... .......... 85% 490K 14s\n", + " 33250K .......... .......... .......... .......... .......... 85% 508K 14s\n", + " 33300K .......... .......... .......... .......... .......... 85% 503K 14s\n", + " 33350K .......... .......... .......... .......... .......... 85% 569K 14s\n", + " 33400K .......... .......... .......... .......... .......... 86% 179K 13s\n", + " 33450K .......... .......... .......... .......... .......... 86% 281K 13s\n", + " 33500K .......... .......... .......... .......... .......... 86% 275K 13s\n", + " 33550K .......... .......... .......... .......... .......... 86% 245K 13s\n", + " 33600K .......... .......... .......... .......... .......... 86% 113K 13s\n", + " 33650K .......... .......... .......... .......... .......... 86% 271K 13s\n", + " 33700K .......... .......... .......... .......... .......... 86% 142K 13s\n", + " 33750K .......... .......... .......... .......... .......... 86% 170K 13s\n", + " 33800K .......... .......... .......... .......... .......... 87% 187K 13s\n", + " 33850K .......... .......... .......... .......... .......... 87% 203K 12s\n", + " 33900K .......... .......... .......... .......... .......... 87% 248K 12s\n", + " 33950K .......... .......... .......... .......... .......... 87% 191K 12s\n", + " 34000K .......... .......... .......... .......... .......... 87% 274K 12s\n", + " 34050K .......... .......... .......... .......... .......... 87% 267K 12s\n", + " 34100K .......... .......... .......... .......... .......... 87% 274K 12s\n", + " 34150K .......... .......... .......... .......... .......... 87% 183K 12s\n", + " 34200K .......... .......... .......... .......... .......... 88% 282K 12s\n", + " 34250K .......... .......... .......... .......... .......... 88% 385K 12s\n", + " 34300K .......... .......... .......... .......... .......... 88% 283K 11s\n", + " 34350K .......... .......... .......... .......... .......... 88% 207K 11s\n", + " 34400K .......... .......... .......... .......... .......... 88% 407K 11s\n", + " 34450K .......... .......... .......... .......... .......... 88% 316K 11s\n", + " 34500K .......... .......... .......... .......... .......... 88% 289K 11s\n", + " 34550K .......... .......... .......... .......... .......... 88% 294K 11s\n", + " 34600K .......... .......... .......... .......... .......... 89% 331K 11s\n", + " 34650K .......... .......... .......... .......... .......... 89% 344K 11s\n", + " 34700K .......... .......... .......... .......... .......... 89% 392K 10s\n", + " 34750K .......... .......... .......... .......... .......... 89% 260K 10s\n", + " 34800K .......... .......... .......... .......... .......... 89% 412K 10s\n", + " 34850K .......... .......... .......... .......... .......... 89% 356K 10s\n", + " 34900K .......... .......... .......... .......... .......... 89% 380K 10s\n", + " 34950K .......... .......... .......... .......... .......... 90% 361K 10s\n", + " 35000K .......... .......... .......... .......... .......... 90% 321K 10s\n", + " 35050K .......... .......... .......... .......... .......... 90% 548K 10s\n", + " 35100K .......... .......... .......... .......... .......... 90% 417K 9s\n", + " 35150K .......... .......... .......... .......... .......... 90% 307K 9s\n", + " 35200K .......... .......... .......... .......... .......... 90% 520K 9s\n", + " 35250K .......... .......... .......... .......... .......... 90% 299K 9s\n", + " 35300K .......... .......... .......... .......... .......... 90% 532K 9s\n", + " 35350K .......... .......... .......... .......... .......... 91% 408K 9s\n", + " 35400K .......... .......... .......... .......... .......... 91% 339K 9s\n", + " 35450K .......... .......... .......... .......... .......... 91% 525K 9s\n", + " 35500K .......... .......... .......... .......... .......... 91% 540K 8s\n", + " 35550K .......... .......... .......... .......... .......... 91% 383K 8s\n", + " 35600K .......... .......... .......... .......... .......... 91% 364K 8s\n", + " 35650K .......... .......... .......... .......... .......... 91% 499K 8s\n", + " 35700K .......... .......... .......... .......... .......... 91% 554K 8s\n", + " 35750K .......... .......... .......... .......... .......... 92% 534K 8s\n", + " 35800K .......... .......... .......... .......... .......... 92% 520K 8s\n", + " 35850K .......... .......... .......... .......... .......... 92% 408K 8s\n", + " 35900K .......... .......... .......... .......... .......... 92% 366K 7s\n", + " 35950K .......... .......... .......... .......... .......... 92% 538K 7s\n", + " 36000K .......... .......... .......... .......... .......... 92% 545K 7s\n", + " 36050K .......... .......... .......... .......... .......... 92% 534K 7s\n", + " 36100K .......... .......... .......... .......... .......... 92% 526K 7s\n", + " 36150K .......... .......... .......... .......... .......... 93% 455K 7s\n", + " 36200K .......... .......... .......... .......... .......... 93% 568K 7s\n", + " 36250K .......... .......... .......... .......... .......... 93% 312K 7s\n", + " 36300K .......... .......... .......... .......... .......... 93% 563K 6s\n", + " 36350K .......... .......... .......... .......... .......... 93% 515K 6s\n", + " 36400K .......... .......... .......... .......... .......... 93% 556K 6s\n", + " 36450K .......... .......... .......... .......... .......... 93% 570K 6s\n", + " 36500K .......... .......... .......... .......... .......... 94% 552K 6s\n", + " 36550K .......... .......... .......... .......... .......... 94% 460K 6s\n", + " 36600K .......... .......... .......... .......... .......... 94% 567K 6s\n", + " 36650K .......... .......... .......... .......... .......... 94% 564K 5s\n", + " 36700K .......... .......... .......... .......... .......... 94% 548K 5s\n", + " 36750K .......... .......... .......... .......... .......... 94% 522K 5s\n", + " 36800K .......... .......... .......... .......... .......... 94% 546K 5s\n", + " 36850K .......... .......... .......... .......... .......... 94% 570K 5s\n", + " 36900K .......... .......... .......... .......... .......... 95% 590K 5s\n", + " 36950K .......... .......... .......... .......... .......... 95% 507K 5s\n", + " 37000K .......... .......... .......... .......... .......... 95% 573K 5s\n", + " 37050K .......... .......... .......... .......... .......... 95% 653K 4s\n", + " 37100K .......... .......... .......... .......... .......... 95% 589K 4s\n", + " 37150K .......... .......... .......... .......... .......... 95% 521K 4s\n", + " 37200K .......... .......... .......... .......... .......... 95% 568K 4s\n", + " 37250K .......... .......... .......... .......... .......... 95% 591K 4s\n", + " 37300K .......... .......... .......... .......... .......... 96% 593K 4s\n", + " 37350K .......... .......... .......... .......... .......... 96% 562K 4s\n", + " 37400K .......... .......... .......... .......... .......... 96% 672K 4s\n", + " 37450K .......... .......... .......... .......... .......... 96% 591K 3s\n", + " 37500K .......... .......... .......... .......... .......... 96% 586K 3s\n", + " 37550K .......... .......... .......... .......... .......... 96% 537K 3s\n", + " 37600K .......... .......... .......... .......... .......... 96% 621K 3s\n", + " 37650K .......... .......... .......... .......... .......... 96% 1.16M 3s\n", + " 37700K .......... .......... .......... .......... .......... 97% 695K 3s\n", + " 37750K .......... .......... .......... .......... .......... 97% 549K 3s\n", + " 37800K .......... .......... .......... .......... .......... 97% 606K 3s\n", + " 37850K .......... .......... .......... .......... .......... 97% 551K 2s\n", + " 37900K .......... .......... .......... .......... .......... 97% 1.37M 2s\n", + " 37950K .......... .......... .......... .......... .......... 97% 583K 2s\n", + " 38000K .......... .......... .......... .......... .......... 97% 728K 2s\n", + " 38050K .......... .......... .......... .......... .......... 97% 528K 2s\n", + " 38100K .......... .......... .......... .......... .......... 98% 594K 2s\n", + " 38150K .......... .......... .......... .......... .......... 98% 1.27M 2s\n", + " 38200K .......... .......... .......... .......... .......... 98% 650K 2s\n", + " 38250K .......... .......... .......... .......... .......... 98% 674K 1s\n", + " 38300K .......... .......... .......... .......... .......... 98% 525K 1s\n", + " 38350K .......... .......... .......... .......... .......... 98% 1.77M 1s\n", + " 38400K .......... .......... .......... .......... .......... 98% 565K 1s\n", + " 38450K .......... .......... .......... .......... .......... 99% 690K 1s\n", + " 38500K .......... .......... .......... .......... .......... 99% 511K 1s\n", + " 38550K .......... .......... .......... .......... .......... 99% 2.61M 1s\n", + " 38600K .......... .......... .......... .......... .......... 99% 651K 1s\n", + " 38650K .......... .......... .......... .......... .......... 99% 602K 0s\n", + " 38700K .......... .......... .......... .......... .......... 99% 710K 0s\n", + " 38750K .......... .......... .......... .......... .......... 99% 886K 0s\n", + " 38800K .......... .......... .......... .......... .......... 99% 870K 0s\n", + " 38850K .......... .......... .......... . 100% 825K=96s\n", + "\n", + "2025-04-01 16:34:47 (405 KB/s) - ‘/Users/gregoryhalverson/data/GEOS5FP/2025.03.31/GEOS.fp.asm.tavg1_2d_rad_Nx.20250331_2330.V01.nc4.20250401233311.download’ saved [39814534/39814534]\n", + "\n", + "/opt/homebrew/Caskroom/miniforge/base/envs/BESS-JPL/lib/python3.10/site-packages/rasterio/__init__.py:356: NotGeoreferencedWarning: Dataset has no geotransform, gcps, or rpcs. The identity matrix will be returned.\n", + " dataset = DatasetReader(path, driver=driver, sharing=sharing, **kwargs)\n", + "--2025-04-01 16:34:48-- https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/Y2025/M04/D01/GEOS.fp.asm.tavg1_2d_rad_Nx.20250401_0030.V01.nc4\n", + "Resolving portal.nccs.nasa.gov (portal.nccs.nasa.gov)... 2001:4d0:2418:2800::a99a:9791, 169.154.151.145\n", + "Connecting to portal.nccs.nasa.gov (portal.nccs.nasa.gov)|2001:4d0:2418:2800::a99a:9791|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 39822170 (38M) [application/octet-stream]\n", + "Saving to: ‘/Users/gregoryhalverson/data/GEOS5FP/2025.04.01/GEOS.fp.asm.tavg1_2d_rad_Nx.20250401_0030.V01.nc4.20250401233448.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 248K 2m37s\n", + " 50K .......... .......... .......... .......... .......... 0% 546K 1m54s\n", + " 100K .......... .......... .......... .......... .......... 0% 257K 2m6s\n", + " 150K .......... .......... .......... .......... .......... 0% 511K 1m53s\n", + " 200K .......... .......... .......... .......... .......... 0% 281K 1m58s\n", + " 250K .......... .......... .......... .......... .......... 0% 468K 1m52s\n", + " 300K .......... .......... .......... .......... .......... 0% 560K 1m46s\n", + " 350K .......... .......... .......... .......... .......... 1% 292K 1m49s\n", + " 400K .......... .......... .......... .......... .......... 1% 537K 1m45s\n", + " 450K .......... .......... .......... .......... .......... 1% 530K 1m41s\n", + " 500K .......... .......... .......... .......... .......... 1% 320K 1m43s\n", + " 550K .......... .......... .......... .......... .......... 1% 485K 1m41s\n", + " 600K .......... .......... .......... .......... .......... 1% 477K 99s\n", + " 650K .......... .......... .......... .......... .......... 1% 497K 97s\n", + " 700K .......... .......... .......... .......... .......... 1% 548K 95s\n", + " 750K .......... .......... .......... .......... .......... 2% 295K 97s\n", + " 800K .......... .......... .......... .......... .......... 2% 560K 95s\n", + " 850K .......... .......... .......... .......... .......... 2% 430K 95s\n", + " 900K .......... .......... .......... .......... .......... 2% 561K 93s\n", + " 950K .......... .......... .......... .......... .......... 2% 427K 93s\n", + " 1000K .......... .......... .......... .......... .......... 2% 557K 92s\n", + " 1050K .......... .......... .......... .......... .......... 2% 61.6K 1m55s\n", + " 1100K .......... .......... .......... .......... .......... 2% 185K 1m59s\n", + " 1150K .......... .......... .......... .......... .......... 3% 533K 1m57s\n", + " 1200K .......... .......... .......... .......... .......... 3% 281K 1m57s\n", + " 1250K .......... .......... .......... .......... .......... 3% 493K 1m56s\n", + " 1300K .......... .......... .......... .......... .......... 3% 489K 1m54s\n", + " 1350K .......... .......... .......... .......... .......... 3% 274K 1m55s\n", + " 1400K .......... .......... .......... .......... .......... 3% 92.7K 2m5s\n", + " 1450K .......... .......... .......... .......... .......... 3% 58.2K 2m22s\n", + " 1500K .......... .......... .......... .......... .......... 3% 54.4K 2m39s\n", + " 1550K .......... .......... .......... .......... .......... 4% 284K 2m38s\n", + " 1600K .......... .......... .......... .......... .......... 4% 482K 2m35s\n", + " 1650K .......... .......... .......... .......... .......... 4% 321K 2m34s\n", + " 1700K .......... .......... .......... .......... .......... 4% 503K 2m31s\n", + " 1750K .......... .......... .......... .......... .......... 4% 410K 2m30s\n", + " 1800K .......... .......... .......... .......... .......... 4% 380K 2m28s\n", + " 1850K .......... .......... .......... .......... .......... 4% 455K 2m26s\n", + " 1900K .......... .......... .......... .......... .......... 5% 438K 2m24s\n", + " 1950K .......... .......... .......... .......... .......... 5% 413K 2m23s\n", + " 2000K .......... .......... .......... .......... .......... 5% 432K 2m21s\n", + " 2050K .......... .......... .......... .......... .......... 5% 553K 2m19s\n", + " 2100K .......... .......... .......... .......... .......... 5% 406K 2m18s\n", + " 2150K .......... .......... .......... .......... .......... 5% 445K 2m16s\n", + " 2200K .......... .......... .......... .......... .......... 5% 436K 2m15s\n", + " 2250K .......... .......... .......... .......... .......... 5% 505K 2m13s\n", + " 2300K .......... .......... .......... .......... .......... 6% 548K 2m12s\n", + " 2350K .......... .......... .......... .......... .......... 6% 458K 2m11s\n", + " 2400K .......... .......... .......... .......... .......... 6% 537K 2m9s\n", + " 2450K .......... .......... .......... .......... .......... 6% 568K 2m8s\n", + " 2500K .......... .......... .......... .......... .......... 6% 549K 2m6s\n", + " 2550K .......... .......... .......... .......... .......... 6% 336K 2m6s\n", + " 2600K .......... .......... .......... .......... .......... 6% 528K 2m5s\n", + " 2650K .......... .......... .......... .......... .......... 6% 566K 2m3s\n", + " 2700K .......... .......... .......... .......... .......... 7% 559K 2m2s\n", + " 2750K .......... .......... .......... .......... .......... 7% 591K 2m1s\n", + " 2800K .......... .......... .......... .......... .......... 7% 532K 2m0s\n", + " 2850K .......... .......... .......... .......... .......... 7% 530K 1m59s\n", + " 2900K .......... .......... .......... .......... .......... 7% 585K 1m57s\n", + " 2950K .......... .......... .......... .......... .......... 7% 398K 1m57s\n", + " 3000K .......... .......... .......... .......... .......... 7% 558K 1m56s\n", + " 3050K .......... .......... .......... .......... .......... 7% 550K 1m55s\n", + " 3100K .......... .......... .......... .......... .......... 8% 600K 1m54s\n", + " 3150K .......... .......... .......... .......... .......... 8% 468K 1m53s\n", + " 3200K .......... .......... .......... .......... .......... 8% 553K 1m52s\n", + " 3250K .......... .......... .......... .......... .......... 8% 739K 1m51s\n", + " 3300K .......... .......... .......... .......... .......... 8% 563K 1m50s\n", + " 3350K .......... .......... .......... .......... .......... 8% 513K 1m49s\n", + " 3400K .......... .......... .......... .......... .......... 8% 571K 1m49s\n", + " 3450K .......... .......... .......... .......... .......... 9% 618K 1m48s\n", + " 3500K .......... .......... .......... .......... .......... 9% 570K 1m47s\n", + " 3550K .......... .......... .......... .......... .......... 9% 545K 1m46s\n", + " 3600K .......... .......... .......... .......... .......... 9% 614K 1m45s\n", + " 3650K .......... .......... .......... .......... .......... 9% 573K 1m45s\n", + " 3700K .......... .......... .......... .......... .......... 9% 539K 1m44s\n", + " 3750K .......... .......... .......... .......... .......... 9% 570K 1m43s\n", + " 3800K .......... .......... .......... .......... .......... 9% 655K 1m42s\n", + " 3850K .......... .......... .......... .......... .......... 10% 651K 1m42s\n", + " 3900K .......... .......... .......... .......... .......... 10% 831K 1m41s\n", + " 3950K .......... .......... .......... .......... .......... 10% 504K 1m40s\n", + " 4000K .......... .......... .......... .......... .......... 10% 809K 99s\n", + " 4050K .......... .......... .......... .......... .......... 10% 581K 99s\n", + " 4100K .......... .......... .......... .......... .......... 10% 665K 98s\n", + " 4150K .......... .......... .......... .......... .......... 10% 622K 97s\n", + " 4200K .......... .......... .......... .......... .......... 10% 579K 97s\n", + " 4250K .......... .......... .......... .......... .......... 11% 1.29M 96s\n", + " 4300K .......... .......... .......... .......... .......... 11% 622K 95s\n", + " 4350K .......... .......... .......... .......... .......... 11% 565K 95s\n", + " 4400K .......... .......... .......... .......... .......... 11% 554K 94s\n", + " 4450K .......... .......... .......... .......... .......... 11% 834K 94s\n", + " 4500K .......... .......... .......... .......... .......... 11% 1.03M 93s\n", + " 4550K .......... .......... .......... .......... .......... 11% 607K 92s\n", + " 4600K .......... .......... .......... .......... .......... 11% 576K 92s\n", + " 4650K .......... .......... .......... .......... .......... 12% 837K 91s\n", + " 4700K .......... .......... .......... .......... .......... 12% 856K 90s\n", + " 4750K .......... .......... .......... .......... .......... 12% 597K 90s\n", + " 4800K .......... .......... .......... .......... .......... 12% 656K 89s\n", + " 4850K .......... .......... .......... .......... .......... 12% 781K 89s\n", + " 4900K .......... .......... .......... .......... .......... 12% 1.25M 88s\n", + " 4950K .......... .......... .......... .......... .......... 12% 583K 88s\n", + " 5000K .......... .......... .......... .......... .......... 12% 626K 87s\n", + " 5050K .......... .......... .......... .......... .......... 13% 712K 87s\n", + " 5100K .......... .......... .......... .......... .......... 13% 1.23M 86s\n", + " 5150K .......... .......... .......... .......... .......... 13% 604K 85s\n", + " 5200K .......... .......... .......... .......... .......... 13% 720K 85s\n", + " 5250K .......... .......... .......... .......... .......... 13% 1.51M 84s\n", + " 5300K .......... .......... .......... .......... .......... 13% 572K 84s\n", + " 5350K .......... .......... .......... .......... .......... 13% 620K 84s\n", + " 5400K .......... .......... .......... .......... .......... 14% 1.57M 83s\n", + " 5450K .......... .......... .......... .......... .......... 14% 576K 82s\n", + " 5500K .......... .......... .......... .......... .......... 14% 692K 82s\n", + " 5550K .......... .......... .......... .......... .......... 14% 1.67M 81s\n", + " 5600K .......... .......... .......... .......... .......... 14% 570K 81s\n", + " 5650K .......... .......... .......... .......... .......... 14% 680K 81s\n", + " 5700K .......... .......... .......... .......... .......... 14% 2.23M 80s\n", + " 5750K .......... .......... .......... .......... .......... 14% 569K 80s\n", + " 5800K .......... .......... .......... .......... .......... 15% 716K 79s\n", + " 5850K .......... .......... .......... .......... .......... 15% 2.48M 79s\n", + " 5900K .......... .......... .......... .......... .......... 15% 597K 78s\n", + " 5950K .......... .......... .......... .......... .......... 15% 570K 78s\n", + " 6000K .......... .......... .......... .......... .......... 15% 6.12M 77s\n", + " 6050K .......... .......... .......... .......... .......... 15% 552K 77s\n", + " 6100K .......... .......... .......... .......... .......... 15% 882K 77s\n", + " 6150K .......... .......... .......... .......... .......... 15% 1007K 76s\n", + " 6200K .......... .......... .......... .......... .......... 16% 552K 76s\n", + " 6250K .......... .......... .......... .......... .......... 16% 2.07M 75s\n", + " 6300K .......... .......... .......... .......... .......... 16% 742K 75s\n", + " 6350K .......... .......... .......... .......... .......... 16% 526K 75s\n", + " 6400K .......... .......... .......... .......... .......... 16% 3.62M 74s\n", + " 6450K .......... .......... .......... .......... .......... 16% 638K 74s\n", + " 6500K .......... .......... .......... .......... .......... 16% 943K 73s\n", + " 6550K .......... .......... .......... .......... .......... 16% 1012K 73s\n", + " 6600K .......... .......... .......... .......... .......... 17% 538K 73s\n", + " 6650K .......... .......... .......... .......... .......... 17% 8.99M 72s\n", + " 6700K .......... .......... .......... .......... .......... 17% 142K 73s\n", + " 6750K .......... .......... .......... .......... .......... 17% 63.6M 72s\n", + " 6800K .......... .......... .......... .......... .......... 17% 563K 72s\n", + " 6850K .......... .......... .......... .......... .......... 17% 515K 72s\n", + " 6900K .......... .......... .......... .......... .......... 17% 580K 72s\n", + " 6950K .......... .......... .......... .......... .......... 18% 455K 72s\n", + " 7000K .......... .......... .......... .......... .......... 18% 570K 71s\n", + " 7050K .......... .......... .......... .......... .......... 18% 574K 71s\n", + " 7100K .......... .......... .......... .......... .......... 18% 137K 72s\n", + " 7150K .......... .......... .......... .......... .......... 18% 555K 72s\n", + " 7200K .......... .......... .......... .......... .......... 18% 278K 72s\n", + " 7250K .......... .......... .......... .......... .......... 18% 517K 72s\n", + " 7300K .......... .......... .......... .......... .......... 18% 262K 72s\n", + " 7350K .......... .......... .......... .......... .......... 19% 52.5K 76s\n", + " 7400K .......... .......... .......... .......... .......... 19% 183K 76s\n", + " 7450K .......... .......... .......... .......... .......... 19% 282K 76s\n", + " 7500K .......... .......... .......... .......... .......... 19% 72.3K 79s\n", + " 7550K .......... .......... .......... .......... .......... 19% 181K 79s\n", + " 7600K .......... .......... .......... .......... .......... 19% 277K 79s\n", + " 7650K .......... .......... .......... .......... .......... 19% 276K 79s\n", + " 7700K .......... .......... .......... .......... .......... 19% 294K 79s\n", + " 7750K .......... .......... .......... .......... .......... 20% 285K 79s\n", + " 7800K .......... .......... .......... .......... .......... 20% 423K 79s\n", + " 7850K .......... .......... .......... .......... .......... 20% 307K 79s\n", + " 7900K .......... .......... .......... .......... .......... 20% 309K 79s\n", + " 7950K .......... .......... .......... .......... .......... 20% 420K 79s\n", + " 8000K .......... .......... .......... .......... .......... 20% 301K 79s\n", + " 8050K .......... .......... .......... .......... .......... 20% 298K 79s\n", + " 8100K .......... .......... .......... .......... .......... 20% 539K 79s\n", + " 8150K .......... .......... .......... .......... .......... 21% 282K 79s\n", + " 8200K .......... .......... .......... .......... .......... 21% 492K 79s\n", + " 8250K .......... .......... .......... .......... .......... 21% 289K 79s\n", + " 8300K .......... .......... .......... .......... .......... 21% 479K 78s\n", + " 8350K .......... .......... .......... .......... .......... 21% 281K 78s\n", + " 8400K .......... .......... .......... .......... .......... 21% 532K 78s\n", + " 8450K .......... .......... .......... .......... .......... 21% 537K 78s\n", + " 8500K .......... .......... .......... .......... .......... 21% 276K 78s\n", + " 8550K .......... .......... .......... .......... .......... 22% 503K 78s\n", + " 8600K .......... .......... .......... .......... .......... 22% 506K 78s\n", + " 8650K .......... .......... .......... .......... .......... 22% 308K 78s\n", + " 8700K .......... .......... .......... .......... .......... 22% 431K 77s\n", + " 8750K .......... .......... .......... .......... .......... 22% 339K 77s\n", + " 8800K .......... .......... .......... .......... .......... 22% 497K 77s\n", + " 8850K .......... .......... .......... .......... .......... 22% 429K 77s\n", + " 8900K .......... .......... .......... .......... .......... 23% 554K 77s\n", + " 8950K .......... .......... .......... .......... .......... 23% 304K 77s\n", + " 9000K .......... .......... .......... .......... .......... 23% 523K 76s\n", + " 9050K .......... .......... .......... .......... .......... 23% 539K 76s\n", + " 9100K .......... .......... .......... .......... .......... 23% 459K 76s\n", + " 9150K .......... .......... .......... .......... .......... 23% 347K 76s\n", + " 9200K .......... .......... .......... .......... .......... 23% 550K 76s\n", + " 9250K .......... .......... .......... .......... .......... 23% 515K 75s\n", + " 9300K .......... .......... .......... .......... .......... 24% 450K 75s\n", + " 9350K .......... .......... .......... .......... .......... 24% 530K 75s\n", + " 9400K .......... .......... .......... .......... .......... 24% 536K 75s\n", + " 9450K .......... .......... .......... .......... .......... 24% 547K 75s\n", + " 9500K .......... .......... .......... .......... .......... 24% 575K 74s\n", + " 9550K .......... .......... .......... .......... .......... 24% 374K 74s\n", + " 9600K .......... .......... .......... .......... .......... 24% 559K 74s\n", + " 9650K .......... .......... .......... .......... .......... 24% 559K 74s\n", + " 9700K .......... .......... .......... .......... .......... 25% 560K 74s\n", + " 9750K .......... .......... .......... .......... .......... 25% 447K 73s\n", + " 9800K .......... .......... .......... .......... .......... 25% 601K 73s\n", + " 9850K .......... .......... .......... .......... .......... 25% 565K 73s\n", + " 9900K .......... .......... .......... .......... .......... 25% 579K 73s\n", + " 9950K .......... .......... .......... .......... .......... 25% 479K 72s\n", + " 10000K .......... .......... .......... .......... .......... 25% 583K 72s\n", + " 10050K .......... .......... .......... .......... .......... 25% 625K 72s\n", + " 10100K .......... .......... .......... .......... .......... 26% 519K 72s\n", + " 10150K .......... .......... .......... .......... .......... 26% 554K 72s\n", + " 10200K .......... .......... .......... .......... .......... 26% 563K 71s\n", + " 10250K .......... .......... .......... .......... .......... 26% 595K 71s\n", + " 10300K .......... .......... .......... .......... .......... 26% 588K 71s\n", + " 10350K .......... .......... .......... .......... .......... 26% 518K 71s\n", + " 10400K .......... .......... .......... .......... .......... 26% 860K 70s\n", + " 10450K .......... .......... .......... .......... .......... 27% 559K 70s\n", + " 10500K .......... .......... .......... .......... .......... 27% 757K 70s\n", + " 10550K .......... .......... .......... .......... .......... 27% 488K 70s\n", + " 10600K .......... .......... .......... .......... .......... 27% 659K 69s\n", + " 10650K .......... .......... .......... .......... .......... 27% 587K 69s\n", + " 10700K .......... .......... .......... .......... .......... 27% 859K 69s\n", + " 10750K .......... .......... .......... .......... .......... 27% 546K 69s\n", + " 10800K .......... .......... .......... .......... .......... 27% 557K 68s\n", + " 10850K .......... .......... .......... .......... .......... 28% 713K 68s\n", + " 10900K .......... .......... .......... .......... .......... 28% 737K 68s\n", + " 10950K .......... .......... .......... .......... .......... 28% 562K 68s\n", + " 11000K .......... .......... .......... .......... .......... 28% 705K 67s\n", + " 11050K .......... .......... .......... .......... .......... 28% 808K 67s\n", + " 11100K .......... .......... .......... .......... .......... 28% 707K 67s\n", + " 11150K .......... .......... .......... .......... .......... 28% 610K 67s\n", + " 11200K .......... .......... .......... .......... .......... 28% 675K 67s\n", + " 11250K .......... .......... .......... .......... .......... 29% 1.11M 66s\n", + " 11300K .......... .......... .......... .......... .......... 29% 555K 66s\n", + " 11350K .......... .......... .......... .......... .......... 29% 751K 66s\n", + " 11400K .......... .......... .......... .......... .......... 29% 644K 66s\n", + " 11450K .......... .......... .......... .......... .......... 29% 881K 65s\n", + " 11500K .......... .......... .......... .......... .......... 29% 774K 65s\n", + " 11550K .......... .......... .......... .......... .......... 29% 698K 65s\n", + " 11600K .......... .......... .......... .......... .......... 29% 709K 65s\n", + " 11650K .......... .......... .......... .......... .......... 30% 1.21M 64s\n", + " 11700K .......... .......... .......... .......... .......... 30% 586K 64s\n", + " 11750K .......... .......... .......... .......... .......... 30% 614K 64s\n", + " 11800K .......... .......... .......... .......... .......... 30% 898K 64s\n", + " 11850K .......... .......... .......... .......... .......... 30% 1.07M 63s\n", + " 11900K .......... .......... .......... .......... .......... 30% 599K 63s\n", + " 11950K .......... .......... .......... .......... .......... 30% 915K 63s\n", + " 12000K .......... .......... .......... .......... .......... 30% 1.03M 63s\n", + " 12050K .......... .......... .......... .......... .......... 31% 547K 62s\n", + " 12100K .......... .......... .......... .......... .......... 31% 1.15M 62s\n", + " 12150K .......... .......... .......... .......... .......... 31% 911K 62s\n", + " 12200K .......... .......... .......... .......... .......... 31% 500K 62s\n", + " 12250K .......... .......... .......... .......... .......... 31% 1.51M 61s\n", + " 12300K .......... .......... .......... .......... .......... 31% 718K 61s\n", + " 12350K .......... .......... .......... .......... .......... 31% 510K 61s\n", + " 12400K .......... .......... .......... .......... .......... 32% 2.00M 61s\n", + " 12450K .......... .......... .......... .......... .......... 32% 718K 61s\n", + " 12500K .......... .......... .......... .......... .......... 32% 606K 60s\n", + " 12550K .......... .......... .......... .......... .......... 32% 2.08M 60s\n", + " 12600K .......... .......... .......... .......... .......... 32% 589K 60s\n", + " 12650K .......... .......... .......... .......... .......... 32% 742K 60s\n", + " 12700K .......... .......... .......... .......... .......... 32% 1.95M 59s\n", + " 12750K .......... .......... .......... .......... .......... 32% 567K 59s\n", + " 12800K .......... .......... .......... .......... .......... 33% 1.79M 59s\n", + " 12850K .......... .......... .......... .......... .......... 33% 732K 59s\n", + " 12900K .......... .......... .......... .......... .......... 33% 733K 59s\n", + " 12950K .......... .......... .......... .......... .......... 33% 1.68M 58s\n", + " 13000K .......... .......... .......... .......... .......... 33% 580K 58s\n", + " 13050K .......... .......... .......... .......... .......... 33% 727K 58s\n", + " 13100K .......... .......... .......... .......... .......... 33% 1.61M 58s\n", + " 13150K .......... .......... .......... .......... .......... 33% 721K 57s\n", + " 13200K .......... .......... .......... .......... .......... 34% 1.76M 57s\n", + " 13250K .......... .......... .......... .......... .......... 34% 571K 57s\n", + " 13300K .......... .......... .......... .......... .......... 34% 884K 57s\n", + " 13350K .......... .......... .......... .......... .......... 34% 1.34M 57s\n", + " 13400K .......... .......... .......... .......... .......... 34% 860K 56s\n", + " 13450K .......... .......... .......... .......... .......... 34% 1.14M 56s\n", + " 13500K .......... .......... .......... .......... .......... 34% 702K 56s\n", + " 13550K .......... .......... .......... .......... .......... 34% 851K 56s\n", + " 13600K .......... .......... .......... .......... .......... 35% 938K 55s\n", + " 13650K .......... .......... .......... .......... .......... 35% 989K 55s\n", + " 13700K .......... .......... .......... .......... .......... 35% 950K 55s\n", + " 13750K .......... .......... .......... .......... .......... 35% 875K 55s\n", + " 13800K .......... .......... .......... .......... .......... 35% 807K 55s\n", + " 13850K .......... .......... .......... .......... .......... 35% 1.82M 54s\n", + " 13900K .......... .......... .......... .......... .......... 35% 748K 54s\n", + " 13950K .......... .......... .......... .......... .......... 36% 950K 54s\n", + " 14000K .......... .......... .......... .......... .......... 36% 1.19M 54s\n", + " 14050K .......... .......... .......... .......... .......... 36% 713K 54s\n", + " 14100K .......... .......... .......... .......... .......... 36% 1.63M 53s\n", + " 14150K .......... .......... .......... .......... .......... 36% 638K 53s\n", + " 14200K .......... .......... .......... .......... .......... 36% 2.17M 53s\n", + " 14250K .......... .......... .......... .......... .......... 36% 726K 53s\n", + " 14300K .......... .......... .......... .......... .......... 36% 2.20M 53s\n", + " 14350K .......... .......... .......... .......... .......... 37% 729K 52s\n", + " 14400K .......... .......... .......... .......... .......... 37% 1018K 52s\n", + " 14450K .......... .......... .......... .......... .......... 37% 1.18M 52s\n", + " 14500K .......... .......... .......... .......... .......... 37% 814K 52s\n", + " 14550K .......... .......... .......... .......... .......... 37% 1.78M 52s\n", + " 14600K .......... .......... .......... .......... .......... 37% 587K 51s\n", + " 14650K .......... .......... .......... .......... .......... 37% 1.58M 51s\n", + " 14700K .......... .......... .......... .......... .......... 37% 832K 51s\n", + " 14750K .......... .......... .......... .......... .......... 38% 1.29M 51s\n", + " 14800K .......... .......... .......... .......... .......... 38% 842K 51s\n", + " 14850K .......... .......... .......... .......... .......... 38% 1.30M 50s\n", + " 14900K .......... .......... .......... .......... .......... 38% 860K 50s\n", + " 14950K .......... .......... .......... .......... .......... 38% 1.11M 50s\n", + " 15000K .......... .......... .......... .......... .......... 38% 969K 50s\n", + " 15050K .......... .......... .......... .......... .......... 38% 1.36M 50s\n", + " 15100K .......... .......... .......... .......... .......... 38% 953K 49s\n", + " 15150K .......... .......... .......... .......... .......... 39% 796K 49s\n", + " 15200K .......... .......... .......... .......... .......... 39% 1.66M 49s\n", + " 15250K .......... .......... .......... .......... .......... 39% 772K 49s\n", + " 15300K .......... .......... .......... .......... .......... 39% 1.58M 49s\n", + " 15350K .......... .......... .......... .......... .......... 39% 864K 48s\n", + " 15400K .......... .......... .......... .......... .......... 39% 1.40M 48s\n", + " 15450K .......... .......... .......... .......... .......... 39% 963K 48s\n", + " 15500K .......... .......... .......... .......... .......... 39% 1.04M 48s\n", + " 15550K .......... .......... .......... .......... .......... 40% 963K 48s\n", + " 15600K .......... .......... .......... .......... .......... 40% 1.13M 47s\n", + " 15650K .......... .......... .......... .......... .......... 40% 1011K 47s\n", + " 15700K .......... .......... .......... .......... .......... 40% 1.29M 47s\n", + " 15750K .......... .......... .......... .......... .......... 40% 882K 47s\n", + " 15800K .......... .......... .......... .......... .......... 40% 1.42M 47s\n", + " 15850K .......... .......... .......... .......... .......... 40% 993K 47s\n", + " 15900K .......... .......... .......... .......... .......... 41% 1.30M 46s\n", + " 15950K .......... .......... .......... .......... .......... 41% 866K 46s\n", + " 16000K .......... .......... .......... .......... .......... 41% 1.46M 46s\n", + " 16050K .......... .......... .......... .......... .......... 41% 945K 46s\n", + " 16100K .......... .......... .......... .......... .......... 41% 1.43M 46s\n", + " 16150K .......... .......... .......... .......... .......... 41% 36.3K 47s\n", + " 16200K .......... .......... .......... .......... .......... 41% 76.8M 47s\n", + " 16250K .......... .......... .......... .......... .......... 41% 561K 47s\n", + " 16300K .......... .......... .......... .......... .......... 42% 118M 47s\n", + " 16350K .......... .......... .......... .......... .......... 42% 570K 47s\n", + " 16400K .......... .......... .......... .......... .......... 42% 68.3K 47s\n", + " 16450K .......... .......... .......... .......... .......... 42% 559K 47s\n", + " 16500K .......... .......... .......... .......... .......... 42% 37.0M 47s\n", + " 16550K .......... .......... .......... .......... .......... 42% 275K 47s\n", + " 16600K .......... .......... .......... .......... .......... 42% 562K 47s\n", + " 16650K .......... .......... .......... .......... .......... 42% 28.6M 47s\n", + " 16700K .......... .......... .......... .......... .......... 43% 558K 46s\n", + " 16750K .......... .......... .......... .......... .......... 43% 602K 46s\n", + " 16800K .......... .......... .......... .......... .......... 43% 48.0K 47s\n", + " 16850K .......... .......... .......... .......... .......... 43% 564K 47s\n", + " 16900K .......... .......... .......... .......... .......... 43% 573K 47s\n", + " 16950K .......... .......... .......... .......... .......... 43% 30.5M 47s\n", + " 17000K .......... .......... .......... .......... .......... 43% 563K 47s\n", + " 17050K .......... .......... .......... .......... .......... 43% 20.4M 47s\n", + " 17100K .......... .......... .......... .......... .......... 44% 542K 46s\n", + " 17150K .......... .......... .......... .......... .......... 44% 15.3M 46s\n", + " 17200K .......... .......... .......... .......... .......... 44% 566K 46s\n", + " 17250K .......... .......... .......... .......... .......... 44% 15.9M 46s\n", + " 17300K .......... .......... .......... .......... .......... 44% 553K 46s\n", + " 17350K .......... .......... .......... .......... .......... 44% 6.36M 46s\n", + " 17400K .......... .......... .......... .......... .......... 44% 607K 45s\n", + " 17450K .......... .......... .......... .......... .......... 45% 4.54M 45s\n", + " 17500K .......... .......... .......... .......... .......... 45% 524K 45s\n", + " 17550K .......... .......... .......... .......... .......... 45% 6.49M 45s\n", + " 17600K .......... .......... .......... .......... .......... 45% 585K 45s\n", + " 17650K .......... .......... .......... .......... .......... 45% 5.21M 44s\n", + " 17700K .......... .......... .......... .......... .......... 45% 594K 44s\n", + " 17750K .......... .......... .......... .......... .......... 45% 4.01M 44s\n", + " 17800K .......... .......... .......... .......... .......... 45% 650K 44s\n", + " 17850K .......... .......... .......... .......... .......... 46% 3.43M 44s\n", + " 17900K .......... .......... .......... .......... .......... 46% 675K 44s\n", + " 17950K .......... .......... .......... .......... .......... 46% 2.36M 43s\n", + " 18000K .......... .......... .......... .......... .......... 46% 710K 43s\n", + " 18050K .......... .......... .......... .......... .......... 46% 4.38M 43s\n", + " 18100K .......... .......... .......... .......... .......... 46% 924K 43s\n", + " 18150K .......... .......... .......... .......... .......... 46% 1.30M 43s\n", + " 18200K .......... .......... .......... .......... .......... 46% 971K 43s\n", + " 18250K .......... .......... .......... .......... .......... 47% 1.25M 42s\n", + " 18300K .......... .......... .......... .......... .......... 47% 1.31M 42s\n", + " 18350K .......... .......... .......... .......... .......... 47% 826K 42s\n", + " 18400K .......... .......... .......... .......... .......... 47% 2.48M 42s\n", + " 18450K .......... .......... .......... .......... .......... 47% 720K 42s\n", + " 18500K .......... .......... .......... .......... .......... 47% 5.82M 42s\n", + " 18550K .......... .......... .......... .......... .......... 47% 601K 41s\n", + " 18600K .......... .......... .......... .......... .......... 47% 12.4M 41s\n", + " 18650K .......... .......... .......... .......... .......... 48% 622K 41s\n", + " 18700K .......... .......... .......... .......... .......... 48% 5.07M 41s\n", + " 18750K .......... .......... .......... .......... .......... 48% 637K 41s\n", + " 18800K .......... .......... .......... .......... .......... 48% 2.36M 41s\n", + " 18850K .......... .......... .......... .......... .......... 48% 964K 40s\n", + " 18900K .......... .......... .......... .......... .......... 48% 1.33M 40s\n", + " 18950K .......... .......... .......... .......... .......... 48% 863K 40s\n", + " 19000K .......... .......... .......... .......... .......... 48% 1.22M 40s\n", + " 19050K .......... .......... .......... .......... .......... 49% 4.21M 40s\n", + " 19100K .......... .......... .......... .......... .......... 49% 797K 40s\n", + " 19150K .......... .......... .......... .......... .......... 49% 1.73M 39s\n", + " 19200K .......... .......... .......... .......... .......... 49% 867K 39s\n", + " 19250K .......... .......... .......... .......... .......... 49% 1.49M 39s\n", + " 19300K .......... .......... .......... .......... .......... 49% 1.06M 39s\n", + " 19350K .......... .......... .......... .......... .......... 49% 1.15M 39s\n", + " 19400K .......... .......... .......... .......... .......... 50% 1.05M 39s\n", + " 19450K .......... .......... .......... .......... .......... 50% 1.27M 38s\n", + " 19500K .......... .......... .......... .......... .......... 50% 2.41M 38s\n", + " 19550K .......... .......... .......... .......... .......... 50% 826K 38s\n", + " 19600K .......... .......... .......... .......... .......... 50% 1.74M 38s\n", + " 19650K .......... .......... .......... .......... .......... 50% 1.02M 38s\n", + " 19700K .......... .......... .......... .......... .......... 50% 1.14M 38s\n", + " 19750K .......... .......... .......... .......... .......... 50% 1.09M 38s\n", + " 19800K .......... .......... .......... .......... .......... 51% 1.36M 37s\n", + " 19850K .......... .......... .......... .......... .......... 51% 1.18M 37s\n", + " 19900K .......... .......... .......... .......... .......... 51% 1.15M 37s\n", + " 19950K .......... .......... .......... .......... .......... 51% 2.31M 37s\n", + " 20000K .......... .......... .......... .......... .......... 51% 1.07M 37s\n", + " 20050K .......... .......... .......... .......... .......... 51% 1.34M 37s\n", + " 20100K .......... .......... .......... .......... .......... 51% 928K 36s\n", + " 20150K .......... .......... .......... .......... .......... 51% 1.33M 36s\n", + " 20200K .......... .......... .......... .......... .......... 52% 1.37M 36s\n", + " 20250K .......... .......... .......... .......... .......... 52% 948K 36s\n", + " 20300K .......... .......... .......... .......... .......... 52% 4.56M 36s\n", + " 20350K .......... .......... .......... .......... .......... 52% 670K 36s\n", + " 20400K .......... .......... .......... .......... .......... 52% 3.21M 36s\n", + " 20450K .......... .......... .......... .......... .......... 52% 1021K 35s\n", + " 20500K .......... .......... .......... .......... .......... 52% 1.43M 35s\n", + " 20550K .......... .......... .......... .......... .......... 52% 1.36M 35s\n", + " 20600K .......... .......... .......... .......... .......... 53% 968K 35s\n", + " 20650K .......... .......... .......... .......... .......... 53% 3.14M 35s\n", + " 20700K .......... .......... .......... .......... .......... 53% 1.07M 35s\n", + " 20750K .......... .......... .......... .......... .......... 53% 1.52M 35s\n", + " 20800K .......... .......... .......... .......... .......... 53% 1.01M 34s\n", + " 20850K .......... .......... .......... .......... .......... 53% 1.35M 34s\n", + " 20900K .......... .......... .......... .......... .......... 53% 1.51M 34s\n", + " 20950K .......... .......... .......... .......... .......... 54% 964K 34s\n", + " 21000K .......... .......... .......... .......... .......... 54% 3.49M 34s\n", + " 21050K .......... .......... .......... .......... .......... 54% 981K 34s\n", + " 21100K .......... .......... .......... .......... .......... 54% 1.22M 34s\n", + " 21150K .......... .......... .......... .......... .......... 54% 1.74M 33s\n", + " 21200K .......... .......... .......... .......... .......... 54% 1.01M 33s\n", + " 21250K .......... .......... .......... .......... .......... 54% 2.03M 33s\n", + " 21300K .......... .......... .......... .......... .......... 54% 1.20M 33s\n", + " 21350K .......... .......... .......... .......... .......... 55% 1.12M 33s\n", + " 21400K .......... .......... .......... .......... .......... 55% 1.36M 33s\n", + " 21450K .......... .......... .......... .......... .......... 55% 1.07M 33s\n", + " 21500K .......... .......... .......... .......... .......... 55% 2.80M 32s\n", + " 21550K .......... .......... .......... .......... .......... 55% 874K 32s\n", + " 21600K .......... .......... .......... .......... .......... 55% 1.93M 32s\n", + " 21650K .......... .......... .......... .......... .......... 55% 1.19M 32s\n", + " 21700K .......... .......... .......... .......... .......... 55% 1.23M 32s\n", + " 21750K .......... .......... .......... .......... .......... 56% 1.61M 32s\n", + " 21800K .......... .......... .......... .......... .......... 56% 1.11M 32s\n", + " 21850K .......... .......... .......... .......... .......... 56% 2.31M 31s\n", + " 21900K .......... .......... .......... .......... .......... 56% 1.09M 31s\n", + " 21950K .......... .......... .......... .......... .......... 56% 1.35M 31s\n", + " 22000K .......... .......... .......... .......... .......... 56% 1.49M 31s\n", + " 22050K .......... .......... .......... .......... .......... 56% 867K 31s\n", + " 22100K .......... .......... .......... .......... .......... 56% 4.53M 31s\n", + " 22150K .......... .......... .......... .......... .......... 57% 1.15M 31s\n", + " 22200K .......... .......... .......... .......... .......... 57% 1.02M 31s\n", + " 22250K .......... .......... .......... .......... .......... 57% 1.89M 30s\n", + " 22300K .......... .......... .......... .......... .......... 57% 789K 30s\n", + " 22350K .......... .......... .......... .......... .......... 57% 17.4M 30s\n", + " 22400K .......... .......... .......... .......... .......... 57% 1.05M 30s\n", + " 22450K .......... .......... .......... .......... .......... 57% 1.10M 30s\n", + " 22500K .......... .......... .......... .......... .......... 57% 1.93M 30s\n", + " 22550K .......... .......... .......... .......... .......... 58% 804K 30s\n", + " 22600K .......... .......... .......... .......... .......... 58% 6.41M 29s\n", + " 22650K .......... .......... .......... .......... .......... 58% 1.64M 29s\n", + " 22700K .......... .......... .......... .......... .......... 58% 852K 29s\n", + " 22750K .......... .......... .......... .......... .......... 58% 1.76M 29s\n", + " 22800K .......... .......... .......... .......... .......... 58% 988K 29s\n", + " 22850K .......... .......... .......... .......... .......... 58% 2.75M 29s\n", + " 22900K .......... .......... .......... .......... .......... 59% 1.66M 29s\n", + " 22950K .......... .......... .......... .......... .......... 59% 869K 29s\n", + " 23000K .......... .......... .......... .......... .......... 59% 1.43M 28s\n", + " 23050K .......... .......... .......... .......... .......... 59% 1.74M 28s\n", + " 23100K .......... .......... .......... .......... .......... 59% 1.85M 28s\n", + " 23150K .......... .......... .......... .......... .......... 59% 1.09M 28s\n", + " 23200K .......... .......... .......... .......... .......... 59% 1.12M 28s\n", + " 23250K .......... .......... .......... .......... .......... 59% 1.54M 28s\n", + " 23300K .......... .......... .......... .......... .......... 60% 1.64M 28s\n", + " 23350K .......... .......... .......... .......... .......... 60% 1.20M 28s\n", + " 23400K .......... .......... .......... .......... .......... 60% 1011K 27s\n", + " 23450K .......... .......... .......... .......... .......... 60% 1.17M 27s\n", + " 23500K .......... .......... .......... .......... .......... 60% 7.60M 27s\n", + " 23550K .......... .......... .......... .......... .......... 60% 952K 27s\n", + " 23600K .......... .......... .......... .......... .......... 60% 1.18M 27s\n", + " 23650K .......... .......... .......... .......... .......... 60% 2.09M 27s\n", + " 23700K .......... .......... .......... .......... .......... 61% 770K 27s\n", + " 23750K .......... .......... .......... .......... .......... 61% 7.61M 27s\n", + " 23800K .......... .......... .......... .......... .......... 61% 1.03M 26s\n", + " 23850K .......... .......... .......... .......... .......... 61% 1.26M 26s\n", + " 23900K .......... .......... .......... .......... .......... 61% 3.20M 26s\n", + " 23950K .......... .......... .......... .......... .......... 61% 868K 26s\n", + " 24000K .......... .......... .......... .......... .......... 61% 1.48M 26s\n", + " 24050K .......... .......... .......... .......... .......... 61% 1.32M 26s\n", + " 24100K .......... .......... .......... .......... .......... 62% 1.52M 26s\n", + " 24150K .......... .......... .......... .......... .......... 62% 1.97M 26s\n", + " 24200K .......... .......... .......... .......... .......... 62% 889K 26s\n", + " 24250K .......... .......... .......... .......... .......... 62% 1.50M 25s\n", + " 24300K .......... .......... .......... .......... .......... 62% 4.77M 25s\n", + " 24350K .......... .......... .......... .......... .......... 62% 699K 25s\n", + " 24400K .......... .......... .......... .......... .......... 62% 1.60M 25s\n", + " 24450K .......... .......... .......... .......... .......... 63% 1.32M 25s\n", + " 24500K .......... .......... .......... .......... .......... 63% 1.80M 25s\n", + " 24550K .......... .......... .......... .......... .......... 63% 1.50M 25s\n", + " 24600K .......... .......... .......... .......... .......... 63% 1.49M 25s\n", + " 24650K .......... .......... .......... .......... .......... 63% 1.01M 24s\n", + " 24700K .......... .......... .......... .......... .......... 63% 1.66M 24s\n", + " 24750K .......... .......... .......... .......... .......... 63% 1.22M 24s\n", + " 24800K .......... .......... .......... .......... .......... 63% 1.12M 24s\n", + " 24850K .......... .......... .......... .......... .......... 64% 2.57M 24s\n", + " 24900K .......... .......... .......... .......... .......... 64% 1.53M 24s\n", + " 24950K .......... .......... .......... .......... .......... 64% 1.11M 24s\n", + " 25000K .......... .......... .......... .......... .......... 64% 1.47M 24s\n", + " 25050K .......... .......... .......... .......... .......... 64% 1.24M 24s\n", + " 25100K .......... .......... .......... .......... .......... 64% 2.10M 23s\n", + " 25150K .......... .......... .......... .......... .......... 64% 1.04M 23s\n", + " 25200K .......... .......... .......... .......... .......... 64% 1.23M 23s\n", + " 25250K .......... .......... .......... .......... .......... 65% 1.81M 23s\n", + " 25300K .......... .......... .......... .......... .......... 65% 1.17M 23s\n", + " 25350K .......... .......... .......... .......... .......... 65% 1.56M 23s\n", + " 25400K .......... .......... .......... .......... .......... 65% 1.48M 23s\n", + " 25450K .......... .......... .......... .......... .......... 65% 1.46M 23s\n", + " 25500K .......... .......... .......... .......... .......... 65% 1.43M 23s\n", + " 25550K .......... .......... .......... .......... .......... 65% 1.55M 22s\n", + " 25600K .......... .......... .......... .......... .......... 65% 983K 22s\n", + " 25650K .......... .......... .......... .......... .......... 66% 2.24M 22s\n", + " 25700K .......... .......... .......... .......... .......... 66% 1.37M 22s\n", + " 25750K .......... .......... .......... .......... .......... 66% 1.15M 22s\n", + " 25800K .......... .......... .......... .......... .......... 66% 1.48M 22s\n", + " 25850K .......... .......... .......... .......... .......... 66% 2.04M 22s\n", + " 25900K .......... .......... .......... .......... .......... 66% 907K 22s\n", + " 25950K .......... .......... .......... .......... .......... 66% 3.90M 22s\n", + " 26000K .......... .......... .......... .......... .......... 66% 980K 21s\n", + " 26050K .......... .......... .......... .......... .......... 67% 1.70M 21s\n", + " 26100K .......... .......... .......... .......... .......... 67% 1.78M 21s\n", + " 26150K .......... .......... .......... .......... .......... 67% 1.18M 21s\n", + " 26200K .......... .......... .......... .......... .......... 67% 2.00M 21s\n", + " 26250K .......... .......... .......... .......... .......... 67% 1.06M 21s\n", + " 26300K .......... .......... .......... .......... .......... 67% 1.51M 21s\n", + " 26350K .......... .......... .......... .......... .......... 67% 1.60M 21s\n", + " 26400K .......... .......... .......... .......... .......... 68% 940K 21s\n", + " 26450K .......... .......... .......... .......... .......... 68% 2.91M 20s\n", + " 26500K .......... .......... .......... .......... .......... 68% 1.70M 20s\n", + " 26550K .......... .......... .......... .......... .......... 68% 1.11M 20s\n", + " 26600K .......... .......... .......... .......... .......... 68% 1.73M 20s\n", + " 26650K .......... .......... .......... .......... .......... 68% 1.34M 20s\n", + " 26700K .......... .......... .......... .......... .......... 68% 1.66M 20s\n", + " 26750K .......... .......... .......... .......... .......... 68% 1.72M 20s\n", + " 26800K .......... .......... .......... .......... .......... 69% 1.39M 20s\n", + " 26850K .......... .......... .......... .......... .......... 69% 1.34M 20s\n", + " 26900K .......... .......... .......... .......... .......... 69% 1.98M 20s\n", + " 26950K .......... .......... .......... .......... .......... 69% 909K 19s\n", + " 27000K .......... .......... .......... .......... .......... 69% 1.97M 19s\n", + " 27050K .......... .......... .......... .......... .......... 69% 2.71M 19s\n", + " 27100K .......... .......... .......... .......... .......... 69% 1.05M 19s\n", + " 27150K .......... .......... .......... .......... .......... 69% 2.06M 19s\n", + " 27200K .......... .......... .......... .......... .......... 70% 1.14M 19s\n", + " 27250K .......... .......... .......... .......... .......... 70% 1.22M 19s\n", + " 27300K .......... .......... .......... .......... .......... 70% 1.64M 19s\n", + " 27350K .......... .......... .......... .......... .......... 70% 2.11M 19s\n", + " 27400K .......... .......... .......... .......... .......... 70% 1.09M 19s\n", + " 27450K .......... .......... .......... .......... .......... 70% 1.69M 18s\n", + " 27500K .......... .......... .......... .......... .......... 70% 2.62M 18s\n", + " 27550K .......... .......... .......... .......... .......... 70% 45.5K 19s\n", + " 27600K .......... .......... .......... .......... .......... 71% 112M 19s\n", + " 27650K .......... .......... .......... .......... .......... 71% 118M 18s\n", + " 27700K .......... .......... .......... .......... .......... 71% 275K 18s\n", + " 27750K .......... .......... .......... .......... .......... 71% 277K 18s\n", + " 27800K .......... .......... .......... .......... .......... 71% 541K 18s\n", + " 27850K .......... .......... .......... .......... .......... 71% 21.6M 18s\n", + " 27900K .......... .......... .......... .......... .......... 71% 553K 18s\n", + " 27950K .......... .......... .......... .......... .......... 72% 5.21M 18s\n", + " 28000K .......... .......... .......... .......... .......... 72% 600K 18s\n", + " 28050K .......... .......... .......... .......... .......... 72% 3.48M 18s\n", + " 28100K .......... .......... .......... .......... .......... 72% 692K 18s\n", + " 28150K .......... .......... .......... .......... .......... 72% 2.39M 18s\n", + " 28200K .......... .......... .......... .......... .......... 72% 678K 17s\n", + " 28250K .......... .......... .......... .......... .......... 72% 3.10M 17s\n", + " 28300K .......... .......... .......... .......... .......... 72% 6.35M 17s\n", + " 28350K .......... .......... .......... .......... .......... 73% 576K 17s\n", + " 28400K .......... .......... .......... .......... .......... 73% 31.8M 17s\n", + " 28450K .......... .......... .......... .......... .......... 73% 576K 17s\n", + " 28500K .......... .......... .......... .......... .......... 73% 4.70M 17s\n", + " 28550K .......... .......... .......... .......... .......... 73% 596K 17s\n", + " 28600K .......... .......... .......... .......... .......... 73% 22.4M 17s\n", + " 28650K .......... .......... .......... .......... .......... 73% 519K 17s\n", + " 28700K .......... .......... .......... .......... .......... 73% 11.4M 17s\n", + " 28750K .......... .......... .......... .......... .......... 74% 580K 16s\n", + " 28800K .......... .......... .......... .......... .......... 74% 5.86M 16s\n", + " 28850K .......... .......... .......... .......... .......... 74% 622K 16s\n", + " 28900K .......... .......... .......... .......... .......... 74% 4.42M 16s\n", + " 28950K .......... .......... .......... .......... .......... 74% 611K 16s\n", + " 29000K .......... .......... .......... .......... .......... 74% 3.99M 16s\n", + " 29050K .......... .......... .......... .......... .......... 74% 672K 16s\n", + " 29100K .......... .......... .......... .......... .......... 74% 2.34M 16s\n", + " 29150K .......... .......... .......... .......... .......... 75% 759K 16s\n", + " 29200K .......... .......... .......... .......... .......... 75% 1.37M 16s\n", + " 29250K .......... .......... .......... .......... .......... 75% 950K 16s\n", + " 29300K .......... .......... .......... .......... .......... 75% 1.27M 15s\n", + " 29350K .......... .......... .......... .......... .......... 75% 1010K 15s\n", + " 29400K .......... .......... .......... .......... .......... 75% 1.22M 15s\n", + " 29450K .......... .......... .......... .......... .......... 75% 3.35M 15s\n", + " 29500K .......... .......... .......... .......... .......... 75% 646K 15s\n", + " 29550K .......... .......... .......... .......... .......... 76% 3.68M 15s\n", + " 29600K .......... .......... .......... .......... .......... 76% 679K 15s\n", + " 29650K .......... .......... .......... .......... .......... 76% 3.44M 15s\n", + " 29700K .......... .......... .......... .......... .......... 76% 915K 15s\n", + " 29750K .......... .......... .......... .......... .......... 76% 1.11M 15s\n", + " 29800K .......... .......... .......... .......... .......... 76% 1.32M 14s\n", + " 29850K .......... .......... .......... .......... .......... 76% 1.35M 14s\n", + " 29900K .......... .......... .......... .......... .......... 77% 1.06M 14s\n", + " 29950K .......... .......... .......... .......... .......... 77% 1.13M 14s\n", + " 30000K .......... .......... .......... .......... .......... 77% 1.29M 14s\n", + " 30050K .......... .......... .......... .......... .......... 77% 1.05M 14s\n", + " 30100K .......... .......... .......... .......... .......... 77% 2.87M 14s\n", + " 30150K .......... .......... .......... .......... .......... 77% 659K 14s\n", + " 30200K .......... .......... .......... .......... .......... 77% 3.73M 14s\n", + " 30250K .......... .......... .......... .......... .......... 77% 837K 14s\n", + " 30300K .......... .......... .......... .......... .......... 78% 1.82M 14s\n", + " 30350K .......... .......... .......... .......... .......... 78% 798K 13s\n", + " 30400K .......... .......... .......... .......... .......... 78% 1.79M 13s\n", + " 30450K .......... .......... .......... .......... .......... 78% 1.54M 13s\n", + " 30500K .......... .......... .......... .......... .......... 78% 845K 13s\n", + " 30550K .......... .......... .......... .......... .......... 78% 2.04M 13s\n", + " 30600K .......... .......... .......... .......... .......... 78% 756K 13s\n", + " 30650K .......... .......... .......... .......... .......... 78% 2.31M 13s\n", + " 30700K .......... .......... .......... .......... .......... 79% 1.13M 13s\n", + " 30750K .......... .......... .......... .......... .......... 79% 1.41M 13s\n", + " 30800K .......... .......... .......... .......... .......... 79% 984K 13s\n", + " 30850K .......... .......... .......... .......... .......... 79% 1.40M 13s\n", + " 30900K .......... .......... .......... .......... .......... 79% 1.83M 12s\n", + " 30950K .......... .......... .......... .......... .......... 79% 772K 12s\n", + " 31000K .......... .......... .......... .......... .......... 79% 2.04M 12s\n", + " 31050K .......... .......... .......... .......... .......... 79% 1018K 12s\n", + " 31100K .......... .......... .......... .......... .......... 80% 1.68M 12s\n", + " 31150K .......... .......... .......... .......... .......... 80% 886K 12s\n", + " 31200K .......... .......... .......... .......... .......... 80% 1.22M 12s\n", + " 31250K .......... .......... .......... .......... .......... 80% 2.99M 12s\n", + " 31300K .......... .......... .......... .......... .......... 80% 691K 12s\n", + " 31350K .......... .......... .......... .......... .......... 80% 2.39M 12s\n", + " 31400K .......... .......... .......... .......... .......... 80% 783K 12s\n", + " 31450K .......... .......... .......... .......... .......... 81% 4.19M 12s\n", + " 31500K .......... .......... .......... .......... .......... 81% 1.24M 11s\n", + " 31550K .......... .......... .......... .......... .......... 81% 1.17M 11s\n", + " 31600K .......... .......... .......... .......... .......... 81% 2.79M 11s\n", + " 31650K .......... .......... .......... .......... .......... 81% 773K 11s\n", + " 31700K .......... .......... .......... .......... .......... 81% 2.24M 11s\n", + " 31750K .......... .......... .......... .......... .......... 81% 301K 11s\n", + " 31800K .......... .......... .......... .......... .......... 81% 89.8M 11s\n", + " 31850K .......... .......... .......... .......... .......... 82% 85.4M 11s\n", + " 31900K .......... .......... .......... .......... .......... 82% 441K 11s\n", + " 31950K .......... .......... .......... .......... .......... 82% 560K 11s\n", + " 32000K .......... .......... .......... .......... .......... 82% 730K 11s\n", + " 32050K .......... .......... .......... .......... .......... 82% 2.75M 11s\n", + " 32100K .......... .......... .......... .......... .......... 82% 723K 10s\n", + " 32150K .......... .......... .......... .......... .......... 82% 2.17M 10s\n", + " 32200K .......... .......... .......... .......... .......... 82% 720K 10s\n", + " 32250K .......... .......... .......... .......... .......... 83% 2.03M 10s\n", + " 32300K .......... .......... .......... .......... .......... 83% 749K 10s\n", + " 32350K .......... .......... .......... .......... .......... 83% 2.28M 10s\n", + " 32400K .......... .......... .......... .......... .......... 83% 711K 10s\n", + " 32450K .......... .......... .......... .......... .......... 83% 26.9M 10s\n", + " 32500K .......... .......... .......... .......... .......... 83% 566K 10s\n", + " 32550K .......... .......... .......... .......... .......... 83% 6.18M 10s\n", + " 32600K .......... .......... .......... .......... .......... 83% 633K 10s\n", + " 32650K .......... .......... .......... .......... .......... 84% 21.1M 10s\n", + " 32700K .......... .......... .......... .......... .......... 84% 54.8K 10s\n", + " 32750K .......... .......... .......... .......... .......... 84% 65.5M 10s\n", + " 32800K .......... .......... .......... .......... .......... 84% 284K 9s\n", + " 32850K .......... .......... .......... .......... .......... 84% 51.3K 10s\n", + " 32900K .......... .......... .......... .......... .......... 84% 21.4K 10s\n", + " 32950K .......... .......... .......... .......... .......... 84% 71.3K 10s\n", + " 33000K .......... .......... .......... .......... .......... 84% 116K 10s\n", + " 33050K .......... .......... .......... .......... .......... 85% 141K 10s\n", + " 33100K .......... .......... .......... .......... .......... 85% 141K 10s\n", + " 33150K .......... .......... .......... .......... .......... 85% 138K 10s\n", + " 33200K .......... .......... .......... .......... .......... 85% 189K 10s\n", + " 33250K .......... .......... .......... .......... .......... 85% 191K 10s\n", + " 33300K .......... .......... .......... .......... .......... 85% 278K 10s\n", + " 33350K .......... .......... .......... .......... .......... 85% 192K 10s\n", + " 33400K .......... .......... .......... .......... .......... 86% 267K 9s\n", + " 33450K .......... .......... .......... .......... .......... 86% 200K 9s\n", + " 33500K .......... .......... .......... .......... .......... 86% 290K 9s\n", + " 33550K .......... .......... .......... .......... .......... 86% 260K 9s\n", + " 33600K .......... .......... .......... .......... .......... 86% 266K 9s\n", + " 33650K .......... .......... .......... .......... .......... 86% 327K 9s\n", + " 33700K .......... .......... .......... .......... .......... 86% 282K 9s\n", + " 33750K .......... .......... .......... .......... .......... 86% 274K 9s\n", + " 33800K .......... .......... .......... .......... .......... 87% 281K 9s\n", + " 33850K .......... .......... .......... .......... .......... 87% 444K 9s\n", + " 33900K .......... .......... .......... .......... .......... 87% 317K 9s\n", + " 33950K .......... .......... .......... .......... .......... 87% 285K 9s\n", + " 34000K .......... .......... .......... .......... .......... 87% 284K 9s\n", + " 34050K .......... .......... .......... .......... .......... 87% 456K 8s\n", + " 34100K .......... .......... .......... .......... .......... 87% 296K 8s\n", + " 34150K .......... .......... .......... .......... .......... 87% 293K 8s\n", + " 34200K .......... .......... .......... .......... .......... 88% 570K 8s\n", + " 34250K .......... .......... .......... .......... .......... 88% 285K 8s\n", + " 34300K .......... .......... .......... .......... .......... 88% 557K 8s\n", + " 34350K .......... .......... .......... .......... .......... 88% 294K 8s\n", + " 34400K .......... .......... .......... .......... .......... 88% 568K 8s\n", + " 34450K .......... .......... .......... .......... .......... 88% 288K 8s\n", + " 34500K .......... .......... .......... .......... .......... 88% 561K 8s\n", + " 34550K .......... .......... .......... .......... .......... 88% 284K 8s\n", + " 34600K .......... .......... .......... .......... .......... 89% 570K 8s\n", + " 34650K .......... .......... .......... .......... .......... 89% 295K 7s\n", + " 34700K .......... .......... .......... .......... .......... 89% 481K 7s\n", + " 34750K .......... .......... .......... .......... .......... 89% 300K 7s\n", + " 34800K .......... .......... .......... .......... .......... 89% 577K 7s\n", + " 34850K .......... .......... .......... .......... .......... 89% 439K 7s\n", + " 34900K .......... .......... .......... .......... .......... 89% 321K 7s\n", + " 34950K .......... .......... .......... .......... .......... 90% 439K 7s\n", + " 35000K .......... .......... .......... .......... .......... 90% 578K 7s\n", + " 35050K .......... .......... .......... .......... .......... 90% 327K 7s\n", + " 35100K .......... .......... .......... .......... .......... 90% 483K 7s\n", + " 35150K .......... .......... .......... .......... .......... 90% 440K 7s\n", + " 35200K .......... .......... .......... .......... .......... 90% 389K 7s\n", + " 35250K .......... .......... .......... .......... .......... 90% 433K 6s\n", + " 35300K .......... .......... .......... .......... .......... 90% 507K 6s\n", + " 35350K .......... .......... .......... .......... .......... 91% 386K 6s\n", + " 35400K .......... .......... .......... .......... .......... 91% 479K 6s\n", + " 35450K .......... .......... .......... .......... .......... 91% 537K 6s\n", + " 35500K .......... .......... .......... .......... .......... 91% 430K 6s\n", + " 35550K .......... .......... .......... .......... .......... 91% 474K 6s\n", + " 35600K .......... .......... .......... .......... .......... 91% 389K 6s\n", + " 35650K .......... .......... .......... .......... .......... 91% 586K 6s\n", + " 35700K .......... .......... .......... .......... .......... 91% 434K 6s\n", + " 35750K .......... .......... .......... .......... .......... 92% 454K 6s\n", + " 35800K .......... .......... .......... .......... .......... 92% 533K 5s\n", + " 35850K .......... .......... .......... .......... .......... 92% 515K 5s\n", + " 35900K .......... .......... .......... .......... .......... 92% 510K 5s\n", + " 35950K .......... .......... .......... .......... .......... 92% 447K 5s\n", + " 36000K .......... .......... .......... .......... .......... 92% 545K 5s\n", + " 36050K .......... .......... .......... .......... .......... 92% 572K 5s\n", + " 36100K .......... .......... .......... .......... .......... 92% 440K 5s\n", + " 36150K .......... .......... .......... .......... .......... 93% 519K 5s\n", + " 36200K .......... .......... .......... .......... .......... 93% 568K 5s\n", + " 36250K .......... .......... .......... .......... .......... 93% 526K 5s\n", + " 36300K .......... .......... .......... .......... .......... 93% 566K 5s\n", + " 36350K .......... .......... .......... .......... .......... 93% 501K 4s\n", + " 36400K .......... .......... .......... .......... .......... 93% 530K 4s\n", + " 36450K .......... .......... .......... .......... .......... 93% 553K 4s\n", + " 36500K .......... .......... .......... .......... .......... 93% 576K 4s\n", + " 36550K .......... .......... .......... .......... .......... 94% 537K 4s\n", + " 36600K .......... .......... .......... .......... .......... 94% 573K 4s\n", + " 36650K .......... .......... .......... .......... .......... 94% 544K 4s\n", + " 36700K .......... .......... .......... .......... .......... 94% 617K 4s\n", + " 36750K .......... .......... .......... .......... .......... 94% 563K 4s\n", + " 36800K .......... .......... .......... .......... .......... 94% 564K 4s\n", + " 36850K .......... .......... .......... .......... .......... 94% 889K 4s\n", + " 36900K .......... .......... .......... .......... .......... 95% 713K 3s\n", + " 36950K .......... .......... .......... .......... .......... 95% 521K 3s\n", + " 37000K .......... .......... .......... .......... .......... 95% 615K 3s\n", + " 37050K .......... .......... .......... .......... .......... 95% 625K 3s\n", + " 37100K .......... .......... .......... .......... .......... 95% 605K 3s\n", + " 37150K .......... .......... .......... .......... .......... 95% 537K 3s\n", + " 37200K .......... .......... .......... .......... .......... 95% 652K 3s\n", + " 37250K .......... .......... .......... .......... .......... 95% 664K 3s\n", + " 37300K .......... .......... .......... .......... .......... 96% 1.03M 3s\n", + " 37350K .......... .......... .......... .......... .......... 96% 585K 3s\n", + " 37400K .......... .......... .......... .......... .......... 96% 643K 3s\n", + " 37450K .......... .......... .......... .......... .......... 96% 566K 2s\n", + " 37500K .......... .......... .......... .......... .......... 96% 837K 2s\n", + " 37550K .......... .......... .......... .......... .......... 96% 545K 2s\n", + " 37600K .......... .......... .......... .......... .......... 96% 1.26M 2s\n", + " 37650K .......... .......... .......... .......... .......... 96% 501K 2s\n", + " 37700K .......... .......... .......... .......... .......... 97% 797K 2s\n", + " 37750K .......... .......... .......... .......... .......... 97% 630K 2s\n", + " 37800K .......... .......... .......... .......... .......... 97% 1.34M 2s\n", + " 37850K .......... .......... .......... .......... .......... 97% 562K 2s\n", + " 37900K .......... .......... .......... .......... .......... 97% 664K 2s\n", + " 37950K .......... .......... .......... .......... .......... 97% 637K 2s\n", + " 38000K .......... .......... .......... .......... .......... 97% 1.10M 2s\n", + " 38050K .......... .......... .......... .......... .......... 97% 568K 1s\n", + " 38100K .......... .......... .......... .......... .......... 98% 828K 1s\n", + " 38150K .......... .......... .......... .......... .......... 98% 790K 1s\n", + " 38200K .......... .......... .......... .......... .......... 98% 783K 1s\n", + " 38250K .......... .......... .......... .......... .......... 98% 614K 1s\n", + " 38300K .......... .......... .......... .......... .......... 98% 599K 1s\n", + " 38350K .......... .......... .......... .......... .......... 98% 1.40M 1s\n", + " 38400K .......... .......... .......... .......... .......... 98% 542K 1s\n", + " 38450K .......... .......... .......... .......... .......... 99% 903K 1s\n", + " 38500K .......... .......... .......... .......... .......... 99% 1.34M 1s\n", + " 38550K .......... .......... .......... .......... .......... 99% 557K 1s\n", + " 38600K .......... .......... .......... .......... .......... 99% 899K 0s\n", + " 38650K .......... .......... .......... .......... .......... 99% 784K 0s\n", + " 38700K .......... .......... .......... .......... .......... 99% 816K 0s\n", + " 38750K .......... .......... .......... .......... .......... 99% 564K 0s\n", + " 38800K .......... .......... .......... .......... .......... 99% 704K 0s\n", + " 38850K .......... .......... .......... ........ 100% 1.24M=69s\n", + "\n", + "2025-04-01 16:35:58 (561 KB/s) - ‘/Users/gregoryhalverson/data/GEOS5FP/2025.04.01/GEOS.fp.asm.tavg1_2d_rad_Nx.20250401_0030.V01.nc4.20250401233448.download’ saved [39822170/39822170]\n", + "\n", + "--2025-04-01 16:35:58-- https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/Y2025/M03/D31/GEOS.fp.asm.tavg3_2d_aer_Nx.20250331_2230.V01.nc4\n", + "Resolving portal.nccs.nasa.gov (portal.nccs.nasa.gov)... 2001:4d0:2418:2800::a99a:9791, 169.154.151.145\n", + "Connecting to portal.nccs.nasa.gov (portal.nccs.nasa.gov)|2001:4d0:2418:2800::a99a:9791|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 120929281 (115M) [application/octet-stream]\n", + "Saving to: ‘/Users/gregoryhalverson/data/GEOS5FP/2025.03.31/GEOS.fp.asm.tavg3_2d_aer_Nx.20250331_2230.V01.nc4.20250401233558.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 250K 7m53s\n", + " 50K .......... .......... .......... .......... .......... 0% 512K 5m51s\n", + " 100K .......... .......... .......... .......... .......... 0% 495K 5m14s\n", + " 150K .......... .......... .......... .......... .......... 0% 261K 5m48s\n", + " 200K .......... .......... .......... .......... .......... 0% 512K 5m24s\n", + " 250K .......... .......... .......... .......... .......... 0% 516K 5m8s\n", + " 300K .......... .......... .......... .......... .......... 0% 298K 5m20s\n", + " 350K .......... .......... .......... .......... .......... 0% 434K 5m14s\n", + " 400K .......... .......... .......... .......... .......... 0% 563K 5m2s\n", + " 450K .......... .......... .......... .......... .......... 0% 329K 5m8s\n", + " 500K .......... .......... .......... .......... .......... 0% 466K 5m3s\n", + " 550K .......... .......... .......... .......... .......... 0% 476K 4m58s\n", + " 600K .......... .......... .......... .......... .......... 0% 590K 4m50s\n", + " 650K .......... .......... .......... .......... .......... 0% 284K 4m59s\n", + " 700K .......... .......... .......... .......... .......... 0% 512K 4m54s\n", + " 750K .......... .......... .......... .......... .......... 0% 503K 4m50s\n", + " 800K .......... .......... .......... .......... .......... 0% 528K 4m46s\n", + " 850K .......... .......... .......... .......... .......... 0% 569K 4m41s\n", + " 900K .......... .......... .......... .......... .......... 0% 411K 4m42s\n", + " 950K .......... .......... .......... .......... .......... 0% 295K 4m47s\n", + " 1000K .......... .......... .......... .......... .......... 0% 548K 4m44s\n", + " 1050K .......... .......... .......... .......... .......... 0% 551K 4m40s\n", + " 1100K .......... .......... .......... .......... .......... 0% 563K 4m37s\n", + " 1150K .......... .......... .......... .......... .......... 1% 526K 4m35s\n", + " 1200K .......... .......... .......... .......... .......... 1% 432K 4m34s\n", + " 1250K .......... .......... .......... .......... .......... 1% 562K 4m32s\n", + " 1300K .......... .......... .......... .......... .......... 1% 561K 4m29s\n", + " 1350K .......... .......... .......... .......... .......... 1% 304K 4m33s\n", + " 1400K .......... .......... .......... .......... .......... 1% 554K 4m31s\n", + " 1450K .......... .......... .......... .......... .......... 1% 563K 4m29s\n", + " 1500K .......... .......... .......... .......... .......... 1% 547K 4m27s\n", + " 1550K .......... .......... .......... .......... .......... 1% 570K 4m25s\n", + " 1600K .......... .......... .......... .......... .......... 1% 491K 4m24s\n", + " 1650K .......... .......... .......... .......... .......... 1% 494K 4m23s\n", + " 1700K .......... .......... .......... .......... .......... 1% 502K 4m22s\n", + " 1750K .......... .......... .......... .......... .......... 1% 484K 4m21s\n", + " 1800K .......... .......... .......... .......... .......... 1% 563K 4m19s\n", + " 1850K .......... .......... .......... .......... .......... 1% 535K 4m18s\n", + " 1900K .......... .......... .......... .......... .......... 1% 545K 4m17s\n", + " 1950K .......... .......... .......... .......... .......... 1% 552K 4m16s\n", + " 2000K .......... .......... .......... .......... .......... 1% 549K 4m15s\n", + " 2050K .......... .......... .......... .......... .......... 1% 529K 4m14s\n", + " 2100K .......... .......... .......... .......... .......... 1% 553K 4m12s\n", + " 2150K .......... .......... .......... .......... .......... 1% 536K 4m12s\n", + " 2200K .......... .......... .......... .......... .......... 1% 530K 4m11s\n", + " 2250K .......... .......... .......... .......... .......... 1% 523K 4m10s\n", + " 2300K .......... .......... .......... .......... .......... 1% 535K 4m9s\n", + " 2350K .......... .......... .......... .......... .......... 2% 515K 4m9s\n", + " 2400K .......... .......... .......... .......... .......... 2% 522K 4m8s\n", + " 2450K .......... .......... .......... .......... .......... 2% 567K 4m7s\n", + " 2500K .......... .......... .......... .......... .......... 2% 547K 4m6s\n", + " 2550K .......... .......... .......... .......... .......... 2% 504K 4m6s\n", + " 2600K .......... .......... .......... .......... .......... 2% 534K 4m5s\n", + " 2650K .......... .......... .......... .......... .......... 2% 543K 4m4s\n", + " 2700K .......... .......... .......... .......... .......... 2% 539K 4m4s\n", + " 2750K .......... .......... .......... .......... .......... 2% 563K 4m3s\n", + " 2800K .......... .......... .......... .......... .......... 2% 492K 4m3s\n", + " 2850K .......... .......... .......... .......... .......... 2% 548K 4m2s\n", + " 2900K .......... .......... .......... .......... .......... 2% 536K 4m1s\n", + " 2950K .......... .......... .......... .......... .......... 2% 498K 4m1s\n", + " 3000K .......... .......... .......... .......... .......... 2% 566K 4m0s\n", + " 3050K .......... .......... .......... .......... .......... 2% 529K 4m0s\n", + " 3100K .......... .......... .......... .......... .......... 2% 530K 3m59s\n", + " 3150K .......... .......... .......... .......... .......... 2% 570K 3m59s\n", + " 3200K .......... .......... .......... .......... .......... 2% 510K 3m58s\n", + " 3250K .......... .......... .......... .......... .......... 2% 564K 3m58s\n", + " 3300K .......... .......... .......... .......... .......... 2% 2.25M 3m55s\n", + " 3350K .......... .......... .......... .......... .......... 2% 480K 3m55s\n", + " 3400K .......... .......... .......... .......... .......... 2% 573K 3m54s\n", + " 3450K .......... .......... .......... .......... .......... 2% 490K 3m54s\n", + " 3500K .......... .......... .......... .......... .......... 3% 512K 3m54s\n", + " 3550K .......... .......... .......... .......... .......... 3% 553K 3m53s\n", + " 3600K .......... .......... .......... .......... .......... 3% 560K 3m53s\n", + " 3650K .......... .......... .......... .......... .......... 3% 523K 3m53s\n", + " 3700K .......... .......... .......... .......... .......... 3% 733K 3m51s\n", + " 3750K .......... .......... .......... .......... .......... 3% 516K 3m51s\n", + " 3800K .......... .......... .......... .......... .......... 3% 2.13M 3m49s\n", + " 3850K .......... .......... .......... .......... .......... 3% 526K 3m49s\n", + " 3900K .......... .......... .......... .......... .......... 3% 554K 3m48s\n", + " 3950K .......... .......... .......... .......... .......... 3% 573K 3m48s\n", + " 4000K .......... .......... .......... .......... .......... 3% 579K 3m47s\n", + " 4050K .......... .......... .......... .......... .......... 3% 586K 3m47s\n", + " 4100K .......... .......... .......... .......... .......... 3% 2.62M 3m44s\n", + " 4150K .......... .......... .......... .......... .......... 3% 470K 3m45s\n", + " 4200K .......... .......... .......... .......... .......... 3% 549K 3m44s\n", + " 4250K .......... .......... .......... .......... .......... 3% 548K 3m44s\n", + " 4300K .......... .......... .......... .......... .......... 3% 830K 3m43s\n", + " 4350K .......... .......... .......... .......... .......... 3% 542K 3m43s\n", + " 4400K .......... .......... .......... .......... .......... 3% 680K 3m42s\n", + " 4450K .......... .......... .......... .......... .......... 3% 943K 3m41s\n", + " 4500K .......... .......... .......... .......... .......... 3% 620K 3m40s\n", + " 4550K .......... .......... .......... .......... .......... 3% 536K 3m40s\n", + " 4600K .......... .......... .......... .......... .......... 3% 747K 3m39s\n", + " 4650K .......... .......... .......... .......... .......... 3% 923K 3m38s\n", + " 4700K .......... .......... .......... .......... .......... 4% 723K 3m37s\n", + " 4750K .......... .......... .......... .......... .......... 4% 568K 3m37s\n", + " 4800K .......... .......... .......... .......... .......... 4% 57.3K 3m55s\n", + " 4850K .......... .......... .......... .......... .......... 4% 44.3M 3m53s\n", + " 4900K .......... .......... .......... .......... .......... 4% 137K 3m58s\n", + " 4950K .......... .......... .......... .......... .......... 4% 265K 4m0s\n", + " 5000K .......... .......... .......... .......... .......... 4% 524K 4m0s\n", + " 5050K .......... .......... .......... .......... .......... 4% 588K 3m59s\n", + " 5100K .......... .......... .......... .......... .......... 4% 532K 3m59s\n", + " 5150K .......... .......... .......... .......... .......... 4% 545K 3m59s\n", + " 5200K .......... .......... .......... .......... .......... 4% 508K 3m58s\n", + " 5250K .......... .......... .......... .......... .......... 4% 524K 3m58s\n", + " 5300K .......... .......... .......... .......... .......... 4% 489K 3m58s\n", + " 5350K .......... .......... .......... .......... .......... 4% 555K 3m57s\n", + " 5400K .......... .......... .......... .......... .......... 4% 45.7K 4m18s\n", + " 5450K .......... .......... .......... .......... .......... 4% 250K 4m19s\n", + " 5500K .......... .......... .......... .......... .......... 4% 645K 4m18s\n", + " 5550K .......... .......... .......... .......... .......... 4% 496K 4m18s\n", + " 5600K .......... .......... .......... .......... .......... 4% 174K 4m21s\n", + " 5650K .......... .......... .......... .......... .......... 4% 17.9K 5m14s\n", + " 5700K .......... .......... .......... .......... .......... 4% 178K 5m17s\n", + " 5750K .......... .......... .......... .......... .......... 4% 262K 5m17s\n", + " 5800K .......... .......... .......... .......... .......... 4% 284K 5m18s\n", + " 5850K .......... .......... .......... .......... .......... 4% 285K 5m18s\n", + " 5900K .......... .......... .......... .......... .......... 5% 311K 5m19s\n", + " 5950K .......... .......... .......... .......... .......... 5% 411K 5m18s\n", + " 6000K .......... .......... .......... .......... .......... 5% 281K 5m19s\n", + " 6050K .......... .......... .......... .......... .......... 5% 313K 5m19s\n", + " 6100K .......... .......... .......... .......... .......... 5% 479K 5m18s\n", + " 6150K .......... .......... .......... .......... .......... 5% 287K 5m18s\n", + " 6200K .......... .......... .......... .......... .......... 5% 390K 5m18s\n", + " 6250K .......... .......... .......... .......... .......... 5% 325K 5m18s\n", + " 6300K .......... .......... .......... .......... .......... 5% 545K 5m17s\n", + " 6350K .......... .......... .......... .......... .......... 5% 277K 5m18s\n", + " 6400K .......... .......... .......... .......... .......... 5% 556K 5m17s\n", + " 6450K .......... .......... .......... .......... .......... 5% 340K 5m17s\n", + " 6500K .......... .......... .......... .......... .......... 5% 407K 5m16s\n", + " 6550K .......... .......... .......... .......... .......... 5% 327K 5m16s\n", + " 6600K .......... .......... .......... .......... .......... 5% 432K 5m16s\n", + " 6650K .......... .......... .......... .......... .......... 5% 519K 5m15s\n", + " 6700K .......... .......... .......... .......... .......... 5% 461K 5m14s\n", + " 6750K .......... .......... .......... .......... .......... 5% 319K 5m14s\n", + " 6800K .......... .......... .......... .......... .......... 5% 523K 5m13s\n", + " 6850K .......... .......... .......... .......... .......... 5% 469K 5m13s\n", + " 6900K .......... .......... .......... .......... .......... 5% 393K 5m12s\n", + " 6950K .......... .......... .......... .......... .......... 5% 434K 5m12s\n", + " 7000K .......... .......... .......... .......... .......... 5% 443K 5m11s\n", + " 7050K .......... .......... .......... .......... .......... 6% 421K 5m11s\n", + " 7100K .......... .......... .......... .......... .......... 6% 553K 5m10s\n", + " 7150K .......... .......... .......... .......... .......... 6% 455K 5m9s\n", + " 7200K .......... .......... .......... .......... .......... 6% 296K 5m9s\n", + " 7250K .......... .......... .......... .......... .......... 6% 453K 5m9s\n", + " 7300K .......... .......... .......... .......... .......... 6% 515K 5m8s\n", + " 7350K .......... .......... .......... .......... .......... 6% 536K 5m7s\n", + " 7400K .......... .......... .......... .......... .......... 6% 545K 5m6s\n", + " 7450K .......... .......... .......... .......... .......... 6% 557K 5m6s\n", + " 7500K .......... .......... .......... .......... .......... 6% 459K 5m5s\n", + " 7550K .......... .......... .......... .......... .......... 6% 360K 5m5s\n", + " 7600K .......... .......... .......... .......... .......... 6% 351K 5m5s\n", + " 7650K .......... .......... .......... .......... .......... 6% 535K 5m4s\n", + " 7700K .......... .......... .......... .......... .......... 6% 571K 5m3s\n", + " 7750K .......... .......... .......... .......... .......... 6% 522K 5m2s\n", + " 7800K .......... .......... .......... .......... .......... 6% 532K 5m2s\n", + " 7850K .......... .......... .......... .......... .......... 6% 510K 5m1s\n", + " 7900K .......... .......... .......... .......... .......... 6% 530K 5m0s\n", + " 7950K .......... .......... .......... .......... .......... 6% 129K 5m4s\n", + " 8000K .......... .......... .......... .......... .......... 6% 268K 5m4s\n", + " 8050K .......... .......... .......... .......... .......... 6% 261K 5m5s\n", + " 8100K .......... .......... .......... .......... .......... 6% 282K 5m5s\n", + " 8150K .......... .......... .......... .......... .......... 6% 267K 5m6s\n", + " 8200K .......... .......... .......... .......... .......... 6% 293K 5m6s\n", + " 8250K .......... .......... .......... .......... .......... 7% 444K 5m5s\n", + " 8300K .......... .......... .......... .......... .......... 7% 290K 5m6s\n", + " 8350K .......... .......... .......... .......... .......... 7% 282K 5m6s\n", + " 8400K .......... .......... .......... .......... .......... 7% 276K 5m6s\n", + " 8450K .......... .......... .......... .......... .......... 7% 467K 5m6s\n", + " 8500K .......... .......... .......... .......... .......... 7% 309K 5m6s\n", + " 8550K .......... .......... .......... .......... .......... 7% 269K 5m6s\n", + " 8600K .......... .......... .......... .......... .......... 7% 482K 5m6s\n", + " 8650K .......... .......... .......... .......... .......... 7% 308K 5m6s\n", + " 8700K .......... .......... .......... .......... .......... 7% 527K 5m5s\n", + " 8750K .......... .......... .......... .......... .......... 7% 291K 5m6s\n", + " 8800K .......... .......... .......... .......... .......... 7% 434K 5m5s\n", + " 8850K .......... .......... .......... .......... .......... 7% 182K 5m7s\n", + " 8900K .......... .......... .......... .......... .......... 7% 274K 5m7s\n", + " 8950K .......... .......... .......... .......... .......... 7% 179K 5m9s\n", + " 9000K .......... .......... .......... .......... .......... 7% 266K 5m9s\n", + " 9050K .......... .......... .......... .......... .......... 7% 194K 5m10s\n", + " 9100K .......... .......... .......... .......... .......... 7% 283K 5m11s\n", + " 9150K .......... .......... .......... .......... .......... 7% 246K 5m11s\n", + " 9200K .......... .......... .......... .......... .......... 7% 319K 5m11s\n", + " 9250K .......... .......... .......... .......... .......... 7% 275K 5m11s\n", + " 9300K .......... .......... .......... .......... .......... 7% 275K 5m12s\n", + " 9350K .......... .......... .......... .......... .......... 7% 268K 5m12s\n", + " 9400K .......... .......... .......... .......... .......... 8% 287K 5m12s\n", + " 9450K .......... .......... .......... .......... .......... 8% 374K 5m12s\n", + " 9500K .......... .......... .......... .......... .......... 8% 117K 5m15s\n", + " 9550K .......... .......... .......... .......... .......... 8% 276K 5m15s\n", + " 9600K .......... .......... .......... .......... .......... 8% 189K 5m17s\n", + " 9650K .......... .......... .......... .......... .......... 8% 181K 5m18s\n", + " 9700K .......... .......... .......... .......... .......... 8% 263K 5m18s\n", + " 9750K .......... .......... .......... .......... .......... 8% 185K 5m19s\n", + " 9800K .......... .......... .......... .......... .......... 8% 175K 5m21s\n", + " 9850K .......... .......... .......... .......... .......... 8% 265K 5m21s\n", + " 9900K .......... .......... .......... .......... .......... 8% 268K 5m21s\n", + " 9950K .......... .......... .......... .......... .......... 8% 186K 5m23s\n", + " 10000K .......... .......... .......... .......... .......... 8% 277K 5m23s\n", + " 10050K .......... .......... .......... .......... .......... 8% 274K 5m23s\n", + " 10100K .......... .......... .......... .......... .......... 8% 275K 5m23s\n", + " 10150K .......... .......... .......... .......... .......... 8% 189K 5m24s\n", + " 10200K .......... .......... .......... .......... .......... 8% 282K 5m24s\n", + " 10250K .......... .......... .......... .......... .......... 8% 268K 5m25s\n", + " 10300K .......... .......... .......... .......... .......... 8% 285K 5m25s\n", + " 10350K .......... .......... .......... .......... .......... 8% 263K 5m25s\n", + " 10400K .......... .......... .......... .......... .......... 8% 264K 5m25s\n", + " 10450K .......... .......... .......... .......... .......... 8% 279K 5m25s\n", + " 10500K .......... .......... .......... .......... .......... 8% 526K 5m25s\n", + " 10550K .......... .......... .......... .......... .......... 8% 270K 5m25s\n", + " 10600K .......... .......... .......... .......... .......... 9% 251K 5m25s\n", + " 10650K .......... .......... .......... .......... .......... 9% 283K 5m25s\n", + " 10700K .......... .......... .......... .......... .......... 9% 524K 5m24s\n", + " 10750K .......... .......... .......... .......... .......... 9% 264K 5m25s\n", + " 10800K .......... .......... .......... .......... .......... 9% 282K 5m25s\n", + " 10850K .......... .......... .......... .......... .......... 9% 486K 5m24s\n", + " 10900K .......... .......... .......... .......... .......... 9% 314K 5m24s\n", + " 10950K .......... .......... .......... .......... .......... 9% 312K 5m24s\n", + " 11000K .......... .......... .......... .......... .......... 9% 372K 5m24s\n", + " 11050K .......... .......... .......... .......... .......... 9% 447K 5m23s\n", + " 11100K .......... .......... .......... .......... .......... 9% 352K 5m23s\n", + " 11150K .......... .......... .......... .......... .......... 9% 333K 5m23s\n", + " 11200K .......... .......... .......... .......... .......... 9% 439K 5m22s\n", + " 11250K .......... .......... .......... .......... .......... 9% 372K 5m22s\n", + " 11300K .......... .......... .......... .......... .......... 9% 428K 5m22s\n", + " 11350K .......... .......... .......... .......... .......... 9% 412K 5m21s\n", + " 11400K .......... .......... .......... .......... .......... 9% 388K 5m21s\n", + " 11450K .......... .......... .......... .......... .......... 9% 432K 5m20s\n", + " 11500K .......... .......... .......... .......... .......... 9% 524K 5m20s\n", + " 11550K .......... .......... .......... .......... .......... 9% 339K 5m19s\n", + " 11600K .......... .......... .......... .......... .......... 9% 516K 5m19s\n", + " 11650K .......... .......... .......... .......... .......... 9% 466K 5m18s\n", + " 11700K .......... .......... .......... .......... .......... 9% 478K 5m18s\n", + " 11750K .......... .......... .......... .......... .......... 9% 395K 5m17s\n", + " 11800K .......... .......... .......... .......... .......... 10% 441K 5m17s\n", + " 11850K .......... .......... .......... .......... .......... 10% 480K 5m16s\n", + " 11900K .......... .......... .......... .......... .......... 10% 504K 5m16s\n", + " 11950K .......... .......... .......... .......... .......... 10% 500K 5m15s\n", + " 12000K .......... .......... .......... .......... .......... 10% 552K 5m15s\n", + " 12050K .......... .......... .......... .......... .......... 10% 473K 5m14s\n", + " 12100K .......... .......... .......... .......... .......... 10% 376K 5m14s\n", + " 12150K .......... .......... .......... .......... .......... 10% 547K 5m13s\n", + " 12200K .......... .......... .......... .......... .......... 10% 427K 5m13s\n", + " 12250K .......... .......... .......... .......... .......... 10% 488K 5m12s\n", + " 12300K .......... .......... .......... .......... .......... 10% 553K 5m11s\n", + " 12350K .......... .......... .......... .......... .......... 10% 527K 5m11s\n", + " 12400K .......... .......... .......... .......... .......... 10% 531K 5m10s\n", + " 12450K .......... .......... .......... .......... .......... 10% 540K 5m10s\n", + " 12500K .......... .......... .......... .......... .......... 10% 519K 5m9s\n", + " 12550K .......... .......... .......... .......... .......... 10% 552K 5m9s\n", + " 12600K .......... .......... .......... .......... .......... 10% 562K 5m8s\n", + " 12650K .......... .......... .......... .......... .......... 10% 507K 5m7s\n", + " 12700K .......... .......... .......... .......... .......... 10% 566K 5m7s\n", + " 12750K .......... .......... .......... .......... .......... 10% 435K 5m6s\n", + " 12800K .......... .......... .......... .......... .......... 10% 561K 5m6s\n", + " 12850K .......... .......... .......... .......... .......... 10% 759K 5m5s\n", + " 12900K .......... .......... .......... .......... .......... 10% 532K 5m4s\n", + " 12950K .......... .......... .......... .......... .......... 11% 542K 5m4s\n", + " 13000K .......... .......... .......... .......... .......... 11% 554K 5m3s\n", + " 13050K .......... .......... .......... .......... .......... 11% 551K 5m3s\n", + " 13100K .......... .......... .......... .......... .......... 11% 658K 5m2s\n", + " 13150K .......... .......... .......... .......... .......... 11% 485K 5m1s\n", + " 13200K .......... .......... .......... .......... .......... 11% 600K 5m1s\n", + " 13250K .......... .......... .......... .......... .......... 11% 509K 5m0s\n", + " 13300K .......... .......... .......... .......... .......... 11% 947K 5m0s\n", + " 13350K .......... .......... .......... .......... .......... 11% 447K 4m59s\n", + " 13400K .......... .......... .......... .......... .......... 11% 1.14M 4m58s\n", + " 13450K .......... .......... .......... .......... .......... 11% 557K 4m58s\n", + " 13500K .......... .......... .......... .......... .......... 11% 579K 4m57s\n", + " 13550K .......... .......... .......... .......... .......... 11% 542K 4m57s\n", + " 13600K .......... .......... .......... .......... .......... 11% 578K 4m56s\n", + " 13650K .......... .......... .......... .......... .......... 11% 686K 4m55s\n", + " 13700K .......... .......... .......... .......... .......... 11% 1.27M 4m54s\n", + " 13750K .......... .......... .......... .......... .......... 11% 435K 4m54s\n", + " 13800K .......... .......... .......... .......... .......... 11% 502K 4m54s\n", + " 13850K .......... .......... .......... .......... .......... 11% 1.31M 4m53s\n", + " 13900K .......... .......... .......... .......... .......... 11% 555K 4m52s\n", + " 13950K .......... .......... .......... .......... .......... 11% 633K 4m52s\n", + " 14000K .......... .......... .......... .......... .......... 11% 834K 4m51s\n", + " 14050K .......... .......... .......... .......... .......... 11% 551K 4m50s\n", + " 14100K .......... .......... .......... .......... .......... 11% 1.09M 4m50s\n", + " 14150K .......... .......... .......... .......... .......... 12% 574K 4m49s\n", + " 14200K .......... .......... .......... .......... .......... 12% 705K 4m48s\n", + " 14250K .......... .......... .......... .......... .......... 12% 545K 4m48s\n", + " 14300K .......... .......... .......... .......... .......... 12% 2.07M 4m47s\n", + " 14350K .......... .......... .......... .......... .......... 12% 554K 4m46s\n", + " 14400K .......... .......... .......... .......... .......... 12% 722K 4m46s\n", + " 14450K .......... .......... .......... .......... .......... 12% 579K 4m45s\n", + " 14500K .......... .......... .......... .......... .......... 12% 705K 4m45s\n", + " 14550K .......... .......... .......... .......... .......... 12% 1.07M 4m44s\n", + " 14600K .......... .......... .......... .......... .......... 12% 710K 4m43s\n", + " 14650K .......... .......... .......... .......... .......... 12% 523K 4m43s\n", + " 14700K .......... .......... .......... .......... .......... 12% 2.82M 4m42s\n", + " 14750K .......... .......... .......... .......... .......... 12% 638K 4m41s\n", + " 14800K .......... .......... .......... .......... .......... 12% 606K 4m41s\n", + " 14850K .......... .......... .......... .......... .......... 12% 575K 4m40s\n", + " 14900K .......... .......... .......... .......... .......... 12% 1.76M 4m39s\n", + " 14950K .......... .......... .......... .......... .......... 12% 743K 4m39s\n", + " 15000K .......... .......... .......... .......... .......... 12% 615K 4m38s\n", + " 15050K .......... .......... .......... .......... .......... 12% 1.66M 4m37s\n", + " 15100K .......... .......... .......... .......... .......... 12% 761K 4m37s\n", + " 15150K .......... .......... .......... .......... .......... 12% 555K 4m36s\n", + " 15200K .......... .......... .......... .......... .......... 12% 644K 4m36s\n", + " 15250K .......... .......... .......... .......... .......... 12% 1.69M 4m35s\n", + " 15300K .......... .......... .......... .......... .......... 12% 720K 4m35s\n", + " 15350K .......... .......... .......... .......... .......... 13% 568K 4m34s\n", + " 15400K .......... .......... .......... .......... .......... 13% 910K 4m33s\n", + " 15450K .......... .......... .......... .......... .......... 13% 1.33M 4m33s\n", + " 15500K .......... .......... .......... .......... .......... 13% 576K 4m32s\n", + " 15550K .......... .......... .......... .......... .......... 13% 911K 4m32s\n", + " 15600K .......... .......... .......... .......... .......... 13% 1.19M 4m31s\n", + " 15650K .......... .......... .......... .......... .......... 13% 573K 4m30s\n", + " 15700K .......... .......... .......... .......... .......... 13% 937K 4m30s\n", + " 15750K .......... .......... .......... .......... .......... 13% 1.26M 4m29s\n", + " 15800K .......... .......... .......... .......... .......... 13% 565K 4m29s\n", + " 15850K .......... .......... .......... .......... .......... 13% 932K 4m28s\n", + " 15900K .......... .......... .......... .......... .......... 13% 999K 4m27s\n", + " 15950K .......... .......... .......... .......... .......... 13% 618K 4m27s\n", + " 16000K .......... .......... .......... .......... .......... 13% 1.03M 4m26s\n", + " 16050K .......... .......... .......... .......... .......... 13% 947K 4m26s\n", + " 16100K .......... .......... .......... .......... .......... 13% 1.17M 4m25s\n", + " 16150K .......... .......... .......... .......... .......... 13% 601K 4m25s\n", + " 16200K .......... .......... .......... .......... .......... 13% 934K 4m24s\n", + " 16250K .......... .......... .......... .......... .......... 13% 1.24M 4m23s\n", + " 16300K .......... .......... .......... .......... .......... 13% 953K 4m23s\n", + " 16350K .......... .......... .......... .......... .......... 13% 579K 4m22s\n", + " 16400K .......... .......... .......... .......... .......... 13% 884K 4m22s\n", + " 16450K .......... .......... .......... .......... .......... 13% 1.34M 4m21s\n", + " 16500K .......... .......... .......... .......... .......... 14% 886K 4m20s\n", + " 16550K .......... .......... .......... .......... .......... 14% 797K 4m20s\n", + " 16600K .......... .......... .......... .......... .......... 14% 840K 4m19s\n", + " 16650K .......... .......... .......... .......... .......... 14% 932K 4m19s\n", + " 16700K .......... .......... .......... .......... .......... 14% 1.29M 4m18s\n", + " 16750K .......... .......... .......... .......... .......... 14% 643K 4m18s\n", + " 16800K .......... .......... .......... .......... .......... 14% 1.40M 4m17s\n", + " 16850K .......... .......... .......... .......... .......... 14% 784K 4m16s\n", + " 16900K .......... .......... .......... .......... .......... 14% 983K 4m16s\n", + " 16950K .......... .......... .......... .......... .......... 14% 1.19M 4m15s\n", + " 17000K .......... .......... .......... .......... .......... 14% 665K 4m15s\n", + " 17050K .......... .......... .......... .......... .......... 14% 1.30M 4m14s\n", + " 17100K .......... .......... .......... .......... .......... 14% 906K 4m14s\n", + " 17150K .......... .......... .......... .......... .......... 14% 786K 4m13s\n", + " 17200K .......... .......... .......... .......... .......... 14% 1.59M 4m12s\n", + " 17250K .......... .......... .......... .......... .......... 14% 629K 4m12s\n", + " 17300K .......... .......... .......... .......... .......... 14% 4.08M 4m11s\n", + " 17350K .......... .......... .......... .......... .......... 14% 621K 4m11s\n", + " 17400K .......... .......... .......... .......... .......... 14% 1.12M 4m10s\n", + " 17450K .......... .......... .......... .......... .......... 14% 972K 4m10s\n", + " 17500K .......... .......... .......... .......... .......... 14% 1.03M 4m9s\n", + " 17550K .......... .......... .......... .......... .......... 14% 887K 4m9s\n", + " 17600K .......... .......... .......... .......... .......... 14% 654K 4m8s\n", + " 17650K .......... .......... .......... .......... .......... 14% 2.22M 4m8s\n", + " 17700K .......... .......... .......... .......... .......... 15% 727K 4m7s\n", + " 17750K .......... .......... .......... .......... .......... 15% 1.69M 4m6s\n", + " 17800K .......... .......... .......... .......... .......... 15% 718K 4m6s\n", + " 17850K .......... .......... .......... .......... .......... 15% 1.42M 4m5s\n", + " 17900K .......... .......... .......... .......... .......... 15% 882K 4m5s\n", + " 17950K .......... .......... .......... .......... .......... 15% 926K 4m4s\n", + " 18000K .......... .......... .......... .......... .......... 15% 1.01M 4m4s\n", + " 18050K .......... .......... .......... .......... .......... 15% 1.03M 4m3s\n", + " 18100K .......... .......... .......... .......... .......... 15% 1.19M 4m3s\n", + " 18150K .......... .......... .......... .......... .......... 15% 889K 4m2s\n", + " 18200K .......... .......... .......... .......... .......... 15% 1.39M 4m2s\n", + " 18250K .......... .......... .......... .......... .......... 15% 675K 4m1s\n", + " 18300K .......... .......... .......... .......... .......... 15% 2.78M 4m1s\n", + " 18350K .......... .......... .......... .......... .......... 15% 637K 4m0s\n", + " 18400K .......... .......... .......... .......... .......... 15% 1.87M 4m0s\n", + " 18450K .......... .......... .......... .......... .......... 15% 65.5K 4m3s\n", + " 18500K .......... .......... .......... .......... .......... 15% 47.5M 4m2s\n", + " 18550K .......... .......... .......... .......... .......... 15% 566K 4m2s\n", + " 18600K .......... .......... .......... .......... .......... 15% 252K 4m2s\n", + " 18650K .......... .......... .......... .......... .......... 15% 568K 4m2s\n", + " 18700K .......... .......... .......... .......... .......... 15% 630K 4m2s\n", + " 18750K .......... .......... .......... .......... .......... 15% 669K 4m1s\n", + " 18800K .......... .......... .......... .......... .......... 15% 1.55M 4m1s\n", + " 18850K .......... .......... .......... .......... .......... 16% 608K 4m0s\n", + " 18900K .......... .......... .......... .......... .......... 16% 666K 4m0s\n", + " 18950K .......... .......... .......... .......... .......... 16% 1.24M 3m59s\n", + " 19000K .......... .......... .......... .......... .......... 16% 589K 3m59s\n", + " 19050K .......... .......... .......... .......... .......... 16% 947K 3m59s\n", + " 19100K .......... .......... .......... .......... .......... 16% 1001K 3m58s\n", + " 19150K .......... .......... .......... .......... .......... 16% 623K 3m58s\n", + " 19200K .......... .......... .......... .......... .......... 16% 1004K 3m57s\n", + " 19250K .......... .......... .......... .......... .......... 16% 930K 3m57s\n", + " 19300K .......... .......... .......... .......... .......... 16% 611K 3m57s\n", + " 19350K .......... .......... .......... .......... .......... 16% 838K 3m56s\n", + " 19400K .......... .......... .......... .......... .......... 16% 1.01M 3m56s\n", + " 19450K .......... .......... .......... .......... .......... 16% 761K 3m55s\n", + " 19500K .......... .......... .......... .......... .......... 16% 1.31M 3m55s\n", + " 19550K .......... .......... .......... .......... .......... 16% 684K 3m54s\n", + " 19600K .......... .......... .......... .......... .......... 16% 768K 3m54s\n", + " 19650K .......... .......... .......... .......... .......... 16% 1.62M 3m53s\n", + " 19700K .......... .......... .......... .......... .......... 16% 621K 3m53s\n", + " 19750K .......... .......... .......... .......... .......... 16% 779K 3m53s\n", + " 19800K .......... .......... .......... .......... .......... 16% 1.55M 3m52s\n", + " 19850K .......... .......... .......... .......... .......... 16% 585K 3m52s\n", + " 19900K .......... .......... .......... .......... .......... 16% 1.40M 3m51s\n", + " 19950K .......... .......... .......... .......... .......... 16% 831K 3m51s\n", + " 20000K .......... .......... .......... .......... .......... 16% 815K 3m51s\n", + " 20050K .......... .......... .......... .......... .......... 17% 1.62M 3m50s\n", + " 20100K .......... .......... .......... .......... .......... 17% 507K 3m50s\n", + " 20150K .......... .......... .......... .......... .......... 17% 1.32M 3m49s\n", + " 20200K .......... .......... .......... .......... .......... 17% 814K 3m49s\n", + " 20250K .......... .......... .......... .......... .......... 17% 1.02M 3m49s\n", + " 20300K .......... .......... .......... .......... .......... 17% 1.11M 3m48s\n", + " 20350K .......... .......... .......... .......... .......... 17% 606K 3m48s\n", + " 20400K .......... .......... .......... .......... .......... 17% 1.65M 3m47s\n", + " 20450K .......... .......... .......... .......... .......... 17% 723K 3m47s\n", + " 20500K .......... .......... .......... .......... .......... 17% 859K 3m47s\n", + " 20550K .......... .......... .......... .......... .......... 17% 1.40M 3m46s\n", + " 20600K .......... .......... .......... .......... .......... 17% 660K 3m46s\n", + " 20650K .......... .......... .......... .......... .......... 17% 2.09M 3m45s\n", + " 20700K .......... .......... .......... .......... .......... 17% 699K 3m45s\n", + " 20750K .......... .......... .......... .......... .......... 17% 674K 3m45s\n", + " 20800K .......... .......... .......... .......... .......... 17% 1.54M 3m44s\n", + " 20850K .......... .......... .......... .......... .......... 17% 810K 3m44s\n", + " 20900K .......... .......... .......... .......... .......... 17% 1.37M 3m43s\n", + " 20950K .......... .......... .......... .......... .......... 17% 766K 3m43s\n", + " 21000K .......... .......... .......... .......... .......... 17% 1.53M 3m42s\n", + " 21050K .......... .......... .......... .......... .......... 17% 744K 3m42s\n", + " 21100K .......... .......... .......... .......... .......... 17% 1.43M 3m42s\n", + " 21150K .......... .......... .......... .......... .......... 17% 794K 3m41s\n", + " 21200K .......... .......... .......... .......... .......... 17% 794K 3m41s\n", + " 21250K .......... .......... .......... .......... .......... 18% 1.93M 3m40s\n", + " 21300K .......... .......... .......... .......... .......... 18% 717K 3m40s\n", + " 21350K .......... .......... .......... .......... .......... 18% 709K 3m40s\n", + " 21400K .......... .......... .......... .......... .......... 18% 1.25M 3m39s\n", + " 21450K .......... .......... .......... .......... .......... 18% 1.04M 3m39s\n", + " 21500K .......... .......... .......... .......... .......... 18% 1.05M 3m38s\n", + " 21550K .......... .......... .......... .......... .......... 18% 1.01M 3m38s\n", + " 21600K .......... .......... .......... .......... .......... 18% 1.09M 3m38s\n", + " 21650K .......... .......... .......... .......... .......... 18% 922K 3m37s\n", + " 21700K .......... .......... .......... .......... .......... 18% 1.31M 3m37s\n", + " 21750K .......... .......... .......... .......... .......... 18% 615K 3m37s\n", + " 21800K .......... .......... .......... .......... .......... 18% 1.03M 3m36s\n", + " 21850K .......... .......... .......... .......... .......... 18% 1.06M 3m36s\n", + " 21900K .......... .......... .......... .......... .......... 18% 1.05M 3m35s\n", + " 21950K .......... .......... .......... .......... .......... 18% 836K 3m35s\n", + " 22000K .......... .......... .......... .......... .......... 18% 1.01M 3m35s\n", + " 22050K .......... .......... .......... .......... .......... 18% 1.23M 3m34s\n", + " 22100K .......... .......... .......... .......... .......... 18% 977K 3m34s\n", + " 22150K .......... .......... .......... .......... .......... 18% 986K 3m33s\n", + " 22200K .......... .......... .......... .......... .......... 18% 1.27M 3m33s\n", + " 22250K .......... .......... .......... .......... .......... 18% 1000K 3m33s\n", + " 22300K .......... .......... .......... .......... .......... 18% 1.07M 3m32s\n", + " 22350K .......... .......... .......... .......... .......... 18% 1.12M 3m32s\n", + " 22400K .......... .......... .......... .......... .......... 19% 908K 3m31s\n", + " 22450K .......... .......... .......... .......... .......... 19% 1.55M 3m31s\n", + " 22500K .......... .......... .......... .......... .......... 19% 910K 3m31s\n", + " 22550K .......... .......... .......... .......... .......... 19% 1.35M 3m30s\n", + " 22600K .......... .......... .......... .......... .......... 19% 829K 3m30s\n", + " 22650K .......... .......... .......... .......... .......... 19% 1.51M 3m30s\n", + " 22700K .......... .......... .......... .......... .......... 19% 877K 3m29s\n", + " 22750K .......... .......... .......... .......... .......... 19% 569K 3m29s\n", + " 22800K .......... .......... .......... .......... .......... 19% 4.84M 3m28s\n", + " 22850K .......... .......... .......... .......... .......... 19% 621K 3m28s\n", + " 22900K .......... .......... .......... .......... .......... 19% 4.55M 3m28s\n", + " 22950K .......... .......... .......... .......... .......... 19% 616K 3m27s\n", + " 23000K .......... .......... .......... .......... .......... 19% 3.73M 3m27s\n", + " 23050K .......... .......... .......... .......... .......... 19% 673K 3m27s\n", + " 23100K .......... .......... .......... .......... .......... 19% 4.13M 3m26s\n", + " 23150K .......... .......... .......... .......... .......... 19% 652K 3m26s\n", + " 23200K .......... .......... .......... .......... .......... 19% 1.73M 3m26s\n", + " 23250K .......... .......... .......... .......... .......... 19% 833K 3m25s\n", + " 23300K .......... .......... .......... .......... .......... 19% 2.35M 3m25s\n", + " 23350K .......... .......... .......... .......... .......... 19% 660K 3m25s\n", + " 23400K .......... .......... .......... .......... .......... 19% 2.30M 3m24s\n", + " 23450K .......... .......... .......... .......... .......... 19% 715K 3m24s\n", + " 23500K .......... .......... .......... .......... .......... 19% 2.26M 3m23s\n", + " 23550K .......... .......... .......... .......... .......... 19% 747K 3m23s\n", + " 23600K .......... .......... .......... .......... .......... 20% 2.68M 3m23s\n", + " 23650K .......... .......... .......... .......... .......... 20% 714K 3m22s\n", + " 23700K .......... .......... .......... .......... .......... 20% 2.04M 3m22s\n", + " 23750K .......... .......... .......... .......... .......... 20% 788K 3m22s\n", + " 23800K .......... .......... .......... .......... .......... 20% 1.85M 3m21s\n", + " 23850K .......... .......... .......... .......... .......... 20% 977K 3m21s\n", + " 23900K .......... .......... .......... .......... .......... 20% 1.22M 3m21s\n", + " 23950K .......... .......... .......... .......... .......... 20% 1.03M 3m20s\n", + " 24000K .......... .......... .......... .......... .......... 20% 1.13M 3m20s\n", + " 24050K .......... .......... .......... .......... .......... 20% 930K 3m20s\n", + " 24100K .......... .......... .......... .......... .......... 20% 1.63M 3m19s\n", + " 24150K .......... .......... .......... .......... .......... 20% 830K 3m19s\n", + " 24200K .......... .......... .......... .......... .......... 20% 1.70M 3m18s\n", + " 24250K .......... .......... .......... .......... .......... 20% 842K 3m18s\n", + " 24300K .......... .......... .......... .......... .......... 20% 1.53M 3m18s\n", + " 24350K .......... .......... .......... .......... .......... 20% 792K 3m18s\n", + " 24400K .......... .......... .......... .......... .......... 20% 1.91M 3m17s\n", + " 24450K .......... .......... .......... .......... .......... 20% 1.06M 3m17s\n", + " 24500K .......... .......... .......... .......... .......... 20% 1.35M 3m16s\n", + " 24550K .......... .......... .......... .......... .......... 20% 863K 3m16s\n", + " 24600K .......... .......... .......... .......... .......... 20% 1.55M 3m16s\n", + " 24650K .......... .......... .......... .......... .......... 20% 1.72M 3m15s\n", + " 24700K .......... .......... .......... .......... .......... 20% 733K 3m15s\n", + " 24750K .......... .......... .......... .......... .......... 21% 1.26M 3m15s\n", + " 24800K .......... .......... .......... .......... .......... 21% 918K 3m14s\n", + " 24850K .......... .......... .......... .......... .......... 21% 2.84M 3m14s\n", + " 24900K .......... .......... .......... .......... .......... 21% 1.43M 3m14s\n", + " 24950K .......... .......... .......... .......... .......... 21% 831K 3m13s\n", + " 25000K .......... .......... .......... .......... .......... 21% 1.58M 3m13s\n", + " 25050K .......... .......... .......... .......... .......... 21% 959K 3m13s\n", + " 25100K .......... .......... .......... .......... .......... 21% 1.59M 3m12s\n", + " 25150K .......... .......... .......... .......... .......... 21% 849K 3m12s\n", + " 25200K .......... .......... .......... .......... .......... 21% 1.67M 3m12s\n", + " 25250K .......... .......... .......... .......... .......... 21% 854K 3m11s\n", + " 25300K .......... .......... .......... .......... .......... 21% 1.70M 3m11s\n", + " 25350K .......... .......... .......... .......... .......... 21% 829K 3m11s\n", + " 25400K .......... .......... .......... .......... .......... 21% 7.61M 3m10s\n", + " 25450K .......... .......... .......... .......... .......... 21% 1.06M 3m10s\n", + " 25500K .......... .......... .......... .......... .......... 21% 1.13M 3m10s\n", + " 25550K .......... .......... .......... .......... .......... 21% 1.03M 3m9s\n", + " 25600K .......... .......... .......... .......... .......... 21% 959K 3m9s\n", + " 25650K .......... .......... .......... .......... .......... 21% 1.97M 3m9s\n", + " 25700K .......... .......... .......... .......... .......... 21% 348K 3m9s\n", + " 25750K .......... .......... .......... .......... .......... 21% 88.5M 3m8s\n", + " 25800K .......... .......... .......... .......... .......... 21% 2.60M 3m8s\n", + " 25850K .......... .......... .......... .......... .......... 21% 316K 3m8s\n", + " 25900K .......... .......... .......... .......... .......... 21% 941K 3m8s\n", + " 25950K .......... .......... .......... .......... .......... 22% 167K 3m8s\n", + " 26000K .......... .......... .......... .......... .......... 22% 46.2M 3m8s\n", + " 26050K .......... .......... .......... .......... .......... 22% 545K 3m8s\n", + " 26100K .......... .......... .......... .......... .......... 22% 537K 3m8s\n", + " 26150K .......... .......... .......... .......... .......... 22% 556K 3m7s\n", + " 26200K .......... .......... .......... .......... .......... 22% 503K 3m7s\n", + " 26250K .......... .......... .......... .......... .......... 22% 416K 3m7s\n", + " 26300K .......... .......... .......... .......... .......... 22% 579K 3m7s\n", + " 26350K .......... .......... .......... .......... .......... 22% 534K 3m7s\n", + " 26400K .......... .......... .......... .......... .......... 22% 527K 3m7s\n", + " 26450K .......... .......... .......... .......... .......... 22% 573K 3m7s\n", + " 26500K .......... .......... .......... .......... .......... 22% 518K 3m7s\n", + " 26550K .......... .......... .......... .......... .......... 22% 542K 3m6s\n", + " 26600K .......... .......... .......... .......... .......... 22% 553K 3m6s\n", + " 26650K .......... .......... .......... .......... .......... 22% 550K 3m6s\n", + " 26700K .......... .......... .......... .......... .......... 22% 568K 3m6s\n", + " 26750K .......... .......... .......... .......... .......... 22% 589K 3m6s\n", + " 26800K .......... .......... .......... .......... .......... 22% 548K 3m6s\n", + " 26850K .......... .......... .......... .......... .......... 22% 565K 3m6s\n", + " 26900K .......... .......... .......... .......... .......... 22% 559K 3m5s\n", + " 26950K .......... .......... .......... .......... .......... 22% 554K 3m5s\n", + " 27000K .......... .......... .......... .......... .......... 22% 536K 3m5s\n", + " 27050K .......... .......... .......... .......... .......... 22% 546K 3m5s\n", + " 27100K .......... .......... .......... .......... .......... 22% 576K 3m5s\n", + " 27150K .......... .......... .......... .......... .......... 23% 541K 3m5s\n", + " 27200K .......... .......... .......... .......... .......... 23% 562K 3m5s\n", + " 27250K .......... .......... .......... .......... .......... 23% 2.04M 3m4s\n", + " 27300K .......... .......... .......... .......... .......... 23% 549K 3m4s\n", + " 27350K .......... .......... .......... .......... .......... 23% 528K 3m4s\n", + " 27400K .......... .......... .......... .......... .......... 23% 596K 3m4s\n", + " 27450K .......... .......... .......... .......... .......... 23% 540K 3m4s\n", + " 27500K .......... .......... .......... .......... .......... 23% 470K 3m4s\n", + " 27550K .......... .......... .......... .......... .......... 23% 537K 3m4s\n", + " 27600K .......... .......... .......... .......... .......... 23% 532K 3m3s\n", + " 27650K .......... .......... .......... .......... .......... 23% 546K 3m3s\n", + " 27700K .......... .......... .......... .......... .......... 23% 667K 3m3s\n", + " 27750K .......... .......... .......... .......... .......... 23% 526K 3m3s\n", + " 27800K .......... .......... .......... .......... .......... 23% 72.7K 3m5s\n", + " 27850K .......... .......... .......... .......... .......... 23% 549K 3m5s\n", + " 27900K .......... .......... .......... .......... .......... 23% 548K 3m4s\n", + " 27950K .......... .......... .......... .......... .......... 23% 268K 3m5s\n", + " 28000K .......... .......... .......... .......... .......... 23% 422K 3m5s\n", + " 28050K .......... .......... .......... .......... .......... 23% 237K 3m5s\n", + " 28100K .......... .......... .......... .......... .......... 23% 509K 3m5s\n", + " 28150K .......... .......... .......... .......... .......... 23% 197K 3m5s\n", + " 28200K .......... .......... .......... .......... .......... 23% 260K 3m5s\n", + " 28250K .......... .......... .......... .......... .......... 23% 189K 3m6s\n", + " 28300K .......... .......... .......... .......... .......... 24% 445K 3m6s\n", + " 28350K .......... .......... .......... .......... .......... 24% 309K 3m6s\n", + " 28400K .......... .......... .......... .......... .......... 24% 450K 3m6s\n", + " 28450K .......... .......... .......... .......... .......... 24% 519K 3m5s\n", + " 28500K .......... .......... .......... .......... .......... 24% 314K 3m6s\n", + " 28550K .......... .......... .......... .......... .......... 24% 478K 3m5s\n", + " 28600K .......... .......... .......... .......... .......... 24% 339K 3m5s\n", + " 28650K .......... .......... .......... .......... .......... 24% 511K 3m5s\n", + " 28700K .......... .......... .......... .......... .......... 24% 441K 3m5s\n", + " 28750K .......... .......... .......... .......... .......... 24% 326K 3m5s\n", + " 28800K .......... .......... .......... .......... .......... 24% 552K 3m5s\n", + " 28850K .......... .......... .......... .......... .......... 24% 508K 3m5s\n", + " 28900K .......... .......... .......... .......... .......... 24% 480K 3m5s\n", + " 28950K .......... .......... .......... .......... .......... 24% 338K 3m5s\n", + " 29000K .......... .......... .......... .......... .......... 24% 507K 3m5s\n", + " 29050K .......... .......... .......... .......... .......... 24% 492K 3m5s\n", + " 29100K .......... .......... .......... .......... .......... 24% 579K 3m5s\n", + " 29150K .......... .......... .......... .......... .......... 24% 473K 3m5s\n", + " 29200K .......... .......... .......... .......... .......... 24% 495K 3m4s\n", + " 29250K .......... .......... .......... .......... .......... 24% 401K 3m4s\n", + " 29300K .......... .......... .......... .......... .......... 24% 499K 3m4s\n", + " 29350K .......... .......... .......... .......... .......... 24% 519K 3m4s\n", + " 29400K .......... .......... .......... .......... .......... 24% 555K 3m4s\n", + " 29450K .......... .......... .......... .......... .......... 24% 535K 3m4s\n", + " 29500K .......... .......... .......... .......... .......... 25% 563K 3m4s\n", + " 29550K .......... .......... .......... .......... .......... 25% 438K 3m4s\n", + " 29600K .......... .......... .......... .......... .......... 25% 548K 3m3s\n", + " 29650K .......... .......... .......... .......... .......... 25% 548K 3m3s\n", + " 29700K .......... .......... .......... .......... .......... 25% 566K 3m3s\n", + " 29750K .......... .......... .......... .......... .......... 25% 470K 3m3s\n", + " 29800K .......... .......... .......... .......... .......... 25% 584K 3m3s\n", + " 29850K .......... .......... .......... .......... .......... 25% 563K 3m3s\n", + " 29900K .......... .......... .......... .......... .......... 25% 567K 3m3s\n", + " 29950K .......... .......... .......... .......... .......... 25% 547K 3m3s\n", + " 30000K .......... .......... .......... .......... .......... 25% 598K 3m2s\n", + " 30050K .......... .......... .......... .......... .......... 25% 579K 3m2s\n", + " 30100K .......... .......... .......... .......... .......... 25% 576K 3m2s\n", + " 30150K .......... .......... .......... .......... .......... 25% 551K 3m2s\n", + " 30200K .......... .......... .......... .......... .......... 25% 566K 3m2s\n", + " 30250K .......... .......... .......... .......... .......... 25% 594K 3m2s\n", + " 30300K .......... .......... .......... .......... .......... 25% 726K 3m1s\n", + " 30350K .......... .......... .......... .......... .......... 25% 519K 3m1s\n", + " 30400K .......... .......... .......... .......... .......... 25% 588K 3m1s\n", + " 30450K .......... .......... .......... .......... .......... 25% 583K 3m1s\n", + " 30500K .......... .......... .......... .......... .......... 25% 837K 3m1s\n", + " 30550K .......... .......... .......... .......... .......... 25% 570K 3m1s\n", + " 30600K .......... .......... .......... .......... .......... 25% 646K 3m0s\n", + " 30650K .......... .......... .......... .......... .......... 25% 729K 3m0s\n", + " 30700K .......... .......... .......... .......... .......... 26% 663K 3m0s\n", + " 30750K .......... .......... .......... .......... .......... 26% 574K 3m0s\n", + " 30800K .......... .......... .......... .......... .......... 26% 650K 3m0s\n", + " 30850K .......... .......... .......... .......... .......... 26% 731K 3m0s\n", + " 30900K .......... .......... .......... .......... .......... 26% 884K 2m59s\n", + " 30950K .......... .......... .......... .......... .......... 26% 569K 2m59s\n", + " 31000K .......... .......... .......... .......... .......... 26% 618K 2m59s\n", + " 31050K .......... .......... .......... .......... .......... 26% 773K 2m59s\n", + " 31100K .......... .......... .......... .......... .......... 26% 726K 2m59s\n", + " 31150K .......... .......... .......... .......... .......... 26% 919K 2m58s\n", + " 31200K .......... .......... .......... .......... .......... 26% 586K 2m58s\n", + " 31250K .......... .......... .......... .......... .......... 26% 847K 2m58s\n", + " 31300K .......... .......... .......... .......... .......... 26% 744K 2m58s\n", + " 31350K .......... .......... .......... .......... .......... 26% 712K 2m58s\n", + " 31400K .......... .......... .......... .......... .......... 26% 591K 2m57s\n", + " 31450K .......... .......... .......... .......... .......... 26% 837K 2m57s\n", + " 31500K .......... .......... .......... .......... .......... 26% 1.21M 2m57s\n", + " 31550K .......... .......... .......... .......... .......... 26% 565K 2m57s\n", + " 31600K .......... .......... .......... .......... .......... 26% 758K 2m57s\n", + " 31650K .......... .......... .......... .......... .......... 26% 1.25M 2m56s\n", + " 31700K .......... .......... .......... .......... .......... 26% 699K 2m56s\n", + " 31750K .......... .......... .......... .......... .......... 26% 574K 2m56s\n", + " 31800K .......... .......... .......... .......... .......... 26% 829K 2m56s\n", + " 31850K .......... .......... .......... .......... .......... 27% 1.35M 2m55s\n", + " 31900K .......... .......... .......... .......... .......... 27% 612K 2m55s\n", + " 31950K .......... .......... .......... .......... .......... 27% 701K 2m55s\n", + " 32000K .......... .......... .......... .......... .......... 27% 1.49M 2m55s\n", + " 32050K .......... .......... .......... .......... .......... 27% 606K 2m55s\n", + " 32100K .......... .......... .......... .......... .......... 27% 1.06M 2m54s\n", + " 32150K .......... .......... .......... .......... .......... 27% 839K 2m54s\n", + " 32200K .......... .......... .......... .......... .......... 27% 650K 2m54s\n", + " 32250K .......... .......... .......... .......... .......... 27% 1.22M 2m54s\n", + " 32300K .......... .......... .......... .......... .......... 27% 932K 2m54s\n", + " 32350K .......... .......... .......... .......... .......... 27% 568K 2m53s\n", + " 32400K .......... .......... .......... .......... .......... 27% 1.04M 2m53s\n", + " 32450K .......... .......... .......... .......... .......... 27% 991K 2m53s\n", + " 32500K .......... .......... .......... .......... .......... 27% 675K 2m53s\n", + " 32550K .......... .......... .......... .......... .......... 27% 1.07M 2m53s\n", + " 32600K .......... .......... .......... .......... .......... 27% 897K 2m52s\n", + " 32650K .......... .......... .......... .......... .......... 27% 816K 2m52s\n", + " 32700K .......... .......... .......... .......... .......... 27% 984K 2m52s\n", + " 32750K .......... .......... .......... .......... .......... 27% 723K 2m52s\n", + " 32800K .......... .......... .......... .......... .......... 27% 1.30M 2m51s\n", + " 32850K .......... .......... .......... .......... .......... 27% 1011K 2m51s\n", + " 32900K .......... .......... .......... .......... .......... 27% 619K 2m51s\n", + " 32950K .......... .......... .......... .......... .......... 27% 925K 2m51s\n", + " 33000K .......... .......... .......... .......... .......... 27% 1.03M 2m51s\n", + " 33050K .......... .......... .......... .......... .......... 28% 1016K 2m50s\n", + " 33100K .......... .......... .......... .......... .......... 28% 1.10M 2m50s\n", + " 33150K .......... .......... .......... .......... .......... 28% 733K 2m50s\n", + " 33200K .......... .......... .......... .......... .......... 28% 1.27M 2m50s\n", + " 33250K .......... .......... .......... .......... .......... 28% 706K 2m50s\n", + " 33300K .......... .......... .......... .......... .......... 28% 889K 2m49s\n", + " 33350K .......... .......... .......... .......... .......... 28% 1.08M 2m49s\n", + " 33400K .......... .......... .......... .......... .......... 28% 859K 2m49s\n", + " 33450K .......... .......... .......... .......... .......... 28% 1.38M 2m49s\n", + " 33500K .......... .......... .......... .......... .......... 28% 848K 2m48s\n", + " 33550K .......... .......... .......... .......... .......... 28% 878K 2m48s\n", + " 33600K .......... .......... .......... .......... .......... 28% 700K 2m48s\n", + " 33650K .......... .......... .......... .......... .......... 28% 1.19M 2m48s\n", + " 33700K .......... .......... .......... .......... .......... 28% 904K 2m48s\n", + " 33750K .......... .......... .......... .......... .......... 28% 1.26M 2m47s\n", + " 33800K .......... .......... .......... .......... .......... 28% 837K 2m47s\n", + " 33850K .......... .......... .......... .......... .......... 28% 1.18M 2m47s\n", + " 33900K .......... .......... .......... .......... .......... 28% 761K 2m47s\n", + " 33950K .......... .......... .......... .......... .......... 28% 876K 2m46s\n", + " 34000K .......... .......... .......... .......... .......... 28% 863K 2m46s\n", + " 34050K .......... .......... .......... .......... .......... 28% 1.32M 2m46s\n", + " 34100K .......... .......... .......... .......... .......... 28% 894K 2m46s\n", + " 34150K .......... .......... .......... .......... .......... 28% 907K 2m46s\n", + " 34200K .......... .......... .......... .......... .......... 29% 1.28M 2m45s\n", + " 34250K .......... .......... .......... .......... .......... 29% 730K 2m45s\n", + " 34300K .......... .......... .......... .......... .......... 29% 1.89M 2m45s\n", + " 34350K .......... .......... .......... .......... .......... 29% 783K 2m45s\n", + " 34400K .......... .......... .......... .......... .......... 29% 1.79M 2m44s\n", + " 34450K .......... .......... .......... .......... .......... 29% 705K 2m44s\n", + " 34500K .......... .......... .......... .......... .......... 29% 2.51M 2m44s\n", + " 34550K .......... .......... .......... .......... .......... 29% 545K 2m44s\n", + " 34600K .......... .......... .......... .......... .......... 29% 1.11M 2m44s\n", + " 34650K .......... .......... .......... .......... .......... 29% 1.06M 2m43s\n", + " 34700K .......... .......... .......... .......... .......... 29% 1.01M 2m43s\n", + " 34750K .......... .......... .......... .......... .......... 29% 1.07M 2m43s\n", + " 34800K .......... .......... .......... .......... .......... 29% 891K 2m43s\n", + " 34850K .......... .......... .......... .......... .......... 29% 47.9K 2m45s\n", + " 34900K .......... .......... .......... .......... .......... 29% 530K 2m45s\n", + " 34950K .......... .......... .......... .......... .......... 29% 184K 2m45s\n", + " 35000K .......... .......... .......... .......... .......... 29% 540K 2m45s\n", + " 35050K .......... .......... .......... .......... .......... 29% 578K 2m45s\n", + " 35100K .......... .......... .......... .......... .......... 29% 3.56M 2m45s\n", + " 35150K .......... .......... .......... .......... .......... 29% 554K 2m45s\n", + " 35200K .......... .......... .......... .......... .......... 29% 560K 2m44s\n", + " 35250K .......... .......... .......... .......... .......... 29% 641K 2m44s\n", + " 35300K .......... .......... .......... .......... .......... 29% 3.06M 2m44s\n", + " 35350K .......... .......... .......... .......... .......... 29% 584K 2m44s\n", + " 35400K .......... .......... .......... .......... .......... 30% 618K 2m44s\n", + " 35450K .......... .......... .......... .......... .......... 30% 2.62M 2m43s\n", + " 35500K .......... .......... .......... .......... .......... 30% 557K 2m43s\n", + " 35550K .......... .......... .......... .......... .......... 30% 685K 2m43s\n", + " 35600K .......... .......... .......... .......... .......... 30% 2.67M 2m43s\n", + " 35650K .......... .......... .......... .......... .......... 30% 550K 2m43s\n", + " 35700K .......... .......... .......... .......... .......... 30% 757K 2m43s\n", + " 35750K .......... .......... .......... .......... .......... 30% 1.65M 2m42s\n", + " 35800K .......... .......... .......... .......... .......... 30% 584K 2m42s\n", + " 35850K .......... .......... .......... .......... .......... 30% 724K 2m42s\n", + " 35900K .......... .......... .......... .......... .......... 30% 2.23M 2m42s\n", + " 35950K .......... .......... .......... .......... .......... 30% 528K 2m42s\n", + " 36000K .......... .......... .......... .......... .......... 30% 800K 2m41s\n", + " 36050K .......... .......... .......... .......... .......... 30% 1.61M 2m41s\n", + " 36100K .......... .......... .......... .......... .......... 30% 560K 2m41s\n", + " 36150K .......... .......... .......... .......... .......... 30% 827K 2m41s\n", + " 36200K .......... .......... .......... .......... .......... 30% 1.31M 2m41s\n", + " 36250K .......... .......... .......... .......... .......... 30% 644K 2m40s\n", + " 36300K .......... .......... .......... .......... .......... 30% 2.16M 2m40s\n", + " 36350K .......... .......... .......... .......... .......... 30% 554K 2m40s\n", + " 36400K .......... .......... .......... .......... .......... 30% 869K 2m40s\n", + " 36450K .......... .......... .......... .......... .......... 30% 1.48M 2m40s\n", + " 36500K .......... .......... .......... .......... .......... 30% 597K 2m40s\n", + " 36550K .......... .......... .......... .......... .......... 30% 207K 2m40s\n", + " 36600K .......... .......... .......... .......... .......... 31% 228M 2m39s\n", + " 36650K .......... .......... .......... .......... .......... 31% 346K 2m39s\n", + " 36700K .......... .......... .......... .......... .......... 31% 540K 2m39s\n", + " 36750K .......... .......... .......... .......... .......... 31% 533K 2m39s\n", + " 36800K .......... .......... .......... .......... .......... 31% 494K 2m39s\n", + " 36850K .......... .......... .......... .......... .......... 31% 533K 2m39s\n", + " 36900K .......... .......... .......... .......... .......... 31% 566K 2m39s\n", + " 36950K .......... .......... .......... .......... .......... 31% 550K 2m39s\n", + " 37000K .......... .......... .......... .......... .......... 31% 555K 2m39s\n", + " 37050K .......... .......... .......... .......... .......... 31% 545K 2m39s\n", + " 37100K .......... .......... .......... .......... .......... 31% 558K 2m38s\n", + " 37150K .......... .......... .......... .......... .......... 31% 551K 2m38s\n", + " 37200K .......... .......... .......... .......... .......... 31% 54.5K 2m40s\n", + " 37250K .......... .......... .......... .......... .......... 31% 278K 2m40s\n", + " 37300K .......... .......... .......... .......... .......... 31% 181K 2m40s\n", + " 37350K .......... .......... .......... .......... .......... 31% 563K 2m40s\n", + " 37400K .......... .......... .......... .......... .......... 31% 532K 2m40s\n", + " 37450K .......... .......... .......... .......... .......... 31% 538K 2m40s\n", + " 37500K .......... .......... .......... .......... .......... 31% 556K 2m40s\n", + " 37550K .......... .......... .......... .......... .......... 31% 284K 2m40s\n", + " 37600K .......... .......... .......... .......... .......... 31% 554K 2m40s\n", + " 37650K .......... .......... .......... .......... .......... 31% 604K 2m40s\n", + " 37700K .......... .......... .......... .......... .......... 31% 567K 2m40s\n", + " 37750K .......... .......... .......... .......... .......... 32% 464K 2m40s\n", + " 37800K .......... .......... .......... .......... .......... 32% 564K 2m39s\n", + " 37850K .......... .......... .......... .......... .......... 32% 636K 2m39s\n", + " 37900K .......... .......... .......... .......... .......... 32% 560K 2m39s\n", + " 37950K .......... .......... .......... .......... .......... 32% 502K 2m39s\n", + " 38000K .......... .......... .......... .......... .......... 32% 579K 2m39s\n", + " 38050K .......... .......... .......... .......... .......... 32% 548K 2m39s\n", + " 38100K .......... .......... .......... .......... .......... 32% 629K 2m39s\n", + " 38150K .......... .......... .......... .......... .......... 32% 518K 2m39s\n", + " 38200K .......... .......... .......... .......... .......... 32% 571K 2m38s\n", + " 38250K .......... .......... .......... .......... .......... 32% 682K 2m38s\n", + " 38300K .......... .......... .......... .......... .......... 32% 568K 2m38s\n", + " 38350K .......... .......... .......... .......... .......... 32% 567K 2m38s\n", + " 38400K .......... .......... .......... .......... .......... 32% 494K 2m38s\n", + " 38450K .......... .......... .......... .......... .......... 32% 762K 2m38s\n", + " 38500K .......... .......... .......... .......... .......... 32% 586K 2m38s\n", + " 38550K .......... .......... .......... .......... .......... 32% 551K 2m38s\n", + " 38600K .......... .......... .......... .......... .......... 32% 579K 2m37s\n", + " 38650K .......... .......... .......... .......... .......... 32% 584K 2m37s\n", + " 38700K .......... .......... .......... .......... .......... 32% 756K 2m37s\n", + " 38750K .......... .......... .......... .......... .......... 32% 548K 2m37s\n", + " 38800K .......... .......... .......... .......... .......... 32% 742K 2m37s\n", + " 38850K .......... .......... .......... .......... .......... 32% 560K 2m37s\n", + " 38900K .......... .......... .......... .......... .......... 32% 919K 2m37s\n", + " 38950K .......... .......... .......... .......... .......... 33% 551K 2m36s\n", + " 39000K .......... .......... .......... .......... .......... 33% 717K 2m36s\n", + " 39050K .......... .......... .......... .......... .......... 33% 817K 2m36s\n", + " 39100K .......... .......... .......... .......... .......... 33% 563K 2m36s\n", + " 39150K .......... .......... .......... .......... .......... 33% 776K 2m36s\n", + " 39200K .......... .......... .......... .......... .......... 33% 791K 2m36s\n", + " 39250K .......... .......... .......... .......... .......... 33% 821K 2m35s\n", + " 39300K .......... .......... .......... .......... .......... 33% 585K 2m35s\n", + " 39350K .......... .......... .......... .......... .......... 33% 835K 2m35s\n", + " 39400K .......... .......... .......... .......... .......... 33% 658K 2m35s\n", + " 39450K .......... .......... .......... .......... .......... 33% 898K 2m35s\n", + " 39500K .......... .......... .......... .......... .......... 33% 593K 2m35s\n", + " 39550K .......... .......... .......... .......... .......... 33% 798K 2m35s\n", + " 39600K .......... .......... .......... .......... .......... 33% 843K 2m34s\n", + " 39650K .......... .......... .......... .......... .......... 33% 778K 2m34s\n", + " 39700K .......... .......... .......... .......... .......... 33% 881K 2m34s\n", + " 39750K .......... .......... .......... .......... .......... 33% 749K 2m34s\n", + " 39800K .......... .......... .......... .......... .......... 33% 858K 2m34s\n", + " 39850K .......... .......... .......... .......... .......... 33% 606K 2m34s\n", + " 39900K .......... .......... .......... .......... .......... 33% 1.04M 2m33s\n", + " 39950K .......... .......... .......... .......... .......... 33% 643K 2m33s\n", + " 40000K .......... .......... .......... .......... .......... 33% 705K 2m33s\n", + " 40050K .......... .......... .......... .......... .......... 33% 1.32M 2m33s\n", + " 40100K .......... .......... .......... .......... .......... 33% 883K 2m33s\n", + " 40150K .......... .......... .......... .......... .......... 34% 528K 2m33s\n", + " 40200K .......... .......... .......... .......... .......... 34% 2.21M 2m32s\n", + " 40250K .......... .......... .......... .......... .......... 34% 562K 2m32s\n", + " 40300K .......... .......... .......... .......... .......... 34% 1.28M 2m32s\n", + " 40350K .......... .......... .......... .......... .......... 34% 834K 2m32s\n", + " 40400K .......... .......... .......... .......... .......... 34% 720K 2m32s\n", + " 40450K .......... .......... .......... .......... .......... 34% 1.81M 2m31s\n", + " 40500K .......... .......... .......... .......... .......... 34% 594K 2m31s\n", + " 40550K .......... .......... .......... .......... .......... 34% 658K 2m31s\n", + " 40600K .......... .......... .......... .......... .......... 34% 3.60M 2m31s\n", + " 40650K .......... .......... .......... .......... .......... 34% 589K 2m31s\n", + " 40700K .......... .......... .......... .......... .......... 34% 633K 2m31s\n", + " 40750K .......... .......... .......... .......... .......... 34% 2.55M 2m30s\n", + " 40800K .......... .......... .......... .......... .......... 34% 603K 2m30s\n", + " 40850K .......... .......... .......... .......... .......... 34% 1.59M 2m30s\n", + " 40900K .......... .......... .......... .......... .......... 34% 834K 2m30s\n", + " 40950K .......... .......... .......... .......... .......... 34% 587K 2m30s\n", + " 41000K .......... .......... .......... .......... .......... 34% 2.59M 2m30s\n", + " 41050K .......... .......... .......... .......... .......... 34% 707K 2m29s\n", + " 41100K .......... .......... .......... .......... .......... 34% 712K 2m29s\n", + " 41150K .......... .......... .......... .......... .......... 34% 1.54M 2m29s\n", + " 41200K .......... .......... .......... .......... .......... 34% 627K 2m29s\n", + " 41250K .......... .......... .......... .......... .......... 34% 1.55M 2m29s\n", + " 41300K .......... .......... .......... .......... .......... 35% 812K 2m28s\n", + " 41350K .......... .......... .......... .......... .......... 35% 669K 2m28s\n", + " 41400K .......... .......... .......... .......... .......... 35% 2.31M 2m28s\n", + " 41450K .......... .......... .......... .......... .......... 35% 577K 2m28s\n", + " 41500K .......... .......... .......... .......... .......... 35% 6.04M 2m28s\n", + " 41550K .......... .......... .......... .......... .......... 35% 595K 2m28s\n", + " 41600K .......... .......... .......... .......... .......... 35% 1.94M 2m27s\n", + " 41650K .......... .......... .......... .......... .......... 35% 751K 2m27s\n", + " 41700K .......... .......... .......... .......... .......... 35% 1.02M 2m27s\n", + " 41750K .......... .......... .......... .......... .......... 35% 1.08M 2m27s\n", + " 41800K .......... .......... .......... .......... .......... 35% 593K 2m27s\n", + " 41850K .......... .......... .......... .......... .......... 35% 3.19M 2m27s\n", + " 41900K .......... .......... .......... .......... .......... 35% 645K 2m26s\n", + " 41950K .......... .......... .......... .......... .......... 35% 1.16M 2m26s\n", + " 42000K .......... .......... .......... .......... .......... 35% 825K 2m26s\n", + " 42050K .......... .......... .......... .......... .......... 35% 1.48M 2m26s\n", + " 42100K .......... .......... .......... .......... .......... 35% 791K 2m26s\n", + " 42150K .......... .......... .......... .......... .......... 35% 731K 2m26s\n", + " 42200K .......... .......... .......... .......... .......... 35% 1.73M 2m25s\n", + " 42250K .......... .......... .......... .......... .......... 35% 814K 2m25s\n", + " 42300K .......... .......... .......... .......... .......... 35% 967K 2m25s\n", + " 42350K .......... .......... .......... .......... .......... 35% 1.07M 2m25s\n", + " 42400K .......... .......... .......... .......... .......... 35% 1007K 2m25s\n", + " 42450K .......... .......... .......... .......... .......... 35% 835K 2m24s\n", + " 42500K .......... .......... .......... .......... .......... 36% 1.57M 2m24s\n", + " 42550K .......... .......... .......... .......... .......... 36% 761K 2m24s\n", + " 42600K .......... .......... .......... .......... .......... 36% 1.07M 2m24s\n", + " 42650K .......... .......... .......... .......... .......... 36% 1.31M 2m24s\n", + " 42700K .......... .......... .......... .......... .......... 36% 800K 2m24s\n", + " 42750K .......... .......... .......... .......... .......... 36% 1.64M 2m23s\n", + " 42800K .......... .......... .......... .......... .......... 36% 795K 2m23s\n", + " 42850K .......... .......... .......... .......... .......... 36% 1.91M 2m23s\n", + " 42900K .......... .......... .......... .......... .......... 36% 811K 2m23s\n", + " 42950K .......... .......... .......... .......... .......... 36% 920K 2m23s\n", + " 43000K .......... .......... .......... .......... .......... 36% 762K 2m23s\n", + " 43050K .......... .......... .......... .......... .......... 36% 2.26M 2m22s\n", + " 43100K .......... .......... .......... .......... .......... 36% 759K 2m22s\n", + " 43150K .......... .......... .......... .......... .......... 36% 1.26M 2m22s\n", + " 43200K .......... .......... .......... .......... .......... 36% 817K 2m22s\n", + " 43250K .......... .......... .......... .......... .......... 36% 1.76M 2m22s\n", + " 43300K .......... .......... .......... .......... .......... 36% 602K 2m21s\n", + " 43350K .......... .......... .......... .......... .......... 36% 5.67M 2m21s\n", + " 43400K .......... .......... .......... .......... .......... 36% 590K 2m21s\n", + " 43450K .......... .......... .......... .......... .......... 36% 2.92M 2m21s\n", + " 43500K .......... .......... .......... .......... .......... 36% 608K 2m21s\n", + " 43550K .......... .......... .......... .......... .......... 36% 5.66M 2m21s\n", + " 43600K .......... .......... .......... .......... .......... 36% 590K 2m20s\n", + " 43650K .......... .......... .......... .......... .......... 37% 11.1M 2m20s\n", + " 43700K .......... .......... .......... .......... .......... 37% 575K 2m20s\n", + " 43750K .......... .......... .......... .......... .......... 37% 20.7M 2m20s\n", + " 43800K .......... .......... .......... .......... .......... 37% 549K 2m20s\n", + " 43850K .......... .......... .......... .......... .......... 37% 44.9M 2m19s\n", + " 43900K .......... .......... .......... .......... .......... 37% 345K 2m19s\n", + " 43950K .......... .......... .......... .......... .......... 37% 49.2M 2m19s\n", + " 44000K .......... .......... .......... .......... .......... 37% 385K 2m19s\n", + " 44050K .......... .......... .......... .......... .......... 37% 541K 2m19s\n", + " 44100K .......... .......... .......... .......... .......... 37% 901K 2m19s\n", + " 44150K .......... .......... .......... .......... .......... 37% 562K 2m19s\n", + " 44200K .......... .......... .......... .......... .......... 37% 1.30M 2m19s\n", + " 44250K .......... .......... .......... .......... .......... 37% 874K 2m18s\n", + " 44300K .......... .......... .......... .......... .......... 37% 636K 2m18s\n", + " 44350K .......... .......... .......... .......... .......... 37% 1.01M 2m18s\n", + " 44400K .......... .......... .......... .......... .......... 37% 861K 2m18s\n", + " 44450K .......... .......... .......... .......... .......... 37% 772K 2m18s\n", + " 44500K .......... .......... .......... .......... .......... 37% 1.81M 2m18s\n", + " 44550K .......... .......... .......... .......... .......... 37% 179K 2m18s\n", + " 44600K .......... .......... .......... .......... .......... 37% 59.4K 2m19s\n", + " 44650K .......... .......... .......... .......... .......... 37% 553K 2m19s\n", + " 44700K .......... .......... .......... .......... .......... 37% 50.9K 2m20s\n", + " 44750K .......... .......... .......... .......... .......... 37% 181K 2m20s\n", + " 44800K .......... .......... .......... .......... .......... 37% 550K 2m20s\n", + " 44850K .......... .......... .......... .......... .......... 38% 568K 2m20s\n", + " 44900K .......... .......... .......... .......... .......... 38% 11.0M 2m20s\n", + " 44950K .......... .......... .......... .......... .......... 38% 43.5K 2m22s\n", + " 45000K .......... .......... .......... .......... .......... 38% 558K 2m22s\n", + " 45050K .......... .......... .......... .......... .......... 38% 541K 2m21s\n", + " 45100K .......... .......... .......... .......... .......... 38% 515K 2m21s\n", + " 45150K .......... .......... .......... .......... .......... 38% 579K 2m21s\n", + " 45200K .......... .......... .......... .......... .......... 38% 4.38M 2m21s\n", + " 45250K .......... .......... .......... .......... .......... 38% 603K 2m21s\n", + " 45300K .......... .......... .......... .......... .......... 38% 3.93M 2m21s\n", + " 45350K .......... .......... .......... .......... .......... 38% 561K 2m21s\n", + " 45400K .......... .......... .......... .......... .......... 38% 633K 2m20s\n", + " 45450K .......... .......... .......... .......... .......... 38% 2.25M 2m20s\n", + " 45500K .......... .......... .......... .......... .......... 38% 657K 2m20s\n", + " 45550K .......... .......... .......... .......... .......... 38% 589K 2m20s\n", + " 45600K .......... .......... .......... .......... .......... 38% 2.05M 2m20s\n", + " 45650K .......... .......... .......... .......... .......... 38% 712K 2m20s\n", + " 45700K .......... .......... .......... .......... .......... 38% 627K 2m19s\n", + " 45750K .......... .......... .......... .......... .......... 38% 1.63M 2m19s\n", + " 45800K .......... .......... .......... .......... .......... 38% 723K 2m19s\n", + " 45850K .......... .......... .......... .......... .......... 38% 1.77M 2m19s\n", + " 45900K .......... .......... .......... .......... .......... 38% 680K 2m19s\n", + " 45950K .......... .......... .......... .......... .......... 38% 696K 2m19s\n", + " 46000K .......... .......... .......... .......... .......... 38% 1.61M 2m18s\n", + " 46050K .......... .......... .......... .......... .......... 39% 607K 2m18s\n", + " 46100K .......... .......... .......... .......... .......... 39% 1.02M 2m18s\n", + " 46150K .......... .......... .......... .......... .......... 39% 977K 2m18s\n", + " 46200K .......... .......... .......... .......... .......... 39% 757K 2m18s\n", + " 46250K .......... .......... .......... .......... .......... 39% 1.59M 2m18s\n", + " 46300K .......... .......... .......... .......... .......... 39% 689K 2m18s\n", + " 46350K .......... .......... .......... .......... .......... 39% 670K 2m17s\n", + " 46400K .......... .......... .......... .......... .......... 39% 1.43M 2m17s\n", + " 46450K .......... .......... .......... .......... .......... 39% 909K 2m17s\n", + " 46500K .......... .......... .......... .......... .......... 39% 1.37M 2m17s\n", + " 46550K .......... .......... .......... .......... .......... 39% 751K 2m17s\n", + " 46600K .......... .......... .......... .......... .......... 39% 926K 2m17s\n", + " 46650K .......... .......... .......... .......... .......... 39% 919K 2m16s\n", + " 46700K .......... .......... .......... .......... .......... 39% 631K 2m16s\n", + " 46750K .......... .......... .......... .......... .......... 39% 3.58M 2m16s\n", + " 46800K .......... .......... .......... .......... .......... 39% 653K 2m16s\n", + " 46850K .......... .......... .......... .......... .......... 39% 2.18M 2m16s\n", + " 46900K .......... .......... .......... .......... .......... 39% 716K 2m16s\n", + " 46950K .......... .......... .......... .......... .......... 39% 606K 2m15s\n", + " 47000K .......... .......... .......... .......... .......... 39% 2.18M 2m15s\n", + " 47050K .......... .......... .......... .......... .......... 39% 739K 2m15s\n", + " 47100K .......... .......... .......... .......... .......... 39% 1.62M 2m15s\n", + " 47150K .......... .......... .......... .......... .......... 39% 677K 2m15s\n", + " 47200K .......... .......... .......... .......... .......... 40% 1.68M 2m15s\n", + " 47250K .......... .......... .......... .......... .......... 40% 803K 2m14s\n", + " 47300K .......... .......... .......... .......... .......... 40% 1.35M 2m14s\n", + " 47350K .......... .......... .......... .......... .......... 40% 821K 2m14s\n", + " 47400K .......... .......... .......... .......... .......... 40% 764K 2m14s\n", + " 47450K .......... .......... .......... .......... .......... 40% 1.85M 2m14s\n", + " 47500K .......... .......... .......... .......... .......... 40% 690K 2m14s\n", + " 47550K .......... .......... .......... .......... .......... 40% 1.40M 2m14s\n", + " 47600K .......... .......... .......... .......... .......... 40% 868K 2m13s\n", + " 47650K .......... .......... .......... .......... .......... 40% 1014K 2m13s\n", + " 47700K .......... .......... .......... .......... .......... 40% 1.07M 2m13s\n", + " 47750K .......... .......... .......... .......... .......... 40% 1007K 2m13s\n", + " 47800K .......... .......... .......... .......... .......... 40% 869K 2m13s\n", + " 47850K .......... .......... .......... .......... .......... 40% 1.50M 2m13s\n", + " 47900K .......... .......... .......... .......... .......... 40% 716K 2m12s\n", + " 47950K .......... .......... .......... .......... .......... 40% 1.24M 2m12s\n", + " 48000K .......... .......... .......... .......... .......... 40% 891K 2m12s\n", + " 48050K .......... .......... .......... .......... .......... 40% 1.48M 2m12s\n", + " 48100K .......... .......... .......... .......... .......... 40% 929K 2m12s\n", + " 48150K .......... .......... .......... .......... .......... 40% 1.21M 2m12s\n", + " 48200K .......... .......... .......... .......... .......... 40% 980K 2m11s\n", + " 48250K .......... .......... .......... .......... .......... 40% 1.43M 2m11s\n", + " 48300K .......... .......... .......... .......... .......... 40% 821K 2m11s\n", + " 48350K .......... .......... .......... .......... .......... 40% 1.10M 2m11s\n", + " 48400K .......... .......... .......... .......... .......... 41% 1.03M 2m11s\n", + " 48450K .......... .......... .......... .......... .......... 41% 1.26M 2m11s\n", + " 48500K .......... .......... .......... .......... .......... 41% 1.01M 2m10s\n", + " 48550K .......... .......... .......... .......... .......... 41% 997K 2m10s\n", + " 48600K .......... .......... .......... .......... .......... 41% 957K 2m10s\n", + " 48650K .......... .......... .......... .......... .......... 41% 1.57M 2m10s\n", + " 48700K .......... .......... .......... .......... .......... 41% 881K 2m10s\n", + " 48750K .......... .......... .......... .......... .......... 41% 1.36M 2m10s\n", + " 48800K .......... .......... .......... .......... .......... 41% 899K 2m9s\n", + " 48850K .......... .......... .......... .......... .......... 41% 1.68M 2m9s\n", + " 48900K .......... .......... .......... .......... .......... 41% 776K 2m9s\n", + " 48950K .......... .......... .......... .......... .......... 41% 1.93M 2m9s\n", + " 49000K .......... .......... .......... .......... .......... 41% 796K 2m9s\n", + " 49050K .......... .......... .......... .......... .......... 41% 1.58M 2m9s\n", + " 49100K .......... .......... .......... .......... .......... 41% 948K 2m9s\n", + " 49150K .......... .......... .......... .......... .......... 41% 1.29M 2m8s\n", + " 49200K .......... .......... .......... .......... .......... 41% 1006K 2m8s\n", + " 49250K .......... .......... .......... .......... .......... 41% 1.26M 2m8s\n", + " 49300K .......... .......... .......... .......... .......... 41% 1.60M 2m8s\n", + " 49350K .......... .......... .......... .......... .......... 41% 872K 2m8s\n", + " 49400K .......... .......... .......... .......... .......... 41% 1.47M 2m8s\n", + " 49450K .......... .......... .......... .......... .......... 41% 955K 2m7s\n", + " 49500K .......... .......... .......... .......... .......... 41% 1.66M 2m7s\n", + " 49550K .......... .......... .......... .......... .......... 42% 837K 2m7s\n", + " 49600K .......... .......... .......... .......... .......... 42% 1.77M 2m7s\n", + " 49650K .......... .......... .......... .......... .......... 42% 809K 2m7s\n", + " 49700K .......... .......... .......... .......... .......... 42% 1.70M 2m7s\n", + " 49750K .......... .......... .......... .......... .......... 42% 929K 2m6s\n", + " 49800K .......... .......... .......... .......... .......... 42% 1.32M 2m6s\n", + " 49850K .......... .......... .......... .......... .......... 42% 1.02M 2m6s\n", + " 49900K .......... .......... .......... .......... .......... 42% 1.25M 2m6s\n", + " 49950K .......... .......... .......... .......... .......... 42% 1.42M 2m6s\n", + " 50000K .......... .......... .......... .......... .......... 42% 1.11M 2m6s\n", + " 50050K .......... .......... .......... .......... .......... 42% 1.24M 2m5s\n", + " 50100K .......... .......... .......... .......... .......... 42% 1005K 2m5s\n", + " 50150K .......... .......... .......... .......... .......... 42% 1.23M 2m5s\n", + " 50200K .......... .......... .......... .......... .......... 42% 929K 2m5s\n", + " 50250K .......... .......... .......... .......... .......... 42% 3.34M 2m5s\n", + " 50300K .......... .......... .......... .......... .......... 42% 695K 2m5s\n", + " 50350K .......... .......... .......... .......... .......... 42% 2.55M 2m4s\n", + " 50400K .......... .......... .......... .......... .......... 42% 843K 2m4s\n", + " 50450K .......... .......... .......... .......... .......... 42% 1.98M 2m4s\n", + " 50500K .......... .......... .......... .......... .......... 42% 1.23M 2m4s\n", + " 50550K .......... .......... .......... .......... .......... 42% 1.02M 2m4s\n", + " 50600K .......... .......... .......... .......... .......... 42% 1.21M 2m4s\n", + " 50650K .......... .......... .......... .......... .......... 42% 1.04M 2m4s\n", + " 50700K .......... .......... .......... .......... .......... 42% 2.03M 2m3s\n", + " 50750K .......... .......... .......... .......... .......... 43% 643K 2m3s\n", + " 50800K .......... .......... .......... .......... .......... 43% 62.5M 2m3s\n", + " 50850K .......... .......... .......... .......... .......... 43% 872K 2m3s\n", + " 50900K .......... .......... .......... .......... .......... 43% 1.49M 2m3s\n", + " 50950K .......... .......... .......... .......... .......... 43% 897K 2m3s\n", + " 51000K .......... .......... .......... .......... .......... 43% 1.49M 2m2s\n", + " 51050K .......... .......... .......... .......... .......... 43% 1.96M 2m2s\n", + " 51100K .......... .......... .......... .......... .......... 43% 717K 2m2s\n", + " 51150K .......... .......... .......... .......... .......... 43% 2.94M 2m2s\n", + " 51200K .......... .......... .......... .......... .......... 43% 885K 2m2s\n", + " 51250K .......... .......... .......... .......... .......... 43% 1.53M 2m2s\n", + " 51300K .......... .......... .......... .......... .......... 43% 1.45M 2m1s\n", + " 51350K .......... .......... .......... .......... .......... 43% 976K 2m1s\n", + " 51400K .......... .......... .......... .......... .......... 43% 1.73M 2m1s\n", + " 51450K .......... .......... .......... .......... .......... 43% 794K 2m1s\n", + " 51500K .......... .......... .......... .......... .......... 43% 10.0M 2m1s\n", + " 51550K .......... .......... .......... .......... .......... 43% 884K 2m1s\n", + " 51600K .......... .......... .......... .......... .......... 43% 1.52M 2m1s\n", + " 51650K .......... .......... .......... .......... .......... 43% 1018K 2m0s\n", + " 51700K .......... .......... .......... .......... .......... 43% 1.24M 2m0s\n", + " 51750K .......... .......... .......... .......... .......... 43% 1.94M 2m0s\n", + " 51800K .......... .......... .......... .......... .......... 43% 725K 2m0s\n", + " 51850K .......... .......... .......... .......... .......... 43% 9.26M 2m0s\n", + " 51900K .......... .......... .......... .......... .......... 43% 135K 2m0s\n", + " 51950K .......... .......... .......... .......... .......... 44% 99.0M 2m0s\n", + " 52000K .......... .......... .......... .......... .......... 44% 73.9K 2m0s\n", + " 52050K .......... .......... .......... .......... .......... 44% 71.1M 2m0s\n", + " 52100K .......... .......... .......... .......... .......... 44% 48.7K 2m1s\n", + " 52150K .......... .......... .......... .......... .......... 44% 184K 2m1s\n", + " 52200K .......... .......... .......... .......... .......... 44% 545K 2m1s\n", + " 52250K .......... .......... .......... .......... .......... 44% 547K 2m1s\n", + " 52300K .......... .......... .......... .......... .......... 44% 14.4M 2m1s\n", + " 52350K .......... .......... .......... .......... .......... 44% 579K 2m1s\n", + " 52400K .......... .......... .......... .......... .......... 44% 548K 2m1s\n", + " 52450K .......... .......... .......... .......... .......... 44% 586K 2m1s\n", + " 52500K .......... .......... .......... .......... .......... 44% 5.08M 2m1s\n", + " 52550K .......... .......... .......... .......... .......... 44% 577K 2m0s\n", + " 52600K .......... .......... .......... .......... .......... 44% 567K 2m0s\n", + " 52650K .......... .......... .......... .......... .......... 44% 737K 2m0s\n", + " 52700K .......... .......... .......... .......... .......... 44% 1.73M 2m0s\n", + " 52750K .......... .......... .......... .......... .......... 44% 586K 2m0s\n", + " 52800K .......... .......... .......... .......... .......... 44% 658K 2m0s\n", + " 52850K .......... .......... .......... .......... .......... 44% 1.56M 2m0s\n", + " 52900K .......... .......... .......... .......... .......... 44% 580K 2m0s\n", + " 52950K .......... .......... .......... .......... .......... 44% 553K 2m0s\n", + " 53000K .......... .......... .......... .......... .......... 44% 3.87M 1m59s\n", + " 53050K .......... .......... .......... .......... .......... 44% 546K 1m59s\n", + " 53100K .......... .......... .......... .......... .......... 45% 552K 1m59s\n", + " 53150K .......... .......... .......... .......... .......... 45% 919K 1m59s\n", + " 53200K .......... .......... .......... .......... .......... 45% 1.25M 1m59s\n", + " 53250K .......... .......... .......... .......... .......... 45% 573K 1m59s\n", + " 53300K .......... .......... .......... .......... .......... 45% 7.00M 1m59s\n", + " 53350K .......... .......... .......... .......... .......... 45% 591K 1m58s\n", + " 53400K .......... .......... .......... .......... .......... 45% 562K 1m58s\n", + " 53450K .......... .......... .......... .......... .......... 45% 892K 1m58s\n", + " 53500K .......... .......... .......... .......... .......... 45% 1.14M 1m58s\n", + " 53550K .......... .......... .......... .......... .......... 45% 559K 1m58s\n", + " 53600K .......... .......... .......... .......... .......... 45% 1.05M 1m58s\n", + " 53650K .......... .......... .......... .......... .......... 45% 1.02M 1m58s\n", + " 53700K .......... .......... .......... .......... .......... 45% 640K 1m58s\n", + " 53750K .......... .......... .......... .......... .......... 45% 1.02M 1m57s\n", + " 53800K .......... .......... .......... .......... .......... 45% 855K 1m57s\n", + " 53850K .......... .......... .......... .......... .......... 45% 775K 1m57s\n", + " 53900K .......... .......... .......... .......... .......... 45% 1.72M 1m57s\n", + " 53950K .......... .......... .......... .......... .......... 45% 586K 1m57s\n", + " 54000K .......... .......... .......... .......... .......... 45% 821K 1m57s\n", + " 54050K .......... .......... .......... .......... .......... 45% 1.26M 1m57s\n", + " 54100K .......... .......... .......... .......... .......... 45% 777K 1m57s\n", + " 54150K .......... .......... .......... .......... .......... 45% 1.09M 1m56s\n", + " 54200K .......... .......... .......... .......... .......... 45% 793K 1m56s\n", + " 54250K .......... .......... .......... .......... .......... 45% 844K 1m56s\n", + " 54300K .......... .......... .......... .......... .......... 46% 1.19M 1m56s\n", + " 54350K .......... .......... .......... .......... .......... 46% 723K 1m56s\n", + " 54400K .......... .......... .......... .......... .......... 46% 1.38M 1m56s\n", + " 54450K .......... .......... .......... .......... .......... 46% 876K 1m56s\n", + " 54500K .......... .......... .......... .......... .......... 46% 1.13M 1m55s\n", + " 54550K .......... .......... .......... .......... .......... 46% 820K 1m55s\n", + " 54600K .......... .......... .......... .......... .......... 46% 774K 1m55s\n", + " 54650K .......... .......... .......... .......... .......... 46% 1.71M 1m55s\n", + " 54700K .......... .......... .......... .......... .......... 46% 815K 1m55s\n", + " 54750K .......... .......... .......... .......... .......... 46% 1.07M 1m55s\n", + " 54800K .......... .......... .......... .......... .......... 46% 739K 1m55s\n", + " 54850K .......... .......... .......... .......... .......... 46% 1.13M 1m54s\n", + " 54900K .......... .......... .......... .......... .......... 46% 1007K 1m54s\n", + " 54950K .......... .......... .......... .......... .......... 46% 856K 1m54s\n", + " 55000K .......... .......... .......... .......... .......... 46% 1.47M 1m54s\n", + " 55050K .......... .......... .......... .......... .......... 46% 930K 1m54s\n", + " 55100K .......... .......... .......... .......... .......... 46% 1.30M 1m54s\n", + " 55150K .......... .......... .......... .......... .......... 46% 622K 1m54s\n", + " 55200K .......... .......... .......... .......... .......... 46% 1.82M 1m54s\n", + " 55250K .......... .......... .......... .......... .......... 46% 595K 1m53s\n", + " 55300K .......... .......... .......... .......... .......... 46% 4.55M 1m53s\n", + " 55350K .......... .......... .......... .......... .......... 46% 617K 1m53s\n", + " 55400K .......... .......... .......... .......... .......... 46% 1.39M 1m53s\n", + " 55450K .......... .......... .......... .......... .......... 46% 897K 1m53s\n", + " 55500K .......... .......... .......... .......... .......... 47% 1.41M 1m53s\n", + " 55550K .......... .......... .......... .......... .......... 47% 816K 1m53s\n", + " 55600K .......... .......... .......... .......... .......... 47% 1.38M 1m52s\n", + " 55650K .......... .......... .......... .......... .......... 47% 907K 1m52s\n", + " 55700K .......... .......... .......... .......... .......... 47% 1.18M 1m52s\n", + " 55750K .......... .......... .......... .......... .......... 47% 928K 1m52s\n", + " 55800K .......... .......... .......... .......... .......... 47% 1.03M 1m52s\n", + " 55850K .......... .......... .......... .......... .......... 47% 1.12M 1m52s\n", + " 55900K .......... .......... .......... .......... .......... 47% 1.03M 1m52s\n", + " 55950K .......... .......... .......... .......... .......... 47% 803K 1m51s\n", + " 56000K .......... .......... .......... .......... .......... 47% 1.63M 1m51s\n", + " 56050K .......... .......... .......... .......... .......... 47% 814K 1m51s\n", + " 56100K .......... .......... .......... .......... .......... 47% 1.60M 1m51s\n", + " 56150K .......... .......... .......... .......... .......... 47% 791K 1m51s\n", + " 56200K .......... .......... .......... .......... .......... 47% 905K 1m51s\n", + " 56250K .......... .......... .......... .......... .......... 47% 1.46M 1m51s\n", + " 56300K .......... .......... .......... .......... .......... 47% 1.20M 1m51s\n", + " 56350K .......... .......... .......... .......... .......... 47% 867K 1m50s\n", + " 56400K .......... .......... .......... .......... .......... 47% 835K 1m50s\n", + " 56450K .......... .......... .......... .......... .......... 47% 2.53M 1m50s\n", + " 56500K .......... .......... .......... .......... .......... 47% 62.5K 1m51s\n", + " 56550K .......... .......... .......... .......... .......... 47% 60.0M 1m51s\n", + " 56600K .......... .......... .......... .......... .......... 47% 487K 1m51s\n", + " 56650K .......... .......... .......... .......... .......... 48% 530K 1m50s\n", + " 56700K .......... .......... .......... .......... .......... 48% 555K 1m50s\n", + " 56750K .......... .......... .......... .......... .......... 48% 559K 1m50s\n", + " 56800K .......... .......... .......... .......... .......... 48% 4.86M 1m50s\n", + " 56850K .......... .......... .......... .......... .......... 48% 578K 1m50s\n", + " 56900K .......... .......... .......... .......... .......... 48% 40.2K 1m51s\n", + " 56950K .......... .......... .......... .......... .......... 48% 21.4K 1m53s\n", + " 57000K .......... .......... .......... .......... .......... 48% 186K 1m54s\n", + " 57050K .......... .......... .......... .......... .......... 48% 189K 1m54s\n", + " 57100K .......... .......... .......... .......... .......... 48% 268K 1m54s\n", + " 57150K .......... .......... .......... .......... .......... 48% 190K 1m54s\n", + " 57200K .......... .......... .......... .......... .......... 48% 263K 1m54s\n", + " 57250K .......... .......... .......... .......... .......... 48% 210K 1m54s\n", + " 57300K .......... .......... .......... .......... .......... 48% 280K 1m54s\n", + " 57350K .......... .......... .......... .......... .......... 48% 255K 1m54s\n", + " 57400K .......... .......... .......... .......... .......... 48% 269K 1m54s\n", + " 57450K .......... .......... .......... .......... .......... 48% 297K 1m54s\n", + " 57500K .......... .......... .......... .......... .......... 48% 284K 1m54s\n", + " 57550K .......... .......... .......... .......... .......... 48% 269K 1m54s\n", + " 57600K .......... .......... .......... .......... .......... 48% 304K 1m54s\n", + " 57650K .......... .......... .......... .......... .......... 48% 473K 1m54s\n", + " 57700K .......... .......... .......... .......... .......... 48% 275K 1m54s\n", + " 57750K .......... .......... .......... .......... .......... 48% 287K 1m54s\n", + " 57800K .......... .......... .......... .......... .......... 48% 516K 1m54s\n", + " 57850K .......... .......... .......... .......... .......... 49% 289K 1m54s\n", + " 57900K .......... .......... .......... .......... .......... 49% 441K 1m54s\n", + " 57950K .......... .......... .......... .......... .......... 49% 287K 1m54s\n", + " 58000K .......... .......... .......... .......... .......... 49% 473K 1m53s\n", + " 58050K .......... .......... .......... .......... .......... 49% 301K 1m53s\n", + " 58100K .......... .......... .......... .......... .......... 49% 501K 1m53s\n", + " 58150K .......... .......... .......... .......... .......... 49% 283K 1m53s\n", + " 58200K .......... .......... .......... .......... .......... 49% 524K 1m53s\n", + " 58250K .......... .......... .......... .......... .......... 49% 293K 1m53s\n", + " 58300K .......... .......... .......... .......... .......... 49% 515K 1m53s\n", + " 58350K .......... .......... .......... .......... .......... 49% 532K 1m53s\n", + " 58400K .......... .......... .......... .......... .......... 49% 303K 1m53s\n", + " 58450K .......... .......... .......... .......... .......... 49% 492K 1m53s\n", + " 58500K .......... .......... .......... .......... .......... 49% 564K 1m53s\n", + " 58550K .......... .......... .......... .......... .......... 49% 276K 1m53s\n", + " 58600K .......... .......... .......... .......... .......... 49% 533K 1m53s\n", + " 58650K .......... .......... .......... .......... .......... 49% 491K 1m53s\n", + " 58700K .......... .......... .......... .......... .......... 49% 275K 1m53s\n", + " 58750K .......... .......... .......... .......... .......... 49% 511K 1m52s\n", + " 58800K .......... .......... .......... .......... .......... 49% 488K 1m52s\n", + " 58850K .......... .......... .......... .......... .......... 49% 547K 1m52s\n", + " 58900K .......... .......... .......... .......... .......... 49% 291K 1m52s\n", + " 58950K .......... .......... .......... .......... .......... 49% 517K 1m52s\n", + " 59000K .......... .......... .......... .......... .......... 50% 524K 1m52s\n", + " 59050K .......... .......... .......... .......... .......... 50% 563K 1m52s\n", + " 59100K .......... .......... .......... .......... .......... 50% 516K 1m52s\n", + " 59150K .......... .......... .......... .......... .......... 50% 289K 1m52s\n", + " 59200K .......... .......... .......... .......... .......... 50% 49.1K 1m53s\n", + " 59250K .......... .......... .......... .......... .......... 50% 52.4K 1m53s\n", + " 59300K .......... .......... .......... .......... .......... 50% 281K 1m53s\n", + " 59350K .......... .......... .......... .......... .......... 50% 507K 1m53s\n", + " 59400K .......... .......... .......... .......... .......... 50% 284K 1m53s\n", + " 59450K .......... .......... .......... .......... .......... 50% 528K 1m53s\n", + " 59500K .......... .......... .......... .......... .......... 50% 290K 1m53s\n", + " 59550K .......... .......... .......... .......... .......... 50% 508K 1m53s\n", + " 59600K .......... .......... .......... .......... .......... 50% 294K 1m53s\n", + " 59650K .......... .......... .......... .......... .......... 50% 536K 1m53s\n", + " 59700K .......... .......... .......... .......... .......... 50% 289K 1m53s\n", + " 59750K .......... .......... .......... .......... .......... 50% 538K 1m53s\n", + " 59800K .......... .......... .......... .......... .......... 50% 293K 1m53s\n", + " 59850K .......... .......... .......... .......... .......... 50% 543K 1m53s\n", + " 59900K .......... .......... .......... .......... .......... 50% 524K 1m53s\n", + " 59950K .......... .......... .......... .......... .......... 50% 279K 1m53s\n", + " 60000K .......... .......... .......... .......... .......... 50% 545K 1m53s\n", + " 60050K .......... .......... .......... .......... .......... 50% 542K 1m52s\n", + " 60100K .......... .......... .......... .......... .......... 50% 286K 1m52s\n", + " 60150K .......... .......... .......... .......... .......... 50% 466K 1m52s\n", + " 60200K .......... .......... .......... .......... .......... 51% 522K 1m52s\n", + " 60250K .......... .......... .......... .......... .......... 51% 312K 1m52s\n", + " 60300K .......... .......... .......... .......... .......... 51% 528K 1m52s\n", + " 60350K .......... .......... .......... .......... .......... 51% 473K 1m52s\n", + " 60400K .......... .......... .......... .......... .......... 51% 469K 1m52s\n", + " 60450K .......... .......... .......... .......... .......... 51% 374K 1m52s\n", + " 60500K .......... .......... .......... .......... .......... 51% 528K 1m52s\n", + " 60550K .......... .......... .......... .......... .......... 51% 436K 1m52s\n", + " 60600K .......... .......... .......... .......... .......... 51% 510K 1m52s\n", + " 60650K .......... .......... .......... .......... .......... 51% 463K 1m51s\n", + " 60700K .......... .......... .......... .......... .......... 51% 521K 1m51s\n", + " 60750K .......... .......... .......... .......... .......... 51% 421K 1m51s\n", + " 60800K .......... .......... .......... .......... .......... 51% 441K 1m51s\n", + " 60850K .......... .......... .......... .......... .......... 51% 576K 1m51s\n", + " 60900K .......... .......... .......... .......... .......... 51% 546K 1m51s\n", + " 60950K .......... .......... .......... .......... .......... 51% 432K 1m51s\n", + " 61000K .......... .......... .......... .......... .......... 51% 570K 1m51s\n", + " 61050K .......... .......... .......... .......... .......... 51% 573K 1m51s\n", + " 61100K .......... .......... .......... .......... .......... 51% 506K 1m51s\n", + " 61150K .......... .......... .......... .......... .......... 51% 523K 1m51s\n", + " 61200K .......... .......... .......... .......... .......... 51% 567K 1m50s\n", + " 61250K .......... .......... .......... .......... .......... 51% 563K 1m50s\n", + " 61300K .......... .......... .......... .......... .......... 51% 564K 1m50s\n", + " 61350K .......... .......... .......... .......... .......... 51% 568K 1m50s\n", + " 61400K .......... .......... .......... .......... .......... 52% 557K 1m50s\n", + " 61450K .......... .......... .......... .......... .......... 52% 558K 1m50s\n", + " 61500K .......... .......... .......... .......... .......... 52% 576K 1m50s\n", + " 61550K .......... .......... .......... .......... .......... 52% 553K 1m50s\n", + " 61600K .......... .......... .......... .......... .......... 52% 561K 1m50s\n", + " 61650K .......... .......... .......... .......... .......... 52% 534K 1m49s\n", + " 61700K .......... .......... .......... .......... .......... 52% 549K 1m49s\n", + " 61750K .......... .......... .......... .......... .......... 52% 558K 1m49s\n", + " 61800K .......... .......... .......... .......... .......... 52% 501K 1m49s\n", + " 61850K .......... .......... .......... .......... .......... 52% 723K 1m49s\n", + " 61900K .......... .......... .......... .......... .......... 52% 731K 1m49s\n", + " 61950K .......... .......... .......... .......... .......... 52% 540K 1m49s\n", + " 62000K .......... .......... .......... .......... .......... 52% 731K 1m49s\n", + " 62050K .......... .......... .......... .......... .......... 52% 680K 1m49s\n", + " 62100K .......... .......... .......... .......... .......... 52% 509K 1m49s\n", + " 62150K .......... .......... .......... .......... .......... 52% 536K 1m48s\n", + " 62200K .......... .......... .......... .......... .......... 52% 626K 1m48s\n", + " 62250K .......... .......... .......... .......... .......... 52% 753K 1m48s\n", + " 62300K .......... .......... .......... .......... .......... 52% 924K 1m48s\n", + " 62350K .......... .......... .......... .......... .......... 52% 629K 1m48s\n", + " 62400K .......... .......... .......... .......... .......... 52% 519K 1m48s\n", + " 62450K .......... .......... .......... .......... .......... 52% 596K 1m48s\n", + " 62500K .......... .......... .......... .......... .......... 52% 408K 1m48s\n", + " 62550K .......... .......... .......... .......... .......... 53% 552K 1m48s\n", + " 62600K .......... .......... .......... .......... .......... 53% 282K 1m48s\n", + " 62650K .......... .......... .......... .......... .......... 53% 519K 1m47s\n", + " 62700K .......... .......... .......... .......... .......... 53% 559K 1m47s\n", + " 62750K .......... .......... .......... .......... .......... 53% 548K 1m47s\n", + " 62800K .......... .......... .......... .......... .......... 53% 660K 1m47s\n", + " 62850K .......... .......... .......... .......... .......... 53% 824K 1m47s\n", + " 62900K .......... .......... .......... .......... .......... 53% 845K 1m47s\n", + " 62950K .......... .......... .......... .......... .......... 53% 565K 1m47s\n", + " 63000K .......... .......... .......... .......... .......... 53% 562K 1m47s\n", + " 63050K .......... .......... .......... .......... .......... 53% 571K 1m47s\n", + " 63100K .......... .......... .......... .......... .......... 53% 557K 1m46s\n", + " 63150K .......... .......... .......... .......... .......... 53% 696K 1m46s\n", + " 63200K .......... .......... .......... .......... .......... 53% 1.22M 1m46s\n", + " 63250K .......... .......... .......... .......... .......... 53% 653K 1m46s\n", + " 63300K .......... .......... .......... .......... .......... 53% 596K 1m46s\n", + " 63350K .......... .......... .......... .......... .......... 53% 576K 1m46s\n", + " 63400K .......... .......... .......... .......... .......... 53% 595K 1m46s\n", + " 63450K .......... .......... .......... .......... .......... 53% 1.87M 1m46s\n", + " 63500K .......... .......... .......... .......... .......... 53% 680K 1m45s\n", + " 63550K .......... .......... .......... .......... .......... 53% 558K 1m45s\n", + " 63600K .......... .......... .......... .......... .......... 53% 681K 1m45s\n", + " 63650K .......... .......... .......... .......... .......... 53% 771K 1m45s\n", + " 63700K .......... .......... .......... .......... .......... 53% 1.02M 1m45s\n", + " 63750K .......... .......... .......... .......... .......... 54% 565K 1m45s\n", + " 63800K .......... .......... .......... .......... .......... 54% 761K 1m45s\n", + " 63850K .......... .......... .......... .......... .......... 54% 818K 1m45s\n", + " 63900K .......... .......... .......... .......... .......... 54% 943K 1m44s\n", + " 63950K .......... .......... .......... .......... .......... 54% 570K 1m44s\n", + " 64000K .......... .......... .......... .......... .......... 54% 821K 1m44s\n", + " 64050K .......... .......... .......... .......... .......... 54% 879K 1m44s\n", + " 64100K .......... .......... .......... .......... .......... 54% 760K 1m44s\n", + " 64150K .......... .......... .......... .......... .......... 54% 620K 1m44s\n", + " 64200K .......... .......... .......... .......... .......... 54% 928K 1m44s\n", + " 64250K .......... .......... .......... .......... .......... 54% 893K 1m44s\n", + " 64300K .......... .......... .......... .......... .......... 54% 802K 1m44s\n", + " 64350K .......... .......... .......... .......... .......... 54% 697K 1m43s\n", + " 64400K .......... .......... .......... .......... .......... 54% 998K 1m43s\n", + " 64450K .......... .......... .......... .......... .......... 54% 730K 1m43s\n", + " 64500K .......... .......... .......... .......... .......... 54% 856K 1m43s\n", + " 64550K .......... .......... .......... .......... .......... 54% 769K 1m43s\n", + " 64600K .......... .......... .......... .......... .......... 54% 875K 1m43s\n", + " 64650K .......... .......... .......... .......... .......... 54% 894K 1m43s\n", + " 64700K .......... .......... .......... .......... .......... 54% 888K 1m42s\n", + " 64750K .......... .......... .......... .......... .......... 54% 865K 1m42s\n", + " 64800K .......... .......... .......... .......... .......... 54% 1.03M 1m42s\n", + " 64850K .......... .......... .......... .......... .......... 54% 618K 1m42s\n", + " 64900K .......... .......... .......... .......... .......... 54% 1.28M 1m42s\n", + " 64950K .......... .......... .......... .......... .......... 55% 901K 1m42s\n", + " 65000K .......... .......... .......... .......... .......... 55% 734K 1m42s\n", + " 65050K .......... .......... .......... .......... .......... 55% 1.02M 1m42s\n", + " 65100K .......... .......... .......... .......... .......... 55% 804K 1m41s\n", + " 65150K .......... .......... .......... .......... .......... 55% 973K 1m41s\n", + " 65200K .......... .......... .......... .......... .......... 55% 1.20M 1m41s\n", + " 65250K .......... .......... .......... .......... .......... 55% 687K 1m41s\n", + " 65300K .......... .......... .......... .......... .......... 55% 940K 1m41s\n", + " 65350K .......... .......... .......... .......... .......... 55% 919K 1m41s\n", + " 65400K .......... .......... .......... .......... .......... 55% 1022K 1m41s\n", + " 65450K .......... .......... .......... .......... .......... 55% 1.18M 1m41s\n", + " 65500K .......... .......... .......... .......... .......... 55% 765K 1m40s\n", + " 65550K .......... .......... .......... .......... .......... 55% 876K 1m40s\n", + " 65600K .......... .......... .......... .......... .......... 55% 928K 1m40s\n", + " 65650K .......... .......... .......... .......... .......... 55% 1.10M 1m40s\n", + " 65700K .......... .......... .......... .......... .......... 55% 991K 1m40s\n", + " 65750K .......... .......... .......... .......... .......... 55% 722K 1m40s\n", + " 65800K .......... .......... .......... .......... .......... 55% 1.45M 1m40s\n", + " 65850K .......... .......... .......... .......... .......... 55% 792K 1m40s\n", + " 65900K .......... .......... .......... .......... .......... 55% 1.17M 99s\n", + " 65950K .......... .......... .......... .......... .......... 55% 847K 99s\n", + " 66000K .......... .......... .......... .......... .......... 55% 1.10M 99s\n", + " 66050K .......... .......... .......... .......... .......... 55% 984K 99s\n", + " 66100K .......... .......... .......... .......... .......... 56% 1.27M 99s\n", + " 66150K .......... .......... .......... .......... .......... 56% 784K 99s\n", + " 66200K .......... .......... .......... .......... .......... 56% 1.02M 99s\n", + " 66250K .......... .......... .......... .......... .......... 56% 1.06M 98s\n", + " 66300K .......... .......... .......... .......... .......... 56% 990K 98s\n", + " 66350K .......... .......... .......... .......... .......... 56% 930K 98s\n", + " 66400K .......... .......... .......... .......... .......... 56% 865K 98s\n", + " 66450K .......... .......... .......... .......... .......... 56% 1.53M 98s\n", + " 66500K .......... .......... .......... .......... .......... 56% 787K 98s\n", + " 66550K .......... .......... .......... .......... .......... 56% 1.67M 98s\n", + " 66600K .......... .......... .......... .......... .......... 56% 831K 98s\n", + " 66650K .......... .......... .......... .......... .......... 56% 1.67M 97s\n", + " 66700K .......... .......... .......... .......... .......... 56% 738K 97s\n", + " 66750K .......... .......... .......... .......... .......... 56% 937K 97s\n", + " 66800K .......... .......... .......... .......... .......... 56% 1.04M 97s\n", + " 66850K .......... .......... .......... .......... .......... 56% 1.26M 97s\n", + " 66900K .......... .......... .......... .......... .......... 56% 1.14M 97s\n", + " 66950K .......... .......... .......... .......... .......... 56% 967K 97s\n", + " 67000K .......... .......... .......... .......... .......... 56% 971K 97s\n", + " 67050K .......... .......... .......... .......... .......... 56% 1.21M 96s\n", + " 67100K .......... .......... .......... .......... .......... 56% 913K 96s\n", + " 67150K .......... .......... .......... .......... .......... 56% 1.25M 96s\n", + " 67200K .......... .......... .......... .......... .......... 56% 947K 96s\n", + " 67250K .......... .......... .......... .......... .......... 56% 1.45M 96s\n", + " 67300K .......... .......... .......... .......... .......... 57% 925K 96s\n", + " 67350K .......... .......... .......... .......... .......... 57% 1.43M 96s\n", + " 67400K .......... .......... .......... .......... .......... 57% 888K 95s\n", + " 67450K .......... .......... .......... .......... .......... 57% 1.41M 95s\n", + " 67500K .......... .......... .......... .......... .......... 57% 840K 95s\n", + " 67550K .......... .......... .......... .......... .......... 57% 1.67M 95s\n", + " 67600K .......... .......... .......... .......... .......... 57% 828K 95s\n", + " 67650K .......... .......... .......... .......... .......... 57% 1.97M 95s\n", + " 67700K .......... .......... .......... .......... .......... 57% 851K 95s\n", + " 67750K .......... .......... .......... .......... .......... 57% 1.90M 95s\n", + " 67800K .......... .......... .......... .......... .......... 57% 794K 94s\n", + " 67850K .......... .......... .......... .......... .......... 57% 2.27M 94s\n", + " 67900K .......... .......... .......... .......... .......... 57% 926K 94s\n", + " 67950K .......... .......... .......... .......... .......... 57% 1.33M 94s\n", + " 68000K .......... .......... .......... .......... .......... 57% 969K 94s\n", + " 68050K .......... .......... .......... .......... .......... 57% 1.45M 94s\n", + " 68100K .......... .......... .......... .......... .......... 57% 929K 94s\n", + " 68150K .......... .......... .......... .......... .......... 57% 1.37M 93s\n", + " 68200K .......... .......... .......... .......... .......... 57% 922K 93s\n", + " 68250K .......... .......... .......... .......... .......... 57% 1.41M 93s\n", + " 68300K .......... .......... .......... .......... .......... 57% 1.51M 93s\n", + " 68350K .......... .......... .......... .......... .......... 57% 832K 93s\n", + " 68400K .......... .......... .......... .......... .......... 57% 1.79M 93s\n", + " 68450K .......... .......... .......... .......... .......... 58% 785K 93s\n", + " 68500K .......... .......... .......... .......... .......... 58% 3.05M 93s\n", + " 68550K .......... .......... .......... .......... .......... 58% 680K 92s\n", + " 68600K .......... .......... .......... .......... .......... 58% 3.12M 92s\n", + " 68650K .......... .......... .......... .......... .......... 58% 725K 92s\n", + " 68700K .......... .......... .......... .......... .......... 58% 1.85M 92s\n", + " 68750K .......... .......... .......... .......... .......... 58% 835K 92s\n", + " 68800K .......... .......... .......... .......... .......... 58% 1.55M 92s\n", + " 68850K .......... .......... .......... .......... .......... 58% 862K 92s\n", + " 68900K .......... .......... .......... .......... .......... 58% 1.27M 92s\n", + " 68950K .......... .......... .......... .......... .......... 58% 1.06M 91s\n", + " 69000K .......... .......... .......... .......... .......... 58% 1.06M 91s\n", + " 69050K .......... .......... .......... .......... .......... 58% 12.7M 91s\n", + " 69100K .......... .......... .......... .......... .......... 58% 755K 91s\n", + " 69150K .......... .......... .......... .......... .......... 58% 1.83M 91s\n", + " 69200K .......... .......... .......... .......... .......... 58% 681K 91s\n", + " 69250K .......... .......... .......... .......... .......... 58% 2.63M 91s\n", + " 69300K .......... .......... .......... .......... .......... 58% 1018K 91s\n", + " 69350K .......... .......... .......... .......... .......... 58% 1.13M 90s\n", + " 69400K .......... .......... .......... .......... .......... 58% 1.34M 90s\n", + " 69450K .......... .......... .......... .......... .......... 58% 1.02M 90s\n", + " 69500K .......... .......... .......... .......... .......... 58% 5.26M 90s\n", + " 69550K .......... .......... .......... .......... .......... 58% 751K 90s\n", + " 69600K .......... .......... .......... .......... .......... 58% 2.12M 90s\n", + " 69650K .......... .......... .......... .......... .......... 59% 894K 90s\n", + " 69700K .......... .......... .......... .......... .......... 59% 1.57M 89s\n", + " 69750K .......... .......... .......... .......... .......... 59% 882K 89s\n", + " 69800K .......... .......... .......... .......... .......... 59% 1.33M 89s\n", + " 69850K .......... .......... .......... .......... .......... 59% 15.2M 89s\n", + " 69900K .......... .......... .......... .......... .......... 59% 772K 89s\n", + " 69950K .......... .......... .......... .......... .......... 59% 1.81M 89s\n", + " 70000K .......... .......... .......... .......... .......... 59% 857K 89s\n", + " 70050K .......... .......... .......... .......... .......... 59% 1.20M 89s\n", + " 70100K .......... .......... .......... .......... .......... 59% 1.44M 88s\n", + " 70150K .......... .......... .......... .......... .......... 59% 887K 88s\n", + " 70200K .......... .......... .......... .......... .......... 59% 9.15M 88s\n", + " 70250K .......... .......... .......... .......... .......... 59% 683K 88s\n", + " 70300K .......... .......... .......... .......... .......... 59% 2.93M 88s\n", + " 70350K .......... .......... .......... .......... .......... 59% 1008K 88s\n", + " 70400K .......... .......... .......... .......... .......... 59% 1.20M 88s\n", + " 70450K .......... .......... .......... .......... .......... 59% 1.06M 88s\n", + " 70500K .......... .......... .......... .......... .......... 59% 1.12M 87s\n", + " 70550K .......... .......... .......... .......... .......... 59% 1.72M 87s\n", + " 70600K .......... .......... .......... .......... .......... 59% 939K 87s\n", + " 70650K .......... .......... .......... .......... .......... 59% 1.80M 87s\n", + " 70700K .......... .......... .......... .......... .......... 59% 1.41M 87s\n", + " 70750K .......... .......... .......... .......... .......... 59% 886K 87s\n", + " 70800K .......... .......... .......... .......... .......... 59% 1.49M 87s\n", + " 70850K .......... .......... .......... .......... .......... 60% 1.20M 87s\n", + " 70900K .......... .......... .......... .......... .......... 60% 1.73M 86s\n", + " 70950K .......... .......... .......... .......... .......... 60% 956K 86s\n", + " 71000K .......... .......... .......... .......... .......... 60% 1.44M 86s\n", + " 71050K .......... .......... .......... .......... .......... 60% 1.06M 86s\n", + " 71100K .......... .......... .......... .......... .......... 60% 1.37M 86s\n", + " 71150K .......... .......... .......... .......... .......... 60% 1.04M 86s\n", + " 71200K .......... .......... .......... .......... .......... 60% 2.15M 86s\n", + " 71250K .......... .......... .......... .......... .......... 60% 1.14M 86s\n", + " 71300K .......... .......... .......... .......... .......... 60% 1.24M 85s\n", + " 71350K .......... .......... .......... .......... .......... 60% 1.19M 85s\n", + " 71400K .......... .......... .......... .......... .......... 60% 1005K 85s\n", + " 71450K .......... .......... .......... .......... .......... 60% 1.67M 85s\n", + " 71500K .......... .......... .......... .......... .......... 60% 1.59M 85s\n", + " 71550K .......... .......... .......... .......... .......... 60% 1.09M 85s\n", + " 71600K .......... .......... .......... .......... .......... 60% 1.53M 85s\n", + " 71650K .......... .......... .......... .......... .......... 60% 922K 85s\n", + " 71700K .......... .......... .......... .......... .......... 60% 2.07M 84s\n", + " 71750K .......... .......... .......... .......... .......... 60% 1.36M 84s\n", + " 71800K .......... .......... .......... .......... .......... 60% 1021K 84s\n", + " 71850K .......... .......... .......... .......... .......... 60% 2.51M 84s\n", + " 71900K .......... .......... .......... .......... .......... 60% 842K 84s\n", + " 71950K .......... .......... .......... .......... .......... 60% 1.44M 84s\n", + " 72000K .......... .......... .......... .......... .......... 61% 1.61M 84s\n", + " 72050K .......... .......... .......... .......... .......... 61% 837K 84s\n", + " 72100K .......... .......... .......... .......... .......... 61% 30.7M 83s\n", + " 72150K .......... .......... .......... .......... .......... 61% 845K 83s\n", + " 72200K .......... .......... .......... .......... .......... 61% 1.58M 83s\n", + " 72250K .......... .......... .......... .......... .......... 61% 1.43M 83s\n", + " 72300K .......... .......... .......... .......... .......... 61% 962K 83s\n", + " 72350K .......... .......... .......... .......... .......... 61% 3.59M 83s\n", + " 72400K .......... .......... .......... .......... .......... 61% 947K 83s\n", + " 72450K .......... .......... .......... .......... .......... 61% 1.59M 83s\n", + " 72500K .......... .......... .......... .......... .......... 61% 1.40M 82s\n", + " 72550K .......... .......... .......... .......... .......... 61% 839K 82s\n", + " 72600K .......... .......... .......... .......... .......... 61% 3.47M 82s\n", + " 72650K .......... .......... .......... .......... .......... 61% 1.06M 82s\n", + " 72700K .......... .......... .......... .......... .......... 61% 1.48M 82s\n", + " 72750K .......... .......... .......... .......... .......... 61% 875K 82s\n", + " 72800K .......... .......... .......... .......... .......... 61% 1.11M 82s\n", + " 72850K .......... .......... .......... .......... .......... 61% 9.38M 82s\n", + " 72900K .......... .......... .......... .......... .......... 61% 936K 81s\n", + " 72950K .......... .......... .......... .......... .......... 61% 1.30M 81s\n", + " 73000K .......... .......... .......... .......... .......... 61% 877K 81s\n", + " 73050K .......... .......... .......... .......... .......... 61% 1.81M 81s\n", + " 73100K .......... .......... .......... .......... .......... 61% 4.04M 81s\n", + " 73150K .......... .......... .......... .......... .......... 61% 613K 81s\n", + " 73200K .......... .......... .......... .......... .......... 62% 2.42M 81s\n", + " 73250K .......... .......... .......... .......... .......... 62% 728K 81s\n", + " 73300K .......... .......... .......... .......... .......... 62% 6.14M 80s\n", + " 73350K .......... .......... .......... .......... .......... 62% 1.02M 80s\n", + " 73400K .......... .......... .......... .......... .......... 62% 1.20M 80s\n", + " 73450K .......... .......... .......... .......... .......... 62% 1.01M 80s\n", + " 73500K .......... .......... .......... .......... .......... 62% 1.34M 80s\n", + " 73550K .......... .......... .......... .......... .......... 62% 2.04M 80s\n", + " 73600K .......... .......... .......... .......... .......... 62% 1.36M 80s\n", + " 73650K .......... .......... .......... .......... .......... 62% 1.06M 80s\n", + " 73700K .......... .......... .......... .......... .......... 62% 1.20M 80s\n", + " 73750K .......... .......... .......... .......... .......... 62% 1.04M 79s\n", + " 73800K .......... .......... .......... .......... .......... 62% 5.15M 79s\n", + " 73850K .......... .......... .......... .......... .......... 62% 1.15M 79s\n", + " 73900K .......... .......... .......... .......... .......... 62% 1.14M 79s\n", + " 73950K .......... .......... .......... .......... .......... 62% 923K 79s\n", + " 74000K .......... .......... .......... .......... .......... 62% 1.45M 79s\n", + " 74050K .......... .......... .......... .......... .......... 62% 4.47M 79s\n", + " 74100K .......... .......... .......... .......... .......... 62% 954K 79s\n", + " 74150K .......... .......... .......... .......... .......... 62% 1.44M 78s\n", + " 74200K .......... .......... .......... .......... .......... 62% 936K 78s\n", + " 74250K .......... .......... .......... .......... .......... 62% 1.67M 78s\n", + " 74300K .......... .......... .......... .......... .......... 62% 2.10M 78s\n", + " 74350K .......... .......... .......... .......... .......... 63% 1.10M 78s\n", + " 74400K .......... .......... .......... .......... .......... 63% 1.42M 78s\n", + " 74450K .......... .......... .......... .......... .......... 63% 1.04M 78s\n", + " 74500K .......... .......... .......... .......... .......... 63% 1.50M 78s\n", + " 74550K .......... .......... .......... .......... .......... 63% 2.13M 77s\n", + " 74600K .......... .......... .......... .......... .......... 63% 1.11M 77s\n", + " 74650K .......... .......... .......... .......... .......... 63% 1.14M 77s\n", + " 74700K .......... .......... .......... .......... .......... 63% 1.22M 77s\n", + " 74750K .......... .......... .......... .......... .......... 63% 1.04M 77s\n", + " 74800K .......... .......... .......... .......... .......... 63% 8.88M 77s\n", + " 74850K .......... .......... .......... .......... .......... 63% 933K 77s\n", + " 74900K .......... .......... .......... .......... .......... 63% 1.09M 77s\n", + " 74950K .......... .......... .......... .......... .......... 63% 1.62M 77s\n", + " 75000K .......... .......... .......... .......... .......... 63% 1.04M 76s\n", + " 75050K .......... .......... .......... .......... .......... 63% 2.49M 76s\n", + " 75100K .......... .......... .......... .......... .......... 63% 1.00M 76s\n", + " 75150K .......... .......... .......... .......... .......... 63% 1.02M 76s\n", + " 75200K .......... .......... .......... .......... .......... 63% 2.75M 76s\n", + " 75250K .......... .......... .......... .......... .......... 63% 1.03M 76s\n", + " 75300K .......... .......... .......... .......... .......... 63% 1.32M 76s\n", + " 75350K .......... .......... .......... .......... .......... 63% 1.42M 76s\n", + " 75400K .......... .......... .......... .......... .......... 63% 1.61M 75s\n", + " 75450K .......... .......... .......... .......... .......... 63% 1.57M 75s\n", + " 75500K .......... .......... .......... .......... .......... 63% 1.06M 75s\n", + " 75550K .......... .......... .......... .......... .......... 64% 1.24M 75s\n", + " 75600K .......... .......... .......... .......... .......... 64% 2.17M 75s\n", + " 75650K .......... .......... .......... .......... .......... 64% 1.22M 75s\n", + " 75700K .......... .......... .......... .......... .......... 64% 1.37M 75s\n", + " 75750K .......... .......... .......... .......... .......... 64% 1.20M 75s\n", + " 75800K .......... .......... .......... .......... .......... 64% 1.15M 75s\n", + " 75850K .......... .......... .......... .......... .......... 64% 5.51M 74s\n", + " 75900K .......... .......... .......... .......... .......... 64% 1006K 74s\n", + " 75950K .......... .......... .......... .......... .......... 64% 1.44M 74s\n", + " 76000K .......... .......... .......... .......... .......... 64% 1.50M 74s\n", + " 76050K .......... .......... .......... .......... .......... 64% 1.19M 74s\n", + " 76100K .......... .......... .......... .......... .......... 64% 1.91M 74s\n", + " 76150K .......... .......... .......... .......... .......... 64% 1.01M 74s\n", + " 76200K .......... .......... .......... .......... .......... 64% 1.59M 74s\n", + " 76250K .......... .......... .......... .......... .......... 64% 3.04M 73s\n", + " 76300K .......... .......... .......... .......... .......... 64% 857K 73s\n", + " 76350K .......... .......... .......... .......... .......... 64% 1.70M 73s\n", + " 76400K .......... .......... .......... .......... .......... 64% 1.08M 73s\n", + " 76450K .......... .......... .......... .......... .......... 64% 2.17M 73s\n", + " 76500K .......... .......... .......... .......... .......... 64% 1.50M 73s\n", + " 76550K .......... .......... .......... .......... .......... 64% 977K 73s\n", + " 76600K .......... .......... .......... .......... .......... 64% 3.30M 73s\n", + " 76650K .......... .......... .......... .......... .......... 64% 1.77M 73s\n", + " 76700K .......... .......... .......... .......... .......... 64% 916K 72s\n", + " 76750K .......... .......... .......... .......... .......... 65% 1.52M 72s\n", + " 76800K .......... .......... .......... .......... .......... 65% 1.16M 72s\n", + " 76850K .......... .......... .......... .......... .......... 65% 2.75M 72s\n", + " 76900K .......... .......... .......... .......... .......... 65% 1.50M 72s\n", + " 76950K .......... .......... .......... .......... .......... 65% 932K 72s\n", + " 77000K .......... .......... .......... .......... .......... 65% 2.56M 72s\n", + " 77050K .......... .......... .......... .......... .......... 65% 2.03M 72s\n", + " 77100K .......... .......... .......... .......... .......... 65% 1.11M 71s\n", + " 77150K .......... .......... .......... .......... .......... 65% 1.19M 71s\n", + " 77200K .......... .......... .......... .......... .......... 65% 2.06M 71s\n", + " 77250K .......... .......... .......... .......... .......... 65% 1.73M 71s\n", + " 77300K .......... .......... .......... .......... .......... 65% 1.16M 71s\n", + " 77350K .......... .......... .......... .......... .......... 65% 1011K 71s\n", + " 77400K .......... .......... .......... .......... .......... 65% 2.62M 71s\n", + " 77450K .......... .......... .......... .......... .......... 65% 1.56M 71s\n", + " 77500K .......... .......... .......... .......... .......... 65% 1.11M 71s\n", + " 77550K .......... .......... .......... .......... .......... 65% 1.32M 70s\n", + " 77600K .......... .......... .......... .......... .......... 65% 2.85M 70s\n", + " 77650K .......... .......... .......... .......... .......... 65% 1.10M 70s\n", + " 77700K .......... .......... .......... .......... .......... 65% 1.27M 70s\n", + " 77750K .......... .......... .......... .......... .......... 65% 1.11M 70s\n", + " 77800K .......... .......... .......... .......... .......... 65% 4.61M 70s\n", + " 77850K .......... .......... .......... .......... .......... 65% 1.23M 70s\n", + " 77900K .......... .......... .......... .......... .......... 66% 1.04M 70s\n", + " 77950K .......... .......... .......... .......... .......... 66% 2.71M 70s\n", + " 78000K .......... .......... .......... .......... .......... 66% 1.43M 69s\n", + " 78050K .......... .......... .......... .......... .......... 66% 1.21M 69s\n", + " 78100K .......... .......... .......... .......... .......... 66% 2.08M 69s\n", + " 78150K .......... .......... .......... .......... .......... 66% 778K 69s\n", + " 78200K .......... .......... .......... .......... .......... 66% 10.4M 69s\n", + " 78250K .......... .......... .......... .......... .......... 66% 1.23M 69s\n", + " 78300K .......... .......... .......... .......... .......... 66% 1014K 69s\n", + " 78350K .......... .......... .......... .......... .......... 66% 3.33M 69s\n", + " 78400K .......... .......... .......... .......... .......... 66% 1.88M 68s\n", + " 78450K .......... .......... .......... .......... .......... 66% 965K 68s\n", + " 78500K .......... .......... .......... .......... .......... 66% 1.78M 68s\n", + " 78550K .......... .......... .......... .......... .......... 66% 1.45M 68s\n", + " 78600K .......... .......... .......... .......... .......... 66% 1.02M 68s\n", + " 78650K .......... .......... .......... .......... .......... 66% 2.05M 68s\n", + " 78700K .......... .......... .......... .......... .......... 66% 2.00M 68s\n", + " 78750K .......... .......... .......... .......... .......... 66% 232K 68s\n", + " 78800K .......... .......... .......... .......... .......... 66% 223M 68s\n", + " 78850K .......... .......... .......... .......... .......... 66% 258M 68s\n", + " 78900K .......... .......... .......... .......... .......... 66% 40.2K 68s\n", + " 78950K .......... .......... .......... .......... .......... 66% 280K 68s\n", + " 79000K .......... .......... .......... .......... .......... 66% 533K 68s\n", + " 79050K .......... .......... .......... .......... .......... 66% 573K 68s\n", + " 79100K .......... .......... .......... .......... .......... 67% 9.71M 68s\n", + " 79150K .......... .......... .......... .......... .......... 67% 549K 68s\n", + " 79200K .......... .......... .......... .......... .......... 67% 576K 68s\n", + " 79250K .......... .......... .......... .......... .......... 67% 20.1M 67s\n", + " 79300K .......... .......... .......... .......... .......... 67% 545K 67s\n", + " 79350K .......... .......... .......... .......... .......... 67% 506K 67s\n", + " 79400K .......... .......... .......... .......... .......... 67% 53.9M 67s\n", + " 79450K .......... .......... .......... .......... .......... 67% 62.0K 67s\n", + " 79500K .......... .......... .......... .......... .......... 67% 176K 67s\n", + " 79550K .......... .......... .......... .......... .......... 67% 287K 67s\n", + " 79600K .......... .......... .......... .......... .......... 67% 579K 67s\n", + " 79650K .......... .......... .......... .......... .......... 67% 3.48M 67s\n", + " 79700K .......... .......... .......... .......... .......... 67% 612K 67s\n", + " 79750K .......... .......... .......... .......... .......... 67% 614K 67s\n", + " 79800K .......... .......... .......... .......... .......... 67% 3.19M 67s\n", + " 79850K .......... .......... .......... .......... .......... 67% 583K 67s\n", + " 79900K .......... .......... .......... .......... .......... 67% 2.81M 67s\n", + " 79950K .......... .......... .......... .......... .......... 67% 659K 67s\n", + " 80000K .......... .......... .......... .......... .......... 67% 637K 66s\n", + " 80050K .......... .......... .......... .......... .......... 67% 2.73M 66s\n", + " 80100K .......... .......... .......... .......... .......... 67% 673K 66s\n", + " 80150K .......... .......... .......... .......... .......... 67% 2.01M 66s\n", + " 80200K .......... .......... .......... .......... .......... 67% 622K 66s\n", + " 80250K .......... .......... .......... .......... .......... 67% 678K 66s\n", + " 80300K .......... .......... .......... .......... .......... 68% 2.72M 66s\n", + " 80350K .......... .......... .......... .......... .......... 68% 616K 66s\n", + " 80400K .......... .......... .......... .......... .......... 68% 776K 66s\n", + " 80450K .......... .......... .......... .......... .......... 68% 1.67M 65s\n", + " 80500K .......... .......... .......... .......... .......... 68% 628K 65s\n", + " 80550K .......... .......... .......... .......... .......... 68% 3.29M 65s\n", + " 80600K .......... .......... .......... .......... .......... 68% 630K 65s\n", + " 80650K .......... .......... .......... .......... .......... 68% 4.69M 65s\n", + " 80700K .......... .......... .......... .......... .......... 68% 594K 65s\n", + " 80750K .......... .......... .......... .......... .......... 68% 668K 65s\n", + " 80800K .......... .......... .......... .......... .......... 68% 2.85M 65s\n", + " 80850K .......... .......... .......... .......... .......... 68% 635K 65s\n", + " 80900K .......... .......... .......... .......... .......... 68% 2.53M 65s\n", + " 80950K .......... .......... .......... .......... .......... 68% 567K 64s\n", + " 81000K .......... .......... .......... .......... .......... 68% 924K 64s\n", + " 81050K .......... .......... .......... .......... .......... 68% 1.30M 64s\n", + " 81100K .......... .......... .......... .......... .......... 68% 838K 64s\n", + " 81150K .......... .......... .......... .......... .......... 68% 1.28M 64s\n", + " 81200K .......... .......... .......... .......... .......... 68% 807K 64s\n", + " 81250K .......... .......... .......... .......... .......... 68% 1.04M 64s\n", + " 81300K .......... .......... .......... .......... .......... 68% 871K 64s\n", + " 81350K .......... .......... .......... .......... .......... 68% 1.47M 64s\n", + " 81400K .......... .......... .......... .......... .......... 68% 742K 64s\n", + " 81450K .......... .......... .......... .......... .......... 69% 997K 63s\n", + " 81500K .......... .......... .......... .......... .......... 69% 1.08M 63s\n", + " 81550K .......... .......... .......... .......... .......... 69% 987K 63s\n", + " 81600K .......... .......... .......... .......... .......... 69% 945K 63s\n", + " 81650K .......... .......... .......... .......... .......... 69% 1.29M 63s\n", + " 81700K .......... .......... .......... .......... .......... 69% 939K 63s\n", + " 81750K .......... .......... .......... .......... .......... 69% 900K 63s\n", + " 81800K .......... .......... .......... .......... .......... 69% 1.42M 63s\n", + " 81850K .......... .......... .......... .......... .......... 69% 823K 63s\n", + " 81900K .......... .......... .......... .......... .......... 69% 1.48M 62s\n", + " 81950K .......... .......... .......... .......... .......... 69% 817K 62s\n", + " 82000K .......... .......... .......... .......... .......... 69% 1.07M 62s\n", + " 82050K .......... .......... .......... .......... .......... 69% 1.12M 62s\n", + " 82100K .......... .......... .......... .......... .......... 69% 1.03M 62s\n", + " 82150K .......... .......... .......... .......... .......... 69% 830K 62s\n", + " 82200K .......... .......... .......... .......... .......... 69% 1.32M 62s\n", + " 82250K .......... .......... .......... .......... .......... 69% 932K 62s\n", + " 82300K .......... .......... .......... .......... .......... 69% 1.47M 62s\n", + " 82350K .......... .......... .......... .......... .......... 69% 814K 62s\n", + " 82400K .......... .......... .......... .......... .......... 69% 801K 61s\n", + " 82450K .......... .......... .......... .......... .......... 69% 1.81M 61s\n", + " 82500K .......... .......... .......... .......... .......... 69% 1.46M 61s\n", + " 82550K .......... .......... .......... .......... .......... 69% 890K 61s\n", + " 82600K .......... .......... .......... .......... .......... 69% 687K 61s\n", + " 82650K .......... .......... .......... .......... .......... 70% 2.07M 61s\n", + " 82700K .......... .......... .......... .......... .......... 70% 1.14M 61s\n", + " 82750K .......... .......... .......... .......... .......... 70% 1.05M 61s\n", + " 82800K .......... .......... .......... .......... .......... 70% 798K 61s\n", + " 82850K .......... .......... .......... .......... .......... 70% 2.08M 61s\n", + " 82900K .......... .......... .......... .......... .......... 70% 1.18M 60s\n", + " 82950K .......... .......... .......... .......... .......... 70% 976K 60s\n", + " 83000K .......... .......... .......... .......... .......... 70% 1.33M 60s\n", + " 83050K .......... .......... .......... .......... .......... 70% 1.03M 60s\n", + " 83100K .......... .......... .......... .......... .......... 70% 1.21M 60s\n", + " 83150K .......... .......... .......... .......... .......... 70% 984K 60s\n", + " 83200K .......... .......... .......... .......... .......... 70% 1.19M 60s\n", + " 83250K .......... .......... .......... .......... .......... 70% 1.26M 60s\n", + " 83300K .......... .......... .......... .......... .......... 70% 1.23M 60s\n", + " 83350K .......... .......... .......... .......... .......... 70% 930K 59s\n", + " 83400K .......... .......... .......... .......... .......... 70% 1.47M 59s\n", + " 83450K .......... .......... .......... .......... .......... 70% 827K 59s\n", + " 83500K .......... .......... .......... .......... .......... 70% 1.75M 59s\n", + " 83550K .......... .......... .......... .......... .......... 70% 798K 59s\n", + " 83600K .......... .......... .......... .......... .......... 70% 1.74M 59s\n", + " 83650K .......... .......... .......... .......... .......... 70% 817K 59s\n", + " 83700K .......... .......... .......... .......... .......... 70% 2.30M 59s\n", + " 83750K .......... .......... .......... .......... .......... 70% 749K 59s\n", + " 83800K .......... .......... .......... .......... .......... 71% 3.91M 59s\n", + " 83850K .......... .......... .......... .......... .......... 71% 774K 58s\n", + " 83900K .......... .......... .......... .......... .......... 71% 1.44M 58s\n", + " 83950K .......... .......... .......... .......... .......... 71% 1.26M 58s\n", + " 84000K .......... .......... .......... .......... .......... 71% 999K 58s\n", + " 84050K .......... .......... .......... .......... .......... 71% 1.43M 58s\n", + " 84100K .......... .......... .......... .......... .......... 71% 807K 58s\n", + " 84150K .......... .......... .......... .......... .......... 71% 2.24M 58s\n", + " 84200K .......... .......... .......... .......... .......... 71% 743K 58s\n", + " 84250K .......... .......... .......... .......... .......... 71% 12.5M 58s\n", + " 84300K .......... .......... .......... .......... .......... 71% 764K 58s\n", + " 84350K .......... .......... .......... .......... .......... 71% 1.98M 57s\n", + " 84400K .......... .......... .......... .......... .......... 71% 698K 57s\n", + " 84450K .......... .......... .......... .......... .......... 71% 1.80M 57s\n", + " 84500K .......... .......... .......... .......... .......... 71% 2.46M 57s\n", + " 84550K .......... .......... .......... .......... .......... 71% 704K 57s\n", + " 84600K .......... .......... .......... .......... .......... 71% 2.58M 57s\n", + " 84650K .......... .......... .......... .......... .......... 71% 705K 57s\n", + " 84700K .......... .......... .......... .......... .......... 71% 24.3M 57s\n", + " 84750K .......... .......... .......... .......... .......... 71% 556K 57s\n", + " 84800K .......... .......... .......... .......... .......... 71% 48.8M 57s\n", + " 84850K .......... .......... .......... .......... .......... 71% 734K 56s\n", + " 84900K .......... .......... .......... .......... .......... 71% 1.79M 56s\n", + " 84950K .......... .......... .......... .......... .......... 71% 929K 56s\n", + " 85000K .......... .......... .......... .......... .......... 72% 1.30M 56s\n", + " 85050K .......... .......... .......... .......... .......... 72% 3.57M 56s\n", + " 85100K .......... .......... .......... .......... .......... 72% 687K 56s\n", + " 85150K .......... .......... .......... .......... .......... 72% 8.48M 56s\n", + " 85200K .......... .......... .......... .......... .......... 72% 617K 56s\n", + " 85250K .......... .......... .......... .......... .......... 72% 4.03M 56s\n", + " 85300K .......... .......... .......... .......... .......... 72% 959K 55s\n", + " 85350K .......... .......... .......... .......... .......... 72% 1.24M 55s\n", + " 85400K .......... .......... .......... .......... .......... 72% 1.21M 55s\n", + " 85450K .......... .......... .......... .......... .......... 72% 1.02M 55s\n", + " 85500K .......... .......... .......... .......... .......... 72% 1.38M 55s\n", + " 85550K .......... .......... .......... .......... .......... 72% 908K 55s\n", + " 85600K .......... .......... .......... .......... .......... 72% 1.47M 55s\n", + " 85650K .......... .......... .......... .......... .......... 72% 2.39M 55s\n", + " 85700K .......... .......... .......... .......... .......... 72% 1.20M 55s\n", + " 85750K .......... .......... .......... .......... .......... 72% 1.13M 55s\n", + " 85800K .......... .......... .......... .......... .......... 72% 1.01M 54s\n", + " 85850K .......... .......... .......... .......... .......... 72% 1.37M 54s\n", + " 85900K .......... .......... .......... .......... .......... 72% 992K 54s\n", + " 85950K .......... .......... .......... .......... .......... 72% 1.27M 54s\n", + " 86000K .......... .......... .......... .......... .......... 72% 1.47M 54s\n", + " 86050K .......... .......... .......... .......... .......... 72% 1.66M 54s\n", + " 86100K .......... .......... .......... .......... .......... 72% 939K 54s\n", + " 86150K .......... .......... .......... .......... .......... 72% 1.18M 54s\n", + " 86200K .......... .......... .......... .......... .......... 73% 1.40M 54s\n", + " 86250K .......... .......... .......... .......... .......... 73% 1.01M 54s\n", + " 86300K .......... .......... .......... .......... .......... 73% 1.07M 53s\n", + " 86350K .......... .......... .......... .......... .......... 73% 1.37M 53s\n", + " 86400K .......... .......... .......... .......... .......... 73% 1.70M 53s\n", + " 86450K .......... .......... .......... .......... .......... 73% 1.01M 53s\n", + " 86500K .......... .......... .......... .......... .......... 73% 1.40M 53s\n", + " 86550K .......... .......... .......... .......... .......... 73% 1.25M 53s\n", + " 86600K .......... .......... .......... .......... .......... 73% 1.01M 53s\n", + " 86650K .......... .......... .......... .......... .......... 73% 1.39M 53s\n", + " 86700K .......... .......... .......... .......... .......... 73% 1.28M 53s\n", + " 86750K .......... .......... .......... .......... .......... 73% 1.37M 53s\n", + " 86800K .......... .......... .......... .......... .......... 73% 1004K 52s\n", + " 86850K .......... .......... .......... .......... .......... 73% 1.43M 52s\n", + " 86900K .......... .......... .......... .......... .......... 73% 1.36M 52s\n", + " 86950K .......... .......... .......... .......... .......... 73% 1.08M 52s\n", + " 87000K .......... .......... .......... .......... .......... 73% 1.23M 52s\n", + " 87050K .......... .......... .......... .......... .......... 73% 1.32M 52s\n", + " 87100K .......... .......... .......... .......... .......... 73% 1.39M 52s\n", + " 87150K .......... .......... .......... .......... .......... 73% 955K 52s\n", + " 87200K .......... .......... .......... .......... .......... 73% 1.32M 52s\n", + " 87250K .......... .......... .......... .......... .......... 73% 2.21M 52s\n", + " 87300K .......... .......... .......... .......... .......... 73% 991K 51s\n", + " 87350K .......... .......... .......... .......... .......... 74% 1.22M 51s\n", + " 87400K .......... .......... .......... .......... .......... 74% 1.32M 51s\n", + " 87450K .......... .......... .......... .......... .......... 74% 1.46M 51s\n", + " 87500K .......... .......... .......... .......... .......... 74% 1.41M 51s\n", + " 87550K .......... .......... .......... .......... .......... 74% 873K 51s\n", + " 87600K .......... .......... .......... .......... .......... 74% 1.96M 51s\n", + " 87650K .......... .......... .......... .......... .......... 74% 1.13M 51s\n", + " 87700K .......... .......... .......... .......... .......... 74% 1.65M 51s\n", + " 87750K .......... .......... .......... .......... .......... 74% 912K 51s\n", + " 87800K .......... .......... .......... .......... .......... 74% 1.18M 50s\n", + " 87850K .......... .......... .......... .......... .......... 74% 2.25M 50s\n", + " 87900K .......... .......... .......... .......... .......... 74% 1.07M 50s\n", + " 87950K .......... .......... .......... .......... .......... 74% 1.23M 50s\n", + " 88000K .......... .......... .......... .......... .......... 74% 1.24M 50s\n", + " 88050K .......... .......... .......... .......... .......... 74% 1006K 50s\n", + " 88100K .......... .......... .......... .......... .......... 74% 2.93M 50s\n", + " 88150K .......... .......... .......... .......... .......... 74% 1022K 50s\n", + " 88200K .......... .......... .......... .......... .......... 74% 1.34M 50s\n", + " 88250K .......... .......... .......... .......... .......... 74% 1.42M 50s\n", + " 88300K .......... .......... .......... .......... .......... 74% 1.13M 49s\n", + " 88350K .......... .......... .......... .......... .......... 74% 1.27M 49s\n", + " 88400K .......... .......... .......... .......... .......... 74% 1.02M 49s\n", + " 88450K .......... .......... .......... .......... .......... 74% 2.31M 49s\n", + " 88500K .......... .......... .......... .......... .......... 74% 1.26M 49s\n", + " 88550K .......... .......... .......... .......... .......... 75% 1.26M 49s\n", + " 88600K .......... .......... .......... .......... .......... 75% 1.07M 49s\n", + " 88650K .......... .......... .......... .......... .......... 75% 1.80M 49s\n", + " 88700K .......... .......... .......... .......... .......... 75% 1.40M 49s\n", + " 88750K .......... .......... .......... .......... .......... 75% 911K 49s\n", + " 88800K .......... .......... .......... .......... .......... 75% 1.83M 49s\n", + " 88850K .......... .......... .......... .......... .......... 75% 1.21M 48s\n", + " 88900K .......... .......... .......... .......... .......... 75% 1.98M 48s\n", + " 88950K .......... .......... .......... .......... .......... 75% 723K 48s\n", + " 89000K .......... .......... .......... .......... .......... 75% 2.30M 48s\n", + " 89050K .......... .......... .......... .......... .......... 75% 1.36M 48s\n", + " 89100K .......... .......... .......... .......... .......... 75% 1.48M 48s\n", + " 89150K .......... .......... .......... .......... .......... 75% 898K 48s\n", + " 89200K .......... .......... .......... .......... .......... 75% 1.51M 48s\n", + " 89250K .......... .......... .......... .......... .......... 75% 1.85M 48s\n", + " 89300K .......... .......... .......... .......... .......... 75% 1.03M 48s\n", + " 89350K .......... .......... .......... .......... .......... 75% 1.07M 47s\n", + " 89400K .......... .......... .......... .......... .......... 75% 1.67M 47s\n", + " 89450K .......... .......... .......... .......... .......... 75% 1.12M 47s\n", + " 89500K .......... .......... .......... .......... .......... 75% 1.27M 47s\n", + " 89550K .......... .......... .......... .......... .......... 75% 1.43M 47s\n", + " 89600K .......... .......... .......... .......... .......... 75% 2.11M 47s\n", + " 89650K .......... .......... .......... .......... .......... 75% 1.07M 47s\n", + " 89700K .......... .......... .......... .......... .......... 75% 2.31M 47s\n", + " 89750K .......... .......... .......... .......... .......... 76% 880K 47s\n", + " 89800K .......... .......... .......... .......... .......... 76% 1.84M 47s\n", + " 89850K .......... .......... .......... .......... .......... 76% 1.65M 46s\n", + " 89900K .......... .......... .......... .......... .......... 76% 1.20M 46s\n", + " 89950K .......... .......... .......... .......... .......... 76% 1.34M 46s\n", + " 90000K .......... .......... .......... .......... .......... 76% 1.15M 46s\n", + " 90050K .......... .......... .......... .......... .......... 76% 1.55M 46s\n", + " 90100K .......... .......... .......... .......... .......... 76% 1.57M 46s\n", + " 90150K .......... .......... .......... .......... .......... 76% 1.10M 46s\n", + " 90200K .......... .......... .......... .......... .......... 76% 2.41M 46s\n", + " 90250K .......... .......... .......... .......... .......... 76% 1.24M 46s\n", + " 90300K .......... .......... .......... .......... .......... 76% 1.47M 46s\n", + " 90350K .......... .......... .......... .......... .......... 76% 1.08M 46s\n", + " 90400K .......... .......... .......... .......... .......... 76% 1.47M 45s\n", + " 90450K .......... .......... .......... .......... .......... 76% 1.49M 45s\n", + " 90500K .......... .......... .......... .......... .......... 76% 1.63M 45s\n", + " 90550K .......... .......... .......... .......... .......... 76% 1.58M 45s\n", + " 90600K .......... .......... .......... .......... .......... 76% 1.36M 45s\n", + " 90650K .......... .......... .......... .......... .......... 76% 1.23M 45s\n", + " 90700K .......... .......... .......... .......... .......... 76% 1.36M 45s\n", + " 90750K .......... .......... .......... .......... .......... 76% 1.45M 45s\n", + " 90800K .......... .......... .......... .......... .......... 76% 1.23M 45s\n", + " 90850K .......... .......... .......... .......... .......... 76% 2.04M 45s\n", + " 90900K .......... .......... .......... .......... .......... 77% 1.16M 44s\n", + " 90950K .......... .......... .......... .......... .......... 77% 2.10M 44s\n", + " 91000K .......... .......... .......... .......... .......... 77% 1.43M 44s\n", + " 91050K .......... .......... .......... .......... .......... 77% 853K 44s\n", + " 91100K .......... .......... .......... .......... .......... 77% 3.50M 44s\n", + " 91150K .......... .......... .......... .......... .......... 77% 1.13M 44s\n", + " 91200K .......... .......... .......... .......... .......... 77% 1.49M 44s\n", + " 91250K .......... .......... .......... .......... .......... 77% 1.64M 44s\n", + " 91300K .......... .......... .......... .......... .......... 77% 1.34M 44s\n", + " 91350K .......... .......... .......... .......... .......... 77% 1.75M 44s\n", + " 91400K .......... .......... .......... .......... .......... 77% 1.63M 43s\n", + " 91450K .......... .......... .......... .......... .......... 77% 944K 43s\n", + " 91500K .......... .......... .......... .......... .......... 77% 2.75M 43s\n", + " 91550K .......... .......... .......... .......... .......... 77% 1.25M 43s\n", + " 91600K .......... .......... .......... .......... .......... 77% 1.03M 43s\n", + " 91650K .......... .......... .......... .......... .......... 77% 2.93M 43s\n", + " 91700K .......... .......... .......... .......... .......... 77% 1.47M 43s\n", + " 91750K .......... .......... .......... .......... .......... 77% 943K 43s\n", + " 91800K .......... .......... .......... .......... .......... 77% 3.38M 43s\n", + " 91850K .......... .......... .......... .......... .......... 77% 971K 43s\n", + " 91900K .......... .......... .......... .......... .......... 77% 1.92M 43s\n", + " 91950K .......... .......... .......... .......... .......... 77% 1.13M 42s\n", + " 92000K .......... .......... .......... .......... .......... 77% 1.30M 42s\n", + " 92050K .......... .......... .......... .......... .......... 77% 2.48M 42s\n", + " 92100K .......... .......... .......... .......... .......... 78% 1.46M 42s\n", + " 92150K .......... .......... .......... .......... .......... 78% 1.03M 42s\n", + " 92200K .......... .......... .......... .......... .......... 78% 2.50M 42s\n", + " 92250K .......... .......... .......... .......... .......... 78% 1.63M 42s\n", + " 92300K .......... .......... .......... .......... .......... 78% 1.10M 42s\n", + " 92350K .......... .......... .......... .......... .......... 78% 1.75M 42s\n", + " 92400K .......... .......... .......... .......... .......... 78% 940K 42s\n", + " 92450K .......... .......... .......... .......... .......... 78% 5.90M 41s\n", + " 92500K .......... .......... .......... .......... .......... 78% 1.28M 41s\n", + " 92550K .......... .......... .......... .......... .......... 78% 903K 41s\n", + " 92600K .......... .......... .......... .......... .......... 78% 12.3M 41s\n", + " 92650K .......... .......... .......... .......... .......... 78% 1.16M 41s\n", + " 92700K .......... .......... .......... .......... .......... 78% 1.13M 41s\n", + " 92750K .......... .......... .......... .......... .......... 78% 3.20M 41s\n", + " 92800K .......... .......... .......... .......... .......... 78% 1.38M 41s\n", + " 92850K .......... .......... .......... .......... .......... 78% 1.07M 41s\n", + " 92900K .......... .......... .......... .......... .......... 78% 3.39M 41s\n", + " 92950K .......... .......... .......... .......... .......... 78% 859K 41s\n", + " 93000K .......... .......... .......... .......... .......... 78% 1.96M 40s\n", + " 93050K .......... .......... .......... .......... .......... 78% 3.58M 40s\n", + " 93100K .......... .......... .......... .......... .......... 78% 782K 40s\n", + " 93150K .......... .......... .......... .......... .......... 78% 4.32M 40s\n", + " 93200K .......... .......... .......... .......... .......... 78% 1.22M 40s\n", + " 93250K .......... .......... .......... .......... .......... 79% 1.14M 40s\n", + " 93300K .......... .......... .......... .......... .......... 79% 6.09M 40s\n", + " 93350K .......... .......... .......... .......... .......... 79% 1.21M 40s\n", + " 93400K .......... .......... .......... .......... .......... 79% 1.15M 40s\n", + " 93450K .......... .......... .......... .......... .......... 79% 7.44M 40s\n", + " 93500K .......... .......... .......... .......... .......... 79% 1.09M 40s\n", + " 93550K .......... .......... .......... .......... .......... 79% 1.16M 39s\n", + " 93600K .......... .......... .......... .......... .......... 79% 6.21M 39s\n", + " 93650K .......... .......... .......... .......... .......... 79% 1.19M 39s\n", + " 93700K .......... .......... .......... .......... .......... 79% 1.23M 39s\n", + " 93750K .......... .......... .......... .......... .......... 79% 2.36M 39s\n", + " 93800K .......... .......... .......... .......... .......... 79% 914K 39s\n", + " 93850K .......... .......... .......... .......... .......... 79% 3.00M 39s\n", + " 93900K .......... .......... .......... .......... .......... 79% 1.77M 39s\n", + " 93950K .......... .......... .......... .......... .......... 79% 994K 39s\n", + " 94000K .......... .......... .......... .......... .......... 79% 2.54M 39s\n", + " 94050K .......... .......... .......... .......... .......... 79% 1.24M 39s\n", + " 94100K .......... .......... .......... .......... .......... 79% 1.56M 38s\n", + " 94150K .......... .......... .......... .......... .......... 79% 1.66M 38s\n", + " 94200K .......... .......... .......... .......... .......... 79% 1.49M 38s\n", + " 94250K .......... .......... .......... .......... .......... 79% 1.11M 38s\n", + " 94300K .......... .......... .......... .......... .......... 79% 3.32M 38s\n", + " 94350K .......... .......... .......... .......... .......... 79% 959K 38s\n", + " 94400K .......... .......... .......... .......... .......... 79% 1.40M 38s\n", + " 94450K .......... .......... .......... .......... .......... 80% 3.12M 38s\n", + " 94500K .......... .......... .......... .......... .......... 80% 1.09M 38s\n", + " 94550K .......... .......... .......... .......... .......... 80% 1.56M 38s\n", + " 94600K .......... .......... .......... .......... .......... 80% 1.90M 37s\n", + " 94650K .......... .......... .......... .......... .......... 80% 1.24M 37s\n", + " 94700K .......... .......... .......... .......... .......... 80% 1.76M 37s\n", + " 94750K .......... .......... .......... .......... .......... 80% 1.79M 37s\n", + " 94800K .......... .......... .......... .......... .......... 80% 1.06M 37s\n", + " 94850K .......... .......... .......... .......... .......... 80% 2.56M 37s\n", + " 94900K .......... .......... .......... .......... .......... 80% 2.08M 37s\n", + " 94950K .......... .......... .......... .......... .......... 80% 937K 37s\n", + " 95000K .......... .......... .......... .......... .......... 80% 1.98M 37s\n", + " 95050K .......... .......... .......... .......... .......... 80% 1.54M 37s\n", + " 95100K .......... .......... .......... .......... .......... 80% 1.53M 37s\n", + " 95150K .......... .......... .......... .......... .......... 80% 1.58M 36s\n", + " 95200K .......... .......... .......... .......... .......... 80% 1.57M 36s\n", + " 95250K .......... .......... .......... .......... .......... 80% 1.72M 36s\n", + " 95300K .......... .......... .......... .......... .......... 80% 1.70M 36s\n", + " 95350K .......... .......... .......... .......... .......... 80% 1.04M 36s\n", + " 95400K .......... .......... .......... .......... .......... 80% 1.25M 36s\n", + " 95450K .......... .......... .......... .......... .......... 80% 8.56M 36s\n", + " 95500K .......... .......... .......... .......... .......... 80% 872K 36s\n", + " 95550K .......... .......... .......... .......... .......... 80% 1.65M 36s\n", + " 95600K .......... .......... .......... .......... .......... 80% 6.32M 36s\n", + " 95650K .......... .......... .......... .......... .......... 81% 829K 36s\n", + " 95700K .......... .......... .......... .......... .......... 81% 1.99M 35s\n", + " 95750K .......... .......... .......... .......... .......... 81% 3.16M 35s\n", + " 95800K .......... .......... .......... .......... .......... 81% 940K 35s\n", + " 95850K .......... .......... .......... .......... .......... 81% 2.06M 35s\n", + " 95900K .......... .......... .......... .......... .......... 81% 2.40M 35s\n", + " 95950K .......... .......... .......... .......... .......... 81% 838K 35s\n", + " 96000K .......... .......... .......... .......... .......... 81% 2.74M 35s\n", + " 96050K .......... .......... .......... .......... .......... 81% 3.24M 35s\n", + " 96100K .......... .......... .......... .......... .......... 81% 766K 35s\n", + " 96150K .......... .......... .......... .......... .......... 81% 2.51M 35s\n", + " 96200K .......... .......... .......... .......... .......... 81% 5.59M 35s\n", + " 96250K .......... .......... .......... .......... .......... 81% 780K 35s\n", + " 96300K .......... .......... .......... .......... .......... 81% 2.11M 34s\n", + " 96350K .......... .......... .......... .......... .......... 81% 4.44M 34s\n", + " 96400K .......... .......... .......... .......... .......... 81% 810K 34s\n", + " 96450K .......... .......... .......... .......... .......... 81% 1.39M 34s\n", + " 96500K .......... .......... .......... .......... .......... 81% 15.8M 34s\n", + " 96550K .......... .......... .......... .......... .......... 81% 915K 34s\n", + " 96600K .......... .......... .......... .......... .......... 81% 1.16M 34s\n", + " 96650K .......... .......... .......... .......... .......... 81% 8.31M 34s\n", + " 96700K .......... .......... .......... .......... .......... 81% 1.08M 34s\n", + " 96750K .......... .......... .......... .......... .......... 81% 1.15M 34s\n", + " 96800K .......... .......... .......... .......... .......... 82% 7.18M 34s\n", + " 96850K .......... .......... .......... .......... .......... 82% 1.18M 33s\n", + " 96900K .......... .......... .......... .......... .......... 82% 1.17M 33s\n", + " 96950K .......... .......... .......... .......... .......... 82% 4.82M 33s\n", + " 97000K .......... .......... .......... .......... .......... 82% 1.07M 33s\n", + " 97050K .......... .......... .......... .......... .......... 82% 1.28M 33s\n", + " 97100K .......... .......... .......... .......... .......... 82% 4.48M 33s\n", + " 97150K .......... .......... .......... .......... .......... 82% 1.15M 33s\n", + " 97200K .......... .......... .......... .......... .......... 82% 1.13M 33s\n", + " 97250K .......... .......... .......... .......... .......... 82% 2.99M 33s\n", + " 97300K .......... .......... .......... .......... .......... 82% 1.26M 33s\n", + " 97350K .......... .......... .......... .......... .......... 82% 1.27M 33s\n", + " 97400K .......... .......... .......... .......... .......... 82% 2.44M 32s\n", + " 97450K .......... .......... .......... .......... .......... 82% 1.42M 32s\n", + " 97500K .......... .......... .......... .......... .......... 82% 1.29M 32s\n", + " 97550K .......... .......... .......... .......... .......... 82% 2.25M 32s\n", + " 97600K .......... .......... .......... .......... .......... 82% 1.52M 32s\n", + " 97650K .......... .......... .......... .......... .......... 82% 1.21M 32s\n", + " 97700K .......... .......... .......... .......... .......... 82% 2.04M 32s\n", + " 97750K .......... .......... .......... .......... .......... 82% 1.74M 32s\n", + " 97800K .......... .......... .......... .......... .......... 82% 1.13M 32s\n", + " 97850K .......... .......... .......... .......... .......... 82% 2.24M 32s\n", + " 97900K .......... .......... .......... .......... .......... 82% 2.04M 32s\n", + " 97950K .......... .......... .......... .......... .......... 82% 1.05M 31s\n", + " 98000K .......... .......... .......... .......... .......... 83% 2.00M 31s\n", + " 98050K .......... .......... .......... .......... .......... 83% 2.30M 31s\n", + " 98100K .......... .......... .......... .......... .......... 83% 1.02M 31s\n", + " 98150K .......... .......... .......... .......... .......... 83% 2.32M 31s\n", + " 98200K .......... .......... .......... .......... .......... 83% 1.64M 31s\n", + " 98250K .......... .......... .......... .......... .......... 83% 1.27M 31s\n", + " 98300K .......... .......... .......... .......... .......... 83% 2.30M 31s\n", + " 98350K .......... .......... .......... .......... .......... 83% 959K 31s\n", + " 98400K .......... .......... .......... .......... .......... 83% 3.57M 31s\n", + " 98450K .......... .......... .......... .......... .......... 83% 1.64M 31s\n", + " 98500K .......... .......... .......... .......... .......... 83% 1.88M 31s\n", + " 98550K .......... .......... .......... .......... .......... 83% 1.14M 30s\n", + " 98600K .......... .......... .......... .......... .......... 83% 2.92M 30s\n", + " 98650K .......... .......... .......... .......... .......... 83% 1.56M 30s\n", + " 98700K .......... .......... .......... .......... .......... 83% 909K 30s\n", + " 98750K .......... .......... .......... .......... .......... 83% 3.97M 30s\n", + " 98800K .......... .......... .......... .......... .......... 83% 1.78M 30s\n", + " 98850K .......... .......... .......... .......... .......... 83% 964K 30s\n", + " 98900K .......... .......... .......... .......... .......... 83% 4.69M 30s\n", + " 98950K .......... .......... .......... .......... .......... 83% 826K 30s\n", + " 99000K .......... .......... .......... .......... .......... 83% 2.00M 30s\n", + " 99050K .......... .......... .......... .......... .......... 83% 8.37M 30s\n", + " 99100K .......... .......... .......... .......... .......... 83% 1.28M 29s\n", + " 99150K .......... .......... .......... .......... .......... 84% 1.10M 29s\n", + " 99200K .......... .......... .......... .......... .......... 84% 2.85M 29s\n", + " 99250K .......... .......... .......... .......... .......... 84% 1.68M 29s\n", + " 99300K .......... .......... .......... .......... .......... 84% 1.15M 29s\n", + " 99350K .......... .......... .......... .......... .......... 84% 3.07M 29s\n", + " 99400K .......... .......... .......... .......... .......... 84% 1.61M 29s\n", + " 99450K .......... .......... .......... .......... .......... 84% 1.01M 29s\n", + " 99500K .......... .......... .......... .......... .......... 84% 11.8M 29s\n", + " 99550K .......... .......... .......... .......... .......... 84% 1.10M 29s\n", + " 99600K .......... .......... .......... .......... .......... 84% 1.13M 29s\n", + " 99650K .......... .......... .......... .......... .......... 84% 10.7M 29s\n", + " 99700K .......... .......... .......... .......... .......... 84% 1.20M 28s\n", + " 99750K .......... .......... .......... .......... .......... 84% 1.11M 28s\n", + " 99800K .......... .......... .......... .......... .......... 84% 11.2M 28s\n", + " 99850K .......... .......... .......... .......... .......... 84% 1.04M 28s\n", + " 99900K .......... .......... .......... .......... .......... 84% 1.27M 28s\n", + " 99950K .......... .......... .......... .......... .......... 84% 9.26M 28s\n", + "100000K .......... .......... .......... .......... .......... 84% 1.03M 28s\n", + "100050K .......... .......... .......... .......... .......... 84% 1.31M 28s\n", + "100100K .......... .......... .......... .......... .......... 84% 12.5M 28s\n", + "100150K .......... .......... .......... .......... .......... 84% 976K 28s\n", + "100200K .......... .......... .......... .......... .......... 84% 1.54M 28s\n", + "100250K .......... .......... .......... .......... .......... 84% 4.94M 27s\n", + "100300K .......... .......... .......... .......... .......... 84% 2.20M 27s\n", + "100350K .......... .......... .......... .......... .......... 85% 861K 27s\n", + "100400K .......... .......... .......... .......... .......... 85% 4.12M 27s\n", + "100450K .......... .......... .......... .......... .......... 85% 3.90M 27s\n", + "100500K .......... .......... .......... .......... .......... 85% 856K 27s\n", + "100550K .......... .......... .......... .......... .......... 85% 2.26M 27s\n", + "100600K .......... .......... .......... .......... .......... 85% 4.46M 27s\n", + "100650K .......... .......... .......... .......... .......... 85% 960K 27s\n", + "100700K .......... .......... .......... .......... .......... 85% 1.22M 27s\n", + "100750K .......... .......... .......... .......... .......... 85% 10.7M 27s\n", + "100800K .......... .......... .......... .......... .......... 85% 1.22M 27s\n", + "100850K .......... .......... .......... .......... .......... 85% 1.14M 26s\n", + "100900K .......... .......... .......... .......... .......... 85% 5.43M 26s\n", + "100950K .......... .......... .......... .......... .......... 85% 1.32M 26s\n", + "101000K .......... .......... .......... .......... .......... 85% 1.07M 26s\n", + "101050K .......... .......... .......... .......... .......... 85% 10.4M 26s\n", + "101100K .......... .......... .......... .......... .......... 85% 1.14M 26s\n", + "101150K .......... .......... .......... .......... .......... 85% 1.12M 26s\n", + "101200K .......... .......... .......... .......... .......... 85% 13.3M 26s\n", + "101250K .......... .......... .......... .......... .......... 85% 1.24M 26s\n", + "101300K .......... .......... .......... .......... .......... 85% 2.33M 26s\n", + "101350K .......... .......... .......... .......... .......... 85% 1.59M 26s\n", + "101400K .......... .......... .......... .......... .......... 85% 1.43M 26s\n", + "101450K .......... .......... .......... .......... .......... 85% 1.96M 25s\n", + "101500K .......... .......... .......... .......... .......... 85% 1.35M 25s\n", + "101550K .......... .......... .......... .......... .......... 86% 2.92M 25s\n", + "101600K .......... .......... .......... .......... .......... 86% 1.34M 25s\n", + "101650K .......... .......... .......... .......... .......... 86% 1.36M 25s\n", + "101700K .......... .......... .......... .......... .......... 86% 2.14M 25s\n", + "101750K .......... .......... .......... .......... .......... 86% 2.06M 25s\n", + "101800K .......... .......... .......... .......... .......... 86% 1.15M 25s\n", + "101850K .......... .......... .......... .......... .......... 86% 6.57M 25s\n", + "101900K .......... .......... .......... .......... .......... 86% 1.69M 25s\n", + "101950K .......... .......... .......... .......... .......... 86% 986K 25s\n", + "102000K .......... .......... .......... .......... .......... 86% 9.30M 25s\n", + "102050K .......... .......... .......... .......... .......... 86% 1.50M 24s\n", + "102100K .......... .......... .......... .......... .......... 86% 3.28M 24s\n", + "102150K .......... .......... .......... .......... .......... 86% 1.15M 24s\n", + "102200K .......... .......... .......... .......... .......... 86% 2.05M 24s\n", + "102250K .......... .......... .......... .......... .......... 86% 2.57M 24s\n", + "102300K .......... .......... .......... .......... .......... 86% 1.04M 24s\n", + "102350K .......... .......... .......... .......... .......... 86% 2.27M 24s\n", + "102400K .......... .......... .......... .......... .......... 86% 2.61M 24s\n", + "102450K .......... .......... .......... .......... .......... 86% 910K 24s\n", + "102500K .......... .......... .......... .......... .......... 86% 5.78M 24s\n", + "102550K .......... .......... .......... .......... .......... 86% 2.58M 24s\n", + "102600K .......... .......... .......... .......... .......... 86% 829K 24s\n", + "102650K .......... .......... .......... .......... .......... 86% 7.67M 23s\n", + "102700K .......... .......... .......... .......... .......... 87% 3.48M 23s\n", + "102750K .......... .......... .......... .......... .......... 87% 827K 23s\n", + "102800K .......... .......... .......... .......... .......... 87% 2.62M 23s\n", + "102850K .......... .......... .......... .......... .......... 87% 5.56M 23s\n", + "102900K .......... .......... .......... .......... .......... 87% 3.39M 23s\n", + "102950K .......... .......... .......... .......... .......... 87% 773K 23s\n", + "103000K .......... .......... .......... .......... .......... 87% 18.7M 23s\n", + "103050K .......... .......... .......... .......... .......... 87% 2.54M 23s\n", + "103100K .......... .......... .......... .......... .......... 87% 832K 23s\n", + "103150K .......... .......... .......... .......... .......... 87% 3.42M 23s\n", + "103200K .......... .......... .......... .......... .......... 87% 2.89M 23s\n", + "103250K .......... .......... .......... .......... .......... 87% 941K 22s\n", + "103300K .......... .......... .......... .......... .......... 87% 2.33M 22s\n", + "103350K .......... .......... .......... .......... .......... 87% 5.87M 22s\n", + "103400K .......... .......... .......... .......... .......... 87% 929K 22s\n", + "103450K .......... .......... .......... .......... .......... 87% 1.73M 22s\n", + "103500K .......... .......... .......... .......... .......... 87% 19.5M 22s\n", + "103550K .......... .......... .......... .......... .......... 87% 2.88M 22s\n", + "103600K .......... .......... .......... .......... .......... 87% 731K 22s\n", + "103650K .......... .......... .......... .......... .......... 87% 7.90M 22s\n", + "103700K .......... .......... .......... .......... .......... 87% 3.20M 22s\n", + "103750K .......... .......... .......... .......... .......... 87% 798K 22s\n", + "103800K .......... .......... .......... .......... .......... 87% 4.21M 22s\n", + "103850K .......... .......... .......... .......... .......... 87% 2.99M 21s\n", + "103900K .......... .......... .......... .......... .......... 88% 1.11M 21s\n", + "103950K .......... .......... .......... .......... .......... 88% 1.44M 21s\n", + "104000K .......... .......... .......... .......... .......... 88% 9.00M 21s\n", + "104050K .......... .......... .......... .......... .......... 88% 2.90M 21s\n", + "104100K .......... .......... .......... .......... .......... 88% 813K 21s\n", + "104150K .......... .......... .......... .......... .......... 88% 4.97M 21s\n", + "104200K .......... .......... .......... .......... .......... 88% 3.36M 21s\n", + "104250K .......... .......... .......... .......... .......... 88% 740K 21s\n", + "104300K .......... .......... .......... .......... .......... 88% 5.39M 21s\n", + "104350K .......... .......... .......... .......... .......... 88% 3.80M 21s\n", + "104400K .......... .......... .......... .......... .......... 88% 920K 21s\n", + "104450K .......... .......... .......... .......... .......... 88% 1.54M 20s\n", + "104500K .......... .......... .......... .......... .......... 88% 63.1M 20s\n", + "104550K .......... .......... .......... .......... .......... 88% 2.48M 20s\n", + "104600K .......... .......... .......... .......... .......... 88% 740K 20s\n", + "104650K .......... .......... .......... .......... .......... 88% 3.94M 20s\n", + "104700K .......... .......... .......... .......... .......... 88% 12.9M 20s\n", + "104750K .......... .......... .......... .......... .......... 88% 674K 20s\n", + "104800K .......... .......... .......... .......... .......... 88% 1.67M 20s\n", + "104850K .......... .......... .......... .......... .......... 88% 3.35M 20s\n", + "104900K .......... .......... .......... .......... .......... 88% 2.61M 20s\n", + "104950K .......... .......... .......... .......... .......... 88% 882K 20s\n", + "105000K .......... .......... .......... .......... .......... 88% 2.32M 20s\n", + "105050K .......... .......... .......... .......... .......... 88% 6.97M 19s\n", + "105100K .......... .......... .......... .......... .......... 89% 1.60M 19s\n", + "105150K .......... .......... .......... .......... .......... 89% 1.06M 19s\n", + "105200K .......... .......... .......... .......... .......... 89% 3.45M 19s\n", + "105250K .......... .......... .......... .......... .......... 89% 1.66M 19s\n", + "105300K .......... .......... .......... .......... .......... 89% 1.18M 19s\n", + "105350K .......... .......... .......... .......... .......... 89% 2.34M 19s\n", + "105400K .......... .......... .......... .......... .......... 89% 2.64M 19s\n", + "105450K .......... .......... .......... .......... .......... 89% 1.13M 19s\n", + "105500K .......... .......... .......... .......... .......... 89% 2.49M 19s\n", + "105550K .......... .......... .......... .......... .......... 89% 3.67M 19s\n", + "105600K .......... .......... .......... .......... .......... 89% 1.44M 19s\n", + "105650K .......... .......... .......... .......... .......... 89% 1.30M 19s\n", + "105700K .......... .......... .......... .......... .......... 89% 2.84M 18s\n", + "105750K .......... .......... .......... .......... .......... 89% 1.35M 18s\n", + "105800K .......... .......... .......... .......... .......... 89% 1.19M 18s\n", + "105850K .......... .......... .......... .......... .......... 89% 4.67M 18s\n", + "105900K .......... .......... .......... .......... .......... 89% 3.99M 18s\n", + "105950K .......... .......... .......... .......... .......... 89% 1.71M 18s\n", + "106000K .......... .......... .......... .......... .......... 89% 865K 18s\n", + "106050K .......... .......... .......... .......... .......... 89% 2.42M 18s\n", + "106100K .......... .......... .......... .......... .......... 89% 4.63M 18s\n", + "106150K .......... .......... .......... .......... .......... 89% 1.01M 18s\n", + "106200K .......... .......... .......... .......... .......... 89% 2.91M 18s\n", + "106250K .......... .......... .......... .......... .......... 90% 2.42M 18s\n", + "106300K .......... .......... .......... .......... .......... 90% 1.26M 17s\n", + "106350K .......... .......... .......... .......... .......... 90% 1.47M 17s\n", + "106400K .......... .......... .......... .......... .......... 90% 2.14M 17s\n", + "106450K .......... .......... .......... .......... .......... 90% 5.02M 17s\n", + "106500K .......... .......... .......... .......... .......... 90% 963K 17s\n", + "106550K .......... .......... .......... .......... .......... 90% 1.99M 17s\n", + "106600K .......... .......... .......... .......... .......... 90% 33.5M 17s\n", + "106650K .......... .......... .......... .......... .......... 90% 941K 17s\n", + "106700K .......... .......... .......... .......... .......... 90% 3.62M 17s\n", + "106750K .......... .......... .......... .......... .......... 90% 1.83M 17s\n", + "106800K .......... .......... .......... .......... .......... 90% 3.12M 17s\n", + "106850K .......... .......... .......... .......... .......... 90% 1.11M 17s\n", + "106900K .......... .......... .......... .......... .......... 90% 1.45M 17s\n", + "106950K .......... .......... .......... .......... .......... 90% 2.87M 16s\n", + "107000K .......... .......... .......... .......... .......... 90% 1.31M 16s\n", + "107050K .......... .......... .......... .......... .......... 90% 2.90M 16s\n", + "107100K .......... .......... .......... .......... .......... 90% 2.50M 16s\n", + "107150K .......... .......... .......... .......... .......... 90% 1.89M 16s\n", + "107200K .......... .......... .......... .......... .......... 90% 1.04M 16s\n", + "107250K .......... .......... .......... .......... .......... 90% 2.33M 16s\n", + "107300K .......... .......... .......... .......... .......... 90% 4.01M 16s\n", + "107350K .......... .......... .......... .......... .......... 90% 952K 16s\n", + "107400K .......... .......... .......... .......... .......... 90% 1.69M 16s\n", + "107450K .......... .......... .......... .......... .......... 91% 36.4M 16s\n", + "107500K .......... .......... .......... .......... .......... 91% 1.95M 16s\n", + "107550K .......... .......... .......... .......... .......... 91% 1.17M 16s\n", + "107600K .......... .......... .......... .......... .......... 91% 1.84M 15s\n", + "107650K .......... .......... .......... .......... .......... 91% 22.8M 15s\n", + "107700K .......... .......... .......... .......... .......... 91% 894K 15s\n", + "107750K .......... .......... .......... .......... .......... 91% 1.48M 15s\n", + "107800K .......... .......... .......... .......... .......... 91% 171M 15s\n", + "107850K .......... .......... .......... .......... .......... 91% 1.90M 15s\n", + "107900K .......... .......... .......... .......... .......... 91% 1.39M 15s\n", + "107950K .......... .......... .......... .......... .......... 91% 1.64M 15s\n", + "108000K .......... .......... .......... .......... .......... 91% 11.7M 15s\n", + "108050K .......... .......... .......... .......... .......... 91% 828K 15s\n", + "108100K .......... .......... .......... .......... .......... 91% 1.69M 15s\n", + "108150K .......... .......... .......... .......... .......... 91% 9.70M 15s\n", + "108200K .......... .......... .......... .......... .......... 91% 1.97M 14s\n", + "108250K .......... .......... .......... .......... .......... 91% 1.34M 14s\n", + "108300K .......... .......... .......... .......... .......... 91% 1.59M 14s\n", + "108350K .......... .......... .......... .......... .......... 91% 8.68M 14s\n", + "108400K .......... .......... .......... .......... .......... 91% 949K 14s\n", + "108450K .......... .......... .......... .......... .......... 91% 1.75M 14s\n", + "108500K .......... .......... .......... .......... .......... 91% 10.7M 14s\n", + "108550K .......... .......... .......... .......... .......... 91% 1.79M 14s\n", + "108600K .......... .......... .......... .......... .......... 92% 1.39M 14s\n", + "108650K .......... .......... .......... .......... .......... 92% 1.73M 14s\n", + "108700K .......... .......... .......... .......... .......... 92% 5.35M 14s\n", + "108750K .......... .......... .......... .......... .......... 92% 967K 14s\n", + "108800K .......... .......... .......... .......... .......... 92% 1.59M 14s\n", + "108850K .......... .......... .......... .......... .......... 92% 4.32M 13s\n", + "108900K .......... .......... .......... .......... .......... 92% 2.50M 13s\n", + "108950K .......... .......... .......... .......... .......... 92% 1.40M 13s\n", + "109000K .......... .......... .......... .......... .......... 92% 1.50M 13s\n", + "109050K .......... .......... .......... .......... .......... 92% 4.03M 13s\n", + "109100K .......... .......... .......... .......... .......... 92% 1.23M 13s\n", + "109150K .......... .......... .......... .......... .......... 92% 1.14M 13s\n", + "109200K .......... .......... .......... .......... .......... 92% 4.44M 13s\n", + "109250K .......... .......... .......... .......... .......... 92% 5.01M 13s\n", + "109300K .......... .......... .......... .......... .......... 92% 1.11M 13s\n", + "109350K .......... .......... .......... .......... .......... 92% 1.60M 13s\n", + "109400K .......... .......... .......... .......... .......... 92% 16.6M 13s\n", + "109450K .......... .......... .......... .......... .......... 92% 1.06M 13s\n", + "109500K .......... .......... .......... .......... .......... 92% 1.36M 12s\n", + "109550K .......... .......... .......... .......... .......... 92% 4.95M 12s\n", + "109600K .......... .......... .......... .......... .......... 92% 4.72M 12s\n", + "109650K .......... .......... .......... .......... .......... 92% 866K 12s\n", + "109700K .......... .......... .......... .......... .......... 92% 2.54M 12s\n", + "109750K .......... .......... .......... .......... .......... 92% 11.1M 12s\n", + "109800K .......... .......... .......... .......... .......... 93% 951K 12s\n", + "109850K .......... .......... .......... .......... .......... 93% 1.71M 12s\n", + "109900K .......... .......... .......... .......... .......... 93% 31.2M 12s\n", + "109950K .......... .......... .......... .......... .......... 93% 2.35M 12s\n", + "110000K .......... .......... .......... .......... .......... 93% 711K 12s\n", + "110050K .......... .......... .......... .......... .......... 93% 339M 12s\n", + "110100K .......... .......... .......... .......... .......... 93% 3.18M 12s\n", + "110150K .......... .......... .......... .......... .......... 93% 1.04M 11s\n", + "110200K .......... .......... .......... .......... .......... 93% 1.69M 11s\n", + "110250K .......... .......... .......... .......... .......... 93% 3.15M 11s\n", + "110300K .......... .......... .......... .......... .......... 93% 4.64M 11s\n", + "110350K .......... .......... .......... .......... .......... 93% 765K 11s\n", + "110400K .......... .......... .......... .......... .......... 93% 6.30M 11s\n", + "110450K .......... .......... .......... .......... .......... 93% 5.18M 11s\n", + "110500K .......... .......... .......... .......... .......... 93% 2.36M 11s\n", + "110550K .......... .......... .......... .......... .......... 93% 812K 11s\n", + "110600K .......... .......... .......... .......... .......... 93% 5.25M 11s\n", + "110650K .......... .......... .......... .......... .......... 93% 5.68M 11s\n", + "110700K .......... .......... .......... .......... .......... 93% 959K 11s\n", + "110750K .......... .......... .......... .......... .......... 93% 2.45M 11s\n", + "110800K .......... .......... .......... .......... .......... 93% 40.1K 11s\n", + "110850K .......... .......... .......... .......... .......... 93% 495K 11s\n", + "110900K .......... .......... .......... .......... .......... 93% 704K 10s\n", + "110950K .......... .......... .......... .......... .......... 93% 35.4M 10s\n", + "111000K .......... .......... .......... .......... .......... 94% 184K 10s\n", + "111050K .......... .......... .......... .......... .......... 94% 464K 10s\n", + "111100K .......... .......... .......... .......... .......... 94% 613K 10s\n", + "111150K .......... .......... .......... .......... .......... 94% 8.32M 10s\n", + "111200K .......... .......... .......... .......... .......... 94% 616K 10s\n", + "111250K .......... .......... .......... .......... .......... 94% 7.29M 10s\n", + "111300K .......... .......... .......... .......... .......... 94% 26.5M 10s\n", + "111350K .......... .......... .......... .......... .......... 94% 607K 10s\n", + "111400K .......... .......... .......... .......... .......... 94% 8.34M 10s\n", + "111450K .......... .......... .......... .......... .......... 94% 22.8M 10s\n", + "111500K .......... .......... .......... .......... .......... 94% 570K 10s\n", + "111550K .......... .......... .......... .......... .......... 94% 16.2M 9s\n", + "111600K .......... .......... .......... .......... .......... 94% 564K 9s\n", + "111650K .......... .......... .......... .......... .......... 94% 9.57M 9s\n", + "111700K .......... .......... .......... .......... .......... 94% 20.1M 9s\n", + "111750K .......... .......... .......... .......... .......... 94% 560K 9s\n", + "111800K .......... .......... .......... .......... .......... 94% 4.58M 9s\n", + "111850K .......... .......... .......... .......... .......... 94% 56.7M 9s\n", + "111900K .......... .......... .......... .......... .......... 94% 568K 9s\n", + "111950K .......... .......... .......... .......... .......... 94% 11.3M 9s\n", + "112000K .......... .......... .......... .......... .......... 94% 546K 9s\n", + "112050K .......... .......... .......... .......... .......... 94% 9.24M 9s\n", + "112100K .......... .......... .......... .......... .......... 94% 53.2M 9s\n", + "112150K .......... .......... .......... .......... .......... 95% 577K 9s\n", + "112200K .......... .......... .......... .......... .......... 95% 7.96M 9s\n", + "112250K .......... .......... .......... .......... .......... 95% 3.55M 8s\n", + "112300K .......... .......... .......... .......... .......... 95% 622K 8s\n", + "112350K .......... .......... .......... .......... .......... 95% 4.83M 8s\n", + "112400K .......... .......... .......... .......... .......... 95% 798K 8s\n", + "112450K .......... .......... .......... .......... .......... 95% 2.30M 8s\n", + "112500K .......... .......... .......... .......... .......... 95% 4.35M 8s\n", + "112550K .......... .......... .......... .......... .......... 95% 699K 8s\n", + "112600K .......... .......... .......... .......... .......... 95% 3.94M 8s\n", + "112650K .......... .......... .......... .......... .......... 95% 5.95M 8s\n", + "112700K .......... .......... .......... .......... .......... 95% 726K 8s\n", + "112750K .......... .......... .......... .......... .......... 95% 2.49M 8s\n", + "112800K .......... .......... .......... .......... .......... 95% 2.28M 8s\n", + "112850K .......... .......... .......... .......... .......... 95% 802K 8s\n", + "112900K .......... .......... .......... .......... .......... 95% 3.01M 7s\n", + "112950K .......... .......... .......... .......... .......... 95% 789K 7s\n", + "113000K .......... .......... .......... .......... .......... 95% 2.87M 7s\n", + "113050K .......... .......... .......... .......... .......... 95% 2.50M 7s\n", + "113100K .......... .......... .......... .......... .......... 95% 892K 7s\n", + "113150K .......... .......... .......... .......... .......... 95% 2.98M 7s\n", + "113200K .......... .......... .......... .......... .......... 95% 2.67M 7s\n", + "113250K .......... .......... .......... .......... .......... 95% 892K 7s\n", + "113300K .......... .......... .......... .......... .......... 95% 2.59M 7s\n", + "113350K .......... .......... .......... .......... .......... 96% 1.79M 7s\n", + "113400K .......... .......... .......... .......... .......... 96% 960K 7s\n", + "113450K .......... .......... .......... .......... .......... 96% 1.82M 7s\n", + "113500K .......... .......... .......... .......... .......... 96% 1.29M 7s\n", + "113550K .......... .......... .......... .......... .......... 96% 1.76M 6s\n", + "113600K .......... .......... .......... .......... .......... 96% 1.40M 6s\n", + "113650K .......... .......... .......... .......... .......... 96% 1.42M 6s\n", + "113700K .......... .......... .......... .......... .......... 96% 1.85M 6s\n", + "113750K .......... .......... .......... .......... .......... 96% 1.47M 6s\n", + "113800K .......... .......... .......... .......... .......... 96% 1.24M 6s\n", + "113850K .......... .......... .......... .......... .......... 96% 2.81M 6s\n", + "113900K .......... .......... .......... .......... .......... 96% 1.23M 6s\n", + "113950K .......... .......... .......... .......... .......... 96% 1.46M 6s\n", + "114000K .......... .......... .......... .......... .......... 96% 1.37M 6s\n", + "114050K .......... .......... .......... .......... .......... 96% 2.18M 6s\n", + "114100K .......... .......... .......... .......... .......... 96% 1.08M 6s\n", + "114150K .......... .......... .......... .......... .......... 96% 1.52M 6s\n", + "114200K .......... .......... .......... .......... .......... 96% 3.12M 6s\n", + "114250K .......... .......... .......... .......... .......... 96% 1.19M 5s\n", + "114300K .......... .......... .......... .......... .......... 96% 1.41M 5s\n", + "114350K .......... .......... .......... .......... .......... 96% 1.69M 5s\n", + "114400K .......... .......... .......... .......... .......... 96% 1.08M 5s\n", + "114450K .......... .......... .......... .......... .......... 96% 2.36M 5s\n", + "114500K .......... .......... .......... .......... .......... 96% 2.17M 5s\n", + "114550K .......... .......... .......... .......... .......... 97% 1.11M 5s\n", + "114600K .......... .......... .......... .......... .......... 97% 1.83M 5s\n", + "114650K .......... .......... .......... .......... .......... 97% 2.26M 5s\n", + "114700K .......... .......... .......... .......... .......... 97% 1.11M 5s\n", + "114750K .......... .......... .......... .......... .......... 97% 1.69M 5s\n", + "114800K .......... .......... .......... .......... .......... 97% 3.17M 5s\n", + "114850K .......... .......... .......... .......... .......... 97% 1.01M 5s\n", + "114900K .......... .......... .......... .......... .......... 97% 1.56M 5s\n", + "114950K .......... .......... .......... .......... .......... 97% 3.25M 4s\n", + "115000K .......... .......... .......... .......... .......... 97% 1.03M 4s\n", + "115050K .......... .......... .......... .......... .......... 97% 1.60M 4s\n", + "115100K .......... .......... .......... .......... .......... 97% 2.90M 4s\n", + "115150K .......... .......... .......... .......... .......... 97% 1.04M 4s\n", + "115200K .......... .......... .......... .......... .......... 97% 1.92M 4s\n", + "115250K .......... .......... .......... .......... .......... 97% 1.44M 4s\n", + "115300K .......... .......... .......... .......... .......... 97% 1.06M 4s\n", + "115350K .......... .......... .......... .......... .......... 97% 4.50M 4s\n", + "115400K .......... .......... .......... .......... .......... 97% 1.38M 4s\n", + "115450K .......... .......... .......... .......... .......... 97% 998K 4s\n", + "115500K .......... .......... .......... .......... .......... 97% 10.1M 4s\n", + "115550K .......... .......... .......... .......... .......... 97% 1023K 4s\n", + "115600K .......... .......... .......... .......... .......... 97% 1.22M 4s\n", + "115650K .......... .......... .......... .......... .......... 97% 186M 3s\n", + "115700K .......... .......... .......... .......... .......... 98% 1.10M 3s\n", + "115750K .......... .......... .......... .......... .......... 98% 1.04M 3s\n", + "115800K .......... .......... .......... .......... .......... 98% 14.9M 3s\n", + "115850K .......... .......... .......... .......... .......... 98% 1.26M 3s\n", + "115900K .......... .......... .......... .......... .......... 98% 1.10M 3s\n", + "115950K .......... .......... .......... .......... .......... 98% 7.29M 3s\n", + "116000K .......... .......... .......... .......... .......... 98% 801K 3s\n", + "116050K .......... .......... .......... .......... .......... 98% 1.82M 3s\n", + "116100K .......... .......... .......... .......... .......... 98% 111M 3s\n", + "116150K .......... .......... .......... .......... .......... 98% 798K 3s\n", + "116200K .......... .......... .......... .......... .......... 98% 1.66M 3s\n", + "116250K .......... .......... .......... .......... .......... 98% 14.0M 3s\n", + "116300K .......... .......... .......... .......... .......... 98% 916K 2s\n", + "116350K .......... .......... .......... .......... .......... 98% 1.41M 2s\n", + "116400K .......... .......... .......... .......... .......... 98% 29.1M 2s\n", + "116450K .......... .......... .......... .......... .......... 98% 926K 2s\n", + "116500K .......... .......... .......... .......... .......... 98% 1.35M 2s\n", + "116550K .......... .......... .......... .......... .......... 98% 29.4M 2s\n", + "116600K .......... .......... .......... .......... .......... 98% 909K 2s\n", + "116650K .......... .......... .......... .......... .......... 98% 1.41M 2s\n", + "116700K .......... .......... .......... .......... .......... 98% 38.3M 2s\n", + "116750K .......... .......... .......... .......... .......... 98% 925K 2s\n", + "116800K .......... .......... .......... .......... .......... 98% 1.34M 2s\n", + "116850K .......... .......... .......... .......... .......... 98% 29.6M 2s\n", + "116900K .......... .......... .......... .......... .......... 99% 1.21M 2s\n", + "116950K .......... .......... .......... .......... .......... 99% 1.03M 2s\n", + "117000K .......... .......... .......... .......... .......... 99% 18.8M 1s\n", + "117050K .......... .......... .......... .......... .......... 99% 1.21M 1s\n", + "117100K .......... .......... .......... .......... .......... 99% 1.08M 1s\n", + "117150K .......... .......... .......... .......... .......... 99% 5.60M 1s\n", + "117200K .......... .......... .......... .......... .......... 99% 1.24M 1s\n", + "117250K .......... .......... .......... .......... .......... 99% 1.16M 1s\n", + "117300K .......... .......... .......... .......... .......... 99% 7.39M 1s\n", + "117350K .......... .......... .......... .......... .......... 99% 1.27M 1s\n", + "117400K .......... .......... .......... .......... .......... 99% 1.09M 1s\n", + "117450K .......... .......... .......... .......... .......... 99% 3.21M 1s\n", + "117500K .......... .......... .......... .......... .......... 99% 2.33M 1s\n", + "117550K .......... .......... .......... .......... .......... 99% 820K 1s\n", + "117600K .......... .......... .......... .......... .......... 99% 5.27M 1s\n", + "117650K .......... .......... .......... .......... .......... 99% 2.54M 1s\n", + "117700K .......... .......... .......... .......... .......... 99% 795K 0s\n", + "117750K .......... .......... .......... .......... .......... 99% 7.84M 0s\n", + "117800K .......... .......... .......... .......... .......... 99% 2.43M 0s\n", + "117850K .......... .......... .......... .......... .......... 99% 740K 0s\n", + "117900K .......... .......... .......... .......... .......... 99% 26.1M 0s\n", + "117950K .......... .......... .......... .......... .......... 99% 2.18M 0s\n", + "118000K .......... .......... .......... .......... .......... 99% 772K 0s\n", + "118050K .......... .......... .......... .......... ..... 100% 7.32M=2m47s\n", + "\n", + "2025-04-01 16:38:46 (707 KB/s) - ‘/Users/gregoryhalverson/data/GEOS5FP/2025.03.31/GEOS.fp.asm.tavg3_2d_aer_Nx.20250331_2230.V01.nc4.20250401233558.download’ saved [120929281/120929281]\n", + "\n", + "/opt/homebrew/Caskroom/miniforge/base/envs/BESS-JPL/lib/python3.10/site-packages/rasterio/__init__.py:356: NotGeoreferencedWarning: Dataset has no geotransform, gcps, or rpcs. The identity matrix will be returned.\n", + " dataset = DatasetReader(path, driver=driver, sharing=sharing, **kwargs)\n", + "--2025-04-01 16:38:47-- https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/Y2025/M04/D01/GEOS.fp.asm.tavg3_2d_aer_Nx.20250401_0130.V01.nc4\n", + "Resolving portal.nccs.nasa.gov (portal.nccs.nasa.gov)... 2001:4d0:2418:2800::a99a:9791, 169.154.151.145\n", + "Connecting to portal.nccs.nasa.gov (portal.nccs.nasa.gov)|2001:4d0:2418:2800::a99a:9791|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 120817632 (115M) [application/octet-stream]\n", + "Saving to: ‘/Users/gregoryhalverson/data/GEOS5FP/2025.04.01/GEOS.fp.asm.tavg3_2d_aer_Nx.20250401_0130.V01.nc4.20250401233847.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 278K 7m4s\n", + " 50K .......... .......... .......... .......... .......... 0% 584K 5m13s\n", + " 100K .......... .......... .......... .......... .......... 0% 10.7M 3m32s\n", + " 150K .......... .......... .......... .......... .......... 0% 24.1M 2m40s\n", + " 200K .......... .......... .......... .......... .......... 0% 578K 2m49s\n", + " 250K .......... .......... .......... .......... .......... 0% 37.0M 2m21s\n", + " 300K .......... .......... .......... .......... .......... 0% 593K 2m29s\n", + " 350K .......... .......... .......... .......... .......... 0% 14.2M 2m11s\n", + " 400K .......... .......... .......... .......... .......... 0% 10.9M 1m58s\n", + " 450K .......... .......... .......... .......... .......... 0% 593K 2m6s\n", + " 500K .......... .......... .......... .......... .......... 0% 44.6M 1m55s\n", + " 550K .......... .......... .......... .......... .......... 0% 11.2M 1m46s\n", + " 600K .......... .......... .......... .......... .......... 0% 575K 1m53s\n", + " 650K .......... .......... .......... .......... .......... 0% 36.2M 1m46s\n", + " 700K .......... .......... .......... .......... .......... 0% 660K 1m50s\n", + " 750K .......... .......... .......... .......... .......... 0% 2.11M 1m47s\n", + " 800K .......... .......... .......... .......... .......... 0% 16.9M 1m41s\n", + " 850K .......... .......... .......... .......... .......... 0% 668K 1m45s\n", + " 900K .......... .......... .......... .......... .......... 0% 4.67M 1m41s\n", + " 950K .......... .......... .......... .......... .......... 0% 4.91M 97s\n", + " 1000K .......... .......... .......... .......... .......... 0% 602K 1m41s\n", + " 1050K .......... .......... .......... .......... .......... 0% 13.6M 97s\n", + " 1100K .......... .......... .......... .......... .......... 0% 861K 99s\n", + " 1150K .......... .......... .......... .......... .......... 1% 1.75M 97s\n", + " 1200K .......... .......... .......... .......... .......... 1% 6.31M 94s\n", + " 1250K .......... .......... .......... .......... .......... 1% 701K 97s\n", + " 1300K .......... .......... .......... .......... .......... 1% 5.34M 94s\n", + " 1350K .......... .......... .......... .......... .......... 1% 7.42M 91s\n", + " 1400K .......... .......... .......... .......... .......... 1% 607K 95s\n", + " 1450K .......... .......... .......... .......... .......... 1% 14.2M 92s\n", + " 1500K .......... .......... .......... .......... .......... 1% 6.88M 89s\n", + " 1550K .......... .......... .......... .......... .......... 1% 619K 92s\n", + " 1600K .......... .......... .......... .......... .......... 1% 11.9M 90s\n", + " 1650K .......... .......... .......... .......... .......... 1% 726K 92s\n", + " 1700K .......... .......... .......... .......... .......... 1% 2.74M 90s\n", + " 1750K .......... .......... .......... .......... .......... 1% 4.94M 88s\n", + " 1800K .......... .......... .......... .......... .......... 1% 737K 90s\n", + " 1850K .......... .......... .......... .......... .......... 1% 2.44M 89s\n", + " 1900K .......... .......... .......... .......... .......... 1% 11.3M 87s\n", + " 1950K .......... .......... .......... .......... .......... 1% 586K 90s\n", + " 2000K .......... .......... .......... .......... .......... 1% 21.6M 88s\n", + " 2050K .......... .......... .......... .......... .......... 1% 14.9M 86s\n", + " 2100K .......... .......... .......... .......... .......... 1% 589K 88s\n", + " 2150K .......... .......... .......... .......... .......... 1% 7.37M 86s\n", + " 2200K .......... .......... .......... .......... .......... 1% 959K 87s\n", + " 2250K .......... .......... .......... .......... .......... 1% 1.35M 87s\n", + " 2300K .......... .......... .......... .......... .......... 1% 9.91M 85s\n", + " 2350K .......... .......... .......... .......... .......... 2% 717K 87s\n", + " 2400K .......... .......... .......... .......... .......... 2% 1.95M 86s\n", + " 2450K .......... .......... .......... .......... .......... 2% 108M 85s\n", + " 2500K .......... .......... .......... .......... .......... 2% 687K 86s\n", + " 2550K .......... .......... .......... .......... .......... 2% 2.47M 85s\n", + " 2600K .......... .......... .......... .......... .......... 2% 21.7M 84s\n", + " 2650K .......... .......... .......... .......... .......... 2% 662K 85s\n", + " 2700K .......... .......... .......... .......... .......... 2% 2.80M 85s\n", + " 2750K .......... .......... .......... .......... .......... 2% 1.44M 84s\n", + " 2800K .......... .......... .......... .......... .......... 2% 911K 85s\n", + " 2850K .......... .......... .......... .......... .......... 2% 14.6M 84s\n", + " 2900K .......... .......... .......... .......... .......... 2% 1.42M 84s\n", + " 2950K .......... .......... .......... .......... .......... 2% 986K 84s\n", + " 3000K .......... .......... .......... .......... .......... 2% 8.42M 83s\n", + " 3050K .......... .......... .......... .......... .......... 2% 994K 83s\n", + " 3100K .......... .......... .......... .......... .......... 2% 101K 1m40s\n", + " 3150K .......... .......... .......... .......... .......... 2% 76.4K 2m2s\n", + " 3200K .......... .......... .......... .......... .......... 2% 260M 2m0s\n", + " 3250K .......... .......... .......... .......... .......... 2% 143M 1m58s\n", + " 3300K .......... .......... .......... .......... .......... 2% 182K 2m6s\n", + " 3350K .......... .......... .......... .......... .......... 2% 558K 2m7s\n", + " 3400K .......... .......... .......... .......... .......... 2% 543K 2m8s\n", + " 3450K .......... .......... .......... .......... .......... 2% 10.7M 2m6s\n", + " 3500K .......... .......... .......... .......... .......... 3% 17.5M 2m5s\n", + " 3550K .......... .......... .......... .......... .......... 3% 546K 2m6s\n", + " 3600K .......... .......... .......... .......... .......... 3% 13.5M 2m4s\n", + " 3650K .......... .......... .......... .......... .......... 3% 19.5M 2m2s\n", + " 3700K .......... .......... .......... .......... .......... 3% 567K 2m3s\n", + " 3750K .......... .......... .......... .......... .......... 3% 11.4M 2m2s\n", + " 3800K .......... .......... .......... .......... .......... 3% 590K 2m3s\n", + " 3850K .......... .......... .......... .......... .......... 3% 3.96M 2m1s\n", + " 3900K .......... .......... .......... .......... .......... 3% 24.2M 2m0s\n", + " 3950K .......... .......... .......... .......... .......... 3% 596K 2m1s\n", + " 4000K .......... .......... .......... .......... .......... 3% 9.66M 1m59s\n", + " 4050K .......... .......... .......... .......... .......... 3% 27.3M 1m58s\n", + " 4100K .......... .......... .......... .......... .......... 3% 553K 1m59s\n", + " 4150K .......... .......... .......... .......... .......... 3% 24.8M 1m58s\n", + " 4200K .......... .......... .......... .......... .......... 3% 670K 1m58s\n", + " 4250K .......... .......... .......... .......... .......... 3% 2.97M 1m57s\n", + " 4300K .......... .......... .......... .......... .......... 3% 20.6M 1m56s\n", + " 4350K .......... .......... .......... .......... .......... 3% 516K 1m57s\n", + " 4400K .......... .......... .......... .......... .......... 3% 15.7M 1m56s\n", + " 4450K .......... .......... .......... .......... .......... 3% 56.3M 1m54s\n", + " 4500K .......... .......... .......... .......... .......... 3% 534K 1m55s\n", + " 4550K .......... .......... .......... .......... .......... 3% 29.7M 1m54s\n", + " 4600K .......... .......... .......... .......... .......... 3% 798K 1m54s\n", + " 4650K .......... .......... .......... .......... .......... 3% 1.62M 1m54s\n", + " 4700K .......... .......... .......... .......... .......... 4% 31.3M 1m53s\n", + " 4750K .......... .......... .......... .......... .......... 4% 740K 1m53s\n", + " 4800K .......... .......... .......... .......... .......... 4% 2.20M 1m52s\n", + " 4850K .......... .......... .......... .......... .......... 4% 6.62M 1m51s\n", + " 4900K .......... .......... .......... .......... .......... 4% 821K 1m51s\n", + " 4950K .......... .......... .......... .......... .......... 4% 2.00M 1m51s\n", + " 5000K .......... .......... .......... .......... .......... 4% 4.64M 1m50s\n", + " 5050K .......... .......... .......... .......... .......... 4% 671K 1m50s\n", + " 5100K .......... .......... .......... .......... .......... 4% 7.37M 1m49s\n", + " 5150K .......... .......... .......... .......... .......... 4% 840K 1m50s\n", + " 5200K .......... .......... .......... .......... .......... 4% 2.08M 1m49s\n", + " 5250K .......... .......... .......... .......... .......... 4% 2.01M 1m49s\n", + " 5300K .......... .......... .......... .......... .......... 4% 1.19M 1m48s\n", + " 5350K .......... .......... .......... .......... .......... 4% 1.74M 1m48s\n", + " 5400K .......... .......... .......... .......... .......... 4% 2.30M 1m47s\n", + " 5450K .......... .......... .......... .......... .......... 4% 1.23M 1m47s\n", + " 5500K .......... .......... .......... .......... .......... 4% 1.67M 1m47s\n", + " 5550K .......... .......... .......... .......... .......... 4% 2.02M 1m46s\n", + " 5600K .......... .......... .......... .......... .......... 4% 791K 1m46s\n", + " 5650K .......... .......... .......... .......... .......... 4% 6.44M 1m46s\n", + " 5700K .......... .......... .......... .......... .......... 4% 1.60M 1m45s\n", + " 5750K .......... .......... .......... .......... .......... 4% 807K 1m45s\n", + " 5800K .......... .......... .......... .......... .......... 4% 27.9M 1m45s\n", + " 5850K .......... .......... .......... .......... .......... 5% 1022K 1m45s\n", + " 5900K .......... .......... .......... .......... .......... 5% 1.40M 1m44s\n", + " 5950K .......... .......... .......... .......... .......... 5% 1.83M 1m44s\n", + " 6000K .......... .......... .......... .......... .......... 5% 1.61M 1m43s\n", + " 6050K .......... .......... .......... .......... .......... 5% 1.45M 1m43s\n", + " 6100K .......... .......... .......... .......... .......... 5% 1.86M 1m43s\n", + " 6150K .......... .......... .......... .......... .......... 5% 1.02M 1m43s\n", + " 6200K .......... .......... .......... .......... .......... 5% 1.28M 1m43s\n", + " 6250K .......... .......... .......... .......... .......... 5% 5.70M 1m42s\n", + " 6300K .......... .......... .......... .......... .......... 5% 987K 1m42s\n", + " 6350K .......... .......... .......... .......... .......... 5% 1.55M 1m42s\n", + " 6400K .......... .......... .......... .......... .......... 5% 1.03M 1m42s\n", + " 6450K .......... .......... .......... .......... .......... 5% 2.89M 1m41s\n", + " 6500K .......... .......... .......... .......... .......... 5% 1.96M 1m41s\n", + " 6550K .......... .......... .......... .......... .......... 5% 892K 1m41s\n", + " 6600K .......... .......... .......... .......... .......... 5% 4.38M 1m40s\n", + " 6650K .......... .......... .......... .......... .......... 5% 1.93M 1m40s\n", + " 6700K .......... .......... .......... .......... .......... 5% 906K 1m40s\n", + " 6750K .......... .......... .......... .......... .......... 5% 4.33M 99s\n", + " 6800K .......... .......... .......... .......... .......... 5% 1.63M 99s\n", + " 6850K .......... .......... .......... .......... .......... 5% 1.03M 99s\n", + " 6900K .......... .......... .......... .......... .......... 5% 2.95M 99s\n", + " 6950K .......... .......... .......... .......... .......... 5% 1.77M 98s\n", + " 7000K .......... .......... .......... .......... .......... 5% 973K 98s\n", + " 7050K .......... .......... .......... .......... .......... 6% 5.20M 98s\n", + " 7100K .......... .......... .......... .......... .......... 6% 1.70M 97s\n", + " 7150K .......... .......... .......... .......... .......... 6% 909K 98s\n", + " 7200K .......... .......... .......... .......... .......... 6% 1.51M 97s\n", + " 7250K .......... .......... .......... .......... .......... 6% 85.4M 97s\n", + " 7300K .......... .......... .......... .......... .......... 6% 832K 97s\n", + " 7350K .......... .......... .......... .......... .......... 6% 1.74M 97s\n", + " 7400K .......... .......... .......... .......... .......... 6% 1.10M 97s\n", + " 7450K .......... .......... .......... .......... .......... 6% 1.86M 96s\n", + " 7500K .......... .......... .......... .......... .......... 6% 2.30M 96s\n", + " 7550K .......... .......... .......... .......... .......... 6% 788K 96s\n", + " 7600K .......... .......... .......... .......... .......... 6% 9.35M 96s\n", + " 7650K .......... .......... .......... .......... .......... 6% 1.70M 95s\n", + " 7700K .......... .......... .......... .......... .......... 6% 957K 95s\n", + " 7750K .......... .......... .......... .......... .......... 6% 4.30M 95s\n", + " 7800K .......... .......... .......... .......... .......... 6% 1.65M 95s\n", + " 7850K .......... .......... .......... .......... .......... 6% 926K 95s\n", + " 7900K .......... .......... .......... .......... .......... 6% 7.86M 94s\n", + " 7950K .......... .......... .......... .......... .......... 6% 1.56M 94s\n", + " 8000K .......... .......... .......... .......... .......... 6% 938K 94s\n", + " 8050K .......... .......... .......... .......... .......... 6% 8.36M 94s\n", + " 8100K .......... .......... .......... .......... .......... 6% 1.40M 93s\n", + " 8150K .......... .......... .......... .......... .......... 6% 980K 94s\n", + " 8200K .......... .......... .......... .......... .......... 6% 14.8M 93s\n", + " 8250K .......... .......... .......... .......... .......... 7% 1.32M 93s\n", + " 8300K .......... .......... .......... .......... .......... 7% 955K 93s\n", + " 8350K .......... .......... .......... .......... .......... 7% 3.67M 93s\n", + " 8400K .......... .......... .......... .......... .......... 7% 1.61M 92s\n", + " 8450K .......... .......... .......... .......... .......... 7% 1016K 92s\n", + " 8500K .......... .......... .......... .......... .......... 7% 16.4M 92s\n", + " 8550K .......... .......... .......... .......... .......... 7% 1.24M 92s\n", + " 8600K .......... .......... .......... .......... .......... 7% 1.02M 92s\n", + " 8650K .......... .......... .......... .......... .......... 7% 10.9M 91s\n", + " 8700K .......... .......... .......... .......... .......... 7% 1.27M 91s\n", + " 8750K .......... .......... .......... .......... .......... 7% 1.10M 91s\n", + " 8800K .......... .......... .......... .......... .......... 7% 2.76M 91s\n", + " 8850K .......... .......... .......... .......... .......... 7% 1.70M 91s\n", + " 8900K .......... .......... .......... .......... .......... 7% 1.15M 91s\n", + " 8950K .......... .......... .......... .......... .......... 7% 2.53M 90s\n", + " 9000K .......... .......... .......... .......... .......... 7% 1.82M 90s\n", + " 9050K .......... .......... .......... .......... .......... 7% 1.14M 90s\n", + " 9100K .......... .......... .......... .......... .......... 7% 2.55M 90s\n", + " 9150K .......... .......... .......... .......... .......... 7% 1007K 90s\n", + " 9200K .......... .......... .......... .......... .......... 7% 1.65M 90s\n", + " 9250K .......... .......... .......... .......... .......... 7% 4.63M 89s\n", + " 9300K .......... .......... .......... .......... .......... 7% 1.60M 89s\n", + " 9350K .......... .......... .......... .......... .......... 7% 1023K 89s\n", + " 9400K .......... .......... .......... .......... .......... 8% 6.99M 89s\n", + " 9450K .......... .......... .......... .......... .......... 8% 1.20M 89s\n", + " 9500K .......... .......... .......... .......... .......... 8% 1.15M 89s\n", + " 9550K .......... .......... .......... .......... .......... 8% 5.35M 88s\n", + " 9600K .......... .......... .......... .......... .......... 8% 1.24M 88s\n", + " 9650K .......... .......... .......... .......... .......... 8% 1.11M 88s\n", + " 9700K .......... .......... .......... .......... .......... 8% 8.31M 88s\n", + " 9750K .......... .......... .......... .......... .......... 8% 1.24M 88s\n", + " 9800K .......... .......... .......... .......... .......... 8% 1.14M 88s\n", + " 9850K .......... .......... .......... .......... .......... 8% 4.53M 87s\n", + " 9900K .......... .......... .......... .......... .......... 8% 1.71M 87s\n", + " 9950K .......... .......... .......... .......... .......... 8% 1.09M 87s\n", + " 10000K .......... .......... .......... .......... .......... 8% 3.38M 87s\n", + " 10050K .......... .......... .......... .......... .......... 8% 1.78M 87s\n", + " 10100K .......... .......... .......... .......... .......... 8% 1.06M 87s\n", + " 10150K .......... .......... .......... .......... .......... 8% 2.88M 86s\n", + " 10200K .......... .......... .......... .......... .......... 8% 1.90M 86s\n", + " 10250K .......... .......... .......... .......... .......... 8% 979K 86s\n", + " 10300K .......... .......... .......... .......... .......... 8% 4.03M 86s\n", + " 10350K .......... .......... .......... .......... .......... 8% 1.83M 86s\n", + " 10400K .......... .......... .......... .......... .......... 8% 939K 86s\n", + " 10450K .......... .......... .......... .......... .......... 8% 6.70M 85s\n", + " 10500K .......... .......... .......... .......... .......... 8% 1.60M 85s\n", + " 10550K .......... .......... .......... .......... .......... 8% 961K 85s\n", + " 10600K .......... .......... .......... .......... .......... 9% 13.4M 85s\n", + " 10650K .......... .......... .......... .......... .......... 9% 1.74M 85s\n", + " 10700K .......... .......... .......... .......... .......... 9% 969K 85s\n", + " 10750K .......... .......... .......... .......... .......... 9% 6.99M 85s\n", + " 10800K .......... .......... .......... .......... .......... 9% 1.64M 84s\n", + " 10850K .......... .......... .......... .......... .......... 9% 925K 85s\n", + " 10900K .......... .......... .......... .......... .......... 9% 7.27M 84s\n", + " 10950K .......... .......... .......... .......... .......... 9% 3.98M 84s\n", + " 11000K .......... .......... .......... .......... .......... 9% 692K 84s\n", + " 11050K .......... .......... .......... .......... .......... 9% 7.70M 84s\n", + " 11100K .......... .......... .......... .......... .......... 9% 7.76M 83s\n", + " 11150K .......... .......... .......... .......... .......... 9% 637K 84s\n", + " 11200K .......... .......... .......... .......... .......... 9% 18.2M 83s\n", + " 11250K .......... .......... .......... .......... .......... 9% 10.6M 83s\n", + " 11300K .......... .......... .......... .......... .......... 9% 747K 83s\n", + " 11350K .......... .......... .......... .......... .......... 9% 2.24M 83s\n", + " 11400K .......... .......... .......... .......... .......... 9% 18.3M 83s\n", + " 11450K .......... .......... .......... .......... .......... 9% 941K 83s\n", + " 11500K .......... .......... .......... .......... .......... 9% 1.42M 83s\n", + " 11550K .......... .......... .......... .......... .......... 9% 5.62M 82s\n", + " 11600K .......... .......... .......... .......... .......... 9% 1.01M 82s\n", + " 11650K .......... .......... .......... .......... .......... 9% 1.59M 82s\n", + " 11700K .......... .......... .......... .......... .......... 9% 3.64M 82s\n", + " 11750K .......... .......... .......... .......... .......... 10% 1.05M 82s\n", + " 11800K .......... .......... .......... .......... .......... 10% 1.70M 82s\n", + " 11850K .......... .......... .......... .......... .......... 10% 1.73M 82s\n", + " 11900K .......... .......... .......... .......... .......... 10% 1.63M 82s\n", + " 11950K .......... .......... .......... .......... .......... 10% 1.75M 82s\n", + " 12000K .......... .......... .......... .......... .......... 10% 1.44M 82s\n", + " 12050K .......... .......... .......... .......... .......... 10% 32.4M 81s\n", + " 12100K .......... .......... .......... .......... .......... 10% 858K 81s\n", + " 12150K .......... .......... .......... .......... .......... 10% 1.63M 81s\n", + " 12200K .......... .......... .......... .......... .......... 10% 32.6M 81s\n", + " 12250K .......... .......... .......... .......... .......... 10% 813K 81s\n", + " 12300K .......... .......... .......... .......... .......... 10% 1.97M 81s\n", + " 12350K .......... .......... .......... .......... .......... 10% 7.44M 81s\n", + " 12400K .......... .......... .......... .......... .......... 10% 904K 81s\n", + " 12450K .......... .......... .......... .......... .......... 10% 1.76M 80s\n", + " 12500K .......... .......... .......... .......... .......... 10% 4.90M 80s\n", + " 12550K .......... .......... .......... .......... .......... 10% 970K 80s\n", + " 12600K .......... .......... .......... .......... .......... 10% 2.34M 80s\n", + " 12650K .......... .......... .......... .......... .......... 10% 3.78M 80s\n", + " 12700K .......... .......... .......... .......... .......... 10% 1.00M 80s\n", + " 12750K .......... .......... .......... .......... .......... 10% 2.08M 80s\n", + " 12800K .......... .......... .......... .......... .......... 10% 3.69M 80s\n", + " 12850K .......... .......... .......... .......... .......... 10% 843K 80s\n", + " 12900K .......... .......... .......... .......... .......... 10% 2.61M 79s\n", + " 12950K .......... .......... .......... .......... .......... 11% 2.77M 79s\n", + " 13000K .......... .......... .......... .......... .......... 11% 1010K 79s\n", + " 13050K .......... .......... .......... .......... .......... 11% 1.98M 79s\n", + " 13100K .......... .......... .......... .......... .......... 11% 3.18M 79s\n", + " 13150K .......... .......... .......... .......... .......... 11% 1.21M 79s\n", + " 13200K .......... .......... .......... .......... .......... 11% 1.33M 79s\n", + " 13250K .......... .......... .......... .......... .......... 11% 2.02M 79s\n", + " 13300K .......... .......... .......... .......... .......... 11% 1.46M 79s\n", + " 13350K .......... .......... .......... .......... .......... 11% 1.71M 79s\n", + " 13400K .......... .......... .......... .......... .......... 11% 7.10M 78s\n", + " 13450K .......... .......... .......... .......... .......... 11% 1.05M 78s\n", + " 13500K .......... .......... .......... .......... .......... 11% 2.46M 78s\n", + " 13550K .......... .......... .......... .......... .......... 11% 1.90M 78s\n", + " 13600K .......... .......... .......... .......... .......... 11% 2.04M 78s\n", + " 13650K .......... .......... .......... .......... .......... 11% 1.22M 78s\n", + " 13700K .......... .......... .......... .......... .......... 11% 1.95M 78s\n", + " 13750K .......... .......... .......... .......... .......... 11% 2.21M 78s\n", + " 13800K .......... .......... .......... .......... .......... 11% 1.26M 78s\n", + " 13850K .......... .......... .......... .......... .......... 11% 1.68M 77s\n", + " 13900K .......... .......... .......... .......... .......... 11% 1.98M 77s\n", + " 13950K .......... .......... .......... .......... .......... 11% 1.84M 77s\n", + " 14000K .......... .......... .......... .......... .......... 11% 1.40M 77s\n", + " 14050K .......... .......... .......... .......... .......... 11% 3.51M 77s\n", + " 14100K .......... .......... .......... .......... .......... 11% 1.36M 77s\n", + " 14150K .......... .......... .......... .......... .......... 12% 2.03M 77s\n", + " 14200K .......... .......... .......... .......... .......... 12% 2.19M 77s\n", + " 14250K .......... .......... .......... .......... .......... 12% 1.77M 77s\n", + " 14300K .......... .......... .......... .......... .......... 12% 1.54M 76s\n", + " 14350K .......... .......... .......... .......... .......... 12% 1.30M 76s\n", + " 14400K .......... .......... .......... .......... .......... 12% 2.42M 76s\n", + " 14450K .......... .......... .......... .......... .......... 12% 1.44M 76s\n", + " 14500K .......... .......... .......... .......... .......... 12% 1.25M 76s\n", + " 14550K .......... .......... .......... .......... .......... 12% 2.57M 76s\n", + " 14600K .......... .......... .......... .......... .......... 12% 1.44M 76s\n", + " 14650K .......... .......... .......... .......... .......... 12% 2.16M 76s\n", + " 14700K .......... .......... .......... .......... .......... 12% 2.82M 76s\n", + " 14750K .......... .......... .......... .......... .......... 12% 1021K 76s\n", + " 14800K .......... .......... .......... .......... .......... 12% 8.24M 75s\n", + " 14850K .......... .......... .......... .......... .......... 12% 1.40M 75s\n", + " 14900K .......... .......... .......... .......... .......... 12% 2.03M 75s\n", + " 14950K .......... .......... .......... .......... .......... 12% 1.56M 75s\n", + " 15000K .......... .......... .......... .......... .......... 12% 1.41M 75s\n", + " 15050K .......... .......... .......... .......... .......... 12% 3.53M 75s\n", + " 15100K .......... .......... .......... .......... .......... 12% 1.11M 75s\n", + " 15150K .......... .......... .......... .......... .......... 12% 1.36M 75s\n", + " 15200K .......... .......... .......... .......... .......... 12% 3.75M 75s\n", + " 15250K .......... .......... .......... .......... .......... 12% 1.12M 75s\n", + " 15300K .......... .......... .......... .......... .......... 13% 4.05M 75s\n", + " 15350K .......... .......... .......... .......... .......... 13% 1.61M 74s\n", + " 15400K .......... .......... .......... .......... .......... 13% 1.20M 74s\n", + " 15450K .......... .......... .......... .......... .......... 13% 3.61M 74s\n", + " 15500K .......... .......... .......... .......... .......... 13% 1.33M 74s\n", + " 15550K .......... .......... .......... .......... .......... 13% 1.59M 74s\n", + " 15600K .......... .......... .......... .......... .......... 13% 1.80M 74s\n", + " 15650K .......... .......... .......... .......... .......... 13% 1.73M 74s\n", + " 15700K .......... .......... .......... .......... .......... 13% 3.10M 74s\n", + " 15750K .......... .......... .......... .......... .......... 13% 1013K 74s\n", + " 15800K .......... .......... .......... .......... .......... 13% 2.79M 74s\n", + " 15850K .......... .......... .......... .......... .......... 13% 2.62M 74s\n", + " 15900K .......... .......... .......... .......... .......... 13% 1.21M 74s\n", + " 15950K .......... .......... .......... .......... .......... 13% 2.37M 73s\n", + " 16000K .......... .......... .......... .......... .......... 13% 1.88M 73s\n", + " 16050K .......... .......... .......... .......... .......... 13% 1.69M 73s\n", + " 16100K .......... .......... .......... .......... .......... 13% 1.69M 73s\n", + " 16150K .......... .......... .......... .......... .......... 13% 1.48M 73s\n", + " 16200K .......... .......... .......... .......... .......... 13% 5.64M 73s\n", + " 16250K .......... .......... .......... .......... .......... 13% 1.27M 73s\n", + " 16300K .......... .......... .......... .......... .......... 13% 886K 73s\n", + " 16350K .......... .......... .......... .......... .......... 13% 2.69M 73s\n", + " 16400K .......... .......... .......... .......... .......... 13% 2.82M 73s\n", + " 16450K .......... .......... .......... .......... .......... 13% 3.21M 73s\n", + " 16500K .......... .......... .......... .......... .......... 14% 888K 73s\n", + " 16550K .......... .......... .......... .......... .......... 14% 3.54M 72s\n", + " 16600K .......... .......... .......... .......... .......... 14% 3.61M 72s\n", + " 16650K .......... .......... .......... .......... .......... 14% 894K 72s\n", + " 16700K .......... .......... .......... .......... .......... 14% 3.93M 72s\n", + " 16750K .......... .......... .......... .......... .......... 14% 2.53M 72s\n", + " 16800K .......... .......... .......... .......... .......... 14% 860K 72s\n", + " 16850K .......... .......... .......... .......... .......... 14% 4.15M 72s\n", + " 16900K .......... .......... .......... .......... .......... 14% 5.08M 72s\n", + " 16950K .......... .......... .......... .......... .......... 14% 781K 72s\n", + " 17000K .......... .......... .......... .......... .......... 14% 5.67M 72s\n", + " 17050K .......... .......... .......... .......... .......... 14% 3.15M 72s\n", + " 17100K .......... .......... .......... .......... .......... 14% 5.36M 71s\n", + " 17150K .......... .......... .......... .......... .......... 14% 701K 72s\n", + " 17200K .......... .......... .......... .......... .......... 14% 7.92M 71s\n", + " 17250K .......... .......... .......... .......... .......... 14% 2.82M 71s\n", + " 17300K .......... .......... .......... .......... .......... 14% 958K 71s\n", + " 17350K .......... .......... .......... .......... .......... 14% 2.33M 71s\n", + " 17400K .......... .......... .......... .......... .......... 14% 3.14M 71s\n", + " 17450K .......... .......... .......... .......... .......... 14% 1.83M 71s\n", + " 17500K .......... .......... .......... .......... .......... 14% 1.02M 71s\n", + " 17550K .......... .......... .......... .......... .......... 14% 3.02M 71s\n", + " 17600K .......... .......... .......... .......... .......... 14% 7.15M 71s\n", + " 17650K .......... .......... .......... .......... .......... 15% 731K 71s\n", + " 17700K .......... .......... .......... .......... .......... 15% 3.78M 71s\n", + " 17750K .......... .......... .......... .......... .......... 15% 7.87M 70s\n", + " 17800K .......... .......... .......... .......... .......... 15% 764K 71s\n", + " 17850K .......... .......... .......... .......... .......... 15% 2.45M 70s\n", + " 17900K .......... .......... .......... .......... .......... 15% 3.63M 70s\n", + " 17950K .......... .......... .......... .......... .......... 15% 3.51M 70s\n", + " 18000K .......... .......... .......... .......... .......... 15% 780K 70s\n", + " 18050K .......... .......... .......... .......... .......... 15% 10.7M 70s\n", + " 18100K .......... .......... .......... .......... .......... 15% 3.03M 70s\n", + " 18150K .......... .......... .......... .......... .......... 15% 681K 70s\n", + " 18200K .......... .......... .......... .......... .......... 15% 29.2M 70s\n", + " 18250K .......... .......... .......... .......... .......... 15% 2.40M 70s\n", + " 18300K .......... .......... .......... .......... .......... 15% 1.32M 70s\n", + " 18350K .......... .......... .......... .......... .......... 15% 1.46M 70s\n", + " 18400K .......... .......... .......... .......... .......... 15% 3.03M 70s\n", + " 18450K .......... .......... .......... .......... .......... 15% 15.6M 69s\n", + " 18500K .......... .......... .......... .......... .......... 15% 665K 70s\n", + " 18550K .......... .......... .......... .......... .......... 15% 4.60M 69s\n", + " 18600K .......... .......... .......... .......... .......... 15% 23.6M 69s\n", + " 18650K .......... .......... .......... .......... .......... 15% 643K 69s\n", + " 18700K .......... .......... .......... .......... .......... 15% 4.90M 69s\n", + " 18750K .......... .......... .......... .......... .......... 15% 6.15M 69s\n", + " 18800K .......... .......... .......... .......... .......... 15% 1.02M 69s\n", + " 18850K .......... .......... .......... .......... .......... 16% 1.42M 69s\n", + " 18900K .......... .......... .......... .......... .......... 16% 3.04M 69s\n", + " 18950K .......... .......... .......... .......... .......... 16% 19.6M 69s\n", + " 19000K .......... .......... .......... .......... .......... 16% 670K 69s\n", + " 19050K .......... .......... .......... .......... .......... 16% 12.8M 69s\n", + " 19100K .......... .......... .......... .......... .......... 16% 2.25M 69s\n", + " 19150K .......... .......... .......... .......... .......... 16% 848K 69s\n", + " 19200K .......... .......... .......... .......... .......... 16% 5.81M 68s\n", + " 19250K .......... .......... .......... .......... .......... 16% 2.24M 68s\n", + " 19300K .......... .......... .......... .......... .......... 16% 29.2M 68s\n", + " 19350K .......... .......... .......... .......... .......... 16% 807K 68s\n", + " 19400K .......... .......... .......... .......... .......... 16% 1.88M 68s\n", + " 19450K .......... .......... .......... .......... .......... 16% 18.7M 68s\n", + " 19500K .......... .......... .......... .......... .......... 16% 811K 68s\n", + " 19550K .......... .......... .......... .......... .......... 16% 2.32M 68s\n", + " 19600K .......... .......... .......... .......... .......... 16% 16.4M 68s\n", + " 19650K .......... .......... .......... .......... .......... 16% 27.3M 68s\n", + " 19700K .......... .......... .......... .......... .......... 16% 766K 68s\n", + " 19750K .......... .......... .......... .......... .......... 16% 2.05M 68s\n", + " 19800K .......... .......... .......... .......... .......... 16% 13.9M 67s\n", + " 19850K .......... .......... .......... .......... .......... 16% 791K 68s\n", + " 19900K .......... .......... .......... .......... .......... 16% 2.48M 67s\n", + " 19950K .......... .......... .......... .......... .......... 16% 8.05M 67s\n", + " 20000K .......... .......... .......... .......... .......... 16% 1.33M 67s\n", + " 20050K .......... .......... .......... .......... .......... 17% 1.06M 67s\n", + " 20100K .......... .......... .......... .......... .......... 17% 8.81M 67s\n", + " 20150K .......... .......... .......... .......... .......... 17% 5.64M 67s\n", + " 20200K .......... .......... .......... .......... .......... 17% 758K 67s\n", + " 20250K .......... .......... .......... .......... .......... 17% 435K 67s\n", + " 20300K .......... .......... .......... .......... .......... 17% 144M 67s\n", + " 20350K .......... .......... .......... .......... .......... 17% 125M 67s\n", + " 20400K .......... .......... .......... .......... .......... 17% 117M 67s\n", + " 20450K .......... .......... .......... .......... .......... 17% 551K 67s\n", + " 20500K .......... .......... .......... .......... .......... 17% 22.9M 67s\n", + " 20550K .......... .......... .......... .......... .......... 17% 60.0K 71s\n", + " 20600K .......... .......... .......... .......... .......... 17% 286K 71s\n", + " 20650K .......... .......... .......... .......... .......... 17% 548K 71s\n", + " 20700K .......... .......... .......... .......... .......... 17% 3.60M 71s\n", + " 20750K .......... .......... .......... .......... .......... 17% 566K 71s\n", + " 20800K .......... .......... .......... .......... .......... 17% 566K 72s\n", + " 20850K .......... .......... .......... .......... .......... 17% 25.2M 71s\n", + " 20900K .......... .......... .......... .......... .......... 17% 564K 72s\n", + " 20950K .......... .......... .......... .......... .......... 17% 33.5M 71s\n", + " 21000K .......... .......... .......... .......... .......... 17% 516K 72s\n", + " 21050K .......... .......... .......... .......... .......... 17% 34.7M 72s\n", + " 21100K .......... .......... .......... .......... .......... 17% 564K 72s\n", + " 21150K .......... .......... .......... .......... .......... 17% 34.2M 72s\n", + " 21200K .......... .......... .......... .......... .......... 18% 579K 72s\n", + " 21250K .......... .......... .......... .......... .......... 18% 6.38M 72s\n", + " 21300K .......... .......... .......... .......... .......... 18% 587K 72s\n", + " 21350K .......... .......... .......... .......... .......... 18% 85.1K 74s\n", + " 21400K .......... .......... .......... .......... .......... 18% 225M 74s\n", + " 21450K .......... .......... .......... .......... .......... 18% 339M 74s\n", + " 21500K .......... .......... .......... .......... .......... 18% 186K 75s\n", + " 21550K .......... .......... .......... .......... .......... 18% 532K 75s\n", + " 21600K .......... .......... .......... .......... .......... 18% 574K 75s\n", + " 21650K .......... .......... .......... .......... .......... 18% 11.6M 75s\n", + " 21700K .......... .......... .......... .......... .......... 18% 587K 75s\n", + " 21750K .......... .......... .......... .......... .......... 18% 17.1M 75s\n", + " 21800K .......... .......... .......... .......... .......... 18% 556K 75s\n", + " 21850K .......... .......... .......... .......... .......... 18% 11.5M 75s\n", + " 21900K .......... .......... .......... .......... .......... 18% 589K 75s\n", + " 21950K .......... .......... .......... .......... .......... 18% 16.2M 75s\n", + " 22000K .......... .......... .......... .......... .......... 18% 580K 75s\n", + " 22050K .......... .......... .......... .......... .......... 18% 5.26M 75s\n", + " 22100K .......... .......... .......... .......... .......... 18% 605K 75s\n", + " 22150K .......... .......... .......... .......... .......... 18% 14.1M 75s\n", + " 22200K .......... .......... .......... .......... .......... 18% 618K 75s\n", + " 22250K .......... .......... .......... .......... .......... 18% 13.8M 75s\n", + " 22300K .......... .......... .......... .......... .......... 18% 4.06M 75s\n", + " 22350K .......... .......... .......... .......... .......... 18% 651K 75s\n", + " 22400K .......... .......... .......... .......... .......... 19% 4.30M 75s\n", + " 22450K .......... .......... .......... .......... .......... 19% 644K 75s\n", + " 22500K .......... .......... .......... .......... .......... 19% 3.46M 75s\n", + " 22550K .......... .......... .......... .......... .......... 19% 666K 75s\n", + " 22600K .......... .......... .......... .......... .......... 19% 4.55M 75s\n", + " 22650K .......... .......... .......... .......... .......... 19% 611K 75s\n", + " 22700K .......... .......... .......... .......... .......... 19% 3.85M 75s\n", + " 22750K .......... .......... .......... .......... .......... 19% 624K 75s\n", + " 22800K .......... .......... .......... .......... .......... 19% 3.77M 74s\n", + " 22850K .......... .......... .......... .......... .......... 19% 661K 75s\n", + " 22900K .......... .......... .......... .......... .......... 19% 2.87M 74s\n", + " 22950K .......... .......... .......... .......... .......... 19% 710K 75s\n", + " 23000K .......... .......... .......... .......... .......... 19% 2.79M 74s\n", + " 23050K .......... .......... .......... .......... .......... 19% 866K 74s\n", + " 23100K .......... .......... .......... .......... .......... 19% 3.46M 74s\n", + " 23150K .......... .......... .......... .......... .......... 19% 974K 74s\n", + " 23200K .......... .......... .......... .......... .......... 19% 1.14M 74s\n", + " 23250K .......... .......... .......... .......... .......... 19% 1.36M 74s\n", + " 23300K .......... .......... .......... .......... .......... 19% 981K 74s\n", + " 23350K .......... .......... .......... .......... .......... 19% 1.09M 74s\n", + " 23400K .......... .......... .......... .......... .......... 19% 1.06M 74s\n", + " 23450K .......... .......... .......... .......... .......... 19% 1.05M 74s\n", + " 23500K .......... .......... .......... .......... .......... 19% 1.22M 74s\n", + " 23550K .......... .......... .......... .......... .......... 20% 1.25M 74s\n", + " 23600K .......... .......... .......... .......... .......... 20% 1.03M 74s\n", + " 23650K .......... .......... .......... .......... .......... 20% 1.37M 74s\n", + " 23700K .......... .......... .......... .......... .......... 20% 3.04M 74s\n", + " 23750K .......... .......... .......... .......... .......... 20% 810K 74s\n", + " 23800K .......... .......... .......... .......... .......... 20% 1.68M 74s\n", + " 23850K .......... .......... .......... .......... .......... 20% 833K 74s\n", + " 23900K .......... .......... .......... .......... .......... 20% 1.51M 74s\n", + " 23950K .......... .......... .......... .......... .......... 20% 882K 74s\n", + " 24000K .......... .......... .......... .......... .......... 20% 1.44M 74s\n", + " 24050K .......... .......... .......... .......... .......... 20% 959K 74s\n", + " 24100K .......... .......... .......... .......... .......... 20% 1.80M 74s\n", + " 24150K .......... .......... .......... .......... .......... 20% 1.17M 74s\n", + " 24200K .......... .......... .......... .......... .......... 20% 1.20M 74s\n", + " 24250K .......... .......... .......... .......... .......... 20% 1.59M 74s\n", + " 24300K .......... .......... .......... .......... .......... 20% 1.15M 74s\n", + " 24350K .......... .......... .......... .......... .......... 20% 1.07M 74s\n", + " 24400K .......... .......... .......... .......... .......... 20% 1.09M 74s\n", + " 24450K .......... .......... .......... .......... .......... 20% 1.28M 74s\n", + " 24500K .......... .......... .......... .......... .......... 20% 1.25M 74s\n", + " 24550K .......... .......... .......... .......... .......... 20% 1.13M 73s\n", + " 24600K .......... .......... .......... .......... .......... 20% 4.30M 73s\n", + " 24650K .......... .......... .......... .......... .......... 20% 853K 73s\n", + " 24700K .......... .......... .......... .......... .......... 20% 1.44M 73s\n", + " 24750K .......... .......... .......... .......... .......... 21% 762K 73s\n", + " 24800K .......... .......... .......... .......... .......... 21% 3.91M 73s\n", + " 24850K .......... .......... .......... .......... .......... 21% 936K 73s\n", + " 24900K .......... .......... .......... .......... .......... 21% 1.32M 73s\n", + " 24950K .......... .......... .......... .......... .......... 21% 1.25M 73s\n", + " 25000K .......... .......... .......... .......... .......... 21% 1.31M 73s\n", + " 25050K .......... .......... .......... .......... .......... 21% 1.70M 73s\n", + " 25100K .......... .......... .......... .......... .......... 21% 845K 73s\n", + " 25150K .......... .......... .......... .......... .......... 21% 2.14M 73s\n", + " 25200K .......... .......... .......... .......... .......... 21% 900K 73s\n", + " 25250K .......... .......... .......... .......... .......... 21% 1.94M 73s\n", + " 25300K .......... .......... .......... .......... .......... 21% 2.76M 73s\n", + " 25350K .......... .......... .......... .......... .......... 21% 758K 73s\n", + " 25400K .......... .......... .......... .......... .......... 21% 2.32M 73s\n", + " 25450K .......... .......... .......... .......... .......... 21% 855K 73s\n", + " 25500K .......... .......... .......... .......... .......... 21% 2.42M 73s\n", + " 25550K .......... .......... .......... .......... .......... 21% 828K 73s\n", + " 25600K .......... .......... .......... .......... .......... 21% 1.49M 73s\n", + " 25650K .......... .......... .......... .......... .......... 21% 3.67M 72s\n", + " 25700K .......... .......... .......... .......... .......... 21% 901K 73s\n", + " 25750K .......... .......... .......... .......... .......... 21% 1.88M 72s\n", + " 25800K .......... .......... .......... .......... .......... 21% 868K 72s\n", + " 25850K .......... .......... .......... .......... .......... 21% 1.71M 72s\n", + " 25900K .......... .......... .......... .......... .......... 21% 4.06M 72s\n", + " 25950K .......... .......... .......... .......... .......... 22% 714K 72s\n", + " 26000K .......... .......... .......... .......... .......... 22% 4.60M 72s\n", + " 26050K .......... .......... .......... .......... .......... 22% 782K 72s\n", + " 26100K .......... .......... .......... .......... .......... 22% 2.02M 72s\n", + " 26150K .......... .......... .......... .......... .......... 22% 1.63M 72s\n", + " 26200K .......... .......... .......... .......... .......... 22% 1019K 72s\n", + " 26250K .......... .......... .......... .......... .......... 22% 2.73M 72s\n", + " 26300K .......... .......... .......... .......... .......... 22% 861K 72s\n", + " 26350K .......... .......... .......... .......... .......... 22% 2.13M 72s\n", + " 26400K .......... .......... .......... .......... .......... 22% 1009K 72s\n", + " 26450K .......... .......... .......... .......... .......... 22% 1.42M 72s\n", + " 26500K .......... .......... .......... .......... .......... 22% 1.98M 72s\n", + " 26550K .......... .......... .......... .......... .......... 22% 767K 72s\n", + " 26600K .......... .......... .......... .......... .......... 22% 5.46M 72s\n", + " 26650K .......... .......... .......... .......... .......... 22% 1.13M 72s\n", + " 26700K .......... .......... .......... .......... .......... 22% 1.24M 72s\n", + " 26750K .......... .......... .......... .......... .......... 22% 1.90M 71s\n", + " 26800K .......... .......... .......... .......... .......... 22% 800K 72s\n", + " 26850K .......... .......... .......... .......... .......... 22% 16.6M 71s\n", + " 26900K .......... .......... .......... .......... .......... 22% 1.09M 71s\n", + " 26950K .......... .......... .......... .......... .......... 22% 1.17M 71s\n", + " 27000K .......... .......... .......... .......... .......... 22% 1.74M 71s\n", + " 27050K .......... .......... .......... .......... .......... 22% 884K 71s\n", + " 27100K .......... .......... .......... .......... .......... 23% 8.12M 71s\n", + " 27150K .......... .......... .......... .......... .......... 23% 1.19M 71s\n", + " 27200K .......... .......... .......... .......... .......... 23% 1.12M 71s\n", + " 27250K .......... .......... .......... .......... .......... 23% 1.42M 71s\n", + " 27300K .......... .......... .......... .......... .......... 23% 985K 71s\n", + " 27350K .......... .......... .......... .......... .......... 23% 1.61M 71s\n", + " 27400K .......... .......... .......... .......... .......... 23% 5.79M 71s\n", + " 27450K .......... .......... .......... .......... .......... 23% 843K 71s\n", + " 27500K .......... .......... .......... .......... .......... 23% 2.05M 71s\n", + " 27550K .......... .......... .......... .......... .......... 23% 876K 71s\n", + " 27600K .......... .......... .......... .......... .......... 23% 5.40M 71s\n", + " 27650K .......... .......... .......... .......... .......... 23% 1.54M 71s\n", + " 27700K .......... .......... .......... .......... .......... 23% 647K 71s\n", + " 27750K .......... .......... .......... .......... .......... 23% 5.26M 70s\n", + " 27800K .......... .......... .......... .......... .......... 23% 956K 70s\n", + " 27850K .......... .......... .......... .......... .......... 23% 1.76M 70s\n", + " 27900K .......... .......... .......... .......... .......... 23% 3.00M 70s\n", + " 27950K .......... .......... .......... .......... .......... 23% 633K 70s\n", + " 28000K .......... .......... .......... .......... .......... 23% 20.5M 70s\n", + " 28050K .......... .......... .......... .......... .......... 23% 927K 70s\n", + " 28100K .......... .......... .......... .......... .......... 23% 1.38M 70s\n", + " 28150K .......... .......... .......... .......... .......... 23% 3.42M 70s\n", + " 28200K .......... .......... .......... .......... .......... 23% 698K 70s\n", + " 28250K .......... .......... .......... .......... .......... 23% 11.4M 70s\n", + " 28300K .......... .......... .......... .......... .......... 24% 1.77M 70s\n", + " 28350K .......... .......... .......... .......... .......... 24% 824K 70s\n", + " 28400K .......... .......... .......... .......... .......... 24% 2.11M 70s\n", + " 28450K .......... .......... .......... .......... .......... 24% 1.05M 70s\n", + " 28500K .......... .......... .......... .......... .......... 24% 2.04M 70s\n", + " 28550K .......... .......... .......... .......... .......... 24% 1.88M 70s\n", + " 28600K .......... .......... .......... .......... .......... 24% 777K 70s\n", + " 28650K .......... .......... .......... .......... .......... 24% 10.6M 70s\n", + " 28700K .......... .......... .......... .......... .......... 24% 1.15M 70s\n", + " 28750K .......... .......... .......... .......... .......... 24% 991K 70s\n", + " 28800K .......... .......... .......... .......... .......... 24% 3.44M 69s\n", + " 28850K .......... .......... .......... .......... .......... 24% 816K 69s\n", + " 28900K .......... .......... .......... .......... .......... 24% 3.59M 69s\n", + " 28950K .......... .......... .......... .......... .......... 24% 1.77M 69s\n", + " 29000K .......... .......... .......... .......... .......... 24% 898K 69s\n", + " 29050K .......... .......... .......... .......... .......... 24% 2.67M 69s\n", + " 29100K .......... .......... .......... .......... .......... 24% 1.45M 69s\n", + " 29150K .......... .......... .......... .......... .......... 24% 1.16M 69s\n", + " 29200K .......... .......... .......... .......... .......... 24% 2.23M 69s\n", + " 29250K .......... .......... .......... .......... .......... 24% 772K 69s\n", + " 29300K .......... .......... .......... .......... .......... 24% 23.7M 69s\n", + " 29350K .......... .......... .......... .......... .......... 24% 1.05M 69s\n", + " 29400K .......... .......... .......... .......... .......... 24% 1.26M 69s\n", + " 29450K .......... .......... .......... .......... .......... 25% 1.92M 69s\n", + " 29500K .......... .......... .......... .......... .......... 25% 1.10M 69s\n", + " 29550K .......... .......... .......... .......... .......... 25% 2.45M 69s\n", + " 29600K .......... .......... .......... .......... .......... 25% 1.69M 69s\n", + " 29650K .......... .......... .......... .......... .......... 25% 864K 69s\n", + " 29700K .......... .......... .......... .......... .......... 25% 184M 68s\n", + " 29750K .......... .......... .......... .......... .......... 25% 1011K 68s\n", + " 29800K .......... .......... .......... .......... .......... 25% 1.13M 68s\n", + " 29850K .......... .......... .......... .......... .......... 25% 2.37M 68s\n", + " 29900K .......... .......... .......... .......... .......... 25% 924K 68s\n", + " 29950K .......... .......... .......... .......... .......... 25% 3.08M 68s\n", + " 30000K .......... .......... .......... .......... .......... 25% 1.11M 68s\n", + " 30050K .......... .......... .......... .......... .......... 25% 1.07M 68s\n", + " 30100K .......... .......... .......... .......... .......... 25% 13.3M 68s\n", + " 30150K .......... .......... .......... .......... .......... 25% 1.19M 68s\n", + " 30200K .......... .......... .......... .......... .......... 25% 1.04M 68s\n", + " 30250K .......... .......... .......... .......... .......... 25% 3.43M 68s\n", + " 30300K .......... .......... .......... .......... .......... 25% 1.76M 68s\n", + " 30350K .......... .......... .......... .......... .......... 25% 651K 68s\n", + " 30400K .......... .......... .......... .......... .......... 25% 3.99M 68s\n", + " 30450K .......... .......... .......... .......... .......... 25% 802K 68s\n", + " 30500K .......... .......... .......... .......... .......... 25% 3.41M 68s\n", + " 30550K .......... .......... .......... .......... .......... 25% 2.16M 68s\n", + " 30600K .......... .......... .......... .......... .......... 25% 882K 68s\n", + " 30650K .......... .......... .......... .......... .......... 26% 2.82M 67s\n", + " 30700K .......... .......... .......... .......... .......... 26% 2.83M 67s\n", + " 30750K .......... .......... .......... .......... .......... 26% 699K 67s\n", + " 30800K .......... .......... .......... .......... .......... 26% 3.92M 67s\n", + " 30850K .......... .......... .......... .......... .......... 26% 1.39M 67s\n", + " 30900K .......... .......... .......... .......... .......... 26% 1.11M 67s\n", + " 30950K .......... .......... .......... .......... .......... 26% 4.06M 67s\n", + " 31000K .......... .......... .......... .......... .......... 26% 627K 67s\n", + " 31050K .......... .......... .......... .......... .......... 26% 23.3M 67s\n", + " 31100K .......... .......... .......... .......... .......... 26% 3.33M 67s\n", + " 31150K .......... .......... .......... .......... .......... 26% 623K 67s\n", + " 31200K .......... .......... .......... .......... .......... 26% 38.3M 67s\n", + " 31250K .......... .......... .......... .......... .......... 26% 2.84M 67s\n", + " 31300K .......... .......... .......... .......... .......... 26% 684K 67s\n", + " 31350K .......... .......... .......... .......... .......... 26% 3.03M 67s\n", + " 31400K .......... .......... .......... .......... .......... 26% 1.55M 67s\n", + " 31450K .......... .......... .......... .......... .......... 26% 1.08M 67s\n", + " 31500K .......... .......... .......... .......... .......... 26% 3.93M 67s\n", + " 31550K .......... .......... .......... .......... .......... 26% 585K 67s\n", + " 31600K .......... .......... .......... .......... .......... 26% 12.6M 67s\n", + " 31650K .......... .......... .......... .......... .......... 26% 23.4M 66s\n", + " 31700K .......... .......... .......... .......... .......... 26% 593K 66s\n", + " 31750K .......... .......... .......... .......... .......... 26% 16.4M 66s\n", + " 31800K .......... .......... .......... .......... .......... 26% 12.9M 66s\n", + " 31850K .......... .......... .......... .......... .......... 27% 583K 66s\n", + " 31900K .......... .......... .......... .......... .......... 27% 30.7M 66s\n", + " 31950K .......... .......... .......... .......... .......... 27% 1.12M 66s\n", + " 32000K .......... .......... .......... .......... .......... 27% 1.02M 66s\n", + " 32050K .......... .......... .......... .......... .......... 27% 6.49M 66s\n", + " 32100K .......... .......... .......... .......... .......... 27% 1.13M 66s\n", + " 32150K .......... .......... .......... .......... .......... 27% 1.05M 66s\n", + " 32200K .......... .......... .......... .......... .......... 27% 3.08M 66s\n", + " 32250K .......... .......... .......... .......... .......... 27% 649K 66s\n", + " 32300K .......... .......... .......... .......... .......... 27% 24.5M 66s\n", + " 32350K .......... .......... .......... .......... .......... 27% 2.57M 66s\n", + " 32400K .......... .......... .......... .......... .......... 27% 654K 66s\n", + " 32450K .......... .......... .......... .......... .......... 27% 5.21M 66s\n", + " 32500K .......... .......... .......... .......... .......... 27% 25.2M 66s\n", + " 32550K .......... .......... .......... .......... .......... 27% 666K 66s\n", + " 32600K .......... .......... .......... .......... .......... 27% 4.18M 65s\n", + " 32650K .......... .......... .......... .......... .......... 27% 648K 66s\n", + " 32700K .......... .......... .......... .......... .......... 27% 13.6M 65s\n", + " 32750K .......... .......... .......... .......... .......... 27% 5.03M 65s\n", + " 32800K .......... .......... .......... .......... .......... 27% 619K 65s\n", + " 32850K .......... .......... .......... .......... .......... 27% 11.5M 65s\n", + " 32900K .......... .......... .......... .......... .......... 27% 4.94M 65s\n", + " 32950K .......... .......... .......... .......... .......... 27% 642K 65s\n", + " 33000K .......... .......... .......... .......... .......... 28% 6.36M 65s\n", + " 33050K .......... .......... .......... .......... .......... 28% 6.19M 65s\n", + " 33100K .......... .......... .......... .......... .......... 28% 655K 65s\n", + " 33150K .......... .......... .......... .......... .......... 28% 6.25M 65s\n", + " 33200K .......... .......... .......... .......... .......... 28% 1.50M 65s\n", + " 33250K .......... .......... .......... .......... .......... 28% 1005K 65s\n", + " 33300K .......... .......... .......... .......... .......... 28% 4.54M 65s\n", + " 33350K .......... .......... .......... .......... .......... 28% 640K 65s\n", + " 33400K .......... .......... .......... .......... .......... 28% 17.5M 65s\n", + " 33450K .......... .......... .......... .......... .......... 28% 3.68M 65s\n", + " 33500K .......... .......... .......... .......... .......... 28% 614K 65s\n", + " 33550K .......... .......... .......... .......... .......... 28% 29.2M 65s\n", + " 33600K .......... .......... .......... .......... .......... 28% 3.65M 64s\n", + " 33650K .......... .......... .......... .......... .......... 28% 618K 64s\n", + " 33700K .......... .......... .......... .......... .......... 28% 54.4M 64s\n", + " 33750K .......... .......... .......... .......... .......... 28% 5.34M 64s\n", + " 33800K .......... .......... .......... .......... .......... 28% 626K 64s\n", + " 33850K .......... .......... .......... .......... .......... 28% 13.7M 64s\n", + " 33900K .......... .......... .......... .......... .......... 28% 11.6M 64s\n", + " 33950K .......... .......... .......... .......... .......... 28% 579K 64s\n", + " 34000K .......... .......... .......... .......... .......... 28% 16.7M 64s\n", + " 34050K .......... .......... .......... .......... .......... 28% 726K 64s\n", + " 34100K .......... .......... .......... .......... .......... 28% 2.04M 64s\n", + " 34150K .......... .......... .......... .......... .......... 28% 14.9M 64s\n", + " 34200K .......... .......... .......... .......... .......... 29% 645K 64s\n", + " 34250K .......... .......... .......... .......... .......... 29% 5.48M 64s\n", + " 34300K .......... .......... .......... .......... .......... 29% 8.81M 64s\n", + " 34350K .......... .......... .......... .......... .......... 29% 616K 64s\n", + " 34400K .......... .......... .......... .......... .......... 29% 7.89M 64s\n", + " 34450K .......... .......... .......... .......... .......... 29% 2.55M 64s\n", + " 34500K .......... .......... .......... .......... .......... 29% 712K 64s\n", + " 34550K .......... .......... .......... .......... .......... 29% 14.1M 63s\n", + " 34600K .......... .......... .......... .......... .......... 29% 1.53M 63s\n", + " 34650K .......... .......... .......... .......... .......... 29% 906K 63s\n", + " 34700K .......... .......... .......... .......... .......... 29% 33.6M 63s\n", + " 34750K .......... .......... .......... .......... .......... 29% 715K 63s\n", + " 34800K .......... .......... .......... .......... .......... 29% 2.62M 63s\n", + " 34850K .......... .......... .......... .......... .......... 29% 5.46M 63s\n", + " 34900K .......... .......... .......... .......... .......... 29% 744K 63s\n", + " 34950K .......... .......... .......... .......... .......... 29% 2.82M 63s\n", + " 35000K .......... .......... .......... .......... .......... 29% 5.61M 63s\n", + " 35050K .......... .......... .......... .......... .......... 29% 700K 63s\n", + " 35100K .......... .......... .......... .......... .......... 29% 4.32M 63s\n", + " 35150K .......... .......... .......... .......... .......... 29% 2.17M 63s\n", + " 35200K .......... .......... .......... .......... .......... 29% 880K 63s\n", + " 35250K .......... .......... .......... .......... .......... 29% 8.19M 63s\n", + " 35300K .......... .......... .......... .......... .......... 29% 1.54M 63s\n", + " 35350K .......... .......... .......... .......... .......... 30% 1019K 63s\n", + " 35400K .......... .......... .......... .......... .......... 30% 4.31M 63s\n", + " 35450K .......... .......... .......... .......... .......... 30% 1.53M 63s\n", + " 35500K .......... .......... .......... .......... .......... 30% 1.05M 62s\n", + " 35550K .......... .......... .......... .......... .......... 30% 2.90M 62s\n", + " 35600K .......... .......... .......... .......... .......... 30% 1.81M 62s\n", + " 35650K .......... .......... .......... .......... .......... 30% 1.09M 62s\n", + " 35700K .......... .......... .......... .......... .......... 30% 5.53M 62s\n", + " 35750K .......... .......... .......... .......... .......... 30% 692K 62s\n", + " 35800K .......... .......... .......... .......... .......... 30% 2.83M 62s\n", + " 35850K .......... .......... .......... .......... .......... 30% 4.70M 62s\n", + " 35900K .......... .......... .......... .......... .......... 30% 922K 62s\n", + " 35950K .......... .......... .......... .......... .......... 30% 2.03M 62s\n", + " 36000K .......... .......... .......... .......... .......... 30% 1.94M 62s\n", + " 36050K .......... .......... .......... .......... .......... 30% 1.22M 62s\n", + " 36100K .......... .......... .......... .......... .......... 30% 1.94M 62s\n", + " 36150K .......... .......... .......... .......... .......... 30% 1.83M 62s\n", + " 36200K .......... .......... .......... .......... .......... 30% 1.30M 62s\n", + " 36250K .......... .......... .......... .......... .......... 30% 1.48M 62s\n", + " 36300K .......... .......... .......... .......... .......... 30% 2.46M 62s\n", + " 36350K .......... .......... .......... .......... .......... 30% 1.38M 62s\n", + " 36400K .......... .......... .......... .......... .......... 30% 87.7K 63s\n", + " 36450K .......... .......... .......... .......... .......... 30% 86.9K 64s\n", + " 36500K .......... .......... .......... .......... .......... 30% 21.3M 64s\n", + " 36550K .......... .......... .......... .......... .......... 31% 263M 64s\n", + " 36600K .......... .......... .......... .......... .......... 31% 94.0K 65s\n", + " 36650K .......... .......... .......... .......... .......... 31% 81.3K 66s\n", + " 36700K .......... .......... .......... .......... .......... 31% 45.5K 68s\n", + " 36750K .......... .......... .......... .......... .......... 31% 54.0K 70s\n", + " 36800K .......... .......... .......... .......... .......... 31% 182K 71s\n", + " 36850K .......... .......... .......... .......... .......... 31% 274K 71s\n", + " 36900K .......... .......... .......... .......... .......... 31% 267K 71s\n", + " 36950K .......... .......... .......... .......... .......... 31% 192K 72s\n", + " 37000K .......... .......... .......... .......... .......... 31% 284K 72s\n", + " 37050K .......... .......... .......... .......... .......... 31% 270K 72s\n", + " 37100K .......... .......... .......... .......... .......... 31% 282K 72s\n", + " 37150K .......... .......... .......... .......... .......... 31% 283K 73s\n", + " 37200K .......... .......... .......... .......... .......... 31% 294K 73s\n", + " 37250K .......... .......... .......... .......... .......... 31% 451K 73s\n", + " 37300K .......... .......... .......... .......... .......... 31% 325K 73s\n", + " 37350K .......... .......... .......... .......... .......... 31% 262K 73s\n", + " 37400K .......... .......... .......... .......... .......... 31% 325K 74s\n", + " 37450K .......... .......... .......... .......... .......... 31% 440K 74s\n", + " 37500K .......... .......... .......... .......... .......... 31% 316K 74s\n", + " 37550K .......... .......... .......... .......... .......... 31% 413K 74s\n", + " 37600K .......... .......... .......... .......... .......... 31% 337K 74s\n", + " 37650K .......... .......... .......... .......... .......... 31% 479K 74s\n", + " 37700K .......... .......... .......... .......... .......... 31% 317K 74s\n", + " 37750K .......... .......... .......... .......... .......... 32% 65.6K 76s\n", + " 37800K .......... .......... .......... .......... .......... 32% 285K 76s\n", + " 37850K .......... .......... .......... .......... .......... 32% 284K 76s\n", + " 37900K .......... .......... .......... .......... .......... 32% 299K 77s\n", + " 37950K .......... .......... .......... .......... .......... 32% 282K 77s\n", + " 38000K .......... .......... .......... .......... .......... 32% 400K 77s\n", + " 38050K .......... .......... .......... .......... .......... 32% 286K 77s\n", + " 38100K .......... .......... .......... .......... .......... 32% 315K 77s\n", + " 38150K .......... .......... .......... .......... .......... 32% 387K 77s\n", + " 38200K .......... .......... .......... .......... .......... 32% 341K 78s\n", + " 38250K .......... .......... .......... .......... .......... 32% 405K 78s\n", + " 38300K .......... .......... .......... .......... .......... 32% 341K 78s\n", + " 38350K .......... .......... .......... .......... .......... 32% 292K 78s\n", + " 38400K .......... .......... .......... .......... .......... 32% 380K 78s\n", + " 38450K .......... .......... .......... .......... .......... 32% 464K 78s\n", + " 38500K .......... .......... .......... .......... .......... 32% 330K 78s\n", + " 38550K .......... .......... .......... .......... .......... 32% 471K 78s\n", + " 38600K .......... .......... .......... .......... .......... 32% 326K 79s\n", + " 38650K .......... .......... .......... .......... .......... 32% 442K 79s\n", + " 38700K .......... .......... .......... .......... .......... 32% 562K 79s\n", + " 38750K .......... .......... .......... .......... .......... 32% 336K 79s\n", + " 38800K .......... .......... .......... .......... .......... 32% 438K 79s\n", + " 38850K .......... .......... .......... .......... .......... 32% 546K 79s\n", + " 38900K .......... .......... .......... .......... .......... 33% 406K 79s\n", + " 38950K .......... .......... .......... .......... .......... 33% 309K 79s\n", + " 39000K .......... .......... .......... .......... .......... 33% 514K 79s\n", + " 39050K .......... .......... .......... .......... .......... 33% 549K 79s\n", + " 39100K .......... .......... .......... .......... .......... 33% 549K 79s\n", + " 39150K .......... .......... .......... .......... .......... 33% 273K 80s\n", + " 39200K .......... .......... .......... .......... .......... 33% 537K 80s\n", + " 39250K .......... .......... .......... .......... .......... 33% 515K 80s\n", + " 39300K .......... .......... .......... .......... .......... 33% 525K 80s\n", + " 39350K .......... .......... .......... .......... .......... 33% 526K 80s\n", + " 39400K .......... .......... .......... .......... .......... 33% 527K 80s\n", + " 39450K .......... .......... .......... .......... .......... 33% 403K 80s\n", + " 39500K .......... .......... .......... .......... .......... 33% 407K 80s\n", + " 39550K .......... .......... .......... .......... .......... 33% 449K 80s\n", + " 39600K .......... .......... .......... .......... .......... 33% 579K 80s\n", + " 39650K .......... .......... .......... .......... .......... 33% 550K 80s\n", + " 39700K .......... .......... .......... .......... .......... 33% 553K 80s\n", + " 39750K .......... .......... .......... .......... .......... 33% 553K 80s\n", + " 39800K .......... .......... .......... .......... .......... 33% 524K 80s\n", + " 39850K .......... .......... .......... .......... .......... 33% 577K 80s\n", + " 39900K .......... .......... .......... .......... .......... 33% 588K 80s\n", + " 39950K .......... .......... .......... .......... .......... 33% 335K 80s\n", + " 40000K .......... .......... .......... .......... .......... 33% 441K 80s\n", + " 40050K .......... .......... .......... .......... .......... 33% 558K 80s\n", + " 40100K .......... .......... .......... .......... .......... 34% 815K 80s\n", + " 40150K .......... .......... .......... .......... .......... 34% 395K 80s\n", + " 40200K .......... .......... .......... .......... .......... 34% 558K 80s\n", + " 40250K .......... .......... .......... .......... .......... 34% 562K 81s\n", + " 40300K .......... .......... .......... .......... .......... 34% 572K 81s\n", + " 40350K .......... .......... .......... .......... .......... 34% 539K 81s\n", + " 40400K .......... .......... .......... .......... .......... 34% 602K 81s\n", + " 40450K .......... .......... .......... .......... .......... 34% 569K 81s\n", + " 40500K .......... .......... .......... .......... .......... 34% 571K 81s\n", + " 40550K .......... .......... .......... .......... .......... 34% 534K 81s\n", + " 40600K .......... .......... .......... .......... .......... 34% 620K 81s\n", + " 40650K .......... .......... .......... .......... .......... 34% 490K 81s\n", + " 40700K .......... .......... .......... .......... .......... 34% 598K 81s\n", + " 40750K .......... .......... .......... .......... .......... 34% 516K 81s\n", + " 40800K .......... .......... .......... .......... .......... 34% 555K 81s\n", + " 40850K .......... .......... .......... .......... .......... 34% 619K 81s\n", + " 40900K .......... .......... .......... .......... .......... 34% 809K 81s\n", + " 40950K .......... .......... .......... .......... .......... 34% 434K 81s\n", + " 41000K .......... .......... .......... .......... .......... 34% 859K 81s\n", + " 41050K .......... .......... .......... .......... .......... 34% 667K 81s\n", + " 41100K .......... .......... .......... .......... .......... 34% 615K 81s\n", + " 41150K .......... .......... .......... .......... .......... 34% 572K 81s\n", + " 41200K .......... .......... .......... .......... .......... 34% 570K 81s\n", + " 41250K .......... .......... .......... .......... .......... 35% 549K 81s\n", + " 41300K .......... .......... .......... .......... .......... 35% 618K 81s\n", + " 41350K .......... .......... .......... .......... .......... 35% 536K 81s\n", + " 41400K .......... .......... .......... .......... .......... 35% 853K 81s\n", + " 41450K .......... .......... .......... .......... .......... 35% 1.44M 81s\n", + " 41500K .......... .......... .......... .......... .......... 35% 555K 81s\n", + " 41550K .......... .......... .......... .......... .......... 35% 583K 81s\n", + " 41600K .......... .......... .......... .......... .......... 35% 600K 81s\n", + " 41650K .......... .......... .......... .......... .......... 35% 601K 81s\n", + " 41700K .......... .......... .......... .......... .......... 35% 712K 81s\n", + " 41750K .......... .......... .......... .......... .......... 35% 1.72M 81s\n", + " 41800K .......... .......... .......... .......... .......... 35% 586K 81s\n", + " 41850K .......... .......... .......... .......... .......... 35% 581K 81s\n", + " 41900K .......... .......... .......... .......... .......... 35% 548K 81s\n", + " 41950K .......... .......... .......... .......... .......... 35% 787K 81s\n", + " 42000K .......... .......... .......... .......... .......... 35% 1.31M 80s\n", + " 42050K .......... .......... .......... .......... .......... 35% 572K 80s\n", + " 42100K .......... .......... .......... .......... .......... 35% 596K 80s\n", + " 42150K .......... .......... .......... .......... .......... 35% 615K 80s\n", + " 42200K .......... .......... .......... .......... .......... 35% 1.65M 80s\n", + " 42250K .......... .......... .......... .......... .......... 35% 481K 80s\n", + " 42300K .......... .......... .......... .......... .......... 35% 644K 80s\n", + " 42350K .......... .......... .......... .......... .......... 35% 651K 80s\n", + " 42400K .......... .......... .......... .......... .......... 35% 1.44M 80s\n", + " 42450K .......... .......... .......... .......... .......... 36% 547K 80s\n", + " 42500K .......... .......... .......... .......... .......... 36% 944K 80s\n", + " 42550K .......... .......... .......... .......... .......... 36% 804K 80s\n", + " 42600K .......... .......... .......... .......... .......... 36% 206K 81s\n", + " 42650K .......... .......... .......... .......... .......... 36% 64.9M 80s\n", + " 42700K .......... .......... .......... .......... .......... 36% 293K 81s\n", + " 42750K .......... .......... .......... .......... .......... 36% 507K 81s\n", + " 42800K .......... .......... .......... .......... .......... 36% 575K 81s\n", + " 42850K .......... .......... .......... .......... .......... 36% 513K 81s\n", + " 42900K .......... .......... .......... .......... .......... 36% 561K 81s\n", + " 42950K .......... .......... .......... .......... .......... 36% 278K 81s\n", + " 43000K .......... .......... .......... .......... .......... 36% 547K 81s\n", + " 43050K .......... .......... .......... .......... .......... 36% 561K 81s\n", + " 43100K .......... .......... .......... .......... .......... 36% 545K 81s\n", + " 43150K .......... .......... .......... .......... .......... 36% 191K 81s\n", + " 43200K .......... .......... .......... .......... .......... 36% 285K 81s\n", + " 43250K .......... .......... .......... .......... .......... 36% 287K 81s\n", + " 43300K .......... .......... .......... .......... .......... 36% 177K 82s\n", + " 43350K .......... .......... .......... .......... .......... 36% 277K 82s\n", + " 43400K .......... .......... .......... .......... .......... 36% 267K 82s\n", + " 43450K .......... .......... .......... .......... .......... 36% 198K 82s\n", + " 43500K .......... .......... .......... .......... .......... 36% 300K 82s\n", + " 43550K .......... .......... .......... .......... .......... 36% 275K 83s\n", + " 43600K .......... .......... .......... .......... .......... 36% 295K 83s\n", + " 43650K .......... .......... .......... .......... .......... 37% 419K 83s\n", + " 43700K .......... .......... .......... .......... .......... 37% 282K 83s\n", + " 43750K .......... .......... .......... .......... .......... 37% 275K 83s\n", + " 43800K .......... .......... .......... .......... .......... 37% 297K 83s\n", + " 43850K .......... .......... .......... .......... .......... 37% 417K 83s\n", + " 43900K .......... .......... .......... .......... .......... 37% 322K 83s\n", + " 43950K .......... .......... .......... .......... .......... 37% 284K 84s\n", + " 44000K .......... .......... .......... .......... .......... 37% 451K 84s\n", + " 44050K .......... .......... .......... .......... .......... 37% 425K 84s\n", + " 44100K .......... .......... .......... .......... .......... 37% 336K 84s\n", + " 44150K .......... .......... .......... .......... .......... 37% 140K 84s\n", + " 44200K .......... .......... .......... .......... .......... 37% 242K 84s\n", + " 44250K .......... .......... .......... .......... .......... 37% 199K 85s\n", + " 44300K .......... .......... .......... .......... .......... 37% 271K 85s\n", + " 44350K .......... .......... .......... .......... .......... 37% 190K 85s\n", + " 44400K .......... .......... .......... .......... .......... 37% 63.5K 86s\n", + " 44450K .......... .......... .......... .......... .......... 37% 191K 87s\n", + " 44500K .......... .......... .......... .......... .......... 37% 258K 87s\n", + " 44550K .......... .......... .......... .......... .......... 37% 191K 87s\n", + " 44600K .......... .......... .......... .......... .......... 37% 270K 87s\n", + " 44650K .......... .......... .......... .......... .......... 37% 278K 87s\n", + " 44700K .......... .......... .......... .......... .......... 37% 282K 87s\n", + " 44750K .......... .......... .......... .......... .......... 37% 218K 88s\n", + " 44800K .......... .......... .......... .......... .......... 38% 376K 88s\n", + " 44850K .......... .......... .......... .......... .......... 38% 292K 88s\n", + " 44900K .......... .......... .......... .......... .......... 38% 301K 88s\n", + " 44950K .......... .......... .......... .......... .......... 38% 278K 88s\n", + " 45000K .......... .......... .......... .......... .......... 38% 344K 88s\n", + " 45050K .......... .......... .......... .......... .......... 38% 413K 88s\n", + " 45100K .......... .......... .......... .......... .......... 38% 278K 88s\n", + " 45150K .......... .......... .......... .......... .......... 38% 343K 88s\n", + " 45200K .......... .......... .......... .......... .......... 38% 420K 88s\n", + " 45250K .......... .......... .......... .......... .......... 38% 291K 88s\n", + " 45300K .......... .......... .......... .......... .......... 38% 512K 88s\n", + " 45350K .......... .......... .......... .......... .......... 38% 290K 89s\n", + " 45400K .......... .......... .......... .......... .......... 38% 367K 89s\n", + " 45450K .......... .......... .......... .......... .......... 38% 392K 89s\n", + " 45500K .......... .......... .......... .......... .......... 38% 522K 89s\n", + " 45550K .......... .......... .......... .......... .......... 38% 296K 89s\n", + " 45600K .......... .......... .......... .......... .......... 38% 510K 89s\n", + " 45650K .......... .......... .......... .......... .......... 38% 348K 89s\n", + " 45700K .......... .......... .......... .......... .......... 38% 525K 89s\n", + " 45750K .......... .......... .......... .......... .......... 38% 317K 89s\n", + " 45800K .......... .......... .......... .......... .......... 38% 475K 89s\n", + " 45850K .......... .......... .......... .......... .......... 38% 477K 89s\n", + " 45900K .......... .......... .......... .......... .......... 38% 581K 89s\n", + " 45950K .......... .......... .......... .......... .......... 38% 328K 89s\n", + " 46000K .......... .......... .......... .......... .......... 39% 498K 89s\n", + " 46050K .......... .......... .......... .......... .......... 39% 502K 89s\n", + " 46100K .......... .......... .......... .......... .......... 39% 544K 89s\n", + " 46150K .......... .......... .......... .......... .......... 39% 399K 89s\n", + " 46200K .......... .......... .......... .......... .......... 39% 476K 89s\n", + " 46250K .......... .......... .......... .......... .......... 39% 478K 89s\n", + " 46300K .......... .......... .......... .......... .......... 39% 554K 89s\n", + " 46350K .......... .......... .......... .......... .......... 39% 430K 89s\n", + " 46400K .......... .......... .......... .......... .......... 39% 489K 89s\n", + " 46450K .......... .......... .......... .......... .......... 39% 553K 89s\n", + " 46500K .......... .......... .......... .......... .......... 39% 456K 89s\n", + " 46550K .......... .......... .......... .......... .......... 39% 516K 89s\n", + " 46600K .......... .......... .......... .......... .......... 39% 566K 89s\n", + " 46650K .......... .......... .......... .......... .......... 39% 516K 89s\n", + " 46700K .......... .......... .......... .......... .......... 39% 546K 89s\n", + " 46750K .......... .......... .......... .......... .......... 39% 511K 89s\n", + " 46800K .......... .......... .......... .......... .......... 39% 530K 89s\n", + " 46850K .......... .......... .......... .......... .......... 39% 555K 89s\n", + " 46900K .......... .......... .......... .......... .......... 39% 571K 89s\n", + " 46950K .......... .......... .......... .......... .......... 39% 512K 89s\n", + " 47000K .......... .......... .......... .......... .......... 39% 575K 89s\n", + " 47050K .......... .......... .......... .......... .......... 39% 574K 89s\n", + " 47100K .......... .......... .......... .......... .......... 39% 562K 89s\n", + " 47150K .......... .......... .......... .......... .......... 40% 529K 89s\n", + " 47200K .......... .......... .......... .......... .......... 40% 590K 89s\n", + " 47250K .......... .......... .......... .......... .......... 40% 578K 89s\n", + " 47300K .......... .......... .......... .......... .......... 40% 519K 89s\n", + " 47350K .......... .......... .......... .......... .......... 40% 601K 89s\n", + " 47400K .......... .......... .......... .......... .......... 40% 534K 89s\n", + " 47450K .......... .......... .......... .......... .......... 40% 550K 89s\n", + " 47500K .......... .......... .......... .......... .......... 40% 569K 89s\n", + " 47550K .......... .......... .......... .......... .......... 40% 552K 89s\n", + " 47600K .......... .......... .......... .......... .......... 40% 599K 89s\n", + " 47650K .......... .......... .......... .......... .......... 40% 586K 89s\n", + " 47700K .......... .......... .......... .......... .......... 40% 592K 89s\n", + " 47750K .......... .......... .......... .......... .......... 40% 548K 89s\n", + " 47800K .......... .......... .......... .......... .......... 40% 620K 88s\n", + " 47850K .......... .......... .......... .......... .......... 40% 620K 88s\n", + " 47900K .......... .......... .......... .......... .......... 40% 1.06M 88s\n", + " 47950K .......... .......... .......... .......... .......... 40% 580K 88s\n", + " 48000K .......... .......... .......... .......... .......... 40% 693K 88s\n", + " 48050K .......... .......... .......... .......... .......... 40% 603K 88s\n", + " 48100K .......... .......... .......... .......... .......... 40% 555K 88s\n", + " 48150K .......... .......... .......... .......... .......... 40% 614K 88s\n", + " 48200K .......... .......... .......... .......... .......... 40% 1.24M 88s\n", + " 48250K .......... .......... .......... .......... .......... 40% 628K 88s\n", + " 48300K .......... .......... .......... .......... .......... 40% 623K 88s\n", + " 48350K .......... .......... .......... .......... .......... 41% 569K 88s\n", + " 48400K .......... .......... .......... .......... .......... 41% 863K 88s\n", + " 48450K .......... .......... .......... .......... .......... 41% 1.19M 88s\n", + " 48500K .......... .......... .......... .......... .......... 41% 623K 88s\n", + " 48550K .......... .......... .......... .......... .......... 41% 587K 88s\n", + " 48600K .......... .......... .......... .......... .......... 41% 677K 88s\n", + " 48650K .......... .......... .......... .......... .......... 41% 1.59M 88s\n", + " 48700K .......... .......... .......... .......... .......... 41% 677K 88s\n", + " 48750K .......... .......... .......... .......... .......... 41% 581K 88s\n", + " 48800K .......... .......... .......... .......... .......... 41% 923K 87s\n", + " 48850K .......... .......... .......... .......... .......... 41% 821K 87s\n", + " 48900K .......... .......... .......... .......... .......... 41% 746K 87s\n", + " 48950K .......... .......... .......... .......... .......... 41% 645K 87s\n", + " 49000K .......... .......... .......... .......... .......... 41% 1.06M 87s\n", + " 49050K .......... .......... .......... .......... .......... 41% 935K 87s\n", + " 49100K .......... .......... .......... .......... .......... 41% 563K 87s\n", + " 49150K .......... .......... .......... .......... .......... 41% 1.02M 87s\n", + " 49200K .......... .......... .......... .......... .......... 41% 692K 87s\n", + " 49250K .......... .......... .......... .......... .......... 41% 852K 87s\n", + " 49300K .......... .......... .......... .......... .......... 41% 1016K 87s\n", + " 49350K .......... .......... .......... .......... .......... 41% 628K 87s\n", + " 49400K .......... .......... .......... .......... .......... 41% 826K 87s\n", + " 49450K .......... .......... .......... .......... .......... 41% 860K 87s\n", + " 49500K .......... .......... .......... .......... .......... 41% 838K 87s\n", + " 49550K .......... .......... .......... .......... .......... 42% 811K 86s\n", + " 49600K .......... .......... .......... .......... .......... 42% 929K 86s\n", + " 49650K .......... .......... .......... .......... .......... 42% 741K 86s\n", + " 49700K .......... .......... .......... .......... .......... 42% 916K 86s\n", + " 49750K .......... .......... .......... .......... .......... 42% 864K 86s\n", + " 49800K .......... .......... .......... .......... .......... 42% 826K 86s\n", + " 49850K .......... .......... .......... .......... .......... 42% 779K 86s\n", + " 49900K .......... .......... .......... .......... .......... 42% 1.69M 86s\n", + " 49950K .......... .......... .......... .......... .......... 42% 571K 86s\n", + " 50000K .......... .......... .......... .......... .......... 42% 888K 86s\n", + " 50050K .......... .......... .......... .......... .......... 42% 1.25M 86s\n", + " 50100K .......... .......... .......... .......... .......... 42% 799K 86s\n", + " 50150K .......... .......... .......... .......... .......... 42% 677K 86s\n", + " 50200K .......... .......... .......... .......... .......... 42% 1.13M 86s\n", + " 50250K .......... .......... .......... .......... .......... 42% 59.3K 87s\n", + " 50300K .......... .......... .......... .......... .......... 42% 541K 87s\n", + " 50350K .......... .......... .......... .......... .......... 42% 268K 87s\n", + " 50400K .......... .......... .......... .......... .......... 42% 281K 87s\n", + " 50450K .......... .......... .......... .......... .......... 42% 653K 87s\n", + " 50500K .......... .......... .......... .......... .......... 42% 52.9K 88s\n", + " 50550K .......... .......... .......... .......... .......... 42% 276K 88s\n", + " 50600K .......... .......... .......... .......... .......... 42% 544K 88s\n", + " 50650K .......... .......... .......... .......... .......... 42% 5.75M 88s\n", + " 50700K .......... .......... .......... .......... .......... 43% 592K 88s\n", + " 50750K .......... .......... .......... .......... .......... 43% 543K 88s\n", + " 50800K .......... .......... .......... .......... .......... 43% 572K 88s\n", + " 50850K .......... .......... .......... .......... .......... 43% 563K 88s\n", + " 50900K .......... .......... .......... .......... .......... 43% 6.51M 87s\n", + " 50950K .......... .......... .......... .......... .......... 43% 49.8K 89s\n", + " 51000K .......... .......... .......... .......... .......... 43% 186K 89s\n", + " 51050K .......... .......... .......... .......... .......... 43% 537K 89s\n", + " 51100K .......... .......... .......... .......... .......... 43% 601K 89s\n", + " 51150K .......... .......... .......... .......... .......... 43% 1.95M 89s\n", + " 51200K .......... .......... .......... .......... .......... 43% 582K 89s\n", + " 51250K .......... .......... .......... .......... .......... 43% 668K 88s\n", + " 51300K .......... .......... .......... .......... .......... 43% 591K 88s\n", + " 51350K .......... .......... .......... .......... .......... 43% 563K 88s\n", + " 51400K .......... .......... .......... .......... .......... 43% 2.60M 88s\n", + " 51450K .......... .......... .......... .......... .......... 43% 582K 88s\n", + " 51500K .......... .......... .......... .......... .......... 43% 645K 88s\n", + " 51550K .......... .......... .......... .......... .......... 43% 568K 88s\n", + " 51600K .......... .......... .......... .......... .......... 43% 646K 88s\n", + " 51650K .......... .......... .......... .......... .......... 43% 2.24M 88s\n", + " 51700K .......... .......... .......... .......... .......... 43% 574K 88s\n", + " 51750K .......... .......... .......... .......... .......... 43% 556K 88s\n", + " 51800K .......... .......... .......... .......... .......... 43% 729K 88s\n", + " 51850K .......... .......... .......... .......... .......... 43% 1.47M 88s\n", + " 51900K .......... .......... .......... .......... .......... 44% 631K 88s\n", + " 51950K .......... .......... .......... .......... .......... 44% 572K 88s\n", + " 52000K .......... .......... .......... .......... .......... 44% 636K 88s\n", + " 52050K .......... .......... .......... .......... .......... 44% 2.79M 87s\n", + " 52100K .......... .......... .......... .......... .......... 44% 603K 87s\n", + " 52150K .......... .......... .......... .......... .......... 44% 611K 87s\n", + " 52200K .......... .......... .......... .......... .......... 44% 1.77M 87s\n", + " 52250K .......... .......... .......... .......... .......... 44% 610K 87s\n", + " 52300K .......... .......... .......... .......... .......... 44% 695K 87s\n", + " 52350K .......... .......... .......... .......... .......... 44% 561K 87s\n", + " 52400K .......... .......... .......... .......... .......... 44% 2.09M 87s\n", + " 52450K .......... .......... .......... .......... .......... 44% 569K 87s\n", + " 52500K .......... .......... .......... .......... .......... 44% 608K 87s\n", + " 52550K .......... .......... .......... .......... .......... 44% 3.40M 87s\n", + " 52600K .......... .......... .......... .......... .......... 44% 558K 87s\n", + " 52650K .......... .......... .......... .......... .......... 44% 566K 87s\n", + " 52700K .......... .......... .......... .......... .......... 44% 10.2M 87s\n", + " 52750K .......... .......... .......... .......... .......... 44% 549K 87s\n", + " 52800K .......... .......... .......... .......... .......... 44% 610K 86s\n", + " 52850K .......... .......... .......... .......... .......... 44% 6.22M 86s\n", + " 52900K .......... .......... .......... .......... .......... 44% 581K 86s\n", + " 52950K .......... .......... .......... .......... .......... 44% 589K 86s\n", + " 53000K .......... .......... .......... .......... .......... 44% 3.15M 86s\n", + " 53050K .......... .......... .......... .......... .......... 45% 573K 86s\n", + " 53100K .......... .......... .......... .......... .......... 45% 687K 86s\n", + " 53150K .......... .......... .......... .......... .......... 45% 2.34M 86s\n", + " 53200K .......... .......... .......... .......... .......... 45% 564K 86s\n", + " 53250K .......... .......... .......... .......... .......... 45% 757K 86s\n", + " 53300K .......... .......... .......... .......... .......... 45% 1.63M 86s\n", + " 53350K .......... .......... .......... .......... .......... 45% 577K 86s\n", + " 53400K .......... .......... .......... .......... .......... 45% 823K 86s\n", + " 53450K .......... .......... .......... .......... .......... 45% 1.53M 85s\n", + " 53500K .......... .......... .......... .......... .......... 45% 596K 85s\n", + " 53550K .......... .......... .......... .......... .......... 45% 819K 85s\n", + " 53600K .......... .......... .......... .......... .......... 45% 1.31M 85s\n", + " 53650K .......... .......... .......... .......... .......... 45% 763K 85s\n", + " 53700K .......... .......... .......... .......... .......... 45% 1.59M 85s\n", + " 53750K .......... .......... .......... .......... .......... 45% 603K 85s\n", + " 53800K .......... .......... .......... .......... .......... 45% 894K 85s\n", + " 53850K .......... .......... .......... .......... .......... 45% 1.28M 85s\n", + " 53900K .......... .......... .......... .......... .......... 45% 683K 85s\n", + " 53950K .......... .......... .......... .......... .......... 45% 925K 85s\n", + " 54000K .......... .......... .......... .......... .......... 45% 931K 85s\n", + " 54050K .......... .......... .......... .......... .......... 45% 789K 85s\n", + " 54100K .......... .......... .......... .......... .......... 45% 1.51M 84s\n", + " 54150K .......... .......... .......... .......... .......... 45% 790K 84s\n", + " 54200K .......... .......... .......... .......... .......... 45% 898K 84s\n", + " 54250K .......... .......... .......... .......... .......... 46% 1017K 84s\n", + " 54300K .......... .......... .......... .......... .......... 46% 732K 84s\n", + " 54350K .......... .......... .......... .......... .......... 46% 1.52M 84s\n", + " 54400K .......... .......... .......... .......... .......... 46% 780K 84s\n", + " 54450K .......... .......... .......... .......... .......... 46% 1.61M 84s\n", + " 54500K .......... .......... .......... .......... .......... 46% 826K 84s\n", + " 54550K .......... .......... .......... .......... .......... 46% 579K 84s\n", + " 54600K .......... .......... .......... .......... .......... 46% 2.26M 84s\n", + " 54650K .......... .......... .......... .......... .......... 46% 725K 84s\n", + " 54700K .......... .......... .......... .......... .......... 46% 1.24M 83s\n", + " 54750K .......... .......... .......... .......... .......... 46% 893K 83s\n", + " 54800K .......... .......... .......... .......... .......... 46% 1.25M 83s\n", + " 54850K .......... .......... .......... .......... .......... 46% 951K 83s\n", + " 54900K .......... .......... .......... .......... .......... 46% 1.30M 83s\n", + " 54950K .......... .......... .......... .......... .......... 46% 795K 83s\n", + " 55000K .......... .......... .......... .......... .......... 46% 616K 83s\n", + " 55050K .......... .......... .......... .......... .......... 46% 1.96M 83s\n", + " 55100K .......... .......... .......... .......... .......... 46% 748K 83s\n", + " 55150K .......... .......... .......... .......... .......... 46% 1.37M 83s\n", + " 55200K .......... .......... .......... .......... .......... 46% 924K 83s\n", + " 55250K .......... .......... .......... .......... .......... 46% 1.24M 83s\n", + " 55300K .......... .......... .......... .......... .......... 46% 867K 82s\n", + " 55350K .......... .......... .......... .......... .......... 46% 921K 82s\n", + " 55400K .......... .......... .......... .......... .......... 46% 963K 82s\n", + " 55450K .......... .......... .......... .......... .......... 47% 896K 82s\n", + " 55500K .......... .......... .......... .......... .......... 47% 1.50M 82s\n", + " 55550K .......... .......... .......... .......... .......... 47% 572K 82s\n", + " 55600K .......... .......... .......... .......... .......... 47% 7.01M 82s\n", + " 55650K .......... .......... .......... .......... .......... 47% 600K 82s\n", + " 55700K .......... .......... .......... .......... .......... 47% 1.50M 82s\n", + " 55750K .......... .......... .......... .......... .......... 47% 848K 82s\n", + " 55800K .......... .......... .......... .......... .......... 47% 1.24M 82s\n", + " 55850K .......... .......... .......... .......... .......... 47% 1.06M 82s\n", + " 55900K .......... .......... .......... .......... .......... 47% 1.06M 81s\n", + " 55950K .......... .......... .......... .......... .......... 47% 1.07M 81s\n", + " 56000K .......... .......... .......... .......... .......... 47% 887K 81s\n", + " 56050K .......... .......... .......... .......... .......... 47% 1.34M 81s\n", + " 56100K .......... .......... .......... .......... .......... 47% 1004K 81s\n", + " 56150K .......... .......... .......... .......... .......... 47% 1.07M 81s\n", + " 56200K .......... .......... .......... .......... .......... 47% 1.01M 81s\n", + " 56250K .......... .......... .......... .......... .......... 47% 1.08M 81s\n", + " 56300K .......... .......... .......... .......... .......... 47% 1.11M 81s\n", + " 56350K .......... .......... .......... .......... .......... 47% 932K 81s\n", + " 56400K .......... .......... .......... .......... .......... 47% 1.47M 81s\n", + " 56450K .......... .......... .......... .......... .......... 47% 836K 81s\n", + " 56500K .......... .......... .......... .......... .......... 47% 1.63M 80s\n", + " 56550K .......... .......... .......... .......... .......... 47% 774K 80s\n", + " 56600K .......... .......... .......... .......... .......... 48% 761K 80s\n", + " 56650K .......... .......... .......... .......... .......... 48% 2.10M 80s\n", + " 56700K .......... .......... .......... .......... .......... 48% 896K 80s\n", + " 56750K .......... .......... .......... .......... .......... 48% 1.42M 80s\n", + " 56800K .......... .......... .......... .......... .......... 48% 646K 80s\n", + " 56850K .......... .......... .......... .......... .......... 48% 5.82M 80s\n", + " 56900K .......... .......... .......... .......... .......... 48% 649K 80s\n", + " 56950K .......... .......... .......... .......... .......... 48% 3.34M 80s\n", + " 57000K .......... .......... .......... .......... .......... 48% 605K 80s\n", + " 57050K .......... .......... .......... .......... .......... 48% 2.68M 79s\n", + " 57100K .......... .......... .......... .......... .......... 48% 1.34M 79s\n", + " 57150K .......... .......... .......... .......... .......... 48% 869K 79s\n", + " 57200K .......... .......... .......... .......... .......... 48% 810K 79s\n", + " 57250K .......... .......... .......... .......... .......... 48% 1.70M 79s\n", + " 57300K .......... .......... .......... .......... .......... 48% 1.53M 79s\n", + " 57350K .......... .......... .......... .......... .......... 48% 858K 79s\n", + " 57400K .......... .......... .......... .......... .......... 48% 939K 79s\n", + " 57450K .......... .......... .......... .......... .......... 48% 1.34M 79s\n", + " 57500K .......... .......... .......... .......... .......... 48% 1.74M 79s\n", + " 57550K .......... .......... .......... .......... .......... 48% 771K 79s\n", + " 57600K .......... .......... .......... .......... .......... 48% 1.82M 79s\n", + " 57650K .......... .......... .......... .......... .......... 48% 945K 78s\n", + " 57700K .......... .......... .......... .......... .......... 48% 1.95M 78s\n", + " 57750K .......... .......... .......... .......... .......... 48% 791K 78s\n", + " 57800K .......... .......... .......... .......... .......... 49% 1.59M 78s\n", + " 57850K .......... .......... .......... .......... .......... 49% 796K 78s\n", + " 57900K .......... .......... .......... .......... .......... 49% 1.78M 78s\n", + " 57950K .......... .......... .......... .......... .......... 49% 773K 78s\n", + " 58000K .......... .......... .......... .......... .......... 49% 2.10M 78s\n", + " 58050K .......... .......... .......... .......... .......... 49% 678K 78s\n", + " 58100K .......... .......... .......... .......... .......... 49% 134K 78s\n", + " 58150K .......... .......... .......... .......... .......... 49% 83.0M 78s\n", + " 58200K .......... .......... .......... .......... .......... 49% 141M 78s\n", + " 58250K .......... .......... .......... .......... .......... 49% 526K 78s\n", + " 58300K .......... .......... .......... .......... .......... 49% 565K 78s\n", + " 58350K .......... .......... .......... .......... .......... 49% 511K 78s\n", + " 58400K .......... .......... .......... .......... .......... 49% 66.3K 78s\n", + " 58450K .......... .......... .......... .......... .......... 49% 283K 78s\n", + " 58500K .......... .......... .......... .......... .......... 49% 187K 78s\n", + " 58550K .......... .......... .......... .......... .......... 49% 531K 78s\n", + " 58600K .......... .......... .......... .......... .......... 49% 587K 78s\n", + " 58650K .......... .......... .......... .......... .......... 49% 617K 78s\n", + " 58700K .......... .......... .......... .......... .......... 49% 3.75M 78s\n", + " 58750K .......... .......... .......... .......... .......... 49% 539K 78s\n", + " 58800K .......... .......... .......... .......... .......... 49% 536K 78s\n", + " 58850K .......... .......... .......... .......... .......... 49% 149K 78s\n", + " 58900K .......... .......... .......... .......... .......... 49% 563K 78s\n", + " 58950K .......... .......... .......... .......... .......... 50% 296K 78s\n", + " 59000K .......... .......... .......... .......... .......... 50% 437K 78s\n", + " 59050K .......... .......... .......... .......... .......... 50% 565K 78s\n", + " 59100K .......... .......... .......... .......... .......... 50% 570K 78s\n", + " 59150K .......... .......... .......... .......... .......... 50% 295K 78s\n", + " 59200K .......... .......... .......... .......... .......... 50% 513K 78s\n", + " 59250K .......... .......... .......... .......... .......... 50% 512K 78s\n", + " 59300K .......... .......... .......... .......... .......... 50% 326K 78s\n", + " 59350K .......... .......... .......... .......... .......... 50% 486K 78s\n", + " 59400K .......... .......... .......... .......... .......... 50% 484K 78s\n", + " 59450K .......... .......... .......... .......... .......... 50% 467K 78s\n", + " 59500K .......... .......... .......... .......... .......... 50% 348K 78s\n", + " 59550K .......... .......... .......... .......... .......... 50% 482K 78s\n", + " 59600K .......... .......... .......... .......... .......... 50% 571K 78s\n", + " 59650K .......... .......... .......... .......... .......... 50% 548K 78s\n", + " 59700K .......... .......... .......... .......... .......... 50% 521K 78s\n", + " 59750K .......... .......... .......... .......... .......... 50% 320K 78s\n", + " 59800K .......... .......... .......... .......... .......... 50% 459K 78s\n", + " 59850K .......... .......... .......... .......... .......... 50% 481K 78s\n", + " 59900K .......... .......... .......... .......... .......... 50% 565K 78s\n", + " 59950K .......... .......... .......... .......... .......... 50% 542K 78s\n", + " 60000K .......... .......... .......... .......... .......... 50% 527K 78s\n", + " 60050K .......... .......... .......... .......... .......... 50% 426K 78s\n", + " 60100K .......... .......... .......... .......... .......... 50% 520K 78s\n", + " 60150K .......... .......... .......... .......... .......... 51% 448K 78s\n", + " 60200K .......... .......... .......... .......... .......... 51% 533K 78s\n", + " 60250K .......... .......... .......... .......... .......... 51% 537K 78s\n", + " 60300K .......... .......... .......... .......... .......... 51% 570K 78s\n", + " 60350K .......... .......... .......... .......... .......... 51% 54.7K 78s\n", + " 60400K .......... .......... .......... .......... .......... 51% 572K 78s\n", + " 60450K .......... .......... .......... .......... .......... 51% 525K 78s\n", + " 60500K .......... .......... .......... .......... .......... 51% 569K 78s\n", + " 60550K .......... .......... .......... .......... .......... 51% 528K 78s\n", + " 60600K .......... .......... .......... .......... .......... 51% 544K 78s\n", + " 60650K .......... .......... .......... .......... .......... 51% 588K 78s\n", + " 60700K .......... .......... .......... .......... .......... 51% 541K 78s\n", + " 60750K .......... .......... .......... .......... .......... 51% 194K 78s\n", + " 60800K .......... .......... .......... .......... .......... 51% 559K 78s\n", + " 60850K .......... .......... .......... .......... .......... 51% 577K 78s\n", + " 60900K .......... .......... .......... .......... .......... 51% 544K 78s\n", + " 60950K .......... .......... .......... .......... .......... 51% 560K 78s\n", + " 61000K .......... .......... .......... .......... .......... 51% 544K 78s\n", + " 61050K .......... .......... .......... .......... .......... 51% 577K 78s\n", + " 61100K .......... .......... .......... .......... .......... 51% 76.4K 78s\n", + " 61150K .......... .......... .......... .......... .......... 51% 567K 78s\n", + " 61200K .......... .......... .......... .......... .......... 51% 270K 78s\n", + " 61250K .......... .......... .......... .......... .......... 51% 284K 78s\n", + " 61300K .......... .......... .......... .......... .......... 51% 549K 78s\n", + " 61350K .......... .......... .......... .......... .......... 52% 471K 78s\n", + " 61400K .......... .......... .......... .......... .......... 52% 547K 78s\n", + " 61450K .......... .......... .......... .......... .......... 52% 321K 78s\n", + " 61500K .......... .......... .......... .......... .......... 52% 466K 78s\n", + " 61550K .......... .......... .......... .......... .......... 52% 562K 78s\n", + " 61600K .......... .......... .......... .......... .......... 52% 574K 78s\n", + " 61650K .......... .......... .......... .......... .......... 52% 565K 78s\n", + " 61700K .......... .......... .......... .......... .......... 52% 296K 78s\n", + " 61750K .......... .......... .......... .......... .......... 52% 546K 78s\n", + " 61800K .......... .......... .......... .......... .......... 52% 564K 78s\n", + " 61850K .......... .......... .......... .......... .......... 52% 555K 78s\n", + " 61900K .......... .......... .......... .......... .......... 52% 561K 78s\n", + " 61950K .......... .......... .......... .......... .......... 52% 504K 78s\n", + " 62000K .......... .......... .......... .......... .......... 52% 320K 78s\n", + " 62050K .......... .......... .......... .......... .......... 52% 466K 78s\n", + " 62100K .......... .......... .......... .......... .......... 52% 575K 78s\n", + " 62150K .......... .......... .......... .......... .......... 52% 497K 78s\n", + " 62200K .......... .......... .......... .......... .......... 52% 481K 78s\n", + " 62250K .......... .......... .......... .......... .......... 52% 544K 78s\n", + " 62300K .......... .......... .......... .......... .......... 52% 571K 78s\n", + " 62350K .......... .......... .......... .......... .......... 52% 559K 77s\n", + " 62400K .......... .......... .......... .......... .......... 52% 547K 77s\n", + " 62450K .......... .......... .......... .......... .......... 52% 551K 77s\n", + " 62500K .......... .......... .......... .......... .......... 53% 586K 77s\n", + " 62550K .......... .......... .......... .......... .......... 53% 351K 77s\n", + " 62600K .......... .......... .......... .......... .......... 53% 615K 77s\n", + " 62650K .......... .......... .......... .......... .......... 53% 631K 77s\n", + " 62700K .......... .......... .......... .......... .......... 53% 548K 77s\n", + " 62750K .......... .......... .......... .......... .......... 53% 426K 77s\n", + " 62800K .......... .......... .......... .......... .......... 53% 583K 77s\n", + " 62850K .......... .......... .......... .......... .......... 53% 558K 77s\n", + " 62900K .......... .......... .......... .......... .......... 53% 577K 77s\n", + " 62950K .......... .......... .......... .......... .......... 53% 547K 77s\n", + " 63000K .......... .......... .......... .......... .......... 53% 580K 77s\n", + " 63050K .......... .......... .......... .......... .......... 53% 817K 77s\n", + " 63100K .......... .......... .......... .......... .......... 53% 685K 77s\n", + " 63150K .......... .......... .......... .......... .......... 53% 497K 77s\n", + " 63200K .......... .......... .......... .......... .......... 53% 597K 77s\n", + " 63250K .......... .......... .......... .......... .......... 53% 545K 77s\n", + " 63300K .......... .......... .......... .......... .......... 53% 592K 76s\n", + " 63350K .......... .......... .......... .......... .......... 53% 540K 76s\n", + " 63400K .......... .......... .......... .......... .......... 53% 558K 76s\n", + " 63450K .......... .......... .......... .......... .......... 53% 553K 76s\n", + " 63500K .......... .......... .......... .......... .......... 53% 597K 76s\n", + " 63550K .......... .......... .......... .......... .......... 53% 568K 76s\n", + " 63600K .......... .......... .......... .......... .......... 53% 705K 76s\n", + " 63650K .......... .......... .......... .......... .......... 53% 692K 76s\n", + " 63700K .......... .......... .......... .......... .......... 54% 758K 76s\n", + " 63750K .......... .......... .......... .......... .......... 54% 583K 76s\n", + " 63800K .......... .......... .......... .......... .......... 54% 693K 76s\n", + " 63850K .......... .......... .......... .......... .......... 54% 569K 76s\n", + " 63900K .......... .......... .......... .......... .......... 54% 748K 76s\n", + " 63950K .......... .......... .......... .......... .......... 54% 595K 76s\n", + " 64000K .......... .......... .......... .......... .......... 54% 778K 76s\n", + " 64050K .......... .......... .......... .......... .......... 54% 725K 76s\n", + " 64100K .......... .......... .......... .......... .......... 54% 513K 75s\n", + " 64150K .......... .......... .......... .......... .......... 54% 533K 75s\n", + " 64200K .......... .......... .......... .......... .......... 54% 1.88M 75s\n", + " 64250K .......... .......... .......... .......... .......... 54% 691K 75s\n", + " 64300K .......... .......... .......... .......... .......... 54% 579K 75s\n", + " 64350K .......... .......... .......... .......... .......... 54% 492K 75s\n", + " 64400K .......... .......... .......... .......... .......... 54% 2.87M 75s\n", + " 64450K .......... .......... .......... .......... .......... 54% 636K 75s\n", + " 64500K .......... .......... .......... .......... .......... 54% 530K 75s\n", + " 64550K .......... .......... .......... .......... .......... 54% 560K 75s\n", + " 64600K .......... .......... .......... .......... .......... 54% 18.7M 75s\n", + " 64650K .......... .......... .......... .......... .......... 54% 549K 75s\n", + " 64700K .......... .......... .......... .......... .......... 54% 598K 75s\n", + " 64750K .......... .......... .......... .......... .......... 54% 541K 75s\n", + " 64800K .......... .......... .......... .......... .......... 54% 765K 75s\n", + " 64850K .......... .......... .......... .......... .......... 55% 1.52M 74s\n", + " 64900K .......... .......... .......... .......... .......... 55% 545K 74s\n", + " 64950K .......... .......... .......... .......... .......... 55% 613K 74s\n", + " 65000K .......... .......... .......... .......... .......... 55% 2.35M 74s\n", + " 65050K .......... .......... .......... .......... .......... 55% 54.6K 75s\n", + " 65100K .......... .......... .......... .......... .......... 55% 584K 75s\n", + " 65150K .......... .......... .......... .......... .......... 55% 509K 75s\n", + " 65200K .......... .......... .......... .......... .......... 55% 559K 75s\n", + " 65250K .......... .......... .......... .......... .......... 55% 307K 75s\n", + " 65300K .......... .......... .......... .......... .......... 55% 468K 75s\n", + " 65350K .......... .......... .......... .......... .......... 55% 545K 75s\n", + " 65400K .......... .......... .......... .......... .......... 55% 530K 74s\n", + " 65450K .......... .......... .......... .......... .......... 55% 558K 74s\n", + " 65500K .......... .......... .......... .......... .......... 55% 557K 74s\n", + " 65550K .......... .......... .......... .......... .......... 55% 286K 74s\n", + " 65600K .......... .......... .......... .......... .......... 55% 560K 74s\n", + " 65650K .......... .......... .......... .......... .......... 55% 566K 74s\n", + " 65700K .......... .......... .......... .......... .......... 55% 533K 74s\n", + " 65750K .......... .......... .......... .......... .......... 55% 575K 74s\n", + " 65800K .......... .......... .......... .......... .......... 55% 554K 74s\n", + " 65850K .......... .......... .......... .......... .......... 55% 358K 74s\n", + " 65900K .......... .......... .......... .......... .......... 55% 575K 74s\n", + " 65950K .......... .......... .......... .......... .......... 55% 428K 74s\n", + " 66000K .......... .......... .......... .......... .......... 55% 60.5K 75s\n", + " 66050K .......... .......... .......... .......... .......... 56% 276K 75s\n", + " 66100K .......... .......... .......... .......... .......... 56% 277K 75s\n", + " 66150K .......... .......... .......... .......... .......... 56% 288K 75s\n", + " 66200K .......... .......... .......... .......... .......... 56% 551K 75s\n", + " 66250K .......... .......... .......... .......... .......... 56% 536K 74s\n", + " 66300K .......... .......... .......... .......... .......... 56% 497K 74s\n", + " 66350K .......... .......... .......... .......... .......... 56% 337K 74s\n", + " 66400K .......... .......... .......... .......... .......... 56% 534K 74s\n", + " 66450K .......... .......... .......... .......... .......... 56% 541K 74s\n", + " 66500K .......... .......... .......... .......... .......... 56% 550K 74s\n", + " 66550K .......... .......... .......... .......... .......... 56% 442K 74s\n", + " 66600K .......... .......... .......... .......... .......... 56% 549K 74s\n", + " 66650K .......... .......... .......... .......... .......... 56% 407K 74s\n", + " 66700K .......... .......... .......... .......... .......... 56% 524K 74s\n", + " 66750K .......... .......... .......... .......... .......... 56% 434K 74s\n", + " 66800K .......... .......... .......... .......... .......... 56% 546K 74s\n", + " 66850K .......... .......... .......... .......... .......... 56% 541K 74s\n", + " 66900K .......... .......... .......... .......... .......... 56% 542K 74s\n", + " 66950K .......... .......... .......... .......... .......... 56% 526K 74s\n", + " 67000K .......... .......... .......... .......... .......... 56% 531K 74s\n", + " 67050K .......... .......... .......... .......... .......... 56% 529K 74s\n", + " 67100K .......... .......... .......... .......... .......... 56% 576K 74s\n", + " 67150K .......... .......... .......... .......... .......... 56% 551K 74s\n", + " 67200K .......... .......... .......... .......... .......... 56% 482K 73s\n", + " 67250K .......... .......... .......... .......... .......... 57% 548K 73s\n", + " 67300K .......... .......... .......... .......... .......... 57% 554K 73s\n", + " 67350K .......... .......... .......... .......... .......... 57% 518K 73s\n", + " 67400K .......... .......... .......... .......... .......... 57% 526K 73s\n", + " 67450K .......... .......... .......... .......... .......... 57% 590K 73s\n", + " 67500K .......... .......... .......... .......... .......... 57% 642K 73s\n", + " 67550K .......... .......... .......... .......... .......... 57% 496K 73s\n", + " 67600K .......... .......... .......... .......... .......... 57% 631K 73s\n", + " 67650K .......... .......... .......... .......... .......... 57% 566K 73s\n", + " 67700K .......... .......... .......... .......... .......... 57% 588K 73s\n", + " 67750K .......... .......... .......... .......... .......... 57% 520K 73s\n", + " 67800K .......... .......... .......... .......... .......... 57% 685K 73s\n", + " 67850K .......... .......... .......... .......... .......... 57% 593K 73s\n", + " 67900K .......... .......... .......... .......... .......... 57% 824K 73s\n", + " 67950K .......... .......... .......... .......... .......... 57% 564K 73s\n", + " 68000K .......... .......... .......... .......... .......... 57% 809K 72s\n", + " 68050K .......... .......... .......... .......... .......... 57% 612K 72s\n", + " 68100K .......... .......... .......... .......... .......... 57% 541K 72s\n", + " 68150K .......... .......... .......... .......... .......... 57% 556K 72s\n", + " 68200K .......... .......... .......... .......... .......... 57% 851K 72s\n", + " 68250K .......... .......... .......... .......... .......... 57% 647K 72s\n", + " 68300K .......... .......... .......... .......... .......... 57% 894K 72s\n", + " 68350K .......... .......... .......... .......... .......... 57% 549K 72s\n", + " 68400K .......... .......... .......... .......... .......... 58% 570K 72s\n", + " 68450K .......... .......... .......... .......... .......... 58% 651K 72s\n", + " 68500K .......... .......... .......... .......... .......... 58% 671K 72s\n", + " 68550K .......... .......... .......... .......... .......... 58% 1.29M 72s\n", + " 68600K .......... .......... .......... .......... .......... 58% 554K 72s\n", + " 68650K .......... .......... .......... .......... .......... 58% 602K 72s\n", + " 68700K .......... .......... .......... .......... .......... 58% 848K 71s\n", + " 68750K .......... .......... .......... .......... .......... 58% 576K 71s\n", + " 68800K .......... .......... .......... .......... .......... 58% 827K 71s\n", + " 68850K .......... .......... .......... .......... .......... 58% 710K 71s\n", + " 68900K .......... .......... .......... .......... .......... 58% 653K 71s\n", + " 68950K .......... .......... .......... .......... .......... 58% 820K 71s\n", + " 69000K .......... .......... .......... .......... .......... 58% 791K 71s\n", + " 69050K .......... .......... .......... .......... .......... 58% 709K 71s\n", + " 69100K .......... .......... .......... .......... .......... 58% 827K 71s\n", + " 69150K .......... .......... .......... .......... .......... 58% 750K 71s\n", + " 69200K .......... .......... .......... .......... .......... 58% 764K 71s\n", + " 69250K .......... .......... .......... .......... .......... 58% 810K 71s\n", + " 69300K .......... .......... .......... .......... .......... 58% 833K 71s\n", + " 69350K .......... .......... .......... .......... .......... 58% 819K 70s\n", + " 69400K .......... .......... .......... .......... .......... 58% 750K 70s\n", + " 69450K .......... .......... .......... .......... .......... 58% 821K 70s\n", + " 69500K .......... .......... .......... .......... .......... 58% 1000K 70s\n", + " 69550K .......... .......... .......... .......... .......... 58% 737K 70s\n", + " 69600K .......... .......... .......... .......... .......... 59% 710K 70s\n", + " 69650K .......... .......... .......... .......... .......... 59% 1.22M 70s\n", + " 69700K .......... .......... .......... .......... .......... 59% 758K 70s\n", + " 69750K .......... .......... .......... .......... .......... 59% 787K 70s\n", + " 69800K .......... .......... .......... .......... .......... 59% 994K 70s\n", + " 69850K .......... .......... .......... .......... .......... 59% 722K 70s\n", + " 69900K .......... .......... .......... .......... .......... 59% 1.02M 70s\n", + " 69950K .......... .......... .......... .......... .......... 59% 749K 70s\n", + " 70000K .......... .......... .......... .......... .......... 59% 743K 69s\n", + " 70050K .......... .......... .......... .......... .......... 59% 1.83M 69s\n", + " 70100K .......... .......... .......... .......... .......... 59% 815K 69s\n", + " 70150K .......... .......... .......... .......... .......... 59% 593K 69s\n", + " 70200K .......... .......... .......... .......... .......... 59% 1.23M 69s\n", + " 70250K .......... .......... .......... .......... .......... 59% 813K 69s\n", + " 70300K .......... .......... .......... .......... .......... 59% 1.75M 69s\n", + " 70350K .......... .......... .......... .......... .......... 59% 581K 69s\n", + " 70400K .......... .......... .......... .......... .......... 59% 827K 69s\n", + " 70450K .......... .......... .......... .......... .......... 59% 1.16M 69s\n", + " 70500K .......... .......... .......... .......... .......... 59% 773K 69s\n", + " 70550K .......... .......... .......... .......... .......... 59% 683K 69s\n", + " 70600K .......... .......... .......... .......... .......... 59% 1.58M 68s\n", + " 70650K .......... .......... .......... .......... .......... 59% 736K 68s\n", + " 70700K .......... .......... .......... .......... .......... 59% 1.71M 68s\n", + " 70750K .......... .......... .......... .......... .......... 60% 613K 68s\n", + " 70800K .......... .......... .......... .......... .......... 60% 1.54M 68s\n", + " 70850K .......... .......... .......... .......... .......... 60% 827K 68s\n", + " 70900K .......... .......... .......... .......... .......... 60% 704K 68s\n", + " 70950K .......... .......... .......... .......... .......... 60% 2.16M 68s\n", + " 71000K .......... .......... .......... .......... .......... 60% 596K 68s\n", + " 71050K .......... .......... .......... .......... .......... 60% 1.72M 68s\n", + " 71100K .......... .......... .......... .......... .......... 60% 713K 68s\n", + " 71150K .......... .......... .......... .......... .......... 60% 659K 68s\n", + " 71200K .......... .......... .......... .......... .......... 60% 3.74M 67s\n", + " 71250K .......... .......... .......... .......... .......... 60% 621K 67s\n", + " 71300K .......... .......... .......... .......... .......... 60% 4.97M 67s\n", + " 71350K .......... .......... .......... .......... .......... 60% 540K 67s\n", + " 71400K .......... .......... .......... .......... .......... 60% 1.27M 67s\n", + " 71450K .......... .......... .......... .......... .......... 60% 816K 67s\n", + " 71500K .......... .......... .......... .......... .......... 60% 837K 67s\n", + " 71550K .......... .......... .......... .......... .......... 60% 1.66M 67s\n", + " 71600K .......... .......... .......... .......... .......... 60% 717K 67s\n", + " 71650K .......... .......... .......... .......... .......... 60% 2.28M 67s\n", + " 71700K .......... .......... .......... .......... .......... 60% 589K 67s\n", + " 71750K .......... .......... .......... .......... .......... 60% 6.75M 66s\n", + " 71800K .......... .......... .......... .......... .......... 60% 579K 66s\n", + " 71850K .......... .......... .......... .......... .......... 60% 1.71M 66s\n", + " 71900K .......... .......... .......... .......... .......... 60% 48.2K 67s\n", + " 71950K .......... .......... .......... .......... .......... 61% 273K 67s\n", + " 72000K .......... .......... .......... .......... .......... 61% 498K 67s\n", + " 72050K .......... .......... .......... .......... .......... 61% 265K 67s\n", + " 72100K .......... .......... .......... .......... .......... 61% 62.0K 67s\n", + " 72150K .......... .......... .......... .......... .......... 61% 59.8K 68s\n", + " 72200K .......... .......... .......... .......... .......... 61% 278K 68s\n", + " 72250K .......... .......... .......... .......... .......... 61% 7.43M 67s\n", + " 72300K .......... .......... .......... .......... .......... 61% 583K 67s\n", + " 72350K .......... .......... .......... .......... .......... 61% 544K 67s\n", + " 72400K .......... .......... .......... .......... .......... 61% 544K 67s\n", + " 72450K .......... .......... .......... .......... .......... 61% 278K 67s\n", + " 72500K .......... .......... .......... .......... .......... 61% 526K 67s\n", + " 72550K .......... .......... .......... .......... .......... 61% 561K 67s\n", + " 72600K .......... .......... .......... .......... .......... 61% 554K 67s\n", + " 72650K .......... .......... .......... .......... .......... 61% 584K 67s\n", + " 72700K .......... .......... .......... .......... .......... 61% 4.93M 67s\n", + " 72750K .......... .......... .......... .......... .......... 61% 186K 67s\n", + " 72800K .......... .......... .......... .......... .......... 61% 103M 67s\n", + " 72850K .......... .......... .......... .......... .......... 61% 316K 67s\n", + " 72900K .......... .......... .......... .......... .......... 61% 470K 67s\n", + " 72950K .......... .......... .......... .......... .......... 61% 551K 67s\n", + " 73000K .......... .......... .......... .......... .......... 61% 61.2K 67s\n", + " 73050K .......... .......... .......... .......... .......... 61% 264K 67s\n", + " 73100K .......... .......... .......... .......... .......... 61% 279K 67s\n", + " 73150K .......... .......... .......... .......... .......... 62% 284K 67s\n", + " 73200K .......... .......... .......... .......... .......... 62% 557K 67s\n", + " 73250K .......... .......... .......... .......... .......... 62% 550K 67s\n", + " 73300K .......... .......... .......... .......... .......... 62% 553K 67s\n", + " 73350K .......... .......... .......... .......... .......... 62% 269K 67s\n", + " 73400K .......... .......... .......... .......... .......... 62% 557K 67s\n", + " 73450K .......... .......... .......... .......... .......... 62% 573K 67s\n", + " 73500K .......... .......... .......... .......... .......... 62% 558K 67s\n", + " 73550K .......... .......... .......... .......... .......... 62% 291K 67s\n", + " 73600K .......... .......... .......... .......... .......... 62% 520K 67s\n", + " 73650K .......... .......... .......... .......... .......... 62% 543K 66s\n", + " 73700K .......... .......... .......... .......... .......... 62% 527K 66s\n", + " 73750K .......... .......... .......... .......... .......... 62% 494K 66s\n", + " 73800K .......... .......... .......... .......... .......... 62% 378K 66s\n", + " 73850K .......... .......... .......... .......... .......... 62% 523K 66s\n", + " 73900K .......... .......... .......... .......... .......... 62% 511K 66s\n", + " 73950K .......... .......... .......... .......... .......... 62% 452K 66s\n", + " 74000K .......... .......... .......... .......... .......... 62% 525K 66s\n", + " 74050K .......... .......... .......... .......... .......... 62% 550K 66s\n", + " 74100K .......... .......... .......... .......... .......... 62% 539K 66s\n", + " 74150K .......... .......... .......... .......... .......... 62% 553K 66s\n", + " 74200K .......... .......... .......... .......... .......... 62% 445K 66s\n", + " 74250K .......... .......... .......... .......... .......... 62% 567K 66s\n", + " 74300K .......... .......... .......... .......... .......... 63% 590K 66s\n", + " 74350K .......... .......... .......... .......... .......... 63% 421K 66s\n", + " 74400K .......... .......... .......... .......... .......... 63% 563K 66s\n", + " 74450K .......... .......... .......... .......... .......... 63% 568K 66s\n", + " 74500K .......... .......... .......... .......... .......... 63% 534K 65s\n", + " 74550K .......... .......... .......... .......... .......... 63% 551K 65s\n", + " 74600K .......... .......... .......... .......... .......... 63% 502K 65s\n", + " 74650K .......... .......... .......... .......... .......... 63% 685K 65s\n", + " 74700K .......... .......... .......... .......... .......... 63% 608K 65s\n", + " 74750K .......... .......... .......... .......... .......... 63% 526K 65s\n", + " 74800K .......... .......... .......... .......... .......... 63% 926K 65s\n", + " 74850K .......... .......... .......... .......... .......... 63% 584K 65s\n", + " 74900K .......... .......... .......... .......... .......... 63% 588K 65s\n", + " 74950K .......... .......... .......... .......... .......... 63% 541K 65s\n", + " 75000K .......... .......... .......... .......... .......... 63% 565K 65s\n", + " 75050K .......... .......... .......... .......... .......... 63% 566K 65s\n", + " 75100K .......... .......... .......... .......... .......... 63% 716K 65s\n", + " 75150K .......... .......... .......... .......... .......... 63% 554K 65s\n", + " 75200K .......... .......... .......... .......... .......... 63% 562K 64s\n", + " 75250K .......... .......... .......... .......... .......... 63% 637K 64s\n", + " 75300K .......... .......... .......... .......... .......... 63% 807K 64s\n", + " 75350K .......... .......... .......... .......... .......... 63% 855K 64s\n", + " 75400K .......... .......... .......... .......... .......... 63% 557K 64s\n", + " 75450K .......... .......... .......... .......... .......... 63% 622K 64s\n", + " 75500K .......... .......... .......... .......... .......... 64% 593K 64s\n", + " 75550K .......... .......... .......... .......... .......... 64% 559K 64s\n", + " 75600K .......... .......... .......... .......... .......... 64% 812K 64s\n", + " 75650K .......... .......... .......... .......... .......... 64% 1.02M 64s\n", + " 75700K .......... .......... .......... .......... .......... 64% 667K 64s\n", + " 75750K .......... .......... .......... .......... .......... 64% 570K 64s\n", + " 75800K .......... .......... .......... .......... .......... 64% 597K 64s\n", + " 75850K .......... .......... .......... .......... .......... 64% 1.28M 63s\n", + " 75900K .......... .......... .......... .......... .......... 64% 787K 63s\n", + " 75950K .......... .......... .......... .......... .......... 64% 533K 63s\n", + " 76000K .......... .......... .......... .......... .......... 64% 687K 63s\n", + " 76050K .......... .......... .......... .......... .......... 64% 802K 63s\n", + " 76100K .......... .......... .......... .......... .......... 64% 979K 63s\n", + " 76150K .......... .......... .......... .......... .......... 64% 535K 63s\n", + " 76200K .......... .......... .......... .......... .......... 64% 836K 63s\n", + " 76250K .......... .......... .......... .......... .......... 64% 1.24M 63s\n", + " 76300K .......... .......... .......... .......... .......... 64% 584K 63s\n", + " 76350K .......... .......... .......... .......... .......... 64% 817K 63s\n", + " 76400K .......... .......... .......... .......... .......... 64% 910K 63s\n", + " 76450K .......... .......... .......... .......... .......... 64% 783K 63s\n", + " 76500K .......... .......... .......... .......... .......... 64% 905K 62s\n", + " 76550K .......... .......... .......... .......... .......... 64% 629K 62s\n", + " 76600K .......... .......... .......... .......... .......... 64% 928K 62s\n", + " 76650K .......... .......... .......... .......... .......... 65% 628K 62s\n", + " 76700K .......... .......... .......... .......... .......... 65% 1.06M 62s\n", + " 76750K .......... .......... .......... .......... .......... 65% 796K 62s\n", + " 76800K .......... .......... .......... .......... .......... 65% 647K 62s\n", + " 76850K .......... .......... .......... .......... .......... 65% 1.10M 62s\n", + " 76900K .......... .......... .......... .......... .......... 65% 901K 62s\n", + " 76950K .......... .......... .......... .......... .......... 65% 548K 62s\n", + " 77000K .......... .......... .......... .......... .......... 65% 1.52M 62s\n", + " 77050K .......... .......... .......... .......... .......... 65% 744K 62s\n", + " 77100K .......... .......... .......... .......... .......... 65% 682K 61s\n", + " 77150K .......... .......... .......... .......... .......... 65% 1.26M 61s\n", + " 77200K .......... .......... .......... .......... .......... 65% 814K 61s\n", + " 77250K .......... .......... .......... .......... .......... 65% 598K 61s\n", + " 77300K .......... .......... .......... .......... .......... 65% 1.48M 61s\n", + " 77350K .......... .......... .......... .......... .......... 65% 601K 61s\n", + " 77400K .......... .......... .......... .......... .......... 65% 938K 61s\n", + " 77450K .......... .......... .......... .......... .......... 65% 1.05M 61s\n", + " 77500K .......... .......... .......... .......... .......... 65% 616K 61s\n", + " 77550K .......... .......... .......... .......... .......... 65% 3.11M 61s\n", + " 77600K .......... .......... .......... .......... .......... 65% 637K 61s\n", + " 77650K .......... .......... .......... .......... .......... 65% 561K 61s\n", + " 77700K .......... .......... .......... .......... .......... 65% 8.11M 60s\n", + " 77750K .......... .......... .......... .......... .......... 65% 549K 60s\n", + " 77800K .......... .......... .......... .......... .......... 65% 681K 60s\n", + " 77850K .......... .......... .......... .......... .......... 66% 1.97M 60s\n", + " 77900K .......... .......... .......... .......... .......... 66% 575K 60s\n", + " 77950K .......... .......... .......... .......... .......... 66% 3.15M 60s\n", + " 78000K .......... .......... .......... .......... .......... 66% 639K 60s\n", + " 78050K .......... .......... .......... .......... .......... 66% 608K 60s\n", + " 78100K .......... .......... .......... .......... .......... 66% 3.51M 60s\n", + " 78150K .......... .......... .......... .......... .......... 66% 580K 60s\n", + " 78200K .......... .......... .......... .......... .......... 66% 843K 60s\n", + " 78250K .......... .......... .......... .......... .......... 66% 1.56M 59s\n", + " 78300K .......... .......... .......... .......... .......... 66% 664K 59s\n", + " 78350K .......... .......... .......... .......... .......... 66% 3.35M 59s\n", + " 78400K .......... .......... .......... .......... .......... 66% 571K 59s\n", + " 78450K .......... .......... .......... .......... .......... 66% 798K 59s\n", + " 78500K .......... .......... .......... .......... .......... 66% 1.59M 59s\n", + " 78550K .......... .......... .......... .......... .......... 66% 614K 59s\n", + " 78600K .......... .......... .......... .......... .......... 66% 7.66M 59s\n", + " 78650K .......... .......... .......... .......... .......... 66% 571K 59s\n", + " 78700K .......... .......... .......... .......... .......... 66% 3.07M 59s\n", + " 78750K .......... .......... .......... .......... .......... 66% 594K 59s\n", + " 78800K .......... .......... .......... .......... .......... 66% 762K 59s\n", + " 78850K .......... .......... .......... .......... .......... 66% 1.59M 58s\n", + " 78900K .......... .......... .......... .......... .......... 66% 712K 58s\n", + " 78950K .......... .......... .......... .......... .......... 66% 2.06M 58s\n", + " 79000K .......... .......... .......... .......... .......... 66% 534K 58s\n", + " 79050K .......... .......... .......... .......... .......... 67% 1003K 58s\n", + " 79100K .......... .......... .......... .......... .......... 67% 1.16M 58s\n", + " 79150K .......... .......... .......... .......... .......... 67% 1.04M 58s\n", + " 79200K .......... .......... .......... .......... .......... 67% 911K 58s\n", + " 79250K .......... .......... .......... .......... .......... 67% 808K 58s\n", + " 79300K .......... .......... .......... .......... .......... 67% 1.59M 58s\n", + " 79350K .......... .......... .......... .......... .......... 67% 639K 58s\n", + " 79400K .......... .......... .......... .......... .......... 67% 1.29M 58s\n", + " 79450K .......... .......... .......... .......... .......... 67% 963K 57s\n", + " 79500K .......... .......... .......... .......... .......... 67% 1.37M 57s\n", + " 79550K .......... .......... .......... .......... .......... 67% 868K 57s\n", + " 79600K .......... .......... .......... .......... .......... 67% 1.23M 57s\n", + " 79650K .......... .......... .......... .......... .......... 67% 904K 57s\n", + " 79700K .......... .......... .......... .......... .......... 67% 695K 57s\n", + " 79750K .......... .......... .......... .......... .......... 67% 2.02M 57s\n", + " 79800K .......... .......... .......... .......... .......... 67% 710K 57s\n", + " 79850K .......... .......... .......... .......... .......... 67% 2.33M 57s\n", + " 79900K .......... .......... .......... .......... .......... 67% 721K 57s\n", + " 79950K .......... .......... .......... .......... .......... 67% 1.23M 57s\n", + " 80000K .......... .......... .......... .......... .......... 67% 715K 57s\n", + " 80050K .......... .......... .......... .......... .......... 67% 3.53M 56s\n", + " 80100K .......... .......... .......... .......... .......... 67% 663K 56s\n", + " 80150K .......... .......... .......... .......... .......... 67% 2.52M 56s\n", + " 80200K .......... .......... .......... .......... .......... 68% 616K 56s\n", + " 80250K .......... .......... .......... .......... .......... 68% 1.13M 56s\n", + " 80300K .......... .......... .......... .......... .......... 68% 1.06M 56s\n", + " 80350K .......... .......... .......... .......... .......... 68% 872K 56s\n", + " 80400K .......... .......... .......... .......... .......... 68% 1.50M 56s\n", + " 80450K .......... .......... .......... .......... .......... 68% 928K 56s\n", + " 80500K .......... .......... .......... .......... .......... 68% 998K 56s\n", + " 80550K .......... .......... .......... .......... .......... 68% 1.14M 56s\n", + " 80600K .......... .......... .......... .......... .......... 68% 992K 55s\n", + " 80650K .......... .......... .......... .......... .......... 68% 1.21M 55s\n", + " 80700K .......... .......... .......... .......... .......... 68% 1.01M 55s\n", + " 80750K .......... .......... .......... .......... .......... 68% 934K 55s\n", + " 80800K .......... .......... .......... .......... .......... 68% 1.29M 55s\n", + " 80850K .......... .......... .......... .......... .......... 68% 981K 55s\n", + " 80900K .......... .......... .......... .......... .......... 68% 1.13M 55s\n", + " 80950K .......... .......... .......... .......... .......... 68% 1002K 55s\n", + " 81000K .......... .......... .......... .......... .......... 68% 994K 55s\n", + " 81050K .......... .......... .......... .......... .......... 68% 1.25M 55s\n", + " 81100K .......... .......... .......... .......... .......... 68% 1.03M 55s\n", + " 81150K .......... .......... .......... .......... .......... 68% 1014K 55s\n", + " 81200K .......... .......... .......... .......... .......... 68% 888K 54s\n", + " 81250K .......... .......... .......... .......... .......... 68% 1.50M 54s\n", + " 81300K .......... .......... .......... .......... .......... 68% 876K 54s\n", + " 81350K .......... .......... .......... .......... .......... 68% 1.37M 54s\n", + " 81400K .......... .......... .......... .......... .......... 69% 943K 54s\n", + " 81450K .......... .......... .......... .......... .......... 69% 1.57M 54s\n", + " 81500K .......... .......... .......... .......... .......... 69% 893K 54s\n", + " 81550K .......... .......... .......... .......... .......... 69% 1.33M 54s\n", + " 81600K .......... .......... .......... .......... .......... 69% 961K 54s\n", + " 81650K .......... .......... .......... .......... .......... 69% 1.64M 54s\n", + " 81700K .......... .......... .......... .......... .......... 69% 920K 54s\n", + " 81750K .......... .......... .......... .......... .......... 69% 1.49M 53s\n", + " 81800K .......... .......... .......... .......... .......... 69% 930K 53s\n", + " 81850K .......... .......... .......... .......... .......... 69% 1.21M 53s\n", + " 81900K .......... .......... .......... .......... .......... 69% 1.22M 53s\n", + " 81950K .......... .......... .......... .......... .......... 69% 903K 53s\n", + " 82000K .......... .......... .......... .......... .......... 69% 1.40M 53s\n", + " 82050K .......... .......... .......... .......... .......... 69% 899K 53s\n", + " 82100K .......... .......... .......... .......... .......... 69% 2.23M 53s\n", + " 82150K .......... .......... .......... .......... .......... 69% 717K 53s\n", + " 82200K .......... .......... .......... .......... .......... 69% 2.85M 53s\n", + " 82250K .......... .......... .......... .......... .......... 69% 1.10M 53s\n", + " 82300K .......... .......... .......... .......... .......... 69% 1.04M 52s\n", + " 82350K .......... .......... .......... .......... .......... 69% 1.09M 52s\n", + " 82400K .......... .......... .......... .......... .......... 69% 1.04M 52s\n", + " 82450K .......... .......... .......... .......... .......... 69% 1.53M 52s\n", + " 82500K .......... .......... .......... .......... .......... 69% 54.6K 53s\n", + " 82550K .......... .......... .......... .......... .......... 70% 61.0M 52s\n", + " 82600K .......... .......... .......... .......... .......... 70% 569K 52s\n", + " 82650K .......... .......... .......... .......... .......... 70% 274K 52s\n", + " 82700K .......... .......... .......... .......... .......... 70% 555K 52s\n", + " 82750K .......... .......... .......... .......... .......... 70% 542K 52s\n", + " 82800K .......... .......... .......... .......... .......... 70% 591K 52s\n", + " 82850K .......... .......... .......... .......... .......... 70% 4.77M 52s\n", + " 82900K .......... .......... .......... .......... .......... 70% 556K 52s\n", + " 82950K .......... .......... .......... .......... .......... 70% 4.67M 52s\n", + " 83000K .......... .......... .......... .......... .......... 70% 593K 52s\n", + " 83050K .......... .......... .......... .......... .......... 70% 628K 52s\n", + " 83100K .......... .......... .......... .......... .......... 70% 1.40M 52s\n", + " 83150K .......... .......... .......... .......... .......... 70% 630K 52s\n", + " 83200K .......... .......... .......... .......... .......... 70% 41.7K 52s\n", + " 83250K .......... .......... .......... .......... .......... 70% 215M 52s\n", + " 83300K .......... .......... .......... .......... .......... 70% 185K 52s\n", + " 83350K .......... .......... .......... .......... .......... 70% 297K 52s\n", + " 83400K .......... .......... .......... .......... .......... 70% 5.23M 52s\n", + " 83450K .......... .......... .......... .......... .......... 70% 515K 52s\n", + " 83500K .......... .......... .......... .......... .......... 70% 10.4M 52s\n", + " 83550K .......... .......... .......... .......... .......... 70% 544K 51s\n", + " 83600K .......... .......... .......... .......... .......... 70% 663K 51s\n", + " 83650K .......... .......... .......... .......... .......... 70% 1.90M 51s\n", + " 83700K .......... .......... .......... .......... .......... 70% 750K 51s\n", + " 83750K .......... .......... .......... .......... .......... 71% 2.15M 51s\n", + " 83800K .......... .......... .......... .......... .......... 71% 547K 51s\n", + " 83850K .......... .......... .......... .......... .......... 71% 793K 51s\n", + " 83900K .......... .......... .......... .......... .......... 71% 1.85M 51s\n", + " 83950K .......... .......... .......... .......... .......... 71% 623K 51s\n", + " 84000K .......... .......... .......... .......... .......... 71% 3.99M 51s\n", + " 84050K .......... .......... .......... .......... .......... 71% 619K 51s\n", + " 84100K .......... .......... .......... .......... .......... 71% 653K 51s\n", + " 84150K .......... .......... .......... .......... .......... 71% 1.97M 50s\n", + " 84200K .......... .......... .......... .......... .......... 71% 606K 50s\n", + " 84250K .......... .......... .......... .......... .......... 71% 16.2M 50s\n", + " 84300K .......... .......... .......... .......... .......... 71% 562K 50s\n", + " 84350K .......... .......... .......... .......... .......... 71% 708K 50s\n", + " 84400K .......... .......... .......... .......... .......... 71% 3.08M 50s\n", + " 84450K .......... .......... .......... .......... .......... 71% 679K 50s\n", + " 84500K .......... .......... .......... .......... .......... 71% 1.66M 50s\n", + " 84550K .......... .......... .......... .......... .......... 71% 672K 50s\n", + " 84600K .......... .......... .......... .......... .......... 71% 995K 50s\n", + " 84650K .......... .......... .......... .......... .......... 71% 1.14M 50s\n", + " 84700K .......... .......... .......... .......... .......... 71% 772K 50s\n", + " 84750K .......... .......... .......... .......... .......... 71% 1.72M 49s\n", + " 84800K .......... .......... .......... .......... .......... 71% 634K 49s\n", + " 84850K .......... .......... .......... .......... .......... 71% 3.99M 49s\n", + " 84900K .......... .......... .......... .......... .......... 72% 641K 49s\n", + " 84950K .......... .......... .......... .......... .......... 72% 789K 49s\n", + " 85000K .......... .......... .......... .......... .......... 72% 1.82M 49s\n", + " 85050K .......... .......... .......... .......... .......... 72% 778K 49s\n", + " 85100K .......... .......... .......... .......... .......... 72% 1.63M 49s\n", + " 85150K .......... .......... .......... .......... .......... 72% 687K 49s\n", + " 85200K .......... .......... .......... .......... .......... 72% 2.52M 49s\n", + " 85250K .......... .......... .......... .......... .......... 72% 672K 49s\n", + " 85300K .......... .......... .......... .......... .......... 72% 3.03M 49s\n", + " 85350K .......... .......... .......... .......... .......... 72% 546K 48s\n", + " 85400K .......... .......... .......... .......... .......... 72% 1.39M 48s\n", + " 85450K .......... .......... .......... .......... .......... 72% 866K 48s\n", + " 85500K .......... .......... .......... .......... .......... 72% 1.20M 48s\n", + " 85550K .......... .......... .......... .......... .......... 72% 992K 48s\n", + " 85600K .......... .......... .......... .......... .......... 72% 982K 48s\n", + " 85650K .......... .......... .......... .......... .......... 72% 1.32M 48s\n", + " 85700K .......... .......... .......... .......... .......... 72% 980K 48s\n", + " 85750K .......... .......... .......... .......... .......... 72% 1.18M 48s\n", + " 85800K .......... .......... .......... .......... .......... 72% 936K 48s\n", + " 85850K .......... .......... .......... .......... .......... 72% 1.25M 48s\n", + " 85900K .......... .......... .......... .......... .......... 72% 949K 48s\n", + " 85950K .......... .......... .......... .......... .......... 72% 1.30M 47s\n", + " 86000K .......... .......... .......... .......... .......... 72% 689K 47s\n", + " 86050K .......... .......... .......... .......... .......... 72% 2.48M 47s\n", + " 86100K .......... .......... .......... .......... .......... 73% 734K 47s\n", + " 86150K .......... .......... .......... .......... .......... 73% 1.65M 47s\n", + " 86200K .......... .......... .......... .......... .......... 73% 801K 47s\n", + " 86250K .......... .......... .......... .......... .......... 73% 2.09M 47s\n", + " 86300K .......... .......... .......... .......... .......... 73% 722K 47s\n", + " 86350K .......... .......... .......... .......... .......... 73% 2.15M 47s\n", + " 86400K .......... .......... .......... .......... .......... 73% 739K 47s\n", + " 86450K .......... .......... .......... .......... .......... 73% 2.29M 47s\n", + " 86500K .......... .......... .......... .......... .......... 73% 729K 47s\n", + " 86550K .......... .......... .......... .......... .......... 73% 2.19M 46s\n", + " 86600K .......... .......... .......... .......... .......... 73% 733K 46s\n", + " 86650K .......... .......... .......... .......... .......... 73% 2.13M 46s\n", + " 86700K .......... .......... .......... .......... .......... 73% 769K 46s\n", + " 86750K .......... .......... .......... .......... .......... 73% 1.70M 46s\n", + " 86800K .......... .......... .......... .......... .......... 73% 716K 46s\n", + " 86850K .......... .......... .......... .......... .......... 73% 2.18M 46s\n", + " 86900K .......... .......... .......... .......... .......... 73% 909K 46s\n", + " 86950K .......... .......... .......... .......... .......... 73% 1.48M 46s\n", + " 87000K .......... .......... .......... .......... .......... 73% 770K 46s\n", + " 87050K .......... .......... .......... .......... .......... 73% 2.28M 46s\n", + " 87100K .......... .......... .......... .......... .......... 73% 975K 46s\n", + " 87150K .......... .......... .......... .......... .......... 73% 1.23M 45s\n", + " 87200K .......... .......... .......... .......... .......... 73% 944K 45s\n", + " 87250K .......... .......... .......... .......... .......... 73% 1.62M 45s\n", + " 87300K .......... .......... .......... .......... .......... 74% 1.01M 45s\n", + " 87350K .......... .......... .......... .......... .......... 74% 1000K 45s\n", + " 87400K .......... .......... .......... .......... .......... 74% 1.16M 45s\n", + " 87450K .......... .......... .......... .......... .......... 74% 1.32M 45s\n", + " 87500K .......... .......... .......... .......... .......... 74% 1.90M 45s\n", + " 87550K .......... .......... .......... .......... .......... 74% 688K 45s\n", + " 87600K .......... .......... .......... .......... .......... 74% 2.87M 45s\n", + " 87650K .......... .......... .......... .......... .......... 74% 691K 45s\n", + " 87700K .......... .......... .......... .......... .......... 74% 1.62M 44s\n", + " 87750K .......... .......... .......... .......... .......... 74% 871K 44s\n", + " 87800K .......... .......... .......... .......... .......... 74% 1.65M 44s\n", + " 87850K .......... .......... .......... .......... .......... 74% 1.16M 44s\n", + " 87900K .......... .......... .......... .......... .......... 74% 1.35M 44s\n", + " 87950K .......... .......... .......... .......... .......... 74% 1001K 44s\n", + " 88000K .......... .......... .......... .......... .......... 74% 1.05M 44s\n", + " 88050K .......... .......... .......... .......... .......... 74% 1.08M 44s\n", + " 88100K .......... .......... .......... .......... .......... 74% 2.41M 44s\n", + " 88150K .......... .......... .......... .......... .......... 74% 837K 44s\n", + " 88200K .......... .......... .......... .......... .......... 74% 1.71M 44s\n", + " 88250K .......... .......... .......... .......... .......... 74% 1.49M 44s\n", + " 88300K .......... .......... .......... .......... .......... 74% 813K 43s\n", + " 88350K .......... .......... .......... .......... .......... 74% 2.06M 43s\n", + " 88400K .......... .......... .......... .......... .......... 74% 780K 43s\n", + " 88450K .......... .......... .......... .......... .......... 75% 2.56M 43s\n", + " 88500K .......... .......... .......... .......... .......... 75% 701K 43s\n", + " 88550K .......... .......... .......... .......... .......... 75% 3.43M 43s\n", + " 88600K .......... .......... .......... .......... .......... 75% 661K 43s\n", + " 88650K .......... .......... .......... .......... .......... 75% 13.3M 43s\n", + " 88700K .......... .......... .......... .......... .......... 75% 981K 43s\n", + " 88750K .......... .......... .......... .......... .......... 75% 1.25M 43s\n", + " 88800K .......... .......... .......... .......... .......... 75% 1.04M 43s\n", + " 88850K .......... .......... .......... .......... .......... 75% 1.07M 43s\n", + " 88900K .......... .......... .......... .......... .......... 75% 2.38M 42s\n", + " 88950K .......... .......... .......... .......... .......... 75% 687K 42s\n", + " 89000K .......... .......... .......... .......... .......... 75% 3.37M 42s\n", + " 89050K .......... .......... .......... .......... .......... 75% 934K 42s\n", + " 89100K .......... .......... .......... .......... .......... 75% 2.06M 42s\n", + " 89150K .......... .......... .......... .......... .......... 75% 991K 42s\n", + " 89200K .......... .......... .......... .......... .......... 75% 1.24M 42s\n", + " 89250K .......... .......... .......... .......... .......... 75% 2.60M 42s\n", + " 89300K .......... .......... .......... .......... .......... 75% 690K 42s\n", + " 89350K .......... .......... .......... .......... .......... 75% 2.45M 42s\n", + " 89400K .......... .......... .......... .......... .......... 75% 740K 42s\n", + " 89450K .......... .......... .......... .......... .......... 75% 4.13M 42s\n", + " 89500K .......... .......... .......... .......... .......... 75% 1.05M 41s\n", + " 89550K .......... .......... .......... .......... .......... 75% 1.24M 41s\n", + " 89600K .......... .......... .......... .......... .......... 75% 1.25M 41s\n", + " 89650K .......... .......... .......... .......... .......... 76% 913K 41s\n", + " 89700K .......... .......... .......... .......... .......... 76% 2.67M 41s\n", + " 89750K .......... .......... .......... .......... .......... 76% 775K 41s\n", + " 89800K .......... .......... .......... .......... .......... 76% 2.44M 41s\n", + " 89850K .......... .......... .......... .......... .......... 76% 1006K 41s\n", + " 89900K .......... .......... .......... .......... .......... 76% 1.26M 41s\n", + " 89950K .......... .......... .......... .......... .......... 76% 2.29M 41s\n", + " 90000K .......... .......... .......... .......... .......... 76% 727K 41s\n", + " 90050K .......... .......... .......... .......... .......... 76% 6.09M 41s\n", + " 90100K .......... .......... .......... .......... .......... 76% 894K 40s\n", + " 90150K .......... .......... .......... .......... .......... 76% 1.79M 40s\n", + " 90200K .......... .......... .......... .......... .......... 76% 1.13M 40s\n", + " 90250K .......... .......... .......... .......... .......... 76% 1.05M 40s\n", + " 90300K .......... .......... .......... .......... .......... 76% 3.29M 40s\n", + " 90350K .......... .......... .......... .......... .......... 76% 699K 40s\n", + " 90400K .......... .......... .......... .......... .......... 76% 6.30M 40s\n", + " 90450K .......... .......... .......... .......... .......... 76% 968K 40s\n", + " 90500K .......... .......... .......... .......... .......... 76% 1.68M 40s\n", + " 90550K .......... .......... .......... .......... .......... 76% 1.00M 40s\n", + " 90600K .......... .......... .......... .......... .......... 76% 1.03M 40s\n", + " 90650K .......... .......... .......... .......... .......... 76% 7.53M 40s\n", + " 90700K .......... .......... .......... .......... .......... 76% 772K 39s\n", + " 90750K .......... .......... .......... .......... .......... 76% 1.89M 39s\n", + " 90800K .......... .......... .......... .......... .......... 77% 1.20M 39s\n", + " 90850K .......... .......... .......... .......... .......... 77% 1.01M 39s\n", + " 90900K .......... .......... .......... .......... .......... 77% 6.25M 39s\n", + " 90950K .......... .......... .......... .......... .......... 77% 681K 39s\n", + " 91000K .......... .......... .......... .......... .......... 77% 5.62M 39s\n", + " 91050K .......... .......... .......... .......... .......... 77% 1.32M 39s\n", + " 91100K .......... .......... .......... .......... .......... 77% 1015K 39s\n", + " 91150K .......... .......... .......... .......... .......... 77% 1.64M 39s\n", + " 91200K .......... .......... .......... .......... .......... 77% 980K 39s\n", + " 91250K .......... .......... .......... .......... .......... 77% 4.09M 39s\n", + " 91300K .......... .......... .......... .......... .......... 77% 1.35M 38s\n", + " 91350K .......... .......... .......... .......... .......... 77% 1.08M 38s\n", + " 91400K .......... .......... .......... .......... .......... 77% 1.46M 38s\n", + " 91450K .......... .......... .......... .......... .......... 77% 990K 38s\n", + " 91500K .......... .......... .......... .......... .......... 77% 3.86M 38s\n", + " 91550K .......... .......... .......... .......... .......... 77% 991K 38s\n", + " 91600K .......... .......... .......... .......... .......... 77% 1.53M 38s\n", + " 91650K .......... .......... .......... .......... .......... 77% 1.37M 38s\n", + " 91700K .......... .......... .......... .......... .......... 77% 1.27M 38s\n", + " 91750K .......... .......... .......... .......... .......... 77% 2.34M 38s\n", + " 91800K .......... .......... .......... .......... .......... 77% 970K 38s\n", + " 91850K .......... .......... .......... .......... .......... 77% 1.55M 38s\n", + " 91900K .......... .......... .......... .......... .......... 77% 2.09M 37s\n", + " 91950K .......... .......... .......... .......... .......... 77% 963K 37s\n", + " 92000K .......... .......... .......... .......... .......... 78% 1.95M 37s\n", + " 92050K .......... .......... .......... .......... .......... 78% 1.14M 37s\n", + " 92100K .......... .......... .......... .......... .......... 78% 1.14M 37s\n", + " 92150K .......... .......... .......... .......... .......... 78% 1.59M 37s\n", + " 92200K .......... .......... .......... .......... .......... 78% 1.34M 37s\n", + " 92250K .......... .......... .......... .......... .......... 78% 1.65M 37s\n", + " 92300K .......... .......... .......... .......... .......... 78% 1.72M 37s\n", + " 92350K .......... .......... .......... .......... .......... 78% 877K 37s\n", + " 92400K .......... .......... .......... .......... .......... 78% 12.2M 37s\n", + " 92450K .......... .......... .......... .......... .......... 78% 866K 37s\n", + " 92500K .......... .......... .......... .......... .......... 78% 1.41M 37s\n", + " 92550K .......... .......... .......... .......... .......... 78% 1007K 36s\n", + " 92600K .......... .......... .......... .......... .......... 78% 1.27M 36s\n", + " 92650K .......... .......... .......... .......... .......... 78% 13.7M 36s\n", + " 92700K .......... .......... .......... .......... .......... 78% 854K 36s\n", + " 92750K .......... .......... .......... .......... .......... 78% 1.54M 36s\n", + " 92800K .......... .......... .......... .......... .......... 78% 1.04M 36s\n", + " 92850K .......... .......... .......... .......... .......... 78% 1.62M 36s\n", + " 92900K .......... .......... .......... .......... .......... 78% 1.70M 36s\n", + " 92950K .......... .......... .......... .......... .......... 78% 1.22M 36s\n", + " 93000K .......... .......... .......... .......... .......... 78% 1.04M 36s\n", + " 93050K .......... .......... .......... .......... .......... 78% 1.69M 36s\n", + " 93100K .......... .......... .......... .......... .......... 78% 1.47M 36s\n", + " 93150K .......... .......... .......... .......... .......... 78% 1.63M 35s\n", + " 93200K .......... .......... .......... .......... .......... 79% 1.13M 35s\n", + " 93250K .......... .......... .......... .......... .......... 79% 1.02M 35s\n", + " 93300K .......... .......... .......... .......... .......... 79% 2.03M 35s\n", + " 93350K .......... .......... .......... .......... .......... 79% 1.40M 35s\n", + " 93400K .......... .......... .......... .......... .......... 79% 1.60M 35s\n", + " 93450K .......... .......... .......... .......... .......... 79% 1.89M 35s\n", + " 93500K .......... .......... .......... .......... .......... 79% 1.20M 35s\n", + " 93550K .......... .......... .......... .......... .......... 79% 995K 35s\n", + " 93600K .......... .......... .......... .......... .......... 79% 1.92M 35s\n", + " 93650K .......... .......... .......... .......... .......... 79% 1.24M 35s\n", + " 93700K .......... .......... .......... .......... .......... 79% 1.37M 35s\n", + " 93750K .......... .......... .......... .......... .......... 79% 1.02M 34s\n", + " 93800K .......... .......... .......... .......... .......... 79% 2.35M 34s\n", + " 93850K .......... .......... .......... .......... .......... 79% 1.04M 34s\n", + " 93900K .......... .......... .......... .......... .......... 79% 1.12M 34s\n", + " 93950K .......... .......... .......... .......... .......... 79% 1.73M 34s\n", + " 94000K .......... .......... .......... .......... .......... 79% 1.20M 34s\n", + " 94050K .......... .......... .......... .......... .......... 79% 2.18M 34s\n", + " 94100K .......... .......... .......... .......... .......... 79% 1.51M 34s\n", + " 94150K .......... .......... .......... .......... .......... 79% 917K 34s\n", + " 94200K .......... .......... .......... .......... .......... 79% 1.55M 34s\n", + " 94250K .......... .......... .......... .......... .......... 79% 934K 34s\n", + " 94300K .......... .......... .......... .......... .......... 79% 7.75M 34s\n", + " 94350K .......... .......... .......... .......... .......... 80% 959K 34s\n", + " 94400K .......... .......... .......... .......... .......... 80% 1.37M 33s\n", + " 94450K .......... .......... .......... .......... .......... 80% 1.89M 33s\n", + " 94500K .......... .......... .......... .......... .......... 80% 796K 33s\n", + " 94550K .......... .......... .......... .......... .......... 80% 2.99M 33s\n", + " 94600K .......... .......... .......... .......... .......... 80% 1.33M 33s\n", + " 94650K .......... .......... .......... .......... .......... 80% 1.22M 33s\n", + " 94700K .......... .......... .......... .......... .......... 80% 2.49M 33s\n", + " 94750K .......... .......... .......... .......... .......... 80% 737K 33s\n", + " 94800K .......... .......... .......... .......... .......... 80% 7.86M 33s\n", + " 94850K .......... .......... .......... .......... .......... 80% 1.03M 33s\n", + " 94900K .......... .......... .......... .......... .......... 80% 901K 33s\n", + " 94950K .......... .......... .......... .......... .......... 80% 14.4M 33s\n", + " 95000K .......... .......... .......... .......... .......... 80% 1.33M 32s\n", + " 95050K .......... .......... .......... .......... .......... 80% 1.05M 32s\n", + " 95100K .......... .......... .......... .......... .......... 80% 6.14M 32s\n", + " 95150K .......... .......... .......... .......... .......... 80% 622K 32s\n", + " 95200K .......... .......... .......... .......... .......... 80% 12.7M 32s\n", + " 95250K .......... .......... .......... .......... .......... 80% 1.25M 32s\n", + " 95300K .......... .......... .......... .......... .......... 80% 1.04M 32s\n", + " 95350K .......... .......... .......... .......... .......... 80% 1.93M 32s\n", + " 95400K .......... .......... .......... .......... .......... 80% 1.57M 32s\n", + " 95450K .......... .......... .......... .......... .......... 80% 1.36M 32s\n", + " 95500K .......... .......... .......... .......... .......... 80% 1.95M 32s\n", + " 95550K .......... .......... .......... .......... .......... 81% 735K 32s\n", + " 95600K .......... .......... .......... .......... .......... 81% 3.93M 32s\n", + " 95650K .......... .......... .......... .......... .......... 81% 1.24M 31s\n", + " 95700K .......... .......... .......... .......... .......... 81% 1.46M 31s\n", + " 95750K .......... .......... .......... .......... .......... 81% 1.45M 31s\n", + " 95800K .......... .......... .......... .......... .......... 81% 1.07M 31s\n", + " 95850K .......... .......... .......... .......... .......... 81% 3.11M 31s\n", + " 95900K .......... .......... .......... .......... .......... 81% 1.93M 31s\n", + " 95950K .......... .......... .......... .......... .......... 81% 761K 31s\n", + " 96000K .......... .......... .......... .......... .......... 81% 4.56M 31s\n", + " 96050K .......... .......... .......... .......... .......... 81% 882K 31s\n", + " 96100K .......... .......... .......... .......... .......... 81% 1.73M 31s\n", + " 96150K .......... .......... .......... .......... .......... 81% 1.63M 31s\n", + " 96200K .......... .......... .......... .......... .......... 81% 1.04M 31s\n", + " 96250K .......... .......... .......... .......... .......... 81% 3.34M 31s\n", + " 96300K .......... .......... .......... .......... .......... 81% 1.51M 30s\n", + " 96350K .......... .......... .......... .......... .......... 81% 911K 30s\n", + " 96400K .......... .......... .......... .......... .......... 81% 2.82M 30s\n", + " 96450K .......... .......... .......... .......... .......... 81% 838K 30s\n", + " 96500K .......... .......... .......... .......... .......... 81% 3.34M 30s\n", + " 96550K .......... .......... .......... .......... .......... 81% 1.75M 30s\n", + " 96600K .......... .......... .......... .......... .......... 81% 961K 30s\n", + " 96650K .......... .......... .......... .......... .......... 81% 3.27M 30s\n", + " 96700K .......... .......... .......... .......... .......... 82% 1.74M 30s\n", + " 96750K .......... .......... .......... .......... .......... 82% 147K 30s\n", + " 96800K .......... .......... .......... .......... .......... 82% 68.5K 30s\n", + " 96850K .......... .......... .......... .......... .......... 82% 170M 30s\n", + " 96900K .......... .......... .......... .......... .......... 82% 328M 30s\n", + " 96950K .......... .......... .......... .......... .......... 82% 186K 30s\n", + " 97000K .......... .......... .......... .......... .......... 82% 538K 30s\n", + " 97050K .......... .......... .......... .......... .......... 82% 593K 30s\n", + " 97100K .......... .......... .......... .......... .......... 82% 3.67M 29s\n", + " 97150K .......... .......... .......... .......... .......... 82% 646K 29s\n", + " 97200K .......... .......... .......... .......... .......... 82% 3.09M 29s\n", + " 97250K .......... .......... .......... .......... .......... 82% 645K 29s\n", + " 97300K .......... .......... .......... .......... .......... 82% 8.73M 29s\n", + " 97350K .......... .......... .......... .......... .......... 82% 595K 29s\n", + " 97400K .......... .......... .......... .......... .......... 82% 7.71M 29s\n", + " 97450K .......... .......... .......... .......... .......... 82% 616K 29s\n", + " 97500K .......... .......... .......... .......... .......... 82% 5.36M 29s\n", + " 97550K .......... .......... .......... .......... .......... 82% 636K 29s\n", + " 97600K .......... .......... .......... .......... .......... 82% 5.13M 29s\n", + " 97650K .......... .......... .......... .......... .......... 82% 654K 29s\n", + " 97700K .......... .......... .......... .......... .......... 82% 7.60M 29s\n", + " 97750K .......... .......... .......... .......... .......... 82% 588K 28s\n", + " 97800K .......... .......... .......... .......... .......... 82% 4.97M 28s\n", + " 97850K .......... .......... .......... .......... .......... 82% 2.88M 28s\n", + " 97900K .......... .......... .......... .......... .......... 83% 651K 28s\n", + " 97950K .......... .......... .......... .......... .......... 83% 3.07M 28s\n", + " 98000K .......... .......... .......... .......... .......... 83% 568K 28s\n", + " 98050K .......... .......... .......... .......... .......... 83% 35.1M 28s\n", + " 98100K .......... .......... .......... .......... .......... 83% 561K 28s\n", + " 98150K .......... .......... .......... .......... .......... 83% 10.8M 28s\n", + " 98200K .......... .......... .......... .......... .......... 83% 615K 28s\n", + " 98250K .......... .......... .......... .......... .......... 83% 4.44M 28s\n", + " 98300K .......... .......... .......... .......... .......... 83% 785K 28s\n", + " 98350K .......... .......... .......... .......... .......... 83% 2.25M 28s\n", + " 98400K .......... .......... .......... .......... .......... 83% 761K 27s\n", + " 98450K .......... .......... .......... .......... .......... 83% 1.47M 27s\n", + " 98500K .......... .......... .......... .......... .......... 83% 1014K 27s\n", + " 98550K .......... .......... .......... .......... .......... 83% 1.14M 27s\n", + " 98600K .......... .......... .......... .......... .......... 83% 1022K 27s\n", + " 98650K .......... .......... .......... .......... .......... 83% 1.23M 27s\n", + " 98700K .......... .......... .......... .......... .......... 83% 1.21M 27s\n", + " 98750K .......... .......... .......... .......... .......... 83% 1.24M 27s\n", + " 98800K .......... .......... .......... .......... .......... 83% 1.05M 27s\n", + " 98850K .......... .......... .......... .......... .......... 83% 1.27M 27s\n", + " 98900K .......... .......... .......... .......... .......... 83% 2.57M 27s\n", + " 98950K .......... .......... .......... .......... .......... 83% 698K 27s\n", + " 99000K .......... .......... .......... .......... .......... 83% 3.28M 27s\n", + " 99050K .......... .......... .......... .......... .......... 83% 861K 26s\n", + " 99100K .......... .......... .......... .......... .......... 84% 1.81M 26s\n", + " 99150K .......... .......... .......... .......... .......... 84% 916K 26s\n", + " 99200K .......... .......... .......... .......... .......... 84% 1.36M 26s\n", + " 99250K .......... .......... .......... .......... .......... 84% 937K 26s\n", + " 99300K .......... .......... .......... .......... .......... 84% 1.45M 26s\n", + " 99350K .......... .......... .......... .......... .......... 84% 859K 26s\n", + " 99400K .......... .......... .......... .......... .......... 84% 1.93M 26s\n", + " 99450K .......... .......... .......... .......... .......... 84% 1.35M 26s\n", + " 99500K .......... .......... .......... .......... .......... 84% 1.02M 26s\n", + " 99550K .......... .......... .......... .......... .......... 84% 1.17M 26s\n", + " 99600K .......... .......... .......... .......... .......... 84% 1.13M 26s\n", + " 99650K .......... .......... .......... .......... .......... 84% 1.03M 26s\n", + " 99700K .......... .......... .......... .......... .......... 84% 1.44M 26s\n", + " 99750K .......... .......... .......... .......... .......... 84% 921K 25s\n", + " 99800K .......... .......... .......... .......... .......... 84% 1.42M 25s\n", + " 99850K .......... .......... .......... .......... .......... 84% 1.81M 25s\n", + " 99900K .......... .......... .......... .......... .......... 84% 1.61M 25s\n", + " 99950K .......... .......... .......... .......... .......... 84% 849K 25s\n", + "100000K .......... .......... .......... .......... .......... 84% 1.38M 25s\n", + "100050K .......... .......... .......... .......... .......... 84% 1.42M 25s\n", + "100100K .......... .......... .......... .......... .......... 84% 928K 25s\n", + "100150K .......... .......... .......... .......... .......... 84% 1.67M 25s\n", + "100200K .......... .......... .......... .......... .......... 84% 1007K 25s\n", + "100250K .......... .......... .......... .......... .......... 85% 1.57M 25s\n", + "100300K .......... .......... .......... .......... .......... 85% 1.30M 25s\n", + "100350K .......... .......... .......... .......... .......... 85% 1.34M 25s\n", + "100400K .......... .......... .......... .......... .......... 85% 1.13M 24s\n", + "100450K .......... .......... .......... .......... .......... 85% 961K 24s\n", + "100500K .......... .......... .......... .......... .......... 85% 2.78M 24s\n", + "100550K .......... .......... .......... .......... .......... 85% 670K 24s\n", + "100600K .......... .......... .......... .......... .......... 85% 2.53M 24s\n", + "100650K .......... .......... .......... .......... .......... 85% 1.18M 24s\n", + "100700K .......... .......... .......... .......... .......... 85% 1.63M 24s\n", + "100750K .......... .......... .......... .......... .......... 85% 1.03M 24s\n", + "100800K .......... .......... .......... .......... .......... 85% 1.07M 24s\n", + "100850K .......... .......... .......... .......... .......... 85% 1.80M 24s\n", + "100900K .......... .......... .......... .......... .......... 85% 1.24M 24s\n", + "100950K .......... .......... .......... .......... .......... 85% 929K 24s\n", + "101000K .......... .......... .......... .......... .......... 85% 1.52M 24s\n", + "101050K .......... .......... .......... .......... .......... 85% 1.57M 23s\n", + "101100K .......... .......... .......... .......... .......... 85% 1.40M 23s\n", + "101150K .......... .......... .......... .......... .......... 85% 933K 23s\n", + "101200K .......... .......... .......... .......... .......... 85% 1.74M 23s\n", + "101250K .......... .......... .......... .......... .......... 85% 1.45M 23s\n", + "101300K .......... .......... .......... .......... .......... 85% 1011K 23s\n", + "101350K .......... .......... .......... .......... .......... 85% 1.61M 23s\n", + "101400K .......... .......... .......... .......... .......... 85% 1.00M 23s\n", + "101450K .......... .......... .......... .......... .......... 86% 2.24M 23s\n", + "101500K .......... .......... .......... .......... .......... 86% 1.03M 23s\n", + "101550K .......... .......... .......... .......... .......... 86% 1.13M 23s\n", + "101600K .......... .......... .......... .......... .......... 86% 2.52M 23s\n", + "101650K .......... .......... .......... .......... .......... 86% 879K 23s\n", + "101700K .......... .......... .......... .......... .......... 86% 3.33M 23s\n", + "101750K .......... .......... .......... .......... .......... 86% 773K 22s\n", + "101800K .......... .......... .......... .......... .......... 86% 2.02M 22s\n", + "101850K .......... .......... .......... .......... .......... 86% 2.66M 22s\n", + "101900K .......... .......... .......... .......... .......... 86% 886K 22s\n", + "101950K .......... .......... .......... .......... .......... 86% 1.74M 22s\n", + "102000K .......... .......... .......... .......... .......... 86% 813K 22s\n", + "102050K .......... .......... .......... .......... .......... 86% 3.27M 22s\n", + "102100K .......... .......... .......... .......... .......... 86% 1.88M 22s\n", + "102150K .......... .......... .......... .......... .......... 86% 893K 22s\n", + "102200K .......... .......... .......... .......... .......... 86% 3.27M 22s\n", + "102250K .......... .......... .......... .......... .......... 86% 636K 22s\n", + "102300K .......... .......... .......... .......... .......... 86% 21.5M 22s\n", + "102350K .......... .......... .......... .......... .......... 86% 1.34M 22s\n", + "102400K .......... .......... .......... .......... .......... 86% 958K 21s\n", + "102450K .......... .......... .......... .......... .......... 86% 4.02M 21s\n", + "102500K .......... .......... .......... .......... .......... 86% 614K 21s\n", + "102550K .......... .......... .......... .......... .......... 86% 16.8M 21s\n", + "102600K .......... .......... .......... .......... .......... 87% 1.90M 21s\n", + "102650K .......... .......... .......... .......... .......... 87% 804K 21s\n", + "102700K .......... .......... .......... .......... .......... 87% 4.25M 21s\n", + "102750K .......... .......... .......... .......... .......... 87% 649K 21s\n", + "102800K .......... .......... .......... .......... .......... 87% 6.59M 21s\n", + "102850K .......... .......... .......... .......... .......... 87% 1.77M 21s\n", + "102900K .......... .......... .......... .......... .......... 87% 907K 21s\n", + "102950K .......... .......... .......... .......... .......... 87% 2.45M 21s\n", + "103000K .......... .......... .......... .......... .......... 87% 719K 21s\n", + "103050K .......... .......... .......... .......... .......... 87% 5.58M 21s\n", + "103100K .......... .......... .......... .......... .......... 87% 1.67M 20s\n", + "103150K .......... .......... .......... .......... .......... 87% 781K 20s\n", + "103200K .......... .......... .......... .......... .......... 87% 400M 20s\n", + "103250K .......... .......... .......... .......... .......... 87% 656K 20s\n", + "103300K .......... .......... .......... .......... .......... 87% 3.40M 20s\n", + "103350K .......... .......... .......... .......... .......... 87% 1.99M 20s\n", + "103400K .......... .......... .......... .......... .......... 87% 754K 20s\n", + "103450K .......... .......... .......... .......... .......... 87% 28.1M 20s\n", + "103500K .......... .......... .......... .......... .......... 87% 701K 20s\n", + "103550K .......... .......... .......... .......... .......... 87% 2.39M 20s\n", + "103600K .......... .......... .......... .......... .......... 87% 3.97M 20s\n", + "103650K .......... .......... .......... .......... .......... 87% 601K 20s\n", + "103700K .......... .......... .......... .......... .......... 87% 5.38M 20s\n", + "103750K .......... .......... .......... .......... .......... 87% 928K 19s\n", + "103800K .......... .......... .......... .......... .......... 88% 1.54M 19s\n", + "103850K .......... .......... .......... .......... .......... 88% 22.5M 19s\n", + "103900K .......... .......... .......... .......... .......... 88% 825K 19s\n", + "103950K .......... .......... .......... .......... .......... 88% 1.60M 19s\n", + "104000K .......... .......... .......... .......... .......... 88% 950K 19s\n", + "104050K .......... .......... .......... .......... .......... 88% 1.53M 19s\n", + "104100K .......... .......... .......... .......... .......... 88% 12.7M 19s\n", + "104150K .......... .......... .......... .......... .......... 88% 818K 19s\n", + "104200K .......... .......... .......... .......... .......... 88% 2.24M 19s\n", + "104250K .......... .......... .......... .......... .......... 88% 1.55M 19s\n", + "104300K .......... .......... .......... .......... .......... 88% 854K 19s\n", + "104350K .......... .......... .......... .......... .......... 88% 15.4M 19s\n", + "104400K .......... .......... .......... .......... .......... 88% 853K 19s\n", + "104450K .......... .......... .......... .......... .......... 88% 1.73M 18s\n", + "104500K .......... .......... .......... .......... .......... 88% 35.1M 18s\n", + "104550K .......... .......... .......... .......... .......... 88% 567K 18s\n", + "104600K .......... .......... .......... .......... .......... 88% 30.8M 18s\n", + "104650K .......... .......... .......... .......... .......... 88% 1.89M 18s\n", + "104700K .......... .......... .......... .......... .......... 88% 806K 18s\n", + "104750K .......... .......... .......... .......... .......... 88% 31.8M 18s\n", + "104800K .......... .......... .......... .......... .......... 88% 794K 18s\n", + "104850K .......... .......... .......... .......... .......... 88% 1.39M 18s\n", + "104900K .......... .......... .......... .......... .......... 88% 23.2M 18s\n", + "104950K .......... .......... .......... .......... .......... 88% 567K 18s\n", + "105000K .......... .......... .......... .......... .......... 89% 23.7M 18s\n", + "105050K .......... .......... .......... .......... .......... 89% 973K 18s\n", + "105100K .......... .......... .......... .......... .......... 89% 1.34M 18s\n", + "105150K .......... .......... .......... .......... .......... 89% 3.19M 17s\n", + "105200K .......... .......... .......... .......... .......... 89% 874K 17s\n", + "105250K .......... .......... .......... .......... .......... 89% 2.77M 17s\n", + "105300K .......... .......... .......... .......... .......... 89% 3.55M 17s\n", + "105350K .......... .......... .......... .......... .......... 89% 700K 17s\n", + "105400K .......... .......... .......... .......... .......... 89% 3.19M 17s\n", + "105450K .......... .......... .......... .......... .......... 89% 863K 17s\n", + "105500K .......... .......... .......... .......... .......... 89% 1.51M 17s\n", + "105550K .......... .......... .......... .......... .......... 89% 50.2M 17s\n", + "105600K .......... .......... .......... .......... .......... 89% 871K 17s\n", + "105650K .......... .......... .......... .......... .......... 89% 1.31M 17s\n", + "105700K .......... .......... .......... .......... .......... 89% 79.5M 17s\n", + "105750K .......... .......... .......... .......... .......... 89% 859K 17s\n", + "105800K .......... .......... .......... .......... .......... 89% 1.39M 17s\n", + "105850K .......... .......... .......... .......... .......... 89% 1.14M 16s\n", + "105900K .......... .......... .......... .......... .......... 89% 1.22M 16s\n", + "105950K .......... .......... .......... .......... .......... 89% 7.14M 16s\n", + "106000K .......... .......... .......... .......... .......... 89% 1.02M 16s\n", + "106050K .......... .......... .......... .......... .......... 89% 1.18M 16s\n", + "106100K .......... .......... .......... .......... .......... 89% 3.71M 16s\n", + "106150K .......... .......... .......... .......... .......... 90% 1.20M 16s\n", + "106200K .......... .......... .......... .......... .......... 90% 1.53M 16s\n", + "106250K .......... .......... .......... .......... .......... 90% 656K 16s\n", + "106300K .......... .......... .......... .......... .......... 90% 69.2M 16s\n", + "106350K .......... .......... .......... .......... .......... 90% 1.45M 16s\n", + "106400K .......... .......... .......... .......... .......... 90% 913K 16s\n", + "106450K .......... .......... .......... .......... .......... 90% 2.86M 16s\n", + "106500K .......... .......... .......... .......... .......... 90% 2.65M 16s\n", + "106550K .......... .......... .......... .......... .......... 90% 832K 15s\n", + "106600K .......... .......... .......... .......... .......... 90% 2.15M 15s\n", + "106650K .......... .......... .......... .......... .......... 90% 838K 15s\n", + "106700K .......... .......... .......... .......... .......... 90% 2.19M 15s\n", + "106750K .......... .......... .......... .......... .......... 90% 2.87M 15s\n", + "106800K .......... .......... .......... .......... .......... 90% 796K 15s\n", + "106850K .......... .......... .......... .......... .......... 90% 3.63M 15s\n", + "106900K .......... .......... .......... .......... .......... 90% 3.52M 15s\n", + "106950K .......... .......... .......... .......... .......... 90% 764K 15s\n", + "107000K .......... .......... .......... .......... .......... 90% 1.75M 15s\n", + "107050K .......... .......... .......... .......... .......... 90% 5.57M 15s\n", + "107100K .......... .......... .......... .......... .......... 90% 836K 15s\n", + "107150K .......... .......... .......... .......... .......... 90% 1.36M 15s\n", + "107200K .......... .......... .......... .......... .......... 90% 1.11M 15s\n", + "107250K .......... .......... .......... .......... .......... 90% 1.26M 14s\n", + "107300K .......... .......... .......... .......... .......... 90% 3.80M 14s\n", + "107350K .......... .......... .......... .......... .......... 91% 1.13M 14s\n", + "107400K .......... .......... .......... .......... .......... 91% 1.29M 14s\n", + "107450K .......... .......... .......... .......... .......... 91% 5.10M 14s\n", + "107500K .......... .......... .......... .......... .......... 91% 994K 14s\n", + "107550K .......... .......... .......... .......... .......... 91% 1.31M 14s\n", + "107600K .......... .......... .......... .......... .......... 91% 6.08M 14s\n", + "107650K .......... .......... .......... .......... .......... 91% 904K 14s\n", + "107700K .......... .......... .......... .......... .......... 91% 1.76M 14s\n", + "107750K .......... .......... .......... .......... .......... 91% 861K 14s\n", + "107800K .......... .......... .......... .......... .......... 91% 1.53M 14s\n", + "107850K .......... .......... .......... .......... .......... 91% 10.8M 14s\n", + "107900K .......... .......... .......... .......... .......... 91% 904K 14s\n", + "107950K .......... .......... .......... .......... .......... 91% 1.43M 13s\n", + "108000K .......... .......... .......... .......... .......... 91% 5.61M 13s\n", + "108050K .......... .......... .......... .......... .......... 91% 1.05M 13s\n", + "108100K .......... .......... .......... .......... .......... 91% 1.38M 13s\n", + "108150K .......... .......... .......... .......... .......... 91% 3.82M 13s\n", + "108200K .......... .......... .......... .......... .......... 91% 1.05M 13s\n", + "108250K .......... .......... .......... .......... .......... 91% 1.35M 13s\n", + "108300K .......... .......... .......... .......... .......... 91% 5.30M 13s\n", + "108350K .......... .......... .......... .......... .......... 91% 624K 13s\n", + "108400K .......... .......... .......... .......... .......... 91% 315M 13s\n", + "108450K .......... .......... .......... .......... .......... 91% 902K 13s\n", + "108500K .......... .......... .......... .......... .......... 92% 1.47M 13s\n", + "108550K .......... .......... .......... .......... .......... 92% 3.55M 13s\n", + "108600K .......... .......... .......... .......... .......... 92% 1.07M 13s\n", + "108650K .......... .......... .......... .......... .......... 92% 1.70M 12s\n", + "108700K .......... .......... .......... .......... .......... 92% 3.30M 12s\n", + "108750K .......... .......... .......... .......... .......... 92% 988K 12s\n", + "108800K .......... .......... .......... .......... .......... 92% 1.68M 12s\n", + "108850K .......... .......... .......... .......... .......... 92% 1.73M 12s\n", + "108900K .......... .......... .......... .......... .......... 92% 1.35M 12s\n", + "108950K .......... .......... .......... .......... .......... 92% 1.86M 12s\n", + "109000K .......... .......... .......... .......... .......... 92% 1.73M 12s\n", + "109050K .......... .......... .......... .......... .......... 92% 821K 12s\n", + "109100K .......... .......... .......... .......... .......... 92% 12.1M 12s\n", + "109150K .......... .......... .......... .......... .......... 92% 796K 12s\n", + "109200K .......... .......... .......... .......... .......... 92% 1.58M 12s\n", + "109250K .......... .......... .......... .......... .......... 92% 13.2M 12s\n", + "109300K .......... .......... .......... .......... .......... 92% 874K 12s\n", + "109350K .......... .......... .......... .......... .......... 92% 1.69M 11s\n", + "109400K .......... .......... .......... .......... .......... 92% 3.66M 11s\n", + "109450K .......... .......... .......... .......... .......... 92% 945K 11s\n", + "109500K .......... .......... .......... .......... .......... 92% 1.95M 11s\n", + "109550K .......... .......... .......... .......... .......... 92% 1.83M 11s\n", + "109600K .......... .......... .......... .......... .......... 92% 1.10M 11s\n", + "109650K .......... .......... .......... .......... .......... 92% 1.69M 11s\n", + "109700K .......... .......... .......... .......... .......... 93% 1.56M 11s\n", + "109750K .......... .......... .......... .......... .......... 93% 867K 11s\n", + "109800K .......... .......... .......... .......... .......... 93% 8.07M 11s\n", + "109850K .......... .......... .......... .......... .......... 93% 919K 11s\n", + "109900K .......... .......... .......... .......... .......... 93% 1.55M 11s\n", + "109950K .......... .......... .......... .......... .......... 93% 29.2M 11s\n", + "110000K .......... .......... .......... .......... .......... 93% 757K 11s\n", + "110050K .......... .......... .......... .......... .......... 93% 2.07M 11s\n", + "110100K .......... .......... .......... .......... .......... 93% 38.0M 10s\n", + "110150K .......... .......... .......... .......... .......... 93% 710K 10s\n", + "110200K .......... .......... .......... .......... .......... 93% 2.01M 10s\n", + "110250K .......... .......... .......... .......... .......... 93% 32.8M 10s\n", + "110300K .......... .......... .......... .......... .......... 93% 684K 10s\n", + "110350K .......... .......... .......... .......... .......... 93% 2.60M 10s\n", + "110400K .......... .......... .......... .......... .......... 93% 1.89M 10s\n", + "110450K .......... .......... .......... .......... .......... 93% 1001K 10s\n", + "110500K .......... .......... .......... .......... .......... 93% 2.98M 10s\n", + "110550K .......... .......... .......... .......... .......... 93% 884K 10s\n", + "110600K .......... .......... .......... .......... .......... 93% 1.54M 10s\n", + "110650K .......... .......... .......... .......... .......... 93% 13.0M 10s\n", + "110700K .......... .......... .......... .......... .......... 93% 867K 10s\n", + "110750K .......... .......... .......... .......... .......... 93% 1.30M 10s\n", + "110800K .......... .......... .......... .......... .......... 93% 6.60M 9s\n", + "110850K .......... .......... .......... .......... .......... 93% 766K 9s\n", + "110900K .......... .......... .......... .......... .......... 94% 1.89M 9s\n", + "110950K .......... .......... .......... .......... .......... 94% 5.33M 9s\n", + "111000K .......... .......... .......... .......... .......... 94% 879K 9s\n", + "111050K .......... .......... .......... .......... .......... 94% 1.81M 9s\n", + "111100K .......... .......... .......... .......... .......... 94% 5.69M 9s\n", + "111150K .......... .......... .......... .......... .......... 94% 843K 9s\n", + "111200K .......... .......... .......... .......... .......... 94% 1.96M 9s\n", + "111250K .......... .......... .......... .......... .......... 94% 3.24M 9s\n", + "111300K .......... .......... .......... .......... .......... 94% 898K 9s\n", + "111350K .......... .......... .......... .......... .......... 94% 1.24M 9s\n", + "111400K .......... .......... .......... .......... .......... 94% 20.1M 9s\n", + "111450K .......... .......... .......... .......... .......... 94% 845K 9s\n", + "111500K .......... .......... .......... .......... .......... 94% 1.73M 9s\n", + "111550K .......... .......... .......... .......... .......... 94% 10.8M 8s\n", + "111600K .......... .......... .......... .......... .......... 94% 634K 8s\n", + "111650K .......... .......... .......... .......... .......... 94% 4.79M 8s\n", + "111700K .......... .......... .......... .......... .......... 94% 3.53M 8s\n", + "111750K .......... .......... .......... .......... .......... 94% 629K 8s\n", + "111800K .......... .......... .......... .......... .......... 94% 53.8M 8s\n", + "111850K .......... .......... .......... .......... .......... 94% 1.13M 8s\n", + "111900K .......... .......... .......... .......... .......... 94% 1.24M 8s\n", + "111950K .......... .......... .......... .......... .......... 94% 3.70M 8s\n", + "112000K .......... .......... .......... .......... .......... 94% 1.26M 8s\n", + "112050K .......... .......... .......... .......... .......... 95% 1.02M 8s\n", + "112100K .......... .......... .......... .......... .......... 95% 13.1M 8s\n", + "112150K .......... .......... .......... .......... .......... 95% 1.27M 8s\n", + "112200K .......... .......... .......... .......... .......... 95% 923K 8s\n", + "112250K .......... .......... .......... .......... .......... 95% 15.3M 8s\n", + "112300K .......... .......... .......... .......... .......... 95% 1.53M 7s\n", + "112350K .......... .......... .......... .......... .......... 95% 932K 7s\n", + "112400K .......... .......... .......... .......... .......... 95% 3.93M 7s\n", + "112450K .......... .......... .......... .......... .......... 95% 1.95M 7s\n", + "112500K .......... .......... .......... .......... .......... 95% 909K 7s\n", + "112550K .......... .......... .......... .......... .......... 95% 6.75M 7s\n", + "112600K .......... .......... .......... .......... .......... 95% 1.60M 7s\n", + "112650K .......... .......... .......... .......... .......... 95% 971K 7s\n", + "112700K .......... .......... .......... .......... .......... 95% 3.34M 7s\n", + "112750K .......... .......... .......... .......... .......... 95% 1.58M 7s\n", + "112800K .......... .......... .......... .......... .......... 95% 1.08M 7s\n", + "112850K .......... .......... .......... .......... .......... 95% 2.96M 7s\n", + "112900K .......... .......... .......... .......... .......... 95% 2.37M 7s\n", + "112950K .......... .......... .......... .......... .......... 95% 937K 7s\n", + "113000K .......... .......... .......... .......... .......... 95% 3.02M 6s\n", + "113050K .......... .......... .......... .......... .......... 95% 1.68M 6s\n", + "113100K .......... .......... .......... .......... .......... 95% 1.08M 6s\n", + "113150K .......... .......... .......... .......... .......... 95% 178K 6s\n", + "113200K .......... .......... .......... .......... .......... 95% 278K 6s\n", + "113250K .......... .......... .......... .......... .......... 96% 444M 6s\n", + "113300K .......... .......... .......... .......... .......... 96% 432M 6s\n", + "113350K .......... .......... .......... .......... .......... 96% 567K 6s\n", + "113400K .......... .......... .......... .......... .......... 96% 605K 6s\n", + "113450K .......... .......... .......... .......... .......... 96% 4.96M 6s\n", + "113500K .......... .......... .......... .......... .......... 96% 563K 6s\n", + "113550K .......... .......... .......... .......... .......... 96% 2.80M 6s\n", + "113600K .......... .......... .......... .......... .......... 96% 600K 6s\n", + "113650K .......... .......... .......... .......... .......... 96% 7.08M 6s\n", + "113700K .......... .......... .......... .......... .......... 96% 605K 6s\n", + "113750K .......... .......... .......... .......... .......... 96% 561K 6s\n", + "113800K .......... .......... .......... .......... .......... 96% 4.26M 5s\n", + "113850K .......... .......... .......... .......... .......... 96% 659K 5s\n", + "113900K .......... .......... .......... .......... .......... 96% 2.70M 5s\n", + "113950K .......... .......... .......... .......... .......... 96% 648K 5s\n", + "114000K .......... .......... .......... .......... .......... 96% 615K 5s\n", + "114050K .......... .......... .......... .......... .......... 96% 6.44M 5s\n", + "114100K .......... .......... .......... .......... .......... 96% 599K 5s\n", + "114150K .......... .......... .......... .......... .......... 96% 2.26M 5s\n", + "114200K .......... .......... .......... .......... .......... 96% 728K 5s\n", + "114250K .......... .......... .......... .......... .......... 96% 2.34M 5s\n", + "114300K .......... .......... .......... .......... .......... 96% 705K 5s\n", + "114350K .......... .......... .......... .......... .......... 96% 280K 5s\n", + "114400K .......... .......... .......... .......... .......... 97% 307M 5s\n", + "114450K .......... .......... .......... .......... .......... 97% 544K 5s\n", + "114500K .......... .......... .......... .......... .......... 97% 29.7M 5s\n", + "114550K .......... .......... .......... .......... .......... 97% 521K 4s\n", + "114600K .......... .......... .......... .......... .......... 97% 31.1M 4s\n", + "114650K .......... .......... .......... .......... .......... 97% 537K 4s\n", + "114700K .......... .......... .......... .......... .......... 97% 12.2M 4s\n", + "114750K .......... .......... .......... .......... .......... 97% 617K 4s\n", + "114800K .......... .......... .......... .......... .......... 97% 11.1M 4s\n", + "114850K .......... .......... .......... .......... .......... 97% 621K 4s\n", + "114900K .......... .......... .......... .......... .......... 97% 3.49M 4s\n", + "114950K .......... .......... .......... .......... .......... 97% 656K 4s\n", + "115000K .......... .......... .......... .......... .......... 97% 2.54M 4s\n", + "115050K .......... .......... .......... .......... .......... 97% 770K 4s\n", + "115100K .......... .......... .......... .......... .......... 97% 1.25M 4s\n", + "115150K .......... .......... .......... .......... .......... 97% 979K 4s\n", + "115200K .......... .......... .......... .......... .......... 97% 1.26M 4s\n", + "115250K .......... .......... .......... .......... .......... 97% 1.05M 4s\n", + "115300K .......... .......... .......... .......... .......... 97% 1.10M 3s\n", + "115350K .......... .......... .......... .......... .......... 97% 1.10M 3s\n", + "115400K .......... .......... .......... .......... .......... 97% 985K 3s\n", + "115450K .......... .......... .......... .......... .......... 97% 6.61M 3s\n", + "115500K .......... .......... .......... .......... .......... 97% 650K 3s\n", + "115550K .......... .......... .......... .......... .......... 97% 4.68M 3s\n", + "115600K .......... .......... .......... .......... .......... 98% 590K 3s\n", + "115650K .......... .......... .......... .......... .......... 98% 8.97M 3s\n", + "115700K .......... .......... .......... .......... .......... 98% 203K 3s\n", + "115750K .......... .......... .......... .......... .......... 98% 66.4K 3s\n", + "115800K .......... .......... .......... .......... .......... 98% 592K 3s\n", + "115850K .......... .......... .......... .......... .......... 98% 186K 3s\n", + "115900K .......... .......... .......... .......... .......... 98% 566K 3s\n", + "115950K .......... .......... .......... .......... .......... 98% 537K 3s\n", + "116000K .......... .......... .......... .......... .......... 98% 37.6M 3s\n", + "116050K .......... .......... .......... .......... .......... 98% 566K 2s\n", + "116100K .......... .......... .......... .......... .......... 98% 11.3M 2s\n", + "116150K .......... .......... .......... .......... .......... 98% 599K 2s\n", + "116200K .......... .......... .......... .......... .......... 98% 564K 2s\n", + "116250K .......... .......... .......... .......... .......... 98% 25.8M 2s\n", + "116300K .......... .......... .......... .......... .......... 98% 552K 2s\n", + "116350K .......... .......... .......... .......... .......... 98% 22.1M 2s\n", + "116400K .......... .......... .......... .......... .......... 98% 600K 2s\n", + "116450K .......... .......... .......... .......... .......... 98% 549K 2s\n", + "116500K .......... .......... .......... .......... .......... 98% 12.8M 2s\n", + "116550K .......... .......... .......... .......... .......... 98% 572K 2s\n", + "116600K .......... .......... .......... .......... .......... 98% 5.47M 2s\n", + "116650K .......... .......... .......... .......... .......... 98% 582K 2s\n", + "116700K .......... .......... .......... .......... .......... 98% 35.3M 2s\n", + "116750K .......... .......... .......... .......... .......... 98% 571K 2s\n", + "116800K .......... .......... .......... .......... .......... 99% 574K 1s\n", + "116850K .......... .......... .......... .......... .......... 99% 14.1M 1s\n", + "116900K .......... .......... .......... .......... .......... 99% 564K 1s\n", + "116950K .......... .......... .......... .......... .......... 99% 11.5M 1s\n", + "117000K .......... .......... .......... .......... .......... 99% 609K 1s\n", + "117050K .......... .......... .......... .......... .......... 99% 980K 1s\n", + "117100K .......... .......... .......... .......... .......... 99% 1.09M 1s\n", + "117150K .......... .......... .......... .......... .......... 99% 581K 1s\n", + "117200K .......... .......... .......... .......... .......... 99% 6.41M 1s\n", + "117250K .......... .......... .......... .......... .......... 99% 559K 1s\n", + "117300K .......... .......... .......... .......... .......... 99% 19.4M 1s\n", + "117350K .......... .......... .......... .......... .......... 99% 572K 1s\n", + "117400K .......... .......... .......... .......... .......... 99% 1.17M 1s\n", + "117450K .......... .......... .......... .......... .......... 99% 910K 1s\n", + "117500K .......... .......... .......... .......... .......... 99% 830K 1s\n", + "117550K .......... .......... .......... .......... .......... 99% 1.78M 1s\n", + "117600K .......... .......... .......... .......... .......... 99% 585K 0s\n", + "117650K .......... .......... .......... .......... .......... 99% 13.6M 0s\n", + "117700K .......... .......... .......... .......... .......... 99% 588K 0s\n", + "117750K .......... .......... .......... .......... .......... 99% 5.69M 0s\n", + "117800K .......... .......... .......... .......... .......... 99% 550K 0s\n", + "117850K .......... .......... .......... .......... .......... 99% 1.65M 0s\n", + "117900K .......... .......... .......... .......... .......... 99% 851K 0s\n", + "117950K .......... .......... .......... ..... 100% 7.59M=2m35s\n", + "\n", + "2025-04-01 16:41:22 (760 KB/s) - ‘/Users/gregoryhalverson/data/GEOS5FP/2025.04.01/GEOS.fp.asm.tavg3_2d_aer_Nx.20250401_0130.V01.nc4.20250401233847.download’ saved [120817632/120817632]\n", + "\n", + "--2025-04-01 16:41:23-- https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/Y2025/M03/D31/GEOS.fp.asm.inst3_2d_asm_Nx.20250331_2100.V01.nc4\n", + "Resolving portal.nccs.nasa.gov (portal.nccs.nasa.gov)... 2001:4d0:2418:2800::a99a:9791, 169.154.151.145\n", + "Connecting to portal.nccs.nasa.gov (portal.nccs.nasa.gov)|2001:4d0:2418:2800::a99a:9791|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 45712924 (44M) [application/octet-stream]\n", + "Saving to: ‘/Users/gregoryhalverson/data/GEOS5FP/2025.03.31/GEOS.fp.asm.inst3_2d_asm_Nx.20250331_2100.V01.nc4.20250401234123.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 273K 2m43s\n", + " 50K .......... .......... .......... .......... .......... 0% 613K 1m58s\n", + " 100K .......... .......... .......... .......... .......... 0% 3.65M 82s\n", + " 150K .......... .......... .......... .......... .......... 0% 572K 81s\n", + " 200K .......... .......... .......... .......... .......... 0% 268M 65s\n", + " 250K .......... .......... .......... .......... .......... 0% 554K 67s\n", + " 300K .......... .......... .......... .......... .......... 0% 4.50M 59s\n", + " 350K .......... .......... .......... .......... .......... 0% 645K 60s\n", + " 400K .......... .......... .......... .......... .......... 1% 591K 62s\n", + " 450K .......... .......... .......... .......... .......... 1% 20.6M 56s\n", + " 500K .......... .......... .......... .......... .......... 1% 580K 58s\n", + " 550K .......... .......... .......... .......... .......... 1% 1.73M 55s\n", + " 600K .......... .......... .......... .......... .......... 1% 763K 55s\n", + " 650K .......... .......... .......... .......... .......... 1% 577K 56s\n", + " 700K .......... .......... .......... .......... .......... 1% 250M 53s\n", + " 750K .......... .......... .......... .......... .......... 1% 492K 55s\n", + " 800K .......... .......... .......... .......... .......... 1% 45.9M 52s\n", + " 850K .......... .......... .......... .......... .......... 2% 549K 53s\n", + " 900K .......... .......... .......... .......... .......... 2% 7.32M 51s\n", + " 950K .......... .......... .......... .......... .......... 2% 564K 52s\n", + " 1000K .......... .......... .......... .......... .......... 2% 593K 53s\n", + " 1050K .......... .......... .......... .......... .......... 2% 5.74M 51s\n", + " 1100K .......... .......... .......... .......... .......... 2% 555K 52s\n", + " 1150K .......... .......... .......... .......... .......... 2% 4.94M 50s\n", + " 1200K .......... .......... .......... .......... .......... 2% 591K 51s\n", + " 1250K .......... .......... .......... .......... .......... 2% 776K 51s\n", + " 1300K .......... .......... .......... .......... .......... 3% 1.84M 50s\n", + " 1350K .......... .......... .......... .......... .......... 3% 721K 50s\n", + " 1400K .......... .......... .......... .......... .......... 3% 1.05M 50s\n", + " 1450K .......... .......... .......... .......... .......... 3% 1.02M 49s\n", + " 1500K .......... .......... .......... .......... .......... 3% 1.17M 49s\n", + " 1550K .......... .......... .......... .......... .......... 3% 891K 49s\n", + " 1600K .......... .......... .......... .......... .......... 3% 1.23M 48s\n", + " 1650K .......... .......... .......... .......... .......... 3% 1.03M 48s\n", + " 1700K .......... .......... .......... .......... .......... 3% 1.23M 48s\n", + " 1750K .......... .......... .......... .......... .......... 4% 690K 48s\n", + " 1800K .......... .......... .......... .......... .......... 4% 1.44M 47s\n", + " 1850K .......... .......... .......... .......... .......... 4% 942K 47s\n", + " 1900K .......... .......... .......... .......... .......... 4% 1.03M 47s\n", + " 1950K .......... .......... .......... .......... .......... 4% 1.10M 47s\n", + " 2000K .......... .......... .......... .......... .......... 4% 840K 47s\n", + " 2050K .......... .......... .......... .......... .......... 4% 1.77M 46s\n", + " 2100K .......... .......... .......... .......... .......... 4% 837K 46s\n", + " 2150K .......... .......... .......... .......... .......... 4% 1.14M 46s\n", + " 2200K .......... .......... .......... .......... .......... 5% 921K 46s\n", + " 2250K .......... .......... .......... .......... .......... 5% 1.40M 46s\n", + " 2300K .......... .......... .......... .......... .......... 5% 821K 46s\n", + " 2350K .......... .......... .......... .......... .......... 5% 1.29M 45s\n", + " 2400K .......... .......... .......... .......... .......... 5% 863K 45s\n", + " 2450K .......... .......... .......... .......... .......... 5% 1.21M 45s\n", + " 2500K .......... .......... .......... .......... .......... 5% 1.01M 45s\n", + " 2550K .......... .......... .......... .......... .......... 5% 1.12M 45s\n", + " 2600K .......... .......... .......... .......... .......... 5% 878K 45s\n", + " 2650K .......... .......... .......... .......... .......... 6% 1.50M 44s\n", + " 2700K .......... .......... .......... .......... .......... 6% 783K 44s\n", + " 2750K .......... .......... .......... .......... .......... 6% 1.33M 44s\n", + " 2800K .......... .......... .......... .......... .......... 6% 785K 44s\n", + " 2850K .......... .......... .......... .......... .......... 6% 2.19M 44s\n", + " 2900K .......... .......... .......... .......... .......... 6% 701K 44s\n", + " 2950K .......... .......... .......... .......... .......... 6% 736K 44s\n", + " 3000K .......... .......... .......... .......... .......... 6% 1.75M 44s\n", + " 3050K .......... .......... .......... .......... .......... 6% 790K 44s\n", + " 3100K .......... .......... .......... .......... .......... 7% 1.81M 43s\n", + " 3150K .......... .......... .......... .......... .......... 7% 875K 43s\n", + " 3200K .......... .......... .......... .......... .......... 7% 1.37M 43s\n", + " 3250K .......... .......... .......... .......... .......... 7% 864K 43s\n", + " 3300K .......... .......... .......... .......... .......... 7% 1.48M 43s\n", + " 3350K .......... .......... .......... .......... .......... 7% 745K 43s\n", + " 3400K .......... .......... .......... .......... .......... 7% 1.90M 43s\n", + " 3450K .......... .......... .......... .......... .......... 7% 838K 43s\n", + " 3500K .......... .......... .......... .......... .......... 7% 1.28M 42s\n", + " 3550K .......... .......... .......... .......... .......... 8% 852K 43s\n", + " 3600K .......... .......... .......... .......... .......... 8% 1.42M 42s\n", + " 3650K .......... .......... .......... .......... .......... 8% 966K 42s\n", + " 3700K .......... .......... .......... .......... .......... 8% 1.33M 42s\n", + " 3750K .......... .......... .......... .......... .......... 8% 1022K 42s\n", + " 3800K .......... .......... .......... .......... .......... 8% 1.30M 42s\n", + " 3850K .......... .......... .......... .......... .......... 8% 951K 42s\n", + " 3900K .......... .......... .......... .......... .......... 8% 1.47M 41s\n", + " 3950K .......... .......... .......... .......... .......... 8% 942K 41s\n", + " 4000K .......... .......... .......... .......... .......... 9% 1.28M 41s\n", + " 4050K .......... .......... .......... .......... .......... 9% 974K 41s\n", + " 4100K .......... .......... .......... .......... .......... 9% 1.50M 41s\n", + " 4150K .......... .......... .......... .......... .......... 9% 841K 41s\n", + " 4200K .......... .......... .......... .......... .......... 9% 1.64M 41s\n", + " 4250K .......... .......... .......... .......... .......... 9% 860K 41s\n", + " 4300K .......... .......... .......... .......... .......... 9% 2.43M 40s\n", + " 4350K .......... .......... .......... .......... .......... 9% 716K 41s\n", + " 4400K .......... .......... .......... .......... .......... 9% 2.32M 40s\n", + " 4450K .......... .......... .......... .......... .......... 10% 908K 40s\n", + " 4500K .......... .......... .......... .......... .......... 10% 1.74M 40s\n", + " 4550K .......... .......... .......... .......... .......... 10% 747K 40s\n", + " 4600K .......... .......... .......... .......... .......... 10% 2.01M 40s\n", + " 4650K .......... .......... .......... .......... .......... 10% 769K 40s\n", + " 4700K .......... .......... .......... .......... .......... 10% 1.74M 40s\n", + " 4750K .......... .......... .......... .......... .......... 10% 908K 40s\n", + " 4800K .......... .......... .......... .......... .......... 10% 1.36M 40s\n", + " 4850K .......... .......... .......... .......... .......... 10% 1005K 39s\n", + " 4900K .......... .......... .......... .......... .......... 11% 1.26M 39s\n", + " 4950K .......... .......... .......... .......... .......... 11% 882K 39s\n", + " 5000K .......... .......... .......... .......... .......... 11% 1.48M 39s\n", + " 5050K .......... .......... .......... .......... .......... 11% 943K 39s\n", + " 5100K .......... .......... .......... .......... .......... 11% 2.78M 39s\n", + " 5150K .......... .......... .......... .......... .......... 11% 703K 39s\n", + " 5200K .......... .......... .......... .......... .......... 11% 6.06M 39s\n", + " 5250K .......... .......... .......... .......... .......... 11% 615K 39s\n", + " 5300K .......... .......... .......... .......... .......... 11% 13.1M 38s\n", + " 5350K .......... .......... .......... .......... .......... 12% 1013K 38s\n", + " 5400K .......... .......... .......... .......... .......... 12% 1.22M 38s\n", + " 5450K .......... .......... .......... .......... .......... 12% 1.30M 38s\n", + " 5500K .......... .......... .......... .......... .......... 12% 962K 38s\n", + " 5550K .......... .......... .......... .......... .......... 12% 1.29M 38s\n", + " 5600K .......... .......... .......... .......... .......... 12% 971K 38s\n", + " 5650K .......... .......... .......... .......... .......... 12% 1.32M 38s\n", + " 5700K .......... .......... .......... .......... .......... 12% 963K 38s\n", + " 5750K .......... .......... .......... .......... .......... 12% 1.08M 38s\n", + " 5800K .......... .......... .......... .......... .......... 13% 1.15M 38s\n", + " 5850K .......... .......... .......... .......... .......... 13% 5.45M 37s\n", + " 5900K .......... .......... .......... .......... .......... 13% 825K 37s\n", + " 5950K .......... .......... .......... .......... .......... 13% 2.15M 37s\n", + " 6000K .......... .......... .......... .......... .......... 13% 1.07M 37s\n", + " 6050K .......... .......... .......... .......... .......... 13% 1.17M 37s\n", + " 6100K .......... .......... .......... .......... .......... 13% 1.08M 37s\n", + " 6150K .......... .......... .......... .......... .......... 13% 1020K 37s\n", + " 6200K .......... .......... .......... .......... .......... 14% 230K 38s\n", + " 6250K .......... .......... .......... .......... .......... 14% 79.7M 38s\n", + " 6300K .......... .......... .......... .......... .......... 14% 370M 37s\n", + " 6350K .......... .......... .......... .......... .......... 14% 533K 37s\n", + " 6400K .......... .......... .......... .......... .......... 14% 520K 38s\n", + " 6450K .......... .......... .......... .......... .......... 14% 688K 38s\n", + " 6500K .......... .......... .......... .......... .......... 14% 2.12M 38s\n", + " 6550K .......... .......... .......... .......... .......... 14% 594K 38s\n", + " 6600K .......... .......... .......... .......... .......... 14% 529K 38s\n", + " 6650K .......... .......... .......... .......... .......... 15% 771K 38s\n", + " 6700K .......... .......... .......... .......... .......... 15% 2.02M 38s\n", + " 6750K .......... .......... .......... .......... .......... 15% 213K 39s\n", + " 6800K .......... .......... .......... .......... .......... 15% 545K 39s\n", + " 6850K .......... .......... .......... .......... .......... 15% 558K 39s\n", + " 6900K .......... .......... .......... .......... .......... 15% 299K 40s\n", + " 6950K .......... .......... .......... .......... .......... 15% 553K 40s\n", + " 7000K .......... .......... .......... .......... .......... 15% 559K 40s\n", + " 7050K .......... .......... .......... .......... .......... 15% 539K 40s\n", + " 7100K .......... .......... .......... .......... .......... 16% 287K 41s\n", + " 7150K .......... .......... .......... .......... .......... 16% 555K 41s\n", + " 7200K .......... .......... .......... .......... .......... 16% 569K 41s\n", + " 7250K .......... .......... .......... .......... .......... 16% 591K 41s\n", + " 7300K .......... .......... .......... .......... .......... 16% 278K 42s\n", + " 7350K .......... .......... .......... .......... .......... 16% 504K 42s\n", + " 7400K .......... .......... .......... .......... .......... 16% 553K 42s\n", + " 7450K .......... .......... .......... .......... .......... 16% 549K 42s\n", + " 7500K .......... .......... .......... .......... .......... 16% 299K 42s\n", + " 7550K .......... .......... .......... .......... .......... 17% 508K 43s\n", + " 7600K .......... .......... .......... .......... .......... 17% 558K 43s\n", + " 7650K .......... .......... .......... .......... .......... 17% 520K 43s\n", + " 7700K .......... .......... .......... .......... .......... 17% 410K 43s\n", + " 7750K .......... .......... .......... .......... .......... 17% 402K 43s\n", + " 7800K .......... .......... .......... .......... .......... 17% 467K 43s\n", + " 7850K .......... .......... .......... .......... .......... 17% 559K 44s\n", + " 7900K .......... .......... .......... .......... .......... 17% 557K 44s\n", + " 7950K .......... .......... .......... .......... .......... 17% 522K 44s\n", + " 8000K .......... .......... .......... .......... .......... 18% 542K 44s\n", + " 8050K .......... .......... .......... .......... .......... 18% 529K 44s\n", + " 8100K .......... .......... .......... .......... .......... 18% 518K 44s\n", + " 8150K .......... .......... .......... .......... .......... 18% 373K 44s\n", + " 8200K .......... .......... .......... .......... .......... 18% 512K 44s\n", + " 8250K .......... .......... .......... .......... .......... 18% 601K 44s\n", + " 8300K .......... .......... .......... .......... .......... 18% 579K 44s\n", + " 8350K .......... .......... .......... .......... .......... 18% 406K 45s\n", + " 8400K .......... .......... .......... .......... .......... 18% 572K 45s\n", + " 8450K .......... .......... .......... .......... .......... 19% 569K 45s\n", + " 8500K .......... .......... .......... .......... .......... 19% 578K 45s\n", + " 8550K .......... .......... .......... .......... .......... 19% 582K 45s\n", + " 8600K .......... .......... .......... .......... .......... 19% 563K 45s\n", + " 8650K .......... .......... .......... .......... .......... 19% 590K 45s\n", + " 8700K .......... .......... .......... .......... .......... 19% 594K 45s\n", + " 8750K .......... .......... .......... .......... .......... 19% 494K 45s\n", + " 8800K .......... .......... .......... .......... .......... 19% 592K 45s\n", + " 8850K .......... .......... .......... .......... .......... 19% 572K 45s\n", + " 8900K .......... .......... .......... .......... .......... 20% 620K 45s\n", + " 8950K .......... .......... .......... .......... .......... 20% 482K 45s\n", + " 9000K .......... .......... .......... .......... .......... 20% 734K 45s\n", + " 9050K .......... .......... .......... .......... .......... 20% 581K 45s\n", + " 9100K .......... .......... .......... .......... .......... 20% 588K 45s\n", + " 9150K .......... .......... .......... .......... .......... 20% 547K 45s\n", + " 9200K .......... .......... .......... .......... .......... 20% 766K 45s\n", + " 9250K .......... .......... .......... .......... .......... 20% 621K 45s\n", + " 9300K .......... .......... .......... .......... .......... 20% 593K 45s\n", + " 9350K .......... .......... .......... .......... .......... 21% 558K 45s\n", + " 9400K .......... .......... .......... .......... .......... 21% 845K 45s\n", + " 9450K .......... .......... .......... .......... .......... 21% 681K 45s\n", + " 9500K .......... .......... .......... .......... .......... 21% 689K 45s\n", + " 9550K .......... .......... .......... .......... .......... 21% 577K 45s\n", + " 9600K .......... .......... .......... .......... .......... 21% 645K 45s\n", + " 9650K .......... .......... .......... .......... .......... 21% 881K 45s\n", + " 9700K .......... .......... .......... .......... .......... 21% 766K 45s\n", + " 9750K .......... .......... .......... .......... .......... 21% 534K 45s\n", + " 9800K .......... .......... .......... .......... .......... 22% 860K 45s\n", + " 9850K .......... .......... .......... .......... .......... 22% 591K 45s\n", + " 9900K .......... .......... .......... .......... .......... 22% 1.13M 45s\n", + " 9950K .......... .......... .......... .......... .......... 22% 597K 45s\n", + " 10000K .......... .......... .......... .......... .......... 22% 660K 45s\n", + " 10050K .......... .......... .......... .......... .......... 22% 726K 45s\n", + " 10100K .......... .......... .......... .......... .......... 22% 815K 45s\n", + " 10150K .......... .......... .......... .......... .......... 22% 872K 45s\n", + " 10200K .......... .......... .......... .......... .......... 22% 640K 45s\n", + " 10250K .......... .......... .......... .......... .......... 23% 761K 44s\n", + " 10300K .......... .......... .......... .......... .......... 23% 804K 44s\n", + " 10350K .......... .......... .......... .......... .......... 23% 887K 44s\n", + " 10400K .......... .......... .......... .......... .......... 23% 799K 44s\n", + " 10450K .......... .......... .......... .......... .......... 23% 615K 44s\n", + " 10500K .......... .......... .......... .......... .......... 23% 1.22M 44s\n", + " 10550K .......... .......... .......... .......... .......... 23% 658K 44s\n", + " 10600K .......... .......... .......... .......... .......... 23% 761K 44s\n", + " 10650K .......... .......... .......... .......... .......... 23% 1.25M 44s\n", + " 10700K .......... .......... .......... .......... .......... 24% 655K 44s\n", + " 10750K .......... .......... .......... .......... .......... 24% 831K 44s\n", + " 10800K .......... .......... .......... .......... .......... 24% 604K 44s\n", + " 10850K .......... .......... .......... .......... .......... 24% 1.60M 44s\n", + " 10900K .......... .......... .......... .......... .......... 24% 760K 43s\n", + " 10950K .......... .......... .......... .......... .......... 24% 586K 43s\n", + " 11000K .......... .......... .......... .......... .......... 24% 1.18M 43s\n", + " 11050K .......... .......... .......... .......... .......... 24% 956K 43s\n", + " 11100K .......... .......... .......... .......... .......... 24% 680K 43s\n", + " 11150K .......... .......... .......... .......... .......... 25% 1016K 43s\n", + " 11200K .......... .......... .......... .......... .......... 25% 1.01M 43s\n", + " 11250K .......... .......... .......... .......... .......... 25% 830K 43s\n", + " 11300K .......... .......... .......... .......... .......... 25% 900K 43s\n", + " 11350K .......... .......... .......... .......... .......... 25% 838K 43s\n", + " 11400K .......... .......... .......... .......... .......... 25% 741K 43s\n", + " 11450K .......... .......... .......... .......... .......... 25% 1.16M 43s\n", + " 11500K .......... .......... .......... .......... .......... 25% 732K 43s\n", + " 11550K .......... .......... .......... .......... .......... 25% 986K 42s\n", + " 11600K .......... .......... .......... .......... .......... 26% 964K 42s\n", + " 11650K .......... .......... .......... .......... .......... 26% 743K 42s\n", + " 11700K .......... .......... .......... .......... .......... 26% 1.46M 42s\n", + " 11750K .......... .......... .......... .......... .......... 26% 679K 42s\n", + " 11800K .......... .......... .......... .......... .......... 26% 1.48M 42s\n", + " 11850K .......... .......... .......... .......... .......... 26% 863K 42s\n", + " 11900K .......... .......... .......... .......... .......... 26% 729K 42s\n", + " 11950K .......... .......... .......... .......... .......... 26% 1.29M 42s\n", + " 12000K .......... .......... .......... .......... .......... 26% 741K 42s\n", + " 12050K .......... .......... .......... .......... .......... 27% 1.11M 41s\n", + " 12100K .......... .......... .......... .......... .......... 27% 1.09M 41s\n", + " 12150K .......... .......... .......... .......... .......... 27% 702K 41s\n", + " 12200K .......... .......... .......... .......... .......... 27% 1.23M 41s\n", + " 12250K .......... .......... .......... .......... .......... 27% 673K 41s\n", + " 12300K .......... .......... .......... .......... .......... 27% 2.28M 41s\n", + " 12350K .......... .......... .......... .......... .......... 27% 712K 41s\n", + " 12400K .......... .......... .......... .......... .......... 27% 1.02M 41s\n", + " 12450K .......... .......... .......... .......... .......... 28% 1.20M 41s\n", + " 12500K .......... .......... .......... .......... .......... 28% 857K 41s\n", + " 12550K .......... .......... .......... .......... .......... 28% 1.37M 41s\n", + " 12600K .......... .......... .......... .......... .......... 28% 602K 40s\n", + " 12650K .......... .......... .......... .......... .......... 28% 4.51M 40s\n", + " 12700K .......... .......... .......... .......... .......... 28% 135K 41s\n", + " 12750K .......... .......... .......... .......... .......... 28% 66.5K 43s\n", + " 12800K .......... .......... .......... .......... .......... 28% 534K 43s\n", + " 12850K .......... .......... .......... .......... .......... 28% 176K 43s\n", + " 12900K .......... .......... .......... .......... .......... 29% 480K 43s\n", + " 12950K .......... .......... .......... .......... .......... 29% 13.4M 43s\n", + " 13000K .......... .......... .......... .......... .......... 29% 453K 43s\n", + " 13050K .......... .......... .......... .......... .......... 29% 575K 43s\n", + " 13100K .......... .......... .......... .......... .......... 29% 2.13M 43s\n", + " 13150K .......... .......... .......... .......... .......... 29% 576K 43s\n", + " 13200K .......... .......... .......... .......... .......... 29% 694K 43s\n", + " 13250K .......... .......... .......... .......... .......... 29% 630K 43s\n", + " 13300K .......... .......... .......... .......... .......... 29% 1.56M 42s\n", + " 13350K .......... .......... .......... .......... .......... 30% 577K 42s\n", + " 13400K .......... .......... .......... .......... .......... 30% 704K 42s\n", + " 13450K .......... .......... .......... .......... .......... 30% 662K 42s\n", + " 13500K .......... .......... .......... .......... .......... 30% 1.56M 42s\n", + " 13550K .......... .......... .......... .......... .......... 30% 569K 42s\n", + " 13600K .......... .......... .......... .......... .......... 30% 821K 42s\n", + " 13650K .......... .......... .......... .......... .......... 30% 1.49M 42s\n", + " 13700K .......... .......... .......... .......... .......... 30% 543K 42s\n", + " 13750K .......... .......... .......... .......... .......... 30% 634K 42s\n", + " 13800K .......... .......... .......... .......... .......... 31% 621K 42s\n", + " 13850K .......... .......... .......... .......... .......... 31% 66.4K 43s\n", + " 13900K .......... .......... .......... .......... .......... 31% 184M 43s\n", + " 13950K .......... .......... .......... .......... .......... 31% 143K 44s\n", + " 14000K .......... .......... .......... .......... .......... 31% 87.3M 43s\n", + " 14050K .......... .......... .......... .......... .......... 31% 582K 43s\n", + " 14100K .......... .......... .......... .......... .......... 31% 573K 43s\n", + " 14150K .......... .......... .......... .......... .......... 31% 554K 43s\n", + " 14200K .......... .......... .......... .......... .......... 31% 8.94M 43s\n", + " 14250K .......... .......... .......... .......... .......... 32% 585K 43s\n", + " 14300K .......... .......... .......... .......... .......... 32% 570K 43s\n", + " 14350K .......... .......... .......... .......... .......... 32% 547K 43s\n", + " 14400K .......... .......... .......... .......... .......... 32% 243M 43s\n", + " 14450K .......... .......... .......... .......... .......... 32% 567K 43s\n", + " 14500K .......... .......... .......... .......... .......... 32% 569K 43s\n", + " 14550K .......... .......... .......... .......... .......... 32% 612K 43s\n", + " 14600K .......... .......... .......... .......... .......... 32% 4.81M 42s\n", + " 14650K .......... .......... .......... .......... .......... 32% 580K 42s\n", + " 14700K .......... .......... .......... .......... .......... 33% 591K 42s\n", + " 14750K .......... .......... .......... .......... .......... 33% 6.87M 42s\n", + " 14800K .......... .......... .......... .......... .......... 33% 555K 42s\n", + " 14850K .......... .......... .......... .......... .......... 33% 592K 42s\n", + " 14900K .......... .......... .......... .......... .......... 33% 582K 42s\n", + " 14950K .......... .......... .......... .......... .......... 33% 10.9M 42s\n", + " 15000K .......... .......... .......... .......... .......... 33% 578K 42s\n", + " 15050K .......... .......... .......... .......... .......... 33% 565K 42s\n", + " 15100K .......... .......... .......... .......... .......... 33% 29.2M 42s\n", + " 15150K .......... .......... .......... .......... .......... 34% 558K 42s\n", + " 15200K .......... .......... .......... .......... .......... 34% 544K 41s\n", + " 15250K .......... .......... .......... .......... .......... 34% 703K 41s\n", + " 15300K .......... .......... .......... .......... .......... 34% 1.91M 41s\n", + " 15350K .......... .......... .......... .......... .......... 34% 558K 41s\n", + " 15400K .......... .......... .......... .......... .......... 34% 580K 41s\n", + " 15450K .......... .......... .......... .......... .......... 34% 4.94M 41s\n", + " 15500K .......... .......... .......... .......... .......... 34% 597K 41s\n", + " 15550K .......... .......... .......... .......... .......... 34% 528K 41s\n", + " 15600K .......... .......... .......... .......... .......... 35% 2.15M 41s\n", + " 15650K .......... .......... .......... .......... .......... 35% 656K 41s\n", + " 15700K .......... .......... .......... .......... .......... 35% 691K 41s\n", + " 15750K .......... .......... .......... .......... .......... 35% 1.80M 40s\n", + " 15800K .......... .......... .......... .......... .......... 35% 618K 40s\n", + " 15850K .......... .......... .......... .......... .......... 35% 703K 40s\n", + " 15900K .......... .......... .......... .......... .......... 35% 1.82M 40s\n", + " 15950K .......... .......... .......... .......... .......... 35% 671K 40s\n", + " 16000K .......... .......... .......... .......... .......... 35% 644K 40s\n", + " 16050K .......... .......... .......... .......... .......... 36% 1.63M 40s\n", + " 16100K .......... .......... .......... .......... .......... 36% 704K 40s\n", + " 16150K .......... .......... .......... .......... .......... 36% 626K 40s\n", + " 16200K .......... .......... .......... .......... .......... 36% 1.54M 40s\n", + " 16250K .......... .......... .......... .......... .......... 36% 802K 40s\n", + " 16300K .......... .......... .......... .......... .......... 36% 648K 40s\n", + " 16350K .......... .......... .......... .......... .......... 36% 1.67M 39s\n", + " 16400K .......... .......... .......... .......... .......... 36% 629K 39s\n", + " 16450K .......... .......... .......... .......... .......... 36% 987K 39s\n", + " 16500K .......... .......... .......... .......... .......... 37% 1.16M 39s\n", + " 16550K .......... .......... .......... .......... .......... 37% 565K 39s\n", + " 16600K .......... .......... .......... .......... .......... 37% 2.44M 39s\n", + " 16650K .......... .......... .......... .......... .......... 37% 587K 39s\n", + " 16700K .......... .......... .......... .......... .......... 37% 1.46M 39s\n", + " 16750K .......... .......... .......... .......... .......... 37% 869K 39s\n", + " 16800K .......... .......... .......... .......... .......... 37% 577K 39s\n", + " 16850K .......... .......... .......... .......... .......... 37% 3.16M 39s\n", + " 16900K .......... .......... .......... .......... .......... 37% 637K 38s\n", + " 16950K .......... .......... .......... .......... .......... 38% 855K 38s\n", + " 17000K .......... .......... .......... .......... .......... 38% 1.04M 38s\n", + " 17050K .......... .......... .......... .......... .......... 38% 781K 38s\n", + " 17100K .......... .......... .......... .......... .......... 38% 1.69M 38s\n", + " 17150K .......... .......... .......... .......... .......... 38% 733K 38s\n", + " 17200K .......... .......... .......... .......... .......... 38% 1.96M 38s\n", + " 17250K .......... .......... .......... .......... .......... 38% 605K 38s\n", + " 17300K .......... .......... .......... .......... .......... 38% 1.09M 38s\n", + " 17350K .......... .......... .......... .......... .......... 38% 1.08M 38s\n", + " 17400K .......... .......... .......... .......... .......... 39% 609K 38s\n", + " 17450K .......... .......... .......... .......... .......... 39% 5.92M 37s\n", + " 17500K .......... .......... .......... .......... .......... 39% 560K 37s\n", + " 17550K .......... .......... .......... .......... .......... 39% 1.22M 37s\n", + " 17600K .......... .......... .......... .......... .......... 39% 926K 37s\n", + " 17650K .......... .......... .......... .......... .......... 39% 817K 37s\n", + " 17700K .......... .......... .......... .......... .......... 39% 1.74M 37s\n", + " 17750K .......... .......... .......... .......... .......... 39% 550K 37s\n", + " 17800K .......... .......... .......... .......... .......... 39% 4.33M 37s\n", + " 17850K .......... .......... .......... .......... .......... 40% 589K 37s\n", + " 17900K .......... .......... .......... .......... .......... 40% 1.82M 37s\n", + " 17950K .......... .......... .......... .......... .......... 40% 740K 36s\n", + " 18000K .......... .......... .......... .......... .......... 40% 1.03M 36s\n", + " 18050K .......... .......... .......... .......... .......... 40% 1.09M 36s\n", + " 18100K .......... .......... .......... .......... .......... 40% 981K 36s\n", + " 18150K .......... .......... .......... .......... .......... 40% 1.05M 36s\n", + " 18200K .......... .......... .......... .......... .......... 40% 736K 36s\n", + " 18250K .......... .......... .......... .......... .......... 40% 1.94M 36s\n", + " 18300K .......... .......... .......... .......... .......... 41% 587K 36s\n", + " 18350K .......... .......... .......... .......... .......... 41% 17.6M 36s\n", + " 18400K .......... .......... .......... .......... .......... 41% 557K 36s\n", + " 18450K .......... .......... .......... .......... .......... 41% 2.07M 36s\n", + " 18500K .......... .......... .......... .......... .......... 41% 771K 35s\n", + " 18550K .......... .......... .......... .......... .......... 41% 2.03M 35s\n", + " 18600K .......... .......... .......... .......... .......... 41% 703K 35s\n", + " 18650K .......... .......... .......... .......... .......... 41% 1.01M 35s\n", + " 18700K .......... .......... .......... .......... .......... 42% 1.13M 35s\n", + " 18750K .......... .......... .......... .......... .......... 42% 889K 35s\n", + " 18800K .......... .......... .......... .......... .......... 42% 1.54M 35s\n", + " 18850K .......... .......... .......... .......... .......... 42% 788K 35s\n", + " 18900K .......... .......... .......... .......... .......... 42% 1.96M 35s\n", + " 18950K .......... .......... .......... .......... .......... 42% 618K 35s\n", + " 19000K .......... .......... .......... .......... .......... 42% 3.85M 34s\n", + " 19050K .......... .......... .......... .......... .......... 42% 671K 34s\n", + " 19100K .......... .......... .......... .......... .......... 42% 4.11M 34s\n", + " 19150K .......... .......... .......... .......... .......... 43% 599K 34s\n", + " 19200K .......... .......... .......... .......... .......... 43% 2.17M 34s\n", + " 19250K .......... .......... .......... .......... .......... 43% 734K 34s\n", + " 19300K .......... .......... .......... .......... .......... 43% 2.55M 34s\n", + " 19350K .......... .......... .......... .......... .......... 43% 632K 34s\n", + " 19400K .......... .......... .......... .......... .......... 43% 1.73M 34s\n", + " 19450K .......... .......... .......... .......... .......... 43% 868K 34s\n", + " 19500K .......... .......... .......... .......... .......... 43% 2.78M 34s\n", + " 19550K .......... .......... .......... .......... .......... 43% 651K 33s\n", + " 19600K .......... .......... .......... .......... .......... 44% 1.21M 33s\n", + " 19650K .......... .......... .......... .......... .......... 44% 947K 33s\n", + " 19700K .......... .......... .......... .......... .......... 44% 1.81M 33s\n", + " 19750K .......... .......... .......... .......... .......... 44% 768K 33s\n", + " 19800K .......... .......... .......... .......... .......... 44% 1.51M 33s\n", + " 19850K .......... .......... .......... .......... .......... 44% 943K 33s\n", + " 19900K .......... .......... .......... .......... .......... 44% 1.55M 33s\n", + " 19950K .......... .......... .......... .......... .......... 44% 821K 33s\n", + " 20000K .......... .......... .......... .......... .......... 44% 1.56M 33s\n", + " 20050K .......... .......... .......... .......... .......... 45% 923K 33s\n", + " 20100K .......... .......... .......... .......... .......... 45% 1.39M 32s\n", + " 20150K .......... .......... .......... .......... .......... 45% 870K 32s\n", + " 20200K .......... .......... .......... .......... .......... 45% 1.52M 32s\n", + " 20250K .......... .......... .......... .......... .......... 45% 879K 32s\n", + " 20300K .......... .......... .......... .......... .......... 45% 1.42M 32s\n", + " 20350K .......... .......... .......... .......... .......... 45% 914K 32s\n", + " 20400K .......... .......... .......... .......... .......... 45% 1.37M 32s\n", + " 20450K .......... .......... .......... .......... .......... 45% 881K 32s\n", + " 20500K .......... .......... .......... .......... .......... 46% 1.44M 32s\n", + " 20550K .......... .......... .......... .......... .......... 46% 882K 32s\n", + " 20600K .......... .......... .......... .......... .......... 46% 1.27M 32s\n", + " 20650K .......... .......... .......... .......... .......... 46% 1.13M 31s\n", + " 20700K .......... .......... .......... .......... .......... 46% 55.0K 32s\n", + " 20750K .......... .......... .......... .......... .......... 46% 187K 32s\n", + " 20800K .......... .......... .......... .......... .......... 46% 248M 32s\n", + " 20850K .......... .......... .......... .......... .......... 46% 189K 33s\n", + " 20900K .......... .......... .......... .......... .......... 46% 565K 32s\n", + " 20950K .......... .......... .......... .......... .......... 47% 551K 32s\n", + " 21000K .......... .......... .......... .......... .......... 47% 66.9M 32s\n", + " 21050K .......... .......... .......... .......... .......... 47% 586K 32s\n", + " 21100K .......... .......... .......... .......... .......... 47% 562K 32s\n", + " 21150K .......... .......... .......... .......... .......... 47% 17.0M 32s\n", + " 21200K .......... .......... .......... .......... .......... 47% 564K 32s\n", + " 21250K .......... .......... .......... .......... .......... 47% 590K 32s\n", + " 21300K .......... .......... .......... .......... .......... 47% 7.55M 32s\n", + " 21350K .......... .......... .......... .......... .......... 47% 580K 32s\n", + " 21400K .......... .......... .......... .......... .......... 48% 4.55M 32s\n", + " 21450K .......... .......... .......... .......... .......... 48% 629K 32s\n", + " 21500K .......... .......... .......... .......... .......... 48% 577K 32s\n", + " 21550K .......... .......... .......... .......... .......... 48% 3.13M 31s\n", + " 21600K .......... .......... .......... .......... .......... 48% 646K 31s\n", + " 21650K .......... .......... .......... .......... .......... 48% 4.31M 31s\n", + " 21700K .......... .......... .......... .......... .......... 48% 627K 31s\n", + " 21750K .......... .......... .......... .......... .......... 48% 598K 31s\n", + " 21800K .......... .......... .......... .......... .......... 48% 4.72M 31s\n", + " 21850K .......... .......... .......... .......... .......... 49% 581K 31s\n", + " 21900K .......... .......... .......... .......... .......... 49% 7.59M 31s\n", + " 21950K .......... .......... .......... .......... .......... 49% 615K 31s\n", + " 22000K .......... .......... .......... .......... .......... 49% 567K 31s\n", + " 22050K .......... .......... .......... .......... .......... 49% 23.6M 31s\n", + " 22100K .......... .......... .......... .......... .......... 49% 602K 30s\n", + " 22150K .......... .......... .......... .......... .......... 49% 6.61M 30s\n", + " 22200K .......... .......... .......... .......... .......... 49% 594K 30s\n", + " 22250K .......... .......... .......... .......... .......... 49% 725K 30s\n", + " 22300K .......... .......... .......... .......... .......... 50% 2.60M 30s\n", + " 22350K .......... .......... .......... .......... .......... 50% 588K 30s\n", + " 22400K .......... .......... .......... .......... .......... 50% 6.84M 30s\n", + " 22450K .......... .......... .......... .......... .......... 50% 608K 30s\n", + " 22500K .......... .......... .......... .......... .......... 50% 800K 30s\n", + " 22550K .......... .......... .......... .......... .......... 50% 1.42M 30s\n", + " 22600K .......... .......... .......... .......... .......... 50% 637K 30s\n", + " 22650K .......... .......... .......... .......... .......... 50% 4.55M 30s\n", + " 22700K .......... .......... .......... .......... .......... 50% 645K 29s\n", + " 22750K .......... .......... .......... .......... .......... 51% 4.15M 29s\n", + " 22800K .......... .......... .......... .......... .......... 51% 565K 29s\n", + " 22850K .......... .......... .......... .......... .......... 51% 1.07M 29s\n", + " 22900K .......... .......... .......... .......... .......... 51% 1.12M 29s\n", + " 22950K .......... .......... .......... .......... .......... 51% 760K 29s\n", + " 23000K .......... .......... .......... .......... .......... 51% 1.86M 29s\n", + " 23050K .......... .......... .......... .......... .......... 51% 753K 29s\n", + " 23100K .......... .......... .......... .......... .......... 51% 2.04M 29s\n", + " 23150K .......... .......... .......... .......... .......... 51% 572K 29s\n", + " 23200K .......... .......... .......... .......... .......... 52% 1.47M 29s\n", + " 23250K .......... .......... .......... .......... .......... 52% 891K 29s\n", + " 23300K .......... .......... .......... .......... .......... 52% 1.68M 28s\n", + " 23350K .......... .......... .......... .......... .......... 52% 833K 28s\n", + " 23400K .......... .......... .......... .......... .......... 52% 961K 28s\n", + " 23450K .......... .......... .......... .......... .......... 52% 1.27M 28s\n", + " 23500K .......... .......... .......... .......... .......... 52% 875K 28s\n", + " 23550K .......... .......... .......... .......... .......... 52% 1.32M 28s\n", + " 23600K .......... .......... .......... .......... .......... 52% 662K 28s\n", + " 23650K .......... .......... .......... .......... .......... 53% 2.58M 28s\n", + " 23700K .......... .......... .......... .......... .......... 53% 597K 28s\n", + " 23750K .......... .......... .......... .......... .......... 53% 2.87M 28s\n", + " 23800K .......... .......... .......... .......... .......... 53% 707K 28s\n", + " 23850K .......... .......... .......... .......... .......... 53% 1.83M 28s\n", + " 23900K .......... .......... .......... .......... .......... 53% 802K 28s\n", + " 23950K .......... .......... .......... .......... .......... 53% 1.16M 27s\n", + " 24000K .......... .......... .......... .......... .......... 53% 971K 27s\n", + " 24050K .......... .......... .......... .......... .......... 53% 1.29M 27s\n", + " 24100K .......... .......... .......... .......... .......... 54% 992K 27s\n", + " 24150K .......... .......... .......... .......... .......... 54% 897K 27s\n", + " 24200K .......... .......... .......... .......... .......... 54% 1.29M 27s\n", + " 24250K .......... .......... .......... .......... .......... 54% 1.01M 27s\n", + " 24300K .......... .......... .......... .......... .......... 54% 1.15M 27s\n", + " 24350K .......... .......... .......... .......... .......... 54% 859K 27s\n", + " 24400K .......... .......... .......... .......... .......... 54% 1.65M 27s\n", + " 24450K .......... .......... .......... .......... .......... 54% 807K 27s\n", + " 24500K .......... .......... .......... .......... .......... 54% 1.32M 27s\n", + " 24550K .......... .......... .......... .......... .......... 55% 945K 26s\n", + " 24600K .......... .......... .......... .......... .......... 55% 1.27M 26s\n", + " 24650K .......... .......... .......... .......... .......... 55% 1.03M 26s\n", + " 24700K .......... .......... .......... .......... .......... 55% 1.06M 26s\n", + " 24750K .......... .......... .......... .......... .......... 55% 1.05M 26s\n", + " 24800K .......... .......... .......... .......... .......... 55% 1.13M 26s\n", + " 24850K .......... .......... .......... .......... .......... 55% 1.02M 26s\n", + " 24900K .......... .......... .......... .......... .......... 55% 1.42M 26s\n", + " 24950K .......... .......... .......... .......... .......... 56% 956K 26s\n", + " 25000K .......... .......... .......... .......... .......... 56% 1.35M 26s\n", + " 25050K .......... .......... .......... .......... .......... 56% 1.05M 26s\n", + " 25100K .......... .......... .......... .......... .......... 56% 1.09M 26s\n", + " 25150K .......... .......... .......... .......... .......... 56% 1.02M 25s\n", + " 25200K .......... .......... .......... .......... .......... 56% 1.22M 25s\n", + " 25250K .......... .......... .......... .......... .......... 56% 1.08M 25s\n", + " 25300K .......... .......... .......... .......... .......... 56% 1.25M 25s\n", + " 25350K .......... .......... .......... .......... .......... 56% 939K 25s\n", + " 25400K .......... .......... .......... .......... .......... 57% 1.32M 25s\n", + " 25450K .......... .......... .......... .......... .......... 57% 1.66M 25s\n", + " 25500K .......... .......... .......... .......... .......... 57% 849K 25s\n", + " 25550K .......... .......... .......... .......... .......... 57% 1.56M 25s\n", + " 25600K .......... .......... .......... .......... .......... 57% 874K 25s\n", + " 25650K .......... .......... .......... .......... .......... 57% 1.87M 25s\n", + " 25700K .......... .......... .......... .......... .......... 57% 853K 25s\n", + " 25750K .......... .......... .......... .......... .......... 57% 1.38M 24s\n", + " 25800K .......... .......... .......... .......... .......... 57% 929K 24s\n", + " 25850K .......... .......... .......... .......... .......... 58% 1.38M 24s\n", + " 25900K .......... .......... .......... .......... .......... 58% 1.68M 24s\n", + " 25950K .......... .......... .......... .......... .......... 58% 856K 24s\n", + " 26000K .......... .......... .......... .......... .......... 58% 1.53M 24s\n", + " 26050K .......... .......... .......... .......... .......... 58% 1.00M 24s\n", + " 26100K .......... .......... .......... .......... .......... 58% 1.25M 24s\n", + " 26150K .......... .......... .......... .......... .......... 58% 922K 24s\n", + " 26200K .......... .......... .......... .......... .......... 58% 1.74M 24s\n", + " 26250K .......... .......... .......... .......... .......... 58% 1.03M 24s\n", + " 26300K .......... .......... .......... .......... .......... 59% 1.89M 24s\n", + " 26350K .......... .......... .......... .......... .......... 59% 861K 23s\n", + " 26400K .......... .......... .......... .......... .......... 59% 1.76M 23s\n", + " 26450K .......... .......... .......... .......... .......... 59% 1.04M 23s\n", + " 26500K .......... .......... .......... .......... .......... 59% 1.08M 23s\n", + " 26550K .......... .......... .......... .......... .......... 59% 1.56M 23s\n", + " 26600K .......... .......... .......... .......... .......... 59% 921K 23s\n", + " 26650K .......... .......... .......... .......... .......... 59% 1.33M 23s\n", + " 26700K .......... .......... .......... .......... .......... 59% 1.09M 23s\n", + " 26750K .......... .......... .......... .......... .......... 60% 2.19M 23s\n", + " 26800K .......... .......... .......... .......... .......... 60% 803K 23s\n", + " 26850K .......... .......... .......... .......... .......... 60% 2.05M 23s\n", + " 26900K .......... .......... .......... .......... .......... 60% 1.09M 23s\n", + " 26950K .......... .......... .......... .......... .......... 60% 1.42M 23s\n", + " 27000K .......... .......... .......... .......... .......... 60% 882K 22s\n", + " 27050K .......... .......... .......... .......... .......... 60% 1.64M 22s\n", + " 27100K .......... .......... .......... .......... .......... 60% 1.37M 22s\n", + " 27150K .......... .......... .......... .......... .......... 60% 920K 22s\n", + " 27200K .......... .......... .......... .......... .......... 61% 3.65M 22s\n", + " 27250K .......... .......... .......... .......... .......... 61% 659K 22s\n", + " 27300K .......... .......... .......... .......... .......... 61% 12.0M 22s\n", + " 27350K .......... .......... .......... .......... .......... 61% 742K 22s\n", + " 27400K .......... .......... .......... .......... .......... 61% 2.58M 22s\n", + " 27450K .......... .......... .......... .......... .......... 61% 834K 22s\n", + " 27500K .......... .......... .......... .......... .......... 61% 1.52M 22s\n", + " 27550K .......... .......... .......... .......... .......... 61% 1.62M 22s\n", + " 27600K .......... .......... .......... .......... .......... 61% 52.9K 22s\n", + " 27650K .......... .......... .......... .......... .......... 62% 63.4M 22s\n", + " 27700K .......... .......... .......... .......... .......... 62% 88.1M 22s\n", + " 27750K .......... .......... .......... .......... .......... 62% 537K 22s\n", + " 27800K .......... .......... .......... .......... .......... 62% 564K 22s\n", + " 27850K .......... .......... .......... .......... .......... 62% 544K 22s\n", + " 27900K .......... .......... .......... .......... .......... 62% 33.8M 22s\n", + " 27950K .......... .......... .......... .......... .......... 62% 556K 22s\n", + " 28000K .......... .......... .......... .......... .......... 62% 572K 21s\n", + " 28050K .......... .......... .......... .......... .......... 62% 559K 21s\n", + " 28100K .......... .......... .......... .......... .......... 63% 24.1M 21s\n", + " 28150K .......... .......... .......... .......... .......... 63% 556K 21s\n", + " 28200K .......... .......... .......... .......... .......... 63% 574K 21s\n", + " 28250K .......... .......... .......... .......... .......... 63% 652K 21s\n", + " 28300K .......... .......... .......... .......... .......... 63% 3.34M 21s\n", + " 28350K .......... .......... .......... .......... .......... 63% 560K 21s\n", + " 28400K .......... .......... .......... .......... .......... 63% 581K 21s\n", + " 28450K .......... .......... .......... .......... .......... 63% 675K 21s\n", + " 28500K .......... .......... .......... .......... .......... 63% 2.52M 21s\n", + " 28550K .......... .......... .......... .......... .......... 64% 597K 21s\n", + " 28600K .......... .......... .......... .......... .......... 64% 538K 21s\n", + " 28650K .......... .......... .......... .......... .......... 64% 15.6M 21s\n", + " 28700K .......... .......... .......... .......... .......... 64% 565K 21s\n", + " 28750K .......... .......... .......... .......... .......... 64% 565K 21s\n", + " 28800K .......... .......... .......... .......... .......... 64% 694K 20s\n", + " 28850K .......... .......... .......... .......... .......... 64% 1.73M 20s\n", + " 28900K .......... .......... .......... .......... .......... 64% 610K 20s\n", + " 28950K .......... .......... .......... .......... .......... 64% 528K 20s\n", + " 29000K .......... .......... .......... .......... .......... 65% 9.40M 20s\n", + " 29050K .......... .......... .......... .......... .......... 65% 566K 20s\n", + " 29100K .......... .......... .......... .......... .......... 65% 561K 20s\n", + " 29150K .......... .......... .......... .......... .......... 65% 15.8M 20s\n", + " 29200K .......... .......... .......... .......... .......... 65% 580K 20s\n", + " 29250K .......... .......... .......... .......... .......... 65% 577K 20s\n", + " 29300K .......... .......... .......... .......... .......... 65% 7.76M 20s\n", + " 29350K .......... .......... .......... .......... .......... 65% 554K 20s\n", + " 29400K .......... .......... .......... .......... .......... 65% 548K 20s\n", + " 29450K .......... .......... .......... .......... .......... 66% 6.96M 20s\n", + " 29500K .......... .......... .......... .......... .......... 66% 550K 20s\n", + " 29550K .......... .......... .......... .......... .......... 66% 575K 19s\n", + " 29600K .......... .......... .......... .......... .......... 66% 1.27M 19s\n", + " 29650K .......... .......... .......... .......... .......... 66% 762K 19s\n", + " 29700K .......... .......... .......... .......... .......... 66% 701K 19s\n", + " 29750K .......... .......... .......... .......... .......... 66% 1.26M 19s\n", + " 29800K .......... .......... .......... .......... .......... 66% 733K 19s\n", + " 29850K .......... .......... .......... .......... .......... 66% 786K 19s\n", + " 29900K .......... .......... .......... .......... .......... 67% 1.72M 19s\n", + " 29950K .......... .......... .......... .......... .......... 67% 555K 19s\n", + " 30000K .......... .......... .......... .......... .......... 67% 926K 19s\n", + " 30050K .......... .......... .......... .......... .......... 67% 1.15M 19s\n", + " 30100K .......... .......... .......... .......... .......... 67% 584K 19s\n", + " 30150K .......... .......... .......... .......... .......... 67% 1.14M 19s\n", + " 30200K .......... .......... .......... .......... .......... 67% 1014K 19s\n", + " 30250K .......... .......... .......... .......... .......... 67% 611K 19s\n", + " 30300K .......... .......... .......... .......... .......... 67% 3.76M 18s\n", + " 30350K .......... .......... .......... .......... .......... 68% 602K 18s\n", + " 30400K .......... .......... .......... .......... .......... 68% 746K 18s\n", + " 30450K .......... .......... .......... .......... .......... 68% 1.78M 18s\n", + " 30500K .......... .......... .......... .......... .......... 68% 667K 18s\n", + " 30550K .......... .......... .......... .......... .......... 68% 890K 18s\n", + " 30600K .......... .......... .......... .......... .......... 68% 915K 18s\n", + " 30650K .......... .......... .......... .......... .......... 68% 1017K 18s\n", + " 30700K .......... .......... .......... .......... .......... 68% 1.16M 18s\n", + " 30750K .......... .......... .......... .......... .......... 68% 692K 18s\n", + " 30800K .......... .......... .......... .......... .......... 69% 1.36M 18s\n", + " 30850K .......... .......... .......... .......... .......... 69% 755K 18s\n", + " 30900K .......... .......... .......... .......... .......... 69% 1017K 18s\n", + " 30950K .......... .......... .......... .......... .......... 69% 973K 18s\n", + " 31000K .......... .......... .......... .......... .......... 69% 802K 17s\n", + " 31050K .......... .......... .......... .......... .......... 69% 1.64M 17s\n", + " 31100K .......... .......... .......... .......... .......... 69% 752K 17s\n", + " 31150K .......... .......... .......... .......... .......... 69% 1.01M 17s\n", + " 31200K .......... .......... .......... .......... .......... 70% 929K 17s\n", + " 31250K .......... .......... .......... .......... .......... 70% 1.06M 17s\n", + " 31300K .......... .......... .......... .......... .......... 70% 1.14M 17s\n", + " 31350K .......... .......... .......... .......... .......... 70% 743K 17s\n", + " 31400K .......... .......... .......... .......... .......... 70% 1.43M 17s\n", + " 31450K .......... .......... .......... .......... .......... 70% 728K 17s\n", + " 31500K .......... .......... .......... .......... .......... 70% 1.53M 17s\n", + " 31550K .......... .......... .......... .......... .......... 70% 717K 17s\n", + " 31600K .......... .......... .......... .......... .......... 70% 1.58M 17s\n", + " 31650K .......... .......... .......... .......... .......... 71% 747K 17s\n", + " 31700K .......... .......... .......... .......... .......... 71% 1.20M 17s\n", + " 31750K .......... .......... .......... .......... .......... 71% 996K 16s\n", + " 31800K .......... .......... .......... .......... .......... 71% 1.11M 16s\n", + " 31850K .......... .......... .......... .......... .......... 71% 1023K 16s\n", + " 31900K .......... .......... .......... .......... .......... 71% 1.28M 16s\n", + " 31950K .......... .......... .......... .......... .......... 71% 851K 16s\n", + " 32000K .......... .......... .......... .......... .......... 71% 730K 16s\n", + " 32050K .......... .......... .......... .......... .......... 71% 2.15M 16s\n", + " 32100K .......... .......... .......... .......... .......... 72% 713K 16s\n", + " 32150K .......... .......... .......... .......... .......... 72% 1.86M 16s\n", + " 32200K .......... .......... .......... .......... .......... 72% 712K 16s\n", + " 32250K .......... .......... .......... .......... .......... 72% 2.05M 16s\n", + " 32300K .......... .......... .......... .......... .......... 72% 726K 16s\n", + " 32350K .......... .......... .......... .......... .......... 72% 1.77M 16s\n", + " 32400K .......... .......... .......... .......... .......... 72% 791K 16s\n", + " 32450K .......... .......... .......... .......... .......... 72% 1.90M 15s\n", + " 32500K .......... .......... .......... .......... .......... 72% 757K 15s\n", + " 32550K .......... .......... .......... .......... .......... 73% 1.00M 15s\n", + " 32600K .......... .......... .......... .......... .......... 73% 1.15M 15s\n", + " 32650K .......... .......... .......... .......... .......... 73% 1.33M 15s\n", + " 32700K .......... .......... .......... .......... .......... 73% 996K 15s\n", + " 32750K .......... .......... .......... .......... .......... 73% 1.01M 15s\n", + " 32800K .......... .......... .......... .......... .......... 73% 1.21M 15s\n", + " 32850K .......... .......... .......... .......... .......... 73% 1.39M 15s\n", + " 32900K .......... .......... .......... .......... .......... 73% 1.01M 15s\n", + " 32950K .......... .......... .......... .......... .......... 73% 977K 15s\n", + " 33000K .......... .......... .......... .......... .......... 74% 1.34M 15s\n", + " 33050K .......... .......... .......... .......... .......... 74% 1.10M 15s\n", + " 33100K .......... .......... .......... .......... .......... 74% 1017K 15s\n", + " 33150K .......... .......... .......... .......... .......... 74% 1.01M 14s\n", + " 33200K .......... .......... .......... .......... .......... 74% 1.16M 14s\n", + " 33250K .......... .......... .......... .......... .......... 74% 1.20M 14s\n", + " 33300K .......... .......... .......... .......... .......... 74% 1007K 14s\n", + " 33350K .......... .......... .......... .......... .......... 74% 1.05M 14s\n", + " 33400K .......... .......... .......... .......... .......... 74% 1.09M 14s\n", + " 33450K .......... .......... .......... .......... .......... 75% 1.16M 14s\n", + " 33500K .......... .......... .......... .......... .......... 75% 1.19M 14s\n", + " 33550K .......... .......... .......... .......... .......... 75% 1.02M 14s\n", + " 33600K .......... .......... .......... .......... .......... 75% 1.22M 14s\n", + " 33650K .......... .......... .......... .......... .......... 75% 1.14M 14s\n", + " 33700K .......... .......... .......... .......... .......... 75% 1.24M 14s\n", + " 33750K .......... .......... .......... .......... .......... 75% 1.04M 14s\n", + " 33800K .......... .......... .......... .......... .......... 75% 1.18M 14s\n", + " 33850K .......... .......... .......... .......... .......... 75% 840K 14s\n", + " 33900K .......... .......... .......... .......... .......... 76% 12.1M 13s\n", + " 33950K .......... .......... .......... .......... .......... 76% 610K 13s\n", + " 34000K .......... .......... .......... .......... .......... 76% 8.68M 13s\n", + " 34050K .......... .......... .......... .......... .......... 76% 725K 13s\n", + " 34100K .......... .......... .......... .......... .......... 76% 2.50M 13s\n", + " 34150K .......... .......... .......... .......... .......... 76% 1002K 13s\n", + " 34200K .......... .......... .......... .......... .......... 76% 1.03M 13s\n", + " 34250K .......... .......... .......... .......... .......... 76% 1.29M 13s\n", + " 34300K .......... .......... .......... .......... .......... 76% 928K 13s\n", + " 34350K .......... .......... .......... .......... .......... 77% 1.47M 13s\n", + " 34400K .......... .......... .......... .......... .......... 77% 877K 13s\n", + " 34450K .......... .......... .......... .......... .......... 77% 1.61M 13s\n", + " 34500K .......... .......... .......... .......... .......... 77% 894K 13s\n", + " 34550K .......... .......... .......... .......... .......... 77% 12.9M 13s\n", + " 34600K .......... .......... .......... .......... .......... 77% 793K 12s\n", + " 34650K .......... .......... .......... .......... .......... 77% 1.83M 12s\n", + " 34700K .......... .......... .......... .......... .......... 77% 1.45M 12s\n", + " 34750K .......... .......... .......... .......... .......... 77% 900K 12s\n", + " 34800K .......... .......... .......... .......... .......... 78% 1.57M 12s\n", + " 34850K .......... .......... .......... .......... .......... 78% 849K 12s\n", + " 34900K .......... .......... .......... .......... .......... 78% 1.89M 12s\n", + " 34950K .......... .......... .......... .......... .......... 78% 776K 12s\n", + " 35000K .......... .......... .......... .......... .......... 78% 1.73M 12s\n", + " 35050K .......... .......... .......... .......... .......... 78% 1.32M 12s\n", + " 35100K .......... .......... .......... .......... .......... 78% 1.37M 12s\n", + " 35150K .......... .......... .......... .......... .......... 78% 964K 12s\n", + " 35200K .......... .......... .......... .......... .......... 78% 1.47M 12s\n", + " 35250K .......... .......... .......... .......... .......... 79% 1.54M 12s\n", + " 35300K .......... .......... .......... .......... .......... 79% 973K 12s\n", + " 35350K .......... .......... .......... .......... .......... 79% 1.24M 11s\n", + " 35400K .......... .......... .......... .......... .......... 79% 1006K 11s\n", + " 35450K .......... .......... .......... .......... .......... 79% 2.32M 11s\n", + " 35500K .......... .......... .......... .......... .......... 79% 1.06M 11s\n", + " 35550K .......... .......... .......... .......... .......... 79% 1.52M 11s\n", + " 35600K .......... .......... .......... .......... .......... 79% 1.32M 11s\n", + " 35650K .......... .......... .......... .......... .......... 79% 1.23M 11s\n", + " 35700K .......... .......... .......... .......... .......... 80% 1.17M 11s\n", + " 35750K .......... .......... .......... .......... .......... 80% 1.01M 11s\n", + " 35800K .......... .......... .......... .......... .......... 80% 2.46M 11s\n", + " 35850K .......... .......... .......... .......... .......... 80% 1.01M 11s\n", + " 35900K .......... .......... .......... .......... .......... 80% 1.45M 11s\n", + " 35950K .......... .......... .......... .......... .......... 80% 1.03M 11s\n", + " 36000K .......... .......... .......... .......... .......... 80% 1.47M 11s\n", + " 36050K .......... .......... .......... .......... .......... 80% 1.21M 11s\n", + " 36100K .......... .......... .......... .......... .......... 80% 1.13M 10s\n", + " 36150K .......... .......... .......... .......... .......... 81% 1.41M 10s\n", + " 36200K .......... .......... .......... .......... .......... 81% 1.20M 10s\n", + " 36250K .......... .......... .......... .......... .......... 81% 2.14M 10s\n", + " 36300K .......... .......... .......... .......... .......... 81% 1.20M 10s\n", + " 36350K .......... .......... .......... .......... .......... 81% 1.16M 10s\n", + " 36400K .......... .......... .......... .......... .......... 81% 1.10M 10s\n", + " 36450K .......... .......... .......... .......... .......... 81% 1.19M 10s\n", + " 36500K .......... .......... .......... .......... .......... 81% 2.81M 10s\n", + " 36550K .......... .......... .......... .......... .......... 81% 45.7K 10s\n", + " 36600K .......... .......... .......... .......... .......... 82% 506K 10s\n", + " 36650K .......... .......... .......... .......... .......... 82% 432M 10s\n", + " 36700K .......... .......... .......... .......... .......... 82% 183K 10s\n", + " 36750K .......... .......... .......... .......... .......... 82% 550K 10s\n", + " 36800K .......... .......... .......... .......... .......... 82% 594K 10s\n", + " 36850K .......... .......... .......... .......... .......... 82% 6.86M 10s\n", + " 36900K .......... .......... .......... .......... .......... 82% 566K 10s\n", + " 36950K .......... .......... .......... .......... .......... 82% 502K 10s\n", + " 37000K .......... .......... .......... .......... .......... 82% 95.2M 10s\n", + " 37050K .......... .......... .......... .......... .......... 83% 563K 9s\n", + " 37100K .......... .......... .......... .......... .......... 83% 16.6M 9s\n", + " 37150K .......... .......... .......... .......... .......... 83% 552K 9s\n", + " 37200K .......... .......... .......... .......... .......... 83% 35.0M 9s\n", + " 37250K .......... .......... .......... .......... .......... 83% 559K 9s\n", + " 37300K .......... .......... .......... .......... .......... 83% 32.8M 9s\n", + " 37350K .......... .......... .......... .......... .......... 83% 517K 9s\n", + " 37400K .......... .......... .......... .......... .......... 83% 660K 9s\n", + " 37450K .......... .......... .......... .......... .......... 84% 3.69M 9s\n", + " 37500K .......... .......... .......... .......... .......... 84% 565K 9s\n", + " 37550K .......... .......... .......... .......... .......... 84% 7.00M 9s\n", + " 37600K .......... .......... .......... .......... .......... 84% 591K 9s\n", + " 37650K .......... .......... .......... .......... .......... 84% 5.06M 9s\n", + " 37700K .......... .......... .......... .......... .......... 84% 584K 9s\n", + " 37750K .......... .......... .......... .......... .......... 84% 3.66M 9s\n", + " 37800K .......... .......... .......... .......... .......... 84% 586K 9s\n", + " 37850K .......... .......... .......... .......... .......... 84% 817K 8s\n", + " 37900K .......... .......... .......... .......... .......... 85% 1.44M 8s\n", + " 37950K .......... .......... .......... .......... .......... 85% 657K 8s\n", + " 38000K .......... .......... .......... .......... .......... 85% 2.06M 8s\n", + " 38050K .......... .......... .......... .......... .......... 85% 724K 8s\n", + " 38100K .......... .......... .......... .......... .......... 85% 2.07M 8s\n", + " 38150K .......... .......... .......... .......... .......... 85% 678K 8s\n", + " 38200K .......... .......... .......... .......... .......... 85% 2.78M 8s\n", + " 38250K .......... .......... .......... .......... .......... 85% 592K 8s\n", + " 38300K .......... .......... .......... .......... .......... 85% 6.49M 8s\n", + " 38350K .......... .......... .......... .......... .......... 86% 599K 8s\n", + " 38400K .......... .......... .......... .......... .......... 86% 801K 8s\n", + " 38450K .......... .......... .......... .......... .......... 86% 41.2K 8s\n", + " 38500K .......... .......... .......... .......... .......... 86% 501K 8s\n", + " 38550K .......... .......... .......... .......... .......... 86% 135K 8s\n", + " 38600K .......... .......... .......... .......... .......... 86% 574K 8s\n", + " 38650K .......... .......... .......... .......... .......... 86% 268K 8s\n", + " 38700K .......... .......... .......... .......... .......... 86% 533K 8s\n", + " 38750K .......... .......... .......... .......... .......... 86% 292K 8s\n", + " 38800K .......... .......... .......... .......... .......... 87% 531K 8s\n", + " 38850K .......... .......... .......... .......... .......... 87% 280K 7s\n", + " 38900K .......... .......... .......... .......... .......... 87% 559K 7s\n", + " 38950K .......... .......... .......... .......... .......... 87% 281K 7s\n", + " 39000K .......... .......... .......... .......... .......... 87% 298K 7s\n", + " 39050K .......... .......... .......... .......... .......... 87% 495K 7s\n", + " 39100K .......... .......... .......... .......... .......... 87% 507K 7s\n", + " 39150K .......... .......... .......... .......... .......... 87% 294K 7s\n", + " 39200K .......... .......... .......... .......... .......... 87% 497K 7s\n", + " 39250K .......... .......... .......... .......... .......... 88% 355K 7s\n", + " 39300K .......... .......... .......... .......... .......... 88% 451K 7s\n", + " 39350K .......... .......... .......... .......... .......... 88% 419K 7s\n", + " 39400K .......... .......... .......... .......... .......... 88% 349K 7s\n", + " 39450K .......... .......... .......... .......... .......... 88% 544K 7s\n", + " 39500K .......... .......... .......... .......... .......... 88% 474K 7s\n", + " 39550K .......... .......... .......... .......... .......... 88% 324K 7s\n", + " 39600K .......... .......... .......... .......... .......... 88% 532K 7s\n", + " 39650K .......... .......... .......... .......... .......... 88% 468K 7s\n", + " 39700K .......... .......... .......... .......... .......... 89% 435K 6s\n", + " 39750K .......... .......... .......... .......... .......... 89% 395K 6s\n", + " 39800K .......... .......... .......... .......... .......... 89% 520K 6s\n", + " 39850K .......... .......... .......... .......... .......... 89% 494K 6s\n", + " 39900K .......... .......... .......... .......... .......... 89% 555K 6s\n", + " 39950K .......... .......... .......... .......... .......... 89% 405K 6s\n", + " 40000K .......... .......... .......... .......... .......... 89% 466K 6s\n", + " 40050K .......... .......... .......... .......... .......... 89% 429K 6s\n", + " 40100K .......... .......... .......... .......... .......... 89% 551K 6s\n", + " 40150K .......... .......... .......... .......... .......... 90% 559K 6s\n", + " 40200K .......... .......... .......... .......... .......... 90% 524K 6s\n", + " 40250K .......... .......... .......... .......... .......... 90% 562K 6s\n", + " 40300K .......... .......... .......... .......... .......... 90% 555K 6s\n", + " 40350K .......... .......... .......... .......... .......... 90% 525K 6s\n", + " 40400K .......... .......... .......... .......... .......... 90% 569K 6s\n", + " 40450K .......... .......... .......... .......... .......... 90% 536K 6s\n", + " 40500K .......... .......... .......... .......... .......... 90% 543K 5s\n", + " 40550K .......... .......... .......... .......... .......... 90% 394K 5s\n", + " 40600K .......... .......... .......... .......... .......... 91% 900K 5s\n", + " 40650K .......... .......... .......... .......... .......... 91% 557K 5s\n", + " 40700K .......... .......... .......... .......... .......... 91% 525K 5s\n", + " 40750K .......... .......... .......... .......... .......... 91% 492K 5s\n", + " 40800K .......... .......... .......... .......... .......... 91% 550K 5s\n", + " 40850K .......... .......... .......... .......... .......... 91% 542K 5s\n", + " 40900K .......... .......... .......... .......... .......... 91% 607K 5s\n", + " 40950K .......... .......... .......... .......... .......... 91% 548K 5s\n", + " 41000K .......... .......... .......... .......... .......... 91% 606K 5s\n", + " 41050K .......... .......... .......... .......... .......... 92% 547K 5s\n", + " 41100K .......... .......... .......... .......... .......... 92% 564K 5s\n", + " 41150K .......... .......... .......... .......... .......... 92% 546K 5s\n", + " 41200K .......... .......... .......... .......... .......... 92% 548K 5s\n", + " 41250K .......... .......... .......... .......... .......... 92% 586K 4s\n", + " 41300K .......... .......... .......... .......... .......... 92% 636K 4s\n", + " 41350K .......... .......... .......... .......... .......... 92% 586K 4s\n", + " 41400K .......... .......... .......... .......... .......... 92% 643K 4s\n", + " 41450K .......... .......... .......... .......... .......... 92% 676K 4s\n", + " 41500K .......... .......... .......... .......... .......... 93% 684K 4s\n", + " 41550K .......... .......... .......... .......... .......... 93% 536K 4s\n", + " 41600K .......... .......... .......... .......... .......... 93% 1.03M 4s\n", + " 41650K .......... .......... .......... .......... .......... 93% 615K 4s\n", + " 41700K .......... .......... .......... .......... .......... 93% 613K 4s\n", + " 41750K .......... .......... .......... .......... .......... 93% 153K 4s\n", + " 41800K .......... .......... .......... .......... .......... 93% 523K 4s\n", + " 41850K .......... .......... .......... .......... .......... 93% 294K 4s\n", + " 41900K .......... .......... .......... .......... .......... 93% 510K 4s\n", + " 41950K .......... .......... .......... .......... .......... 94% 537K 4s\n", + " 42000K .......... .......... .......... .......... .......... 94% 299K 4s\n", + " 42050K .......... .......... .......... .......... .......... 94% 579K 3s\n", + " 42100K .......... .......... .......... .......... .......... 94% 588K 3s\n", + " 42150K .......... .......... .......... .......... .......... 94% 281K 3s\n", + " 42200K .......... .......... .......... .......... .......... 94% 543K 3s\n", + " 42250K .......... .......... .......... .......... .......... 94% 315K 3s\n", + " 42300K .......... .......... .......... .......... .......... 94% 535K 3s\n", + " 42350K .......... .......... .......... .......... .......... 94% 479K 3s\n", + " 42400K .......... .......... .......... .......... .......... 95% 507K 3s\n", + " 42450K .......... .......... .......... .......... .......... 95% 343K 3s\n", + " 42500K .......... .......... .......... .......... .......... 95% 517K 3s\n", + " 42550K .......... .......... .......... .......... .......... 95% 521K 3s\n", + " 42600K .......... .......... .......... .......... .......... 95% 451K 3s\n", + " 42650K .......... .......... .......... .......... .......... 95% 340K 3s\n", + " 42700K .......... .......... .......... .......... .......... 95% 562K 3s\n", + " 42750K .......... .......... .......... .......... .......... 95% 491K 3s\n", + " 42800K .......... .......... .......... .......... .......... 95% 506K 2s\n", + " 42850K .......... .......... .......... .......... .......... 96% 554K 2s\n", + " 42900K .......... .......... .......... .......... .......... 96% 573K 2s\n", + " 42950K .......... .......... .......... .......... .......... 96% 561K 2s\n", + " 43000K .......... .......... .......... .......... .......... 96% 325K 2s\n", + " 43050K .......... .......... .......... .......... .......... 96% 580K 2s\n", + " 43100K .......... .......... .......... .......... .......... 96% 519K 2s\n", + " 43150K .......... .......... .......... .......... .......... 96% 523K 2s\n", + " 43200K .......... .......... .......... .......... .......... 96% 539K 2s\n", + " 43250K .......... .......... .......... .......... .......... 96% 579K 2s\n", + " 43300K .......... .......... .......... .......... .......... 97% 587K 2s\n", + " 43350K .......... .......... .......... .......... .......... 97% 549K 2s\n", + " 43400K .......... .......... .......... .......... .......... 97% 552K 2s\n", + " 43450K .......... .......... .......... .......... .......... 97% 557K 2s\n", + " 43500K .......... .......... .......... .......... .......... 97% 572K 2s\n", + " 43550K .......... .......... .......... .......... .......... 97% 550K 1s\n", + " 43600K .......... .......... .......... .......... .......... 97% 561K 1s\n", + " 43650K .......... .......... .......... .......... .......... 97% 557K 1s\n", + " 43700K .......... .......... .......... .......... .......... 98% 545K 1s\n", + " 43750K .......... .......... .......... .......... .......... 98% 534K 1s\n", + " 43800K .......... .......... .......... .......... .......... 98% 529K 1s\n", + " 43850K .......... .......... .......... .......... .......... 98% 576K 1s\n", + " 43900K .......... .......... .......... .......... .......... 98% 565K 1s\n", + " 43950K .......... .......... .......... .......... .......... 98% 515K 1s\n", + " 44000K .......... .......... .......... .......... .......... 98% 590K 1s\n", + " 44050K .......... .......... .......... .......... .......... 98% 187K 1s\n", + " 44100K .......... .......... .......... .......... .......... 98% 550K 1s\n", + " 44150K .......... .......... .......... .......... .......... 99% 273K 1s\n", + " 44200K .......... .......... .......... .......... .......... 99% 276K 1s\n", + " 44250K .......... .......... .......... .......... .......... 99% 263K 0s\n", + " 44300K .......... .......... .......... .......... .......... 99% 520K 0s\n", + " 44350K .......... .......... .......... .......... .......... 99% 271K 0s\n", + " 44400K .......... .......... .......... .......... .......... 99% 303K 0s\n", + " 44450K .......... .......... .......... .......... .......... 99% 317K 0s\n", + " 44500K .......... .......... .......... .......... .......... 99% 472K 0s\n", + " 44550K .......... .......... .......... .......... .......... 99% 299K 0s\n", + " 44600K .......... .......... .......... .......... . 100% 458K=63s\n", + "\n", + "2025-04-01 16:42:27 (708 KB/s) - ‘/Users/gregoryhalverson/data/GEOS5FP/2025.03.31/GEOS.fp.asm.inst3_2d_asm_Nx.20250331_2100.V01.nc4.20250401234123.download’ saved [45712924/45712924]\n", + "\n", + "/opt/homebrew/Caskroom/miniforge/base/envs/BESS-JPL/lib/python3.10/site-packages/rasterio/__init__.py:356: NotGeoreferencedWarning: Dataset has no geotransform, gcps, or rpcs. The identity matrix will be returned.\n", + " dataset = DatasetReader(path, driver=driver, sharing=sharing, **kwargs)\n", + "--2025-04-01 16:42:27-- https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/Y2025/M04/D01/GEOS.fp.asm.inst3_2d_asm_Nx.20250401_0300.V01.nc4\n", + "Resolving portal.nccs.nasa.gov (portal.nccs.nasa.gov)... 2001:4d0:2418:2800::a99a:9791, 169.154.151.145\n", + "Connecting to portal.nccs.nasa.gov (portal.nccs.nasa.gov)|2001:4d0:2418:2800::a99a:9791|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 45653730 (44M) [application/octet-stream]\n", + "Saving to: ‘/Users/gregoryhalverson/data/GEOS5FP/2025.04.01/GEOS.fp.asm.inst3_2d_asm_Nx.20250401_0300.V01.nc4.20250401234227.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 253K 2m56s\n", + " 50K .......... .......... .......... .......... .......... 0% 633K 2m3s\n", + " 100K .......... .......... .......... .......... .......... 0% 3.79M 86s\n", + " 150K .......... .......... .......... .......... .......... 0% 691K 80s\n", + " 200K .......... .......... .......... .......... .......... 0% 2.95M 67s\n", + " 250K .......... .......... .......... .......... .......... 0% 16.4M 56s\n", + " 300K .......... .......... .......... .......... .......... 0% 58.5M 48s\n", + " 350K .......... .......... .......... .......... .......... 0% 55.5M 42s\n", + " 400K .......... .......... .......... .......... .......... 1% 665K 45s\n", + " 450K .......... .......... .......... .......... .......... 1% 3.41M 42s\n", + " 500K .......... .......... .......... .......... .......... 1% 31.1M 38s\n", + " 550K .......... .......... .......... .......... .......... 1% 49.5M 35s\n", + " 600K .......... .......... .......... .......... .......... 1% 60.1M 32s\n", + " 650K .......... .......... .......... .......... .......... 1% 108M 30s\n", + " 700K .......... .......... .......... .......... .......... 1% 45.2M 28s\n", + " 750K .......... .......... .......... .......... .......... 1% 719K 30s\n", + " 800K .......... .......... .......... .......... .......... 1% 136M 28s\n", + " 850K .......... .......... .......... .......... .......... 2% 11.2M 27s\n", + " 900K .......... .......... .......... .......... .......... 2% 4.94M 26s\n", + " 950K .......... .......... .......... .......... .......... 2% 4.58M 25s\n", + " 1000K .......... .......... .......... .......... .......... 2% 323M 24s\n", + " 1050K .......... .......... .......... .......... .......... 2% 84.6M 23s\n", + " 1100K .......... .......... .......... .......... .......... 2% 67.4M 22s\n", + " 1150K .......... .......... .......... .......... .......... 2% 397M 21s\n", + " 1200K .......... .......... .......... .......... .......... 2% 49.9M 20s\n", + " 1250K .......... .......... .......... .......... .......... 2% 40.8M 19s\n", + " 1300K .......... .......... .......... .......... .......... 3% 175M 18s\n", + " 1350K .......... .......... .......... .......... .......... 3% 58.1M 18s\n", + " 1400K .......... .......... .......... .......... .......... 3% 212M 17s\n", + " 1450K .......... .......... .......... .......... .......... 3% 38.9M 17s\n", + " 1500K .......... .......... .......... .......... .......... 3% 104M 16s\n", + " 1550K .......... .......... .......... .......... .......... 3% 850K 17s\n", + " 1600K .......... .......... .......... .......... .......... 3% 36.4M 17s\n", + " 1650K .......... .......... .......... .......... .......... 3% 28.3M 16s\n", + " 1700K .......... .......... .......... .......... .......... 3% 30.0M 16s\n", + " 1750K .......... .......... .......... .......... .......... 4% 73.8M 15s\n", + " 1800K .......... .......... .......... .......... .......... 4% 20.7M 15s\n", + " 1850K .......... .......... .......... .......... .......... 4% 2.11M 15s\n", + " 1900K .......... .......... .......... .......... .......... 4% 13.7M 15s\n", + " 1950K .......... .......... .......... .......... .......... 4% 94.1M 14s\n", + " 2000K .......... .......... .......... .......... .......... 4% 27.6M 14s\n", + " 2050K .......... .......... .......... .......... .......... 4% 349M 14s\n", + " 2100K .......... .......... .......... .......... .......... 4% 88.3M 13s\n", + " 2150K .......... .......... .......... .......... .......... 4% 44.0M 13s\n", + " 2200K .......... .......... .......... .......... .......... 5% 498M 13s\n", + " 2250K .......... .......... .......... .......... .......... 5% 27.9M 12s\n", + " 2300K .......... .......... .......... .......... .......... 5% 146M 12s\n", + " 2350K .......... .......... .......... .......... .......... 5% 87.8M 12s\n", + " 2400K .......... .......... .......... .......... .......... 5% 87.2M 12s\n", + " 2450K .......... .......... .......... .......... .......... 5% 75.5M 11s\n", + " 2500K .......... .......... .......... .......... .......... 5% 33.5M 11s\n", + " 2550K .......... .......... .......... .......... .......... 5% 54.3M 11s\n", + " 2600K .......... .......... .......... .......... .......... 5% 4.77M 11s\n", + " 2650K .......... .......... .......... .......... .......... 6% 58.2M 11s\n", + " 2700K .......... .......... .......... .......... .......... 6% 80.8M 11s\n", + " 2750K .......... .......... .......... .......... .......... 6% 66.5M 10s\n", + " 2800K .......... .......... .......... .......... .......... 6% 126M 10s\n", + " 2850K .......... .......... .......... .......... .......... 6% 52.7M 10s\n", + " 2900K .......... .......... .......... .......... .......... 6% 148M 10s\n", + " 2950K .......... .......... .......... .......... .......... 6% 49.7M 10s\n", + " 3000K .......... .......... .......... .......... .......... 6% 448M 10s\n", + " 3050K .......... .......... .......... .......... .......... 6% 199M 9s\n", + " 3100K .......... .......... .......... .......... .......... 7% 21.5M 9s\n", + " 3150K .......... .......... .......... .......... .......... 7% 1.68M 9s\n", + " 3200K .......... .......... .......... .......... .......... 7% 63.2M 9s\n", + " 3250K .......... .......... .......... .......... .......... 7% 24.1M 9s\n", + " 3300K .......... .......... .......... .......... .......... 7% 24.3M 9s\n", + " 3350K .......... .......... .......... .......... .......... 7% 75.1M 9s\n", + " 3400K .......... .......... .......... .......... .......... 7% 73.4M 9s\n", + " 3450K .......... .......... .......... .......... .......... 7% 39.3M 9s\n", + " 3500K .......... .......... .......... .......... .......... 7% 55.7M 9s\n", + " 3550K .......... .......... .......... .......... .......... 8% 37.6M 8s\n", + " 3600K .......... .......... .......... .......... .......... 8% 92.3M 8s\n", + " 3650K .......... .......... .......... .......... .......... 8% 62.8M 8s\n", + " 3700K .......... .......... .......... .......... .......... 8% 26.3M 8s\n", + " 3750K .......... .......... .......... .......... .......... 8% 2.57M 8s\n", + " 3800K .......... .......... .......... .......... .......... 8% 8.88M 8s\n", + " 3850K .......... .......... .......... .......... .......... 8% 79.9M 8s\n", + " 3900K .......... .......... .......... .......... .......... 8% 33.3M 8s\n", + " 3950K .......... .......... .......... .......... .......... 8% 66.3M 8s\n", + " 4000K .......... .......... .......... .......... .......... 9% 5.77M 8s\n", + " 4050K .......... .......... .......... .......... .......... 9% 18.6M 8s\n", + " 4100K .......... .......... .......... .......... .......... 9% 296M 8s\n", + " 4150K .......... .......... .......... .......... .......... 9% 44.5M 8s\n", + " 4200K .......... .......... .......... .......... .......... 9% 88.3M 7s\n", + " 4250K .......... .......... .......... .......... .......... 9% 102M 7s\n", + " 4300K .......... .......... .......... .......... .......... 9% 54.1M 7s\n", + " 4350K .......... .......... .......... .......... .......... 9% 39.0M 7s\n", + " 4400K .......... .......... .......... .......... .......... 9% 66.7M 7s\n", + " 4450K .......... .......... .......... .......... .......... 10% 170M 7s\n", + " 4500K .......... .......... .......... .......... .......... 10% 66.4M 7s\n", + " 4550K .......... .......... .......... .......... .......... 10% 58.7M 7s\n", + " 4600K .......... .......... .......... .......... .......... 10% 118M 7s\n", + " 4650K .......... .......... .......... .......... .......... 10% 105M 7s\n", + " 4700K .......... .......... .......... .......... .......... 10% 33.7M 7s\n", + " 4750K .......... .......... .......... .......... .......... 10% 55.2M 7s\n", + " 4800K .......... .......... .......... .......... .......... 10% 79.3M 6s\n", + " 4850K .......... .......... .......... .......... .......... 10% 54.7M 6s\n", + " 4900K .......... .......... .......... .......... .......... 11% 61.0M 6s\n", + " 4950K .......... .......... .......... .......... .......... 11% 26.9M 6s\n", + " 5000K .......... .......... .......... .......... .......... 11% 116M 6s\n", + " 5050K .......... .......... .......... .......... .......... 11% 63.0M 6s\n", + " 5100K .......... .......... .......... .......... .......... 11% 120M 6s\n", + " 5150K .......... .......... .......... .......... .......... 11% 56.9M 6s\n", + " 5200K .......... .......... .......... .......... .......... 11% 40.1M 6s\n", + " 5250K .......... .......... .......... .......... .......... 11% 298M 6s\n", + " 5300K .......... .......... .......... .......... .......... 11% 75.8M 6s\n", + " 5350K .......... .......... .......... .......... .......... 12% 46.9M 6s\n", + " 5400K .......... .......... .......... .......... .......... 12% 29.1M 6s\n", + " 5450K .......... .......... .......... .......... .......... 12% 5.24M 6s\n", + " 5500K .......... .......... .......... .......... .......... 12% 132M 6s\n", + " 5550K .......... .......... .......... .......... .......... 12% 46.2M 6s\n", + " 5600K .......... .......... .......... .......... .......... 12% 181M 6s\n", + " 5650K .......... .......... .......... .......... .......... 12% 156M 6s\n", + " 5700K .......... .......... .......... .......... .......... 12% 93.4M 5s\n", + " 5750K .......... .......... .......... .......... .......... 13% 48.6M 5s\n", + " 5800K .......... .......... .......... .......... .......... 13% 130M 5s\n", + " 5850K .......... .......... .......... .......... .......... 13% 61.5M 5s\n", + " 5900K .......... .......... .......... .......... .......... 13% 76.3M 5s\n", + " 5950K .......... .......... .......... .......... .......... 13% 97.5M 5s\n", + " 6000K .......... .......... .......... .......... .......... 13% 154M 5s\n", + " 6050K .......... .......... .......... .......... .......... 13% 46.5M 5s\n", + " 6100K .......... .......... .......... .......... .......... 13% 391M 5s\n", + " 6150K .......... .......... .......... .......... .......... 13% 83.5M 5s\n", + " 6200K .......... .......... .......... .......... .......... 14% 73.4M 5s\n", + " 6250K .......... .......... .......... .......... .......... 14% 97.1M 5s\n", + " 6300K .......... .......... .......... .......... .......... 14% 26.4M 5s\n", + " 6350K .......... .......... .......... .......... .......... 14% 379M 5s\n", + " 6400K .......... .......... .......... .......... .......... 14% 166M 5s\n", + " 6450K .......... .......... .......... .......... .......... 14% 428M 5s\n", + " 6500K .......... .......... .......... .......... .......... 14% 48.9M 5s\n", + " 6550K .......... .......... .......... .......... .......... 14% 32.7M 5s\n", + " 6600K .......... .......... .......... .......... .......... 14% 47.3M 5s\n", + " 6650K .......... .......... .......... .......... .......... 15% 89.6M 5s\n", + " 6700K .......... .......... .......... .......... .......... 15% 32.4M 5s\n", + " 6750K .......... .......... .......... .......... .......... 15% 8.26M 5s\n", + " 6800K .......... .......... .......... .......... .......... 15% 354M 5s\n", + " 6850K .......... .......... .......... .......... .......... 15% 25.9M 5s\n", + " 6900K .......... .......... .......... .......... .......... 15% 73.5M 5s\n", + " 6950K .......... .......... .......... .......... .......... 15% 94.1M 4s\n", + " 7000K .......... .......... .......... .......... .......... 15% 30.6M 4s\n", + " 7050K .......... .......... .......... .......... .......... 15% 69.2M 4s\n", + " 7100K .......... .......... .......... .......... .......... 16% 36.1M 4s\n", + " 7150K .......... .......... .......... .......... .......... 16% 176M 4s\n", + " 7200K .......... .......... .......... .......... .......... 16% 52.1M 4s\n", + " 7250K .......... .......... .......... .......... .......... 16% 13.2M 4s\n", + " 7300K .......... .......... .......... .......... .......... 16% 2.47M 4s\n", + " 7350K .......... .......... .......... .......... .......... 16% 33.0M 4s\n", + " 7400K .......... .......... .......... .......... .......... 16% 328M 4s\n", + " 7450K .......... .......... .......... .......... .......... 16% 65.5M 4s\n", + " 7500K .......... .......... .......... .......... .......... 16% 3.43M 4s\n", + " 7550K .......... .......... .......... .......... .......... 17% 330M 4s\n", + " 7600K .......... .......... .......... .......... .......... 17% 444M 4s\n", + " 7650K .......... .......... .......... .......... .......... 17% 71.8M 4s\n", + " 7700K .......... .......... .......... .......... .......... 17% 45.3M 4s\n", + " 7750K .......... .......... .......... .......... .......... 17% 176M 4s\n", + " 7800K .......... .......... .......... .......... .......... 17% 31.1M 4s\n", + " 7850K .......... .......... .......... .......... .......... 17% 351M 4s\n", + " 7900K .......... .......... .......... .......... .......... 17% 24.1M 4s\n", + " 7950K .......... .......... .......... .......... .......... 17% 49.2M 4s\n", + " 8000K .......... .......... .......... .......... .......... 18% 70.8M 4s\n", + " 8050K .......... .......... .......... .......... .......... 18% 346M 4s\n", + " 8100K .......... .......... .......... .......... .......... 18% 72.7M 4s\n", + " 8150K .......... .......... .......... .......... .......... 18% 7.14M 4s\n", + " 8200K .......... .......... .......... .......... .......... 18% 319M 4s\n", + " 8250K .......... .......... .......... .......... .......... 18% 373M 4s\n", + " 8300K .......... .......... .......... .......... .......... 18% 414M 4s\n", + " 8350K .......... .......... .......... .......... .......... 18% 381M 4s\n", + " 8400K .......... .......... .......... .......... .......... 18% 432M 4s\n", + " 8450K .......... .......... .......... .......... .......... 19% 341M 4s\n", + " 8500K .......... .......... .......... .......... .......... 19% 425M 4s\n", + " 8550K .......... .......... .......... .......... .......... 19% 391M 4s\n", + " 8600K .......... .......... .......... .......... .......... 19% 257M 4s\n", + " 8650K .......... .......... .......... .......... .......... 19% 27.6M 4s\n", + " 8700K .......... .......... .......... .......... .......... 19% 103M 4s\n", + " 8750K .......... .......... .......... .......... .......... 19% 48.0M 4s\n", + " 8800K .......... .......... .......... .......... .......... 19% 157M 4s\n", + " 8850K .......... .......... .......... .......... .......... 19% 376M 4s\n", + " 8900K .......... .......... .......... .......... .......... 20% 31.4M 4s\n", + " 8950K .......... .......... .......... .......... .......... 20% 69.8M 4s\n", + " 9000K .......... .......... .......... .......... .......... 20% 23.2M 4s\n", + " 9050K .......... .......... .......... .......... .......... 20% 108M 4s\n", + " 9100K .......... .......... .......... .......... .......... 20% 48.0M 4s\n", + " 9150K .......... .......... .......... .......... .......... 20% 20.5M 4s\n", + " 9200K .......... .......... .......... .......... .......... 20% 261M 3s\n", + " 9250K .......... .......... .......... .......... .......... 20% 394M 3s\n", + " 9300K .......... .......... .......... .......... .......... 20% 381M 3s\n", + " 9350K .......... .......... .......... .......... .......... 21% 49.0M 3s\n", + " 9400K .......... .......... .......... .......... .......... 21% 48.4M 3s\n", + " 9450K .......... .......... .......... .......... .......... 21% 77.9M 3s\n", + " 9500K .......... .......... .......... .......... .......... 21% 40.7M 3s\n", + " 9550K .......... .......... .......... .......... .......... 21% 100M 3s\n", + " 9600K .......... .......... .......... .......... .......... 21% 79.1M 3s\n", + " 9650K .......... .......... .......... .......... .......... 21% 80.8M 3s\n", + " 9700K .......... .......... .......... .......... .......... 21% 11.7M 3s\n", + " 9750K .......... .......... .......... .......... .......... 21% 50.8M 3s\n", + " 9800K .......... .......... .......... .......... .......... 22% 80.7M 3s\n", + " 9850K .......... .......... .......... .......... .......... 22% 139M 3s\n", + " 9900K .......... .......... .......... .......... .......... 22% 63.1M 3s\n", + " 9950K .......... .......... .......... .......... .......... 22% 222M 3s\n", + " 10000K .......... .......... .......... .......... .......... 22% 60.7M 3s\n", + " 10050K .......... .......... .......... .......... .......... 22% 144M 3s\n", + " 10100K .......... .......... .......... .......... .......... 22% 44.8M 3s\n", + " 10150K .......... .......... .......... .......... .......... 22% 294M 3s\n", + " 10200K .......... .......... .......... .......... .......... 22% 55.2M 3s\n", + " 10250K .......... .......... .......... .......... .......... 23% 238M 3s\n", + " 10300K .......... .......... .......... .......... .......... 23% 76.1M 3s\n", + " 10350K .......... .......... .......... .......... .......... 23% 73.8M 3s\n", + " 10400K .......... .......... .......... .......... .......... 23% 328M 3s\n", + " 10450K .......... .......... .......... .......... .......... 23% 24.3M 3s\n", + " 10500K .......... .......... .......... .......... .......... 23% 256M 3s\n", + " 10550K .......... .......... .......... .......... .......... 23% 106M 3s\n", + " 10600K .......... .......... .......... .......... .......... 23% 32.8M 3s\n", + " 10650K .......... .......... .......... .......... .......... 23% 326M 3s\n", + " 10700K .......... .......... .......... .......... .......... 24% 201M 3s\n", + " 10750K .......... .......... .......... .......... .......... 24% 91.6M 3s\n", + " 10800K .......... .......... .......... .......... .......... 24% 22.0M 3s\n", + " 10850K .......... .......... .......... .......... .......... 24% 277M 3s\n", + " 10900K .......... .......... .......... .......... .......... 24% 64.7M 3s\n", + " 10950K .......... .......... .......... .......... .......... 24% 102M 3s\n", + " 11000K .......... .......... .......... .......... .......... 24% 169M 3s\n", + " 11050K .......... .......... .......... .......... .......... 24% 58.6M 3s\n", + " 11100K .......... .......... .......... .......... .......... 25% 141M 3s\n", + " 11150K .......... .......... .......... .......... .......... 25% 22.4M 3s\n", + " 11200K .......... .......... .......... .......... .......... 25% 184M 3s\n", + " 11250K .......... .......... .......... .......... .......... 25% 64.0M 3s\n", + " 11300K .......... .......... .......... .......... .......... 25% 77.9M 3s\n", + " 11350K .......... .......... .......... .......... .......... 25% 2.27M 3s\n", + " 11400K .......... .......... .......... .......... .......... 25% 315M 3s\n", + " 11450K .......... .......... .......... .......... .......... 25% 346M 3s\n", + " 11500K .......... .......... .......... .......... .......... 25% 25.2M 3s\n", + " 11550K .......... .......... .......... .......... .......... 26% 4.36M 3s\n", + " 11600K .......... .......... .......... .......... .......... 26% 27.4M 3s\n", + " 11650K .......... .......... .......... .......... .......... 26% 39.4M 3s\n", + " 11700K .......... .......... .......... .......... .......... 26% 84.6M 3s\n", + " 11750K .......... .......... .......... .......... .......... 26% 39.1M 3s\n", + " 11800K .......... .......... .......... .......... .......... 26% 362M 3s\n", + " 11850K .......... .......... .......... .......... .......... 26% 37.7M 3s\n", + " 11900K .......... .......... .......... .......... .......... 26% 362M 3s\n", + " 11950K .......... .......... .......... .......... .......... 26% 21.4M 3s\n", + " 12000K .......... .......... .......... .......... .......... 27% 86.0M 3s\n", + " 12050K .......... .......... .......... .......... .......... 27% 313M 3s\n", + " 12100K .......... .......... .......... .......... .......... 27% 47.4M 3s\n", + " 12150K .......... .......... .......... .......... .......... 27% 119M 3s\n", + " 12200K .......... .......... .......... .......... .......... 27% 10.8M 3s\n", + " 12250K .......... .......... .......... .......... .......... 27% 37.5M 3s\n", + " 12300K .......... .......... .......... .......... .......... 27% 10.4M 3s\n", + " 12350K .......... .......... .......... .......... .......... 27% 69.9M 3s\n", + " 12400K .......... .......... .......... .......... .......... 27% 75.2M 3s\n", + " 12450K .......... .......... .......... .......... .......... 28% 45.3M 3s\n", + " 12500K .......... .......... .......... .......... .......... 28% 63.0M 3s\n", + " 12550K .......... .......... .......... .......... .......... 28% 52.4M 3s\n", + " 12600K .......... .......... .......... .......... .......... 28% 407M 3s\n", + " 12650K .......... .......... .......... .......... .......... 28% 30.7M 3s\n", + " 12700K .......... .......... .......... .......... .......... 28% 349M 3s\n", + " 12750K .......... .......... .......... .......... .......... 28% 34.3M 3s\n", + " 12800K .......... .......... .......... .......... .......... 28% 404M 2s\n", + " 12850K .......... .......... .......... .......... .......... 28% 89.6M 2s\n", + " 12900K .......... .......... .......... .......... .......... 29% 21.5M 2s\n", + " 12950K .......... .......... .......... .......... .......... 29% 92.1M 2s\n", + " 13000K .......... .......... .......... .......... .......... 29% 46.9M 2s\n", + " 13050K .......... .......... .......... .......... .......... 29% 17.4M 2s\n", + " 13100K .......... .......... .......... .......... .......... 29% 332M 2s\n", + " 13150K .......... .......... .......... .......... .......... 29% 87.0M 2s\n", + " 13200K .......... .......... .......... .......... .......... 29% 114M 2s\n", + " 13250K .......... .......... .......... .......... .......... 29% 57.9M 2s\n", + " 13300K .......... .......... .......... .......... .......... 29% 106M 2s\n", + " 13350K .......... .......... .......... .......... .......... 30% 71.8M 2s\n", + " 13400K .......... .......... .......... .......... .......... 30% 87.2M 2s\n", + " 13450K .......... .......... .......... .......... .......... 30% 58.7M 2s\n", + " 13500K .......... .......... .......... .......... .......... 30% 394M 2s\n", + " 13550K .......... .......... .......... .......... .......... 30% 189M 2s\n", + " 13600K .......... .......... .......... .......... .......... 30% 77.4M 2s\n", + " 13650K .......... .......... .......... .......... .......... 30% 27.1M 2s\n", + " 13700K .......... .......... .......... .......... .......... 30% 71.4M 2s\n", + " 13750K .......... .......... .......... .......... .......... 30% 6.24M 2s\n", + " 13800K .......... .......... .......... .......... .......... 31% 36.1M 2s\n", + " 13850K .......... .......... .......... .......... .......... 31% 465M 2s\n", + " 13900K .......... .......... .......... .......... .......... 31% 74.3M 2s\n", + " 13950K .......... .......... .......... .......... .......... 31% 384M 2s\n", + " 14000K .......... .......... .......... .......... .......... 31% 37.8M 2s\n", + " 14050K .......... .......... .......... .......... .......... 31% 394M 2s\n", + " 14100K .......... .......... .......... .......... .......... 31% 32.4M 2s\n", + " 14150K .......... .......... .......... .......... .......... 31% 60.4M 2s\n", + " 14200K .......... .......... .......... .......... .......... 31% 46.2M 2s\n", + " 14250K .......... .......... .......... .......... .......... 32% 36.6M 2s\n", + " 14300K .......... .......... .......... .......... .......... 32% 62.2M 2s\n", + " 14350K .......... .......... .......... .......... .......... 32% 91.6M 2s\n", + " 14400K .......... .......... .......... .......... .......... 32% 62.7M 2s\n", + " 14450K .......... .......... .......... .......... .......... 32% 65.1M 2s\n", + " 14500K .......... .......... .......... .......... .......... 32% 73.9M 2s\n", + " 14550K .......... .......... .......... .......... .......... 32% 51.7M 2s\n", + " 14600K .......... .......... .......... .......... .......... 32% 71.9M 2s\n", + " 14650K .......... .......... .......... .......... .......... 32% 44.8M 2s\n", + " 14700K .......... .......... .......... .......... .......... 33% 145M 2s\n", + " 14750K .......... .......... .......... .......... .......... 33% 28.1M 2s\n", + " 14800K .......... .......... .......... .......... .......... 33% 436M 2s\n", + " 14850K .......... .......... .......... .......... .......... 33% 19.6M 2s\n", + " 14900K .......... .......... .......... .......... .......... 33% 323M 2s\n", + " 14950K .......... .......... .......... .......... .......... 33% 356M 2s\n", + " 15000K .......... .......... .......... .......... .......... 33% 57.0M 2s\n", + " 15050K .......... .......... .......... .......... .......... 33% 181M 2s\n", + " 15100K .......... .......... .......... .......... .......... 33% 42.9M 2s\n", + " 15150K .......... .......... .......... .......... .......... 34% 53.6M 2s\n", + " 15200K .......... .......... .......... .......... .......... 34% 45.8M 2s\n", + " 15250K .......... .......... .......... .......... .......... 34% 102M 2s\n", + " 15300K .......... .......... .......... .......... .......... 34% 38.1M 2s\n", + " 15350K .......... .......... .......... .......... .......... 34% 76.8M 2s\n", + " 15400K .......... .......... .......... .......... .......... 34% 25.6M 2s\n", + " 15450K .......... .......... .......... .......... .......... 34% 30.1M 2s\n", + " 15500K .......... .......... .......... .......... .......... 34% 32.2M 2s\n", + " 15550K .......... .......... .......... .......... .......... 34% 34.4M 2s\n", + " 15600K .......... .......... .......... .......... .......... 35% 6.82M 2s\n", + " 15650K .......... .......... .......... .......... .......... 35% 13.5M 2s\n", + " 15700K .......... .......... .......... .......... .......... 35% 11.4M 2s\n", + " 15750K .......... .......... .......... .......... .......... 35% 30.7M 2s\n", + " 15800K .......... .......... .......... .......... .......... 35% 104M 2s\n", + " 15850K .......... .......... .......... .......... .......... 35% 31.8M 2s\n", + " 15900K .......... .......... .......... .......... .......... 35% 6.62M 2s\n", + " 15950K .......... .......... .......... .......... .......... 35% 18.2M 2s\n", + " 16000K .......... .......... .......... .......... .......... 35% 182M 2s\n", + " 16050K .......... .......... .......... .......... .......... 36% 284M 2s\n", + " 16100K .......... .......... .......... .......... .......... 36% 67.3M 2s\n", + " 16150K .......... .......... .......... .......... .......... 36% 34.4M 2s\n", + " 16200K .......... .......... .......... .......... .......... 36% 75.6M 2s\n", + " 16250K .......... .......... .......... .......... .......... 36% 95.2M 2s\n", + " 16300K .......... .......... .......... .......... .......... 36% 64.2M 2s\n", + " 16350K .......... .......... .......... .......... .......... 36% 4.76M 2s\n", + " 16400K .......... .......... .......... .......... .......... 36% 276M 2s\n", + " 16450K .......... .......... .......... .......... .......... 37% 381M 2s\n", + " 16500K .......... .......... .......... .......... .......... 37% 436M 2s\n", + " 16550K .......... .......... .......... .......... .......... 37% 356M 2s\n", + " 16600K .......... .......... .......... .......... .......... 37% 448M 2s\n", + " 16650K .......... .......... .......... .......... .......... 37% 428M 2s\n", + " 16700K .......... .......... .......... .......... .......... 37% 263M 2s\n", + " 16750K .......... .......... .......... .......... .......... 37% 359M 2s\n", + " 16800K .......... .......... .......... .......... .......... 37% 376M 2s\n", + " 16850K .......... .......... .......... .......... .......... 37% 465M 2s\n", + " 16900K .......... .......... .......... .......... .......... 38% 421M 2s\n", + " 16950K .......... .......... .......... .......... .......... 38% 394M 2s\n", + " 17000K .......... .......... .......... .......... .......... 38% 57.1M 2s\n", + " 17050K .......... .......... .......... .......... .......... 38% 8.24M 2s\n", + " 17100K .......... .......... .......... .......... .......... 38% 25.7M 2s\n", + " 17150K .......... .......... .......... .......... .......... 38% 38.1M 2s\n", + " 17200K .......... .......... .......... .......... .......... 38% 33.6M 2s\n", + " 17250K .......... .......... .......... .......... .......... 38% 417M 2s\n", + " 17300K .......... .......... .......... .......... .......... 38% 35.4M 2s\n", + " 17350K .......... .......... .......... .......... .......... 39% 75.9M 2s\n", + " 17400K .......... .......... .......... .......... .......... 39% 388M 2s\n", + " 17450K .......... .......... .......... .......... .......... 39% 52.3M 2s\n", + " 17500K .......... .......... .......... .......... .......... 39% 61.3M 2s\n", + " 17550K .......... .......... .......... .......... .......... 39% 30.3M 2s\n", + " 17600K .......... .......... .......... .......... .......... 39% 344M 2s\n", + " 17650K .......... .......... .......... .......... .......... 39% 138M 2s\n", + " 17700K .......... .......... .......... .......... .......... 39% 77.9M 2s\n", + " 17750K .......... .......... .......... .......... .......... 39% 58.3M 2s\n", + " 17800K .......... .......... .......... .......... .......... 40% 145M 2s\n", + " 17850K .......... .......... .......... .......... .......... 40% 81.5M 2s\n", + " 17900K .......... .......... .......... .......... .......... 40% 29.1M 2s\n", + " 17950K .......... .......... .......... .......... .......... 40% 152M 2s\n", + " 18000K .......... .......... .......... .......... .......... 40% 23.7M 2s\n", + " 18050K .......... .......... .......... .......... .......... 40% 64.4M 2s\n", + " 18100K .......... .......... .......... .......... .......... 40% 33.3M 2s\n", + " 18150K .......... .......... .......... .......... .......... 40% 147M 2s\n", + " 18200K .......... .......... .......... .......... .......... 40% 37.5M 2s\n", + " 18250K .......... .......... .......... .......... .......... 41% 31.0M 2s\n", + " 18300K .......... .......... .......... .......... .......... 41% 11.0M 2s\n", + " 18350K .......... .......... .......... .......... .......... 41% 39.3M 2s\n", + " 18400K .......... .......... .......... .......... .......... 41% 103M 2s\n", + " 18450K .......... .......... .......... .......... .......... 41% 99.9M 2s\n", + " 18500K .......... .......... .......... .......... .......... 41% 23.1M 2s\n", + " 18550K .......... .......... .......... .......... .......... 41% 26.8M 2s\n", + " 18600K .......... .......... .......... .......... .......... 41% 48.6M 2s\n", + " 18650K .......... .......... .......... .......... .......... 41% 37.9M 2s\n", + " 18700K .......... .......... .......... .......... .......... 42% 176M 2s\n", + " 18750K .......... .......... .......... .......... .......... 42% 67.9M 2s\n", + " 18800K .......... .......... .......... .......... .......... 42% 69.7M 2s\n", + " 18850K .......... .......... .......... .......... .......... 42% 176M 2s\n", + " 18900K .......... .......... .......... .......... .......... 42% 31.0M 2s\n", + " 18950K .......... .......... .......... .......... .......... 42% 126M 2s\n", + " 19000K .......... .......... .......... .......... .......... 42% 31.8M 2s\n", + " 19050K .......... .......... .......... .......... .......... 42% 95.6M 2s\n", + " 19100K .......... .......... .......... .......... .......... 42% 36.7M 2s\n", + " 19150K .......... .......... .......... .......... .......... 43% 76.1M 2s\n", + " 19200K .......... .......... .......... .......... .......... 43% 59.9M 2s\n", + " 19250K .......... .......... .......... .......... .......... 43% 74.7M 2s\n", + " 19300K .......... .......... .......... .......... .......... 43% 31.0M 2s\n", + " 19350K .......... .......... .......... .......... .......... 43% 66.6M 2s\n", + " 19400K .......... .......... .......... .......... .......... 43% 103M 2s\n", + " 19450K .......... .......... .......... .......... .......... 43% 72.4M 1s\n", + " 19500K .......... .......... .......... .......... .......... 43% 28.2M 1s\n", + " 19550K .......... .......... .......... .......... .......... 43% 60.9M 1s\n", + " 19600K .......... .......... .......... .......... .......... 44% 23.8M 1s\n", + " 19650K .......... .......... .......... .......... .......... 44% 4.50M 1s\n", + " 19700K .......... .......... .......... .......... .......... 44% 40.0M 1s\n", + " 19750K .......... .......... .......... .......... .......... 44% 39.2M 1s\n", + " 19800K .......... .......... .......... .......... .......... 44% 160M 1s\n", + " 19850K .......... .......... .......... .......... .......... 44% 89.4M 1s\n", + " 19900K .......... .......... .......... .......... .......... 44% 23.4M 1s\n", + " 19950K .......... .......... .......... .......... .......... 44% 8.35M 1s\n", + " 20000K .......... .......... .......... .......... .......... 44% 305M 1s\n", + " 20050K .......... .......... .......... .......... .......... 45% 29.0M 1s\n", + " 20100K .......... .......... .......... .......... .......... 45% 36.6M 1s\n", + " 20150K .......... .......... .......... .......... .......... 45% 18.7M 1s\n", + " 20200K .......... .......... .......... .......... .......... 45% 78.4M 1s\n", + " 20250K .......... .......... .......... .......... .......... 45% 39.1M 1s\n", + " 20300K .......... .......... .......... .......... .......... 45% 113M 1s\n", + " 20350K .......... .......... .......... .......... .......... 45% 68.6M 1s\n", + " 20400K .......... .......... .......... .......... .......... 45% 12.7M 1s\n", + " 20450K .......... .......... .......... .......... .......... 45% 20.7M 1s\n", + " 20500K .......... .......... .......... .......... .......... 46% 44.1M 1s\n", + " 20550K .......... .......... .......... .......... .......... 46% 128M 1s\n", + " 20600K .......... .......... .......... .......... .......... 46% 44.2M 1s\n", + " 20650K .......... .......... .......... .......... .......... 46% 114M 1s\n", + " 20700K .......... .......... .......... .......... .......... 46% 33.0M 1s\n", + " 20750K .......... .......... .......... .......... .......... 46% 36.7M 1s\n", + " 20800K .......... .......... .......... .......... .......... 46% 376M 1s\n", + " 20850K .......... .......... .......... .......... .......... 46% 68.7M 1s\n", + " 20900K .......... .......... .......... .......... .......... 46% 47.9M 1s\n", + " 20950K .......... .......... .......... .......... .......... 47% 109M 1s\n", + " 21000K .......... .......... .......... .......... .......... 47% 169M 1s\n", + " 21050K .......... .......... .......... .......... .......... 47% 53.7M 1s\n", + " 21100K .......... .......... .......... .......... .......... 47% 21.6M 1s\n", + " 21150K .......... .......... .......... .......... .......... 47% 17.1M 1s\n", + " 21200K .......... .......... .......... .......... .......... 47% 86.7M 1s\n", + " 21250K .......... .......... .......... .......... .......... 47% 72.0M 1s\n", + " 21300K .......... .......... .......... .......... .......... 47% 24.1M 1s\n", + " 21350K .......... .......... .......... .......... .......... 47% 448M 1s\n", + " 21400K .......... .......... .......... .......... .......... 48% 94.3M 1s\n", + " 21450K .......... .......... .......... .......... .......... 48% 66.8M 1s\n", + " 21500K .......... .......... .......... .......... .......... 48% 113M 1s\n", + " 21550K .......... .......... .......... .......... .......... 48% 47.7M 1s\n", + " 21600K .......... .......... .......... .......... .......... 48% 78.6M 1s\n", + " 21650K .......... .......... .......... .......... .......... 48% 86.1M 1s\n", + " 21700K .......... .......... .......... .......... .......... 48% 73.4M 1s\n", + " 21750K .......... .......... .......... .......... .......... 48% 78.1M 1s\n", + " 21800K .......... .......... .......... .......... .......... 49% 65.4M 1s\n", + " 21850K .......... .......... .......... .......... .......... 49% 106M 1s\n", + " 21900K .......... .......... .......... .......... .......... 49% 50.7M 1s\n", + " 21950K .......... .......... .......... .......... .......... 49% 39.5M 1s\n", + " 22000K .......... .......... .......... .......... .......... 49% 89.9M 1s\n", + " 22050K .......... .......... .......... .......... .......... 49% 78.8M 1s\n", + " 22100K .......... .......... .......... .......... .......... 49% 35.7M 1s\n", + " 22150K .......... .......... .......... .......... .......... 49% 54.9M 1s\n", + " 22200K .......... .......... .......... .......... .......... 49% 67.1M 1s\n", + " 22250K .......... .......... .......... .......... .......... 50% 48.3M 1s\n", + " 22300K .......... .......... .......... .......... .......... 50% 28.2M 1s\n", + " 22350K .......... .......... .......... .......... .......... 50% 68.5M 1s\n", + " 22400K .......... .......... .......... .......... .......... 50% 55.6M 1s\n", + " 22450K .......... .......... .......... .......... .......... 50% 170M 1s\n", + " 22500K .......... .......... .......... .......... .......... 50% 33.7M 1s\n", + " 22550K .......... .......... .......... .......... .......... 50% 19.9M 1s\n", + " 22600K .......... .......... .......... .......... .......... 50% 76.3M 1s\n", + " 22650K .......... .......... .......... .......... .......... 50% 27.6M 1s\n", + " 22700K .......... .......... .......... .......... .......... 51% 9.41M 1s\n", + " 22750K .......... .......... .......... .......... .......... 51% 18.5M 1s\n", + " 22800K .......... .......... .......... .......... .......... 51% 47.9M 1s\n", + " 22850K .......... .......... .......... .......... .......... 51% 54.1M 1s\n", + " 22900K .......... .......... .......... .......... .......... 51% 46.7M 1s\n", + " 22950K .......... .......... .......... .......... .......... 51% 82.6M 1s\n", + " 23000K .......... .......... .......... .......... .......... 51% 71.9M 1s\n", + " 23050K .......... .......... .......... .......... .......... 51% 50.5M 1s\n", + " 23100K .......... .......... .......... .......... .......... 51% 40.9M 1s\n", + " 23150K .......... .......... .......... .......... .......... 52% 108M 1s\n", + " 23200K .......... .......... .......... .......... .......... 52% 47.7M 1s\n", + " 23250K .......... .......... .......... .......... .......... 52% 49.5M 1s\n", + " 23300K .......... .......... .......... .......... .......... 52% 44.6M 1s\n", + " 23350K .......... .......... .......... .......... .......... 52% 410M 1s\n", + " 23400K .......... .......... .......... .......... .......... 52% 17.1M 1s\n", + " 23450K .......... .......... .......... .......... .......... 52% 158M 1s\n", + " 23500K .......... .......... .......... .......... .......... 52% 58.8M 1s\n", + " 23550K .......... .......... .......... .......... .......... 52% 104M 1s\n", + " 23600K .......... .......... .......... .......... .......... 53% 56.3M 1s\n", + " 23650K .......... .......... .......... .......... .......... 53% 461M 1s\n", + " 23700K .......... .......... .......... .......... .......... 53% 66.4M 1s\n", + " 23750K .......... .......... .......... .......... .......... 53% 19.6M 1s\n", + " 23800K .......... .......... .......... .......... .......... 53% 379M 1s\n", + " 23850K .......... .......... .......... .......... .......... 53% 39.3M 1s\n", + " 23900K .......... .......... .......... .......... .......... 53% 5.72M 1s\n", + " 23950K .......... .......... .......... .......... .......... 53% 18.1M 1s\n", + " 24000K .......... .......... .......... .......... .......... 53% 5.07M 1s\n", + " 24050K .......... .......... .......... .......... .......... 54% 38.0M 1s\n", + " 24100K .......... .......... .......... .......... .......... 54% 68.5M 1s\n", + " 24150K .......... .......... .......... .......... .......... 54% 57.1M 1s\n", + " 24200K .......... .......... .......... .......... .......... 54% 97.7M 1s\n", + " 24250K .......... .......... .......... .......... .......... 54% 23.5M 1s\n", + " 24300K .......... .......... .......... .......... .......... 54% 127M 1s\n", + " 24350K .......... .......... .......... .......... .......... 54% 10.6M 1s\n", + " 24400K .......... .......... .......... .......... .......... 54% 341M 1s\n", + " 24450K .......... .......... .......... .......... .......... 54% 49.1M 1s\n", + " 24500K .......... .......... .......... .......... .......... 55% 25.0M 1s\n", + " 24550K .......... .......... .......... .......... .......... 55% 5.54M 1s\n", + " 24600K .......... .......... .......... .......... .......... 55% 346M 1s\n", + " 24650K .......... .......... .......... .......... .......... 55% 452M 1s\n", + " 24700K .......... .......... .......... .......... .......... 55% 479M 1s\n", + " 24750K .......... .......... .......... .......... .......... 55% 417M 1s\n", + " 24800K .......... .......... .......... .......... .......... 55% 509M 1s\n", + " 24850K .......... .......... .......... .......... .......... 55% 493M 1s\n", + " 24900K .......... .......... .......... .......... .......... 55% 452M 1s\n", + " 24950K .......... .......... .......... .......... .......... 56% 436M 1s\n", + " 25000K .......... .......... .......... .......... .......... 56% 407M 1s\n", + " 25050K .......... .......... .......... .......... .......... 56% 461M 1s\n", + " 25100K .......... .......... .......... .......... .......... 56% 493M 1s\n", + " 25150K .......... .......... .......... .......... .......... 56% 425M 1s\n", + " 25200K .......... .......... .......... .......... .......... 56% 452M 1s\n", + " 25250K .......... .......... .......... .......... .......... 56% 498M 1s\n", + " 25300K .......... .......... .......... .......... .......... 56% 334M 1s\n", + " 25350K .......... .......... .......... .......... .......... 56% 117M 1s\n", + " 25400K .......... .......... .......... .......... .......... 57% 29.5M 1s\n", + " 25450K .......... .......... .......... .......... .......... 57% 27.9M 1s\n", + " 25500K .......... .......... .......... .......... .......... 57% 37.5M 1s\n", + " 25550K .......... .......... .......... .......... .......... 57% 81.2M 1s\n", + " 25600K .......... .......... .......... .......... .......... 57% 33.4M 1s\n", + " 25650K .......... .......... .......... .......... .......... 57% 73.6M 1s\n", + " 25700K .......... .......... .......... .......... .......... 57% 21.4M 1s\n", + " 25750K .......... .......... .......... .......... .......... 57% 170M 1s\n", + " 25800K .......... .......... .......... .......... .......... 57% 48.3M 1s\n", + " 25850K .......... .......... .......... .......... .......... 58% 39.4M 1s\n", + " 25900K .......... .......... .......... .......... .......... 58% 364M 1s\n", + " 25950K .......... .......... .......... .......... .......... 58% 31.4M 1s\n", + " 26000K .......... .......... .......... .......... .......... 58% 356M 1s\n", + " 26050K .......... .......... .......... .......... .......... 58% 43.8M 1s\n", + " 26100K .......... .......... .......... .......... .......... 58% 113M 1s\n", + " 26150K .......... .......... .......... .......... .......... 58% 61.2M 1s\n", + " 26200K .......... .......... .......... .......... .......... 58% 33.6M 1s\n", + " 26250K .......... .......... .......... .......... .......... 58% 86.9M 1s\n", + " 26300K .......... .......... .......... .......... .......... 59% 38.1M 1s\n", + " 26350K .......... .......... .......... .......... .......... 59% 421M 1s\n", + " 26400K .......... .......... .......... .......... .......... 59% 32.4M 1s\n", + " 26450K .......... .......... .......... .......... .......... 59% 110M 1s\n", + " 26500K .......... .......... .......... .......... .......... 59% 61.3M 1s\n", + " 26550K .......... .......... .......... .......... .......... 59% 48.0M 1s\n", + " 26600K .......... .......... .......... .......... .......... 59% 33.8M 1s\n", + " 26650K .......... .......... .......... .......... .......... 59% 25.8M 1s\n", + " 26700K .......... .......... .......... .......... .......... 59% 30.0M 1s\n", + " 26750K .......... .......... .......... .......... .......... 60% 48.2M 1s\n", + " 26800K .......... .......... .......... .......... .......... 60% 28.9M 1s\n", + " 26850K .......... .......... .......... .......... .......... 60% 50.5M 1s\n", + " 26900K .......... .......... .......... .......... .......... 60% 56.8M 1s\n", + " 26950K .......... .......... .......... .......... .......... 60% 189M 1s\n", + " 27000K .......... .......... .......... .......... .......... 60% 34.3M 1s\n", + " 27050K .......... .......... .......... .......... .......... 60% 35.4M 1s\n", + " 27100K .......... .......... .......... .......... .......... 60% 43.4M 1s\n", + " 27150K .......... .......... .......... .......... .......... 61% 14.8M 1s\n", + " 27200K .......... .......... .......... .......... .......... 61% 79.5M 1s\n", + " 27250K .......... .......... .......... .......... .......... 61% 62.4M 1s\n", + " 27300K .......... .......... .......... .......... .......... 61% 53.0M 1s\n", + " 27350K .......... .......... .......... .......... .......... 61% 28.8M 1s\n", + " 27400K .......... .......... .......... .......... .......... 61% 38.4M 1s\n", + " 27450K .......... .......... .......... .......... .......... 61% 76.5M 1s\n", + " 27500K .......... .......... .......... .......... .......... 61% 19.0M 1s\n", + " 27550K .......... .......... .......... .......... .......... 61% 209M 1s\n", + " 27600K .......... .......... .......... .......... .......... 62% 119M 1s\n", + " 27650K .......... .......... .......... .......... .......... 62% 119M 1s\n", + " 27700K .......... .......... .......... .......... .......... 62% 31.7M 1s\n", + " 27750K .......... .......... .......... .......... .......... 62% 26.8M 1s\n", + " 27800K .......... .......... .......... .......... .......... 62% 519M 1s\n", + " 27850K .......... .......... .......... .......... .......... 62% 45.7M 1s\n", + " 27900K .......... .......... .......... .......... .......... 62% 80.8M 1s\n", + " 27950K .......... .......... .......... .......... .......... 62% 25.4M 1s\n", + " 28000K .......... .......... .......... .......... .......... 62% 20.0M 1s\n", + " 28050K .......... .......... .......... .......... .......... 63% 8.13M 1s\n", + " 28100K .......... .......... .......... .......... .......... 63% 6.62M 1s\n", + " 28150K .......... .......... .......... .......... .......... 63% 40.7M 1s\n", + " 28200K .......... .......... .......... .......... .......... 63% 20.2M 1s\n", + " 28250K .......... .......... .......... .......... .......... 63% 8.92M 1s\n", + " 28300K .......... .......... .......... .......... .......... 63% 133M 1s\n", + " 28350K .......... .......... .......... .......... .......... 63% 59.6M 1s\n", + " 28400K .......... .......... .......... .......... .......... 63% 47.9M 1s\n", + " 28450K .......... .......... .......... .......... .......... 63% 154M 1s\n", + " 28500K .......... .......... .......... .......... .......... 64% 8.74M 1s\n", + " 28550K .......... .......... .......... .......... .......... 64% 84.9M 1s\n", + " 28600K .......... .......... .......... .......... .......... 64% 34.9M 1s\n", + " 28650K .......... .......... .......... .......... .......... 64% 12.0M 1s\n", + " 28700K .......... .......... .......... .......... .......... 64% 52.7M 1s\n", + " 28750K .......... .......... .......... .......... .......... 64% 20.9M 1s\n", + " 28800K .......... .......... .......... .......... .......... 64% 53.2M 1s\n", + " 28850K .......... .......... .......... .......... .......... 64% 32.1M 1s\n", + " 28900K .......... .......... .......... .......... .......... 64% 688M 1s\n", + " 28950K .......... .......... .......... .......... .......... 65% 227M 1s\n", + " 29000K .......... .......... .......... .......... .......... 65% 62.9M 1s\n", + " 29050K .......... .......... .......... .......... .......... 65% 87.0M 1s\n", + " 29100K .......... .......... .......... .......... .......... 65% 30.1M 1s\n", + " 29150K .......... .......... .......... .......... .......... 65% 29.8M 1s\n", + " 29200K .......... .......... .......... .......... .......... 65% 133M 1s\n", + " 29250K .......... .......... .......... .......... .......... 65% 407M 1s\n", + " 29300K .......... .......... .......... .......... .......... 65% 33.7M 1s\n", + " 29350K .......... .......... .......... .......... .......... 65% 28.7M 1s\n", + " 29400K .......... .......... .......... .......... .......... 66% 51.1M 1s\n", + " 29450K .......... .......... .......... .......... .......... 66% 397M 1s\n", + " 29500K .......... .......... .......... .......... .......... 66% 43.6M 1s\n", + " 29550K .......... .......... .......... .......... .......... 66% 49.6M 1s\n", + " 29600K .......... .......... .......... .......... .......... 66% 86.3M 1s\n", + " 29650K .......... .......... .......... .......... .......... 66% 37.4M 1s\n", + " 29700K .......... .......... .......... .......... .......... 66% 144M 1s\n", + " 29750K .......... .......... .......... .......... .......... 66% 33.9M 1s\n", + " 29800K .......... .......... .......... .......... .......... 66% 58.9M 1s\n", + " 29850K .......... .......... .......... .......... .......... 67% 93.7M 1s\n", + " 29900K .......... .......... .......... .......... .......... 67% 23.1M 1s\n", + " 29950K .......... .......... .......... .......... .......... 67% 356M 1s\n", + " 30000K .......... .......... .......... .......... .......... 67% 39.7M 1s\n", + " 30050K .......... .......... .......... .......... .......... 67% 106M 1s\n", + " 30100K .......... .......... .......... .......... .......... 67% 43.4M 1s\n", + " 30150K .......... .......... .......... .......... .......... 67% 108M 1s\n", + " 30200K .......... .......... .......... .......... .......... 67% 140M 1s\n", + " 30250K .......... .......... .......... .......... .......... 67% 44.6M 1s\n", + " 30300K .......... .......... .......... .......... .......... 68% 63.2M 1s\n", + " 30350K .......... .......... .......... .......... .......... 68% 127M 1s\n", + " 30400K .......... .......... .......... .......... .......... 68% 141M 1s\n", + " 30450K .......... .......... .......... .......... .......... 68% 41.5M 1s\n", + " 30500K .......... .......... .......... .......... .......... 68% 62.9M 1s\n", + " 30550K .......... .......... .......... .......... .......... 68% 118M 1s\n", + " 30600K .......... .......... .......... .......... .......... 68% 44.6M 1s\n", + " 30650K .......... .......... .......... .......... .......... 68% 118M 1s\n", + " 30700K .......... .......... .......... .......... .......... 68% 48.4M 1s\n", + " 30750K .......... .......... .......... .......... .......... 69% 117M 1s\n", + " 30800K .......... .......... .......... .......... .......... 69% 26.6M 1s\n", + " 30850K .......... .......... .......... .......... .......... 69% 156M 1s\n", + " 30900K .......... .......... .......... .......... .......... 69% 44.4M 1s\n", + " 30950K .......... .......... .......... .......... .......... 69% 67.1M 1s\n", + " 31000K .......... .......... .......... .......... .......... 69% 25.9M 1s\n", + " 31050K .......... .......... .......... .......... .......... 69% 440M 1s\n", + " 31100K .......... .......... .......... .......... .......... 69% 93.7M 1s\n", + " 31150K .......... .......... .......... .......... .......... 69% 71.0M 1s\n", + " 31200K .......... .......... .......... .......... .......... 70% 33.7M 1s\n", + " 31250K .......... .......... .......... .......... .......... 70% 64.2M 1s\n", + " 31300K .......... .......... .......... .......... .......... 70% 43.9M 1s\n", + " 31350K .......... .......... .......... .......... .......... 70% 134M 1s\n", + " 31400K .......... .......... .......... .......... .......... 70% 102M 1s\n", + " 31450K .......... .......... .......... .......... .......... 70% 50.7M 1s\n", + " 31500K .......... .......... .......... .......... .......... 70% 73.2M 1s\n", + " 31550K .......... .......... .......... .......... .......... 70% 30.3M 1s\n", + " 31600K .......... .......... .......... .......... .......... 70% 41.0M 1s\n", + " 31650K .......... .......... .......... .......... .......... 71% 23.0M 1s\n", + " 31700K .......... .......... .......... .......... .......... 71% 61.7M 1s\n", + " 31750K .......... .......... .......... .......... .......... 71% 61.5M 1s\n", + " 31800K .......... .......... .......... .......... .......... 71% 133M 1s\n", + " 31850K .......... .......... .......... .......... .......... 71% 84.2M 1s\n", + " 31900K .......... .......... .......... .......... .......... 71% 456M 1s\n", + " 31950K .......... .......... .......... .......... .......... 71% 45.1M 1s\n", + " 32000K .......... .......... .......... .......... .......... 71% 96.1M 1s\n", + " 32050K .......... .......... .......... .......... .......... 71% 22.8M 1s\n", + " 32100K .......... .......... .......... .......... .......... 72% 300M 1s\n", + " 32150K .......... .......... .......... .......... .......... 72% 6.04M 1s\n", + " 32200K .......... .......... .......... .......... .......... 72% 25.3M 1s\n", + " 32250K .......... .......... .......... .......... .......... 72% 28.0M 1s\n", + " 32300K .......... .......... .......... .......... .......... 72% 32.0M 1s\n", + " 32350K .......... .......... .......... .......... .......... 72% 76.1M 1s\n", + " 32400K .......... .......... .......... .......... .......... 72% 36.5M 1s\n", + " 32450K .......... .......... .......... .......... .......... 72% 19.7M 1s\n", + " 32500K .......... .......... .......... .......... .......... 73% 55.3M 1s\n", + " 32550K .......... .......... .......... .......... .......... 73% 65.4M 1s\n", + " 32600K .......... .......... .......... .......... .......... 73% 11.3M 1s\n", + " 32650K .......... .......... .......... .......... .......... 73% 111M 1s\n", + " 32700K .......... .......... .......... .......... .......... 73% 11.6M 1s\n", + " 32750K .......... .......... .......... .......... .......... 73% 7.86M 1s\n", + " 32800K .......... .......... .......... .......... .......... 73% 32.9M 1s\n", + " 32850K .......... .......... .......... .......... .......... 73% 27.9M 1s\n", + " 32900K .......... .......... .......... .......... .......... 73% 40.4M 1s\n", + " 32950K .......... .......... .......... .......... .......... 74% 58.5M 1s\n", + " 33000K .......... .......... .......... .......... .......... 74% 123M 1s\n", + " 33050K .......... .......... .......... .......... .......... 74% 44.4M 1s\n", + " 33100K .......... .......... .......... .......... .......... 74% 14.7M 1s\n", + " 33150K .......... .......... .......... .......... .......... 74% 337M 1s\n", + " 33200K .......... .......... .......... .......... .......... 74% 461M 1s\n", + " 33250K .......... .......... .......... .......... .......... 74% 362M 1s\n", + " 33300K .......... .......... .......... .......... .......... 74% 35.2M 1s\n", + " 33350K .......... .......... .......... .......... .......... 74% 45.5M 1s\n", + " 33400K .......... .......... .......... .......... .......... 75% 205M 1s\n", + " 33450K .......... .......... .......... .......... .......... 75% 30.1M 1s\n", + " 33500K .......... .......... .......... .......... .......... 75% 146M 1s\n", + " 33550K .......... .......... .......... .......... .......... 75% 52.8M 0s\n", + " 33600K .......... .......... .......... .......... .......... 75% 131M 0s\n", + " 33650K .......... .......... .......... .......... .......... 75% 87.8M 0s\n", + " 33700K .......... .......... .......... .......... .......... 75% 140M 0s\n", + " 33750K .......... .......... .......... .......... .......... 75% 24.3M 0s\n", + " 33800K .......... .......... .......... .......... .......... 75% 43.4M 0s\n", + " 33850K .......... .......... .......... .......... .......... 76% 73.8M 0s\n", + " 33900K .......... .......... .......... .......... .......... 76% 33.2M 0s\n", + " 33950K .......... .......... .......... .......... .......... 76% 107M 0s\n", + " 34000K .......... .......... .......... .......... .......... 76% 108M 0s\n", + " 34050K .......... .......... .......... .......... .......... 76% 39.0M 0s\n", + " 34100K .......... .......... .......... .......... .......... 76% 67.1M 0s\n", + " 34150K .......... .......... .......... .......... .......... 76% 362M 0s\n", + " 34200K .......... .......... .......... .......... .......... 76% 39.2M 0s\n", + " 34250K .......... .......... .......... .......... .......... 76% 421M 0s\n", + " 34300K .......... .......... .......... .......... .......... 77% 28.3M 0s\n", + " 34350K .......... .......... .......... .......... .......... 77% 16.3M 0s\n", + " 34400K .......... .......... .......... .......... .......... 77% 26.7M 0s\n", + " 34450K .......... .......... .......... .......... .......... 77% 6.97M 0s\n", + " 34500K .......... .......... .......... .......... .......... 77% 35.1M 0s\n", + " 34550K .......... .......... .......... .......... .......... 77% 52.2M 0s\n", + " 34600K .......... .......... .......... .......... .......... 77% 33.3M 0s\n", + " 34650K .......... .......... .......... .......... .......... 77% 114M 0s\n", + " 34700K .......... .......... .......... .......... .......... 77% 37.2M 0s\n", + " 34750K .......... .......... .......... .......... .......... 78% 25.3M 0s\n", + " 34800K .......... .......... .......... .......... .......... 78% 326M 0s\n", + " 34850K .......... .......... .......... .......... .......... 78% 40.0M 0s\n", + " 34900K .......... .......... .......... .......... .......... 78% 29.9M 0s\n", + " 34950K .......... .......... .......... .......... .......... 78% 63.5M 0s\n", + " 35000K .......... .......... .......... .......... .......... 78% 62.0M 0s\n", + " 35050K .......... .......... .......... .......... .......... 78% 33.8M 0s\n", + " 35100K .......... .......... .......... .......... .......... 78% 121M 0s\n", + " 35150K .......... .......... .......... .......... .......... 78% 150M 0s\n", + " 35200K .......... .......... .......... .......... .......... 79% 26.6M 0s\n", + " 35250K .......... .......... .......... .......... .......... 79% 133M 0s\n", + " 35300K .......... .......... .......... .......... .......... 79% 42.3M 0s\n", + " 35350K .......... .......... .......... .......... .......... 79% 123M 0s\n", + " 35400K .......... .......... .......... .......... .......... 79% 50.3M 0s\n", + " 35450K .......... .......... .......... .......... .......... 79% 29.8M 0s\n", + " 35500K .......... .......... .......... .......... .......... 79% 432M 0s\n", + " 35550K .......... .......... .......... .......... .......... 79% 80.6M 0s\n", + " 35600K .......... .......... .......... .......... .......... 79% 53.8M 0s\n", + " 35650K .......... .......... .......... .......... .......... 80% 120M 0s\n", + " 35700K .......... .......... .......... .......... .......... 80% 58.0M 0s\n", + " 35750K .......... .......... .......... .......... .......... 80% 328M 0s\n", + " 35800K .......... .......... .......... .......... .......... 80% 33.6M 0s\n", + " 35850K .......... .......... .......... .......... .......... 80% 50.1M 0s\n", + " 35900K .......... .......... .......... .......... .......... 80% 73.5M 0s\n", + " 35950K .......... .......... .......... .......... .......... 80% 30.2M 0s\n", + " 36000K .......... .......... .......... .......... .......... 80% 30.4M 0s\n", + " 36050K .......... .......... .......... .......... .......... 80% 57.6M 0s\n", + " 36100K .......... .......... .......... .......... .......... 81% 36.4M 0s\n", + " 36150K .......... .......... .......... .......... .......... 81% 42.3M 0s\n", + " 36200K .......... .......... .......... .......... .......... 81% 51.5M 0s\n", + " 36250K .......... .......... .......... .......... .......... 81% 114M 0s\n", + " 36300K .......... .......... .......... .......... .......... 81% 32.4M 0s\n", + " 36350K .......... .......... .......... .......... .......... 81% 28.5M 0s\n", + " 36400K .......... .......... .......... .......... .......... 81% 298M 0s\n", + " 36450K .......... .......... .......... .......... .......... 81% 98.4M 0s\n", + " 36500K .......... .......... .......... .......... .......... 81% 5.95M 0s\n", + " 36550K .......... .......... .......... .......... .......... 82% 81.7M 0s\n", + " 36600K .......... .......... .......... .......... .......... 82% 33.5M 0s\n", + " 36650K .......... .......... .......... .......... .......... 82% 24.5M 0s\n", + " 36700K .......... .......... .......... .......... .......... 82% 323M 0s\n", + " 36750K .......... .......... .......... .......... .......... 82% 4.74M 0s\n", + " 36800K .......... .......... .......... .......... .......... 82% 61.7M 0s\n", + " 36850K .......... .......... .......... .......... .......... 82% 29.0M 0s\n", + " 36900K .......... .......... .......... .......... .......... 82% 22.0M 0s\n", + " 36950K .......... .......... .......... .......... .......... 82% 381M 0s\n", + " 37000K .......... .......... .......... .......... .......... 83% 555M 0s\n", + " 37050K .......... .......... .......... .......... .......... 83% 5.62M 0s\n", + " 37100K .......... .......... .......... .......... .......... 83% 28.0M 0s\n", + " 37150K .......... .......... .......... .......... .......... 83% 82.2M 0s\n", + " 37200K .......... .......... .......... .......... .......... 83% 49.6M 0s\n", + " 37250K .......... .......... .......... .......... .......... 83% 60.1M 0s\n", + " 37300K .......... .......... .......... .......... .......... 83% 83.5M 0s\n", + " 37350K .......... .......... .......... .......... .......... 83% 57.7M 0s\n", + " 37400K .......... .......... .......... .......... .......... 83% 50.9M 0s\n", + " 37450K .......... .......... .......... .......... .......... 84% 57.9M 0s\n", + " 37500K .......... .......... .......... .......... .......... 84% 62.2M 0s\n", + " 37550K .......... .......... .......... .......... .......... 84% 116M 0s\n", + " 37600K .......... .......... .......... .......... .......... 84% 126M 0s\n", + " 37650K .......... .......... .......... .......... .......... 84% 113M 0s\n", + " 37700K .......... .......... .......... .......... .......... 84% 85.8M 0s\n", + " 37750K .......... .......... .......... .......... .......... 84% 56.4M 0s\n", + " 37800K .......... .......... .......... .......... .......... 84% 81.9M 0s\n", + " 37850K .......... .......... .......... .......... .......... 85% 37.5M 0s\n", + " 37900K .......... .......... .......... .......... .......... 85% 113M 0s\n", + " 37950K .......... .......... .......... .......... .......... 85% 33.8M 0s\n", + " 38000K .......... .......... .......... .......... .......... 85% 101M 0s\n", + " 38050K .......... .......... .......... .......... .......... 85% 48.7M 0s\n", + " 38100K .......... .......... .......... .......... .......... 85% 101M 0s\n", + " 38150K .......... .......... .......... .......... .......... 85% 36.4M 0s\n", + " 38200K .......... .......... .......... .......... .......... 85% 214M 0s\n", + " 38250K .......... .......... .......... .......... .......... 85% 28.7M 0s\n", + " 38300K .......... .......... .......... .......... .......... 86% 48.2M 0s\n", + " 38350K .......... .......... .......... .......... .......... 86% 68.1M 0s\n", + " 38400K .......... .......... .......... .......... .......... 86% 317M 0s\n", + " 38450K .......... .......... .......... .......... .......... 86% 134M 0s\n", + " 38500K .......... .......... .......... .......... .......... 86% 11.9M 0s\n", + " 38550K .......... .......... .......... .......... .......... 86% 155M 0s\n", + " 38600K .......... .......... .......... .......... .......... 86% 87.8M 0s\n", + " 38650K .......... .......... .......... .......... .......... 86% 24.2M 0s\n", + " 38700K .......... .......... .......... .......... .......... 86% 150M 0s\n", + " 38750K .......... .......... .......... .......... .......... 87% 39.5M 0s\n", + " 38800K .......... .......... .......... .......... .......... 87% 58.9M 0s\n", + " 38850K .......... .......... .......... .......... .......... 87% 54.8M 0s\n", + " 38900K .......... .......... .......... .......... .......... 87% 50.5M 0s\n", + " 38950K .......... .......... .......... .......... .......... 87% 99.2M 0s\n", + " 39000K .......... .......... .......... .......... .......... 87% 37.8M 0s\n", + " 39050K .......... .......... .......... .......... .......... 87% 44.8M 0s\n", + " 39100K .......... .......... .......... .......... .......... 87% 80.7M 0s\n", + " 39150K .......... .......... .......... .......... .......... 87% 54.3M 0s\n", + " 39200K .......... .......... .......... .......... .......... 88% 36.7M 0s\n", + " 39250K .......... .......... .......... .......... .......... 88% 12.4M 0s\n", + " 39300K .......... .......... .......... .......... .......... 88% 42.1M 0s\n", + " 39350K .......... .......... .......... .......... .......... 88% 31.5M 0s\n", + " 39400K .......... .......... .......... .......... .......... 88% 63.2M 0s\n", + " 39450K .......... .......... .......... .......... .......... 88% 43.2M 0s\n", + " 39500K .......... .......... .......... .......... .......... 88% 32.5M 0s\n", + " 39550K .......... .......... .......... .......... .......... 88% 69.0M 0s\n", + " 39600K .......... .......... .......... .......... .......... 88% 54.0M 0s\n", + " 39650K .......... .......... .......... .......... .......... 89% 588M 0s\n", + " 39700K .......... .......... .......... .......... .......... 89% 55.6M 0s\n", + " 39750K .......... .......... .......... .......... .......... 89% 167M 0s\n", + " 39800K .......... .......... .......... .......... .......... 89% 75.7M 0s\n", + " 39850K .......... .......... .......... .......... .......... 89% 82.1M 0s\n", + " 39900K .......... .......... .......... .......... .......... 89% 581M 0s\n", + " 39950K .......... .......... .......... .......... .......... 89% 24.2M 0s\n", + " 40000K .......... .......... .......... .......... .......... 89% 618M 0s\n", + " 40050K .......... .......... .......... .......... .......... 89% 43.4M 0s\n", + " 40100K .......... .......... .......... .......... .......... 90% 25.8M 0s\n", + " 40150K .......... .......... .......... .......... .......... 90% 47.5M 0s\n", + " 40200K .......... .......... .......... .......... .......... 90% 145M 0s\n", + " 40250K .......... .......... .......... .......... .......... 90% 110M 0s\n", + " 40300K .......... .......... .......... .......... .......... 90% 79.0M 0s\n", + " 40350K .......... .......... .......... .......... .......... 90% 39.5M 0s\n", + " 40400K .......... .......... .......... .......... .......... 90% 45.8M 0s\n", + " 40450K .......... .......... .......... .......... .......... 90% 101M 0s\n", + " 40500K .......... .......... .......... .......... .......... 90% 27.6M 0s\n", + " 40550K .......... .......... .......... .......... .......... 91% 40.0M 0s\n", + " 40600K .......... .......... .......... .......... .......... 91% 27.3M 0s\n", + " 40650K .......... .......... .......... .......... .......... 91% 36.4M 0s\n", + " 40700K .......... .......... .......... .......... .......... 91% 35.1M 0s\n", + " 40750K .......... .......... .......... .......... .......... 91% 35.2M 0s\n", + " 40800K .......... .......... .......... .......... .......... 91% 7.09M 0s\n", + " 40850K .......... .......... .......... .......... .......... 91% 39.7M 0s\n", + " 40900K .......... .......... .......... .......... .......... 91% 16.8M 0s\n", + " 40950K .......... .......... .......... .......... .......... 91% 5.99M 0s\n", + " 41000K .......... .......... .......... .......... .......... 92% 588M 0s\n", + " 41050K .......... .......... .......... .......... .......... 92% 678M 0s\n", + " 41100K .......... .......... .......... .......... .......... 92% 136M 0s\n", + " 41150K .......... .......... .......... .......... .......... 92% 17.2M 0s\n", + " 41200K .......... .......... .......... .......... .......... 92% 71.3M 0s\n", + " 41250K .......... .......... .......... .......... .......... 92% 29.0M 0s\n", + " 41300K .......... .......... .......... .......... .......... 92% 44.2M 0s\n", + " 41350K .......... .......... .......... .......... .......... 92% 8.12M 0s\n", + " 41400K .......... .......... .......... .......... .......... 92% 180M 0s\n", + " 41450K .......... .......... .......... .......... .......... 93% 23.1M 0s\n", + " 41500K .......... .......... .......... .......... .......... 93% 53.4M 0s\n", + " 41550K .......... .......... .......... .......... .......... 93% 595M 0s\n", + " 41600K .......... .......... .......... .......... .......... 93% 37.2M 0s\n", + " 41650K .......... .......... .......... .......... .......... 93% 136M 0s\n", + " 41700K .......... .......... .......... .......... .......... 93% 89.9M 0s\n", + " 41750K .......... .......... .......... .......... .......... 93% 42.2M 0s\n", + " 41800K .......... .......... .......... .......... .......... 93% 581M 0s\n", + " 41850K .......... .......... .......... .......... .......... 93% 33.7M 0s\n", + " 41900K .......... .......... .......... .......... .......... 94% 96.9M 0s\n", + " 41950K .......... .......... .......... .......... .......... 94% 39.6M 0s\n", + " 42000K .......... .......... .......... .......... .......... 94% 42.2M 0s\n", + " 42050K .......... .......... .......... .......... .......... 94% 618M 0s\n", + " 42100K .......... .......... .......... .......... .......... 94% 64.8M 0s\n", + " 42150K .......... .......... .......... .......... .......... 94% 150M 0s\n", + " 42200K .......... .......... .......... .......... .......... 94% 30.7M 0s\n", + " 42250K .......... .......... .......... .......... .......... 94% 49.2M 0s\n", + " 42300K .......... .......... .......... .......... .......... 94% 33.2M 0s\n", + " 42350K .......... .......... .......... .......... .......... 95% 66.7M 0s\n", + " 42400K .......... .......... .......... .......... .......... 95% 79.9M 0s\n", + " 42450K .......... .......... .......... .......... .......... 95% 38.7M 0s\n", + " 42500K .......... .......... .......... .......... .......... 95% 53.3M 0s\n", + " 42550K .......... .......... .......... .......... .......... 95% 45.5M 0s\n", + " 42600K .......... .......... .......... .......... .......... 95% 171M 0s\n", + " 42650K .......... .......... .......... .......... .......... 95% 134M 0s\n", + " 42700K .......... .......... .......... .......... .......... 95% 57.5M 0s\n", + " 42750K .......... .......... .......... .......... .......... 95% 73.5M 0s\n", + " 42800K .......... .......... .......... .......... .......... 96% 26.4M 0s\n", + " 42850K .......... .......... .......... .......... .......... 96% 249M 0s\n", + " 42900K .......... .......... .......... .......... .......... 96% 23.2M 0s\n", + " 42950K .......... .......... .......... .......... .......... 96% 55.0M 0s\n", + " 43000K .......... .......... .......... .......... .......... 96% 127M 0s\n", + " 43050K .......... .......... .......... .......... .......... 96% 113M 0s\n", + " 43100K .......... .......... .......... .......... .......... 96% 30.7M 0s\n", + " 43150K .......... .......... .......... .......... .......... 96% 351M 0s\n", + " 43200K .......... .......... .......... .......... .......... 97% 30.0M 0s\n", + " 43250K .......... .......... .......... .......... .......... 97% 63.3M 0s\n", + " 43300K .......... .......... .......... .......... .......... 97% 6.99M 0s\n", + " 43350K .......... .......... .......... .......... .......... 97% 45.8M 0s\n", + " 43400K .......... .......... .......... .......... .......... 97% 42.6M 0s\n", + " 43450K .......... .......... .......... .......... .......... 97% 68.5M 0s\n", + " 43500K .......... .......... .......... .......... .......... 97% 40.6M 0s\n", + " 43550K .......... .......... .......... .......... .......... 97% 75.6M 0s\n", + " 43600K .......... .......... .......... .......... .......... 97% 65.8M 0s\n", + " 43650K .......... .......... .......... .......... .......... 98% 69.0M 0s\n", + " 43700K .......... .......... .......... .......... .......... 98% 43.8M 0s\n", + " 43750K .......... .......... .......... .......... .......... 98% 53.5M 0s\n", + " 43800K .......... .......... .......... .......... .......... 98% 34.8M 0s\n", + " 43850K .......... .......... .......... .......... .......... 98% 56.9M 0s\n", + " 43900K .......... .......... .......... .......... .......... 98% 57.0M 0s\n", + " 43950K .......... .......... .......... .......... .......... 98% 718M 0s\n", + " 44000K .......... .......... .......... .......... .......... 98% 37.0M 0s\n", + " 44050K .......... .......... .......... .......... .......... 98% 142M 0s\n", + " 44100K .......... .......... .......... .......... .......... 99% 28.6M 0s\n", + " 44150K .......... .......... .......... .......... .......... 99% 106M 0s\n", + " 44200K .......... .......... .......... .......... .......... 99% 99.9M 0s\n", + " 44250K .......... .......... .......... .......... .......... 99% 48.4M 0s\n", + " 44300K .......... .......... .......... .......... .......... 99% 267M 0s\n", + " 44350K .......... .......... .......... .......... .......... 99% 26.7M 0s\n", + " 44400K .......... .......... .......... .......... .......... 99% 142M 0s\n", + " 44450K .......... .......... .......... .......... .......... 99% 29.3M 0s\n", + " 44500K .......... .......... .......... .......... .......... 99% 151M 0s\n", + " 44550K .......... .......... .......... ... 100% 92.0M=1.8s\n", + "\n", + "2025-04-01 16:42:29 (24.3 MB/s) - ‘/Users/gregoryhalverson/data/GEOS5FP/2025.04.01/GEOS.fp.asm.inst3_2d_asm_Nx.20250401_0300.V01.nc4.20250401234227.download’ saved [45653730/45653730]\n", + "\n", + "--2025-04-01 16:42:30-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w115.zip.xml\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:31-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlwLnhtbA\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=eEuKzDyA7AnRbB_hiXV8VYiiuFrNiyjWNPg8MBNA2BrutLN9bX1_o7v38cRiIMhRMbthb6XDbOfV4TQw6Sy9YnX3jPLfWstzhxRd6oD4JhG0Qk0k7IoRksSOIwjhMiGlmA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:31-- https://e4ftl01.cr.usgs.gov/oauth?code=eEuKzDyA7AnRbB_hiXV8VYiiuFrNiyjWNPg8MBNA2BrutLN9bX1_o7v38cRiIMhRMbthb6XDbOfV4TQw6Sy9YnX3jPLfWstzhxRd6oD4JhG0Qk0k7IoRksSOIwjhMiGlmA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlwLnhtbA\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w115.zip.xml [following]\n", + "--2025-04-01 16:42:32-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w115.zip.xml\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 2883 (2.8K) [application/xml]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.xml’\n", + "\n", + " 0K .. 100% 275M=0s\n", + "\n", + "2025-04-01 16:42:32 (275 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.xml’ saved [2883/2883]\n", + "\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.xml’ already there; not retrieving.\n", + "--2025-04-01 16:42:32-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w115.zip\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlw [following]\n", + "--2025-04-01 16:42:33-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlw\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=SEcEdXqUcwL6RFN2Gr3kY4PIyhugvy8wfbWD5pkfIQq_nAfhFEN60jCMxcW5LD04Ug5k9wjCte5ikd1xxcP819bGlNjXxk4gIzHOQXUMDRgHv9HxlhP2kJSPV3usBCDOIA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlw [following]\n", + "--2025-04-01 16:42:33-- https://e4ftl01.cr.usgs.gov/oauth?code=SEcEdXqUcwL6RFN2Gr3kY4PIyhugvy8wfbWD5pkfIQq_nAfhFEN60jCMxcW5LD04Ug5k9wjCte5ikd1xxcP819bGlNjXxk4gIzHOQXUMDRgHv9HxlhP2kJSPV3usBCDOIA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTUuemlw\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w115.zip [following]\n", + "--2025-04-01 16:42:34-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w115.zip\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 8660604 (8.3M) [application/zip]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 285K 29s\n", + " 50K .......... .......... .......... .......... .......... 1% 620K 21s\n", + " 100K .......... .......... .......... .......... .......... 1% 6.00M 15s\n", + " 150K .......... .......... .......... .......... .......... 2% 12.6M 11s\n", + " 200K .......... .......... .......... .......... .......... 2% 642K 11s\n", + " 250K .......... .......... .......... .......... .......... 3% 9.19M 10s\n", + " 300K .......... .......... .......... .......... .......... 4% 19.4M 8s\n", + " 350K .......... .......... .......... .......... .......... 4% 8.02M 7s\n", + " 400K .......... .......... .......... .......... .......... 5% 693K 8s\n", + " 450K .......... .......... .......... .......... .......... 5% 116M 7s\n", + " 500K .......... .......... .......... .......... .......... 6% 17.6M 6s\n", + " 550K .......... .......... .......... .......... .......... 7% 28.2M 6s\n", + " 600K .......... .......... .......... .......... .......... 7% 104M 5s\n", + " 650K .......... .......... .......... .......... .......... 8% 33.1M 5s\n", + " 700K .......... .......... .......... .......... .......... 8% 5.62M 5s\n", + " 750K .......... .......... .......... .......... .......... 9% 45.4M 4s\n", + " 800K .......... .......... .......... .......... .......... 10% 20.9M 4s\n", + " 850K .......... .......... .......... .......... .......... 10% 726K 4s\n", + " 900K .......... .......... .......... .......... .......... 11% 11.5M 4s\n", + " 950K .......... .......... .......... .......... .......... 11% 16.4M 4s\n", + " 1000K .......... .......... .......... .......... .......... 12% 49.8M 4s\n", + " 1050K .......... .......... .......... .......... .......... 13% 72.6M 4s\n", + " 1100K .......... .......... .......... .......... .......... 13% 195M 3s\n", + " 1150K .......... .......... .......... .......... .......... 14% 23.5M 3s\n", + " 1200K .......... .......... .......... .......... .......... 14% 78.9M 3s\n", + " 1250K .......... .......... .......... .......... .......... 15% 22.1M 3s\n", + " 1300K .......... .......... .......... .......... .......... 15% 59.8M 3s\n", + " 1350K .......... .......... .......... .......... .......... 16% 175M 3s\n", + " 1400K .......... .......... .......... .......... .......... 17% 116M 3s\n", + " 1450K .......... .......... .......... .......... .......... 17% 85.1M 2s\n", + " 1500K .......... .......... .......... .......... .......... 18% 39.2M 2s\n", + " 1550K .......... .......... .......... .......... .......... 18% 47.1M 2s\n", + " 1600K .......... .......... .......... .......... .......... 19% 34.9M 2s\n", + " 1650K .......... .......... .......... .......... .......... 20% 48.3M 2s\n", + " 1700K .......... .......... .......... .......... .......... 20% 791K 2s\n", + " 1750K .......... .......... .......... .......... .......... 21% 8.25M 2s\n", + " 1800K .......... .......... .......... .......... .......... 21% 168M 2s\n", + " 1850K .......... .......... .......... .......... .......... 22% 61.7M 2s\n", + " 1900K .......... .......... .......... .......... .......... 23% 61.6M 2s\n", + " 1950K .......... .......... .......... .......... .......... 23% 19.6M 2s\n", + " 2000K .......... .......... .......... .......... .......... 24% 25.0M 2s\n", + " 2050K .......... .......... .......... .......... .......... 24% 34.7M 2s\n", + " 2100K .......... .......... .......... .......... .......... 25% 75.4M 2s\n", + " 2150K .......... .......... .......... .......... .......... 26% 37.9M 2s\n", + " 2200K .......... .......... .......... .......... .......... 26% 59.5M 2s\n", + " 2250K .......... .......... .......... .......... .......... 27% 35.5M 2s\n", + " 2300K .......... .......... .......... .......... .......... 27% 54.8M 2s\n", + " 2350K .......... .......... .......... .......... .......... 28% 24.4M 2s\n", + " 2400K .......... .......... .......... .......... .......... 28% 23.1M 2s\n", + " 2450K .......... .......... .......... .......... .......... 29% 78.9M 1s\n", + " 2500K .......... .......... .......... .......... .......... 30% 154M 1s\n", + " 2550K .......... .......... .......... .......... .......... 30% 21.6M 1s\n", + " 2600K .......... .......... .......... .......... .......... 31% 90.4M 1s\n", + " 2650K .......... .......... .......... .......... .......... 31% 35.0M 1s\n", + " 2700K .......... .......... .......... .......... .......... 32% 45.9M 1s\n", + " 2750K .......... .......... .......... .......... .......... 33% 46.4M 1s\n", + " 2800K .......... .......... .......... .......... .......... 33% 38.9M 1s\n", + " 2850K .......... .......... .......... .......... .......... 34% 43.8M 1s\n", + " 2900K .......... .......... .......... .......... .......... 34% 436M 1s\n", + " 2950K .......... .......... .......... .......... .......... 35% 9.31M 1s\n", + " 3000K .......... .......... .......... .......... .......... 36% 129M 1s\n", + " 3050K .......... .......... .......... .......... .......... 36% 25.4M 1s\n", + " 3100K .......... .......... .......... .......... .......... 37% 250M 1s\n", + " 3150K .......... .......... .......... .......... .......... 37% 257M 1s\n", + " 3200K .......... .......... .......... .......... .......... 38% 195M 1s\n", + " 3250K .......... .......... .......... .......... .......... 39% 87.0M 1s\n", + " 3300K .......... .......... .......... .......... .......... 39% 20.5M 1s\n", + " 3350K .......... .......... .......... .......... .......... 40% 227M 1s\n", + " 3400K .......... .......... .......... .......... .......... 40% 54.7M 1s\n", + " 3450K .......... .......... .......... .......... .......... 41% 1.16M 1s\n", + " 3500K .......... .......... .......... .......... .......... 41% 6.99M 1s\n", + " 3550K .......... .......... .......... .......... .......... 42% 197M 1s\n", + " 3600K .......... .......... .......... .......... .......... 43% 25.0M 1s\n", + " 3650K .......... .......... .......... .......... .......... 43% 55.9M 1s\n", + " 3700K .......... .......... .......... .......... .......... 44% 37.2M 1s\n", + " 3750K .......... .......... .......... .......... .......... 44% 19.0M 1s\n", + " 3800K .......... .......... .......... .......... .......... 45% 20.6M 1s\n", + " 3850K .......... .......... .......... .......... .......... 46% 58.1M 1s\n", + " 3900K .......... .......... .......... .......... .......... 46% 80.0M 1s\n", + " 3950K .......... .......... .......... .......... .......... 47% 25.1M 1s\n", + " 4000K .......... .......... .......... .......... .......... 47% 72.0M 1s\n", + " 4050K .......... .......... .......... .......... .......... 48% 274M 1s\n", + " 4100K .......... .......... .......... .......... .......... 49% 55.7M 1s\n", + " 4150K .......... .......... .......... .......... .......... 49% 22.9M 1s\n", + " 4200K .......... .......... .......... .......... .......... 50% 210M 1s\n", + " 4250K .......... .......... .......... .......... .......... 50% 349M 1s\n", + " 4300K .......... .......... .......... .......... .......... 51% 22.8M 1s\n", + " 4350K .......... .......... .......... .......... .......... 52% 91.3M 1s\n", + " 4400K .......... .......... .......... .......... .......... 52% 243M 1s\n", + " 4450K .......... .......... .......... .......... .......... 53% 41.7M 1s\n", + " 4500K .......... .......... .......... .......... .......... 53% 25.1M 1s\n", + " 4550K .......... .......... .......... .......... .......... 54% 282M 1s\n", + " 4600K .......... .......... .......... .......... .......... 54% 118M 1s\n", + " 4650K .......... .......... .......... .......... .......... 55% 160M 1s\n", + " 4700K .......... .......... .......... .......... .......... 56% 50.7M 1s\n", + " 4750K .......... .......... .......... .......... .......... 56% 23.7M 1s\n", + " 4800K .......... .......... .......... .......... .......... 57% 200M 1s\n", + " 4850K .......... .......... .......... .......... .......... 57% 72.6M 1s\n", + " 4900K .......... .......... .......... .......... .......... 58% 284M 1s\n", + " 4950K .......... .......... .......... .......... .......... 59% 84.9M 1s\n", + " 5000K .......... .......... .......... .......... .......... 59% 47.2M 0s\n", + " 5050K .......... .......... .......... .......... .......... 60% 57.2M 0s\n", + " 5100K .......... .......... .......... .......... .......... 60% 42.9M 0s\n", + " 5150K .......... .......... .......... .......... .......... 61% 48.9M 0s\n", + " 5200K .......... .......... .......... .......... .......... 62% 42.1M 0s\n", + " 5250K .......... .......... .......... .......... .......... 62% 32.1M 0s\n", + " 5300K .......... .......... .......... .......... .......... 63% 253M 0s\n", + " 5350K .......... .......... .......... .......... .......... 63% 36.0M 0s\n", + " 5400K .......... .......... .......... .......... .......... 64% 159M 0s\n", + " 5450K .......... .......... .......... .......... .......... 65% 203M 0s\n", + " 5500K .......... .......... .......... .......... .......... 65% 25.8M 0s\n", + " 5550K .......... .......... .......... .......... .......... 66% 126M 0s\n", + " 5600K .......... .......... .......... .......... .......... 66% 74.3M 0s\n", + " 5650K .......... .......... .......... .......... .......... 67% 113M 0s\n", + " 5700K .......... .......... .......... .......... .......... 67% 20.3M 0s\n", + " 5750K .......... .......... .......... .......... .......... 68% 303M 0s\n", + " 5800K .......... .......... .......... .......... .......... 69% 270M 0s\n", + " 5850K .......... .......... .......... .......... .......... 69% 71.4M 0s\n", + " 5900K .......... .......... .......... .......... .......... 70% 276M 0s\n", + " 5950K .......... .......... .......... .......... .......... 70% 17.6M 0s\n", + " 6000K .......... .......... .......... .......... .......... 71% 74.8M 0s\n", + " 6050K .......... .......... .......... .......... .......... 72% 155M 0s\n", + " 6100K .......... .......... .......... .......... .......... 72% 96.9M 0s\n", + " 6150K .......... .......... .......... .......... .......... 73% 44.7M 0s\n", + " 6200K .......... .......... .......... .......... .......... 73% 55.9M 0s\n", + " 6250K .......... .......... .......... .......... .......... 74% 7.93M 0s\n", + " 6300K .......... .......... .......... .......... .......... 75% 337M 0s\n", + " 6350K .......... .......... .......... .......... .......... 75% 319M 0s\n", + " 6400K .......... .......... .......... .......... .......... 76% 59.7M 0s\n", + " 6450K .......... .......... .......... .......... .......... 76% 263M 0s\n", + " 6500K .......... .......... .......... .......... .......... 77% 281M 0s\n", + " 6550K .......... .......... .......... .......... .......... 78% 68.7M 0s\n", + " 6600K .......... .......... .......... .......... .......... 78% 50.1M 0s\n", + " 6650K .......... .......... .......... .......... .......... 79% 89.3M 0s\n", + " 6700K .......... .......... .......... .......... .......... 79% 82.6M 0s\n", + " 6750K .......... .......... .......... .......... .......... 80% 29.4M 0s\n", + " 6800K .......... .......... .......... .......... .......... 80% 66.8M 0s\n", + " 6850K .......... .......... .......... .......... .......... 81% 16.4M 0s\n", + " 6900K .......... .......... .......... .......... .......... 82% 2.26M 0s\n", + " 6950K .......... .......... .......... .......... .......... 82% 260M 0s\n", + " 7000K .......... .......... .......... .......... .......... 83% 28.6M 0s\n", + " 7050K .......... .......... .......... .......... .......... 83% 56.8M 0s\n", + " 7100K .......... .......... .......... .......... .......... 84% 24.7M 0s\n", + " 7150K .......... .......... .......... .......... .......... 85% 61.3M 0s\n", + " 7200K .......... .......... .......... .......... .......... 85% 26.6M 0s\n", + " 7250K .......... .......... .......... .......... .......... 86% 18.3M 0s\n", + " 7300K .......... .......... .......... .......... .......... 86% 2.53M 0s\n", + " 7350K .......... .......... .......... .......... .......... 87% 9.78M 0s\n", + " 7400K .......... .......... .......... .......... .......... 88% 153M 0s\n", + " 7450K .......... .......... .......... .......... .......... 88% 267M 0s\n", + " 7500K .......... .......... .......... .......... .......... 89% 144M 0s\n", + " 7550K .......... .......... .......... .......... .......... 89% 43.6M 0s\n", + " 7600K .......... .......... .......... .......... .......... 90% 50.0M 0s\n", + " 7650K .......... .......... .......... .......... .......... 91% 209M 0s\n", + " 7700K .......... .......... .......... .......... .......... 91% 34.1M 0s\n", + " 7750K .......... .......... .......... .......... .......... 92% 133M 0s\n", + " 7800K .......... .......... .......... .......... .......... 92% 36.0M 0s\n", + " 7850K .......... .......... .......... .......... .......... 93% 34.4M 0s\n", + " 7900K .......... .......... .......... .......... .......... 93% 76.4M 0s\n", + " 7950K .......... .......... .......... .......... .......... 94% 72.9M 0s\n", + " 8000K .......... .......... .......... .......... .......... 95% 120M 0s\n", + " 8050K .......... .......... .......... .......... .......... 95% 58.8M 0s\n", + " 8100K .......... .......... .......... .......... .......... 96% 20.0M 0s\n", + " 8150K .......... .......... .......... .......... .......... 96% 7.23M 0s\n", + " 8200K .......... .......... .......... .......... .......... 97% 286M 0s\n", + " 8250K .......... .......... .......... .......... .......... 98% 410M 0s\n", + " 8300K .......... .......... .......... .......... .......... 98% 440M 0s\n", + " 8350K .......... .......... .......... .......... .......... 99% 364M 0s\n", + " 8400K .......... .......... .......... .......... .......... 99% 414M 0s\n", + " 8450K ....... 100% 276M=0.8s\n", + "\n", + "2025-04-01 16:42:35 (9.83 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w115.zip.download’ saved [8660604/8660604]\n", + "\n", + "--2025-04-01 16:42:36-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w116.zip.xml\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:36-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlwLnhtbA\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=3SrdSnPvkDJv3gBLtHqGtPNf7BDT9QffvbA-miSAq-FXpaCDnh45de2YnEHnYrL7PtSa58fKRPdWsms-RimEYE3CmW8Cuws30DnTTXrsNM_jbbMYEokch1Xk3QrxqZmshQ&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:36-- https://e4ftl01.cr.usgs.gov/oauth?code=3SrdSnPvkDJv3gBLtHqGtPNf7BDT9QffvbA-miSAq-FXpaCDnh45de2YnEHnYrL7PtSa58fKRPdWsms-RimEYE3CmW8Cuws30DnTTXrsNM_jbbMYEokch1Xk3QrxqZmshQ&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlwLnhtbA\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w116.zip.xml [following]\n", + "--2025-04-01 16:42:37-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w116.zip.xml\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 2884 (2.8K) [application/xml]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.xml’\n", + "\n", + " 0K .. 100% 344M=0s\n", + "\n", + "2025-04-01 16:42:38 (344 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.xml’ saved [2884/2884]\n", + "\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.xml’ already there; not retrieving.\n", + "--2025-04-01 16:42:38-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w116.zip\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlw [following]\n", + "--2025-04-01 16:42:38-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlw\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=IsIHUUtEECR-tCJW_n0hRbuQiu-k9NoH7_Qkh5ErB9wdOqiDBDgRtPLY_dXsEf_mQUTloVJC32SnDd3g44n8io_M0LCU9j-0OL3yGx_B2y-z1pJmHr7iJLF8rKqw-Hl7_g&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlw [following]\n", + "--2025-04-01 16:42:39-- https://e4ftl01.cr.usgs.gov/oauth?code=IsIHUUtEECR-tCJW_n0hRbuQiu-k9NoH7_Qkh5ErB9wdOqiDBDgRtPLY_dXsEf_mQUTloVJC32SnDd3g44n8io_M0LCU9j-0OL3yGx_B2y-z1pJmHr7iJLF8rKqw-Hl7_g&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zMncxMTYuemlw\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w116.zip [following]\n", + "--2025-04-01 16:42:40-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n32w116.zip\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 8647454 (8.2M) [application/zip]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 286K 29s\n", + " 50K .......... .......... .......... .......... .......... 1% 639K 21s\n", + " 100K .......... .......... .......... .......... .......... 1% 6.02M 14s\n", + " 150K .......... .......... .......... .......... .......... 2% 7.67M 11s\n", + " 200K .......... .......... .......... .......... .......... 2% 625K 11s\n", + " 250K .......... .......... .......... .......... .......... 3% 12.4M 10s\n", + " 300K .......... .......... .......... .......... .......... 4% 39.0M 8s\n", + " 350K .......... .......... .......... .......... .......... 4% 24.1M 7s\n", + " 400K .......... .......... .......... .......... .......... 5% 695K 8s\n", + " 450K .......... .......... .......... .......... .......... 5% 4.99M 7s\n", + " 500K .......... .......... .......... .......... .......... 6% 23.0M 6s\n", + " 550K .......... .......... .......... .......... .......... 7% 13.8M 6s\n", + " 600K .......... .......... .......... .......... .......... 7% 20.2M 5s\n", + " 650K .......... .......... .......... .......... .......... 8% 31.1M 5s\n", + " 700K .......... .......... .......... .......... .......... 8% 45.5M 5s\n", + " 750K .......... .......... .......... .......... .......... 9% 56.8M 4s\n", + " 800K .......... .......... .......... .......... .......... 10% 22.6M 4s\n", + " 850K .......... .......... .......... .......... .......... 10% 796K 4s\n", + " 900K .......... .......... .......... .......... .......... 11% 5.28M 4s\n", + " 950K .......... .......... .......... .......... .......... 11% 16.9M 4s\n", + " 1000K .......... .......... .......... .......... .......... 12% 19.8M 4s\n", + " 1050K .......... .......... .......... .......... .......... 13% 24.1M 4s\n", + " 1100K .......... .......... .......... .......... .......... 13% 64.3M 3s\n", + " 1150K .......... .......... .......... .......... .......... 14% 24.8M 3s\n", + " 1200K .......... .......... .......... .......... .......... 14% 20.8M 3s\n", + " 1250K .......... .......... .......... .......... .......... 15% 17.8M 3s\n", + " 1300K .......... .......... .......... .......... .......... 15% 68.9M 3s\n", + " 1350K .......... .......... .......... .......... .......... 16% 55.9M 3s\n", + " 1400K .......... .......... .......... .......... .......... 17% 6.27M 3s\n", + " 1450K .......... .......... .......... .......... .......... 17% 43.2M 3s\n", + " 1500K .......... .......... .......... .......... .......... 18% 222M 2s\n", + " 1550K .......... .......... .......... .......... .......... 18% 47.7M 2s\n", + " 1600K .......... .......... .......... .......... .......... 19% 219M 2s\n", + " 1650K .......... .......... .......... .......... .......... 20% 47.8M 2s\n", + " 1700K .......... .......... .......... .......... .......... 20% 1.39M 2s\n", + " 1750K .......... .......... .......... .......... .......... 21% 2.34M 2s\n", + " 1800K .......... .......... .......... .......... .......... 21% 21.8M 2s\n", + " 1850K .......... .......... .......... .......... .......... 22% 19.0M 2s\n", + " 1900K .......... .......... .......... .......... .......... 23% 6.58M 2s\n", + " 1950K .......... .......... .......... .......... .......... 23% 36.5M 2s\n", + " 2000K .......... .......... .......... .......... .......... 24% 32.9M 2s\n", + " 2050K .......... .......... .......... .......... .......... 24% 71.0M 2s\n", + " 2100K .......... .......... .......... .......... .......... 25% 95.7M 2s\n", + " 2150K .......... .......... .......... .......... .......... 26% 88.5M 2s\n", + " 2200K .......... .......... .......... .......... .......... 26% 24.3M 2s\n", + " 2250K .......... .......... .......... .......... .......... 27% 221M 2s\n", + " 2300K .......... .......... .......... .......... .......... 27% 37.2M 2s\n", + " 2350K .......... .......... .......... .......... .......... 28% 373M 2s\n", + " 2400K .......... .......... .......... .......... .......... 29% 38.9M 2s\n", + " 2450K .......... .......... .......... .......... .......... 29% 78.6M 1s\n", + " 2500K .......... .......... .......... .......... .......... 30% 53.4M 1s\n", + " 2550K .......... .......... .......... .......... .......... 30% 37.7M 1s\n", + " 2600K .......... .......... .......... .......... .......... 31% 25.1M 1s\n", + " 2650K .......... .......... .......... .......... .......... 31% 214M 1s\n", + " 2700K .......... .......... .......... .......... .......... 32% 15.1M 1s\n", + " 2750K .......... .......... .......... .......... .......... 33% 25.1M 1s\n", + " 2800K .......... .......... .......... .......... .......... 33% 319M 1s\n", + " 2850K .......... .......... .......... .......... .......... 34% 48.3M 1s\n", + " 2900K .......... .......... .......... .......... .......... 34% 61.0M 1s\n", + " 2950K .......... .......... .......... .......... .......... 35% 34.0M 1s\n", + " 3000K .......... .......... .......... .......... .......... 36% 114M 1s\n", + " 3050K .......... .......... .......... .......... .......... 36% 23.6M 1s\n", + " 3100K .......... .......... .......... .......... .......... 37% 311M 1s\n", + " 3150K .......... .......... .......... .......... .......... 37% 34.1M 1s\n", + " 3200K .......... .......... .......... .......... .......... 38% 247M 1s\n", + " 3250K .......... .......... .......... .......... .......... 39% 24.9M 1s\n", + " 3300K .......... .......... .......... .......... .......... 39% 330M 1s\n", + " 3350K .......... .......... .......... .......... .......... 40% 26.8M 1s\n", + " 3400K .......... .......... .......... .......... .......... 40% 133M 1s\n", + " 3450K .......... .......... .......... .......... .......... 41% 1.93M 1s\n", + " 3500K .......... .......... .......... .......... .......... 42% 6.39M 1s\n", + " 3550K .......... .......... .......... .......... .......... 42% 3.63M 1s\n", + " 3600K .......... .......... .......... .......... .......... 43% 14.4M 1s\n", + " 3650K .......... .......... .......... .......... .......... 43% 47.8M 1s\n", + " 3700K .......... .......... .......... .......... .......... 44% 128M 1s\n", + " 3750K .......... .......... .......... .......... .......... 44% 31.6M 1s\n", + " 3800K .......... .......... .......... .......... .......... 45% 31.0M 1s\n", + " 3850K .......... .......... .......... .......... .......... 46% 7.32M 1s\n", + " 3900K .......... .......... .......... .......... .......... 46% 101M 1s\n", + " 3950K .......... .......... .......... .......... .......... 47% 43.8M 1s\n", + " 4000K .......... .......... .......... .......... .......... 47% 33.4M 1s\n", + " 4050K .......... .......... .......... .......... .......... 48% 44.7M 1s\n", + " 4100K .......... .......... .......... .......... .......... 49% 70.2M 1s\n", + " 4150K .......... .......... .......... .......... .......... 49% 5.51M 1s\n", + " 4200K .......... .......... .......... .......... .......... 50% 50.2M 1s\n", + " 4250K .......... .......... .......... .......... .......... 50% 309M 1s\n", + " 4300K .......... .......... .......... .......... .......... 51% 104M 1s\n", + " 4350K .......... .......... .......... .......... .......... 52% 82.8M 1s\n", + " 4400K .......... .......... .......... .......... .......... 52% 326M 1s\n", + " 4450K .......... .......... .......... .......... .......... 53% 15.6M 1s\n", + " 4500K .......... .......... .......... .......... .......... 53% 298M 1s\n", + " 4550K .......... .......... .......... .......... .......... 54% 109M 1s\n", + " 4600K .......... .......... .......... .......... .......... 55% 39.7M 1s\n", + " 4650K .......... .......... .......... .......... .......... 55% 131M 1s\n", + " 4700K .......... .......... .......... .......... .......... 56% 63.8M 1s\n", + " 4750K .......... .......... .......... .......... .......... 56% 46.6M 1s\n", + " 4800K .......... .......... .......... .......... .......... 57% 22.7M 1s\n", + " 4850K .......... .......... .......... .......... .......... 58% 159M 1s\n", + " 4900K .......... .......... .......... .......... .......... 58% 277M 1s\n", + " 4950K .......... .......... .......... .......... .......... 59% 284M 1s\n", + " 5000K .......... .......... .......... .......... .......... 59% 249M 0s\n", + " 5050K .......... .......... .......... .......... .......... 60% 344M 0s\n", + " 5100K .......... .......... .......... .......... .......... 60% 236M 0s\n", + " 5150K .......... .......... .......... .......... .......... 61% 83.2M 0s\n", + " 5200K .......... .......... .......... .......... .......... 62% 114M 0s\n", + " 5250K .......... .......... .......... .......... .......... 62% 91.1M 0s\n", + " 5300K .......... .......... .......... .......... .......... 63% 109M 0s\n", + " 5350K .......... .......... .......... .......... .......... 63% 61.5M 0s\n", + " 5400K .......... .......... .......... .......... .......... 64% 167M 0s\n", + " 5450K .......... .......... .......... .......... .......... 65% 48.0M 0s\n", + " 5500K .......... .......... .......... .......... .......... 65% 319M 0s\n", + " 5550K .......... .......... .......... .......... .......... 66% 129M 0s\n", + " 5600K .......... .......... .......... .......... .......... 66% 62.2M 0s\n", + " 5650K .......... .......... .......... .......... .......... 67% 218M 0s\n", + " 5700K .......... .......... .......... .......... .......... 68% 29.9M 0s\n", + " 5750K .......... .......... .......... .......... .......... 68% 257M 0s\n", + " 5800K .......... .......... .......... .......... .......... 69% 60.7M 0s\n", + " 5850K .......... .......... .......... .......... .......... 69% 30.2M 0s\n", + " 5900K .......... .......... .......... .......... .......... 70% 287M 0s\n", + " 5950K .......... .......... .......... .......... .......... 71% 45.0M 0s\n", + " 6000K .......... .......... .......... .......... .......... 71% 70.8M 0s\n", + " 6050K .......... .......... .......... .......... .......... 72% 210M 0s\n", + " 6100K .......... .......... .......... .......... .......... 72% 49.0M 0s\n", + " 6150K .......... .......... .......... .......... .......... 73% 111M 0s\n", + " 6200K .......... .......... .......... .......... .......... 74% 54.3M 0s\n", + " 6250K .......... .......... .......... .......... .......... 74% 98.6M 0s\n", + " 6300K .......... .......... .......... .......... .......... 75% 27.8M 0s\n", + " 6350K .......... .......... .......... .......... .......... 75% 8.16M 0s\n", + " 6400K .......... .......... .......... .......... .......... 76% 279M 0s\n", + " 6450K .......... .......... .......... .......... .......... 76% 67.2M 0s\n", + " 6500K .......... .......... .......... .......... .......... 77% 133M 0s\n", + " 6550K .......... .......... .......... .......... .......... 78% 94.6M 0s\n", + " 6600K .......... .......... .......... .......... .......... 78% 112M 0s\n", + " 6650K .......... .......... .......... .......... .......... 79% 87.7M 0s\n", + " 6700K .......... .......... .......... .......... .......... 79% 125M 0s\n", + " 6750K .......... .......... .......... .......... .......... 80% 39.3M 0s\n", + " 6800K .......... .......... .......... .......... .......... 81% 618K 0s\n", + " 6850K .......... .......... .......... .......... .......... 81% 16.1M 0s\n", + " 6900K .......... .......... .......... .......... .......... 82% 73.9M 0s\n", + " 6950K .......... .......... .......... .......... .......... 82% 73.5M 0s\n", + " 7000K .......... .......... .......... .......... .......... 83% 82.3M 0s\n", + " 7050K .......... .......... .......... .......... .......... 84% 30.2M 0s\n", + " 7100K .......... .......... .......... .......... .......... 84% 210M 0s\n", + " 7150K .......... .......... .......... .......... .......... 85% 298M 0s\n", + " 7200K .......... .......... .......... .......... .......... 85% 84.8M 0s\n", + " 7250K .......... .......... .......... .......... .......... 86% 40.1M 0s\n", + " 7300K .......... .......... .......... .......... .......... 87% 221M 0s\n", + " 7350K .......... .......... .......... .......... .......... 87% 100M 0s\n", + " 7400K .......... .......... .......... .......... .......... 88% 70.4M 0s\n", + " 7450K .......... .......... .......... .......... .......... 88% 34.2M 0s\n", + " 7500K .......... .......... .......... .......... .......... 89% 54.9M 0s\n", + " 7550K .......... .......... .......... .......... .......... 89% 40.1M 0s\n", + " 7600K .......... .......... .......... .......... .......... 90% 33.9M 0s\n", + " 7650K .......... .......... .......... .......... .......... 91% 78.6M 0s\n", + " 7700K .......... .......... .......... .......... .......... 91% 77.3M 0s\n", + " 7750K .......... .......... .......... .......... .......... 92% 150M 0s\n", + " 7800K .......... .......... .......... .......... .......... 92% 34.9M 0s\n", + " 7850K .......... .......... .......... .......... .......... 93% 136M 0s\n", + " 7900K .......... .......... .......... .......... .......... 94% 39.7M 0s\n", + " 7950K .......... .......... .......... .......... .......... 94% 139M 0s\n", + " 8000K .......... .......... .......... .......... .......... 95% 34.7M 0s\n", + " 8050K .......... .......... .......... .......... .......... 95% 43.8M 0s\n", + " 8100K .......... .......... .......... .......... .......... 96% 29.8M 0s\n", + " 8150K .......... .......... .......... .......... .......... 97% 11.9M 0s\n", + " 8200K .......... .......... .......... .......... .......... 97% 267M 0s\n", + " 8250K .......... .......... .......... .......... .......... 98% 410M 0s\n", + " 8300K .......... .......... .......... .......... .......... 98% 373M 0s\n", + " 8350K .......... .......... .......... .......... .......... 99% 307M 0s\n", + " 8400K .......... .......... .......... .......... .... 100% 394M=0.9s\n", + "\n", + "2025-04-01 16:42:41 (9.43 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n32w116.zip.download’ saved [8647454/8647454]\n", + "\n", + "--2025-04-01 16:42:41-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w115.zip.xml\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:41-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlwLnhtbA\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=iIgZTdyFiiUnXezGOb50A3RLtnoYgUC4AeFTHrqy7k1mCU8KicVKL-8iKzBklnsBYMmf-4OIO6IG9fgJasWhysv9NTAIy0-MAT29Gsf7uoNYGXlAj93TW6YpKmQrvwuIKA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:42-- https://e4ftl01.cr.usgs.gov/oauth?code=iIgZTdyFiiUnXezGOb50A3RLtnoYgUC4AeFTHrqy7k1mCU8KicVKL-8iKzBklnsBYMmf-4OIO6IG9fgJasWhysv9NTAIy0-MAT29Gsf7uoNYGXlAj93TW6YpKmQrvwuIKA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlwLnhtbA\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w115.zip.xml [following]\n", + "--2025-04-01 16:42:43-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w115.zip.xml\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 2885 (2.8K) [application/xml]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.xml’\n", + "\n", + " 0K .. 100% 306M=0s\n", + "\n", + "2025-04-01 16:42:43 (306 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.xml’ saved [2885/2885]\n", + "\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.xml’ already there; not retrieving.\n", + "--2025-04-01 16:42:43-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w115.zip\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlw [following]\n", + "--2025-04-01 16:42:44-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlw\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=Jsfi4HqPgdASloWdgS0OkQQmGVND-TgP07tvbLl0vA5rRwGIDhPRdhxJqbhBcPu4SNS6Y_03jYsk6m3bpFI6CbgTon_pLcHI2Sjw7Rf1c1zlSfD___0Px4yZ4yjdZ_-TdQ&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlw [following]\n", + "--2025-04-01 16:42:44-- https://e4ftl01.cr.usgs.gov/oauth?code=Jsfi4HqPgdASloWdgS0OkQQmGVND-TgP07tvbLl0vA5rRwGIDhPRdhxJqbhBcPu4SNS6Y_03jYsk6m3bpFI6CbgTon_pLcHI2Sjw7Rf1c1zlSfD___0Px4yZ4yjdZ_-TdQ&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTUuemlw\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w115.zip [following]\n", + "--2025-04-01 16:42:45-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w115.zip\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 10077940 (9.6M) [application/zip]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 290K 34s\n", + " 50K .......... .......... .......... .......... .......... 1% 633K 25s\n", + " 100K .......... .......... .......... .......... .......... 1% 3.99M 17s\n", + " 150K .......... .......... .......... .......... .......... 2% 30.2M 13s\n", + " 200K .......... .......... .......... .......... .......... 2% 677K 13s\n", + " 250K .......... .......... .......... .......... .......... 3% 5.94M 11s\n", + " 300K .......... .......... .......... .......... .......... 3% 27.3M 9s\n", + " 350K .......... .......... .......... .......... .......... 4% 7.65M 8s\n", + " 400K .......... .......... .......... .......... .......... 4% 734K 9s\n", + " 450K .......... .......... .......... .......... .......... 5% 13.4M 8s\n", + " 500K .......... .......... .......... .......... .......... 5% 15.4M 7s\n", + " 550K .......... .......... .......... .......... .......... 6% 18.9M 7s\n", + " 600K .......... .......... .......... .......... .......... 6% 82.6M 6s\n", + " 650K .......... .......... .......... .......... .......... 7% 27.6M 6s\n", + " 700K .......... .......... .......... .......... .......... 7% 4.13M 5s\n", + " 750K .......... .......... .......... .......... .......... 8% 122M 5s\n", + " 800K .......... .......... .......... .......... .......... 8% 836K 5s\n", + " 850K .......... .......... .......... .......... .......... 9% 20.7M 5s\n", + " 900K .......... .......... .......... .......... .......... 9% 33.7M 5s\n", + " 950K .......... .......... .......... .......... .......... 10% 26.4M 5s\n", + " 1000K .......... .......... .......... .......... .......... 10% 276M 4s\n", + " 1050K .......... .......... .......... .......... .......... 11% 8.58M 4s\n", + " 1100K .......... .......... .......... .......... .......... 11% 49.2M 4s\n", + " 1150K .......... .......... .......... .......... .......... 12% 22.0M 4s\n", + " 1200K .......... .......... .......... .......... .......... 12% 18.7M 4s\n", + " 1250K .......... .......... .......... .......... .......... 13% 362M 3s\n", + " 1300K .......... .......... .......... .......... .......... 13% 27.8M 3s\n", + " 1350K .......... .......... .......... .......... .......... 14% 356M 3s\n", + " 1400K .......... .......... .......... .......... .......... 14% 41.4M 3s\n", + " 1450K .......... .......... .......... .......... .......... 15% 8.78M 3s\n", + " 1500K .......... .......... .......... .......... .......... 15% 6.43M 3s\n", + " 1550K .......... .......... .......... .......... .......... 16% 421M 3s\n", + " 1600K .......... .......... .......... .......... .......... 16% 45.3M 3s\n", + " 1650K .......... .......... .......... .......... .......... 17% 1010K 3s\n", + " 1700K .......... .......... .......... .......... .......... 17% 7.30M 3s\n", + " 1750K .......... .......... .......... .......... .......... 18% 34.2M 3s\n", + " 1800K .......... .......... .......... .......... .......... 18% 60.1M 3s\n", + " 1850K .......... .......... .......... .......... .......... 19% 116M 3s\n", + " 1900K .......... .......... .......... .......... .......... 19% 33.1M 2s\n", + " 1950K .......... .......... .......... .......... .......... 20% 37.1M 2s\n", + " 2000K .......... .......... .......... .......... .......... 20% 294M 2s\n", + " 2050K .......... .......... .......... .......... .......... 21% 31.5M 2s\n", + " 2100K .......... .......... .......... .......... .......... 21% 268M 2s\n", + " 2150K .......... .......... .......... .......... .......... 22% 8.00M 2s\n", + " 2200K .......... .......... .......... .......... .......... 22% 57.5M 2s\n", + " 2250K .......... .......... .......... .......... .......... 23% 359M 2s\n", + " 2300K .......... .......... .......... .......... .......... 23% 54.6M 2s\n", + " 2350K .......... .......... .......... .......... .......... 24% 85.5M 2s\n", + " 2400K .......... .......... .......... .......... .......... 24% 42.0M 2s\n", + " 2450K .......... .......... .......... .......... .......... 25% 76.7M 2s\n", + " 2500K .......... .......... .......... .......... .......... 25% 42.2M 2s\n", + " 2550K .......... .......... .......... .......... .......... 26% 56.3M 2s\n", + " 2600K .......... .......... .......... .......... .......... 26% 56.3M 2s\n", + " 2650K .......... .......... .......... .......... .......... 27% 48.2M 2s\n", + " 2700K .......... .......... .......... .......... .......... 27% 32.3M 2s\n", + " 2750K .......... .......... .......... .......... .......... 28% 31.9M 2s\n", + " 2800K .......... .......... .......... .......... .......... 28% 8.68M 2s\n", + " 2850K .......... .......... .......... .......... .......... 29% 57.2M 2s\n", + " 2900K .......... .......... .......... .......... .......... 29% 30.3M 1s\n", + " 2950K .......... .......... .......... .......... .......... 30% 51.1M 1s\n", + " 3000K .......... .......... .......... .......... .......... 30% 223M 1s\n", + " 3050K .......... .......... .......... .......... .......... 31% 53.8M 1s\n", + " 3100K .......... .......... .......... .......... .......... 32% 36.4M 1s\n", + " 3150K .......... .......... .......... .......... .......... 32% 238M 1s\n", + " 3200K .......... .......... .......... .......... .......... 33% 21.8M 1s\n", + " 3250K .......... .......... .......... .......... .......... 33% 61.0M 1s\n", + " 3300K .......... .......... .......... .......... .......... 34% 45.9M 1s\n", + " 3350K .......... .......... .......... .......... .......... 34% 1.20M 1s\n", + " 3400K .......... .......... .......... .......... .......... 35% 9.36M 1s\n", + " 3450K .......... .......... .......... .......... .......... 35% 18.8M 1s\n", + " 3500K .......... .......... .......... .......... .......... 36% 321M 1s\n", + " 3550K .......... .......... .......... .......... .......... 36% 39.2M 1s\n", + " 3600K .......... .......... .......... .......... .......... 37% 14.6M 1s\n", + " 3650K .......... .......... .......... .......... .......... 37% 28.1M 1s\n", + " 3700K .......... .......... .......... .......... .......... 38% 39.4M 1s\n", + " 3750K .......... .......... .......... .......... .......... 38% 59.8M 1s\n", + " 3800K .......... .......... .......... .......... .......... 39% 23.1M 1s\n", + " 3850K .......... .......... .......... .......... .......... 39% 75.9M 1s\n", + " 3900K .......... .......... .......... .......... .......... 40% 15.9M 1s\n", + " 3950K .......... .......... .......... .......... .......... 40% 17.2M 1s\n", + " 4000K .......... .......... .......... .......... .......... 41% 90.8M 1s\n", + " 4050K .......... .......... .......... .......... .......... 41% 41.7M 1s\n", + " 4100K .......... .......... .......... .......... .......... 42% 208M 1s\n", + " 4150K .......... .......... .......... .......... .......... 42% 417M 1s\n", + " 4200K .......... .......... .......... .......... .......... 43% 51.6M 1s\n", + " 4250K .......... .......... .......... .......... .......... 43% 400M 1s\n", + " 4300K .......... .......... .......... .......... .......... 44% 32.6M 1s\n", + " 4350K .......... .......... .......... .......... .......... 44% 89.6M 1s\n", + " 4400K .......... .......... .......... .......... .......... 45% 182M 1s\n", + " 4450K .......... .......... .......... .......... .......... 45% 59.8M 1s\n", + " 4500K .......... .......... .......... .......... .......... 46% 135M 1s\n", + " 4550K .......... .......... .......... .......... .......... 46% 30.6M 1s\n", + " 4600K .......... .......... .......... .......... .......... 47% 52.7M 1s\n", + " 4650K .......... .......... .......... .......... .......... 47% 432M 1s\n", + " 4700K .......... .......... .......... .......... .......... 48% 38.8M 1s\n", + " 4750K .......... .......... .......... .......... .......... 48% 30.0M 1s\n", + " 4800K .......... .......... .......... .......... .......... 49% 307M 1s\n", + " 4850K .......... .......... .......... .......... .......... 49% 10.3M 1s\n", + " 4900K .......... .......... .......... .......... .......... 50% 99.4M 1s\n", + " 4950K .......... .......... .......... .......... .......... 50% 243M 1s\n", + " 5000K .......... .......... .......... .......... .......... 51% 81.9M 1s\n", + " 5050K .......... .......... .......... .......... .......... 51% 49.9M 1s\n", + " 5100K .......... .......... .......... .......... .......... 52% 28.0M 1s\n", + " 5150K .......... .......... .......... .......... .......... 52% 116M 1s\n", + " 5200K .......... .......... .......... .......... .......... 53% 41.6M 1s\n", + " 5250K .......... .......... .......... .......... .......... 53% 126M 1s\n", + " 5300K .......... .......... .......... .......... .......... 54% 359M 1s\n", + " 5350K .......... .......... .......... .......... .......... 54% 77.0M 1s\n", + " 5400K .......... .......... .......... .......... .......... 55% 55.0M 1s\n", + " 5450K .......... .......... .......... .......... .......... 55% 95.4M 1s\n", + " 5500K .......... .......... .......... .......... .......... 56% 115M 1s\n", + " 5550K .......... .......... .......... .......... .......... 56% 86.6M 1s\n", + " 5600K .......... .......... .......... .......... .......... 57% 81.9M 1s\n", + " 5650K .......... .......... .......... .......... .......... 57% 87.8M 1s\n", + " 5700K .......... .......... .......... .......... .......... 58% 40.0M 1s\n", + " 5750K .......... .......... .......... .......... .......... 58% 56.2M 1s\n", + " 5800K .......... .......... .......... .......... .......... 59% 38.0M 1s\n", + " 5850K .......... .......... .......... .......... .......... 59% 341M 0s\n", + " 5900K .......... .......... .......... .......... .......... 60% 137M 0s\n", + " 5950K .......... .......... .......... .......... .......... 60% 35.2M 0s\n", + " 6000K .......... .......... .......... .......... .......... 61% 356M 0s\n", + " 6050K .......... .......... .......... .......... .......... 61% 29.4M 0s\n", + " 6100K .......... .......... .......... .......... .......... 62% 30.7M 0s\n", + " 6150K .......... .......... .......... .......... .......... 62% 109M 0s\n", + " 6200K .......... .......... .......... .......... .......... 63% 73.0M 0s\n", + " 6250K .......... .......... .......... .......... .......... 64% 137M 0s\n", + " 6300K .......... .......... .......... .......... .......... 64% 135M 0s\n", + " 6350K .......... .......... .......... .......... .......... 65% 27.4M 0s\n", + " 6400K .......... .......... .......... .......... .......... 65% 61.6M 0s\n", + " 6450K .......... .......... .......... .......... .......... 66% 276M 0s\n", + " 6500K .......... .......... .......... .......... .......... 66% 99.9M 0s\n", + " 6550K .......... .......... .......... .......... .......... 67% 370M 0s\n", + " 6600K .......... .......... .......... .......... .......... 67% 36.9M 0s\n", + " 6650K .......... .......... .......... .......... .......... 68% 162M 0s\n", + " 6700K .......... .......... .......... .......... .......... 68% 23.5M 0s\n", + " 6750K .......... .......... .......... .......... .......... 69% 4.07M 0s\n", + " 6800K .......... .......... .......... .......... .......... 69% 17.7M 0s\n", + " 6850K .......... .......... .......... .......... .......... 70% 3.49M 0s\n", + " 6900K .......... .......... .......... .......... .......... 70% 223M 0s\n", + " 6950K .......... .......... .......... .......... .......... 71% 125M 0s\n", + " 7000K .......... .......... .......... .......... .......... 71% 92.8M 0s\n", + " 7050K .......... .......... .......... .......... .......... 72% 64.5M 0s\n", + " 7100K .......... .......... .......... .......... .......... 72% 65.0M 0s\n", + " 7150K .......... .......... .......... .......... .......... 73% 38.5M 0s\n", + " 7200K .......... .......... .......... .......... .......... 73% 27.7M 0s\n", + " 7250K .......... .......... .......... .......... .......... 74% 1.57M 0s\n", + " 7300K .......... .......... .......... .......... .......... 74% 63.0M 0s\n", + " 7350K .......... .......... .......... .......... .......... 75% 56.3M 0s\n", + " 7400K .......... .......... .......... .......... .......... 75% 104M 0s\n", + " 7450K .......... .......... .......... .......... .......... 76% 28.0M 0s\n", + " 7500K .......... .......... .......... .......... .......... 76% 64.8M 0s\n", + " 7550K .......... .......... .......... .......... .......... 77% 77.9M 0s\n", + " 7600K .......... .......... .......... .......... .......... 77% 97.7M 0s\n", + " 7650K .......... .......... .......... .......... .......... 78% 44.1M 0s\n", + " 7700K .......... .......... .......... .......... .......... 78% 148M 0s\n", + " 7750K .......... .......... .......... .......... .......... 79% 65.5M 0s\n", + " 7800K .......... .......... .......... .......... .......... 79% 43.4M 0s\n", + " 7850K .......... .......... .......... .......... .......... 80% 42.5M 0s\n", + " 7900K .......... .......... .......... .......... .......... 80% 82.8M 0s\n", + " 7950K .......... .......... .......... .......... .......... 81% 69.1M 0s\n", + " 8000K .......... .......... .......... .......... .......... 81% 7.43M 0s\n", + " 8050K .......... .......... .......... .......... .......... 82% 44.6M 0s\n", + " 8100K .......... .......... .......... .......... .......... 82% 88.0M 0s\n", + " 8150K .......... .......... .......... .......... .......... 83% 5.77M 0s\n", + " 8200K .......... .......... .......... .......... .......... 83% 292M 0s\n", + " 8250K .......... .......... .......... .......... .......... 84% 432M 0s\n", + " 8300K .......... .......... .......... .......... .......... 84% 370M 0s\n", + " 8350K .......... .......... .......... .......... .......... 85% 319M 0s\n", + " 8400K .......... .......... .......... .......... .......... 85% 417M 0s\n", + " 8450K .......... .......... .......... .......... .......... 86% 281M 0s\n", + " 8500K .......... .......... .......... .......... .......... 86% 330M 0s\n", + " 8550K .......... .......... .......... .......... .......... 87% 337M 0s\n", + " 8600K .......... .......... .......... .......... .......... 87% 296M 0s\n", + " 8650K .......... .......... .......... .......... .......... 88% 341M 0s\n", + " 8700K .......... .......... .......... .......... .......... 88% 332M 0s\n", + " 8750K .......... .......... .......... .......... .......... 89% 373M 0s\n", + " 8800K .......... .......... .......... .......... .......... 89% 379M 0s\n", + " 8850K .......... .......... .......... .......... .......... 90% 267M 0s\n", + " 8900K .......... .......... .......... .......... .......... 90% 397M 0s\n", + " 8950K .......... .......... .......... .......... .......... 91% 23.5M 0s\n", + " 9000K .......... .......... .......... .......... .......... 91% 60.7M 0s\n", + " 9050K .......... .......... .......... .......... .......... 92% 81.8M 0s\n", + " 9100K .......... .......... .......... .......... .......... 92% 90.6M 0s\n", + " 9150K .......... .......... .......... .......... .......... 93% 54.4M 0s\n", + " 9200K .......... .......... .......... .......... .......... 93% 282M 0s\n", + " 9250K .......... .......... .......... .......... .......... 94% 153M 0s\n", + " 9300K .......... .......... .......... .......... .......... 95% 58.0M 0s\n", + " 9350K .......... .......... .......... .......... .......... 95% 62.5M 0s\n", + " 9400K .......... .......... .......... .......... .......... 96% 176M 0s\n", + " 9450K .......... .......... .......... .......... .......... 96% 100M 0s\n", + " 9500K .......... .......... .......... .......... .......... 97% 13.0M 0s\n", + " 9550K .......... .......... .......... .......... .......... 97% 119M 0s\n", + " 9600K .......... .......... .......... .......... .......... 98% 56.8M 0s\n", + " 9650K .......... .......... .......... .......... .......... 98% 42.3M 0s\n", + " 9700K .......... .......... .......... .......... .......... 99% 1.05M 0s\n", + " 9750K .......... .......... .......... .......... .......... 99% 73.2M 0s\n", + " 9800K .......... .......... .......... .......... . 100% 13.4M=0.9s\n", + "\n", + "2025-04-01 16:42:46 (10.6 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w115.zip.download’ saved [10077940/10077940]\n", + "\n", + "--2025-04-01 16:42:47-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w116.zip.xml\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:47-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlwLnhtbA\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=wiIjGpKzim0NtpqfDfyUXtUn-sxVmuYIrN_BObE1O7GbLeG3AAhBJyWRa3Zmvn-T7PaAM1SDcfXJvNebiATA83OreJ00N7YLGvK3Q7tYxBmch5AayRurBKikLKFHkOQtbw&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlwLnhtbA [following]\n", + "--2025-04-01 16:42:47-- https://e4ftl01.cr.usgs.gov/oauth?code=wiIjGpKzim0NtpqfDfyUXtUn-sxVmuYIrN_BObE1O7GbLeG3AAhBJyWRa3Zmvn-T7PaAM1SDcfXJvNebiATA83OreJ00N7YLGvK3Q7tYxBmch5AayRurBKikLKFHkOQtbw&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlwLnhtbA\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w116.zip.xml [following]\n", + "--2025-04-01 16:42:48-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w116.zip.xml\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 2884 (2.8K) [application/xml]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.xml’\n", + "\n", + " 0K .. 100% 212M=0s\n", + "\n", + "2025-04-01 16:42:49 (212 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.xml’ saved [2884/2884]\n", + "\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.xml’ already there; not retrieving.\n", + "File ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.xml’ already there; not retrieving.\n", + "--2025-04-01 16:42:49-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w116.zip\n", + "Resolving e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)... 2001:49c8:4000:127d::133:130, 152.61.133.130\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlw [following]\n", + "--2025-04-01 16:42:49-- https://urs.earthdata.nasa.gov/oauth/authorize?scope=uid&app_type=401&client_id=ijpRZvb9qeKCK5ctsn75Tg&response_type=code&redirect_uri=https%3A%2F%2Fe4ftl01.cr.usgs.gov%2Foauth&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlw\n", + "Resolving urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)... 2001:4d0:241a:4081::89, 198.118.243.33\n", + "Connecting to urs.earthdata.nasa.gov (urs.earthdata.nasa.gov)|2001:4d0:241a:4081::89|:443... connected.\n", + "HTTP request sent, awaiting response... 401 Unauthorized\n", + "Authentication selected: Basic realm=\"Please enter your Earthdata Login credentials. If you do not have a Earthdata Login, create one at https://urs.earthdata.nasa.gov//users/new\"\n", + "Reusing existing connection to [urs.earthdata.nasa.gov]:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/oauth?code=AHX3eLjDrsiHYg432DoEtLDj-U38BvCF8JCwxzk3EheTH8-VRY1Ok5BFu4K9I8z52yRl9dnbLtAhWzIXvc1KVs9jHnQtVDjezJFj7SosZnlSBB3Obn7u6TfN5h6hFOWEXA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlw [following]\n", + "--2025-04-01 16:42:50-- https://e4ftl01.cr.usgs.gov/oauth?code=AHX3eLjDrsiHYg432DoEtLDj-U38BvCF8JCwxzk3EheTH8-VRY1Ok5BFu4K9I8z52yRl9dnbLtAhWzIXvc1KVs9jHnQtVDjezJFj7SosZnlSBB3Obn7u6TfN5h6hFOWEXA&state=aHR0cHM6Ly9lNGZ0bDAxLmNyLnVzZ3MuZ292L01FQVNVUkVTL05BU0FERU1fSEdULjAwMS8yMDAwLjAyLjExL05BU0FERU1fSEdUX24zM3cxMTYuemlw\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w116.zip [following]\n", + "--2025-04-01 16:42:50-- https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/2000.02.11/NASADEM_HGT_n33w116.zip\n", + "Connecting to e4ftl01.cr.usgs.gov (e4ftl01.cr.usgs.gov)|2001:49c8:4000:127d::133:130|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 9697051 (9.2M) [application/zip]\n", + "Saving to: ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.download’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 286K 33s\n", + " 50K .......... .......... .......... .......... .......... 1% 649K 24s\n", + " 100K .......... .......... .......... .......... .......... 1% 2.85M 17s\n", + " 150K .......... .......... .......... .......... .......... 2% 57.9M 12s\n", + " 200K .......... .......... .......... .......... .......... 2% 647K 13s\n", + " 250K .......... .......... .......... .......... .......... 3% 5.21M 11s\n", + " 300K .......... .......... .......... .......... .......... 3% 41.0M 9s\n", + " 350K .......... .......... .......... .......... .......... 4% 15.9M 8s\n", + " 400K .......... .......... .......... .......... .......... 4% 764K 9s\n", + " 450K .......... .......... .......... .......... .......... 5% 4.81M 8s\n", + " 500K .......... .......... .......... .......... .......... 5% 9.11M 7s\n", + " 550K .......... .......... .......... .......... .......... 6% 15.7M 7s\n", + " 600K .......... .......... .......... .......... .......... 6% 19.5M 6s\n", + " 650K .......... .......... .......... .......... .......... 7% 20.8M 6s\n", + " 700K .......... .......... .......... .......... .......... 7% 48.8M 5s\n", + " 750K .......... .......... .......... .......... .......... 8% 145M 5s\n", + " 800K .......... .......... .......... .......... .......... 8% 31.5M 5s\n", + " 850K .......... .......... .......... .......... .......... 9% 871K 5s\n", + " 900K .......... .......... .......... .......... .......... 10% 40.2M 5s\n", + " 950K .......... .......... .......... .......... .......... 10% 3.22M 4s\n", + " 1000K .......... .......... .......... .......... .......... 11% 32.3M 4s\n", + " 1050K .......... .......... .......... .......... .......... 11% 25.8M 4s\n", + " 1100K .......... .......... .......... .......... .......... 12% 6.75M 4s\n", + " 1150K .......... .......... .......... .......... .......... 12% 242M 4s\n", + " 1200K .......... .......... .......... .......... .......... 13% 19.8M 4s\n", + " 1250K .......... .......... .......... .......... .......... 13% 77.3M 3s\n", + " 1300K .......... .......... .......... .......... .......... 14% 38.6M 3s\n", + " 1350K .......... .......... .......... .......... .......... 14% 5.47M 3s\n", + " 1400K .......... .......... .......... .......... .......... 15% 134M 3s\n", + " 1450K .......... .......... .......... .......... .......... 15% 86.9M 3s\n", + " 1500K .......... .......... .......... .......... .......... 16% 118M 3s\n", + " 1550K .......... .......... .......... .......... .......... 16% 47.3M 3s\n", + " 1600K .......... .......... .......... .......... .......... 17% 26.6M 3s\n", + " 1650K .......... .......... .......... .......... .......... 17% 43.2M 3s\n", + " 1700K .......... .......... .......... .......... .......... 18% 1.23M 3s\n", + " 1750K .......... .......... .......... .......... .......... 19% 27.4M 3s\n", + " 1800K .......... .......... .......... .......... .......... 19% 32.4M 2s\n", + " 1850K .......... .......... .......... .......... .......... 20% 3.38M 2s\n", + " 1900K .......... .......... .......... .......... .......... 20% 41.9M 2s\n", + " 1950K .......... .......... .......... .......... .......... 21% 9.48M 2s\n", + " 2000K .......... .......... .......... .......... .......... 21% 24.8M 2s\n", + " 2050K .......... .......... .......... .......... .......... 22% 17.7M 2s\n", + " 2100K .......... .......... .......... .......... .......... 22% 146M 2s\n", + " 2150K .......... .......... .......... .......... .......... 23% 38.1M 2s\n", + " 2200K .......... .......... .......... .......... .......... 23% 22.2M 2s\n", + " 2250K .......... .......... .......... .......... .......... 24% 49.8M 2s\n", + " 2300K .......... .......... .......... .......... .......... 24% 43.1M 2s\n", + " 2350K .......... .......... .......... .......... .......... 25% 128M 2s\n", + " 2400K .......... .......... .......... .......... .......... 25% 47.0M 2s\n", + " 2450K .......... .......... .......... .......... .......... 26% 40.8M 2s\n", + " 2500K .......... .......... .......... .......... .......... 26% 8.91M 2s\n", + " 2550K .......... .......... .......... .......... .......... 27% 64.7M 2s\n", + " 2600K .......... .......... .......... .......... .......... 27% 17.9M 2s\n", + " 2650K .......... .......... .......... .......... .......... 28% 284M 2s\n", + " 2700K .......... .......... .......... .......... .......... 29% 425M 2s\n", + " 2750K .......... .......... .......... .......... .......... 29% 43.5M 2s\n", + " 2800K .......... .......... .......... .......... .......... 30% 27.3M 1s\n", + " 2850K .......... .......... .......... .......... .......... 30% 112M 1s\n", + " 2900K .......... .......... .......... .......... .......... 31% 66.4M 1s\n", + " 2950K .......... .......... .......... .......... .......... 31% 60.7M 1s\n", + " 3000K .......... .......... .......... .......... .......... 32% 40.9M 1s\n", + " 3050K .......... .......... .......... .......... .......... 32% 64.3M 1s\n", + " 3100K .......... .......... .......... .......... .......... 33% 49.4M 1s\n", + " 3150K .......... .......... .......... .......... .......... 33% 160M 1s\n", + " 3200K .......... .......... .......... .......... .......... 34% 49.6M 1s\n", + " 3250K .......... .......... .......... .......... .......... 34% 65.3M 1s\n", + " 3300K .......... .......... .......... .......... .......... 35% 21.9M 1s\n", + " 3350K .......... .......... .......... .......... .......... 35% 250M 1s\n", + " 3400K .......... .......... .......... .......... .......... 36% 1.53M 1s\n", + " 3450K .......... .......... .......... .......... .......... 36% 45.1M 1s\n", + " 3500K .......... .......... .......... .......... .......... 37% 18.2M 1s\n", + " 3550K .......... .......... .......... .......... .......... 38% 10.9M 1s\n", + " 3600K .......... .......... .......... .......... .......... 38% 40.8M 1s\n", + " 3650K .......... .......... .......... .......... .......... 39% 19.1M 1s\n", + " 3700K .......... .......... .......... .......... .......... 39% 16.4M 1s\n", + " 3750K .......... .......... .......... .......... .......... 40% 41.1M 1s\n", + " 3800K .......... .......... .......... .......... .......... 40% 24.9M 1s\n", + " 3850K .......... .......... .......... .......... .......... 41% 39.3M 1s\n", + " 3900K .......... .......... .......... .......... .......... 41% 86.0M 1s\n", + " 3950K .......... .......... .......... .......... .......... 42% 87.3M 1s\n", + " 4000K .......... .......... .......... .......... .......... 42% 26.4M 1s\n", + " 4050K .......... .......... .......... .......... .......... 43% 106M 1s\n", + " 4100K .......... .......... .......... .......... .......... 43% 6.34M 1s\n", + " 4150K .......... .......... .......... .......... .......... 44% 41.7M 1s\n", + " 4200K .......... .......... .......... .......... .......... 44% 26.9M 1s\n", + " 4250K .......... .......... .......... .......... .......... 45% 26.5M 1s\n", + " 4300K .......... .......... .......... .......... .......... 45% 307M 1s\n", + " 4350K .......... .......... .......... .......... .......... 46% 32.8M 1s\n", + " 4400K .......... .......... .......... .......... .......... 46% 37.2M 1s\n", + " 4450K .......... .......... .......... .......... .......... 47% 33.1M 1s\n", + " 4500K .......... .......... .......... .......... .......... 48% 175M 1s\n", + " 4550K .......... .......... .......... .......... .......... 48% 33.5M 1s\n", + " 4600K .......... .......... .......... .......... .......... 49% 72.9M 1s\n", + " 4650K .......... .......... .......... .......... .......... 49% 38.9M 1s\n", + " 4700K .......... .......... .......... .......... .......... 50% 164M 1s\n", + " 4750K .......... .......... .......... .......... .......... 50% 37.4M 1s\n", + " 4800K .......... .......... .......... .......... .......... 51% 64.0M 1s\n", + " 4850K .......... .......... .......... .......... .......... 51% 42.3M 1s\n", + " 4900K .......... .......... .......... .......... .......... 52% 379M 1s\n", + " 4950K .......... .......... .......... .......... .......... 52% 17.0M 1s\n", + " 5000K .......... .......... .......... .......... .......... 53% 268M 1s\n", + " 5050K .......... .......... .......... .......... .......... 53% 209M 1s\n", + " 5100K .......... .......... .......... .......... .......... 54% 86.7M 1s\n", + " 5150K .......... .......... .......... .......... .......... 54% 407M 1s\n", + " 5200K .......... .......... .......... .......... .......... 55% 27.0M 1s\n", + " 5250K .......... .......... .......... .......... .......... 55% 157M 1s\n", + " 5300K .......... .......... .......... .......... .......... 56% 28.7M 1s\n", + " 5350K .......... .......... .......... .......... .......... 57% 107M 1s\n", + " 5400K .......... .......... .......... .......... .......... 57% 72.6M 1s\n", + " 5450K .......... .......... .......... .......... .......... 58% 49.5M 1s\n", + " 5500K .......... .......... .......... .......... .......... 58% 346M 1s\n", + " 5550K .......... .......... .......... .......... .......... 59% 22.8M 1s\n", + " 5600K .......... .......... .......... .......... .......... 59% 323M 1s\n", + " 5650K .......... .......... .......... .......... .......... 60% 73.0M 0s\n", + " 5700K .......... .......... .......... .......... .......... 60% 42.1M 0s\n", + " 5750K .......... .......... .......... .......... .......... 61% 50.3M 0s\n", + " 5800K .......... .......... .......... .......... .......... 61% 61.0M 0s\n", + " 5850K .......... .......... .......... .......... .......... 62% 37.3M 0s\n", + " 5900K .......... .......... .......... .......... .......... 62% 136M 0s\n", + " 5950K .......... .......... .......... .......... .......... 63% 51.1M 0s\n", + " 6000K .......... .......... .......... .......... .......... 63% 38.8M 0s\n", + " 6050K .......... .......... .......... .......... .......... 64% 346M 0s\n", + " 6100K .......... .......... .......... .......... .......... 64% 148M 0s\n", + " 6150K .......... .......... .......... .......... .......... 65% 211M 0s\n", + " 6200K .......... .......... .......... .......... .......... 65% 28.3M 0s\n", + " 6250K .......... .......... .......... .......... .......... 66% 42.1M 0s\n", + " 6300K .......... .......... .......... .......... .......... 67% 67.8M 0s\n", + " 6350K .......... .......... .......... .......... .......... 67% 56.3M 0s\n", + " 6400K .......... .......... .......... .......... .......... 68% 33.3M 0s\n", + " 6450K .......... .......... .......... .......... .......... 68% 356M 0s\n", + " 6500K .......... .......... .......... .......... .......... 69% 31.5M 0s\n", + " 6550K .......... .......... .......... .......... .......... 69% 296M 0s\n", + " 6600K .......... .......... .......... .......... .......... 70% 40.4M 0s\n", + " 6650K .......... .......... .......... .......... .......... 70% 77.3M 0s\n", + " 6700K .......... .......... .......... .......... .......... 71% 98.4M 0s\n", + " 6750K .......... .......... .......... .......... .......... 71% 30.0M 0s\n", + " 6800K .......... .......... .......... .......... .......... 72% 456M 0s\n", + " 6850K .......... .......... .......... .......... .......... 72% 10.3M 0s\n", + " 6900K .......... .......... .......... .......... .......... 73% 21.4M 0s\n", + " 6950K .......... .......... .......... .......... .......... 73% 18.9M 0s\n", + " 7000K .......... .......... .......... .......... .......... 74% 4.56M 0s\n", + " 7050K .......... .......... .......... .......... .......... 74% 1.15M 0s\n", + " 7100K .......... .......... .......... .......... .......... 75% 40.0M 0s\n", + " 7150K .......... .......... .......... .......... .......... 76% 61.0M 0s\n", + " 7200K .......... .......... .......... .......... .......... 76% 53.4M 0s\n", + " 7250K .......... .......... .......... .......... .......... 77% 35.4M 0s\n", + " 7300K .......... .......... .......... .......... .......... 77% 92.1M 0s\n", + " 7350K .......... .......... .......... .......... .......... 78% 64.8M 0s\n", + " 7400K .......... .......... .......... .......... .......... 78% 67.2M 0s\n", + " 7450K .......... .......... .......... .......... .......... 79% 41.6M 0s\n", + " 7500K .......... .......... .......... .......... .......... 79% 48.7M 0s\n", + " 7550K .......... .......... .......... .......... .......... 80% 330M 0s\n", + " 7600K .......... .......... .......... .......... .......... 80% 33.0M 0s\n", + " 7650K .......... .......... .......... .......... .......... 81% 68.6M 0s\n", + " 7700K .......... .......... .......... .......... .......... 81% 49.8M 0s\n", + " 7750K .......... .......... .......... .......... .......... 82% 156M 0s\n", + " 7800K .......... .......... .......... .......... .......... 82% 33.9M 0s\n", + " 7850K .......... .......... .......... .......... .......... 83% 142M 0s\n", + " 7900K .......... .......... .......... .......... .......... 83% 28.0M 0s\n", + " 7950K .......... .......... .......... .......... .......... 84% 114M 0s\n", + " 8000K .......... .......... .......... .......... .......... 85% 88.6M 0s\n", + " 8050K .......... .......... .......... .......... .......... 85% 89.8M 0s\n", + " 8100K .......... .......... .......... .......... .......... 86% 63.1M 0s\n", + " 8150K .......... .......... .......... .......... .......... 86% 8.79M 0s\n", + " 8200K .......... .......... .......... .......... .......... 87% 286M 0s\n", + " 8250K .......... .......... .......... .......... .......... 87% 414M 0s\n", + " 8300K .......... .......... .......... .......... .......... 88% 394M 0s\n", + " 8350K .......... .......... .......... .......... .......... 88% 296M 0s\n", + " 8400K .......... .......... .......... .......... .......... 89% 286M 0s\n", + " 8450K .......... .......... .......... .......... .......... 89% 260M 0s\n", + " 8500K .......... .......... .......... .......... .......... 90% 70.0M 0s\n", + " 8550K .......... .......... .......... .......... .......... 90% 68.0M 0s\n", + " 8600K .......... .......... .......... .......... .......... 91% 78.8M 0s\n", + " 8650K .......... .......... .......... .......... .......... 91% 116M 0s\n", + " 8700K .......... .......... .......... .......... .......... 92% 77.8M 0s\n", + " 8750K .......... .......... .......... .......... .......... 92% 45.9M 0s\n", + " 8800K .......... .......... .......... .......... .......... 93% 57.2M 0s\n", + " 8850K .......... .......... .......... .......... .......... 93% 96.7M 0s\n", + " 8900K .......... .......... .......... .......... .......... 94% 37.2M 0s\n", + " 8950K .......... .......... .......... .......... .......... 95% 45.8M 0s\n", + " 9000K .......... .......... .......... .......... .......... 95% 102M 0s\n", + " 9050K .......... .......... .......... .......... .......... 96% 25.6M 0s\n", + " 9100K .......... .......... .......... .......... .......... 96% 151M 0s\n", + " 9150K .......... .......... .......... .......... .......... 97% 87.3M 0s\n", + " 9200K .......... .......... .......... .......... .......... 97% 69.8M 0s\n", + " 9250K .......... .......... .......... .......... .......... 98% 34.2M 0s\n", + " 9300K .......... .......... .......... .......... .......... 98% 69.7M 0s\n", + " 9350K .......... .......... .......... .......... .......... 99% 36.7M 0s\n", + " 9400K .......... .......... .......... .......... .......... 99% 24.3M 0s\n", + " 9450K .......... ......... 100% 293M=0.9s\n", + "\n", + "2025-04-01 16:42:52 (10.6 MB/s) - ‘/Users/gregoryhalverson/data/NASADEM/NASADEM_HGT_n33w116.zip.download’ saved [9697051/9697051]\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "76832/76832 [==============================] - 19s 242us/step\n" + ] + } + ], "source": [ - "FLiES_results = process_FLiES_ANN(\n", + "FLiES_results = FLiESANN(\n", " geometry=geometry,\n", " time_UTC=time_UTC,\n", " albedo=albedo\n", @@ -98,9 +9260,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAPoCAYAAABkvZZOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzsvQnQbllV3n++2wxBaECIggJqEAeMJrGMWApGY+JQcUJFsdQEh3KoFBI1GjXBiqmKf0sL40QSDCaKokYtxFlMVBxTxnlIHEDEgIi0QHfTyiT0/dd6P373/u7Ta5/3uw3affnWU/XW+77n7LP32muvvc9ez15nn5Nt2y5ug8FgMBgMBoPBYDAYDAaDwWAwuOZw4Y4WYDAYDAaDwWAwGAwGg8FgMBgMBrcPQ/AOBoPBYDAYDAaDwWAwGAwGg8E1iiF4B4PBYDAYDAaDwWAwGAwGg8HgGsUQvIPBYDAYDAaDwWAwGAwGg8FgcI1iCN7BYDAYDAaDwWAwGAwGg8FgMLhGMQTvYDAYDAaDwWAwGAwGg8FgMBhcoxiCdzAYDAaDwWAwGAwGg8FgMBgMrlEMwTsYDAaDwWAwGAwGg8FgMBgMBtcohuAdDAaDwWAwGAwGg8FgMBgMBoNrFEPwDgaDwWAwGAwGg8FgMBgMBoPBNYoheAeDwWAwGAwGg8FgMBgMBoPB4BrFELyDwWAwGAwGg8FgMBgMBoPBYHCNYgjewWAwGAwGg8FgMBgMBoPBYDC4RjEE72AwGAwGg8FgMBgMBoPBYDAYXKMYgncwGAwGg8FgMBgMBoPBYDAYDK5RDME7GAwGg8FgMBgMBoPBYDAYDAbXKIbgHQwGg8FgMBgMBoPBYDAYDAaDaxRD8A4Gg8FgMBgMBoPBYDAYDAaDwTWKIXgHg8FgMBgMBoPBYDAYDAaDweAaxRC8g8FgMBgMBoPBYDAYDAaDwWBwjWII3sFgMBgMBoPBYDAYDAaDwWAwuEYxBO9gMBgMBoPBYDAYDAaDwWAwGFyjGIJ3MBgMBoPBYDAYDAaDwWAwGAyuUQzBOxgMBoPBYDAYDAaDwWAwGAwG1yiG4B0MBoPBYDAYDAaDwWAwGAwGg2sUQ/AOBoPBYDAYDAaDwWAwGAwGg8E1iiF4B4PBYDAYDAaDwWAwGAwGg8HgGsUQvIPBYDAYDAaDwWAwGAwGg8FgcI1iCN7BYDAYDAaDwWAwGAwGg8FgMLhGMQTvYHDO8exnP3u7ePHi4XswGAwGg8FgMBgMBoPBYHBtYQjewTWP66+/fnvsYx+7PelJT9p++qd/envuc5+73XTTTdtrXvOa7SUvecmBuPyiL/qi7X73u99uPkVyXu1nD9ddd9322Z/92dvP/uzPbjfccMP2yle+cvuDP/iD7SlPecr2bu/2bmeu3/3vf//t3/27f7f95m/+5nbzzTcfPvW7jh2r02AwGAwGg8FgMBgMBoPB4M0fxVLNZz7X7Ocf/aN/dPEsuOGGGy5+yId8yDKfq8Xv/d7vLfO6//3vf/F//+//vbz2Va961cXP+IzPOFq3RzziERf/5E/+ZJnPi170oovv/d7v/Ubp79nPfvYhr/q+o9tyPvOZz3zmM5/5zGc+85nPfOYzn/nMZz7bVX3uckezy4PBmwIveMELDpG6v/qrv7q98IUv3F784hdvFy5c2B784Advj3nMY7aP/diP3d7qrd5q+8Ef/MHtEY94xPZbv/Vbt8nj3d/93Y+W87jHPe4QDVx42tOe1qapcp/5zGceyik84xnP2J761KduL3/5y7f3eZ/32Z74xCduD3jAA7Zv+qZv2l70ohdtz3rWs9p8SvYf+qEf2t76rd96+8u//MvtP/yH/7D98A//8OHcR3zER2xf8AVfsL3t277tIc17vdd7HfIaDAaDwWAwGAwGg8FgMBicP9zhLPN85vPGfC5cuHA0zUd/9Edfinp9xjOecbvL+sVf/MVDHq9//esvPuQhD2nTfNqnfdqlsp785Cff5vw7vuM7XrzpppsO55/znOdcvO6669p8nva0p13K5zGPecxtzn/8x3/8pfPf8i3fcrvrNBG885nPfOYzn/nMZz7zmc985jOf+cxnPtu1/LnDBZjPfP5aPr/7u797aauG23P9O7/zO18iVH/yJ39yme7//t//e0jz0pe+9OI97nGPNs0Xf/EX75K3D3jAAy6+7nWvO5z/sR/7sWVZda5Qaeua21OvIXjnM5/5zGc+85nPfOYzn/nMZz7zmc98tmv2My9ZG5wb3HLLLYfvv/E3/sbtuv6f/bN/dun3anuGd3qnd7r0ArXv+Z7v2V71qle16b71W7/10u+P+ZiPuc35j/qojzq8pK3wLd/yLUuZyKfS1jV/VfiUT/mU7bWvfe3hxXI///M/v93nPve5dK62xqjj9V14x3d8x+0//+f/vD3vec87vFju+c9//vbN3/zN29u93dtdkeff/tt/e/tv/+2/HdKVnmqbjf/0n/7TYSuNwWAwGAwGg8FgMBgMBoPB2XGHs8zzmc9f9aeib1/72tceIlV/6Zd+6Xbl8Ud/9EeH62+55ZaL97znPY9uz/DYxz52N796SVuh8t3bnmEvMveBD3zgpXTf+q3f+lcSwfuEJzzhsCUF0cQZlezr64V3N998c/tCuD/90z+9+C7v8i6Haz7xEz/x4qtf/eo23fOf//yLb/M2b3OH28x85jOf+cxnPvOZz3zmM5/5zGc+85nPdg18JoJ38GaLe9zjHtvDHvaw7fM///O3n/mZn9nuete7Ho5/3dd93VXn9YEf+IHb27/92x9+f9/3fd/2F3/xF206oncLv/d7v7ebJ+cf8pCHbG/xFm/R5nPTTTdtL3nJS5Z5/Omf/ul28803H34//OEP397U+PIv//Lt67/+6w8vjvvu7/7uQ5TwKiq5XvhWUcsl8+Mf//jDS+Ye9ahHbV/7tV+73XrrrYcXy1Uk79//+39/+7Zv+7ZD5O5nfMZnbO/93u990G8dK7zDO7zD4YVyg8FgMBgMBoPBYDAYDAaD47jLGdIMBtcMHve4x12x/UHiK7/yK7fv/M7vfKO2Z4CI7PDgBz/40u8//uM/3s3zhS984eG7yNO67jnPec5t8jmWB/nUlglFFL8p8Q3f8A3b537u5x5+/5f/8l+2z/mczzlsxbDCO7/zOx/q8MhHPnJ76Utfeun4L/zCL2yve93rti/6oi86EL4/8iM/sv3SL/3S9sEf/MFXkMVFwtf2GZ/wCZ+wfdzHfdz2N//m37win2N40IMetHv+bne724EEv+GGGw6f17/+9WfOezAYDAaDwWAwGFwbqO3r3vqt3/rw+7d+67cOW82t0j3wgQ/c7syogJ7xWwaDwVkwBO/gXODXf/3Xt8/6rM/afuVXfuV2RQIX4QiZ+lM/9VPLtNdff/2l33/+53++m6+jgO91r3u1+RzLw/lkHrcXNdEpkrz23S181Vd91fYlX/IlZ7r2CU94QkvK1t66RfAWirj9gA/4gDYSuPbuLYK3oq3f933fd/uhH/qhM8t9FjJ8MBgMBoPBYDAYnB/U04IrH7DI3Tu7D1GBPy960YvuaDEGg8E1gNmiYfBmhe///u/f3v3d3/3wqZv5J37iJx62VHjP93zP7bu+67u2D//wD7/qPB/96Edv9773vQ+/n/70p+9GsfoFbquVYvCa17zmChK5y+dYHs4n87g9qHKf+cxnXiJ3/9W/+ldnJndvvPHG7cd//Mfbc3/0R3+0veIVr7i0ir7avuI3f/M3L/1+6EMfejtqMBgMBoPBYDAYDAaDwWBwvjARvIM3K9R+tOxJW6jV2to7tgjLpz3tadsP/MAPHPZ9rd+3Z3uGY9e9+tWvvmJLAJO4ibvf/e6Xfmc0a+Vzz3ve85DHMZDPam/cs6Kihp/1rGcdomvrMaDakqH2zD0rnvvc5+6er715iyj3VhRdGstzNfD2GKvzv/iLv3j4/eIXb9tf/uW2wdV33/W59dbTT/7n2IUL21ZbO1ezV35O213PMX4Dn/cxnytcd93pd5V1clKEfBH721ZbONfvMoWSqdK/7nXbxtNclZa8qvz6Xx+nq/+VP2VQJvIWKm/OUY7zBnWu8qxrya/WKirtXe5y27r6+kpjPVde9anfyErZrH+kTjvZOV951IdjJU/lh07rg/zV/ep/deM67zypRx0vG6j09UHGOs/11mn9rzTIQ93qmvpf7Uj56KM+1b3RhXVWedf1VVbJ4mtJQ94lE0CflZ4ykAO7Rk+cr//oy/ljA3Vt9YX6Ri7slnLQBfoiL8qwrOjD5ytPt4ftmLzQQ5XFNbav6jNVP9uZ7Zo863p0WfJkXnWsPuRhPdFWtouSq2wWebHvQrVfyVXHKw36o92zD6JT15P6YV/0N+vB6bAD2qvyqvarcQTbta1a39m/aFvrxv3M1yIbbW39ci7HKudv+/NYnLbkD8dTZp9Hlwa2kXkDfrvu2U8ZUwA2Rt+33VFn0ru9u7K7j/NLOcnb3x73cjxH7+jGejBcH8tgnboOjCOn113cLmwXt5OLbzDGyqQ6S/c4cg7yvmHs3UC7G0T+zvTdf1c+b4AeSDIPGx+DS3ez4+aBEplYMJBgaJTlRnKeNYh4/kjZdDrLSp6+6SBL3qTSQAGN7Doy6JEHA0LqmvwYbFJmPlUn5H7DOzWuuHmS3h0lJ10uA10Vqnzf3KyPYzaCXlwfT1ZsM/xm0uU8qY9hnTttN/HqjmV+md4DQ9dHPBjnoHZsEmfk4N/dFBJdn8p65kBEnanbfe+7bf/6Xx8O19ZsZ8J7v/epk3BnwNu8zbb98i/f0VIMBoNrDEPwDs4FKvL2Iz7iI7bHPvax25Of/OTtB3/wBw8Rp8dQj+3843/8jw+/a9/Y3//9399Nf8stt1z6XVsm7BG8ReCC3Iqh8qnzZ9l2gXzOsp3DHt7rvd7r0u+nPOUpV0XuFl75ylfunq8XrR1L5+jo2irianA1jy4x9+78OP9OQjd/409B3OT5vCZ9DZfVyZH/8dcoywSJyTP7F/afVr5wIY9b3iRtTQR4ru75tuflHCu5S670vUzk4kPgzxbSp+UcHED6VqljrqOtOp8TUg5ikfzLj3T74pfhd9d1ZdJFipFvpa1jdW19TMDhY1IP8qp0VTbdOEko1o4qr8ofcrHygtxNH75QaWzr6NvEvvXkdkXvJq5KjiSsQQ135GmiM4k0OAXkK11ho1U3CObSaRGc2Azy1H/KgrS2307d0Kn5kfpdx+5zn9v2AZ/HDtEJhCv1w1awN48FyYVwvYle7IQ8IHzhtupY1bF0Qx1NmJusr7RVV48BJryxgTpGOrcB8texKrPauMhm+CUj/XE4DBPjENJJnPObD9daDvSFLaPXJLGTh+jI3Y5bMVl+jCy1vB0h6jxcf/9PYtfnUjf8dzt6IS0J05RjJVuSv1kXj70dMexx2Dxixw/lf/OB2Ddj7Gn9Lm4XTiphs4Lhwcw3lmM37u6m6u8knywwIE2W5xUqK4iKmuHmfK6SuF5J1BYYIHwTpBx3SDcONxorugYY6y8nJu5obkCntT68GgEwGAYtBugk6LP90GF2dvTEgAg8ecCAPNB6cMZAncbkMIbuMlar23v247bOCVmu4GUHcd2cf2ebSXR3xKbtzeezb3SrOM4jJ3h5vJM5J63IkWl9fNU3nWdXry6vTNcR/QdzO+P+tUXuzlYIg8HgGsZs0TA4N6jo3UKRph/2YR92pms++ZM/ebvLGzzpvZerAe/hdCyilJeiFfGZez/x/1gezoeXtt1e/J//838ubZ3w2Z/92Ye9cM8zurmvYYfY/oTTdnnkPPZq5Ei/a0VyZuQb+djZXpEb9lEKWbesR/opLsflUk4SzfYn7FtmBKbJB8iqrg4rnSIbeZJfR0rwm/pZPkdE2gcvIhLSEV8bOaknoGyIN0d7Uj6RnshgfwX/FvITf9h1d4AQ0cTI3rVj+t9J4uL/JrEI0BOkaqUtghYimmPkQX3tB1Ou9Us7W9/2Net8EZL21e13u61NoJqIdV0yWM1tl+1vHVI+7daNBXVNRSTXmlwRqLXzT0Xf1+8uUhmSFj253dABxHMG+tkfRv5KU7rKPovu0YV1aS7K9U0uwhwH1yeflNeaAM1guVXbZX6WsVukyjEi5ch+QN5u8xzLUg7nn9G73ViJvMn7kYfzpQ62sQxY9OJFx7V0cDt44SGf/DAJbLu0DpJrsi5sh9ga7X2Zv6xEypiE1dlYkchBtLuZ5mDG8VVlUiGGGXrfALJRbHB546M+rocNm8Euy8iB0R28/jOYp3xJyNrAbCAFyFQTot0qRa7WcHPzwMeAWoMfRCxlVPoa3LiOAZSbhXVhorby5mbDoFU3FG4qbqfKhzwc/dy1fYahZxvYFqwP3xSyg5KXdUL9u1WhJJqzM3UdeEXYuk0TeTxt+KydFlmdbw7qrmPWt5uMruTrZFpNVi2jZfIN+vYgV7zu6M9gMBhcJWbkGJwb/Nmf/dml32//9m9/pmv+6T/9p4fvisStPXyP4Xd+53cu/X7Xd33X3bScL2I2o1rJ5773ve/2gAc8YDfC+D4VirZt2+/+7u9ubwzq5Wgf9EEfdNhCoUjtinrm5XJvbujmth2B0ZEA3bw3CZ+9/Fbln0VOHGLmsfatktS1r5NzXRMrncwZ9NORBulvJ9lgEsBPepKXH/u1TwbB4GuQLYOYyCcDbzr/Iuf/lO9oMuvHpGNG3tlPK98y/W3bBo/cO6LaQWAdoZs+U7ZtfSq/yqfKxu+0/H4EmnYwf5D+pHVJ/fyEaZJHnU35t8lQZHHkYcHbS9TH0c7mDvhtPaJfbKXOOYiMehPEVqCNIOST5C8ZbCfmmirv1A+LK+gEvx4+hzolR0A+xVUU99H10SQZOUbfpn3QD+MB9bXsSRADk3PmLOBPsEnrIvWT8qX8tuk8ZmLZ+mGhBB0VAW47TsK5I22Tf8s6OC+PXT6fUdgdl9ClR4YcI52HdZZye5wEHquSgCe9x5iufd1WKYf7fJK9HZfU1df5pp7cf02S33rryaltXrhuu5irTwjGniG+aWVFOsNOUqkzXDdEsvdO44bxHihJshq+EWbjWvFJSJkA9MocOkji0AZDHekwuRpgdMaRv/NRDyYceUPy6h+kK4Ss686NgYExdYihs/rpsroJjztuEtU5CXAbcYP3MdoV0tU68qRpNaBwrnt0x4NI2kxOyGzHztd242P5oe3zWBLYaQdpA508Lre7PtN2yHbxsdV/H8t+2t1c6CN7cgwGg8GbKYbgHZwbPOhBD7r0+yzbGfzdv/t3D5/Cj/7oj24vf/nLj17z8z//85d+1162KxRp+y7v8i6H37/wC79wu/PxuS6fq8WLX/ziA8n7B3/wB9td73rXA6n90R/90dubI3JOzLHVd85pc56eefs7f+ccfTW/T1m7QA9HbuIXZfDRytFPOSyfiRHKzy0hurl35/PywedxEE2h86dN9OFvOQ3BQeXzeo/H9PFcNz/x6vP2u0zCZFuZSEY31DNJZnxb/FnI3pTBnAbkM3WGjHTbJDfhXWDST8W/d8BS+rfInBGAlqHzDVNH/p22Q97+Nh8A0Wv50AucRpLrBIzlvsz1my0r0F1yLHWs1tQqMGxFgFlfDoRLH9MBbskzmA+BgPZ4AUnPfsDZ35KPMimZfrjJXfcbuBBsy7yKy6Pe7GvtPNLus692hF7WY8UJOG3JWvbsfbKL3K2IZ8h5Bx6SXy5Wrbg60lrutF9f05HUq3tBd8520l2TxGxnp93ijRddyDufKoBUXUVfO5+0JdszbdFFSFM/n3dZdZwnGxgH3d8ufbaT7WIO2u7Q3mog0d1s/X91o3JFjzWmO353s06yCnglBvkZ/BnwshE4nvu50HHJr5sw+IaRq7QpZzakI0mRj07oCYX354B0ZpBmkCHK1oNI6o7Bk0mL27/OMXBabhtm2QQrQXXM5SWhbjKYvCnL7Zu2hI5cf/Rhkp1rVhMf6pS2121j4cmWb2I5eNpW0m5dd0+mXLez9KEuXbeaZrkyfTfRtM65zr9ti76BMhh5UMptTNBdrsYOBoPBOcIQvINzg4//+I+/9Pu3f/u336QvV/OLxoi+rS0O7lHeaYNP/dRPvfT7mc985m3O1x7B7Bf1aZ/2acvyyKfS1jVvCtRetkXy/uEf/uGB5P2e7/me7SM/8iO3N1esHP2OyDJwYP1UqdN213fHujnxCknG2N/Bx4FMZH5svyxfkNXNvbOMjgDrfA2jC2YyiZqBOkmSQ+I4ryQpTXYVvAVA+g1JUJq8cZmkQ87yKYoE5AVx+A32rSyPI1Gr65efW78hzdwu+ML2mckX3XSPXdtntm/ofVrt39ZvfKPyh4nKtM6p76rt004S5i3so5oo83nv5VkyOFI0/V1vNYG8pHEkLHqE+/CeufjKDkZLcjy5nuSEzBu4fMuVPEEdxwbYJoM24h1BkMxJMlqG1G8G7Llf1W+/yA3SlC0oTSi637ovUGZyIx0flrrL8S4/vt72bXIX2YqEr63y692b3is7bSu5oo5gNjdmGZMMTiLT3Fx+XH8+KV+V6y1JczuFDMZ0fj6W44B5QtouiV+32zHCmXJJZ/vnGu53cC75xLqJXvqH9zTHplZ2c5tBhkHdN1s3ULeK0B1DOVl4knA+1zHWK+WhbK9cYpBenezKs5G5Eev4lZsVX3kz60K1GTA9WIA0ssyLlSCMy4McHctbIVgnpOdcp7Nu1SQHZ74dIc2qlG+WBp3fZGwBW/F+xthRTiboKL6550CRExiju2l2yMlbPuqUHd8d2vad5L3zzXJ8bDVogT3ZsY0cNHyd293l7A043THq1Q0yubrZ9XsPgLeH4HU0+Z3hMxgMBleJGTkG1zwe97jHbXfnMbAFPu/zPm/78A//8MPvIi5/7ud+bjf9hQsXtk/6pE+6tHXBj/zIj5xZnic96UmH7/vf//7bV3/1V9/m/EMf+tDtS7/0Sy8Rwh3B+5KXvGT7ju/4jsPv2i+42yrhMY95zKW9hL/927/9cM2bCrVtxD/8h/9w+6M/+qPtbne72/a93/u92z/5J/9ke3PCai7K954jb4eXyDwTJF3ee3LslZUEk4kJ0thPyHxqfrh62VduiZcEgf2IJBpMhljmbk7d+bQrMiF9cvtf5A9pVoRZPr3rfF1+R6K4fOsnA5SqDPMMwI9w44+Tvv5D9KKr3F7APgjlW/+dnpCRfKh7Zy/I65d6JWdBPrSpXyiXdpqwTfh/fZubMdexCiaqcw4Yy+Ad7zFrm/ZigQPA4C0czYgekJEX5KWtWIfIic6RJ/sAMphYtj17r2R8VG5bRB273cg/9W1exDwMBD/HusUnBz917Yt9Jc+QY1T2sSRJ08ZsX8BjR/Iptg+IXxOtlhHbd2Sv+4OfUO9I6JTfek6+y4sgHcfItUmeMzZ5+4wcP83nUI/Mu9NtypocmKPm0VNH9HbtdWz87iJ7s26MoamzHBNf//qT7daLJ9vF6+6yXfSbE+koq83D04hXRtqFIK8MwjcMV2Y1Gejkcvk2SHeavIGSPiMPfeNhgHH+qz2KPChmfqAjGKlXbojODcswuZ03qY5gdpvw7XMmw33DcD0wKm92bz05wpl61F44fBhsrSvrhYEl2zltxO3iyF3XLQdSzlmX2Ic7RdqL2876yXy7yVcOwrnK1NWx60uZb9aL4x2BvpqAdfVioLL+vNLPd0e0W7+d3IPBYHAOoJ3qB4NrE1/+5V++fc3XfM32jGc847C1wfOe97zDFgzXX3/99h7v8R6HF6U96lGPurSX7md91mcdXmy2hw/90A897G9bqG0KXtdtYLhARft++qd/+qHMxz/+8Yd8nvrUp2433njj9ohHPGL7si/7ssO+uRV1+4QnPGH5Ztd/82/+zYHAfeu3fuuDDFXHH/7hHz6c+4iP+IjtX/7Lf3n4fcMNN2xPfOITtzc1XvCCFxxI3p/5mZ/Z3u7t3u6g30c/+tHbj//4j29vzkgfbnUMrJ6iWznMx/Lv5On8M+a2PJkIIWaig2sgcDv/LP1DCIokO/hd8LmOoHD3yjm9ryFf5uyOSkNeul6ScAQ3pT9gwjXLJk+X0ckI2eigJescAtR+L+2Af4k8JleJys22sd8KKWXd48vY3+oCmewvuk3IA7/X0b/2RzNYJstYweW4PpWf9UK72cd0vQtcQ7uX/tFJR7wB22ynM9uJ+Z0ieOEKOp8zfXDKJxDMNsw1+Ofo22ngZ7ieCO/0lS03+nVgUsrjtu36eKZ3H3JZREMjQ9pY6qf7TrhdTC5iIybJbd+OxsWGUj8OkoSPqmNFCnOdyU9f637icQxdum9YR+77aSeZH/+t79QN6b1tpI9nvyKt7QP9dZxL9mVfg16Sl7KeMk9k5Jhtj/J8v6Fd0kY85p6mPdlOqp710jWEyrBg32g7w7Og7iwe/LtGTaWRxlGdeSO0LCbLksSyYVvZLs8rETS45aUuvimY/CK/vNF78FjpLzueiTPrkA7ozdRtqEm60UE9aPs6E7OOGM5JRxexyo0CgjcHRq6j43mCsbfXrm/Q7oiuk3XoOnd5ejKStuW2tA0gY+XDBCR15/x8k0nboA2z7dPerd+Uc6+fdH0i6235Ul5fY7BiarLeeXd55YDdTXgHg8HgHGAI3sGbBSpatojb+uxFpRbx+pM/+ZNXtT3Dt33bt12VLEUeFxFa+/YWoVuRtvUxXv3qVx/I32c961nLfP74j//4sDXC93//929v8zZvs33Jl3zJ4ZN75lZZta3CXwUqgheS98EPfvAh2vijPuqjtp/4iZ/YrmV0RETONzsfMn+bLFyl68pbzbG78ldpfA7CqEgNb8Pg8xBPnvOmH8JvvjOCzL5IkrSZh0kQfMKsU/pxJn+oU74rw75A+h4F+/J+P4vlcLvlVon2DTsi2n62fcj6/MVfnMr8Fm9x6pfhT1YUL0QvpBXyOxrRbe8yqFsSrl2bQRw6go62L0A0O1Cqs6m6nm0EfNzItjM5ZhLWHIT5GnMJtLftgnzqt19CRz7Ytokq8wScr+NF4jq4q/6zdcbKP0QujucL2k2oEniVBKsXLeo3+zJTX/z3FXlqmzD8wi33G+pOe1Q9KdvtQxsn32QSOrHHDaSMbse0sZQn87Fvn+3pOrsO3t+Vetd4yBPeGb1tTip5tG5hwAskyJo8WiG5seTOOO52Ij/GO8uWdtxF+ZofShly/2QjbdXnk0fpbMX3kY7n6RYbaXcvqOQYcUUBHgT2bq6rwQnFknmSS06f+VsBSW6lcdsAUt6U0dfScZ0mow+9Kuf8k0TLlVffxF0PrqkGcvBCZwy+mXCNVyFcR5O2pO3KdxpuWrnixKqpJx2ONq703jDcA3O2u1c/VjaCsXJzzHZ121iv7uS2m5yYFNxuXu1Bb77pkUfVgZsGHSXlz8Gwq1/Xxu6syJHnukURI2+aOUCsCNhO/pQ3FxtyUPY12bYp+9UgFyruSNxZ5BgMBtcUhuAdXPOoaNvafuGRj3zk9rCHPezwArMifF/1qlcdolt/4zd+4xD5WnvJ1rFjqMjfIjELtZ/ur/zKr1y1TC972cu293u/99s+8zM/87DVw8Mf/vDtnve85/Ynf/InB4L567/+6y/t1buHX/qlXzpEIf+Lf/EvDkTuO7zDOxyOP//5z99+4Ad+YPu6r/u6M7387Y1BbWlRJO9P//RPH15UV+VWBPGzn/3s7VpHR0rkf393v+2f7V278in3ytrLx/NbHmOuaES2L3AEo+VLH8CBL+TbEV12xoH9Dc/vkwRzOR2JkOXguyWhlj5tIf1a+6X2Ly1L+riuu6Ox2R8VsqlAdKnJIW/3d/31V+4FW0RTDTvk6+vrnCNTUy7qkVHYyOptHZC9Iw3xodkLtnSL326egSCtrj32/CjrFF8ZvUMU8xuugG0suuAw6xyi3oSz298R3uYSbP/4yck3eB/g9Ee7RRtko315eRTcgKO9/UQ1tle/S/e8GJA0Hkeyb6yI2xxv0KH7ql9i5z7k7QZMvvl3+ts5VmW/7OyjI62xRdoUss9l0/begpGnqjv+gPbw09I8lU0b2w6Sh/B3Eo7JfXT6hzvqxqhubPLY4ahbziW30gV9Zpu4P3iRL9uqI2hX8HhuuZ2360kfQWbzkdSLdq32JACz2p9xp6J4r7vutAEPxdJ5MiMrt7uRmgi18BaWfDwYumKd0Wd5OVgir4/lBMH/00DckboGtjzdxzKyilZw/WzEeVNEvhUp6bxNbqZRUKZ154HJNwjagMEh29J5mDjOTun2ZS+ajAjeG7xSh6SzPnyzyE7etZ11nROers1zQub28Ab6rgvX5iMCOQCtbCoHri5NlzbPZ51TJ9mmhu07dZuDbQ7a3QCXE4LBYDA4R6iRcEa/wWDwZo8ipysquvBHf3QlkZe+mIMzjv1ebWWW6dO/y7m0r+18Rs+/05+oOW+RGUUu1hvnK2IUEin9W0g2k1/p+7icVX2PBTl4nt0FYjhNBujw2/N8B/04ao38vG0dcqbs1h0+YAESyO9jcTQmuiTPSlfkb/0miKjyq8hdBwBV+kpnPRaZAWnJ72o7+2HopPNpuog3rnWUMDo04Vh1KGIVYtJymUxEv1Wf9GWTIEqbgYjFv3bwmSMMzYVQJ9KbdDWRClHMce93mz541bPaBp+4PhnNSnvBgZgsTyIQ3dGuJVPpm/ZGZnNP5pjoc5VvtTftg09uOdlzmJfjUVfkY2GA4/QxXlJW5ZSuqhz7yfQp5DTBnf01+0ryQ7ZF24P7ZPr+HKsFD/NGyGsCHnsFLE4kD8Bx9OS9nqu9WEiofohNVPkOlHN+tiHDHFIGpXksdB8xn+P/dW1ui0OZKQP92XkkKWzZ4XmcF3rtxmLnl/lkHbpPpy/K8PapHquwddoHsDh53XUXt7uUfl7/uu3ETP/eW01Bkj9JoPk7I0nz5uGbJ+lcXt44/Ttl6wgrD/DdJCIJsy6EnMEnZWNwMHntcH/Xp5tkmFAv5H4uKRt6SiKQ8n3MdXNovScA7FtDvjkYZei/dUId/QiPJ0OOSvYqChMCbyuRxL9XAK1Dr5bm6unqRuW6cdw2Sb7UpwYx5OOxBPJP/TsPH+vOpZ2mDfuGfSzfzN/tk7+T9O2+rcecmHaTkmzjv/k3t+0N70KppxBXTzvaP9ge+tB62/R2p8CDHlRRNkflHwwGA2MieAeDwblH+jmF/A1Wv429NKs5dX538+fOny0w9685bc39737300QX6vpLZMTJFf6WCZQkYvATIK/so9Vx+9gZXZa+Lb6JI+mSHLC/58g21zv/F5kFYYdPlflQF+rZPY2aPjXX5qPN6AMfC+BzQxaapETH9vtooyLhCxV1XXVxRGvyEGknSQSR1lsq+OlV6y+Jc5+DFLOfmLa6Z6+OZOzIXNoV3ZgMzbZOn7+OEdVd8CJH5pPEGPyQt9Pwi9ldz5XP6bK8Nyy2yHugTBajB+vFZKS3DrCezWuY86Be+PUmuZM7KlQ6rjMvBBxJnuRs5/NbP9Z3pyv/9zWQ1yyYEMFJ9HP1B+S2HrkGHfAwTvU7XmQIJ5T7YbtuDmgkTbfX9Gr87Wxi9Z8+3yF16bxzbLLdOhoZuzLRX8cdxUs7Oc/kgbKdso6Wy+MZ1/DJBY5K5zEJ/bNQA+flepzWoe5VF7e7XKgNlQ878t72xuIVgrx5ryrha7KjF2isDOPPTcKT6CLvjthNktIyoJBukHVjmHDMvL1ZdcrjVYwkEKl76i47dTZoymc5rTfXO1eTc6KRcllmG1Y3MXBa7/2DMdXgXKjVLuTgERYj2zknFmkvSYQb1qHJXfLzZCMnLJaBcpIYZkBEl9kXjL1OncdsBzkA5mShQ94k8tpVv7N92h64EXBjJY1XIL0inba8R0Dv4Vj0wl8n7ixyDAaDawpD8A4Gg3OJnAvu/fZ3nu/y7NKvZFiRSzlX3/uPU1/z4SKaHvCAbbvfPV+7XXj1K7cKhXrF6+65veym6y75CvmEX5Ztn4RzOc8knwz0sYwrYsE+rf2b9FU6/SFfzt3T7+t03r0Yy/4B+rE/DQkEsUi9CPgpWYpgQib8SKIp8b/9gigIdl7uRUQhb5s3rKe0gfSJunQ+lmSq87dOvQ9oZ5Od/+T05kWyPf2EK/63t18gEpXrvddu8hX29/hvwolP9QtHEkPwJlHe9d2E62HbSOIZopw+hI/eRWNC2Hb+sYPw6lP5kic8BjZFPd0eyavYD/b2Fl5gWI11HfGYMnf1sM1BtkP0mbT1FguW220OKc74U1zNjTde1q9fzuc+m22dnIBhG90bgzsdWU+cM6/BMduqeRPzWMmRca3r4H7ta7ylp8c8yuhs3/Xrgva68lxfj0deUPI2JbRNjh1cf7nNT7ZbazGIAqmIB4EkGfPx/r0bb64QobTuRuIK5SBKGR6Q8njK44bPgTE7H2WbAPXg5hULvt1xckXAis7BLMnKjjDrbgypR+/T4ZueV7rcMTxQU44HN9sA/12PlJMB1fVgj6Ju0tUNkDkIeRWUwYabSRKOXihIOV0fp/GgzESE815xt16xC6+sWD/ULScK2V7HBr7VILTKL/PtjqX95CDFsdy4vLMB25CJ+cFgMDinGIJ3MBica3SERv5O/2GVNtMdy3f1vzuX/kE3D2cv3gNhdveT7S6v/ctt+8tXb9e9/i7brbe+xaVrcy6cLzRKvXgO7QhF7wtbZZvE7OqGn4OvsIpEzaCZjqCwn92RK0k6ZCQf9Ubm3LLDUX3elsK6h9wrUtf+F48gswcoL3siL+eP7JWG6N7UX/pi9v/sJzlvtklYEXBuX+/t6jzJN20m07h9gQlQ+2Qmh9jqAl1A8hJ5SWQpfjMvSsv2xdd1WttEXcdWGZ2NuJ4pp3XmPE3cOxKYuvkJ4PpN0Fh9ILjySXDbgzkFH4McdX6rvuuP+xzBX+TBYkM3xuyNacZZxjfbZ31DViOH+SiPJZRPPdEB+dHfIPoZA6tO2FDVuRZSbMtZL/el5H08FmZAYceHdP2MNs9+YO7CgZheRHP7e1zMYLNsh7R5/0+OxO3kBR/axfV3WclbmRNzXagP9w6PO+ZYqdvhqZN6BOXChdOtGrg5dESUScEkj2xEnSF74EryMtNnZzcxaEKtu0GR1nulpqGkQdAhciNtBhLy8aMBaayWwboDKVMib8SOMs0GNKxXG0e30msj84CFQVjXniRY5qoDEbuk82buvhE5IpRjnmi4/bpHnVwGumEwtZypQ7dfN9CsVmO4xr9ZMbTO3KnS5rsb397vrq90N4lu8pBldnIYOdi7rnty5MKL+2IuugwGg8E5wRC8g8Hg3CFJlTy2IitWhMeKoDmW10qu9L8K6Qdk2cz3b765XvJ3st373nfd7nOPe2wnr3rVdvEvL17hM3ZkhEmHjnCgPObPBW+7gBO/0q2vdzo/rtv5J52cSVJwPXn6vMlp++UcLwKoyB/XOR95NvlgGeq6t3zLy3uzlm9ZRGLViX1SkcNBPpbRj5GbCF75XciRNtL5cB1JtfLNsq4u21sBJJKbQL/I6P1ikR09Q7ril7Mfp/122xVbNOC/OU/smihW7ArdQ4oSNdpFgWe9s55Z3ySm4EiISLZtlly1P7ZfgEcEaurdxHDaLeTsKuApxwbLWtejcxODtI+5ghXH1f1Pn97lAiLa3X/ZRgR9J1/nJ65NTrO1hMcqtzXXJ49C/+Ia8yP8zwDR5N867tDEdNrQ6pifJrAtp9wd3J58m/dxOvLIbSiScHW+bhsWndCV6+RyO84r+4jlcvAj17n+l8baKvO66w5bNpysbo7djZBKd/ue5rV73/k7Q6VddrL/iY4YBW5wRyrnniI2jjQURzCbIHWajNCFBM3OlEhjXpGB3TVZdjcw1bffUkndq04MkhkhW8fo0CbeTXI7XDwXAHxjzolL9/iSdWmSmnbwylOSxdnurnvaCse9gu4VLe/LQ11se77xuKPnalDCJHpn/74xI2P2RxOuq/6a+WZ+XR/M/tZNgHL/mMzjrHCb39HYm6QMBoPBAkPwDgaDc40VadEd47evPfb7auQAq/k157oykPEv/mLb/uzP3hA9+qB7bve8/q7bxddfaElRkwv2iQorgmGP/MmItFU9Seu8mE93b7lP4ij9JWCSljT5bpXMA/+2e9yc/MtHtM8GAUEUJ+ShX9rNY/t1rIhL3g9EGuRi716IK4hOyDATM+lfpZzUCSLUuu3sqyNzO3KmS5e2gE9kXz3bFt1RJ3RX1+DD80I7XjKWQV22I8sMQebtNezzJnnZ+W/JO1hvnV9Z3xDYqavV08Wcsw3bXl1P9pg2l+D/ldZPI1MWfn2Sd6s05Jl8xGrM68am7LPOo2SsvXX9kjzKN7eEXNguL9eznrw9A/aT286wbQoR4l6kym1achyBq8moVsp3/bN/rcbL5Dy4JsvPPLqx3v3H11BOtoP5KMvhtvS4bW6RD2MR15rfNCfjhb8cS6jzarz2t+taWzWcVH5eIbOQeUF3006FdoTanpHn8W4gAvkoiAe93I81V5kwapDRoKxc1W9uGN0b9VgFyolM3vh9g8k6eVCy7tJQPWA6764dyIMbI+c74zRZyWog6b0xu42Gjbq79upI2tUNkDIsg9sXvXnxwDcMd1DSWOecywhk68n6T5KXemYH895KXiVEpmyrvDFn2zlvkJ00ydSu7+SNsxt0aSe3ea5kUzfkSFsmjfPPla3BYDA4BxiCdzAYnFukk9+RGqtjzuOs1+e13f/uXM65u2v5XXP/l72s5r/1opqT7a3e6u4bcT3MoXMrNweR2N/L+X7K4X0e7UetgmI6/dmPquMZqASSzOh0kL6HiR3nw7f9HbYHgGjkeOVZRFs93u3tAep8kUiQsyV3keqOwuXaIt0dMZzRdpBc+JX47J1trerj+ndRoV16rrEuOvvsiJfuv23GAWRJHrIdIgFakKGQ336JmH0/B2AleYx+bdschwcwUW+5O46CPOxjuk7WJ8SjSVjnRxra1nW07oEJXuT01oy5L3G2CX2wzpc9mmxPLqWLjnZ+yRN13FYnu22iZMDG2T7E4w368iKP28KR2g7Ac1Ab5wu1aFLgpWuuU8dfdLxX2kSmTV6jy992k9d58WE1tlvXHdnc9e9M4/HZ51zHXPzDjpNbyfbOY+7nybOR3tyaOZ29e8VpeglmVplGTyVmpv6dRFNnGJ1CVxOB1c0+DctvffTNicHBN74cWOq4Vwa5hutMmPrGQhrnif5y/17gAcKfvTq7nu781gMy0Indjib3upsXb1L0NhSQnV5Nc/28cmVyMCOtO9Ky65y5MrS63oBk7R4Z6QZQDxic8z67OclyW/oa6uCtO0C3atwNJtbVCqs68TvrmIOx7cCEve3T9pQ3qI7Qtz3dWSJxB4PB4K8RQ/AOBoNziZWPlsfO6st1v/cCfbo804dyui7/JD2ZLxexccMNp3P617zmZLvXva70exzdZ0IV/xl/0S+nsgz2N+xj43tD3pmMOtYGuf2B5/2ra1Z+eeeX+fFw68z54oMnIZkBY6S9971PIxMLRe7ix0FcVl4VeJTtk/VB5360P+ux8gWz3gWTyOY/Ml/7sTwJCymd16TMrov9ckdMd/4WMhHNia7Iy4Sd65D2wN6q1i3674J7ksRKna36no/bD01i0dHIfiqWPkV92SbCnEe2b3I/XEvgFvZStuUtKjnHfwcLQqp6Mce6qbzYasTtnG1oWS3nys9fRTIjLwtODkpj3PF2Co7otZ04aM11oVxHDSfnt7KTJB2TN8lxw4sLziO3bTBnUah6OgDTnBHyOMraYzF9xotBue2Br+24KHN3K67IPAn2Sl4ZMOhyzdfYxrtFN9tWpj39f3rBxZOTU6LXxpGDdRrgXuRul3bv/LGbeN5ULJtXQbMzrG5GJrN5NMGG4oZLkjYb1bLawLMOJjHd8Jzv8rPMhq91Oje4BxUbWOZTwOC8LYN1ZwI4H/1wee4sJrNd7y6y2XXKG6rzSHvLG2Xe5HLfaBPUrhudKVc5raPsYLni3rVJto9/Z52OXZO6yP6xd13K6fpQ/7ymu0mt+vlZkZHhdyTuLHIMBoNrCkPwDgaDcwmTPt0cNH9fTbq9tF26vfnzWefiAN+nyIPaqoG8Tdr5evtw9htNJth3tKzpU3ZvR/cL3OwrpB9sX8vHskwjfY+uDhw3SUL+9qEgNgiacr683LvqVwRd1eV+9ztNW6TTfe972710IZVNcFlGgo+qfB7FR38mKzu/aMVjOFq28vaLs/Ia/CnKI8jL5GNXTrYL8pi/8DWWjzQQiZaDADQWFtB3ffjvCM98J5B9wu4dRq53F5zV1dUcio/XdwbMdXvbmpRebTVhOF8Taugc+4LAr9+1wJBks8lj+IAMAnMbeluLzi9PuT12Zlt3HAf2TnQ1do9s2DmR3ZC86L+uK5upfpX6yzHFBDFR+a5DRpCu2sF6QG9p953t0Pb0xY7vsF1lNLjb3mWazzTPkduDoB/bW5bpJ8iR0YtMtIMXtRz5zrUmqCnX46vL93HbdHJfOc5cSlfymTFOxtuFJlnn35kuG93HbehWbt5E9ogrGs+VotNR6cyzMyjy7Qg6N1IONDaOLCsb1CtYXV2ykYzuuG8MzivzZCDwoGfdWc++udvQuYGxfQMrWl5pxli5oWD4qdO9AcIDv/XfEXG+IZOnBy/q1kW1uk3Ii2Pd/kdd23jlqWun1eST8x4AEnmjSHR9sVvN5LtbDVvZTXez8mJP2spgMBicMwzBOxgMziX2fI5jc8vVNatjWW7OqffIhjyXvlHnu1JG+TEVyfuKV1yOMOQFYBVxWk898mIrbymXZE4SZBlhBtJXOUag5W+TFchgf68jScgjfe6V71jofOQkvBzgQ561TUPp6f73v+wnlg7RG5GIlOGna5M0ApDJkLF1Xb2Mq4i7JPb2fLFKy4uR8Fs7Xdk/Nqp8fGTr5KxEu9NbNhOLflKVujpArc5VvalT6absswvGYiuMLLvblvKYH559KI/zuz5EpBOJW6jfN9542qfqpXvk021P0RFu/rhvVd0dgEUbkWedrzJKZ47GdySp6+464lObD+n0Yp2v9GI7yHHQ7QPPUvATxvz39pIFtpcgOp4tF7p2Q6fs4Vyf6kc8oZ7j2opPI1/SwRN1/Iz5NvMNaWM+jw3SR02A13FzMR6DsiwvUpgk96Jc9oHkR9w+tru83v00718mg7v+Qrtjb3k/8/3Ckb/oyoT2pehdf7o9USxg12hdulRSpvWg6Q7sDtXBDUVaSEVfj5I9IOZKlFdrSFsfH7OsNuKsj43KA32+SS9vWiuS14baTXBsFJnO/x0W7nyTKLVOvHeSSX/KzdVt9L8a1JyXOwTyZQc8C9zR/L/ANgo5gHg1BBlyFT3zd8fp2sDIid2xieix+uXkxnl3k0H3B6fNPPduLAVPFBncPFgNBoPBOcMQvIPB4Nyhm4Oe5XhHbHgOuconjx3zKfPcWeXt0pdPUHvAOiISwgRCpJvfr/yz9BvsX1uGFbHgc52vbSLF1znoyMRT6iKJG3wy66Mjn8jP5BgkRxFNkLm1v2eSVpBx9RsSjv1kk8xIXRFpmD5ptVERylUue8dynUkP5Dax7PqYhzCn4LbeC/Rxe7gt9vzFvJY2cWR0RmFih+lzF6lXuuUldkk+uTyugRg2VtGUtoPMq9MFNuQ9Skt29n11uvSzV2X6nHXmrQrsv3Le2zX4OOkgNm0PjjAuQPJ6KwPLk0GKrpvr0fnwqTMT+bZP+p3HkvpdbUjkrveVTp7IkcB13oRukbz8vvnmy3Xw4kk+/V7nvAWI5czxL/Xj/YXdr1a8B3X2WOJ+mv0uCeVuzLa9dU+id+3j/uR2d/skn8m1uaiSNuTjKWtXvm3g8nh1+rK1+nMF0UtCF7pHKOUAYwWnIWdnzsYjPQaYN0E6qRujgHHx8aMjjtiknAzR90DoG5yNkzTe/NpKz1UIGwl5c0OwMa4GxzyWhkI9U5eWx2HiucG29WXjLHAtv9FZrnZQlu0lV4/9Owc+D7QFvyHSOuzqvDL+bpC1nWbHsLy0t+vG7wzt53zW1QOp0xxbCd3TldOnzvhtuZz3Sg+JvOmlPfj/1SJvknck7ixyDAaDawpD8A4Gg3OJnM96jtoRGnvnVvkZnW/ZXZ9Ismwv/SoP+w/2mXj0ufboTd+w4AguE3QuK/0Qz+k9N+V/+mb4Wn6kudMzvqrr6CCc9MO8fyf52tfy7/TPCaYpUqlI1iJtakuGfOcHfiOkDpG/JpnxAQmysvzeM9X1qTKJsHZ0cD5qj966x7SxHfvofCcRtIfO/jpSyW3nNuOTe886DXlAaELS1bna+qD0UJyIuQ3vD80HPdf5brsQvpMcRv7kiTo9OMrS/aSIxIqUh9j3E7V7/dLfWXbyBRCPBfpCBuCl7B0hxzHLmByBy+wWUjqOyO3pPuKy/RS5Scoso/RYfaDSVn8wyeqyKQsCskA71nUFdOb9ns1j5IJJxyW5Lkksu985uI/gwoyMdxuQzhHG5luSe0mduf3JJ2082yj76t644Lqzt3rmi07Nrzhf81K59YzH4pTF9oet3uXChe3ihQvbiW8oJlmzE+SN1qRflzYrviKw3BApNB8z9VzbKRC5TGrmniooIwdNNwqDEwRnR153jez0dBLK96DYGQ118nHLTnSqr0cuiG3Kdnnu5G5j19+Rye6c2YlWxLDzdJ08iPnb+uNGZBm7Ns0Ol4Sn9Zjnc1XSe6t0Nwfn5QUQkIOz0bVrytbZQJdX6izLd77U0/K7TNdx1ZcdAZ03s7NMcgaDweDNDEPwDgaDc4eOrFj93jt27FxX5ur8sbTH5ql7vqmP29cqf6FIlHpZmOfX3hO1fnuPziQpSe/jSeZ0PpR9zxWBxG/7gxlZlj6cSav0IcjX8ti3rDpXtDP+YvmPpRtHOTuf+kAe4c8SSQtx4UAs/G/26KXMJLbZ6qG+iQguOMK20rEfcPpR1Nm/04fs7MbHbDv21fZst0uHzvLlZ/ZL67vqi4/WvYOGKGfDZLr9X+w0I5IdyJbynaV/OW3qga1Pcu9jyuj+k6+5AfiJ5CI4ZzKQ/66b5YX/yD6RdckX1nWE8zFfOcfBtDH3BfviSTK7Tow7LG4kz2IeJ3mTOl6LA7RHLRIwrpk/sgwmITvSt/v2YgtR0G4L8iTKtcAYwQKPI7QpP/kkjls/Hse80JZ8ktuStJm/eSjyyTb0ggZg2x/ydXsk3+LyaXP/T6I3dXHhwsl28bAfb6y0dQNKGmtnoHlTsjK6m3l23GM3/LwJUUl3xLwx8bgGBm7Ctr5twHSs3KvGjWRy2HJZT2kE5MPKRNZvdcPJzuKVEBuY95NBRutxNWHIzu83uGL43GC7GxETCL+hsCMzsw0tUzeAWt9uI7e5NxXPiUlni84zI0rzhlJgcPFNzuH73kur6wfdBCHL8LWJ7HOdLi17ltH1lb2bTuqoe0yiG3wGg8HgHGAI3sFgcK7hOWHns62OddceS7Mq9/acT5k7Wfzbc+byP4ocNJFYgFhK5z4DiFwufk++EMx+mH26JIsyqjll7nz3fFKx89cLjuJNX4888QtKDzzCXXlff/3pY/cdubXyZdkDt1CR0QRC+RFwB0mlzMjqJ3CJAPZj0OTbkVDI3/lFWY+0bevUaZK4OYb0YzNqD7DnKtG2ROiiB4gjoiDZBgNdZeBP94i7y+uO247PiuRLyLvshbYzf5L+dNe3OJ+BZ+iJfuT6W9eO6EUv8GC5n3S2lfkDl91F767GGZ9PG8kFGsvucs0BYRNJdkOi0n9IT98wse/oT8Yg66CzA5fp8erYuNNt85BchhfXKAd5/SR9x0E5gtm6zzbOBSjKt9yuR+rBabq+lGQ4HKC5qLOMCW735DgJ5PQ9AnL7oKNDFO/F05euWWkdIeUGyRuUK5uGnZ3USl91BA8GaTAYCQaMIvNmSGW5MddNBXKQNHQA3lZphabRWS4bYm54zA3aiiZtEuq+6dnokCMjjXOyQEf2hCNX67IeNlKny3D3bi+XbDOvvqxuat2kwm2Z0cWWNycb/s6Oltc5zyTI0bdvkrSd60heXn2yDC5/ZSM5gBybbB2bGKzk6G6KpElSfdVHu37/xiAJ9TsSdxY5BoPBNYUheAeDwbnEau7Pf393x/bSvDEyJToS4qzXd3N0/pcfRGCJn+azL4aviR/mtJ1PbVkd3EL5fuE1ID+/gAlkHkkmuMwkCtLnpD7JCUCa8dKu+973NA2RuY4c7NrDxCX6IIjI5aBfk5gmnJJMQ+aKQkR3JroyACsJlpWP351Lm8k6+vix67Ks3FLC7VMfnjA2meYIRdugCW7aF4KY8tGviSnLnHwDx1LuVb38UqmO5IWEru0ayoYcHeuyCiYfO78//X3qxwdSkX6cunU96WPUAfIQuVe6Sb2sdJTfyc8QhU0fMDFaYxG6Iy3Xsf81dfciCmXlgoafnqbe1Y8q/+SdnM+K4+C3iXL+F4gw7hYxcuyAnynwQjgIXuychYKqe0btOk+T21kfR/QmL5P22LVXN454Ox3rt9PZHt9jfXTXe79m84endTnZLkDu+sbl0GUr39/Z0bPSvlE54rEjpLqbrdPzhkQGfyJtveKZAyJGDsPvVUOvCvJ/bwDr6khn8A0FBXv11GU4j24VKDuJv7so4b0BmGs5l5t1e4KSRpYbeHtCY+K6u5Gt2jeNz+fTdpzW57k2J1h5QzRR7RUq39g7efZuHh5Iu9W9Vd2zjVft3PWDFVInOYnyMX7noJyDWbZHRgtgO4PBYHDOMATvYDA418h5a/7ufKbue/Xb313ZRheosHfdXrqc8+c5CNtXvnLbXvziy6QVvp9JUQCRhK9qf9F+S0b9WY66xo9c83KlJE0sqx/dta9pMsDlZNCDg6U4ByED4VJ6KMKltqwASRjbR6bMupb9YS0Xjy47YtGEUEbrIT9klq9DBtLZt0cnSRyufFD7liuOoiOKsh1W6PzFFefiSD1vQ4GN1N7Qf/7np+QcebPdnvkIgrZ4uhn9JK9QsB+d9UxZU2YTlRmBnXwDdfL2mJlf8ha+luhl/HTIXO9DnHzMihz21hXZf9OH7jiLY+NXjn05HrhsXprGOd4rZV3Ca3CefpPbkTB+0DfyfVbkUb9rP946zsLNqv2tB/o65w0vylDGlS8Fu63+QXI1tEV9l62XfkpPjiK2fSYJ6+j+rFNyaR6jnJ/brSP8rW8jeTPrdo/kzfE606Ifc5GOgL7LXU4Hg8NevB5MumjSjlzMMO4kjLJzkNbfXefwOf6bnOpWAvKbfLubK4/d+EZNvl2jpUI7gpnz3msDmDQ1uWhZrTfSeh+SROoI42VFo64hOtk3ercRbWhZ0Q9pTJB6kMmFAevNdUmyk29PjEiT4f5uO+rBNTmYIEvaJBOFrtObPO/kTlvK44mVHZ8lra/xzSTTdjesHLTyGufZRbN2/fOY/IPBYPBmjiF4B4PBuUX6WB3x4zm7z/n4yk8Dq8AFl7En47E6dOV0c/k8V8TYLbec+iL1kqjap7L8qvLziCpL37K+vYds+tT+nfvycg15O2IXQtR+Tue3+1znfydp4bqnfuw3OcLQwU3pv6Xvn/UzCZLklrdccOQuAWNd8FRHOBF9bR/GT7h2fqu/V7pJ0Bb2Mzt76q5L3XS6pw7mHQpFslfasrNCkXLoq9qIiE/kM8dDRDCP+Kd/eBYfd+Ubmqglktf1dN7Vn8wpeA/WbsyxvrEJczDmN1hQqP9ECBOF3kUVm6T0ntqQosk3uM/nb+tij5/ytbZtl0k0Ntd20d6O4u76G3wQ23jQ7o4Wpjyi9JNsty1alm5PcurnQEvzZe5j1KMLurOe6dPIXnLWghP2lttLJrfkhbaOk+r2YAboJ8977EqezVuX2j7NYXW8jdH1se5Ykryn+jzZbr314nZd7cl73XWnJC8nrQxnykCzRxyZsKVQP1qSnb0jsYAHN5dNRVC6VzhsMDYW6uMBZDVg56DrG00S0pSRAw03wVx1dXo6QDfJsMG43mlctJWjVOlc1Qk8iHftaQNhMPEKrnXk1ZfcINttmINzR6CmjeSg212fOsmbpAc+DyKuK7+T3F3duNKmnKdlpN/kynzatyciWd6q7plHtwl+d0PMOq/axflnRMLeALQHP5pwR+POIsdgMLimMATvYDA4d+gIqBVZ0R3r0q/KyN+rvN/Y+twe1FyYyDYjiVL7GZBonr97zu33e3SBQA6q6gjkOu8XbpnwTOIhn9jr/O2VH1xwtCeEc26N6Pz95CR+FtHI+KlJ+uGvFip/thSgXO8lCpmN3PZj7ENCBvlJYnySjuhJPzHt33qxvpCpS5e2srLx9Cl9Xcc98GRz2aXTVp3rXPIEXT/rojRXOnGa1fHUTwYJZhpzDhyrl/fVC/tS1tW4U3ZiG3I53jYFecsefE3yXCbevPDScTVd8KJJ207v1o/rRt9Ab/Q5FnnYoiFhzsdymH9KvfNhIcD1JqiQ6NgVR+GyiAj32JXt7G/yy+BAX2M9mVdETxDRJuMd9GkymXGWconONsfV6TB5Efdz27if4rBuHa3s6F3b6YqHyfITec8pELHPExGn9lQJLm7XWSHZKG7gvU6fg6RvECZ6u4EOYdMIEJb0VowbpbuJWfmsDJUMvMXRN0vXLQls/0Zxq/JcN0e45k3Ij0ZgAGzojzF7OwpvK2H95MBs4pXBjZVMdxQbNzdu0vtG7jqhb+Q1UWl76ULJrdvUqXWeEyYmEy7TncWDQA7SbrO03dSbQ+i7Adudv7vpp61k3TONv63fzC8Hk4InN8hofTjflYzu55YTPXYrbYPBYHDOMEtDg8HgXKKb83bky+rcsfRXK0tee3vz2UM314VQKEKtosbqEeHyq0x25nWOwvXjxfa9POc2yNf7qCK7fR5IHBMJ6aMhW87jk2DC/8s6QPr4BdcZ+ZrXkb/T5/YCqXP8jtXTlRBzJpvdPshAXfBLSet8kcPEcuen2d7Sd0z5O7Kq07XTZ17H+gichUmrAiRX8gpJunHcW2xkvZMPST101+W53A4ieaEk/JARbqbTBWnT1lgQIA12ZtLRXAbEtvkO23EGCiJ3lVH93lxF10ar8a77mJuwrNh5wRHacEHusx4nyM+8RRcQV+1T1xExz28IQm/vQX45ppMn16b9kwYuwe3S6cDlmFynXkTw+n1aHuP8JH5nW24bL5bksTyfdou+bF/Zb7JN3ZdWdpI2s3cu7Y7y0ZN1e5BhqxeuaY9bbkzOoLtJ5PFukHTD7d18Mj/koFMSiepGS3lcjolO50elXU+TezYwG6AHzTSAgo3LSk8iF/lTn8jhTk8H5Tp3PHcCdJ8DfRLYHUGbsvPokW+Mrge6dX06e3A668j18cDaDZbUp+DV7uw4qVsTzr6BZ4exXlY27bqj97Rv14Wbr9vR+WY5oLvxAa8s+lhO/lZ5p7we/DsZu/oPWlx//fXbYx/72O1JT3rS9tM//dPbc5/73O2mm27aXvOa12wveclLtmc/+9nbF33RF233u9/9jub1Vm/1VtuXfdmXbb/wC7+wvexlL9te+9rXbjfeeOP2K7/yK9tXfdVXbW//9m9/Jpmuu+667bM/+7O3n/3Zn91uuOGG7ZWvfOX2B3/wB9tTnvKU7d3e7d3eBLUeDM4HJoJ3MBicO6ycTH93x/bOXS32SBTm2p18x7BK18mOHOxR6bkzPlL6v+mfJuFGGh/z9Q6EwXdN2fD3uuhR4HP2g1f+VpJaGZVWx2qLikxrPzKvz/qYiLAfCrGE30hwEtGURazXI/0O8LEu0l+HL+BF637/DsFmjk62jB2J0hE1tLO3plilRSdOkwF0XXmVhjpAzFr2Aj4ykdEFk+X17a01OrIp6+X/jo50mi6t64puujrlsQK2lW3a9XXg/YnrXHFFSfJ6q0ryIQI+61PA7s0hFXgiuuTsZMt8Uj+ZBptzcB99wQGR6L/qxgsFsW32oTUHkotI5pLMd6SsDnTzS/gy+M366QhveJIcc9h6wotTVSfn29mRSXdkxx7rf71wrdqEhTiXnfyO62q5yQ/S31xMPjGd9bcdYPN1PF/Q5/JyIcE2kr89ploGczPm6RwUefHiyfb6Wy9uFy5c2C6cxIvX/HgDinKhJtI6g/Z/D6LdTY0KcC3h43ROG4CN1ecwJgzAKyBUnlWL3P7ByGM2bq7xYIHc3uzZHdSbf2dHtIH4RpkTAtJmZ/ZEwNG3uTLlDuJOb6PmpujBjc7gPWFADuBux9VKWDfg5bWU6XaE3PZeKy5jNcimfTlvy5Md1vWgLOSxzm3Lto1ugLAMzjP10E1su8lHpkmbyGsz/+xDZ51gnwW20Tsaf4UE9SMe8Yjtv//3/96ee+u3fuvD5wM/8AMPJO+nfMqnbP/jf/yPNu0Hf/AHH/JJIvi+973v9l7v9V6Hz+Mf//gDcfv0pz99Kc/973//7Ud/9EcPchnv+I7vePg87nGPO+TzX//rf71d9R0MzhOG4B0MBucSK0KH7+7Y3rn8vZqv75Ele//PUg8fWxFrmYZ3tvDCNfzM8pfwT9OPyPeHuCz7Ybm/J2n98qnOx8YXIm0GIvk6CNXcwiGRPoZJD3xKSEa3UfrR/C/iyv4QvpyjOuuxfOuO/VK5/hWvONVzPbpPO1hGPum32TerfEpuyLAVgWf/1n72yn4A/v4ecbriE5xXchkOFPLWAtgkdsZj5/bpCF6DHGbrhlWEru2m43PyOHJkXyVIDLv2XsvZZp0d8Tt5Ebenj7lc2gF7T1/c20qiL3M27o9wTH5pFe1ggjfbu+M39sbKKqPaxsGHbDlAVC06LRuGwIbnISI5uaPsEyDt23WrtFVmBpKZ3DcH5TEn+R5sEVtlLLA+GFecLzyU/7utU3/YGiS5xyynd12dl3lA6yYDBnO7i7TntDPrJPlC65Y2ScI2kbZ1rA9f2U9OtpOTqmwJqc3T81HtLIDOwGC0R/q5YnnDy3wxCq88mdzzgGMjABCdmW8SpCbtkLsjIZ03HbFQ6R1ZTL5WshvWRkOengxQb+RE5pXuugGmzrHXTBKZXbnu6LlXEmVnBG83aTnW3nnztUw5EcpVoSqTgcxbflSntp3S7i6ns0V31u7m6gUAbgK2mby55G9/Z3ubYM/2S1K0G9A8Oeo6dUeq7rWXF15yEKUtvNI5uA1e8IIXHCJ1f/VXf3V74QtfuL34xS8+LJg9+MEP3h7zmMdsH/uxH3uIzv3BH/zBA/H6W7/1W1dc/7f+1t/avv/7v397i1qJ3LbD72//9m8/5Pu2b/u226Mf/egDMVvnv/Vbv3X7wz/8w+1//a//dRs5qsxnPvOZl8jdZzzjGdtTn/rU7eUvf/n2Pu/zPtsTn/jE7QEPeMD2Td/0TduLXvSi7VnPetZfk4YGg2sTQ/AOBoNzh2PkxIqw6Iir7rq9crprV/7YimTJa/P41fgu+EVEU1YkL+SunXs+ua+nfSfvm4scduztcxW8N6fLsp/hwJT0DXK/Wvt7zi+jb60f/HBe0oROuM5Pk3I920xcf/2VercvUdGIRCHip+UWC5UXJDqEV9dOHQFi37B8xfIhzVnYL+LFSGkf6ac6745ASrnyWJJvnR3ig0J+O2qRPNxe6Y+a8Mcn9hPZnd+ZcnQ+7apOe/08+63PdcF1e302AQmL/XnbDXTi4DQTd+aI8uVgjjhli8t8GjrJ7m5s83Hrk2OOurRd8P6k3HcXMpjgR9creYD6ZluH7CeUS57Wl/u0+2HH55hLyrp3BG1yioyV1qc5NY8rHg8dyAZfhc3n/tOMnSv+I4MWV/eOzCN1as4IebmuI3BdZ7ebZcrFmNVY090bfR+6VEffcLwS5MG3GxwsQCdMduxUfsLGQOi9N2bP/YvyhkiFIAAtg1dxuga1gt1pcpXVKxuuj/N1B3Y5JhEhL6lnp5sV0d4RxhzPLSryJo4OUm6T3d3qZUZ1d4aGHKkvH+9uiF15qQ/XuVa02GjebcVAn9ty+Hp3RF/vmyiDh2XLQTpv/t0KabaR9Z8TrhyIslPnY1nZwa3vToacuLjuCdvfoEURu3tbJ3zv937v9tEf/dEH0vbud7/79m//7b/dPu7jPu6KNF/wBV9widz96q/+6u2Lv/iLrzhfxPCv/dqvbd/4jd942H7hS7/0S7eP/MiPvE1ZRQK///u//+H3f/yP//EQqQt++Zd/efuxH/uxAwl9n/vcZ/uGb/iG7eEPf/j2+m4BZDAYHHAneQZhMBgM/nrRESyrYz531jR75NGK+OHc3vm98rr58rG6Z3nlVxb5VtGlN910+l1+SEbSFhwxmr5oR1bik+HDpb9kX8Zl2ecjb5eZxAK+sH2rrC/+a6UjyvDP//xK38H7Uea1fBNpbL/V/kz59nw4B5l8r3tdjlb0td4DM5E+D9dUmxVJzJaP5jlcH7d/x090tpE8x4rXyOudB8eRCVlsQ0R2ep9mczWVD9HmVcfa1mK1vUKnr/zf2UeH5B9Wabv+b535O2XOPoyNwA+57p2OCw56S1u1729ikPLKbrx/cafLlNdRq9Yh26Ga02LxqPqYCUNkYA9aL7p4McnookapR3JZ2BLpLDP/u/Fh1a7U1TpP8tU8GPkXqc1e59g1HIn7u+Wpb3Rispdv93/0nFs4eDzt7nP+b7uxbl2+t//oCHaXkXXryu84oY5PyjTU6dL4fHJhu3SJlYLxZwfwAE549KrAlQApvAd+yCwPeN5QGrkwAiuJDuI9ackXWXNvDdepIyQ7ctIdJge5JJGtWzc8N9FuQHJHyejMLNc3CLeNSUF3MNJknbgG3Xlv5pwwpH5yP6Ku/fMm7/+rSUZXX/Ylcki8t3bg2u6G4xXOrj7oqMrgsaEcpEnXTZ5yILCuE74OG0+d5Uqfz1tP5NGtMHZt0unAeVv/VwPr/s7w+SvCrd1ELvADP/AD2+/93u8dfkPAGu/3fu93Ka9//+//fZvHk5/85MO+vIX3fd/3bdN84Rd+4eG70tWWEInnPe9521d+5Vcefr/TO73T9jEf8zFHZR8MzjOG4B0MBucOHSGUDmj3vXeuI0M6R3ovbXfNsbz26pfEBDDJw0uJQB0rEuKWW04J3htvPCUPKyIVUsEErPO2L+PgkQwM6nxtHkc2GZr1SD+F/DIvR3TaF7YvZv+/CN6KxqXumZ//m0iyjA54wk+sfH0t8rC1YgF/KP31s5Cnfl8MT316T1MCgPzEb/r+e+iiUDvZkvtI7BFk6CuJS0hHb71AXbq9hVdlp5xnqTdlHUNHTAGT67bd1Ef+X9mdX7pGO1cZRH5THhxS2XH2eQcS2m4K2EvHY3VjUse3JO9CpHDJUjZPm/l9S5RZclRd2GeWuvKba6hnpUv5zDH4JZE+lwtPe7xH9seuvGxX6s3YSh3MgRT8Ejjq7H2FGUM7wjbrurov+JokWrM/dsedjz+5xWjaRepvZeursjKv1bWXdXpySu6aFPELyGDgkyxLIq0jzFaEoJVtoelUVSYrMrkhtkkbD4D8d4N49a9rlPxvsrG7ObmBkCcjMd2Aeb0Ny2m7N2Ey4PjGU/AKhstxuTlJcF06vWd4e5LsWU5ndB2xmeV06Qt0Xt+wPPHJBQVucN7GoyuPMhjQcrCyrNiWCW46P+e6OnrQzrKTaOxuVrYjD2S0S+oq9ZuRAklqrtpv1Qe6NhzcbtxSzsBW6xGxAnyYN9ztEjFLug61NYPTG0XY8gK17/me79lexSQ8UFs8gCF4B4N9DME7GAzOHVaOI79X31ebJs+nDKtjHaGSaXLeuspvb36L/5j+Xs3Paz/emq9VBG9F3dWcqwgLiJYkHCwTvoj9LPs9hQwWKTg4id/kYb836+s8HOlrki0j5PCVTBxVRC11BPhk9mmJIE0/A1+98oMw60ggR2XCPZgcSvvsAmDsQxaRzOPtRRZVe2WQmP3QRPIV1q3bLNu5IwOd554N48flY+x1DILfZTh6sWA+JOXbq99Z+nDKuionyaYMxMu28vUdUZUyAgdGcb6OsfcrXJJ9YxZMkJ1gLhZQyl7MheU+y9mePtbV0TLTpiVzjSG1OGR/35yCrzd562vMTZk/c4R38gNwIgX3/W4sMc9gGV2vjMD2y+5IZ4KWfJCF8aKuq7GVD3acBGyOU+Zp0nboFx2P19loHgertk1uJhcv/Em+Z8/m9yJ7E6v7m9unonivIKRM6uaG092gw4pSR0Z15FgnHGX5xoVi8oYGMlI3y/aNGiTpanjw7Ui1fHyma9AczL0ahMK9Wmhjt7583I8YkAeEoI/ZiP3f7eq6pB5ct9zWIleETV5yXZdf3oAtX7ZVXmOZrU/kY0DOG5/rzQDjUP6UBXm8HzMTga5t8lgSqdhz6rU77rYxvEqV1+QguyJkXS9PLnOSYTlyQBrcLrzzO7/z9vf+3t87/CaS1/j93//9Sy9Iu76iJBZ46EMfekV641GPetSl3z/zMz+zzOMlL3nJpesf+chHXlU9BoPzhiF4B4PBuUTnVHbfKyJjjxjK33vkkLGa2x5zblf1W81t00/s8iIKsMjC+hQZUcSLI9Jy3s6cG3+FfOxjEMDifT87n9ny2RexnijbfgllEcXr4CjrLSOM8fHZOtFPayYxXeQTx+xrcg3kLfLgi5VMpcPiEQhk6J62zbpT56ynCWpI6EpTL8qiXf0eHQdMdUSObWN1HFiuVTr7naDqD//hKHBISpONKSv1Lf17kcHl2u9zH+hkcT3SPhI+5pfC+RpsMQO3suyO0O30TZ3J17+JzrYfb3t18Bx27a0Y+JSt1FYXSQzuEYFdvQuVB9HFtk1kYMzo+BP6pCNbk4vK63NbVcuM/XMtbeboYHMzth+3n79N4kOwW97uPpHBoVW2I3aJWi6b9lMS5EEatrDoynBa/6Z+GfWbi13W7bEIZ9uz+28nk9st+Z2V7a/61aqPXJb7NIr3oondVH4ib2CQbdVJuohFV8rKSLLKhm/Ci/wLGd3rbSKSlLWBuTG9D0qumHY31dQHA0XXGd3Abpi8GTpNR5amnljVc0dyGudH588XZZHWN09PMrqI45VOqJuPZ7rV5CQJ0zyWbcl3dqhcwc0OZt16uxFkJy/bMzrzwL6qR1ev1W/3C7d/DhDdMZ/LQaGbpLiO1MX1z0EjByuvIF4Ncuy4oz9/zbjHPe6xPexhD9s+//M//0C43vUNY9bXfd3X3SbtU57ylDeo7ML2r//1v27z++f//J8fCGCnN4jeXZHIBucf8pCHXNr7dzAY3BbzkrXBYHDusOdYrhzJs357fn4WYmmPPOnmuHvpury6cjsnPMmoJDM9z4RAxb/0nJz5tx/Ddv4rv5nyrD/7bgTyFPB1iZBdkQrIhg+bfrploayaM1bUsglT+2YQWH4CkvLYA9e+KnJDmFdZRahVHpBe/hRI37V/EoaVFvLKdYITcPR0kqKdbe7ZfSeLj9n+V3kViLzMd8D4qeokLl2mg7acPu2Xc9ivo5ezz5zF7y0QXV7YI8k7Iqo7Z3ly7Oj0TPlOC5lbx5N8hlxFH+7H3gKS8pI0XbW9CWfkAuZwaCcvdBBJa//bsmGnTodcRM+7j+XChyN7ncYyoJOOu+u24vSYaG4K2XI8MTfX8Vdd0CLjbZHuGSzpF1ha1m4M7bZnzTTo3Pp2W1l/thnvn5z3O7eF0cma953O5vbuVZbHY+11Fy5sF08ubicoi87qQZKMzWhbud1qYgrmYylowo9o5EDEzZIXwtHwGSHrfYeosG9CHLOR+ffeIJmPQ5AnDWp90IjUwcaU+qED2JAw0NSPBxMPrAz4HkTJmxt3rm7ZGNOAOgLSMnc3g9XNARmsI9chB/WVnfh4t9oLsenIVbeF65mPKGA7DvN3vm6zXCSwjtymrrePAbdVThyznNSDJ1V5rmsH5PBigdvjrDf2awBv8zZvczTNi170otuVd73kzFsgJGr/2+/8zu+8zfGf+ImfOOy9+8QnPnH7ki/5ksN2C9/xHd+xveAFLzjI++hHP3r71E/91EPayv9bvuVbbpPHgx/84Eu///iP/3hXzhe+8IWXCOW67jnPec5V1XMwOC8YgncwGJxbJJHSkTSrNKtvO77HCLKVPJkP/4+RRFeTP3l6/t053zVnLmLS8/u6psihIklM2nAO/w2f+pLzLd8lg38yGKnyrfwd6Yt/gy/ckX98m/zq/PH0kUw8sZ9tvnunrild4D+sIhcdeGT/o9LwFBv14Hi2D+RvEcb2Y6kzOoAbwP+n3t7TlnbM7f727MiPt1NH66+zK/uw+eE8T0ETQYnPSVubPO0ILhO7HafgtgKks+x7nIz9RMq3Lbk+aX95LvWcclh//M561YdIz8zPfcsRnMjcbQnpsjuibWUbroMJWXNMFbmfEaJ1nj1zrVPyMtma7ZK8XHIEJvHdr71AUjaH/bCVRQae8dt81J4e3B/g7JLcpH/Sd61fxgfGFz9VTZ0pw+NmkrIdp9TJUmlcXnd/6vJMXSR/mPrpxuPUV6d3p03S3ulA1vtUfyfbycnFg/N/BWte3wy2XIRBZCfOVRQ3jAv2dwroG6tJV++FWh9k8AvASIcMGelohfrbSt5rHM51naDLK42WY775ehUjZfLAhHF2N2DKd/65QsSNwKu9EN0edMjfKy9p8N0Kahp9ypQdgOPWXZKXOfD7d6dby5MDtctyJ2Si0dUBeX1Nl/fqZpjygm5wyg7aRZ/mhCLtoNNt6tFImXKgeTMieH/5l3/5aJrDwtabEL/+67++fdZnfdb2K7/yK8s0X/ZlX7b99E//9CGC9+M+7uMOH+PXfu3Xtq/4iq/Yvu/7vq+93ls7/Hk9LriDv6gXgrwB96o91QaDQYsheAeDwblEzhc7P69L06Xdc3C7/Lq0q+/uuq4uOa/zPHklT5dP97v8pIosIw+ILhOG9qXwV/HHnE9HAGSwEj6dowCzbhlB2PnU9g1Xekz/supUEXQ1j6xv+7Q8Xl1RvunL1v9KT1rqDnFd1xExWUBHfomSiRT8Voje9JuRncfNq2xvi1G/7W/aJtKnWvn7SfRwbOV3dQTMyt5M6npryr126ojalKnzl4/5smmPZevsWVvnanuSaqf73rf3RzPgKDmS9Oc7fRluD+w4g5MgyLHLLNuLIV3Z7i8+7/62Gg/I3xxU53eTD4QlbZ0BhwWIfUeqZt8mcr5r4xzvIDkhv80noJuOCLVM3eJGfmOTDr50WY5Adnkev6x7b2/hFyX6mlVgYjfmA/etbOtVntQluTDrqeOoPN6s+Ja0pwzstHwZQJrcqu/Hh2uuOzls1XCSq0BuNEc1ZmOWwbLSR6YdAdeBvPnNdaxqca1XEjNc2wN3DqQYicvgOArOAWRP1kKuDuaNIZXPtZbPxk39TGi7QbubdpaJ4VM3G0Lu2+tVHHeC7hEfyqUOnrjkqmbWOTtIRxLzbUI1V3eyM/j3Kl9PaLIOjl51+ZTtCY5hOb2w0PWZrD/IdsiIAZedOnDfso6c1jfTLL9b7cpzt4fwNFF8R+OvSY7v//7v39793d/90hYN7/iO77h9wid8wvaxH/ux23d913dtn/d5n7f9yI/8SHttRep+2qd92va+7/u+7fm/83f+ziGK93d/93cPn4Rf3vZaoh0WeI3eUFxyDgaDHkPwDgaDc4tu3uo5ZX58fi+PzKsrM7FHPO0h56/HSNzMPwOUVuV7z8qac9bcCqLXj9YXci/HjjzEB+R89/QgBKl9utyTcxVhuprXp9/Atf5f5Gi9HApSto7XvPOmmy7X3aRr+pv1m2jL0g3keOVF5C3p8Pkhyys/9trE7+Y3j55XvuxD6xe2l9zIQNsQRYi+yI98/ESwdYQ/mf4+5ztfsSNd8rzTQXJbpq7PGQ526/zW5CNcRucz29emP5Ru733vy+l44ZfbOPt9kkzH0vi4YVkdvQ4hnvWutoXYdxneQmWvDNffQXN7410nv5+U9jjgNqEM76+LjBC75ilcRrf1hG3JnFzHH2Sd6bPo0fl2NmxSlDL9lHr9d4RsyultUqwXrjcnY9nQLfJk8F5GEnc2Zi4obYLfjCXWXQZUZt1cd+fVcVmdPJ0MOXajc/cDX+M0p+lOtlsvviGKl08K6RURE5GOGOUcqyldJG9Wmmv8GIJJKLP6q5s913sPVd80HILOGxPTwJOEteJNkvpmSQcmj9XeIh1Jh9xJSmdDdUSx5XKndTvQuI4GZmAvPUHU+zEg8szVY8vTEfdJsHY3CbeZZbdurP8kPb3wsBqgqa8HHXfIvAH7hmpb9eCbtpr1SHL3mK1zzHXKgTJXbVKvaUe0y4rY9M2vi/btBpg3E7z3e7/39uIXv/ivJO+bb7758AEVsfvd3/3d26d8yqdsT3va07Yf+IEf2D7jMz7j8Nt413d91+1//s//edgu4aUvfen2BV/wBdsP/dAPHV6Idr/73W/7kA/5kMMWDh/5kR+5/YN/8A+2j/qoj9p+9md/9oo8Xs0E+bBOc7crSNzE3TXZeVU9TjcYDFoMwTsYDM4d0gHuSIz83TnOKwJnr9zud/d/7/iKIOp8kRU5A+znHZOhfMsiPr1lXz1dRaQj74zxPp4ZYGQnviMVQQbt2F/LuqRPQbn2B12PjJ6zz4F8tU9u7cVbv8uHJp+qq8nugn1xdAohB5lU1/Hfe9Daj+PFaxkUQxls12h/Cr+28i5iuPPF8N3Mbazsyr6pZej8Ldvhql1WwUjUoSNzOvCiMPLtAno637Hz+1a2XsccqW6ZiKp0gF0XMdkdW/mx2e+yD5iPqajx8nvYCsRBRrlXNb6+65r1z3LOIrvTJ4eT4yOyJCfgiPUMHiu4v2fetmPAVi62jeS4zBdwvBZbOv7LZRqdbsjTUccdb2Puj7ySP0M3rh/jLOOrubTsKy634zfcJzoynvJzDLaM2ZdzbHf9Oi6M7+Rvso/m+Y4/68aNKxYo3tAYl6J4rSA/SpLnsqHrHNGhkKsWPI0cIb29guGGzxdGpUxcm5tK82F/Hq6xEi0TNwqnyxtFymlG3VGWK1LNevBNvhvgusmPOw+DLcfcKRzB7D19aFf0zo1yb1Bd3cB9rDO0JHIzb+s1z+cgsZoUeiWbvbCyfagzbesVmu54IleKXL+sU9Y3B/ZMZ110+sgykgju0tnGsr6ZfjWZvYZR5O7t3WP39uLpT3/69hEf8RHbYx/72O3JT37y9oM/+IPbjTfeeOn8t33btx3I3do64f3f//2veEnaDTfccLi+9umtrR4e+MAHHvbxfehDH3pFpO4t5VRo24U9gveeNTE/43YOg8F5xp3kGYTBYDD460MSE/69Oudv59ORAWcpJ393+Xfz1dXcd3X93nGfs9+TJInT1Ry7SLCak9WHSFL7YY4axYflcWPXh3TM2+13p24cxGMyxy8RS72sgqXs+yBL+joVKFAyk7Z8+5KfKNw6V7954XrlUXNWoj152Ro+Z81L67/32yXqEEKOYCxeskSajAxE11VGEX9+uZZJMHwgyGWij6tu7HvqPUBNqFuv6bOuyJu0lxXZRB26KGBfy2/8+M4m90jbPSLS8ppfoK1cZwh07xVr28q+mQRl2tiqrnm8YMKWLT78IaDFUeTdS7A6XidlS25or36Wt8uLccFcSKYxB4P8PgYYI+C0ytbpR/BOtE1Hwnc8nMe61H/Xvskv0S+9l3Qucri+8GQEaOae49Zr8mauT27pkjZnMraTxTxfXk/+rr/J6OxfWUbqrNNhd2712zo3VmPLZXlPTq81uctg5sY3w5+Di1d1vG/s6gaVQpi08h6plMsxOnLe/EzO5dsnvSqbbzNN4ozvvHEm+dYZkldHXP8V0VswedrlWTBhSz06WakrA3OhBjzvP0T7st9PdrxV/siaq8grQtidwW3cdVr+m8zHBr0Kkoa9mtBZH9ZPPn7j9B70apBioLIN5ipK9o1OD90NhOPuvFkXn8tHFDL/LNf9LtHJ+cbC+rmjP2+K+ryRqOhdyNcP+7APu2LrhYoqLtSL1UzuGn/6p3+6feM3fuPh94Me9KAr8sgXq/mFax0e8pCHHL5vvfXWoy9kGwzOM4bgHQwG5w4r4qIjXVY+3FnK4Lubf3b+WJa9d2xVlw6rMvIafJA90oz5ee1LWhGuRfLWb6LN8EXtw0GQ+aVlnkOb5PATmA6Cwj/ICNaVD7IK0PLxDGxJcqHKLyKpAgoqfRFsELxEDeJ/FynIi+cKFVxQT7zVXr74PvbpeemZ96CtcxCx+bKxJKuQ1U/0duQP5ZIn9YakdhSeX9TONhPowcFSnQ2epR8kD7EifXydidb0HdOuk7DtfEP75pmfIxFt+wTx7QVe2Ya78aXrR13/Al3QVbcAknyL/fbkK/bGoc4vzzr6ur32g4AlPwfZZbRuFwCZW7xg50mkco0jN83BWDcmMCmz7LsjF3NhiDHP/Y72YNxzhLzrnmDs8ViYZWW7QXx7f16ns15XNuW6+XqPvzkW53i4IlRdh7SZ5J7Ocu/s0q/yzzomZ7YkrVaDhwvLynWkqI2Xhq3f3iQ7tz9ADhrWbyMlb5OsftsojVcwQb2n4CQjfWNMcs76yMHDBG2uzvlG6/QpD3mQtr67gQ29UWcGEvLjcRaXzU3K5GenT65JUjdXUTv9MjB3NpXG6cUFb59APl5BXemaDtvp1DbT5UGZLj8H0bzZ+frUUWcbltPttyJraQuTvB7EusF3dWPfI36d7+CNwp/92Z9d+v32b//2l34//OEPv+JFanv41V/91Su2dTB+53d+Z3kuwfkXvvCF2yvL8RgMBi2G4B0MBucSK78o55Y+tjqX152lvO5cwXPZ9B+PObh7MmReezJ0/m2mKRKjCN56Wqv2pi0iEyIRkjL9NZOE9i9MZtn3NamC3JY9fcyU2wFY9s/xuUjjgCi3A9cQOdlFv0E+OW1FydbWFUQylv9eZBL6gVjCZzeBmraQRHbnAxaI+q18i1yGZPLTvR1RY78WGU1esSWAfW7r2/7nyj6z7M7vyuvSd3a7rTiaLGtlH9mXnC5JN7bfTHIwP6u+0hHMe2NBB9LRHrVwwFYpJjDNu3Rjwd7YleR6N97ttW0BWbC9grfIhMdycJ6jc12mjzNGdAsA1g15U65lzXbaI6hXdkua5MRsz9S3C86rNGyjkn2avMy9kKbqVtsNJiG96pMe32iXtANkNLHLx083kD5tv9Nt2kyXpvu/d8zfe2ld10ttcPHkdKsGf7qouK5B+LiRz7LnrfPxKhwGb2NDWK9i2jB9jBurB0BHBnvAQRb/T6PyjSDrar04chQ5PJA7ryRvs3M4D68CQ/I6qtOb7nO+4BXR+rAKaRl8o+iijbM+Jlq5zoOp9dARw1m/tCtPejpyMvPFyG0XuXpL/qkPd5Ksh+tq2+jI5uxgXd6+2VjmtAnbTebrgcV9zeU4v24wSL11eQ1uNyrqttsW4XW6yd5ltfr/BtyVyIe4rvDzP//zl35/wAd8wDKPBzzgAdu7vMu7HH7/wi/8wpnlHwzOI4bgHQwG5w4dSdA5oVeb1vl7zr9Kt5JpL91Z63a1aexPpPw5RyZtkbovfem2vexlpyRvLajXcT9Vim/iqD0I4IIDWkww5BN99tPSdwDpG/HtLRlc9/RzTOKU34g/XeQKfksRti6bunobAfwoAq+KfK3jNa/lej9ub/kdgEQe6Vs5AtAf+6hVVtWhZPfeyKsgMttF1RXCzE+9pi9qebhuD+mbdmROto3/J7FrmWwX6Re6jM5PNalFfbie4+w/vXoUvyN+XS/S5LGst/1mgA1XOxG0knXONkm9WOd5vIt87PS2CmB03dCPbcLnfa0jTlN/Houw56xXcgneSiDL9fYV/Ke/du3Q6cltD99nG2MRyLxM11bIyZ7cJlnhpFwPL7rAB5oL62zGbcbYmm1gHWaatGMvhKV9dLbftXd3j1ktmOx9sp7dverWW09OdXThwnbR0aoOcXcmuXpkBdZvb9Xgx1A6wtDfNGBHGqYhd4SkG6CurZsJm7V3yrXBpSypcLBHiGY66241mBe6lTiX671KrDuvOhT8hlA/vlOdh8cqvIrpwZtJCPXq6uI2Ri4f98TE9uM9g/LG5rp6gLEsJm7TiJNUt04ZOGulCLvJva/QkycJaXe5/xL1pc7ZFzwIWo+d/edx2s/2RxnUx+3S2eQK3QCOXm4vuvHijvzcwfj4j//4S79/+7d/+9Lv5z//+Zd+1/67ezBx6+sKz33ucy9F8X7CJ3zCdo8a4xp86qd+6qXfz3zmM6+qDoPBecMdP3IMBoPBHYBjZMxZvvNY+jiZpvu/d92KHF6l55qu/LPI5vn36rokWIqwLIK3InmJHMX/8lOJGYzURRt2j6U78MMydk+KdtG+lt9Pt1oeExxEy5XvyH61dbzIUl6wlsE09kcpu/KoT+kBMrd+V371m3zSV0r/12Su/WF0g8/o8xBH7AnMJyMLk38gT6Itnb99tbSJJMqdf+f7o3++8/yKM0kduezOlza6fmR/lOt4oR72AdGN37wiLFdlddGQq35lHXb+cf0uW8KnNxfR8QFd37bNoq98UrYbG/fyJQ+eNkcmLxwgs0lV+rYD1LJ/Eo3p91uxiORxhHP0cfNB/lSfcB/Osa4b66lfEvS27+TxnDeymdPgGtK6bTLYzf89hqIb9Gv95HibgXmWjW0mCsmH+ZokeVMHTre6v+7dd9O+znJt2uGVOj/ZXn9rE3XZESfuBGnwXq3MTaJdYN7UaHQP0twQ+c7K+IZpotGDrKOIuZ78EzmgZMP5mI0kO0jmmQ3jm3LKlDcSbrQmbPPmj44wdMpgP1kGF0heDzweHHLgsty+ubhO1rUH2lyNzRsfefiGnCQ7H+/rvGovX1t5cWNmAMvJVK5m5wpYNxCAbsCyTXQ6S712tpIDOjLkYgRpTc52nbq7ye3dnAZLPO5xj9vuzib+C3ze533e9uEf/uGH33/4h3+4/dzP/dylc/XiNPbB/biP+7jtgz7og9o83vM933P7nM/5nMPvehnbT/3UT90mzZOe9KTD9/3vf//tq7/6q29zvl7M9qVf+qWXCOEheAeDfezH1A8Gg8GbIbo54O35zvljztWzrCSnjs0/0xfxPHc1nz4r9oibPTm79EV+Fslb5ElFGNYTXSzCm8RxPn4p2Koe1NE+YxIeJpO6uX76Ep0/R1q2UyDiFl+6/nMe8oM32xfwtyEASx/1KZ+stmrAX7Yv5mg8nm4jEIkyHNnHE274sVmnAscyCCb1h29s/5pv8uRFbJ1P5bZBltRl5/N1vEDX5h1P4fNdfmkvyb8Y6Y/jL9Om1c5FpKLvsuvKE6J+FeW4R1SZVF3131VfLOCz+2WF3WdFfq3IO9tZtk/XrqvfJmKx6SQ7bV8ctwzeq9ecURcJS334dh/gvBcuSOe9ct0e5GsZLUfyfxx3ueYvOOYnV9ExvE+NlQ5QtIwObjNfRv93cFsdY0GNvEz2uk5uY14cia747TpmpLMX0brFH9tEZ1edbhl/suy052z/HO/Jy8T26Xmt4DlBRy4lu07B3vO1YGbeys1oQxNvefM5NmFwI5hApXKsECCfG6PrNNnBV+U6Xbd/EcrO39TReXBtNqZvSqSn81DneJT7ChlzRcSPCbmz5mpL7rNEG9G+2Ym7G+yxgX+1muKBixt6107OzwsLyMWKDERx127Waw6sHHf9fWMgbWervjnn6hJt2rVXXuebwupGjmyeRHI++3E3ONwJol/vzPjyL//y7Wu+5mu2ZzzjGYdtEp73vOcdtmC4/vrrt/d4j/fYPvmTP3l71KMedUj7mte8Zvusz/qsw8vNwMWLFw+k67d/+7cftmj4sR/7se2bvumbth/6oR/abrjhhu1+97vf9iEf8iHb537u5273rJdUbNv2lV/5ldvNtcdU4GlPe9r26Z/+6YfyHv/4x28PfOADt6c+9anbjTfeuD3iEY/YvuzLvmy7z33us73+9a/fnvCEJxy+B4PBGkPwDgaDc4fVvPv2fHd+0ur8itTy+e53+kbH8jkrOic6y/WxzuHmdxGaBNbc9763jWi13PgSFeFa5Kkd/M63MXHR1TuJi8wv/Tinw0dne4m3eIvbylF1qutqS4ryyzqSw4+H47s5sMaBTPglRaKaU0gegHrzsjlIGIJ3XH7lny93yoCjQpGXEFxdBCh1cL4mk0xIOUDIvIj119lqFyzkfDqis4NJUx+zP+t8OtuGR7AOXfcidQlyyUf6V30hZe/817PAOmRBJInNjlxzHdOfT7I1o3qt104OH7NNEFxGPzB5WzC/lk9v13XeOsF8FXyMbRm71bZ+V7SheaHkdrjW72dKYtN17Mhdk9LOo9KzGMB//0bPDtDsnp4mAt/cWpZd5fB0AXlmMF+SvIxDbkfIYcpifLFcltW68bY7e/pzmrSn5AGzb/iYyWquz/sF6Tw2XLjudC/eExOCXiXrDDsL8c0jK5XXpNG5Iiuhvel8EqIMribbfCOgMfKGnb8LJjy7SUauWHR5kp5z3KCYAOTNoNNRDt7WjfWaN5UkI2mL6gwOaafzsW+KO5PrlqtENvZsu46oTr34Zm6D3dNJZ29Zdxu+93bxeWSjPbAr7GWvLU3OkyZXl3zt3k2juyF5AMsVej8WYB130cNO537oyYhvGGe92Rom+O9o/BXLURGzRdzWZ4V6oVmRrz/5kz95m3NPf/rTD3vj/n//3/+33e1udzuQufVJFDH8dV/3ddtXfMVXtGXU+Uc/+tHbj/7ojx4I3cc85jGHj/HqV7/6QP4+61nPul11HQzOE4bgHQwG5xIdEcX3iqjqvvP3qqwVCXOWfPfyT6LsauToHPI9+Y7VAR+PLQ5MDvpaiMoiz4pYJTKyq7t9ufQx7E+w7cFKVxloVenwBdnXlEjd1A1kR8lcRHbJ222DaD05EKh+mxhG3gwoqvzZ75etFuwv2s+s87wUjbxNxCYBbL052Ml+lH1rrnUADcdyT+WOJ1n5wf62D5Yks/Oh/ZKE7nw+k7BduamP0jf5QH47SrII/wySc7uvcDV+Zeo95TZx2vn7HawDt29yKuYgrM/kIlay8cm9tAveCjLriJ+f751Kjon/SZraXjiW3BQyQv6SH30rx4tsW5O7Kz3Y9twvzB05b9c1F69MADuCN/sFenMEbp3PrTezj5gndL+ibLchOoMr8rjj+nRcp+u8xzl6DElbXHFR1nfq3/Z+2dZPtlsvXNwueDAzuZfEaGcQJo2yczgU3UacxtTllYM1JBsDumXp9vLwAOqXkllR2TA2iGTX86aHUXTEZuoLfSIjeeZqg+vsm4c7S64KuXFJa31k3Vlx8uqQ281yWp9l7OzhwoDicnM1MevPsbSxvC4N1nU0+Z7t4cGD62gnH3d68qNDu05JpvoG4QmKH1txO3b7bCXxmnX2cZdH5/dAvTcgpP1mGav/g0v40A/90MP2C4985CO3hz3sYQeitgjfV73qVYcI3N/4jd/YfviHf3j7nu/5nsOxFSoKuKJ2iySuvXYrr3vd617bK1/5yu3//b//d4gO/uZv/ubt137t13blednLXra93/u93/aZn/mZ2yd90idtD3/4ww+Rv3/yJ39yIJe//uu//tJevYPBYB9D8A4Gg3OHPdLJadKXW6XLaxIrZ7XLo/uf/s0q/2N5X+1ct5tTr/Jlvl3+QBGm5StVUA2P+pscw49l+7xKX7+JyEs/YU+v9mfT18i06c+VHEXqQR51eqrfJVfNbysNj+wTeZx+eKUhzyRHMzjE2+hR53qSDX+sCFxkddALBIwJJWStT+nSkZTpu1n39pPsIzs/+5zmElyfJOk41xEyGYmX5XVtSPumXSTJ1/nN2FtHdhHN6TpgF+yXnOTzqj8mOZq8jr9dr4R5CN6nk/0t+Riu2+MSMiq3CxbcI9asb3gVvjP/Quebd23RlZ825zazbsi/+h28GMGNfrIdebAT1z05G+sn5bIuzaE4gpjj8EQs8CTpatnMpZn3Qhb3w/ztOjgy2eOTgxPdHu4f9Zu+AOqcx+VcPOr4w7SbhMcE8zteHFjdX47du53GY9+lxvEAlANWZwj5P4mzbAQrGiH49gBuEtPMOo3g8nObAfKzUbohvKKTg2T37euy3rknTeqETt01GPt7WN4MWbeRWofkj0F61cYdn5udCV3q76hd17XQkbCO3CUf7+1rIj9XoRLUNW8cOQikLrMtbNBd22WH7OyJQbq7uXINxz3Ae+Lh9s8JUnfT8w2huyFhV2w3gRy+LnVEuk4nmWZ1bnAJz3nOcw6fr/3ar32T5PWFX/iFb3Q+tfXCU57ylMNnMBjcfgzBOxgMziU8Z+0+XZrVsb00XXl5LOfIXfpjsjgf598dSz2s5sArmUA3zy5/rF62xjwc4gUywI9IQ4AUqVnbH9T1fpIwSRDLYl8x/bgVuB4SiMeTV0/zkR5/AV+HyFn7rqR38A/nc1sIX0OEnMmXSotcRe5VedS50rO9QumtyPFKX35upaW8FZmTBGy3bWLHT6T/3j2tnPbgyEmO+ZM6SX/X8tpXTXncRr4u87WfXh9eRO78c99WdOAFAPeHJJ3QyR6xmyRsR9ZyDXvaOq1hfzy5nI6H6LgfuBjyMxfV6Zo6Jsdlm0gyEq4g9Zg8iInjrk2RlX1sTUzmk77sqZz7ffO7+lX1M554Rk/+7sYEtyN9Ld95BLAxgIy5qOB2oU+aT/K2CeauHMxIvZEx9yU3j2V+0Tq2fVpnGRmfxGzqNmXpuNPsIzkGOn1yj939sFtQOrXFk+3ChdMTh20azH5bGTlYpqCkz8GRNDbIXAEgL794y5uuMwj5O6MpPeAm3Hn8yEE3IHUDrRvVBoPyfW5FanYDW4bAe1Cy3nKyQVkQlo7mdYQnN8X6duSzB3k6Z7azw9E9QPEis1z1NenqfKiXdeZ6+DobZke4Ot/shGncwBtldxHcyOCbX9o+57OsXB3uOl4Oiq4D57pJluXNG3zqoSt7dROlvrd3n1b38TsadxY5BoPBNYUheAeDwbmDfYmco66+V8e6vDtiEnTO67G8Mk3O+zv5juXbofMjVulzvk3a8lmLrC1yhS0P7KvxkiiiEsmjyMqKkq3rK43rmL42vjGkjkkZz/PdxlVeyVWP3EM411YLXTt1tmGfsEjVW245jfCEwM427x7nN+FKms6HJ62fMOU67xFLHunfopcCPiuPdOO72HeHZCYy2IRK+uP8Tz+W496KwsRewWRyttWKc7Bv2tlhkmOuF+WAjDaEPIUkw67qNy/ay/5g/sDtlWlTxvydPEl+13m/LN7oeKgsI3kb/+94gi6vjndw/buxwm2G7LRzch0Zwe605m4KNSZg10nGeysTt2Gh+nstONHW2Dn7ztpOs21TNuoLj5YkrPMpub33LnL7RYzI4jHEcniBYrX9DONg8mQZwe+gPtuuy7L+iNq1nuEm05bdl7M/dDaX1zt98k2dPec1tnOuzTwPur5wYbt44eJ2ko/sQyImedoRcF1nYhC10XsgQojucXqTxlyfkZdcS3m5b4eNBYPAOLu9j/YmB6vVqdWN1ciO7Dw45u0UTKB28rkcG3T998b0SQ76pkNHpzNmZzexifys+FSnc+d1PWlH72fiYx4sbMyrG57r63M+n4buG3Rnl64X13WRwR4YAX3CdVqtenngctmuv+vmspNYzpt0p6usZ5VBm1HWvIRrMBicYwzBOxgMzi1W5Er33fkcma6wR0R1/+0Ur/yunNN282mOXy2S5HH+EKAEwaQ8zgPU/BoS1wFNfHtrO3wSSMUqj4jVbv9ZywtpaTkyyss+T+VX+fPffk7mbz+Kc2xpQJTsTTedkkdv+Za3JXeTCLF86C/1nsE0pIHYSk4A4sU2kFG1+LS2H/umEFH5ZOsqmAa57Ctbx+YqkjhfkVdpd7YtE4NpB5aX8pDLNurria6uNnRaHqsn2tJRmA7ysm45lmRZIvtKtn0So6TxE8f2hTP4LXWX+sZe7PumbOYJ3C+zLVZjIDyU62DS0XL4qe0kValbknuOHsU+sfdKWwst3i4ieQxeZkhZZQeMUbYT170jK13Xjnw0XwInBL/E2JH8n8dV6g+XQv2or59Edz+GLK56Uo5fNNiRr2kD2C5lmhuEYOa6XKhKDqu7lx0jep2HZfKxTm7bZtdHkbeieE9Oai/e6w5vfz9BsbnK0hl8R8ZdzvjKjmOluPId+ZmraN3gCzvvgcmdJhWLTBiaO1waaofs6NaPCUNk7EjxvYmMBwNHMHf6Jj2PrbizuFzebNgRoOiER268JUC+RIzrvY3EHqkJPNi48+Zg62/L2t3UuhtZN+FxO5GvFxeSXKV+GdXMAOMJmgfkvCGkzrL+yJLt4sc1Vjqhrjkh8mqa2zAHN5c/GAwG5xBD8A4Gg3ONbt7afTttXp/fOQd22tWc0+f2/K9V+ceu27u288nwM4h8O5Y3qGsqErd8ropyrUjI+hT5UN8PeMCV29zZZ3QQU+2Bim+X5Inls2wZ/GEfjnK892zqAjlA5+vQRqWXqt/115/WLclLkzIpW9pcPklr3iB9+dJNEdVEypae6ljplqg7vxfFvp9fvuQXjls+l59+48oPt81Yj2yPaKIcX7xrg9WCRZJujuIkHwcfuT3RR0Vd1zcRnfe615URpHWecrp9iJPQyr6afWllX7aBbixwnTtuJdO5bJezIiDPwu10JJmP+xy8S5KIJgchUlmQsAxJ3uUCRMEBdPbp2bfbwWdZb/Ku/sH7k9hjuY4hm/kE1yO5DdcVfsqLGtaPSd7kEdELx73IggyO4K+6equWtB0ifMu+Kdttwjc8V55LnZGnF+ocgZ/26whh2s51yT7djSG+zt+0e+ZpmVMf/eJDdXa9cM2G6k6dBNGqs3rFZdWZs/NZsFxl9M0iCUSH8tcNp4zB+ZgcI1/vW7J6++QeslPnINetaKXerD/rwwRx15h5s/FNqZDkH8QtnQo95KbfaVTk5ZB1VvzqPB3LbZODqnXSrdh0gzj19yQlVzNcdwbPvAmkPtz+2Rap/4InY5Yh8+c67/HbyUIaX7d3E0v9ZV1Sf3mcyVbeOLMPXQ1yJfWOxJ1FjsFgcE1hCN7BYHDu0JFs+Tu/j5EjXRkdqdIRP6vzq/nv1WCVX1em5eWR/tzf9pgM+KmVrggVInKLTKnj97vfabp8CRJzdHyHIip4oRlkiGV1hJuJFfwm+xvUpXw473lLPlzj/Fd+ObKioyKz2S8XmfJJ3G6fS/5zrouAZG5vgqx+F9mTvh6PhFOXjvhwsBRyVdtA4pBnEoT2Qy1jBq+5bfDz7CPXh8hsgrJIn3aKDmyX9tdNquX2FvZx6/fNN59uz8E2IBkpWeeIejSvYJ8+g/2Q223Z+dKrMcZIbsbbCfh42k7XJzON/fbV2ON27MY6y2/bcnQ/WwzkfqwE6qHbFddC/t3iiG2aMgjGw369cFO/i8CFoMQ+kNE2B29iQhq5O/IReTx2mRfxwpgDLx2gSbmpD7eh9V86Jjo37Qy5GBPKvllwStujPNqj4ybRO3pjPIdkdvSweRTrLXkt91EfX3EXHcmbXI/rlOWmDj3GX7hQwsrIqKQHsiQT925+SToxWJtkLXhfEQbCgglI54mxcCPIiFB3CjcK56gXHdDGmQ2ev7Mcd1QPEN2kZKWjNETrtDMi65tzHvS9WbqvZR8i9Jybcyf56G/rDSLTAyNyZiRtwYa6R3xn5/VEZQ+WP1eCu+t5dMB1Q07fTDlW8GMjljcHQ1/rspN45VzXgfOabH9PRtJm8oZZsM5vL7E7GAwGbyYYgncwGJxLpPO7d6y7Lv2iY3P0jpBJP2pPnhWOkbYpg6/rrnFe+Ehn8eEyDxNAEHp+jJoIUhO86WPzGDXvPEFuyKLcitDlO4rOL2XqIhOBSTU/pUk++C1E01XdilAx6cr+weRncrJgGUxkwTW4fagfWwfUx9tmlP6KzOFFUZkndUbvkOREAtY5rssANmS2X98FCaW/lQRglVkyQ9Y7SAmSt/PNsD3749gFJLoJpvRJqV/lU/WFKymUPJWmFh2K3DXZZ73XNUUUVvr0I1f9azVudOiIPfqHdZ3EcXIEx8aEVbR016/dB7pr/Nv/aUfbIsfhvLxIk1wI7drZBDbEYo+5C9qKgMbqD9kPzNugP3ifytN91rJZB+TlJ4KTdPcYRj7sZ2t+yufdx2z7JoOxzdUiDH2c7VzYgiLJal9j0t0ktMvzyzFpb/e7VaBgErrYi+Vd8Vod54XuPRZkn097zbEBuQ7tV3Z4cnK6TYMHFRN5afBdIVQmGW/SmwzkP8ZLXq5cGpDzyUhjD2hWiOWzwrxaksawNwnw4L4iJM866Hkg727Elsk3k24VyMQhbeBHBDBiP0Li9srVA288TTt4ewvfFFeTLvTt/H1t6qzr/LYZt4UfYeDbeZq47YhQD+pJjJo8RW+uiycGtu9u1Rfkjc22k8cTHM8On99p77ni1Mk1GAwG5wBD8A4Gg3OHjojx9+rYMaIz/bK99Gcp/5jM3fWrOXN3rivLaex72EHv8umAQ+1oXXwwSFvm/d5vkmvxi7xfJhHB9uuQCVkoD58NUjT9K+phP9lbxCEX+fs9OshWBC/EkgkPiCrXJ30e6w6CODkFoo9NUlX9IXcr0hm94msRUYx/atIyiT32J02f0m2dhKK5EKfJoLcCOoB8SntyNC/lmrhHH+Zh0pdN27Ss6KrKKLK2rudFe5W2flc67KvkpAxk5v0tSXZnX+nIKutzz7fFlpOPsC2epc915K/12PnFjrhMPiXz4jy6pW4OFvQxcwPmpMxPmIisNursiv2TIeyzfuRbW21ktKztuX4TzV/tW+kJ+rPMKRfEqfVMnUjDx22JXJUGO/LT1tZVgT5LOgfXZaCjx06ngbh2xLKDD+lzHbdDXg58pH9Qj1VApO3L26ikHbntOk407TjbIonlHHO68tKeLr1wzYV6hXFFgCZ55sdC/Hi+B6hUChX3YEqaXFVzBXNVLQdID8IQxl4t8p63ycAbHYG5mph0BNoq3arRkuRc5d11NP9n1fhYvaxn9OjHfNx2qftsY7ev5dnTFWk92NreLKsnOplv3qRtl4W0NfJyR7L+s+y0kW4C0aGbVLrNsl29IuSJlwdin8sbZJa96rtnBXq6M6DrX4PBYHAEQ/AOBoNzh853ye9j5zrSZq8MHz+rz9QFfnCd5/Ndmk6W7lgSPiu5O5+vk6mrawbV1Df79Drqr4hYynKQk32KIiQhQzNAh/IhFCF2TYBYRogQP4Jsnxg/w9G8FfGJjJCtkNUQKn4cnXQOBrJfX+f80jLrGzIZEM3sdEWIUWf2+izU77q26ld6IIKa6ECTTR35mASd2zifCDYhu0pfv3nE2/qtb/ZS5bF2+9L2w72FArAuzI1kdHduRWlftSJ5k+fhP5GQtmF0ZJIqj1kHHdxfHA3ZPf2b7ZJ551iQ5xx8lmOOr7MNrsatTOd24BxtbB+dPDruKhd16BMulzZMfiX35s13+NhPp2+bP6B/QyBbn9TJ/SbbzVu+2FbpXx5zMpI6x3fvcUu/MQGK/VpGrkt+hPwNR+yy8NItkBX8cjjGCcrIYFLay3p3+e5PLifLtM26jTtuMDnYTNNdf5kArwQXT0ne667bTsiwC523oEmGmdBLBt3h3vz3DXBVDkbpDmUFkVe3GupKOw15eIB0w4BskJwcHJsE7E1KukHH+uyIzrwmBy8/YpQbfOdg5RUVBg7axm3HaqpXIIH17JUN2wHnbKjWbd4sUsfkxznyJk8vJORAnJ3Csq0Ia7edVxhdB6dxxK5vKrli5XamPN/4c7Aw8vEp20LqyudzpZJyB4PB4JxhCN7BYHAukX5K9935V6Cbl5+1jG7evEfq7MnXlbkn06rMjiTKeqS/lr5vV24Gj0Cq1ouueDy+CLaKpEyyIX1A+8w8zp1+Ld/4NVWWiSeiAf0CMPsC+DCOfnXkKHsDQ77a16pjRfhCLtsfW9kRxGvq0BF2BInxG1R5PEbdESYQWkTzQRablLLvb9/X7ZBPYXZt3vnsyAeRD5FbOrLeeby8yHtvR2Eizj43dbMe7Hu6TSpd5Wt+pWwPAosyEvZBVz51ch/2cbH9tM38nU94rxZ1rPcV59LxIm4b8x2ZZ+bbHfN4yMJI6iv3aHW55gRMNGb7kZejV8tmTKBCrppsdN9g0YTfdU1uI1HHWATyWEJ+jBnI7u1Qc9HIfcJbJDg9tkw93f/cDubmSEO9idzPp5cZ67wXsbkkdO13bXm7ibSV+vjpdI8Pltckb47b1mVyLWkTacd7/EzWO7mqtOFOlosXT7aLhzY5reSB5CWRNw1Pxfix9CzE0bisGmSoekYf+mbFJ/MxQWzikI6T5CZpvPdu7i9CnXJVIxWWA0RH4qUeztKwufqQcln/OeD6OIad+aUsaei5dYZX2XLzd6+cWhaMM1d/coUy6+U2NAHayV9wp+0GhdRfdggTn3tIXTgv6yrR3ZByssOA0j0qhA12N75jE+3ODrsb5WAwGJwjDME7GAzOHdJP6P7n91mP3V558vo9vykjKzP9imzdO9bNxzuyp5OJc50v5zk8hGORNUWy3XTTZR8Nn9p5279N3aRj3/kwfuTb/lyB7RbsY+NXE0kKGWO/jUjjW265XGaRKve//ylRXeWxjQQvO/J+oPiHlG/SAZIJH9OEEuXzwqUMcsEm0n+qtEWkE+yUZVrXbjPyTtLSHEUSNp3+kaH0gi5KTxXB7ehk15V8Sq8+bzmzTHMuyIZ/XW1TqDJLjnvd63JdMrDJMIllu8t6nrUfdf3H5WcAYcqxV25yJ8lpuG3TV/fxHAutU3+QPbc3wCYccEZejj5ngQSi1e+iyqfWuRaew23hRQts23aEfBCuqza3nPx3n2GhhD5t8hnOBfnhMbwoY84E8tlckAM7rbeU1XVOwtvbYyBb8ife7tW2kDblfM19JY/mxRHnj811+Tpw1O3ccTW2X6f3ucx3dQ/yNZdliJePsUqQ+7kmsbfqvC7MhuE8UkiTXxk56huoQ7q7VZpuIHOHs5HnyuZZibNjk4iOADx2bTakZc8ByZOgXKHtynZbOC+TpO6MblPL7D1pu1WdvBnljSKNcrXKxn/nTX1d/5TLkxzv95Tpu3aynXoBo7sJJWHtQcyThmxfD775KBXXdIPCqgM7/5TRk5aO+D8GD9Z3NO4scgwGg2sKQ/AOBoNzB89Pk8xYETX52+jmz/69d34ln+e1KePKh1rV4SywD7G6diVL6jPJ6CJZ2NrgFa84Jdpq78v6Zg77kpds20tfenoM/4KXK93znqeRsw5CwuftiKwkxPB7HCBF/iat/ERtRupZR0XeWo6MDHSEHpGGBV7MRr4ZsIXO/OSpCV6/sM4+SHIOkEBuh9Jr6TL3QU2uwHrr/Ob0U61z6w/f0tGMyJQvQC/4vS71ST368XD7oBncthdoVXbEC9Own86ekzjvOJ5OT6m/Tl+pM7ehg/tWyLEk28Z2k3Jm/uk3u65Zl+RYIBRNJhcg1XPxpGyWvbORw3ta16fahn5e/8tu2PeWPNwPkJntSRwlS78nf+zGcqELLw4kkZnELPZLUB82TxmWgeu7cQr54GK8wLXiShywaRv21g5+GSX9MDkZ84SUlfXFFvxyytxPnLbMCHgT/eZcrFvL1BGxtr1VnpnGedu+fTzzgeS9eJe7bCc0qBu9e7zCRu3ByIOQSSyU7kK7jkxjOgzeg1rHcpsQ3otiXU1EvJJgxeTgv0esZVl76AasbmBaTWLQBzfJzDOv9yCbAxx52chMRhYcyZp1cH29MuPV4tXEz3l4hcxEp1dCOkLZ7YW9MZjkoJPprXPkMvnKAE3eGbWe13QEreua9XD7uk/kjXI1Eekmo13bDUE6GAzOIYbgHQwG5xLpP5jE2Du2yivn7hkRdhb/aO/4Su4sP/2xs5TbkXZnlSfRkYFskwCxWP8hh/BLIT+LiGQbPF5yBRkAkYdvbZIofQP8Rh+3D5HvxvHWc0SO1nkeAzchV8fYqsERceRL3ZPEczlEJObWevZ38RPtd632ukRHHGNLBki1ipqFN6goxLTtjgyiPe0veY9Yy2k+w0RQwXqCyIIQh5Dynqtuc2SzDNiHuRWuzf7rfJ3GdpokpX3hY+OD2zqP2+5WfAiwD51+/F7+Xd2zH5jk8n/Xd4+LcDDYaiz0cZOpXbQ8ZRMVa3tm2xMTvwVeipZ6dZ+gTG9xQDmkZ4HD9fceu+RXMInKp2Tg2m5RyHbkSGTzaG5HIowdwGmuzlyO7cI8JHUt2RhbTTJ7MSrtAVBn2tucmNuGLSBsI9kP9mw0x6qUqbsubTLtNJ/w7tL5fnxZdyfbxZN60Vr9ecOqUoFVOBtUDnwdQ50kYDeg2BCS1KQ8Qt3zxpYkWCrGzHxHzHaDkYm5leL3kINBDj6kSV3R6VarSpk/cvlGuUqbdbYRZ1kdOUw5WTarsivStJCDAHlC3meZKZPbzZvzky+DRLfiArjZesBIopOBLrejyBWuHPg9+Fi/DBBZ91Vn78j2bJPsb3kub+YeJDtbGAwGg3OCIXgHg8G5Q+eY+jt/8/+sc8Zurr6XLq/J3+lAH5PzGM4i/4qUWuW1JxdEBmSefSMTmPX4fEX2eqtA9nCta/04Nvu54gclwYLP46g7P0LtaFvkoB5EnJrYIW+iius3ZGWd50VmyGJA4FD3zke131twAA1EF1GK9rHsb1rfjqqDSPYj8uYJTER1bZfEHPL5Q36OEPZ1RFlC4NlvRVb8Q14mZ9LJnAjk8Kpv4PuarHMebp/kTbI9uk8i/fXUYZfW5WUAW3IOmf9e31yNOcn7OF1H4NoP786Zf3BZJmJpa7YrMClpDsEy8WJAy02fhZjNbQCwCwf12e7gHjxOeBEhtxlYbT1AxK0XOojk9biB/Nln3Hb0EcpzNLOPJyfkLWsohyhg9JQ26MUXjxnot8BLIinDeZB3bqvhfLLvmGvhmMecru0tM3l3+2OnbaddAXNglgebvkx8X7y8B28lZOXJKwHdCkVGayaj7jyptJWQocZWdEZFWomGO0A3iHfGl8rMTr83IGZju6zsfDlo2iC9P4/zdyPljch5WZ6sUw6yaRSOXO1kTD36cZF87Cd1loZtWW1DWS/fyL1qmis7lOdHFTjGxKbrDHm9bTMJZGzaRHEXIe62cN4eHFL3eePpImyzXdPeOh07/er/WXFnivy9s8gxGAyuKQzBOxgMziU6n4TvPTKnu76br2e6Dnv+1l65q/P2S7Js/16RQLd3PryXTzrs6aMxfyXa1BF8+E/1XXveOrKXl3IVsVrffqmRv00wAaLdID5NtmYe/hTqmoqG9ftC4AT8MjS3Ay/6wm8iWhkyq86ZjCDi1VGvliH17eAwdAeZa4K6vmvvY0gt/DBHwVp29EcbuA1d9/oNOWTf0L6kOZDkIxzcxDGIJI657hBMnZ1Zdrd55/Mn2d2d98flrMaIjn9IUIbbrfNZsz+vjqcc6fe7rl1ee+Od+Ycsy+0K6Y5N1TEvStB3bT/WA3wEi0AQtrmowTUQttSRhSCTv47AZXzxywspJ3XkPuw+QN+lnsnbEI3sfXmrb2PHlEUEP3KzbQgy1PX1JMNqf17rquQpmGguIDN18eKag/vczh2vlPzgisvs+iP6XJG9pPN38nwr7m6VV2ebTsv/y0+in2wXKt0bOuOB6EVxJDRh25FN3FAISafSGLo7T0dgJvFmhbLqZXI4ydauAbLCqcA87shi59kNQOTjQcU3625A8UDS6cMTBf9Pgz42ofL3Ko1JTcvmNvBNzrJbp5YlFwAoy4OE65cDviNdWQnN+pAvaX2tb7zWeXbglX5se9TFj1mlfVoHXjVzWdlWuTKXBG+n19Rn2gX1zwWOzGcwGAzOEYbgHQwG5w7pf6y+ndb/u9/HysvfZyGCEqu09k06uVb1WsmYfsoKOdc+5ntBepjMg8gp2Bc2sVrXFuFRZAZEEgQvZCjXeNsD+9iWzXt2dkSAnwbMABoIE78QjXR+FN16wf9PshiClzoRxcyLnCBw6voildFZZ68mwPxEMUQ2/ysfSKok3dO+HO3n97B00aCcc/QudTeX0dmZ/ULaq66rNueFcpw3Md0RtPiMGUltjmTPRrsxIrmHDl1/SX1aX0nKd31pj1vp/OyO/DLn0j3l6kC0rId5jdQJsqN779VK/kTyepHFvjiyWK+uB/20zle/IEDNdSGfDHwk2tby8RSBbcULEZWeMcb5l31Svl+g5qhk4Pz41PkicVm8SiK2/rMdTR0vm8+2MNeUXGO+oBB9uC9RX/L1thak8cKa+aYuWNAkcMppAjltpuOsOn7TMmT6tPG0945Azt+O4D2MyYdtGjSAdAJkpdKYOZYdCKFy43UUiUA0WoaYOzw9owttZOTTDTqpgNUgYsZ+RfJ6UPEAko3dXePOnsbgfPJ4Vx+wWvnM8tPI0KXrsPp2Hfx7z6C7Abcz0swnO5ZX0dxpfcz7SNGBPIAzyOTgkVG1ljfzpFyncV/xSp1vzjngu828sp2dtbshk0fabVePwWAwOKcYgncwGJxrdGRZnvPvDCK4PXPJvH7lD2X+mfZY2Z0P15WzStOVn+f9u/MtM7gifWSTu375F9swsBVDkR5EvVZayE+2SSA915u0ta+DDwIRnH48cqffxreJka6unT9s/yujE9l+oa6t+jjqkOg8CF98IkfnkV/qtNLztCb+j9PbB4M0Y69k0rjMJF5WPlbqzOlM7DvPjAL0HqhFrBHhaFnSJ6Z+1DttLf2/9BVXHEZyDh32eI30UZOPycC0jr/w9Xv5giRM8zxpkpPJOrg/r8hxP9FbiwfYUaVl8cLjnCPT0ya8xQB1YAGHPoF9wAlwzgsL7tPdC8kYB0zG0h4mV5HVfcdjVvZpIvi9JUKh+nHt2e0y7nWv0+1o/KQ6JHRdS1R/vZzSixbJ+aA/InS9hUNyOG4Lb4fisYz8/GI62sPBdx5P0YttgnTmprgXrLaEyT7Z2W/XTy1TjkldWnRy+dqT7S7XXdwunNSevCeH/7chs6wMk1k1QHFDygEqOxmPU1ghfnOgB12ThAySGGN26CQNfdPNQWM1kPlcRgtnY6wGD6chzyRIV5OabgDMtHmua9jOqDygOF2S1N2N3Ssd/Ld+vErAeXRY8Oqqtz3IqPC8maUsOYmyXpNkRS5f102IOn1lHbLjeXHByMmf2zo7qeux2kC74IHUN/Eu8npF8u/dUFfIRZQ7EncWOQaDwTWFIXgHg8G5Q+eT5Pfqdx5znv7u0q3K5ffKt0kHN+fL/O6uXdW/K7/DMZKXNH6qj2scVWcCJufskDjUk8g9b79Q5JFfzlbfkBp1vtLWdz5+nBGKjjTt/GVID/uxqYtVu9gX9PU8cu1jlZa9M4lOLvgFaJDW6Qd1bUE9qZ/5CNqiQDRhbXnBeSIb7S9yPfmln04EMzBJbFmTwHT9s01MYhGwVv+LQ4HoT33nHpw+vrJX95kkqskj2z7bvxsDnH/HPyS5uwpYy98pQ5ev/Waji451O2a7Oq3Pd9dmurJjxgBHSFJnk7KWy1GwjoCH03K9SWtZsRXbjaP36VMQtR2nk/UmL9Lt2QV1gxQlGt9BmizemHxm4Sbfv0R/JfK//jO2sQhjHo96dSQvdXJfoa/y3/qFEE97Q2cOMs37j8f2buHM+bidfZ3tNGWw3VmujvQ1d7a61n3/da8/2e5aXKtJXEfcWolm/Gm8GqTINDuNVxisGJTh67r9e33tauBJIq4j7vYUlzezPWI3B5XM3521KydJU8vl392KYcL5dQN0Z6CrlegsswshX9XDKyDHBuW0JZ8nT4fdu5OmvZCfvx3VC8FsmfJ6l+0bvuvklZ5u4snEKfW50p/bxIOs7SwnvasbruWjTPe7wWAwOGcYgncwGJxrpB/QEWgdwZG+xDFS9Vj5e3PYla/W5XU15Tr/jri5mry7ebnJXgiTrjyIGPsuEJ78L/KofGiTOfWBHL3xxlPisj5FBt/znqfX1fE6j99c5Eadr7l/XQuxWf/rXEXaPeABp8dqv9r6QM7UueuvPyVZvN+ny2Svz4rOq0/JjO/iiGRHJhMAVoAMxz+q6yvaz0FZhS64x36NdWcig5dVlcxVf8hy8oIcMkHCeUgsE/nedsN+uWUz0ZWkU/rwwD4p+6vyO3038rLPnIEvXR9KYoljyaOcxfbP0vcst0nGlKXjBLoyu/r4fxfs5+PdWJd5px4ynfke+jGymB+j7mXnZXt1jDbNKH8vUnhLSdL5GPXh2/aPvbElSebjSHR/WEiyTiF7Wdio/9XfeR8X17ElCvLX+epnNY5Uvdmrmz5eeaBHv78JspiFK5PkDvb0+OptYwgMTf27r0J2O0rZ0fNpV3m/41zaRtoy3+bMzIklB5R5dVygx0Ha3osEviZ5Ho77HWoHXRzyvrBdvHBxOyQ3yetKFKrRYeExApTpzs0gT6O6AjY6r4LmQI8xOQS9I9is/O5GsVJiN6C6kbLxrQvXxQpO4tLoGjSR168MKm9wqZtutW9PZm50vsl10aEe+Ex8540nB6VuskVHdTl5w3Q7eIAkv9xnymHyHgQyv073tl9v09DpLG2MOjChoR6pA19nmRigKNv7XnWEdLa37aa7wQ8Gg8E5wBC8g8HgXCJ9AY75nI/tEbg5h+zS7RFAmffKgd7Lk2v25O7m8563Zx7HnGv7WJ0uUhb7GJnO/72PJlGsvJgsg28gX7I9ISqLZC2CxdsW4EvV48+8jKz+E+nHsbruFa84jXaFPCHP+hAdiC9SBDDv2alrb7759FrIE14KByHs6GN8d/tCddxEDPpNf9akJOcyqMm6rf8Qy0UgOy0EKhHOaQsZ1ASxmkFCJnzTPiD/TExxDiKt2gDfjsjekhXZycdBRraztPE9XiG5im5sODZmdHac19vHxb7dhllW11c75HiRPICv7fiaTEs68xYuo8s3+abUWaH6BXtfe+sEiN6C3ynFtdXe9SkbqH7lJwNsb5TnJ6DTHpGdsiFCrTsHz3GORSK2PcFG6bvwfeiLLRkYM7zFQwbGecsK2yIkr7dmYByyLhkD6S/eBsOkbnJMXOP2zi1YOZc64ZgjlW0jHpfowyaf3VeTP0tObpW3r+mQdUiit42kv6DB09GzJr2oBMZj8rXAip0fi3A+NlwaoqskedlouhtgVhrZs1M7jb+TYOtWuFaDp8vsBpK9BnMH5dxK5pXsvs4yuvG7CY1vkt0AZwNPkrzTuc91ZacOPFHxak3WDXRR3zZodyLa3xt+dyvCtrmVvpi87BG82LYficqbkr/dxqlP3xhtGx68Mh/bEXXNic/VwDfqOxqrm/5gMBjsYAjewWBw7uA591mO5flu3pi+xSpdJ0fmsZqb5vEkY7s0Z/HJsn6Z1165vibz6urR5WMiYHU9PoSDqfxodEZj4WsUMUPkb53zS4fYAxMfDkIF/wKytohgXpIE6VsReXWuomuJCkafXFf533TTqRy8FA6iGiIJgpeoPkcyI2fWz4Sm/XH7Z+iz8+mIpCTwDFIXmfziOpM3BRM11NVl2NcyoU/e5JH+JZxI/ffL9FwHojBdN/umLjORdrh6QtY6PWu/tz3720j/2WX43J7MK19vxXX4nDma7pPlmtzN40nqFdIfzoh8yEYAf2KSt0AfdF+F5OS3rzMnRRQ+fdl6sSy0OXt2W4+crz5Jndkvmw91YzGCfNg2pvIgSh9+hD7lQDt075e1eXyizvRXL3p472P6tAlb2sAkL32QsZM6sA1EkqHmimgvp7PM1CPtyBxa8i5796C0ax/P36v+k22beaV9XChyd4t9Wbk4BwRHNjptwW8ArZtAkl5WmgcvmO9UTIa458CeSs0bd05OXBeTclkPX5tKzry7xsmBuTtumTpydzWYUs5evm4/12dFUroD8D+3xliRmHlj9HYN7nik9ebbrj+duru5OUS9I5D5Jr+cCKQddHaSK7h+vKdrB/eBFTrbSf37NytCfizHpKt1fqxeg8FgcA4xBO9gMDiXSCd75aN0yLn11Za5F1zQEaVnOd/5hd0ctyON0lm2H5k+0goZWLQqqyNdUk5ICZ5uZT9efCJIlPQfC/a/+A9xCiCTIBLx2+qbc+VrU+597nPli97KZy/SF/10EaPoD3KHiD/8JfYVrnRE00IeUR8CZ5CTpx7ThyS9STdHxSZBavuoSMOqD/ty+qVW1MH+58q3dtAb+vOL4GlXtxF5m9hOIt/Bc5VntUcR9iUzEc6WKf8n7CdahuQ4clxY9Tnnu9dfV1yH++0egXusfNDxHaTd+zg/96fVuNhtFWoZ3CeQg8hS2pu2YKGhwBPv3pKD8hy9bdmSPK7z9Lvck5uFBKL18xw27Ojb2pYFYjvrBsHrQDzbkbmZKrcWiGpRqK7JflZ2zQvZIIcp1zo2oUu/MKlt/icD+NzGfpqa9kEeyOJ8ujp5LdtGt1jicbqzp7Q7X3dWjsaclhd+Mq/k47rrbr14sl2wAbgCJLZCc8WRBqKQakhuXNkxbbRdGr5zW4aOzPI1lmk1mPmT5PVKjjTuvAZ4gE1iujOcbByX26GbsGU0rss4NhFKA880HcGeaTxRcn1WbdRNYCyDO5Ntz5OVJD0pl1UyHzcJ6/+2Rf677BxYGWj8CAXgpm+Zu7p27ct/PyqVg4cnE9lW1M1y5YRzMBgMzgmG4B0MBucO3fzf53x8NZ/c8x0y7era1bmOLFqRR3t5roiurt575XTHs+xOZ56Xd76xCUsA4QOhWmRHfRcZan+EaM8klu1H8juDUlLWJGghmSiTPXuLUKyIXO9JW+m8lQCkbslcRE7u6WkdICOReo5GrPzJt+CXy6FL9vf1NnUFP9LNsSSDHeUMsWwfErkyAAiy2v6rI/yoJ3qA1PMj6shj0sz24sfS+e92J88iwyDJu2CtYxyBZe9sOdPujQUrEiv9/CTtbLeZ3+p/V5eUKa9f8R4mIbNf2B4KbkP4LPqB88t9cwve6xrbxgbYegW5IRctB20OqU9+SUyydYH9fC98YKd+6hjZCbZkYYe2YvGD+jNuUT/KYPsXZGA/3nz5mbdiKVS5da4WjSyjbcXkM7LzoX85ste69tjnrRpoO9uBuSHqUaBuIDmYbmzLSP28tsvDdpR8Ttp1Hktuzfl1ZSRfeYljS3IoOwbK7kg4CDgbRe7lihK8ZYMF8p5DST66QXMPHctqYtf/nU8qbjXIdAObrzVykLFBdHWw8XUNlkSyZbdhdVG1noC4kV0v190Gl4bnVaRuNZD8fI72zW0YPGi6HbGZrg4pd5fGBCzh++7YuULLIJHtl23kNLm3b8rgjfo9AHSTWvezbF/nyfHuJu/zK5u8Wjhy+I7GnUWOwWBwTWEI3sFgcC7RzeO7Oeaxa88ylzxW1urcKp+u7JSj+2//85i8HTHVzfnzuMsmCtYEKGnxP3j5uH0solv98XnK5kVnlI0/zYd9cSE28Ku83YL9EvbHhZzBl8dfqd+1NUOdK9IG2dgf1D495VJW1RO9sy0DJFcSpfgy5Ml2j0Q11nnII/YCJl1nR34sm7a8zQuG3lAmdfPToERdksa+KO3NNhK0O/VxJG+S8VxrPzDfIwQhBVlceiw9lN7Z65jH6TtSqbNN952MtLTvemwcSHt33/E5972OYzC6MWXFoWSdusWOPN6NceZYUmcuOxdCcizIscW6dn6QtNihn1Z23tgCLzk0X5FcGcDG6SPYvQk87NOkadl8lcO5si0WONgaAZko2/vSpr6T+yGQk3wgT+saCGDSlxxEGLOdC+e9fUOdY/ww1+L9sLmOunA+ecmM+qWO3obBeVjfHX/H71xcc/s6Ctx1c5q89tj9co8PyTpn3S/Jl+Qd/3nMwm+96wgzdwJuCNzoMGRfR+FJ2Fo5XWfOiMzswCbFusGwK8vKWg2g3YqpB08bYEdOZ57ZaK6rr3WDZcP7OoObMyuDEJ2r6/Z06TI9IXF7WDYmDr65d3Ijg1fKUo5M60d0coDNiaF1yTGfq4Ek7dL196pQXu9Vmj0ZCl61ysjj/I2dZ7kepDzAuC+m/IPBYHDOMATvYDA4dzhGdqzS57GVk/mmmFOmT7XKl/ltvuQq87Ev0hFtRpJdHeHkCLluXg+5W/5V+cP1IQqsfC3Iyoxmg4AxMYw/QGQd9fXLhApE5nm/znq8mhehkX/9L38bOSAvIF2LNOW4CU3qWWnuec/L20eg17qObRh47JkXRBVMMvMf4rcLBiqdEZCTL5KDFCqZS1ZelgapZZ8nI+YKfikTqAjCktWRmZBwKZv9M+/Z620kuR5fdBWtmz4b/qsJK+pRHwhCHnMvkpcoa9t914d8viPmumt9Tf5ObsDHujKTL+j6l5Gk2Eqezn/P8pK47niiPG45s1xzHMAkne2OdOYwsG3nBdHnaFenT7La3In9/QLjjUl1xgfGELZxKBuibD+FzAJFpaM/sr0qi0i0IZHwyOaFFMqrb/bsNX+R+36XPNh3p1/Kc9v6XkDf80KcF9hS386frWNrjPM+4F5c85jtvX7dl3LMyXGUawt+CsB2nNd098JjfdHpVjymF3ouXHc6eF261CQW+3G4kckolYNRckMjstKra2588mFFzgJnI6exu4IuuxuMugmQzx2bEOUg7rx9o+0Iu9XAmOXb2Dp5VyRtRyzmvkN7A26SrLkiR90y2jfTW/fuLBnJ60lFDtwdIez27XRG2Xlj9aM1HTxIZ7ualM0Bl7L8+ADXIFs3gcx8kK27aa8moT5OOZZhr50Hg8HgzRhD8A4Gg3OJsxA4nRPZXXd7yva8d+X37Mli36E7l7/5vxdEUkifLB1irs39YNMvxI91hB7kI8Sq/S6ug1yoaypaNmXier/7g/N1vK6pc5U/0ajAPie6gCTGB6rrX/rSK/1piOMidm688TTCrs7VNz57lXPzzafEDOQupHF96jq/7K38/SJQ6lwRq1Xnyg8/rY7XFg+Qzn7hkusC4VTXVf4QSOnH4Z/5hUj2ies4+oIc8mP1tgVHDULQcCyf0DTBXCj91DXsoVs6YA/W9HVpI+ycADr8QHiT0lvpkKjpzu/LfnAWwiht3r+7fpHnyT9JpOQLVtjjZPK4eQOfMxeT5G5HhuX5Lj/3DcN+vtvcL9/yS8vYDiDbgj7HIpC5NcYSyFvyc9/GXrFDbBpeJoPDvN2DFyjoE/z2QlMtHNH3kMXcCGX6pWx+It+R8dUnzCsxZiYxamLYx+mHyb94ocY6zj7ptKQxqQ2B6/14kZN2t710/N3qnsQx25ZfDOeI/M7+V/I7b7BHFF8meE+2Wy9c3K5zZGAX2WiSLztTd7wGO1ajvCn8qkOnwFaUzztddnivZPi4CcIsP/Ps4BtHknLoy/XvVoqS4Exi1qvRXf1SX6tB2yHwJha7tDkAelBN4+nqZ5LUcuUq9qoT5CDtASP13xHaSe7mvkrWc96c3RZeeUM2dxQPKAarQ86DFV63Xba5ZUCHOeCk3lYDTbbl7YEXF+5o3FnkGAwG1xSG4B0MBucOngd2/sEe2dPN8zPvlU/WOZh78q0c1WNyJbq5cFfWykfqfMIufRJrjkrjWh65ziclTbx4T06TI+lTQ7xC0NiXgQw0+YPfwOP+WXeTjOlLQObwwjPkNZFdBGv5735BFOXWdSZ48XsqH84RzYufVGmLF3AENFGD7D3rbR4qT/iDIoddP0eouS0deettGEwUJfFVcPuRjvyQsZDEVn2KjCWtA268l7D95zrGYgAkl9uGl9+94hWXiTefT/s2GeX/HVez6i+Zh/tA940uVuTuWXzR1biUQWFZpyTLs57WT57LICunNymZ3EXucesAOvMu5k845y0+yAuiFHuhzt12BB4nqk/RD60X2x2ylR1VndiqwXvfmkRlkSEj5unzdT1cHvXJ9srxzeMBuk1+ydG7tiu4EM5BHqdtmgR2W5n7oa4e33Ls9wKS2zWDN22ntsPsG5SZwZO+3ueTC0yuMMewrK/rmPfY08/JVlkV2XspjNuDkW9qNjwTiLlXiVfnykC4UXmVseu8RqfUVFhWBgPJNF0EairJRmE4QrIbuHKg6UhPd/5sSNchO+5qUrTKhzbrDKUDxkFeGa3rcrvHpiyfr1ttc5D6SePMjuNyOoLTEw9WuboblQdCD/ZOB1lr3aUN5r4qfkMq9UodZXS2y3X6tJlcxUwdeLAcDAaDc4wheAeDwbnEyrc5Nvfv5o5XS850WOXbzcu7/6vjSdR15XruvCK1nM+e/PmEXkYt4s/aj0pZ6pN7vnYOu+tnPUCuQCLZv+Oa+tjH7ggx68JbQiQxwXEih+tDXYm+NRHsKEd/XHeigougKkKFrR74VORrRaxCplLXW2455Q9yOwvrD9ndBuYv2L4BuU12mdDpouv82DpBQJDBFbVLlHHJVvIjM+R1Z4PYC+XkC7jIr3RQeZVukmBMW/b/s/TNLk3yCP7OMtPeVzxF8h4d0udNWbJNOWYbp5wMkHNa57vimvjt/g/xiu1hM/kUskGZjoaF1DOhyAIJdpkv76PM5GTIE1sk0px+RhlsdUK9KM+An3BkMmlM/pK398zlyQK2oXA7VPpauGGBh3wIivQL0JIfIg+Pj15cSR7SemFvXcvBOfL0go23VfB4Ytvr5EmOynruOCyP+95youOZur7oPLogwDxnuzuUw4nargGDdgZZeQTJ1UMyZ4DlsQzevpmPsWQDu7F8viNiOxK4PhicbzZGEqk+ZsUlC59puzpk+ryRZ4NdzaSsI039OztvGqOR7ZsDpgfyNFYPgqmTfMtjRtN2v72Q0BGZK713Ex0PVB6ccmLnRwB8zCtIPpflWXYPwi7Pnb5rnyR482aUndV2b7vq2ncwGAzOCYbgHQwG5w4rEuYs6Y+RQXndKn1HNJ0F3TWdP5YyJIG78if3yCz/Tv9mD/gpfimaCZjON0rdJYHg40laUJ79NfvZqZusp/0Il5FPLXp7hwzGQiYIJZM19kNM4PiN9vUNIUyEb/ECRQBV/ve5z5X7BvO2+8qztplgT1ETZq6/SUDvE1rw3rmOnk17s9/GS9+Qn32B7dvWN3ITMVyysjWF9d+RkX5y1GQhtgT3UOWWntDJXh9EXh9Lu04eY9U/kh/wMROsK1+d/3l8RWId6x+ui8vPa5xf6jy5lpSj89Mpi0UNc0JdPvbhHcFOnt4vGq7C5KN1ZzmItvV4kxH98B9+utj76pIPHAf5maT1yw8LRNcTqIm8lO13L+X+tx5/HK3svkYwKH2Iupt34n9nCwbHKMf8X/Z5697jt7lLjjvNylZoa4O03Z6/uRWE6+D27+6HaXtdmSavD1s1HK6/brvLhSr0ddvFNxRwOExBDJ42MBuXlUllMCgMoIzKRpSNt3fDdaVXhK8rv0qfykwCL1dSnLYbPJwm80rduCFywFkNeDYO181ypYxdPbubGvDq8qqcJBxTr+ThbQ3cQTwZyPwzLD/rnzLlMY53+zF5BS1vut2m4l2UgPPqwMqRbdI3cQ+y3CgyL+wko9DTTn08o+mvFmlbdyTuLHIMBoNrCkPwDgaDc4mOuPDx9FFWJFGXr5G+1CqflR+SshbsSHfEW/pzOO0dAbxXx5wrm5DZ04nTOxrMwUquc/7uiKDUw7H2SJKQa+xvHZPddUhiOclcfHzO0TZcx16W+FredqEictELpK7JFkcasnXDve99ug1DkUkQpvgzRMsWweSAG7+UycFc9rfRG4R82q/9cv5XXlWH+o18+GtE/9Y1kGLUr/4X4XvTTZejngvI2SH3NEXfCra7FIlJnTvb8Sd92/TnjeRPVvaT19rPTYKqyyP7fCd7opPb/ETW12mdrlsEyfT5MqzMh75BOgdW+eOyku+gzLLjAvbkxRRkoazcHjJJRkcCe69XFiO8vQh1gyPxtqlJYLrdHcVe/YEtRLzAYwIbstYLJOYYHMjm8lY6pU8ybjiAD/lNxOb4njCXYhld5y5atxt/OzI2r/X5/J95elzqZM5zeU9ZXXO6Xc/Jdve7V2Hx+EhuAG/hEciRiBYapt4rDRgcK10rofcE9rFu4OiUmgOe64TRZCPs3YRz8CPfJKl8bm/ik42YxtPJ1yF1wLHu+N411CXrZQLWKyS0twc571fkSVkatMPJbeS+Ua/q6k6JDExk8i2YnPdgRh7eW4aVYspggCmQb8qZuvKAl+23qk/q3jK6Lh7gfRPIidtgMBicAwzBOxgMzh2SLMnfq/Td9T62R1J2aVckU5fGxyAi7PhDGjhKtuA5eecg+1z6EwACgnk7ZIWjZJ0Xc2zgR/WZlztYw2V2Ty/6fRsuw9eknvGDyDsDYLq2dh6QSfaVMgoSPx3Zqk2KtKQNgF+S5rRFzhb5g455YtcRvBWJy76/dYyXlNVL2yp6t/Ihf/IkPRGE2At6sY5MuFJ3+29OQ5u7ffANvW9ych5JYJEvZF3JXFsrFMlWe+iuyB3ydbSh/V2/C4mX11V53oO1a//Odrrfx9BxIWkze8TTHunbYWXP3bi2Itu6cSr7V9e/k5BzHu7nrrMJZP+mXcse/CI18uqCmOhLjEFE+VJW2SPjjIG9UC/6nMckInWTe/ATx/Xtl0R2T1I7et4LE4yPkNQsjlhGl8exfDoevfkJf5/zMZPnTpP5eWyr3+xHnLZBGvd1xobcesLXAMtj20kdGF1UcNcHOj4x8+7uf15UY9HqoPOLquSJXk7lG1YWYtaazuBVCZ/zaphX96yIbkDqJi2rzt8p1UaUA5AJy5w85KCWcnI8Q/d9fkXspowmDX2+M5Cz5Lmnj+58/t4buFOf6ModOdPbTlaEL9/eu8VtkjrqbppOl8So7bDTvwdyy5WErQcdvk3y5uDk8j1YeqBJnXeTRsuQ+pgI2MFgcA4xBO9gMDiX6Hykzl8y9giRqyFn0sE8du3KP8LxNqGb16TTu3JuOYef4fP1n4gz75+78oNcL+fJnN1kX/o6K58LOCAEUoaXGnWy5H6tLrdr93xy0vVw/bimfKKKluVaE1b4LUmWQvhA0hP1WvmhmyI9i3y64YYrt0jA/6/jRYi+/OWn0by1ny3bNVBPonDz6ciMtIMEdrtBCLNnqIkk+3EZIJMkGOSyde3oYSJ5a9/cIq9vvvnKiODkFmzLfvzfbQXIs65D1/b7TMKnTXS8RtpiXpvlZ15Oax3mdau8u0C7HLPSls0Vkdcq0rcrO8c3+/ud3LR9l/9q7MHmq81pI28bYp3RP/OFYdl27rOdLn0Mbo0+6YUr24vfXWT7z4UgCHAvYtV5+i55VH/1WAEcec6Y6yA7IyNxXXf0mPwLZWQenGd7WMb9ysMvk3Mbe7yzLPA6HR+Tn64vZL/o7Ch5rRXXBTqbQDZ/vOXNITjx0Jhk3LygLMk/jMqCI4AVkisYjph0R81BJTtSlpOV7kLAM1+n7W7wlNGRu6RZ5d1NeLKxV42T+ezpYFUe6IwNdLou5Cp61wmd1jfFzhAZQLMT5ODuwYUVB4f1rzpB6sl1yPMMSvz3QGB5OpLUx31DyMHEkyLLTR/JPbu6RwosE33EK0NZ/xxYrhbW8x2NO4scg8HgmsIQvIPB4NxhNffP33s+VEdWGEkg8n2MIDqLnCZbccIL3i7A5SWpsyoniZ+z6CRh4iMj0ICfcE2Z0/+yHPaxiParTyEjl4/5PF17ua4m/7qnKfkNwUvU4emjvae//bKxV7ziyhcueS9Z9qGFyIFQxY+BEHU7Fbnb+d1FGpn8rjQQxBBHJnkcBZkvwYLkwK+yr7t68hJ94cfmE6HkzTYOPN1J5GbpoaKTH/jAy4+22y5dviPOM9gH/7HI74rkhah2W6dP2dlG2p+Rtp0kXfIpie542mmSYun3dvnbTqyvFaGcfS0JUvvfK3/TEblck/3FY0OBqHZ/3NfgNbA9yEeOW2fIRoS7CcnknpAB+8+ni/NJhtxqIu0veRbOQVyzxQR5Zb7Wb+aFDr3dC+NBbkeB/mkjR7on79LxI7aN0h+LI1nfzJ/+zCJK5ps8S3JaDr5LrLibtFvbQY771HclixcHPWaVfK97XRndxe0uRfDawFkt40Zs40mhnIY8TjO/LIBXQFc37swz2fzVJCRl61Z9fI58MhLVJOhqAtTd9N1JfNxyZoN1g13Wq0Maw+p8l36V1m2aN8C9vLtBlt9Juvq8SVx3OOe7sg3L6nZ13lkWaT0YFUwsd4NTrkwlQZw3WvJ0R3T75sBuG2DgTL1nh06SfTAYDM4hhuAdDAbnEiviZjX/X/3vSJmujEx7e3wRH4ccw09Mv2rPWV45xvzufCw7yKSFzEwiZyW3iY0MWAEmW3ILCMqH3GWLA/vO9rU7nbtM+z7pg+75CPYp8HuLcHXeJljrfJGM3pqgQGQrLyTzi6eJJsyXnyNTpa1rTCRBmBXJaz1CetXximqtfGk7tn3Ml2E5wtWkNWQVW0vYlnJryTrGtZBpdbzqS2QxZUF4l4zohGhKEzDYPUE25GlS3DxC/S9Zi0QvGZC785+xta7fJpJvcHn+7NmQfWbnk2WsSK1uvDHR2tXFv91XVtxQPnLv8/nf3BA2mzqq8yZs+VCGSX9kyPcAuQ9w3i8EXLUr15j4NnHMdUmeeoylXil36pE8XC+X1XFG1il5Une2jbCOVzazZy+WM3+7zeo4TwR0Nu3gveQ1k7exDMn7mHz2uNGRseRhYpw2zSczktTudMY4w3jr+qDnU52fbLdeuLjV69Xq0osXLmwnfpzBL5PKG1YXypw3twx5z5u5G8X556pLGnlnBFZCdqq8MeaNt4tK7gwxG8LHs2zX66wkJr+dX3d+JesKNj7nfdabQtZ9RQq7A/iFYymzJ15eqeluGJ2xpw6zM9k+O9typ3KaJIlzscCdOSeJrhPp0EHeZFyv1C+/M6IZOf1iucFgMDhnGIJ3MBicO6z8gBUR0p3v8ruauWQ63Fd7fUbMgfSZVkRn+hPpb3WP4OZTgkWa5ftmunLSj0xfEJC3/Yn0V5CDl5PVp0hHb124mtenf+vHilPe1PXKB3WUnHWZ1xOxamISopLffiGdoxzz/SbIwR69frycfXjdXoUig+tTe92iY+pOlGxt81DHK129wM0RenWs9Fz5F0kMR4HeMwK5PuXbJSFVaUqGOl5lFIlUqGOVV7VnHadMk3glZ5UDoZs+NPXOPl3HqpzKn0heSLOEfe+OKFulX/Xhjljq+uSqT+Q44X6fPrltxHwT+Tv40H3Rv3PhJbmBzr6zD2ef9XfubQs5C3fkKNCC91Umf291wDGOZ8S4+7PHyqyXo+09Hq6ITMvlhZlsR/c1FjXor136bFOOVXoWiLJtznIf647t2SEcieuZ9xpH/Hd18DkH59nePNan/fgat2MGDnbcGGU6CDHJeMYs+Nnca9gvp3v96w/U7nbddddtF7Zbt4snJ9uJGz0fb0giLklUd6huE3TfOBmsVgaWN3Cz8h4IuojfJB67gagbkBJJupEmlX41A2YORnkTTv12+e5NrrqO0NXX9c7O2U0eVudzxYmVitWbchnY0pDRDWmc3t+5etLp2jaWyPayvui4vsm683sQJ71Xx1w/rvUA0U1IXWY3AHRtvrpx78ED/R2Nrl0Gg8HgCIbgHQwG5xJ75M1Z5oQ5r7+aPFZ+xSpt56N0vobl8dyZeXH6kU6fwLknMpX5OeRd5VPkol+I5Hz5znl5t19w1hX5TR5n3SBJShZeNAaBuvf0pHVv34KyTb7gIyFzt2erI2ydhutMOrlufqmTHwt2uxGp7EhaCGHKq2PVDrQLe9eSJ3lAjuJTUl6RtRVdTOTjfe97ZTQx73WhHkWiElnLC5h4UZS3U6h0vOQs/d3cRq97DxE2gx3yEi1f4/2gS0aimDsOg0WB0lXJBZmddtfZTPbv9C+P2ZrzX405qzzAMZ/V+ZpnSt3b90cu8wf2v5OoSz2tzmXf74LOcsEo+SBs3v3JEbEGkbtEoxdM1vFNXkQJm2TFlryNR7ax+RXycZ2z7nzTX1j0YM9rRyl3NtXVk2Md+elzK16qI5TNAwHrjzHeEcQeZ62rfKldV5+uL5jotZwZiWuseKlMYz4tnwKocYsxqbP3yzq9eLnvnFzYLlTag13r8XErEGPLaEWTvyZ+HVaeyvJm+6nQ7PjucFYisvi6XOWwslbh99l4OTnpwv0tb0fAdhOoXBnM67trOtIv9bRKfww0Pm2QNwSX0z165Hp1q0vdKrHbyxOE3BLEG5J3N61uQO8mgHs3xBXRm3rIyVdGp1tuOr3r3+mMfJLgtbwZ5d7Zx2AwGJwTDME7GAzONfbmgB0Zs/q9wsoPOUbUOG3K0jmgng+bIOQxfwi++nS+k/MzCel5vbdGqHQVwUuUJtd3hIyj3yA4IPIyeCWJiz35cmsC5vxJVCVxQBrycQRZHb/++st1IfK2zkOQug0gUYkCI5oYMr30jm9CW0BKQ0yzbQA8AZHJkA8uBz+odFhErLd4qA/EZdde9R/Cvq65//1Pz1d0K3k6whcugvpRF0dQoosqt+pTadiX2O3l75LB0XG0OWRSnYdIRi+Vb8kJaUwUru0drsWkof3B+kanENbpJxoOynPfW/ECVxJCl/93wVOdfWceHb/h6zKtuZkcp7pxg7rsPX17FlKt4wH4ba5pRfb6tyNk3Y9M9DliFtKfbT/oW7Yp7IKnhWl7b7vAohWkrxcSGK8gkLHdFU9CG5jgJjrd9eC3F5kcoZ3tmnaQfJc5DpfPbyMJfXMtLsuysuDiPJ2WvJLkTb5lxTdZD8kRZvQ5x9BfluU2SZKXNsxtGXy/uFJfF7e73aUy3rbX/uWFU71ed2E7KZaXG5mJLQ8c2XhmxlFUCVNGVoOmbzBuFFYHTPLSWDSOK5DG0w1ynVF0IftWZCq6I4+NJA0zzw7djSPz6ozK12deHTqC0sZluXNgzfL8SUPOdug6ALbQ7ZuTE5Vsi4yetb786dJkh1kNaKv0uUqb+6UcK8d2njI7XbbT6ibUDRqDwWBwzjAE72AwOJfoiJR0QDnW+RGdw+30q/I6nyId0mM+SVem59P1IZqzSLFyZIm2hKh05G3nExQgTnF4K5/Kr8i8OsY3xGfKRR7IwN6vEM2QzQXP7/OpU7+UDP+J6F0IHZMpjo6F2OHxaNfRH0emVVSrCaa6HqK0fHAIH8pCJ3U9RGt9KDe3UIC8rfzw7YnUpe3qHHvpUn9HNPNiN3z+0iXkaoHrII+JVoMMq99VTqUp2ZEV8rXO+Z0rJU/BW0IgC/kgd+VVL5Xzk8LAeaE//NbKs8j1ArogHWQMZLPtwd8ZaNX1GQjtIov5b7vnu3tCmO+u/+Un/XG/sPwYurGpG5+Q02VmHl7ASJ7C+XjLkAzEW/nU6cfz7ejczvfu/rsNOc+iUCH3XzY/xXEWUVIu8oXE9XYpbPeRJLOJ3AKR7Hk+g+ry3uHIX/olUb3dPYEyGZd8T6D9XEeTnp3tGcn9ZZmMax2XZJ1lGuspCdK8fyZnljZmO873PnV8o+XIIFn3gdyvO8n2jlui7JOTi6d78b4hn8PYdXKyVfaHKF6EpaNnZckwb5S+oXGDoYNyI2NljRu4H8WhAu40XbmuUComBxcMoSPIUlkmNN3giZRlNZikvMfIx70JWVdWN5BlZ8iO4fNZ1yRNu9W8bpLHcZPBvt6PVWQHWq1odJ0sdZXpycs3XNJ2NzrL53QFRxnnQgFwxLEHxryZeIBZDaipt5TxrDfbRN5c7kjcWeQYDAbXFIbgHQwG5w57c/k81jnfnWOcc+uOQOl8lS7/q0U6pcyLIVd5bJ9ISAiTTi7myiZKKj/2L4WgrHM8lu8XaXW+DyRoEaeVT0X+1jm2Bdjz+fJ3+sqO8sN3xlcuR55IUtLe1nG/rbxuQ4hH6vwnf3JKgjoy1MQmdSqQJv3k9FeIzHX7QSJDalEv9E40LqRvtUORr6Xbm2++TObWpwjcko/8KB9ZkSGJ+rTlyrPKqLK4puMMSs4qk3S2iZLn3ve+0gckMtCEoIks+73s2eugOXMS/PfevYB+QbqSsepcNkIbpy2wBUW3X2+nJxNsSUwlgZT27O/u91nTdKRZlpH9riP+su06f3kVoZvEbvINHXfTlQen5Rfz0Re9QGC7cd+mbowBfHv7EsZFvziw2wrC3B1bOVjf+ZSw/9fYR3Abkcbe2sW6yKjetDHrr+NxkMtbnVgvljd5klX70Ber/hDiadO2Heed96fMP6OIcwwwZ7Yar7NfuV1od8bPPXvL9r7y2GniuuZAdtd+0m4kb5bOaqYVmo9/5KP8ROrymEUVwuolgzwDpRWSm7RbCc7fivFgkdf5rZbdte7cSabtkWp5g90jmvfy6iZSKW8a8CqN8/ONOgdNX9sNrr6hdR2a4345n9uC/P2mQyY1Hoy6wdkR4yYEO6Jzz8iRzYOCr/FiAh0rZUk9uj6Qu+y3dBa5bCcZqdztxePrc4I3GAwG5wRD8A4Gg3OLFVHS/d+79vYg58QrGc4yP01Cob6LiOsIEgf/7JXDfwhUX1fnimiD0ISETB+DyFLIlLrGEbV+CZd9JhOj9W1CmneSkC/RokXS1THqjwxVTvoh5M2etn7CtVCRnY6YJcrPJC6kpOvN/q6QoOzziRzsvYnvj/9WspdPzzW0m6MXifqD3EUe761b+VT+L33p5ReYEV1rwguuoPIm8phH1InSw17wOWkb9OFzjkz1vrhp00kGmcDGBvzfW3W4jby9A+2cNp0+6opQLH2ytUSR46WPDJrJICdzEuYGMtoyeYMkexOdj9pxNKQ1J8J/y3iML7FuTP7li818bfIHJuA7os1pO+IwkWQh6b3/a2dHjrgv2GYhcCFYWcBiYaX6AXbAmJDEIWVjn17cgK9w26aNEKlP360+C0lMQJvrv7IHt11G0aa953Wp0+Rksu1sC9Y1+wn7WCcz1/v4ygbQsXnCzD/5nr28zKlCSie3Z52vdHx54fA0MfWpaN7Xvf7idleHM5MBBuTHEzJzDyreeiHDirmpgdyDptuo3gNCGsXKSFbH83zu2+QG6IhXKz2NZK+8boKUZa6MPGXZy2NVfnd8NSiuiFCOmcR123adIu3IIeOFvMmkPNmRMHQP3BldSxpH8XY3y6xr1wFdfg5M/Gd1LtvQA2/Cdctj7sw5YAwGg8E5xBC8g8Hg3OGYL7O65iz+x+3Jm7QrfyHn8qty/ZutEAgAMkm757d4/g2BY98TgsOfJA48p8d/9XYHK6I5ZXJgio9RPwjN+ia6D8KG7Qx58Vf6gvgBXGPZ2T4CGU20OoApI828ZQK+MERSpbOu6toilYiMdpmct+/idmBriiJ4uYa6FrlcEbz2ISFaaA9ID9oGPVeUIfV6+ctP86pjELr12y+z42VsEMl1bbZF2hpbLMBNQE6XntBRRu2hN3zQyj99fPtzJm5MRNtGbQv1YfGhSN76TR72i63DLlrYspqA84LDikw6Nl50JJ0/3eKK8+14FufXBX5l+aljbHuFY7xO5p/nvS+zeQePT0To5xaWrjdtwHYkSda6rCQHsVXy40l5xgMT6izmWKfWAX2P6HuuSc4q9UP/dcRvjvdJDJ+VS/PiQxc1nPnVNwtVJrVXkbYrDs7XJKmbcnmM7YISUz7SMiaj4+yH1nlXxuX708kVi4SkOQRXXqg9eS/U9rxXsvkMkmTebSBtoqvA6gSZu1GMVWOuJgwdugnF3qQGuZKY60jPPLdHpHYTpq5xu0beq/PKQJzWE4w9HeT1iW4gz86zGlBd79XkDGM0ebpKlwNZdiQG006vkPfdYwXOc0UCU44fA+rkZKB0Z/dqUOotB3TnzeQ238CaOr4aJCF+R+LOIsdgMLimMATvYDA4l+j8iqu9vvudOEYEr+afq3OdL7TKHwKN6Lb0HzIP5vYm1PLN6d2cnjy6IIqMMjS52Pkz5FXofEnyJgIVEi/9PaJ8kyBe6ZOyKn2RL/lCNT8pSdp8wRtlQEKxnQLRgdmuJjqSNHdelFWAOyiylW0Q/FKzkr1ISvviJi0y6ppv739bgECuT50nOpl9gdnTmf2Vz8ot2A4ITmMPXIhsR32X7ipt1cuP47td7fP6aVY4EnxayiA9+aGD+l86Lf3llg35ovP0dV03+8Lki5yrp0Y7wq4L8vKHtMjVXZe+cXe9bTL9yc5XZuEiScHE1YxtzoN2o0z2q0WP9C33H4g83kWVvAo2xzHv/812JiaSk0ykHPcjOLx84R9jRPJGJV/1Ie+ZzcsEvS8s1yOHdeVg0YyST87IY1u2c3cfWHEswFHqJb/Hpc6mLOMqwttt2N1f0l4zgC/rwH0FPe69FC7tw/W0TuGP6hh7j5/aY+3BW0oqwUOJDNT5mIc7GAJwo8UIubElWdYpLxXhymc5eSxXWNNg0liS3NubwHQdPJGN25HFXTld+qxbThySTMzGz2ucX65c7E0onH5FlrpM8smo27yZ0En4nysVLs/52MachoHEg07Xvq6n7dcypS66duQ7b6Spixx0OZb1KXBTyLLpN3v2ORgMBm/GGIJ3MBica+wRUt1cf+UzZT57vzvSJtN1vkvObztZDQheRyQlyZWOf8ERqN6/l+i1fIFS90Si5fWHSN7V9m2u/4oEItAp/dPUWbdvapaX+of09L7C1KmOs00iumALBD4QAOiPPZDRo/1/7yPq9434+iS94Aq89QNkN4+hFxnKC93c1jzx6+0xKLtQJK7l9taORSjXVhi8oAw/LR/XzrbobJbfEHfUhb09qZ+DcuA+sDtIYdqq4O0pXS6P4kP2UJ4DdZy26lq6qA9bNtgndbu4H6WfbH/YT792fIVlXhHA+dnjcZJb6Ii9lDH7iX/zgdDMbTv20HEvXd1AR4LTLmxDWsCW6UMFL1hQfxYSeLka0bPUm35CdG0Be6HNGUscIQypTFt4q4ZuXKMc+hnXeU9r9OMATsrlP7bkYFC3T/JUq4W0bIPk0pKb8lhSIFLfi1ecNyHP8bxPpE06XdpGZ8deCMgnSRhj08bz3tv1wxVfRB6OpK6tGi5cd2E7qbpaeBslynQhqeAciPx4zGqwyEZNZXUTi2OTGv/eGyAyzUqpXZlnGTRWBGP+X914Vv8t3zG5fX1O1vJcksd7K8vo1Gm6lbJszwKP3OQELNsrr+s63l5d92CbzXbM/Hn0KG020zhfdJl6sXxMwDieq+Kp38FgMDhHGIJ3MBicO0AEJQF4lrlg56Okn7DK8yx+TXcNOMu8O3+XE24/075BBl8QYFEOO8QkpBcOrveB7UhJg3k2JKJfWNUFD638Qv/Op//2dNLpeqVb8vMWC84fApeXlZngNYkLMYTeKn0dZ/9Nrq3ruIbr7DdBYq8Cs3hhEASvt72o35C8fsdJycBev1k3RzzXNW/5lpfbt/KtetR3RSDW/r6WMYNx9ogT6of9mYRJP5AoyQJ7SkMm28dLssuwnRMY58fdIebch3mUv6Kiq75FLJJX8iuQUgVHlebWJuSNPpJ/oU7ZL2ynWV7q3mlcf6fd42ssi+XtyN3kO1ynY+OU69TJnDDBDLHPGMKiSsFbmJBvtTkLB7zgzGR7wTyB9cMCRkbTmsfBdnKf6+5eQFlscVDpWZygXGQhDfbYBaxhCx15n3zOiiPjt9txRexm+1nOjFLP+0J9eEmnX95pXtN5d+OHOR+3L7pD/5Yn62c9OB/zQ87HOvTCwxW8VeVxcrKdvGGAqN+nUb0npy9hS0V6lSCV1IVlp+AdVuSZz+dvDzgrI0pD6bBHGnaPIXTXr/LNASblX6VPuRg0uoGr+51ldYNdwZ2zGwRXpHHKudJRXu+O5g6Uofd7sIzdYOVznT46vfvm607NvkclKwMzaVZ1y312Vje0HCS68P7uhnoMHsDuaNxZ5BgMBtcUhuAdDAbnDkVQQYR5b1pHuiY83+yOd+dW6Xzs2Fz8rHnZb8l5O+QiH+qZfmYdL7KxyLzSEY8Ps48tZAMki/eXBY4ShhCGzIRo6QI6LHcGPu35hB0xsOdPpn+X/yFskIPv0gXRnD4P4V0f71FbIAIav8Z65Lo6B3EDAYVdEpWbHIFJLV78xjVFhFYZ3vcYXqEIXAKAkA+Cs/InkrDKKyK4bMBtVWXVcSKZIasuR7Pd1tdPAsdECVGWkMVeRIC8rnyxH86Z/CZf8vLT0OYuqBc68V7A6ZPTxtWeRfLecstp23ekEXZgfiaJ4PQ1LU8Xhb7iHPzf3Ex3PvPsnqTt+kCSum4zIlBX5RwbG7v+2I2fELcdnIcjKS2n29FPIBDx6zGLcYp+X+nYmsNjAQSg29YkPvJ4+4isO+MniyXVv0wu0jd54R/ys6Dicb3j3Wx/XsA8S/Sqz5unyXbuyq8xh32r0766wFTgsXTFiaWc1JG+nFyM+5b7WOrAukgCt+M6Te6Tjic5Ll6si7bL2zVcrMSnAly89dbT/Xm52Abr1Uq/XXJFMhp7xOzqGiupu0l2xN3e/2Nw4x2TJ9PnNR2525GknRHRgVeD6UqWFdJQumjdNDAbfjcgZ31ssOTvgceLBQ7v96pEp9vV5M+yWZcZQetO7ZUfR8xyHZMLogw4VwNdDYKusx89sF5Xkzi3n2/CuYq5146DwWDwZooheAeDwbnDW73V6XywiBtexrVHWuS8u3NWV4TMCh0BkMcz3xVBkr4Ev5nvErXmiMtuiwQICF7iVTricWaTLxDi5dgTQQWcH+XzWHSd8962Tp9+XUcsJKivo9hShkzf+bLpLzitCR7vWYsPg07rP4/1o1u/S4SXqGWUIXlDPGY0ruVDl5XPi150mcit/xCvyAxJVGkgR/F7+E7/lD1v0Wv1Deuh5Kx9enkE3pGN1DufUl61s31RSDH7lvVhQaDSlj+IPeXeyICXzOFDeluRtAlHYdqW0j6IviZyOWX0/4wMtX3mMfuimadlNPaeAO76THeus/U8lyRefUO6k/7YmNT978i8lLXgfV1XJCT90fmlzOgMXfPSSezK26kw9tGHWCAhYhx79QJWwRHyOU66nyFD/S4ylGjy+s3LCpE7n4wou650AO4kbcZlEJWf+k+bsI1mpHJnS/Q580h++SA6Qc7s87Z7b8Gyso/OTpLTom2Sm8q+ZH6qS5dPAaS+LM9lW7t4WcaTk+3WiydbvXKtIncP5G4aRGbom/KxTnzsWOLYTfDKilx5bIWuQ6aC8ka6hyQg98pb6aAbVPx771H91QDT/UdXXXj6Xl26gbfTeU7enD7l9c3cj0V5C4ccsAus/Hh1KjtO1v8sbeSJWN5MGYwscw6KKQOPO/mG58EnB/5OR1w/GAwG5wxD8A4Gg3OHIm0qIi+jJPd8AObLfmkLL6zqnqrc8706P+X2pFnJmsRS5QWBuKonfgKEIWRHkYQmcdmDttIWQe4XGpGPfTweQYbkhQhc1Q9ZCyY4PZfPpwH39O58E100Yke0lbxlIyZSITbQRaUvXRUpSp2JNq161LmqO9dyXZ2ra+rD9gm2Kbc7LzsrFOGI3wpBXL/x25y2AGnPS8vwrUz28/8+9zmVHbLUUWv5EiMiDitvFhLss+Uj5OzvS90gwd0O9vGSpKLcm246jbCF5PN+qc4neRO/HKpIY7YdcLRmZxuQ7m7TtHfb3Covk2REQruvpj0Ck8HWkeuWW86sbL/7n4SaZWc7lsQeL5Qk2d7xFUfTlYG9etzpOCpk93HIWp5oqDpB5EJgs4c10fa8VNDBcsjRjXksqPHkA+VgQ0RC0xcqPf9B/a/FhJKDsuqTL3PMMcvjAdHpJlU7vmfFwzk9uqSeJpiTdyEdUfI5dpN3vpytG3fTnrx3e41jrg/RvMkTWV+O9nXwYadT62Z1b6Ae9aq1Qwhv5fuGl60djpig4kIINgahjNztHjPfm0wgSJKNrsSxyUQaUyoAhXX5rpTXEW8djqVJHST5eWwQMrmbN/ocQDukoWBkZ5n0rYjH1He2eZKv7nA5QOfvAjcXG70HyszPG/x7goVcKU9300NXDGydLXCcR8Bcn2zLJHmdJgffvY56zP46oIM7A8468R8MBgNhCN7BYHDuQJRqOYk11+TR9Zyz4kDySLy3OIDgLSfcUcArEqNzyFckSKZfOcBdWv7znY+Ld8QKoE7Mu6uuRSSa/Kr8ICAhIDqY4INEcXTryq9bPbJu38THV37WsXmxfTXSd9voUQYLASZ4ISkgCEkDwVug7o7MRTau49p8+Vz6trnnZPp7PDKMnET8EolY8hZx5DIhsvCDifytSF1voWDCx09fQuqU3JC8ic7m3I6OsuzqTJmQc1Vm9TkIaG//ATJ6kHO02WorwywbXRPJ2/muaXsZycs5p/G+v27zDuYprC/rM/vBSrYu7+QMuu1Aks9Z8UHH+JrVuRVX43pCsjpqvuOdksyjDevDoof3afUiFOR9XeNtOWyHrrvbOuU3Eci44D2MPf4Q0Q85WzqnXb0IYhngXTo+w4uWHXGZtmHexFthehuTbmz1djSOqnU7uS3dZh6/rY9stwL3GtLQVo7+z/qu9tD1WEPf93hqDs//kenKe3ftvXv49QalMWAqYjEN2ZXvGq9LvyLWVp3ayE7qY+TXPdLeEZKZRzfIdIPCKu/83xGDKx0kIZg66Ihv3zRBF+WZBtUZRkYGW5e5Ipe64DtDyy2P03aTvG57gtSlyV7XodND/u+2Z0gd+ncOjn58xnlZ3nyRYLapJwqF1Qvb3E57dRoMBoNzgCF4B4PBuQNRezwqy1NtuXUA0VeQY3xM0hQBStRXRqbm3D59ttXvY77LMaRPdRYfkGMQT0QnsaerdYfjvudnWuYu+GN1nf1ernHb2NfIunU+QldP+zf5SO4xAtqPB1N++pHZ5qtzK5igMvnJdZDw+YgyCxeQvJCwbFdQ1xC5zgvVyNtEbdkyEb/oAf3T9n5kvCJhi3BFhoy8zrpyPjmFJOuoI9tBVD3qd5WFTPbpTIR1RJLJK/RW50oX+dQn9SXKkmji7tH4rg7285Ns7qJxkdl5IUdGJiev0D2J2vEdx8YEruPj6NNjY1b+P2bnq/GiGyPgAVxPt6/zzBeeFbydQoEobvac9hMKkPhlSya24UgciesxgkUUfrv/OiLffQ3y1nZh3bDAYn4Hm6/jPAXQ6TbvJZ2dOa3L4L9tCpujn+RimNuJ8cj9zk+Gu8/aprN8xjr06S0duvHb9XXfs+5yUS8jnG03eZ+wvFxjGzzdjuHidvHwHaSd97Ew0UamrDJ0Nx4L3JGRHbpBpSNRu4F4NXiszndymwj1jSxl8s1+lfdKjiRSu4lBpjeZmhM+ynB+nLuioRtDzXN7xy17Hk89pVzdhCf/7910vVVC2mBXvvWeRGrqyPUmbx7ZYXXL8tCpPTh64ERPlitJ5w6W/84SiTsYDAZ/jRiCdzAYnEvwAizmlBBfnldCWBG9m9FCED8QBERN7hEoK2LDc+PbQ+ga9huO+YN5LUQK0VGORuW8I7Ny7r+qW/ff6ZIQcjRXycH+tZ0/2Dn4K/1nmr10HSwT3/745VAsCHCcc5CWzsPb1DkSDjIl62uiD/1XnrzsiP1oeZwd4p5HmyGeMkCmAMmLnH70G5+NbTx4DL3KrcUO9vv1C54y4tTtgM9msiTJMLeZI29NuJWcEHfpe1K/zh+m7NwKwr8h9b09S8chdBxI+r/O175qciz+dlm5iNTZcBJ4WX6es374eKzr8u3y2Dvetb/LBd0T1Unsdm1Z8GKA64ytOzKWSHMianNhA3KXsumfZWOOInUbUiY2SrRwnfPLLW3zyFXH6Jd+Mjo5HkfUk6bjo0if15qwt02h+3zxoPul+z+7C7i94GqokzkryF23aW774T7IWG9Ox8dc11y0SR24DtZV9rncXibHh+QKL3FHl/jci9tJDmZmlR09SaYo3CuYRjdwGEl2rdJkWn86UvMspKUV2qX379VAkZ05J0DdIFXI0PpciVrVA9hw0zgst0lQI8nZbIOuzZy3b+odAY69ZGftVjSyvLPcEHKlOvVrHZmUznK9epkru1wHsZuPBrj+eRPsooHzER86t5H2c3sI3is69x2MO4scg8HgmsIQvIPB4NwBZxoyqr55PD4jxEzS2T/zPNpbFRQBYAL0mJ92zDfbq0OHjPbb86v28vB83WWuCCNHQqXPecxvIz87146iq988cnxM/mPkrutoOVZRkM4L+SCKiAKvT/3mRWC0P+fLvnhptPfg5RxlY3MQJ8cINdLw0jNsGgKW6HRvAQHxAvHLnrJJnhPlW+VVutq2ofI2Ee0IRMo2QQS8rQHt7K0c4DdS5/UbGexPV1peeEY6yCV0gU4dpeygLfMwJsyS46D+yct0fnvHfazSmJ+wP5nE24rwzAjyY0SsZfInuR4TeFmHbjzZ62t57Z48+Tv7Z9Ytx55cfKOtsBeidRnLve8tL5OEdDS5yeKBn1xwEKZ1bwIUWVlE4bi35vB46XtKBgumbpIb8rYvaQfZBh3ZaX2mbeRYTl/gvui+YF6GsQbkYg155gKO91b2PdfjavKltpfsS9ZFEt/5BED2g2yHlN/E74WTk+3kDUZ3iORllbR+e9UBIZmEeBNuHqtwg7khcwKRN4PuGiPDk3OS0BGzVsBZkHl0DeFGyPTHbuAeML0/SlePHOR8AyCtiXj+e2UhVx1p26xzTpiS5PSAlJNMDyJ8n4WwXkVGd4OBddTVpRt4+Xilzx3SHd7ydPX3jTaJ5JQxv11GN1BlW+zZz2AwGJwDDME7GAzOHZhj3u1uFy9HKJaz9oZvUHvrXY7WLAeuJ2uLHPA5v0yrm2uexYdZkaMrojjn0z6fxzucVdYs3+RKgb0RC0laObITZAQcxyBFecnRzTffljjvCIwu784fS/3YT+pAGogN9m+2nEU6EtkGCVLnIXGxtQLRtnUOPw/imP06TSyu2ge56jykM3vhsjUDZC4BOwVIPPxIzqM3yIuy7arX/e9/+Rh1IIIRItXtC7ljX9k68BPJGbXotuGldfAkXMOeu+iZOtS3t5/APwVJnqdtmG+x38pvrqcO3qoieRjbmpGRnPjMye0kp5PktPW0Ksv5dr5w+tpd5G7K5P9dvl3a7nyXLnW44io4hv6swxx3yItFotyaAxtxlL2f5nDkfcpPOts7UcF1LKPKeSrCEcKW/5jOkN/tuuJeOIe9r9q1s1svIpDGEcY5nju9CW/0ayKasY40zsM26IUvE7rWJUSt9eAxMe27u9ekjv1tG7O++L70e7t4+lI1r8pQARRBoyM8hWAsrEIkUZkNtXcz6AjWvInkJ9M6r1TMaiLREZD5v8sv69kRtnltRrGehbTOAZZ8Cu6EDAYeSLq6kmd3I8n2cYRqrsZ0oeGWP0lTr3TmpMXXpvF7JSl13A3GPpc3ENuw/1sGl5Mh/XsEL3Ce2Rk9CHX95Vjeg8Fg8GaOIXgHg8G5RM0371Hk4YU3RNoUDixXTaDxMk89/ltPLlyK8PLctOaaRX5VUh5P99vZa67Ji7VWjvvK4c7/x4gjz71XT90lOeN8nd+K3FmRzvYz0rFOgmEVFZzzeb8IzA57R1J1Pq/9khURfFY/gOtNCEGaOsq7iP0iJE3wUlYdZ59mE5QlY0XH1rWVv+3FPlxnP/bz2JcWEpUtLQAvT/t//+/y3rp+qVv6dpTLo+VE6lY59q3gLqzXgv3lkgWYZHY90k7Tn+/4CfudJqfRPy9jc1uv9OnFgOQPyNPkML6mrzmLbXX8Sse7ZGRkvkwLuVKfmSb7RnIfOZ5lBOQeF9B97/1OHaywIucsUxJ+1bd4IiPlzZcXYq/wbUR906cZQ8nbkaocd3AmMtW1JQPlkpeD8cxR7I3hBbdtjr1+wRrIPpI8VAYKdrbqazNS3LZgTsz7c+dYQJnsbeyyc7EFYjfJ7mwP5w267SxWHJf13/VdznV9wWPu5YWt0wLq8sMvSF0EczQvGZWhpFDdDdKNm4Ztobu02YFWA1+XT940O4NZdeKOdFvl28m5lx8GmSvFOYj6WDeByrJzUM96riYZGNHeTcW66iZR2bksm/PJG6ONsYAxZxpvE8J/Dy5eSUkZOO/jKXcnn1d8WQHLwW+vPnnex1Jfq4H0rBO8RK7o3JG4s8gxGAyuKQzBOxgMzh0uv0DpZLv73S9sd7lrDYU1Kbx1O7nuZLv4BnL31u3C9rrXn2x/+bqTSySV59w4lURq3vOep/kSQVm/b7nllODiUfMVAbJHeHRY5dH5Pj5n3w+sSJTO1+iO2UdFN+kLdNFje/4E+qtv+72ruXwiyYAVoZGypC+YhAK+O3sRmwwoMrGIftYL/NKvOufIbralq7zrXH0gZSFwqHfKnbqALKn8scVVNO6NN57uNw2/4LytF/t+1g3EdL5kKQOPct/grm1MWqZP1/nZyJu+OL9NisKpQPqZc3FdOxuxzvnOiMJ8VxJ+fn06wtv5uryOX8ngpJTHZSSp1dmteY+99s5tDixXxyt1aVxfY8VJddxOchTH+J4sx9+0E5H16Bd7YIEGwtRR8+iEl6qRB1st+Dwy+YWd7E9NmRlp7C1YbdcdH5V2tWrz1Rjr3x1P4vMZvEh/ZzsX6l+fimCv6/xyTo/15pwoz0GMjqCG3HV/9Rja8W5Zny4i2uNVLgB0evS9PXWafenSp+RI8ipDi3lsodLBeOcAuHeTXHXGTNuFmme0ZxqEkR00jSzl2bu5ro7b0HOysYJvSim/dcgxE5OpOw8ybuguMhQDzWhby5J6s6F5FbWLPl5NSLobk296Pu+NqJGLsm0PvknlQkTabd60uptKwY9WeeB0/XlsoWu37rdvtns3n05vg8FgcM4xBO9gMDh3YM55SrqebHe724VT5/KuFw6O2utuPdlee9jD9OSSI2tn3PNhnq6E+Kq5LQSbH1evtEQBI0Nh5dusCJFMs5rbdhFiq7nvnt93FvJmrx6rIIQkKzNv9Gd/8ix+UJeX/cg8n75WoqsT5GGBvW3xYby1gs97P1x8IHwe6mqi3C9/WvmzK2K8gHz2o+tcEcn4ttiwo20LkFl+0hifiz7QbReZ/jrtBzGUNmRSyz5cEjb5LhjqBZHG74xITiIruY60bezU5HTmU2DxwU+dmlCnDNtucg+k5ZzbkDTobBV45bzSHvZ8YNsFv73NSscfJcl8lrL22jtlcF26fFJ3kIHmAbooagf8cZ6Xn5k3oT3J09xFpfP4zjdlJefC9fAZPpd9z/pNzsvHuyefU8e+fqXHFbIvJhHqxbvSCVut+MV02GdG0/rFiHBLGSRn26px0WNOR7B6f9+Op7RNdgti/m9Oz+Rw6qcbC9zehz14aVwGbj4oD3BDWDHJHiTIw4WtKr9SgrGaGKxumHukWQ7MzjMV3d2o927Kq5t7HjOZ6064qnfqOwfxLAOjT6wGxLypdTpZ6SPrQ/v7N+f5z0CTN3HfsLmheFLlfL2KnhvE2/Yst+ueA2ASw36shmNd5LBX3/Jc9pFVe6QuB4PB4JxhCN7BYHAuwRwWkveUrDk5zBFrLsqj6Omn2dFm/sz2esxfy9nlWiK9jr2ErbAiIfec9i5Nps35eOdP5Bz9mA/Y5eXy7YOYfOyiIzv4qUOX3/3uSLxV/Vc6sdwrPyEJzZX8V+tT4LdALJRNsbdrkVH2A032ud7I5L1DC36Mus5VGxBZ2HED9nXtu9m/cpRd6i71ie+Y/qHzc9RywUR3trVlSPvLqN/0DU3eJBlHnUnv6E7LzRYa7Kvs/UNdhh+tT5LKcqWv6/qTFnmQyXsKO59VG7jcTmcps/PL/12+q/Emj3ecSjfeddc4vaMzO06ik7l0V+Ny9af6Xf2LhQf0QN6FIi7rNy96LKB/SEy4OSJ4kY98efqA8le66o517dj1U/6bIE5uKe2t453yt23FwX3oiZfPcX+r/uB3iWW0sft7x325D5r3YZw66zifdfVx23fm6T6QOuB81sf3t5pDnO7PIEU6A4zAgzOkGmy5H0HwjZPr8rGI7kbTNW5WeK/h3RhO73xWN/7V/27y4BvqWSYbyN8ZuolK1zVvhN1vyskoVO+r0t0MO+RNJ290ecNZTRTymhwAyQcDZA+ZPOc3ZTIxwMCJJme1BTi6d1UvSON8C6jr7ZumJxWGX9iQkdOp6wzJd3md/t4Y5OrTHYk7ixyDweCawhC8g8Hg3MGRejwGypyUeW/Bc2iCcrq9MP24NKQAc+oiCgrMh4nu7Oag3Xy/S9vNb89CvOTx9PmSdDk2T/a1nYz2EdK3zbm888wy9tKdtb7OtyPckkDpIos5zvyfvXcheyCDyIf/vDyNIBaIC84RAc45XsDWRfVRHraVsvOIuD/e6qHOFzlT5XlxgnP2zyi/SDFILPze9If9NHKSbrxoynUkgploaOvAcpQe7OPhwzvCGLkK9cI7+9XUF9nuc5/L8tf2Kfi9dYzFGXRJu9rPr/xqiwvIPvp3vQSwjlf5JrXTLld22/nF/OcaIkw53z0N4P9JciXJZvvIfH1ttyhzbGzJ+q6wN8asOCzXZzUW1odIa8b0aisISezU+/FyrSPqsU1HoZvozf5CpG8uauzxYUYX6Z3j9J6OzYOs2p10zgeOKM8x5iTxyTW5VUhyTAX0ZdlSH9aXFzLyPtEt+iSQ3fVx8CPHrDMv/Dgfy5o6vc2nTl533enL1jrBksQlFDqJLITzGx27RkyBOkLz2F45zmc1MXH61WCTyEbOfLJjZNocNPfIaOsnj/t6f9hrpNuPlg6wNwCmDjIcPcvO9ukmIHkdZblzUE8WBazLPG9ZvBrBQJZvM+SYo4bdXrlq6ev9yFrXafjNxGE1mCVh7OuS6DY6fXb5DwaDwTnAELyDweDcgfk4Tp0f2WWuahLE3370ne9Mx5y6fkPU1XVFdJVTvEfyXg26OXRHTrree35Ul/+xeXLWww55IV/i1fl8q3o4opVI1vThjhFIWc+OEDpLvQDEQxE5FbXGp/5DLuKLlI9Vx+p8fUOEQnaWbdQ5SCd0xXVEEVomyF8iSe0vIbPtl+g7bJC9QbnOxHQRnslBFHhRWZXrl7dBhhK9V/Ky5UTtRVyEZ+VDFB77/pocpt6kwb+rfLylBbrLJzcdOX94R6KeQO1ejEUkJ2QfOrDugP1gv1QR22TrDV6+h8/trRWSD6EetJmffs0FEZfN9ZkubbWzWcuQ5K772Yq4cj5nIXazzt2x1Vi0d8xcyWrM4bvapWzQ++vCSTAGe1uBAgsu2EwuSJnU5Rx9MPkjt019iOal75vHwWZzi4zk8mzX3RYHqzawPN7zljolUQtYfCKv0g97h2Pj3irBAZQOGEw5OxkLXlRKktlkfF7rPB2kSDulXt3fU79p9ymLuT9/Lr10r8pKY+get6DQMgwPgBieO3qG1lPRrhOQv28omSY78eoG7G9f3yHz9UBDQ3SkXJadDbMqK+ucdXN+3X4orpNX8bKB9x45srH6WNfOOZB1esvrPDibgPUjLnnDR4aMruXGjKH6UZAccPI/jywcS+sNxXN1OnWXHaprz26VPTtnN9gOBoPBOccQvIPB4NwhX2yTpEy++4QIJu8jmr5Jzlc5B4ngqMnOH1nNY/d8L/tOGXDRzadX5MqKtDFSjpUPZh+mc+bTD13N/6tu7O3ol9Yd8ws7ZLTaGwPkKrLTnzpWL9kjurbAVgs8zo+PhS/EdQXOFSCQHckK6jqiRFfbfZDej5Hb5/PL4UzaQFa6rYiUhVQq0vblLz/9zWPaB2Ljrlfuywt34SAf+oD905Kh8jTh5aAi5Ie8RbYkljIwCOIuOQ4e0ee65Evsr7sOTl+fP//zyy+2e8u3vHKP1hUJS572gc39IIf14zplMN+qD3b8TRJW6N7ch/mM/HT5uryzcEZ7cna+utN1fEnWzXplvHB9yz7dB9kyhq0FICbhUdx/TOy6nNQX/YGoX2yoyvb4j+zHoqOzfeFzsI2O+0vYfn1/cmSu98414Yy+XC7ckIP3TIjn/um5pYjrRh9Hfu+pba7Hdcx7LOmSW8u+lfrq7j1uS3NrK1mQ2dH1V5C72fFsRF4lyFW1NIycMOzd4Ltw5BW5miSd8z72P8vtyqKeq8lCd+Pem6h0hB7558SJRkk92mBZ/XF77A10KUuX/57uCjbgDCvvboTkyyom13vTeWA78moOq6XO22HtvEESmRzRjGwMDsCrW75pd+SxO1FuJ2G9dZO1lKVrD857Ren2kr25KnVH4s4ix2AwuKYwBO9gMDiX6F6iA6Fm3yjnixwvh71Qc1WIrSLscl7LdSYLLMMeAbI3P2V+77qcNa/bO+/dIx6O+Wl5zZ6DjY/BO2iyTfbq2aHz27o8usepM61fqFZRoEW2stVARcBWtCvtwmPdlb7OQS5ibxAhdQ3bIOS2dG7jSsu2DOyl28lbwJ8zEUW6OldlQu4WwUoEr4kxIvhMWN/73qeRkRDBJqyKyIYQJUrWW1hQN8iTSuMgJOpSspY+IH/RpTkP2sA+qaP3sK1XvOJytDXHkAFfGf1SjyRR63+1M/n7f8mX/rnJLedJOf44jTmDtPV8ssAkX9pq16eQz3Lh41t/KZ/zWvXvzga7saLjqTifhJ11szdmpnzVtkW+Z/vRt+h7Ve9qf+yXvlhpKkrbvEblYTLY15hzIC12RR8wAUg7er9pj4O5HUIBDgp9sLhhm3KA34pvg4PJaN0kM6138zIg+R8WgXjq3eVxbsXLeQHK/dt6QSanN9JWnA95pE5dL5PMhuvZ6cpc4en5yrAuCJLNiU3upkAU2N0wKbzrhAiVgman4jgVzzB159n9X3W8POcO3BHAlsFGdyw/G51XBfKaJLg7IrXg0H6n6yYHHemY+bqu3QDv+uQAwzV+2yX19ISAFZe0FT/awiDCoGFyl/JdVwYzh+t7UM4bR4EB0XbkDkP55J1h891g74Es9dq1yWoSapu+2sniYDAYvBlgCN7BYHDu4GjcdKRNDNQ3pG1HprK3I8QCL6+yj+CXXplUWc1Br2Y+2hF7x67P+h1Lk+Xt+W15/THZ9+bs6NcRp1dT5koPe/ox0eL/6ZcgGz5ntXm1fZGS9cEu2D6g0nAOkoltGepTJFB9ijSlziY4LAt+FYTUXj1th8jJtVUWZULKOgrNUaT+XaTV9def1iWJJy+GsMUC2zY4etC6gYC1b+nI5boGotw+ZG5h4IhLIuarbEg8QF+mPd0P7XdSvv1o8wYrIsl1YH9v240JLNtsRv6mz5tEm9+fk3muOI9cqCKvJNfIwx/nt+KQUh7rJW3T5/P4sX7uvpgEaS0+JJ9gUtUvTKvjbJvDggt6ygUDb5fqdxBl++fWJ10a81Nuh+RRTGym/s13MWY4D5P/tl1gotf9HMI2CWgvbnTtyziQ28Og57RXB/p1Y5V1kPbqevne6rZypHE3jlI3jyHWn9M4cj8jpjvu85IwubGwEzmKk+M2CjeUkYSgK5WK6m70nYHl4LO6OSf2OukKlnlF0KWeuM564loGc+rpG00nR5KSvoGtBvOVnrtJXOpuNUmjXo6I5SZN3o7ghbj1hDJvYvWf1StWlvPm4UENXeZKuutTQCbn2Q0qtAukLvrOFRG3f+qLfpKdMPXsPFY3vfw9GAwG5wRD8A4Gg3MHzzc978QpdToHQ/jJMq4xOcIj847gy/m5X5IFco67R4h0/8kj81qRM/7uzh8jZ11Opj9G+FwtiFo9ax455++u2yOQ8glBp6soUG+LgA344whc2w3HIXjtg3E+t82zz8h/SKnO90+CxHVgSwi2FWBBgihkIhMdUWt/EvIMH5K9pTOalmNEB1NOXVfXEDlJv2HBI/0+bxnYRfeR1hF0dd4vSSxUNCaLNFyXW36YwE3bsM9NmSsiCvjRdV7Slb5tkpm0rUnaJL6SgO7QEaZ+YhZ/O6OEc8zYy381Hq36TcqcY0/yJV3fzDxSRvoUW2X4OG3AdR7zHWTm8d+BaNkn3UYex02asthHPu5bbLtqnsrcFHm5vG6Mzf6Q8qBXBxs6sK7gfl7Xc4/q2sVkp3Xqex35eysidJhbNXDcsiQx7fpm/f07bcpR0qQzV8i37cLtmPe11X3R/eVSvicn24kVnUI6syRVV53FQuQA5DxXA0AqM+VzQ+aAlpVN5WeH6waCs9yM83c2GHVJ3RW6t/05GpT01N0D8krfCev/9kSY+phvXl37enWkboas7HpFy7KyolT5McC4g6XduGNmO1l/Hjw8selWgsk3SeXOplPv2Y60j9uvuxGm3twee225B2zkzoCzTMYHg8EgMATvYDA4d2D+2UXWJtmR+w86ctJ54MB638/0S8qZ5IVblb7m4TlXt+/SkUpgz+nNsvN8R+5yPK/vyJtMn2Wv0q/kOMs8vKtr+qkQWZ6be0/ZLq8V7LMQRVpEYV3Llhw+7zqtfqcMq3RpD53v2UVrdnVELyV/2V79Rn62eaj/kKB+bJ9ysPEiT2+++TSf2m84iRDrnnKJpoNYLthfpY0K6c/X/9pKwkQyZWYgU+6tbT+R/u26maTPtrT+6PsERtnW3D75xDD9nfz90il0Rf5JGvqTfqyRY5W/SdsFWeXWDMmBOP/UhWU5ZnuZT5dubwzJ/xn1zHVutyyP8ZjoW6ehLaudeKGh7wG5oIf+/OSGt65ELrYqwPaxP+eTdcto345k7OB9ZrsxJHVJvbzgwbcjdzmedpKcS2696UUK23T2K8uf3AzXde9sWnGKq0Wf1AX35iv2zBU6jjF5vLQ/t9nrq61rm4YTMdoZTp43eXe6XGHsDKa7qdAQbqxuoEqlHCPdsoPmzWhl0Hlddt5jht01TjaEB9tudc71SdKu26DZde8GLRuACc6Uy/qx7NZZypqh45YvSdrsDGyin/s5+1EVbsK5qkRH49oMpac8r9xmB88I3bRnOqVvtOjLHdXlkFe2facrt3HewI5NLAeDweDNEEPwDgaDcwfvtZsESMF+AOSM58ye1zqKiagm71sK2JeUPTtN/HRkycrf+v/ZexNo27KqPn+/qgL+CNVX0RWEiEaaYDRDsSmwwWgQMQFLQAeCoAhhgEFigzps0IwMYRgkGEuMARUCSifSCIgKsW8ICgKRCAiOiDQFVEeBlg31/mOe+777vvt7c+1zX4Gp5qw5xr3nnL3XXmuuueZq5m/NNbeps01GdlN3PQ3rNWAm7bm0GUf8p72zZtd1eSC3IuJoFqX3J0ANx/0NVOABjG1jmyPtl7QP8AosALTajmuOpVs2j/+oI16xXC9gFL645vvoV4KXHViTdnIH9kEJ8BKaocrxd+qC/qKbLgcZUR7tUZsW3COvDHlSBLhk8NN1WrOr7RhkICmBQvgwjgKfJYMi2tRegxzXT7kn1mCgNr0rfSobqjxrzOn6SwJhHbbCdz/jdC5rrX8hp9SZ0WbBWpndOJD3tgG2Xdo1jGaExTh9ta/fJZQ4EHrjuNJ4WzMeVFuBY1R+HjsYk+j/9Fu82Bl76p5fQmgcJWXlecVYTSeDDlxMZ8sOWytKnCjrhHzsvWx+cyOE/O0t6xeRGofqvGddB7eleejGP8sPnh1ew33W44OjJJBvps9n8lqOs1nXTT6nBDgGk148dBlSATID4OqEZ4YTheb5Lk5tKk8nVIgKrQ0wo8k/B7ttA1MOKL5mQM8TgXcZ3Ckth5RVkd3VDUiOBt/kywu4kewyHxTbikVcGO8QeXeDYyboRQ5s1N1HA0aDgY8Okaf58USWoKxlmsC4A4K7g3lTw7ubGew6J26n5755dh8x+fdh2mXSpEmTbsQ0Ad5JkybtHNmwG4EoXmv7ORuy9nBKGwQQELugngNgq3U9efNyrc5o3GaXdYBHrpfzeqZ33ZNGttsIaOjK6/gZUQcKl8wAVrEvDOwBqPMirfoEqCQP4sECLHJ8uK7VX8k/30OStjSe1+RngKeAQvisa37JWj0DOJzAMPdsK8ETAKudWOx8Yy/xtDdTDwHJq6wqg1i/xKolZIJDiHSgKZ/E36UsAyTIlWPaeEdis9rbj3aBXCfsxSJ7QXLfsT6tg4kDFFlf8CKu34TcMLBHO6T+uo4p58QiPL5QX7AE7HSO8I/6s8vtQjuYzEfiQjm+GQRLYLdr79EYlJhMdz95HN3z9WzTbF9jNaMxq/qa3wFEOvSOvKr9rYPIpn5XOBJCefi9R2wQgCfRv/xye+Tq+MsGO+Gz8qYfgGuQX2JJa/X199yc5Dp1tpe92y3TWl6jslJ3HBfbGKPL8jzpDZvMjzyNOZlIlxupDh1hMhbo57t5rCurwytJj2PkvmPj0SPLKRWmwQUkWNvtUHkxkQAXz+TgQp5uNAt65AVpAXcdfTS4pvA6QZq3LHu0SCEvd1Ao65dxa/2M62NwkN8OM9B5e+bgl6CngU/z3ckvvyMXOnmRB3fKKfKOj2MVeUBhYGLy6joQHY3OaPd2l4dskZl3zVOPEhy2d64XxV6w4Q3hQTjbNne3TeTJpElZXZ09EHeD5jayl/F1TdcXPiZNmnSDognwTpo0aecoYwGabEfYxkmDO19CYzvDHkU+0o0XpW27ojzVdljqQJYEWjvwZZT+MGvhwwC1h3lmBPRAgJIFghZgAyjGcX63R8m0wEuDu9gl9aw9qgmTgScr4GN6Uqc9ShvWswZsDC5X2AK/xIuy6n7FgiUmLfWre3jwolO8UKx0our60Y8e5wd7jvoATlov7UTDdXgE9CYf9DRjA9v5xs5naX/Dkz3+yAdgDL1Hx5GfHY/sFMRvADpklG1S7WZdSns82y7BMtefvmdvy8Q+LFP3azvJdYCcsRnKBMizzdzZp65D2qpcy7a2DJzewO5IZr7WXTd18jZvSYkJGXRN3rt2XCurw51Shh2AWfIv/UrsLT09+ay+CJCbGIhDZlr+xuL8LiNvKtRn9U+3s9trNH5SBrhJpxOQQxIYq+oAy9STER5Hf/ec5v7hDZ0i9xX3tZSz6z+qN7rDuIksjf9k2xvczXAynczWyGUcxMiOLKecUpUIL1IvGNIrMiucwkRh7L2YHcqC8WJkpEAdANkJwR2nW3BkPinAVJpOsfK3Jx8Dmp2SMFnlAOkGcl3Iz8dTkrpFlD1VR52ik0fm6eNFNYF7cUE7I/PqWOyWZidlIVDXWBSZHDuFiQqe/BII8syBGHJHyoG122Cw3nk317s+qQccf0gQ2XpAnUZyzzZYG0QmTZo06UZOE+CdNGnSzlEHIqQzR1HaUvbOI51BAafJ+zgw+KVtAEx4UCbg09lTabON7LfMx7RmkxwmrxEvo2tJnW2XBMBJmQBj5reewwMV4x75ssbHbqhnAVhOP30PEC6QsDw67cWZda3nCtghnEGCnYDQ9bvywiMbWwYPX3h1jGZ4LW/B9BYHhMUWq/vIw8fCDcp0cqzneJlaPXfVVXvlUYfKo37jzWjeaYe05ausqhNp03OR9nI9DfZgKwNmUwc75DhmanrpmR/b9th08GSZ+EVn9QnIig1NCIX0nqz2BJRObCIxiSTbzraJkYd1AbnaHoVf18v5dliJPzvsJZ0B8+8wRHnduNLJI8cH85Dy6n7D21q9k5wG3U9sIuPHQunJX/fxxmWsZjOG/GocKF0xrwmUGvQ0tmO5ZHuMPFcTdwFgxoOVUA9gU553Eth1vt2c4+tOjw4xlyVuyZicbZ9zZs4X7tdO77ZL/NIOhBkKAzzM37NtrDOpPykDt5XHSYcAWq5RQ1nRaID0tPVOQHYwC86VTiWw8AzajQDJwyrAGpg5urbWqPls94wHq1E670Qmpfwsb3ZpEjSGcpDsZLy2iOo8R6kPsV94AYN3hvxcDviZHxOaw36QzvGPPJkxGMB77kp18tyezWYAAQAASURBVK9PYmMZ5LYHsne0ISa3ruN54HD8M+o4OsLgRUS2l2XQteXJ0PUJGL6+8DFp0qQbFE2Ad9KkSTtJ6R3VAWReV3f2SnfdjhgGnwx4UTbgH8AfAEHy2Z0k9G9Tx2OXLtOs2S9rQMooj9Fv57+WZxFebyWXBHjNH/aSvVApD5nbvq4XdyFvQNtOPgYY6xlsqfRUA7wv0AaA15669bsIsBmbCiccwgZg79lTFyAw28P2zDYbADkSjsI2IXKFdwNGyJM6GlPAAxlZELbBGASydzgTQDHKoy0NlmVfNKBDvwI0tx3rNstQf7SBZV88ALThDOX2BQR2/zNQmiCcy+Z584zdaFnmkfFRGye5D3XAFHmkt6bLMpDoZ/I630fgrTEJp8+05ns0NviZDlvJ9N2YZfygiBfkdfWF0pvcHtZ2vqQsn3QGyOQZPOXTQ9TywQufPkPcXzu6jcZ254eemLfE/Vxv60KC26M268i8OWyOx6tOL7Ksrm5dGQZw3Ybu5x0gPOoPXRnwmn0FbApZG//L0K+bZzbtF0ArhXeDCRXJ3WSnN2iXwrJAOgEn+OuFib87fSe8rmN3aToP5VRs59/x6obyZOX8sjG7RnXHKLLnbpZL3iixn8/0rtuorFxgAoB65zPbDmVzva0jlrHf9sind088UeXAYH3zgJKxjyjDu8p+1p0DHjOuMHXLCYLdMuuUJ0mezSM+KePRAhk5TZo0adKO0QR4J02atHNkRwSv671+NyDQUa7hMfDz6Dk2GutMr58ByQqsMgDnMmzn8ezIODY/3fW85ufX7KTOhusAo04+266N6sH3PLmXNol5QD75HhATdhFhADKWbcdLUaUjnAN1oa1xQiHUAW0JGGCgNB1QeJeK8wMI5dNergahRh5xnVwBcqm75Uj4iwKxAToJkdHZkHW/0hqktj3psBWV9yWX7N0766y99OVF7PfBEMYC0DW9S21r06eqzzhcH33ZAB28EiKCdOR/+eXLcsUVe2Wff/7x4/ru24Dt9Z0QIciTkCudrtk5Cbk4HGHiI533ZgKNSSPwKnXDQCNpuzFkrR93mBK/t40t5s86tFanbkzu6utPj03WAzzTcdxL3MP6ay9zsItKS5x0njWuQF6lR9UvLJfMH51wfF7jHTjK+ZrjiZvo0/AJT25LYgZnvyC/xNpSH9C/DGvUjZfILuXidKOTLowlxnRyDvZGUVGGSeJazun56Q0j61I3/htjpL1IC651wpxbzxiIo8J2DU9ANTuRkebswAluofDZeF1Zbrz0EnX5mX6NvCBI5XJnW1tQmaxsufvqiXItP8us85BNVN51sdJ2u6duI/OwtuihPd0RySs7itO5zi67A6Ct4CkDh2VwPV1feyPw3V6zBsdzI4FBk4nP3rrmn7bw2xgtNxbR6FPWxZNcAuCpC+47kyZNmrRDNAHeSZMm7Rx1oG5nDyWwkuvhbg3JMdwiwCo7Rtizk2O+HBO3d2XylCBe8nsYRwU/k3XobLSRjditpzvAqLvepcn28LNpP2W+o3LX6g5ombaRv3e2o9sl2z1t9PrDW3dUN/J0fgCkBngdYi9BGZc7qnN3GtLl4wFdHrUVboIwgZXGNp37g9ui4hxX/GHyQq8rL47HV/4VCqJiEdsZjbyqjsRQdnxdt431gTT2enTIg+6ZpOKPflk6AchsebrN/UK6tNHdHvCSQLVBIUAzjw3mMZ3dto1fnefigSPjyrfrX3nNOpTYRPKRY2JSyiqBzWwv5z3KzzzktSK/GK3qjLe48QraqsZfAFwDizxbv/H0tiwMqtZv4ug6Fixe4EWEAQH3SE916kFZgLN+6Z/b0ZsHDuWSmIhjP/u9TNmOXfsZBzvBUzX0h7kvwVO3v3lL8DSdALO+bpPEsrJ/WS9Sl3IMNS9cNxZorKujgxjs0b3nKkRDN8ElY/5zZ3am3lGgkt0iIfPx9Uxrb9A1ygkrQdz0/h2l7wDgfAa+Ot4hOkMOPKOFg71/ky/XwWDtNnB3NOh0ZKDenq0GKrvBkUXKgbf3HeMTL4Cc/D2hWhYMevWdzsVgnscTeIZBhesMZObbPHsA8luEPaEyCGVYidT71JWM8+KdpGwDD4Brk8i2Nru+AMPXFz4mTZp0g6IJ8E6aNGnnKNfnXvuz5sy1Y4IRnXFqL58CvTKOLGtqr6Xx4rV3pT1FnSchHfC47GL2ul6HkYHTZ33T6DV1hvNhbZ98pktvIGTtmbQHuzLIr7P/uvQpmw74oE3stV3tg8ctdoa9NtMmcj15tnSBP66nLe5nzZtBFHu22q6yBx284NVcugq4m+DxqPzK7yMf2QNvCSlRwCn1KTrjjL00hMXw8+SNRzXe7AaWfbIV8BuwzEBdtkva6/5e6YuvM888COrZ2zp1Ga/mtI2tpyY8oNOGJ62dsrIeI0pQ8CC4dLws24VOn6DzYahr+3y+A2g7ntf0KfNK/t3eXZ9cy4MNkwRpS29L5wiVgvzcFvbEdn0SZ8rxBH2tT/QV4JdnvdmUjovVH2oeSdka63FZCXZaFnm6O/XDmIrHq/RsdfrE5bqwRMg79dbt6Py7k/weyxL7caiMDBHqOdTvmLIsOz3yPfo6/d7hNzz+H/i+NKBTVtbKxACCYNPtPoFRD2KjiSt/Z2NV/gxOOUBmA7tsK0sOVqPJcjQYZ97dwO1jUN7pMCiIotIR+KRBRgsl5Jzez9kW2cHtmZry7xYeo8Gr0jo4PNc50pM7oUXeDewGxmxHTzLwTR6eWK1TyI0JkQ7UtR3X0CWOJiTw76NDbm+3e+pU6gu8dwOtdcblHsbzYdKkSZNuZDQB3kmTJu0cGeToPBVzrcxn2loJGKbtBtjnY+7YCwZ57PDAups4sVwHeCuDn+PtudY1JY953XUa/T6M3TK61j2TdmJnJxhMw56rPzw2cz3ftcsaOU13ynAbcMW1erbarcCh+iMerb3q6tMhNzo5VToAXcIaVH4Fkhbx8jPs0E73sMkqHbE9CRNhIATebIORpwFg+kXaRiP8gP5CiAfqhMNS1cvH5AFJIORuu9Neli4PsMoYg49uJxbS4SKks1MS/ZJ34Lj8kR1vOzpBXoBowk5YVkUOgeGTrZ1TksvodGkEUtl+zv62ra909rJP2bp8t2NeyzGRvEdldviSZZB1c35O43G2rpesna70k/jb5OX4sS6L8Ttl3cnBGwXgIqUHeLJ73iEP5h4Dosap/F4k14n5IYHG1Ic8/WH8hvy8WdGNMR12ZDnR760D5Nt51XZzprE28lpzMPS1PE2RepL60umYyfMM8xD92eFfc+PmH/7hyHKkxmsDVwzKZq6IzLLj2DW86zg+xpOu0d2AZ0FbQbvJs2tok/PNDjjygs1O3eXZ7Ug5HwOVWR48IePc4UrFd94+8kEjjhZC0AjcdT6uuwFh8+a2s2etjx/YW7drgyzfcrYeWQ5Mopa1JyiAX79REn4zDpblzsTuXRd2t9w2owEKfe52gzrPXHfS9IKewO6kSZN2mCbAO2nSpJ0jA6wZx9NpiryW9Tp9ZM8A6gGe+XisgUTSF5i398bzo8dednVk+eAHl+V979sDBRxqLY3VkwE2oQ4AS/BkTW7+PrLzRnmMeO2ul9wAOks+H/7wcRCyCDtjzQ5LvjuQNgH3bXYBefhFaHwC+CaQljak6wjYivcr+fl4NWCheevArQKtagOg0pVnogEc0lJv6w52JcAw+ts5ldkGTqr7Bpc/+tG9vyK8brvTk7bZAcLS/kyA0/Uwkb9PpY7wA9ers++xc7GT83SwHe8om2cdNiLlZ71IPMDYTWfTJ6hlGaR+u41Hf06fGxwdIOe8s/2S307eSR3vXZoO83H+nX4kRpC4E6BvfWcDyfFv3UbkV/rtDZI8QeC41b6GLpEvIUnqeqU3hmKnxM4rn3oVH3iWQmBY6QVrZ8Yc/3OjK9s976fsecbzY+dpbX7YkBk947Zy23XzLf0tn6vvndMneXQYl/U89cVjc8oI2j9NDlNWJl8z2GiyUFLQXafKtIftbF06D1DOy987r9Lk0x3RytPlZx460NSNakXIhQyTWIK7DnXgN2nm5Ojr5t3KaW+ATOc6wV96yHrScp2KHEybiZQdSOpHWe7E7uzmwXqEt3aRBy2n5R7PsTtMe3e7p6SjcxjsRU6WFTvVWfZI7qk3HhAcj6kboOB3dMRrjXLBcF3SYRa4kyZNmhQ0Ad5JkybtHKXNlbZH0RqYZiM8vUltE+C8wHV7XHGtYpeeffYeMFj3yguSF1h5HV+/CxTAGaKLh9nVcw187Z5PuYwM9JFN1vHg/NfWq8kb9kXJptbpBs47vpOXbXzZRsh6j+pAeuIr2+YkzmyBRfW9C6MBATBVvepoeKUF4K368rt0gbK6trQ9BfCEHZqgVn2312LiDsQhrfIAWfEMNrjreqPXBSzX7+KXumPv4aHoeLylx4D35pM+w3FoXkJX9wHkHM8akBx7jDjWPFN/hLvo+rGJMILFZ6UljnD3jAE/649xg9QpA1ju306LPBMXSaemPDGb/avTFbdb9v20sRNUNa0ByjlmmLJvjsDdbpxZe948dcR4mTFU0afqs5lvgvHGS9i4Q6a5ecBL/dDDKoeTF0X2Ngd0zfIIcQLW440+eyWj/zWGdB60ANLmn+ujUCydPOF5dD/n1NT1EZ6X+I7l4PLSQz/1h3p3m66UNZrrE4hODIuxMJ/nNAKy9QZQXTi6XLMc8WSfg0CCXLlDMWIYSg/W0cRscDF3A1xhlz3q9JlvNlQi7VaGFG7m3U28BlhHk7yPnThfnsW9nHycp+UI/5Y5ACo7usRaSdkm7/Diwdzl8duesB4QqE99Or6L0zsOSco8ZUcay6gD36kjA4TT5a46fOWxlzyKAu8+imCeXb53wlLnPBByPXfo894ESCdNmrSDNAHeSZMm7RzZG6oDwTovQ9Liqck6vAOCDeAANDncQIIGe88d2aS96qo9wKE72p/HuDu7L+2ntIVMI/CkA2PTpsnn/LmWtrPP0g4078jYHqAjQGANiEo7qAPFOhl1ciAdAE4BoryoyX+2xTI/Yi+XXtTz6EqeJi2wkXp3diS/AUYrL0ChdHgi3cgWQt4GfYo/+LQN53wAbuEd+7BeqEba4qvS1fXKr34X6FUAqvMFZCVfvByRN21nzzwfc7eXt/Wt6wfY0PZ69OYJ/bzIeRZ1Xsxua8aKlLdl53Go0zG3Q+IJfB9hOsnX2njRAWIeo1zvDt/pwL5t48/I7l4b0xK/WJMJf8i7c0CrP28m5JyA01/iM/SRBHmNz5CeuL70DzZu0DNvMFk24BxsalEW6Y0fFdkh1LzVfV6eSBo2X6hjtsfaWNq1ST6TeF7qAHrlNPm9yz/TQuCjnWOiy1vTvywzN7cSN6xr3jg66ChYUXjrZWtNR3a8CiuuGe4mTX+3gFGCbsJ1vhaMeVrzxE0B+Z53sp1f7jKMOnQ3+SY639Xd5N1eBnDS5dGJjGfiwNo8Y96Tl22DrXlzaAS746NYDBpWNAeV93MZs4Sy8r75SFn5uU6eDIReuHay9vP2OPaiIAdmeHdcJg+YfubADkmQd4q7ftLFgfHnpEmTJu0QTYB30qRJO0cjcIZPr68znY9q5hrSDhOsaeseR3ANIJAX63tAsHoZVR1rT7vLNkEHtnS0Dbjs7q2BiP7dGeEu87Bld+Vhk9mwtj3c2X5roNJa+QnejHjvZF6f2B0Gn0dekrYV8bzDO8w2UgEwBnjZJOhACfMJH523OGm6PCzn9EomPESBndjE2T/wmi3AlhcEAkxRD/IyL37Hj21vOyrVp+OnmmfSZViDBHM6HSlyiA2377nnHgf2qh7E0k69TzAxMRvbv06XMk7MAHAvHaHSwS91YKQXCSanXPyMf3d5J/6R3qvb8nXeXR/J5zOflFXHI3zCK57t5Oe87Xlp5z47r2WYVP+mjf2dzTk2BXixYOlxjfHokuP0lg7zsjdwD8vZ9ahnKi/XnbmGPkefph9Wv3QYGPSqeEjPZssmx+fUjxxf3Ae55jjC2ebIKPN0vTucr3N2tU7mu6WSf3viZ//3+GLnz06HeMZ127/nwd6gVrojFyUTZt7KlkcIusktJ5uO6W7SywpYWG4E6tANyino0SLBsrAijwa2TONBNL2GPUgZsMw6+rlOFpZfutmbmHCZ5JCtFZJ6ZngF8+v8SGP5dN4IKaPMzzrlgNbOwwsFOqT1MXnwbizleffVcijyoOaBtJtMPAjzDHkziOSuqwc013Vt4bdGDKDXB7q+8DFp0qQbFE2Ad9KkSTtHXlt2AEGefPRzRQZqE7wxoFWEx6/Xv5BjrdoLM2M4Qh3oa97WbL2kBKs6QKwDXEa/t+UPL2tkbyiAN7+kx04i2BDEsNzGUwfOJbhpZ5gO1Bi1h52BErAb5WHgFAATHQHkNThIHrahKMPXATytQ6RNj0Rk7tOnWQZAB/L3p/MoEOussw6+H4YjzLQTXtj0E7yTbf+xMYLt5jbPvta9BB4b0ja7Qxna064DYytkiutAiIiUZWIhbo8E2O3VSTtQN75br7FzAbAT8Eo+aIN0sko5JFaUsks8p8MyEmiDLIeu73TY1Yi6e+AlKesO9zlMmR6v7b3rsT/bKecF2iVPhsNHxms1aOt3J4GFUD/ChOQGBCCx5UwdOpnUvfIyzc0f65Lxxk5mrlPXNsZ3/H4o+tNa3saWjL915SY/5E/dswzjay7L7WWMscjtSPsnX5YfG3E+fX5g/CxP3lNOWY64Y7uB3CGzwjBN4RTadfIUVE502ZG7ibkTvHc/83eSwUXzOwJE0+PSdXaDdeTJwLszXihkeAH4YEJxQ2bYihxUIQOs5j0VK9NYvgzsBnvru3cRKdtvd8zjQKPJZ7Swo2MaqCZfKF9Y5rbNRQhpvMPq4wAd0AxY6/KZLD1pkn99Jz6V4xl7R9y7d5TPZ3cMbtKkSZN2gCbAO2nSpJ2kNFg7wKyztVhzFqVXXIIwtiG85rW9ZD7qdxnk5cm1Bg5uu9YBLKP6nwwdJt9t6dM+yfrj1VpARsmCY/J4ytppB3D0MOv4zgYCQLEN1r0Qbc0e5pn6NJiZpxVNlFvpaW/yxcbh6Hge4R4BIEUALZ18kSkhEcwLXsRXXHEQQwC8AJAihEQ62Vh2p5++LJdfvpe3vQORSdqsFY6kQjkkCIYNV7Ih5EOCa9sAQXQqgZuUJyCqvR8NzuKhnH05bWk75aW+UF97BJIGoJq01NVyTr3z9bTHjat0zlyuA3k5ny7GtZ9Lyn4yAnnXaG08Sr638ZGObvlskjeJEpRHDw34gil0fdzeo5Rb1/ZeoHnc2Yx0Pq1QVOlqswQcCn3xxgd9c+SgaAdRrlEfwlHAP3m5z482Abr2Ih+HrUBGiYfl8y7TOsuYkX2J+qx5FrsvdPXoxo9Ohzw3s9nmcpFxxuc9Xqf6F8fUPRAkiAigdzDWw0GkOnchtoF8VoD0Pu0GUOfZLV48SKbnrZ93AyeRb06wXUN0ndhK5eNPpsyvO85iMDgnBwDi3NFMmSMH79S73gYw4d+gsnca0mXfE9joXi6e4N1tapnnZMBgwnd4cvu6rt3EYnl2x9rgiUVNDniO62SvYI4tsShmcWPdsU66vaiLO/GkSZMm7RBNgHfSpEk7T+llZKDPNg73bZ9xz4albROMX9sTpHF+GPx1zL3+HIu0ow6oSiN6BDD6vj/X8s9ntlEHio7KwFYjLm2BevXJd8ACAxJ1reRUnxXWIoG3wxDe1fWMQUR4GoEII3nxojzS2C40wT8gdnmN4inKH57c6VU8qpvttCLbZ1Ue4C5AK89wrz4LbC0QyjLmHqEi0mu9CJuwQotUXUoO9AfsNtJVm5lngC/bZwDB5t9gmEP1mY8EaLH76F/YiMjGXvWUi14ZmKrreFQSyzRBbtv0nfeusQJAO9u08Gb72ba18/FY5e/W18RaEksxtuFrI/xnBPRlGdkPR8+l7na6nPUagXOZPq+v9Rk+fVqgyLpoQNX4lLE6xic2eYp8spgYvObJ2JBf7uc/e/CiL7R5OoRaB90nIMoxvuJ8jN25nJFc3Q5sxgBKcy3xGJ4fgfCk92Zp97yfyXGo0zvP0aM5jXHCpxzQAULFGMPqcMoDeGzV58gpy1EUq7x5PTiYjFx7gOUag7aF2yl2dhTvXllRcoLLBs6BJXevnbZrlKyjGyXB5uQ/F13wb2XOQaYDvc1LevfmJAZfTKDevRkNJPXbu4cu30Bu8lPp/eZSLww96dBW28h603WWDvC2LhFXiYnGvFj+uSChLPTb7ZR1ZmAglkzqef35ZW3UKz2x3cl8VIDd5LpfCwoG3mtDOUBel3R94WPSpEk3KJoA76RJO05/8Rd/sfzTf/pPl2c/+9nLN33TNy27RqxDAX5s2NojkjU0a1mntWOFARyMft9zuax7edN5GZB1zP2MM46/iGeN5wRn0p4izQjgyDw7w915bZMh5bl+a2m7uthWwWO0rvEiMtLgBQsA2dlByUPKivYpSs9dy2FNlgZ3Ru8Y6QAr/+XmQtpIXXvndSjtyXzG4AUyLJCZ7503NP3Ajkj+I39CTVR+WZZB2srLXuoGx6hDgfaETMAuxJnJMkO22LZ4J2KLFiBbHpHw77in9Rx9DKC5wN0q08AtNiP1pwzrkfu++aI9sH8dY5n08A8//o18jBfkuDPqa52+dg5ema77bXyn0/GkjqeOn26sSWBurRzXJWWR/XatbDaX2FgwEOo2BXAFryCt8SbjJD4N7n5HX2CcJ04vz1KWeUeXCPljQNYvQSQ0iuepIjAQ81RU98mTOY7rng9HbWCgmvQeKwz0up0ox3iYn+nKtA4ZbE+wlXzsEJtgt6/Xs7wAz++DKmITMAH1DjCmj+/V6cixMfC05ciRGMRzokngM5lHcTzZdROTGUyQsOu4HRCb3qAJPKcgcyB0/hZOTnTdZJrIvtMn6Gyhuz7ZuO6MNC6ThJ/vBl0miuTVA4N59S6OF4YuB5DTPFo+3t1cW3zlAiP1wB0FxczJw+But/hB3wzuWt7egfKuTbZh7pp40nYdGYQ4VjHyxKUeJUsWLZ7QM3D/pEmTJu0QTYB30g2eTj/99OWrvuqrlnvc4x7L537u5y4XXHDBcv755y83v/nNlyuuuGJ529vetrz61a9efuZnfma57LLLDp1v5feIRzxiufe9773J85RTTlkuueSS5c/+7M+W173udctzn/vc5cMf/vDw+S/4gi9YHvWoRy33vOc9N8/f5CY32ZT/lre8ZfnFX/zF5TnPec7y96Ngq6J/8k/+yfL4xz9+ud/97rfc4Q53WP72b/92ede73rW86EUvWn7yJ39y+ZuyDCdda8KTDtDF173uZZ1ZZGOvKNeRrPHTCxgvLtbv/Dk2aq1L7QFJeSOwNAGNBETWQNbOHuiM5FE+HX+HWVN3aQDgWKMbuCsqNTcYi9MGXlUGVzvwKe8BIDvubFcf5zOqGx6exU/lWd+xpbrnsJd4m/1VVy3LX//18Zi0POvwcuSzZvcBAiVR18ofew4bqkAtx/akPhwnxxalLwDe2BOWT/KDF4dHrPR2nAKQynaCF0BVvtPOhOQgP4NE6YGILQ9wbfvU8qQ/G0R1u9kDH50BFDff3gyy7I2X5KaOsQX/WV+5n2EOXUYnxw74TOe47PMjHc+88nqXdo2fTq/zGT+X2M5a3mv8kz7LhxySocghFbhmcNZjvfEce1wXlS5XH7c3L17hjPvmLUNjGmNDPwAkAYTtCV6f9MUinvOc5DAU7s8p12yvTrZswBT5JESGJBnl1+lMtk22wzYnt8NcTwyMjR4D3Z2+Mbbx22OFgfiPf3wP5L3paZugvAcr0wFhkAvvAF8PEmbQg4UZdoUNhloInTfqCMXmkwE3gcwsv9uFPcxEbVm5o1ku5rEDdzO+j3feLQtfQ3FpUIOX3h1hMityrBQPBvy2jCkvwV9sghyIOpnlwsRAsWVjt3PvNCKX3C10mSxYzaeDU3uh5jZhwPHAhAzsvYBs4NELkfpunfEOMIOO9cdthzymB+ykSZN2kCbAO+kGT5/3eZ+3vOAFL2jv3epWt9r8femXfunyXd/1XctDH/rQ5dd+7ddW87vpTW+6XHzxxcsjH/nIDahruuUtb7l82qd92gZsffe73728/OUvb/P48R//8Q0om3Tb295283ef+9xn+bZv+7YNMP2e97xnyMtXf/VXL8973vOWM888c//aLW5xi+Wcc87ZANDf8i3fsuGlAN9JhyevOYuqmW0Me43eGYGdd2UCraxtAahsHxCKzMeCTz316Mb+qyzK88fvxEgQZgT4psG5lq4DCTugJMGgpG1gzyhtXqeuBhpsM7p+Dl2X9RkBRPm5DRAa2VWdTVo8crzadtOafKgbHp0Ahx3Qknxsk3PyZ1vQXtHw6fAHyId64A1YlF52accWCA/QY2/ADnQmj3QAQ+9rk4P3qxiYqnTlZVvhIHxkPXEOb5KkIxpp7JFL3naiMihd+dnbt0B5QolQj/IWBiSyfGzHu01sC9Mubl/XK0Ezy9CyTHymw0q6tlwD3ka6fxg97GgEruY10nUepK5vV0/S5xiS98jLcqE82o3NAnvJEg+30pQOeHMKTKk+S4eJH179o+YDx1wmZnflUQBwhsGk/xk4ZP6wLrufUL5DkzhOLKFWHG4EsJpNJ+ffzSU5H1knUpael0hDf+/wl9Svbix03h4vs67GjqgXMc+Zk0lTnvt4Obt/WN8oy22YYX46TPO0U48sFZb3wKAwUv5ElK3sVgQEMZqks5G6juCKGuRLIWc+DO7d4JH5dGBsAqGua8c7MssdPe7TKdxQ5s0DcdbXQLfj6XrHzXxYae3GT54GkvMNonw38As/BkUTgM52TRCW63ktQXvKY/I0r93ir+vM3cBj8m4kRyHyaAv3zavr4DZKnuCFNjU/Prbgup8MZRtfl3R94WPSpEk3KJoA76QbBf3lX/7l8hu/8RvLH//xH28A0/e///0bcPb2t7/98sAHPnC56KKLNl69r3jFKzaAcHnRdlReti996Us3wGtReer+/M///MZr9+qrr15ud7vbLRdeeOEmzxF9z/d8zz64+5GPfGR52tOetvze7/3e8tGPfnS5853vvHzHd3zH8pmf+ZnL3e9+9+VVr3rV8i//5b9cPt4gIJ/92Z+9vPCFL1w+5VM+ZbnqqquWJz/5yZs6lmfy13/91y+PfvSjN/lVHuW5XPlPOjzZi9Y2QwdyFKUDipvM696Ms4iHFZ5VpOdzz57YA3frX53k5PqItoGTa+BiB664zp0hv42PUV6H5cneZLZ9sH8AOOAHLziHfjsZmZwsMLUNIAY0SdtkZGsn+NbZbrmu7/JKWY9sQTxf7dhiT9o8uWmHLIfry7CEWZ7BIcoBwPL7UWwzGqC1zVsgboGoRegGpzFtj6Izbh8AHNoFT2/bz/AHIF1lAPTigQ1u4LAsAPEAsvbWK3KczsQRwCdsg6YjV+pAfQLIjbAf1yf1M/ti1zcTAE9QNNu8Gy+29amT7XPJ7+jT/HV4knGL5Nk4FXLI/kT7A7YanzHYR54AqzUd0+fc18jXsbB5HtDYxOljynV4CLAOnmGuAetCh8E6jK+h5zxTVOVzgiDBWJNl55MtEP2+G8MSp+na2m3U8dCNPcYWjZmBvSHf4otYwWzK2cuYfgzYTX0YvxgjjAVWusqzAHr0ye27wdNqDKpnjxw5NtdHR3JlPfnnhJm7XXzmAiUn8kyfg0XnwenB3JNfTrpZRg4gOeh3jdpRDqB+1gAuaTwQuk6ur+WOLLmeHqEJXo52I+jArr+ByHTBL2JS9MCaQeGzPm4TD3BuC4PDXkh6YOk8qXPR4knIbW/5cL3zhMg8LBsvnkft6muU44Epec262Wt50qRJk3aMJsA76QZPBXre8Y53HN5/8YtfvNz//vdfXvayly03u9nNlic96UnL137t17Zpv//7v38D7l5zzTXLYx/72OWnf/qnD9x/05vetAFUv+/7vm85rQngX9ee+MQnbr5XKIUv/uIvXt785jfv3//DP/zDjUfu7/7u725COBTQ+4AHPGB5yUte0noBF7hbYRz+9b/+15tnXed3vvOdy3/+z/95HzT+4R/+4UNKbFLaMEUGiYrSicPrUq/zy7jzsXQDvZ2B6xBjPl67nyZOwfFcrrE72y3X+r63Rt2aefR77dk1WssHADIBXq6XfPHmNBiHwc5ngiNrZSYYtM1eXat3Z5MlOJF5YPsBBvDJ8wCBBhsP066dfmBjGWxNnpF3Z2vVPdrA7ZN6WXZu8VtpDd4C+MBLvizKvHDdoUoAnrCjkYlBLOKnGhAjP2xc6ufreN/R33jZVSffLmShX5hWHpp12IK2xBu7yDJLu73DVDINZcGrdQJ73qCS8YyRzqKHbsuu/1tHktfumREdBtMxr1le3qOeWQbUOSy6TkXoIIBpkYE5j9nOFyDfekzIBfQb791KWzpcv4v8nIH+7gV+jBMZEgD99XzijUM7HVpulGuwuvpZ/fYmUMoyAVnawPMOfDssJ8+6Pbt29DVk3LW9nessD/JOcNf6y7P1MkmuA+ha3uTrsEBcxzPb6wM+E8c72LeOLNccPbqcihfvqNNk50KAuQjJPEYTt4WcAs3OnaBsAncMPn52NHDkxGrhdsBcTkgjpcn6d2AnZXnx5onAuyLdxEeDZn5uB9Kym+I6pAzyWcp3/XKnMnXBQOuozd2GBnetnC4ny+K3BxNPYtmhXKZ1LF3o4SF5dZ4864k7v+ezHV/pET5p0qRJO0jT93/SDZ4KjN1GFUqhvHCLvuiLvqhN86mf+qkb79uiZzzjGSeAu0n/0LwB6653vety9tlnb76/8pWvPADuQuWt+yM/8iP7v7/wC7/whDQVfqHA4aKKHWxwF/qxH/uxTXzhogr30AHOk3rKI/4JiuUa2gCQ15IcYedoLc8avC1ibV1GfhnxdRS0AKnjcQuPbIDd+mcwJ5t0BL5Anc2XadaudTQCEW1/bQNt1tbb2AMAerYfK9+SkV/IRVsA8NbfQVmeKI9s36zbNv7T3uzAuG065OdpWx/PLr0or1Ve8nX66XvfT6Zbd/VMm9SyAoj0XwfwEjIBXkY6V3pe4InlghxsW1f6SlceuuXpWC9Uq78rrliWyy9fliuv3OtXVX+A/8qnwFvX0UBc3a+0xOglpjFl5olXqNIVD/VZPNQzbCqQXz1DqHPahPpU+uK37lcbGmCmrg6vgDdgh6VYp2kLwG5eJph2rr2uHU/6MIDa6PRnysk6fliA1mV230dptqXrxptufMkTFtZH+iAxkO30xR8vcEQXAEPZbMgTwOh06W8BudVfyJ++Rn7gEPBkJzv0w5ibN0QSPHU+GQIUvj13dY5xeLlTP4fB7MZPzyEdnmK5pI6mZ/g2/Uj8KT3ZE5tLnDAxNHvfMy4kL/TFW97yxHzNI23FX2J/OfbuVSQ6sTNPwCqBrG4xAsMW4toEZYV3WiPcmWfnxWrFH5FBxpwku8VMRykH8+i8rAxZFh0HJcyO4knWjUoeBiwZPKyAPJedMkF52phdAgOYBjEtN7dbTgBuh2wPBrEi3M+pu2XmQcWLE+uJBxmXa53lu93hkUvqbzcgj+rCM53OpkwMpB/CLhwS/F1f/iZNmjTpJGmOHJN2hirMQdH/x/ndoAp5UPF3C4CtcAjXhup5qGL0jsgxc/0MVF690M/93M+1eRw9enT5H//jf2y+F6hcL4P7x6Lv/d7v3ZRXf+VtbJ7/4i/+YnMdPivkRHkpV9iMv/7rv954GhcYfe655x7Is4DtelHc//2//3fzorg///M/X57ylKds4hz/v6DO6SKP7Pq+vahYOzokHAajY/tidNuzCTAvAbNrrjmyfLz+Pn5k38C011ZHHdCRgE7eH+XTgZT5rNfjBqTsRHNYst1S9SyZVNPXJ8AI8sr4yIC6gHB8stanrbBbOqejNbl1aRMs41oCmSPZ8geAAv/1V/WuvzPO2PMAPeusvb+6Rr0OA+S6TBNOOwCUJWMAdf6QYQLl9AfS1N8IdC4eCjwpgAtwFbKcAFYKFC1QrNLWZ/0usLWGar8MzvagQy1aDvbSpY68XM1ekmzK2M5tgRgd73Zc5S4kCMe5CyCufPD862Lv8kzqlUFH9Na6Ajjol9MZO+g8EbtyKTNt9RHmlH3eaTqZjcp0Wf7cRtv4TJ6L7Hjn8tBlx5xGztZP+kbpUP3hkc7Soa7hqZvAYxE6kycN8Eh32eAwfpkhBCCJZ3wX4seYCuMkbQXgn1hLYk7EB8YzPjGabRiDQV76Rzrd0R9OOQS+2Y3T2Y6el6nbCD/kWfdH5G/e3Q/ZWKkx2OONeU3v3ZE+Hu8rKzEoskIUmjFGE/TJiYnv7FB4sPbihTTknS7gJgvfZa2BaChhDiQ5+K2R82CHIwFc+M28aRQP2CM0PycGH62gg9AOPorCQiVBVYPaBp5TYVEaOoYnvBx8Xc9sF+pkmZEHE6YVNvM1MA1vGUjesu12dZzWeXsHhrzXdnlGHZdy6bgMmt1Cfm1BNmnSpEk7QNPlb9JO0Gd8xmdsYtoW4cmb9KAHPWjz+cY3vnF53/vet3/9Nre5zSbu7SWXXLIBLNeowMzyKK74v3e6052G6epFbdDb3/72E+7f61732nxWXN2KKzyi3/qt39r/fs973nP59V//9eWTTRUG4ju/8zs333/2Z392edSjHjX0mq6X2D3rWc/ahMKAPv3TP3359m//9s3L4L7kS75kI8cKKfGjP/qjB15iVzL57u/+7uXLv/zLN+k+VojP/0MyiJF2icEMrtnusseXHTp4I3cR4JlfyOL1dfnw1t8eOFlv3t570dph16nbbCbX5WQobUfLyUdzM+3JlGW52obpgKWSe3VDZFuermn3kRdg+7b32azVGT7SCSUN+FG91+SAbVf1IQRFETrSgcdrQG7HO7/xXKu/AnPqd5VZf/W7wKf6tJcsBMCLnVv3CdeQdaw0H/7wHthUQOuI77pHO/p52gsvSANoBr0M6o5AWuI0p41r/TVPduZKEM2AGb/xLobw5ifer9sv8Qh7FJOWOiUoB38jUNqYToYpHOlK6pT5TAwhx44E0DKftbHI+R8Y/wanhUdYRMrH+pNlj4DKUX0TYzGAbszHY062Z/1xIsHjhUP35LuyXK7nF55h8wDg2RuM1N39CT3LeO4ZjgCe8VLnxYFdm2VbZnu5LcnfmyPZ7qkPPpmdeefc4DbM8cDPWZaE4nC9HWbJ8wbjVKUv2bjvpY5186vrttdfi8llOVpxeFOp03vXrsr5u1PyRK4ZSAxOprJ1E2wKsBOolShBvwQLUyDcWzuy7x2aIgO1/M40zsP3KbebOOG5FMD8d5NDtpUHZMs924LnGTCsyJWeIx+eTHMiS9nmYMg1L6KKPPHls07fTaQu0/qW4S1yYujaOj2Yk3/L0Z3dR4jIKydC94uRbCZNmjRpx2h68E660VKBsgUu/of/8B82QGi9QK3o6U9/+glpzzvvvH3Q9a1vfesm7Q/+4A9ugN56YVt549YL0+plaV/zNV8zLLPSPP/5z998/+qv/upNjN2kU089deMRW3TFFVfsp89QD0Xl1dq9gA0yWM0znywq8LXCQwDu1sviHvnIRw7B3c/6rM/agLvF8zd90zdtXvxWXsXPfe5zN/crVvBTn/rUjfzq8/Wvf/3ykIc8ZPmcz/mc5T73uc8mtnFR/a5YyP+YhKGHZ1URR24Bclg3podQ/fn4tMFdH7XH84s4iX45UxmLHA3nePjVBZgdPXLM+DsIWqYd01EH7I3AwBE4033m876PZ2P3zhc+D8M3cU8BOg2CAJbYM6zSlpdnHY2vz3rOL6LKundGd1efkU2Q9oNti7RNUlaZp4F/dKE8P6suFaKgvlMn21Ejvka/014CNEVmtX9CmIS6RniC9Erj6LGdkwwOdUCM69mBZUX0FwOvxi+wezvZYiunHe+XmxmEwxszQ1GQrtoA0Lt+4+FMeY5djIyqj5d3n70d61k2dIocrzN1w/pgXemwG7epMR/rHtf90jwo8xr9Nt6TfbfTZafl96gfjeqfaTpMqRtH8uSvsZn0kk2nx9EYYVl6/DdGQT4ZRsOnP3zKGSe/Ijvs0T+s+5RrBzrXwfKzoyGbHnjNU07m7T/jaMbi3Octa+6b3McyX3jmtPs22jZPGJD1b7cVPNEOHnfs7Md9nkmHS3s+173aRCS0BmUxPvp3brggO9/f8N91mPTUdcVzECzyAoF77DqBUOORauU3uOhdqE7YXdnbFhodnwiiS782YGTdSJ+Ka2GjvOY/FzWuHzJwOVZmT3pOn4Nk8mcvV3d0g6R+K2kuTLLD50Do9N7BMbiLXnmB5qMh7IBu83KgLPPpeDY+FuF2zZ3MblJJb1748ADvHbGqF4vONY/k9BQ+GbIMruu/bQPjpEmTJjU0PXgn3ajo4Q9/+PLsZz97eL9CL/zCL/zCCdfvdre77X8vL90ChDM2bgGzF1544fJLv/RLmxi9j3vc49oyylv1Lne5ywao/J3f+Z1NeILf//3f33jjFshZgHN5E5eH6jd+4zcul1122YHny/v1/PPP33z/q7/6q9X6FkBc+VZYgzvc4Q7LJ4sqBEMBzxdddNHm9w/8wA8s/+k//afVZyo0QwHgX/EVX7EJuQD95m/+5iYsRnlIf/3Xf/1y3/ved/nFX/zF5eu+7usOgMWvfe1rNy+fK7l/y7d8ywbkXQO3ky644ILV+7e97W33v3udmp526RDAOhWDrsgvVrLdYoeDet7rajwmiXdor6a9I9hH9kHhBNQOayB7Le7r8EeatHvSlvNza+Bhrv+z7LSrkgwGIhuv6W0v8IZ57BaeQ560xZr90JWf9d7G6zZbN+3StI/RI4CUqiOetT7CTGgGy2Gt3Lyf9TJw1DkIoWvYTfnpehkEcjlgBvW76lPAsY+z25GnrlWs4WxzgyfEBM0y+E48VO77aDzlmPfqW4RTMHiGPYedauCS/KhbfVInAGy8KR07FVkWUO8QI9nv4ANA0EBih00YL0nnLO6XXMAOElh130+nwSw3dci65eey36W+QslLh1sldfcSE0oMZO25rG9eG+FNNT6BjRhPQF4G+zpcqp4vXTVO4Tw6T9si2/hu88qvymIjAt3zS9eK0HVOCPhFfR6v+E46wlFk2SnLnP+yLfzcaH7psLiu7bq2Mm7GdW/UEhrDbeu650Zt4nb0T/qU+bFscv4zxndcRnsvWjvllHAvBgRLT0oGhG4H1QAiTHrXq0PC8zcDmqkbKLqBwA2aDWxFyUmiWyC47FQYP2+A1A1KpyhioE603WnhMSdI84cieJD1xGDZuKO7DNrPu0W0ebdQtOKM2i87QdeRWDDmgtA7m+kdi2z5tM65M1s2LsM8dDyal6xfTu65q+9nrR8efLoyUt8mTZo0aUdoAryTdoLe9KY3bWLs/tEf/VF7/5xzztn/Xl6q5f1bHqb10rV6wVmBrgVMludpAYmPfexjN96zP/ETP3FCXh/84Ac3L3KrUAblqfsf/+N/PHC/QM1nPvOZG+C3C89wermLHKMCb7dRAcUF8H6yYtfe4ha3WF72spdtQiUUr//+3//7DaC9jSptAbMGd6F6vgDeehFcgb3VFukJXL//+3//7xuAtzyqC3Qvb+rD0jYw3JSGvI0y7vPpaz71WIRXX5FfcMQzrO19/B4POx+lrb8SG+tajH28jLtj86N6rQGzea2zG7p0a/ecT2dzbOOvCHDWMSZtZBelJyR2EsAJgDl8GaAcyWRkt3bX035wXl3atMuKbDvZbrfeZDkGHRLMOwxhVwLgpvOR47wC8Ngz2wCvn03bqv4KsCVMAW1Qeu34sPY6JF6uMQ7IbW2PRMAYv9io0hGrdARkwq896eCh4h3bMQt+kD91r/qlN2V9B2xLeRDCAXDQx8ON5TgGa/JmHMigmu3Y8tzkpXToC/GHHcc79TL1edTf3d7Oy2mz7x/Grl7rf5nH2ljkeuWYNgISTXaeTGysqOQJSO++4zrjPXvsoNABL/Bqh/KWT3wnQUTz6E1I5hzKxjO8+OSlgOaXzYUEHNOJMEODum6Vb9Whw9OSqn6OZUydjKkdZpyFp7W0vp/zs3Ezz8cOpcKYh5w8r6S++XeBxN6k8viUbeY4xvB4vB/uBWPafPXAZ4UyAJa7awmY+tN5GWQ1cNdNNpl3B8C5o+exFQ8Q+fIw82eeurxTDnnPjZ5paHh34G4gsGx8VMvK5Q5uXjsFMUjeeZx6Irfc0kugG8ASODdQTP45OKdMuOYXSCR43Clxt9AhXbaVeT7ZxWDX5vDBhEmny936brI/zMQzadKkSTdymgDvpBsVFTB597vfffO9QNoKu/DgBz9444laHqlPeMIT9kMBJKgJ1XMFLFZ4AcDKq6++ennBC16wAYgLLC4w9UlPetImJEEHaH7Zl33ZJh5txe/tQh/c//73Xy699NJNGIi/x63nGPklcH9nl5EB/e2xM8HF9ydKBXS/+tWvXj7/8z9/w1d5RHchJDp6y1veMoxv/OY3v3n/e8UJvrxeNb4lXcUwPhmA92TI9keCSEWdzcFzCT7gKeXTY3h5pWOO88PIZM3t4935gh7HBLTxm99zbZuG8ggc7Az3Lm0HmIzy676PAJ0iADs7yNj2SkCJZ4rsAGN5dkDVyA6wvbGN1zXZJDjUpXPdsP3yxdwOJ1B/BhfWeOnqTBmlS8QFBdDEww0wp563V6xtSnirtD5hSj0IQ0Ld8bo2QAthFzP0mm/3KbAG0pMf5ST4a6AfvhM8hgBAkQP2pIFoyLLD5gQIr/AW1AlbGk98vP8Y5mkLYwF+2aL1hk0gk8cGqPJw/GTuIQ+/98d1Qg+sO12/Ia+8Z6xhNDaM+lCXLsfWzn7vnu9wiG78dh39LIA6Ou73KGU5HSjJ2MwLCPlen9XuFXrF2IrHOHuRw5/Hem9i+MWbPGuA1vVmPKUPsqwwmO36UY8Mc5Jt4bGgazvz5T7aeSd32CHyp78kZpa4ZeZVnzWPGh+qDSfGP3vjd7yPdI+XHILHIS+D0jl/kOfBWPoF7x6jjKXiBuwqb6aNmqfwu06QQi5heJBzWRZEx0NX0WwUT8LbJtJusk2AMPlMgNFouhd2neJ2MWy6xR2TR5JlgLJ78C9igvB9+MyJzTxQz87DeASoOo8unQcKeEj5Zzumu75l2rWheXZnyE7lhY/z8GLD5efCIQct61dORtsmnxEhr+sDXV/4mDRp0g2K5sgx6UZFV1555fKnf/qnm78CY1/4whcuX/u1X7s87GEP2wCGL3/5yzegZVIBuKYCXjvgtuLL/tRP/dTm+7nnnrvxck16/OMfv7ziFa9Y7nGPe2xCPVSaM844YxP2oOLk1kvLCkgt7+D/+T//5wFwOXmpZ7YRLzTr+D0ZqhAGv/3bv70BdytMxQMe8IBDg7tF73jHO1ZDSZxsOnsyH4Zuf/vbr/5Ve0C5Ns4Tcmng2jmlO0ptIA6jnmP3uaYmfdpPPMfb0qssPCt56dZhaAQ+dnbWya5/R0BJl18HBuXvfDbtkvS2TKAOMJJnfcQ+bVofve/4GdmTCRT5/qj+qUNOm3YMLzAr0LQ+Hb/Z7e+XnHfy8jXXCcCk8qj8y9G/hpz8pFy/KLDyy1B3yLx4ARSmTL94rQiv2pQVoLJfhN21nW07+hz88Awe7i7LeuM28WlZ92+8M4v/AoOsN1VO8cqmzQhXIZ6w2wf50c4AT+ijvZlT1olnQPY4pIz6Xe1Xf44VmptDzjcBrLyWf6lTTt9973Cf7np3P9N1fY226NJlWo8fyNzYil9+6bQZ45n7BejXH8873IJfPl9jeb1wkPArPm1g7KfI2JPrUM8wH3g+MlBMuWwIsAFSxNiBF6llDcbk0wT25HVduraFV8cZNp5lr3jaJz+dX3rwJv7k/pV9zZ9+hjqbN5+eKR6pp/OwbO3pizzNfzfOUyfH9z1BKRP8ysoYnHNlLVAfy3CsWAshB7RE2ykrPVGzAdIjN4XuvNYGidFk2OWT/CRPKdgEItf4Qx7pvg51x3+SF4OqyM9HQBL09O5A5j1qJy8iO8/sbnHS5ZPtkGk72VpOa4N4TqpdvTxx5TPcZzeSiSs93M1f1ikXZ51eTZo0adIO0AR4J+0EPe95z1te/OIXb+LoXnzxxcvZZ5994P5V9aYhhQqoeLAj+tVf/dX97wYNi+qlavUysvLSLU/V8uR93etet8m/PGLLw/WJT3ziJkRB0b3uda/lh3/4h4e8HCbsAgDxYcI5rFG96Oyf//N/vvle3snlyXsyVKDwiI5qobWWzmEbqq1Oht773veu/tXL8kw2Qv23x695P3E9bIeItBX8To40APH4c162cQoIKFCAI54FGhW4BBjWgRy5pk9Ko7ezy0ZA5Taw5ZO5jsYY9zs7iohdnCEYbLsAYHbvDSFtd4S44yHvrdmKps5mNiiRckOuxfMZZyzLmWfu/VWXL+CUI/voW+eF2YEK1j/4AtytfM89d1kqxPd55x3/rAg1xQPAcicn63jd99CUoBm//QK+Dpy2zUg5adOmU49DJvA8be4+smarus3wtDQP9jq2ZzXgWWISeCsWwUMdya/+XMMdL82ra36ZW+l1/Rm0S0wH4M4gU+qS9dQyYxwxWNfpoqmznUeyTOrujdKuPTsqf1RGV4/MG+qAxyL0Gi9cj0PoNrgNYUjYVGBTABlzmKZAYMBd42dgP+TtWO7mx3InD+s9aYhj7f7BWOh5zU6Y6LhfqOa5KgFVynYaNnoSA0JGHuc6R9XEbJiT3Z5dW7sPkJ462VGSZz02U2eX73HKMfLTwbJk6vI6/Cvn/G79sKnbCNjsgDZX1ouPw4YUIO3IM5H79n7NBnO+I37TFd0Cyd2YzMOKkLxZcF06ePVumjtKx+toUOvc07OcUcPWfXZwOo/SVM4uzq13ctcGPi8qUXKe8+LIi9GRvPO5TlbdQjB3UbsJxuWsdQh3Vntjj/SnW6RZfz+Zi9NJkyZNuoHRBHgn7QyV9y6g6Vd+5VceuPee97znhBeXjchpeRka9E3f9E37wGSBpBlnFvq5n/u5fU/WRzziESeEXPhwuf0c80pdo7POOmsfBDZf14bqBWcf+MAHNt9/6Id+aBNH+MZKPiINdYBHrhO9FrXXl9fTCdB0a12vQ1n3+6h5/aUHrz2RzPOa3bP2uzN+03bAfsg18smsm7Pu3bMGK/xcgV/VFS+9dA8Ys3doGvcJLtoe6Tz4kr9RnfJ6lwagsPPgTPsbnfKLoM0n8TrLmf1DH9rzACyAML1jR+XYPvJ9ZECogfL2rL0h/uo34K5txbSzANOL7Pk3kmH99ku7DU6tYQVpb9vRijREsLGXanpEOq+sC/WoTRX0y+1Uv+seAJo976lbybKmgdozJIQDPPEdngF/CwMova52BdSyHWs+vRGFjoz6Hrxh05OW8S51Yq0Pp+xyfMn2yefy+1o56RyW463TdmnSKzvraNmyETCqJyAp4RDsHInneW2K3OpWe3pRY1MBvDzPeE1/o88k5mS5MQ44ncdl18/4RT1XPHgzAJ2hzxn/8bMJdMOPgeLUzcSJwAWpB5tx3WZppws5N6aOdbpFv3S7W0akyxMf1M3zvutGe1WZnidc52p7xowEdEnvDSq3mcs9ck0M5DQaGXk3xspugdDo9trNxrHCdB3Z+ebCJQG9buDpOns2TN7zYiW/Z96jyTrLKqLR0gU86+vdjg7o9GSc5Vo23nGlgUcLjFQop6VzMuh08vXglTK2HmQ90jM5FyPcTx2xnHLCM3lggrpjOJ7YqD95U39P3tbb3FXiftc/TE57suRB8frwN2nSpEknSXPkmLQz9KFCS47RHe94xwP33vnOd+7Hu93mOer7/2B3zGXZhGCA3vjGN67mw/0K9XCrshZFb3vb2zafn/7pn77Kz13ucpf97//n//yf5ROhCj/xr/7Vv9q8JK68gitW8YUXXrjcGGlkdHqtmfdHNpYNTjx/8Nryuj3DOHhdilHPut/8YGyP4miO6ubfXrs7viuenfbaHAE6KaeOOlst7c6sWwcU4QiDJxjyHDkVIXu/bM33EgRK2aQ+uG3SNs36Ae4S3qCzibv6UzfCAhSoW38AfwXw1mcBjxztzrbs7NPOAankV/nUX+WPJ2mBl5U3Xmsd2OJrdgqiL6C7BkehyrPKQZ52KEreU26ALbZbAUety/Q5e/ZmOxalbOhPyNUbNIRWAeQqGQH0UoZtVDZjCuQt8K/6FONCxnMFTK68Smcc9zfBXfg2YJX6Z5lZpy0L+nyGgOjGwWwLU2frdzqTz3T5Z/8f4TxdHgneJiVPyZdl1D2b4xe6gT5hc+PBWlSbJOUdX57wlY5wHO4zjLnoleNY0/88FxQZ3ygy0O93LHksM48OCVq6l7gQZeK9TIgWb6YkVkP5yKZ4rzHM40iCmyOdsswdsiXbPoFU7mV93GbICG/cxFFT50hHGuYU5qNKVxthtafeOVp2GKXHnX35HfjRuC+7MrkbzH3HaqFwdywrS+7i5qSXE2H3O0G5tUEjB3eE34U8GOXRAYzdfcvIAGymH/Hmgajr/P60PKlXt7tkgDUnIKP97Hrmsa8s23ml3jDAW745yFouHfjrvAzIdnJMHq1v2QkT3PUzo0UAO9+dPnSDce7sXltQd9KkSZNuRDQB3kk7QxdccMH+9/TQLaD2D/7gDzbfzzzzzA3oOqJ6cRtUR/8zH+i0zuVSdBPt1idQXN60ReWd+zmf8znDPL7kS75k//vv/d7vLZ8oFbBcIG+B4RUD91d+5VeWL/iCL1hubARIlEfIWdMaTE1Qas1otaHpWKE28vMIuo1/l8szePECxI7so7TXoFzn+zeGPV6ba3aReR6VneCpeeiA51H6vGf7IIm28LHa5Gdkt7lOtpPX+Eqq5xIc6crJuhu8LuDFYKv/Os/jzLezv1x3PP2qjBr6ABgBZNbA8w5Yy5e/j2SLvhGWwLFm4QEZGJx3OXlUmnif9A1kXvdLfgBWBmDo0/wBSBPu3ECOgaSMP+x2cl9x+AS8ZQHRDQpVCI4KLU685fo0rpNej5ZpetIn3sJzfik7YxX2MvdH48Na22/TucPSyL4f1bsbY9dA3dG1BJNH2EWOAyMgudq7AP1qw2pTe2+XjAnRQV+h/xXZUz7juTrGu09w1/3S08rDmxzwa92rdIS1YWlBHRI/8dzkOcLgpbEprvm7Y2An7tU5NI7mC3vks/GRWBN8jMDUxNlG78hKvTBOl573iWlxAmKEgfm31wvHb4ayJVJsZaUB7OXYdQx+e0fMQjGIaYa6juxJpJu489mRELKhtnkjWqCZvuu4VrDs3N5h6KhLb6Xt6kRdRt66pIdvJi93avhiJ8MArCdVl2f9SBnkcQ3u27OAa50OpQxyUZrpDTL7Dx21vDOmkBeZXHcaL8hzAraMHESb9vLiz8+cZKi3SZMmTbox0AR4J+0MPehBD9r//ta3vvWE+y95yUv2v9cLxkZ00UUX7X//nd/5nQP3/uIv/mL/+1qIgwJ/v/ALv3A/JMRll1124P7LXvay/e8V9qGjI0eOLN/4jd+4+X755Zcvv/Ebv7F8Muh//+//vXkx3KWXXrp5OdxrXvOaE2IN39AJYDPD0nmtbmC3qLMZfPy1yC84clp7bgEw5RHgXH8bgOXlWOUdVoalbTho7Xs6qHR/a+ELMt/ORshn0kbx9w4QXLNbO69P55lArm0Q80NenZdrB+yOrvvT7UT8zpH8Ui5+GZ9fvpTlWpdGNqXbN18SZdAHgCjB1BEIQ97YVQA55NHx7XzqfoWZKLDT9hfP2eudDRF03m+9R671CXhVz2BT+gWFtg3TG7b+8JwGdLbHLrGPvWFQZJn6HTrYwAZpsz8brGJDxf2cuuXGUcqzs3fT3gbUMj+Wg4E62nfU91JnT/ZepjPg7r6Z6UbjSwcYrpU3GjM6nkd4Vj5jLKParcDdAu6NTaGbiauhzzjusUHhOSgxJsvDeu0xkfnFGJJB2XSIIz901/OQ/7jnZxK4ZQyA6jubN9ZNz4ndnFpkQNsvX8yxFV7YI+f5jJfsMtyvEpjlOcrJ/sBpgsTBTNkf6XNujxOUzQ1sT0QDiR4o3IlcOVfGHd8AXQq8A/gszG4SMP98dp3JnTtByizHvHflJ9jq+wY13dGSl+43nzlJZJ3MlxUgy86y6DxMKLQHE03uWnf5ITcrrpU7Bw34s1ew5Z+DQH7P8ArbJgfrpjuf2zb5h9xBu0HPfDlf78iYPCgjZwPGJ0PdYHhd/k2aNGnSSdIcOSbd4OnhD3/4cjNegz6gJzzhCcv97ne/zfd3v/vdJwCzRT/7sz+7XHLJJZvv9eKz2972tiek+eIv/uLlYQ972D5InF6zv/zLv7z//SlPecrGC7ajyv92t7vd5nv3MrM3vOENy2//9m9vvj/ykY9svWi/4zu+Y7nb3e62+f7jP/7jJ3gBfyL0lre8ZQPyFvBcHs2/9mu/tupJfEOjfHGS1/pe32Nc5n3WwXjDYXQTfzA9ce3c4Lene+2bdpeP9OIlVh5jdRR4i3N4C9bZ4LT3qMFFe2V1QEcCs2uAiNP5e9oJaQukN5l/d3naQSRBUMvUQAHg4ah+I6C3S+dTm5U33nmdzMw/gKlDJHQg6YhHvqfNm/kY4LNNtWZHuB+g6+gMXqwGaO0hmvyRF955BqGx13wsnXwcotB9Yq2v2MN9hFu4D/DbgBJt6b6ZwCremoDDXHebkB/jgh2t6nrx6pALHVbhfA1YWwb5nbrzrEFH4w0ZO/kwlDLd1rfz2UzXYS8dlrQNfO3yWnum6995fVTf/OvwjzwpXWlqDK+x24573Eef6EuOw5vzQ+J+bBgU4diWeCB9ivkE3SN+L/dZQoA/oa94IjPWekwpch7ut940TN3t2sSbD+Bj3uBBLozhxA8n/AjPwKdPDHRtbSwqQ8EgL68VXF8vt7ZtkLisvfKaHQ4E0E1cGaPUz3QLmbWJugMv+T4C8UadpFPOrFeWU9R5D3dpvRjLDsBAmiC288+6dXIaTRhFKW+n9eKkkwn5o4R0cJ61vLyz53vZkXOxlAO573V1Hg1oSci1q6t5sm6yoEkZoA+up9vRR3Q8kGxb0HnhkIsYbwpMmjRp0g7SFphg0qTrP9ULwX7sx35s44FboQ3e9a53bUIwFLj6mZ/5mcs3fMM3LPe61732X2D26Ec/un352cc+9rHl8Y9//PL85z9/E86hQNYnP/nJy+tf//oNgFwvZvv2b//2jfft3//93y+PecxjTsjj13/915fXve51mzAHn/VZn7X8yZ/8yQZ8/V//638tV1999Sam7jd/8zcv973vfTfpi88Cezv6tm/7tg2A/Cmf8ikbgPVHfuRHNl66N7/5zZev//qvX/7dv/t3m3Rvf/vbN/X/ZFPx/hVf8RXLa1/72uXss8/e8FD1qus3dDIA4jWy14QYv/wl+IaTQBr0OE9wXJw88S7EoPe612vdNP75DYBV3lEVmxUPqRH5Xh7v5r5B6cOCPKzDvdYeAaNrBrzTkCeABenSMcXP2P61sT0CdgBgAQCqPUqOXcze5L+zWbM8gD+Dngmipa0MaOrwBZSXz5knyz/Tj9oa8AOAh5ASeBOyAWFgCb0D0OCYecXbtGw6uyztUvqDdSFt6QwVkXIwCExdePkculxtkHIDpLKnPfZoXUfnANqzPGRqm5e62UPScmAswLbnOfAI2/zIKPtV1pc05DXakCEfy9/gHLJOOTvPDivy72wb5zXCkjq7f9TW3WeXdtv1rkzkwLVtTlId9uP8fB09rGvE5iZ0AlgQ7eETzeiIY0N7XKQMQEf0GWzFMietHf08XpIfcYJLB3MjjWfpD2x0diAp9RrJh3kv06UO0BeyrQC9HXOY8ZUxijrUfXhOzMibr94s8uYMz1EO6fIkQI5TpOf7qJ9snjt1sBtjBDmDMefEm5Ov0+aElo3jSdX5dMCo8/CAlJVKIVogVsCOn+xc6QWafFBf18VgakepnN0iAbKcc9ffaVK+o0HZyuuYLB6UyXPUme1dkIN3DqR+LtusW+xkh8w8PHj4vifADlTNfNNTmno5Td7vFn++ziRqua9tIEyaNGnSDtAEeCfdKKhi5hZwW38jes973rMBVwuAHdGLXvSi5bzzzlue9rSnbUDeiy+++IQ0V1111fLQhz50+f3f//02jwc+8IEbsPnLvuzLljvd6U4bgLejepnZQx7ykOUd73hHe7+A1K/7uq9bnve85228aAtsTipwtzyTM6bwJ4vqRXD3uc99NsD1OeecswF7q17l4XtDpoPeNAfXqnaUyDUr68kijMv0BMRgth1W9wqYxdE8wRgMYMcN9VFen5wro/zKK497VeW62TQCSLq1te2IjtKoHwFAnbGcwJ/zsow4toxHWl3DUzRtSmwdQL7kxbaFY7UCImdbr1FnE6WdPYrzmra0ifqt8ZC2bwIkeQ0Zp61WQNNZZy3L+ecfPMHp8Aelo3nEmyPL9vZ2GnuTpyevAY/EAFJ/vNkCmNnV1XLAK7v0A70xYJ9gHrYxR8qpB0AsebK5Y521F2C2D5+MCbQrOI37dXoN1neXB+U4hEwA/jqv58RWDObiaWyvRL/YqwOlRuNHp4+d7b32zLZ7Xdlr9nqHV/F8h+UkhuHP0fd8vsPNavOj5F79zeOYNxXc7nWN/oiOsenGfOO6+aVp6AEe4kW1weEX6nlDAeCZfu9wIZ7bjFP5OmFUuvCa2QbuO1COAemhz7MAveYDQJsxCVypvlefYAOUMcQbI56DciyosrpTOsakDAbzWaGS2HA19sWz9HlkvTcOHN1rv483cVYo3OBZp3Dd9w4c866AlbTz+Mx83TiuVNeJRmBax1/mN+pECdIlcN1Nit3OVAdcIuesv5/rJjBPVFaO5M27NrQj9+iMTmflzBi8ruMIvHc9XF43oFuWfj4nJ55nZ8WUeskz3c6MZdstUl0/g93dAsHpUz9dH+u+B5yTIXsDX9d0feFj0qRJNyiaAO+kGzwVAFkg5z3vec+Nh+ytb33rDeD7N3/zNxsQtYDSV77ylRvwtq5to2c84xnLb/7mby6Pe9zjNh6sBfR+/OMf34R2qHi0T3/605cPfOADw+crpm55uv7bf/tvNwBuxa+9zW1us/H8rXt/+qd/unl52bOe9axN7Nw1Kr7/xb/4Fxtv3qrj7W9/++Xv/u7vlj//8z9fXvziF28A6MPU6ROh8mQuGZcHb8kVkLdi9d5QKUHHtDG8duSTdRYASxHPAKKwZucZG30VQ9eArI9sk1euXysNL2TCsK8oIvUbb8r0Xj0Mdev8BEVMeX0E1nFvVGYHtCQ4iGcyPBJKIj1tq/z0PoWfLAOAC4DCsRs7G6Hju7vn+3iJAoIexivaXuGdXWqezEdno4/4sg1XOsQb4PN0Iy9w4iViBjaqvBpm6h7tAw+ASZ0O+SRn5Vce0xVqxLx5g6SoyraTE/m4rxrsrLwA7Eft5qPu3AN0Q3/cN53G3nxFAKUApNzDHkZeeEjbdk5vTPKp9CVbPDOrf1NXOyeRFvC48rd+2I5mTMLmd57w4vjFadMmcJeYTEedHqJ7mWem7/rgWjmJXTh9buAlD7RB4mjZLllWd89lIyM2DIocgtP9F51x7Fz6oU+EGKuwTnjcyTYtXXI4SjvZMScB8FKPrEvOf+bLmE+HvVnH04vWlO2TdYUvNnBqLiQEjj12idnN/FFpMgZwYnIO31Cf9NXs757/XW9vjFVZlY5xiY1Hrtk7+tRTji5HromXY3nwckcksxzcPCiaSYNaVMYTij1Fu0YYde6cnLKDdg2cvHHNoCnP5sTWdW7vKudu2KgO3sX1AGlZdwAh5Dbygs6dMXfHUnlJbxd4yyK9jg3SZufqjl5Ylgkor8lrzePb+We7uP2805sD0mjBlwNr9zsXREm5UM7yWCSsTVaTJk2adCOmGiXn6Ddp0qQbPRVQ/1d/9Veb7x/5yEFQzrYRxHeOb/tlMqwb/bKlonynRgIqHCf3Ccw8lu71dMUXLECOY75F73xneaPv1aEct8uYT8C6yMZtgjXUr1v7jp7vKNfvXTlp+K/xCghpuyrDFxSRroz6MuavuOLgS5Q7cMceoh1oMrJFuuvmuwz5aqN60VLxUG1SXnyApEUG+vP5kR2T99Zspnzetib1L1nVS/pudauDwKY9Qat7lF7VX+lVyZa6VRr0LR2NOts7AVbulS67PWzf2XYENEnvOQOeLo+2zdAllJEgIyEjCKlR8sCjr2Jd2wsSHSSGs8cKv1ALrKbSlYdf6h71s8ewX+ZWsv3Yx/aul8yN/xD+gzjIlcYemNnmo5dDZRrkD1ie4Lqf7TCcNfs5HRRTPzsc59rY4zmOZN2MgyQIPbo3SteV7X5ZulC6hVctIUPAQ4znlXxKT6pdawOl+mUCtj4NQF+1hyv4H2MRJ5bZFDTAiy4yT3neKgI4ToAzZWDvXW8i0N65WeBTKZmHAWBAWo8vpCl+a3MoX4KWjoOekzN0CuMdLzz1JkiNS4zTxtGqPId0cP0Anxmr6hnyBvurdIy1ePAeOXrNcqQSZPB7hFTUAWndRGVgjcpTOPkatbYid5OSAycn2JbP5O50eqOmGzYCyw7nwdP5jhYgHVBKw3ULmBH4nAOQgUyDpRnDy4O5dzhTvj4i4li98OOdYMp0+zvGCt858mO9cFordi64KNdeAUyE6UFrfnnG+ufOY92xHPy8F7qWowdPT6rZPqP26/6K0P9awHz3d28ulYPMe9/73mWbfbA88Yn15urlekG1GPnRH93K/6RJkyaZpgfvpEmTdo6wJUbrf6gDQ32007E5WUvbw8+egX7/hG2yXH/nehkACHuD2KMY8yPQwZTefKTp1sz+3uXtOnSepCPAEo8nZOG6u12oL5TeoQYIHE+y89pzfTr7pPP6NO9rYFPKC0MfMJD8aDPb3t3zhy1njdIWt+0EiFR2i18G5/fE4KGbgDpeo/aitt3e2VuUbSCX9gWkMbhjkMhhFEhbhL5zr8jgV90D/HQbGHzmWlH1oUrLMWv4TdDZXsa2ydNO9e9894z7nXEM4yAF9hVP1Ua1SVAbPDlWYTvbSc9YxEh3rBPEeDV+Ycwm5WVd6vLr7PDROGDeEgPo0rictfuZLh33sm+M8sy819Lk/XoGsN/e0TkW2HEPwB5dIZ6sMab0YDeQCp/0A9JUvsw/9Ds2K3PMLdqGIXquISRCJ2Pz1813uWFjfowLeWxAz6uf1icvibPnLemQnXnI9vS8A0ZHGvjlVECnx+YPEN/OjNTLf3tz1TGfmiNV6cZz0+DeYTpdouxdQ3gHOgXiBU43ieZA0C1WnF8O/Lmb4U8/63RZB9d5NGAkL6OB2dcsP/OeaboJ2M/kEQs/h1Lm4sWdzc8l2Gm585khIDpwm7wSUOXTnsgQ7WXAetSunuDIx503ZZA7ip7Ikrbdz7ZY83C+tuSF8nVN2yagSZMmTWpoAryTJk3aOerW9Eleu7KOz3V5EQBZpjdQ1J2K9Lp49O4Kjs0b4KrveAlleLQ1shHcATK2dUZ2VNpAKVPbqAYD06azLLwe7+wpr/NtqwGSjLx2k7fMt7MDtoFMo/tVV7z2Oo/jjk4WONrGw8ju5ZpDKxD2Ay8+wJoCUAB4nQcg5chezHI7kANK5x7A2axD2o08k8Bt6ofTGOdIPAMb1WEUiIXKBgOhE6pN8d7leTtwJbCZvBm0Q18A3wzwFlW7VJzkAnhtZxr0o58xRtjrfU1PuE660ld0t8Bk4sQyzhyWuv456o+JHSWvKcc1/vO3QXS3A/l14/1h7OcOP+rqlh7kBmyLvCnF7wTs0V9vvAA4ci8dPj0PuCzH5uU6IDP9y5uTRd1mAn0I2eaYa0c+x/F1G1l2DmFBnQkX4Tpnv3UoEcLtADYjhy6uNPl0Ou2NmEpDf3b5YG3G6pCV9R0+3AaQN8M2148eXY5YSb1T2QF+SR7M/NvK303YqfCjNNmpGPQQhgfXFEYqStfpEgikrPQCtRLkRJ8dMSfBHAByR3m0cPCCxfVyI7qTdLvmnvjs8p67oikbyjMIa5Dc5aZMvQjtQFI/73gr5ptn7D1MvrkTwiSWMuF3tp3rm+C1F76pwymnbP9uUWq5TZo0adKO0QR4J02atJPkNXKub1mbJiCURp+PuXrNydqye4GW361Bvl6Pm78E2ygPb1iM2jWnhQ4QsR2UwMVILh1wM7KNKq29cNPBw3ZLlmEeRmt3e/XaFsl0XZ3X5NTJJO+tgTocobcdaSA681wDl9b46NKkrdvZ0AagDayiRwUq4oEOccSc6/YaLX3khCf3KBtKUCW9+zov7s6+o1yfHIUc+3atnZ2vAVy+V58qL1peRgW4iwdevheH57CV0zPQ5fpZ28T0X/NVfBQID3jreuWmhh30AMlsm7tc+OK5au8qo46+GyA2xuS6dFjKmv6l7DvqMKwRsAulw9wItE18oEubZYwwhRFf5o0NgwqzkeO10/rENnON8T2/oMt4j3XHHtzGYNAp4zu5weKNBbxeHVsePo1R2dM+0xi3Mh+JXzr2ubHBHKtcV8sB/hlz2OBwf+4wQUInuOzEUFPfLTOfoOnwReYAynC+3If2803hpIerJ0ormRWR5xOkcwNlB/DzuWjp8k9e8p7Jlc7JyeBjxq2FPLgilxGwl9cyr8y/k8UIHOd7dohMlx27k5s7oz0EcoFDGndm70Sy0Olk0O2Y133v5LhdusUO33Pwd2dNWWdnsgdtt5uSk3/Hhye01HmeIR93rFxIdN4YkyZNmrQjNAHeSZMm7STlBn/aU1xLsA6ywef0pjR20xA2KGS7jvtldJcxi5HLdQO8ozVzV4du3Z5pfa079ZdAi0GEtCEtu05Oacvle2cMnNhLzHIEoOgcWhKQS3tqZBuO7EJ++9nKm5fAJcBoAKDTjY46nmyLdvb6iBLkQU54bfpaAYrEiIbq/lln7b0crQuPkDZz8sd3wiZwlBk71iFM8hnbonn03LpC3QBXCPFhPMLpnTegVtXdcXHJj7icxl8y7GC2Q2IHPDMC/e2ha6APj2EAaIPqPOcyiKGLzlNnA3Aee5BRAdrVLt0Jg7T918YGt5+fzetJHV7RkXnZ5l3sNuhASfjvnjM/uWGR9erGhWozxgI2+fD8zs09PLkJ22B+DVImTpblW4/sCQwf1n/6e30nrnMB/elwuDbOpJyczjLKucmhVBxeJ/NFHoSZqN+MO8Z/ch4EC+uwHjZwvBnjOnvegXfmXDtT8t0AeVHG5vZ87zbd3Dv2t5/QcSs8uWVFLGhXwoNlTtSdMnWTVDJOWnvUJiEQBGblTmVIZUrAcW2hkp9rkw2/O/J1N7QHpw687NrAi69sJy9cXJY7bA4wrpdlmHynYnULx9GizYtNg7E5uFq/PPl6EkxXfbvepwwh7w539aZTWWY54KUMR/1jNOEchtyxr2u6vvAxadKkGxRNgHfSpEk7Sek9O1prO/5mEUakrxnssI3CMdIiTrd14IMNRudrYxIwoACeem9EXasj9eUt1q1zTbneNgjgNbntAoxn+Oni/XbgHPx2a/h0WsHGqHIwkIuI92pe+G4vNsvbVOmIVYzsqi2ot48td3atQSC3e9qrvt6daLQN0gFZnU2atmbKMb9nvdNONXW2rMEm25Ulo3rRF+3hevB81rlL41Adrie604HftjNpX8cy5fnUi6KMM2q7M+WAXndtZiA77evSVWMwfBokqr5Z+fmldJSDTnKNlwWyWYDnf70Ur+oD0EX5eCRWWsdM5sV4yMYvfPTmSV0jHEXWLU8EGHNI7CU9Rzt50Z5rv/1c6vg27CbbNtMmQNlhP4kXGXjsns36Zn/NDYFqI4OFRX7XlD24XWfazzKudvd7lsiTecm4jXlyXjzHiyA9xmb9DYTm/JH1N07ZzaOUjYcyn4yz9mznpYf1h0e9+1eOZfDNNY/bbGRRT8YdY5PGMo1VZlgN9ICy0qOa34DUqR+bPwBeM+QE2wZ7D3gwkTvH2Zh57CUnAd9L0LjrsN3ueNf42UGtzN2ENeqw2bG3ycr1ySNOVuRMW2RZdWW6sTvZ0Bk9APk4RnoGJKBLu3W71t0Ax/fO+9b5eUe3W9Ckp6+V25N+doacPD3RZDk5AHsS4dO7nVkP5+dBFnl5EOo2JSZNmjRpB2gCvJMmTdo5ynW516EGfxLcsIedgWHbSF7Lbtt895o2wc8ix+kEZDvnnGW51a2W5Yorjh+RL2An17IdAOH18xrgYZsxT9y53j6277ra8cPlpi1HnRNc5B7kslxGvmzZ/HcvKHe9OgeWBPrSRjF1YKbtL5fbybjLJ6/B8zaAyvVLGaX9S9sgT8BGe++WHMqz89xzj8vAx4/ZuBhtjrgfoLe2+YqcHx56gDD2eLVtXukcsoAXsNku51rXx1MuxLfGW7CIF5tRF0BQQNYMzQJhk8IzPHD83e1o0Bs5lvxLJsW/46JaPpRbbdOFPqRtwRPwHKUse4rmMX7SJfaQlHZ61y/y+lp++dy2Z0bl+v6oj2RfcDrjPVnHUR/lOeMTHUbh8b2oA9Yz1Ai6XkScWfIGcEQnjG04tCb8AOZbZ+DPMXwTP+qA566dGANSnjyXXrIA3mxUpJztHdvNa97MwYOXvmZn1dycY9z3/GH5kSa9c7M+HvusG+5LGUrmgN7xhUHCAGw+kEoC825I/+4azINEB6q6EV2ZDqRLxfUgMtptTZ5yAdB1rOQ9GyHBzeTLHc/55iJtdC8HC/jNRWHmg8Kbzy6GkD+tPCkr5+t6+bPjZQTSo3MpF/PpzuO6uswRdYsxys029H0mRTqf+eoA8YwplLs+CZhPmjRp0g7RBHgnTZq0c4SB6bX0yA5gXZnHnVmvet3qFyFBXuvjQOE1b3r+FWHM+3ScATk8/nhZ1mgdO1prpyGfadbuG+ROYM92Rtp6XX6Wtevf1cd2k2VmsLqrQ7aHbcu0m/B6BPDDDupAhjUgKW0z207JR9q3nay2/U57MPO0fZRAIPWjjpW2ZFCbCKVbH/nI3u/zztuTyaWXHs8LD0B7xXXtbLsxXyxFuxpsKv3H45Dj49xzu7qs7pg24DLegIkj0M/K2zY96Gn76md4y/pFafyRjvoYKOpeTOf+z2fxCcANMAs46zYhPIVlmUAtn8UzPAIMZx8ib+MKXAcwM3iXuId1r9PP0Rhy2PFqLb37lz8Tk+lwsS6/BCi75/NeJwc8U/1SM+sNzzHOWH44+XH6oO7xLPcMYAJw5njH5gl81V/pr3UUPt0frbfgQA55gB4675E37VpbeqxgYwU9Nv5kfhOE9jyDnDqHR39mJASfzqGOjrXtNvT8nh74ljfP1tho+R9v+yPL0fLhPXJk7yVr3o1KxcoJ2x24yMLzIOsKe7DywsX5ZgzfBFazUbv8EWSCgymA3FHKck8UWN+p13hLQDDz7HaxuknV91J25JPPeoBNRXV+KYOM55t8jOQxGtQ6/nPR5nt5LWVmd/ciT/xd+bmDbr3NAcsL3W7gzf7ggNoZv8uL0LVF2hrl7s51SdcXPiZNmnSDognwTpo0aecoPeKKEgg0AOL7aWP4BKSPgxtQSjvI61DKcPl25sDQx+uyDMcC3ghrANibR+HXaC1dZ3sZQEwbwXZA1tFycv6dfZb8ZV6AfKPysl5rDhwdAAV4UaA5zwLydmW5LgnUZFm5Rnf5nR2Tv7fZKJlfysR6i92VAC/llIzLS/zssw/GEgUEpT6d7qKnaaP5JCWE91wRmxeUTz7uO3gzJrks6kP94Bcg145u9uIGWDVQXTxV36r+BpBtMMvekNTRQBfysv6kDY/cALEIu0LohdLF6v8OIwHIi4wMJJlHvEBdZnrVpyy8cWOe7MnJs6lzI0yoa6tRPxmlz2ujMhIn8nXq6Hvum6lHHb/ZX0flExrGnujum9Z97gHAZpmVl+NKGy8C23D/tYd74h+eswxqFvFM4jbOG+CSl8SN2srzmDc4s/3gwUCr5+QOq3Mb2eM/5yvGEs+leOFThjEhymJjxBgP9cgwMe5zqSPpkOm23teFyiMBOyjRaiuZFx7eVcoBeVtHS7C1K7ubvPPYhIWYCwYrW7pEZ6OmDLJDd8+k7KxwI8R/tGjoyrdc1ygHwhzYc5HQDZg5SedggxyzHjmgWR+yzfJIQQ4M7HTmjokVPTu1ZZWdz+UmkHtChxgMsO5cTL7pZdHVeW3hMGnSpEk3Ypoj36RJk3aODDilTZJpvHZOMI+1Zue0QR5ewxqY6U7AJXU2VBnYBQZgvJdBypvb18AVaGTzrdk8XoObAAPSbutsAANtBgASBMn6Y2gDVhmooy06+8n1yM+ss9uLI7uUz/H6tEUyn85GN3gyKr97LmW/Rl1bdWkSlO1kXtcL2L3tbff4KbCR+l9++Ym6n8eQ/TKi+jQggkduhRfwy45ou4zxbDDYeILb3jFHE7CFh+obVTYAWsrcmy8JLFUejnFbVKBv2uR1jRfJ+W+E0bhe5JF2fz1bvOOJjLcmnoWd3er6wE+FnOj0gTrlS6OchnZDDgnqkc6f22gb5uSys02yz+Q4kyBt4l4J/CZmk33QeXb9Pvmq/uIX8xUZR3GsXPchh+W03O0JTF7Jp8HbHAMNUuZGDOlJAw/2cnX9PO5yPT1tue5QJpax49J2XuFcq+cBY503fGX/ynqRh/Ey665xJ/jKuSodDqkb3s0OF9O1h+e7pI0X74bPqljEOc0BKgebBDsN+nUdIYEvC9GD6pqCm5y3B+kOgM1GSx5G+Y8mxhHImzxbJlYODyyeELuO38k9r/n5HCgYVFnkWJFHk/9osPEubLeoTL54JuWZz5EuO5N39hzXJ3lzuV5Q0OE4OmN+DPR6Fzfzy99ZlnnIXRbKmTRp0qQdpQnwTpo0aecIIA/QwjbAmk2TgIKNYx/pr/sAkvas9bHOtK2yXDsowFvlX8BNgbk+uuo4gh2lzbQNWEmbIHm1gU09MWaRByA0gFTdK8DKNk7JzLbDqK1Y/6cnpm2HNNC7enZpbM8UAZqnPWFb1s9us2nTDkyQpGuLUbt0ZSR1tlf+TtsIKvD1drfbA6muuuq4TtsbEd0GREkHLp/MNDBkj3nrj+0wNi+Qv23UPE5N/oQ2cNzaIvoFgGw+5++MAQbEDA65Lbsxgn5AfSotoR2sI5SbNrYdtlw+4SkqrcPKGACrNiNvx1mFF3gzDwb4vEniEBApn9Rj69SaHqb+rYGknY77fgJ5o3zNf+ds1rWjP7txwvdHGFO1Bd+r/fGu7jbwDOriEct4iLco47tfdmlnSLdN1tsgc8rWuI1lYZzFwKU3E9Alb1J6cyV1rRub7S2eMoSPTD/qf9luOc947rLzonEtTsl4w5G6uq/Qx7rY7h7rHC4m59ADdFQekW68rFhW3sChC05g10wcKLcJHZAD84g6EJk6pKJnx+0arotd1KXvOt1o8s10uaDp7qWSuuNvWxi64T1Zcs9xTrpFAZ+d0qRMR0qV/HaDnjtkpmESgFc/0w342TGsi6RLb2EID2HqzP1u8km5ezHsSazb/YKvkyUvBK5rur7wMWnSpBsUTYB30qRJO0cGQxLYGRmlaRvYsGZNj2dPOi3Yvth2osz2ldewpCugB4AXEHUEjLi+Jq+jO1tum91ke45jrQVoFFCB0waej3ZgIXQa1wAFbA/ZG9r8EZfSIB7gcWcbYJxzvD75T9uBulS7EtfYQATt5TjLnR2VNlXK3DyaOluta5O0dTr73fZY2oJOa5uz2u2ss5bl9NP3ZFYAE5/Ioj7xyqUtM06ly0/78IwzDvLodnRb8/KzSgNw69OdlFUek+gAfY92JA0gG7b3hz98PJ/ybi29LWCOY/AFqvKiNrwQHaagnqPfUV+epS6VrvLADrVM0uEqgWfXkzwNwGUsYkI4MG4kGGuwzva39QG9H+nY2hjR4SOdLuazHQ+WiZ89DNbSAYAdLtDR6F6nz6Pn+aRuGZ4DPbY8wThoM2I9k452GbUfaeCVDUX6guebrKP7Ud7zvOiwOK6rcRNvkJA3MvAYSlne2Ej5ocMlC58AWMPEqK/r6XmAsjx+uA0cXokymKPSw5/+7bGTkBsj/cgx+qgr4l0yGEuwL5XLmfoZ8nPjZqfsOnk2qGnUSROw886eJwwElcrXDY5ZZpbVTbTO27sG3eTc5c21Lt2ID+fTDVZe3CXPOQh0bZoAZ8e/9cZAacc79UNPupjLnQzSw8CdgAHHO0rIwx3RC0Xz4IkwvYTdnpYd8vNRlq5/dAvISZMmTdohmgDvpEmTdo7sjVMgEWCMDbhcqxtANEBrO6UDzxI46db9Xifn8wnW2esuwc/RC8f8ifcyZfLyqO65tMsSsPRJPMcDJpYonk6s5+seABnlGrTKcnLNbzsDWdgRxHYFBjfxXVPmbgtsBpfJNeJp8pl2lG0gH+V3OX5BEGVYjga3R/If2Ysj+911TDuuc9CptqnYu3hyFshqXfNxZOResq105fHrNnFbGJyqdLe85bJ89KPHgRXIuuxj5wD19Wngl/5b3wlPgnddbtg4r6ICfes6Lyq0PZi2IXXlnj2WzQt1ARSCD+uw29d2r9vLwJHHHgCn6mNsngDi+UVbSQBQBvPMg3XGY1zVASDbGFLqGHz70/l3OpppM1/jNGtjEPeNm3RpRr+Ng3RjbT6zDS8y+InsihiLwGQcaibDHHAaA35oP/LCy9pzRmJ2Cajaux1ZGUTucJwEY9GJlEeCx/5M/faGDnrr/KyPjA/u58kjcnCIBWObnX5TtjcZLVMTfHj8HrWfgfUExTPPA5VeWxwkeOeGycmHZwz2ZnDiLNfCyIZNwDeVv5tU3Ei5WEnFSKXtgEquu3MmH91v79D703mOfneeoNlw5sXApuNNZV29gMkBz0pNR0N2XZr8hJBdF8sq38ZpeTOBmQfz5wEqy/IAQOdImXYdwXkgx27RmQMucu76CvWk4ybPkyZNmrQjNAHeSZMm7STVWtCOAOlN5DW57RTupScPIKVBsDQwvd5Om4xP213QaG0PaFqgWQEKZaga0OTZDhQEjK1nPvShHiAarctt3NrjDDChALSPfOQ4yMEL4XixUN0vUK68JQu0c7zF5BX7g3Ss3Stvyy29pqsM2zijevBM5V3AY30W77aLqzy/3KqzXw1m2Y4DgMCTtLNXuJYhJ0a2sPMxsNG1d9qSfp6/apuKu1uerNUuBqcAKw3IGkgqspevgZUsm5ADyT9HmhPMr2veuCidBWxFpyrPyosYv66bywc8O/PM40DxyFZPmzCPwedz9oBdwwoMpiWwl3iLcQDrAN6CJXP6Q903MJg8dnW1HnONchwig80N5Gt+O93KNiDvjq/DUPLp68YXko+sb4c3dPhDl8e2/JMIrwAZ8HMbGYi17nhzoAiQEY/WIsdM5jn6he8TfqBr+9x4gqeMX5vPWh99H/02kGznVMo0HmTeTIlxsaFh/inPY062o+cIgO7coDXGlXid+7UxMMpIT2meZdzvXqy4LFXhgXeuO31OLJ3nphXAip5hAlyOBQQ5zQjk7Pghr25Hem3y7Rqr4y8732hQ6egw9e4og8s7jxwAXYZ3xHLxkQs48+OO5QWndSIHd+frdsrBLnUjFxQGWT0QpTyKzJPrSTmk88aCyZObec/JInUwdSEBXg9A5s3PnAwhl+sDXRv+J02atPM0Ad5JkybtJLFu9Hsg8p7X12nEYawCMjimosM12MAscj4YjI532K1rO2OaNAVyFWhV9wrsSoDX5PV2eS7Wkfwq+7LLjoNo3bo8PSJNeHwWgEmdC0ArXgCgMILtVUt8V9bieWqQ+nVrenuJAnx4XZ/2U7arv1uegJhpM2Xb83wnD4MPNvLxGiWfzh7ueOqosw0PA6p19lYBQLe5zd7L1fDIBUjC4xqPW/Nl2xV7lPoaEOE7IDpAOYCknZ4A+n10PUFRv9wo7UxepAafXSzPCsvAS9ESvLKta09i29Zp+9k715789kBMQMr4C3ylY1KC3pQNAfJWndk4MeiX9fIYl/VJfXcfIC3e0Yx5CQpaH5FL6h9pfK3DcVKvs+4uK/tPUmIJXV7O08+dDD7keYAND+sheRgERK7GXmhz+gtjqscHbyoCWoL75YYbYHF998v60vnT8xN82sPWoK9jy9NP3Q8Tg8z5y2kTIwLb4Xr3MsHkOwF0f+90w2GU3DbG2DxuGT9iTmfsTIzKc5RlZ2xsf/4i0y48wlqHGIFfVtIRyIdyjchCzEVQ7k4kkHeYDmi+Mv1o0hp1uq6MXASMeOoGDi/EMu+sI4rOc6RJpXNZ7vxOb7laUfyM22I0GPl3eupax5govIvitN3g17VDtiUTn/NK0Nfpu0Gn013LPevJohJPDYPknYwmTZo0aQdoAryTJk3aObLxV582gnN9vWZz+Di4j25nWQbzOgNwZKfZJjLf9bsAQzzrCJPwwQ/ueZ+acn1bzxe4WyBXef6mTeL1NfccQiGNVOqCl2vxRexWg812KOo8Qu3FSDlps6bR7BfMIf88JWkZp1ycJm2YtHeKMOi7fLM9E7jw/SxnZIskLx1v5mGks8krdar6nHfestz61gftOgObxLklz/RmBVykHxngMU5QYHHF9y0vYbyr/Zc4h8sC7DS4UsTL1ew9j2e3HeCyTrWx8b73nahvncNb5zhlUCjHBn/v+m7XzgayDPoi17Tp8RClDUueAN+pJ9mH+HR/q+8GJfHadfzSIsDLBMbJs/ue9R1dN3XOUyOdznw7LMr3E4/IvtPRtrHE13L+IJ534hQlS0IDFdF2AJbpXWvwP7E/2snX6S/GjxgrDYIiK0DaTrf92xtr6I71zps2HjsNqlqnvTHKfMrmRfLo9PBFOT6F45dA0iYGY81zOhQmzpZYoJ036SfeiPEmkcecTl+OLkeWIyOwddSZEgx2JbLDO58TCl/plM6vUzpPWl2+ObH6XoKJa2BzV3Yno9Fg50GURUonj6Lc2V0bcFAuN3IqixdQ7hwGINOdvfOQ7SagnCxTcV02g7uB1yJ+W250JC/WusHcsvU1dn08mTF5d3HAMv9uUM4dMcs5d0Dp8K7b2sA+adKkSTdSmgDvpEmTdo4Ag/IUpAEpr5Fth9gI57cN1MxzzQbqgJgEgTo7y7YCBnH9lXci3lUjSkcHA3ZpT/EdT7GikhvPUwe8DwF/iK+bnn7I0X+U2QEylmO3tocv5ABAYR6hri2cZ6ZxmTbo7VFqmboufg5enE/KOe3S5Cd5dz4psw6UybJKZgW2nn/+HshkWdk+K8/dEQBi3QDcL6/YerY2Dtweda1esIYXqPsKwJXjYKJTtkvz6HQCPemgZBvVXsHUkbjBVUfL2XFSIdLyPKB2voCuyKBod9LZ9Snwz1iKPXnre8kRYKxCZzgPezkSL5dy0mNwpB8JrNl7NMc799NtY4av+16H++TvHC+4t/Ys6RKXSrxlxLPzM+6S1GEdzj95BVAlX+5V/tXvfGoBmaN7nl86oN/AoXUbhza/dIznU1dTTom/UVaCvt70s+56k9P8kU+BoTkmuw+nfsInnuP1m/pZLpZ/gsj2irZHPzgWn9UXDZQbL3P+tZlC/wO7or8B9mb4jKxfzjv7De+GygmDydNxfDzIQmugaaf4yRiKam/WDkzrJgOXk0Aj4GH3nOuZOwPmM3+7Q6XMzHcqSbcosTImJT8of+cN0E3CRbmLTtoEddf47naC3aF9zbuc8Mw1d45cfCSQ6gWwP+2Z6wnCvDj/0a57lu/2NSDuAdF9wMcFPCClnp0MdYu864quL3xMmjTpBkUT4J00adLOUa6x8eZJr8tunWjvHBwT/NIyl7FtbZvpOvuD3wliOL4fv8s7EsAu60u6+l5AXHn6FiBc4BXP2MbwGhsj1uU7Dd/xoLSHIZ6FHA3GxutkMlrnG6wrSuACT174w3CvP4dGyHZ1m2a72JZCN/wCnc7ruUA46pWfacP5cwSGdaDWCJTqALZR3iWrAg/rs3SB0AcGmUpuBjc6fitdefgiYz+f4Oullx70OE/dYWPALwws3mjbxCzc38xblXXFFQdDjpA242OzEWEZEZsasKfuAcTmi86Qfbehkh6X1mX4tw7Zc9ObN8ZvLK+0zckXWZGP7WH03s5q7keQHd+o49oYaeocrTqdPQHkakDh0XOZB+V2AKY/TVk2epFYWVdudz/xJQBcPw/4B17htqNsxkrjdIyjWZ7b2J65IzwMOWVeVT7jM5T6RXrGCpdZZGdDbzjkc+YnsQvGcsvIPDpUhb2QDV7beY96mLeuD3Kt+jXjAn3deGOGoqh7bGpRduo+be41wr5cN168y3IkH0qhw6CPxKAcBussMCslQh8Bcdzzc/5Mb83Muysz62FB5m5oPjeiLBMB54LBCxfKs+A73l3n5IlGz0kHZWewr05fRMwoLwDNB0rJxJF17zx31xYSOTBY8dx+1INrOXFaDuyKMhlZJjnQjBasrvOonXORMhrc3Z7ky05uBux2WaMYL5MmTZp0I6Y58k2aNGnnKMEF1oH2kkrwyOAIxLrdxmwHShzWVslnkkfbRqTHGMaLF6Bzrd61bq8YuVdeuXedUA2AfQlO+fi3waG0p4rwiHIIhTKcAZ8BSuuPWK82kBNYMCAMP8geAxxQJL08/VI288wLowg/sBbSjXrV9aoDR67TFofXytOydpjCtINGOtLZPLY1LYfMy7JKMlhfsikgFJ12LNAC/e0RWrpi56usV9qeBnhLboTtqGslP3vporsGXbDnaMvO5s7vrrvj37p9Ewi3vZ1YQToP8Rzeyq5n4iiW96gtKR+MwJ/pLeiXnuU4AwHQpyd0N1bQ5lzvwF33aeroOLzJQ+ImBqVTZ3NcS9ms5cu9DOdh+9/pRmNyXjNwl3xZJ0b5FNkRcNTmBvZdD9rMemf+05HOeBPYnsuwPlsnyJN88KpNvo0xseFRG1iMs4zd1n8DsBme1fprYNgbQmBlrkNRbi7k+ECdHBLBXvt+QSCYmucn8mCMYvxwmAj3d/LySXTqS928EVyfyOvgfFk/AplPpUJJHPTYQs6OZpAwBZSgWg6yVm6/Pa6jUcdM8iC4ln60m5jX/CzXs8NQlhcETpcTabdDav7z+SIrm/NCSUYLFvL0cwbr3U5+1mm8QPNOUdc22QHXBltPeB5UEpC17iVQnB7FXhgkb/k7PSRMOUjRAXMyc5lri6FJkyZNuhHTBHgnTZq0k3TQ0Dpu8I3CG+SaO9fwXruvebmObAmvSe184fK9VuW+3yxexiogaj6fZRUQWV6VxM0d8Z7ASWeP2BPKDirIlPsd8EF+fgdH2nd2dLFNkoCwwbj6rHoB4kIGV0ZgEn+2nWwLu/4A1ukw1NmbLqdrk8PeH11LuybtY+trgbikK50hHAIvYirgxx6uI1A3+XA9scHwBvaxbssVeSNHn7jsnKHW6k8bkWfa2aSz16T7tO1RyjSwB2BmL0iDoq575zjmDZrk2Twk+JwnBFLX+CtZF4jetQvytDdk9nHb4lkW5dEf0yMzHcZMzjv7RMpxjaw31u8RNtL1v8S5clxJvrMOmX8R7er+knOEn/FGGmPICKMr8ikG2otrbj9OTxQRdxZ+Mk6ty0ceHueM1wAS11iROFUC42y68cI318VjY4Ld3Xic3uuQcR5k4Q0k6sgndUF34dHhhzJEq8s2b9lGOXZbjq6bAeI9193y3lWjOgNnmI2RYKg7QAKXzgdBjTpjDkrZiRKUc+VysHGeHYDs/EeTXzZ6djooBwPXKxdmyb93HVxODrZ230555WQD0cncKXMnJncRc1Dq2ijLzjQpCyslfFrfOuU2sD1q92zvogw14nhKObG4DdyOnlC6idvtZtn5mW7BdFjyDtR1TdcXPiZNmnSDognwTpo0aeco1/Z5vYj1LWthr3MNNqUdkx62mW/nWWfQov7wHCpKMC3BK9sBZdxW2IXLLlsHeIvqfsUfBdjr1vH1R5gDgLb65Ls9mB3Hk2scuQdUAoAq0NUvw/JL7ixfyGUZvK7fALh48QKW4JkFH4e1KwG7875BaHuZ4Y1sINNpujJGINfJ2CTZXh3PWVc7gaErfklaXa96lGd3eStzKth2lEPudfxyHbuu8j/zzD1gqEBlgPcqp65lu1geCTq6vukF6DwSWLNd7jzye/0ZuE35JphnkIwyMnZqyiVtWoePsOdzltfZ9KZKU30h9Sp5IYRKtb1t45QJvzuMgBAatKN5s+Of8+swKdcxv4/wGqdLvjsZdWWt5dVdOyzO1BEhfKyHyKN+Z5gFl+F5JgFVj2nGbTrZG7+CZ37jId7JxHn5hAR6mpsc3pDBO5Z8U09yTswQQDwH6Grv4MS7LD/jXxm6ZzQGWHaew7rQKNQ1T/y4HyV+ZmdHY6w3OU27kvYS7QrN3RTALMjM+UVZXefOTpmKYT4yf9KOAEbTtkltNMBmh+Y6rtj2hs1BY+RBihLlzll2PIhJJMNeWEE90VCW+WVxw2IExcjO3YHz/u1BzDvhboNu59P5cM2xixIYd2dyvpYPZRvA9cBDGsu566xOP9r5z8mJds/Jkzyy/JwIJ02aNGlHaAK8kyZN2kny2pk1rI92e82ZYJ0Bj7R7cu3dlYfR19kVlN2dLOvW64CneO+eddYecPvhD/cgowkAtMh2EfmzRq7QDelZaB4Ap+r5AvEMdmKgAyT7dCFlAg44X9sHrr/lZJsYRxkb52kDu94daNPZm7aFkZWvUT97nprHjhLkSjsk7eI1G7lLM9JP5MUL0QrYAVwBsKhj2HzW/SLSVZp6jjAULst1ss1aekA+qd+JTySQmTJLzMPXbXfa8xr7HHDFbedwEDzvEB1pMydIRFmO42sd7vQJjGGELSRe0oFt1m/Xu0B59JRNh7TFAfZTT1KWSdZ12o66GPwzWTfSYSzrnPXP5zOtQTnLI9OYl278PFn73+k7rCIB1PSwZiysZwBW7UmeYGhiI2yyWGerTR17uT4JCdCd9Oiwo3TutIw9rtoDtr4TdpR6uf97TmEzxHKyTkAZdcB9xZsn/PaJDWSSebg8x9MmXzaykBH6be9jY4epR75OWR7Pso7HUvWVNHDYgX4IidgadAKDiAlu8d3goMkDTs/swYYzoJiKZKFkRzN47Q6cvEBWchrbE753PLxLTDp3Ass15b1GqaS5SPJCpIg6sihiYs03cmZMj67+rmves6yzU3d1Y6fdSpreBhkYnOcMqnpXMxep5I180zN3bZHT8U9e/u5+kB0sFwA5OE+aNGnSjtAEeCdNmrST5DUi60FC3Rl4HK0RR8CDjT3W9dwnH9sZzu+wIESufwHrClw9++zjXnoVY3WbJ2/noGFeOucMf3p9jVdmUfdyM9t3LpMXa2HLAATDn+vagQL1PUNrIMcM/dDZtinXEYjT2c1+1p+drJK/zgbv9K0D3dZ0smuvIoPoeDaX3JE/OEHlUe0H2Ou+4DihHT/V/gat8LyzN19R3a8ybFfai47fGWKSfuq+ZDlXeeedt/e7gOjqG+Rb4I7DP/AM5fASOG9ElIyMJVB/rtefPbfJKx2h4NVhS7JvpgdmxuRNIBCZ0rbEMq4Nnqp7Ab72jrRt3GEv6fxmHXUcZWRZ8mJ8S13LfoQtPtq8spw87oz4Me8Gd7N8j6kJwHV91umcNvlMPMxYBnGKiwBx2YRLTCfl7nExx0vLrwM5yYM+bVzGXrfMSzxvHcp2ZJ4yvmYshbzAsqhDyjdxu9RD8kOnXR/LK68l78YOvfnm9qlrbE4Y2yqqZ7wxkvOW9Ypn0vuYNh7p5P74cCzTI52i+vh+5xZfQvfulSvKIObG6xQ1J5zRRNUthhKEzgWMK535dUJJZUjX9tyx5X4XfJrGIE/v7jFJkFc3qLgxUaLsZCw66Fh8p71cP653YRisWJaPPbDZfRmRlS4XTAmycs3xWrhfhN5AuWvdtXlHuZjNQTV37nPAHi3MuomlW5Q6EPnJUoLu1yVdX/iYNGnSDYomwDtp0qSdI68H01Avu4k4g6zVbShDacMYBPS6lrV/gh/2YjwMeDfiH14oo4CXAnnrxVj1x7HtzlmmqwegVfJalDIwYFDr6Sq7XtjG8W2IWIcABAZ0i+o7nlWOBWtvsZSfje7Oa7Krp9fKlpmvWR+8zu/ekG57D5sunVtS11yHtGPWbKXufpc+bW0IAJMXdxFqY/+48DFgpe7VX20W1N9HPrKnR64bskoeeAkXns54FnIMHIDVL0CqtH4T/emn7z3rfkQ71LXS5wRPU9YAXJUvmx20J4AaAJftb8fqpN2RF/LkhYTIju/wS3xeg7NpRyeu4t8jx71OTxiXDFRV/lX/AueLB7x6/Z4mQEcwDmMZ+W6lul4yuOqqvd+lEyUD6sSxfIPPprTJzWtiQdZfZJU6lsBfYgjGTPxp8tiRvHbpt6VJ/MMbAegq4K5PO8Az/QZcItue78jD4QF4saZDX7ofGmw0b8THpTzHrcVjFz6MbZEfz+D9Sp8r8qamZYCsXEfC6aB3xiLTM9YysYyohzdroYxzTBu4n9FfkYkdELfpUTcWdbhp19cPKE9WMh9gIYHyGlVPENCArDsR1z14u5JW6PSW5FnvwqEYHmA9sXWK7DrzjK/TCZwueXae1HstzgcEqElju27dhObB2rvLtEF9Vj7ezeGejzQgM/Pn+9nWudNpRbLC5YKGawkG23OhKI8IJJ8dgOu2HS24LM/OW7ujbYui/O08kXPdz2M0n4xYvJMmTZp0A6UJ8E6aNGnnKL3IWC8CguGBVWkw/rz2ToCgM+Byjet1vWPYZj7Ow+T1tAEtO3ngYVd1qGPYBe7UtVzvd2vy7h72ROWHrQNAAQ8F2hUgDoBXZQKs2cGINIB7BtvwPq7yDEAabC5gz0fE4c/rett8ACz2VLO91K370yZxDMe0YzkCD4ABeEo8YrdZZ0utyT3Jz26zfTqQsAjdRqYAuXYSSyCnPit+bsmggN5KS/+wDA3uWTeqzUonqm1LH3nOOsvJYnQkHbXMC3qxdhzfeIblPwIA0YmMLZx/ne4lppLhGrrPkSNWBwitAZDmNa/THiV/gDeDibbfbScbm7BHcvGMN7BfYmXAkA0Z9Mj1MiZg2ft79kunSYCwk8dhgFnzs5Zm7V72D4/H5J8Av9vGYwM6g2wAgbNMO2hyzWNPetn6moFh436Zn3EY96EEq11H6s84aa9ZeyYn7uMxGoA6w6Mm7tfpBfxxjdMjKTvjnNbDLCPB6A6st6z8bDe+p2xbvCkn//S4dTrQd7xFGUyoOM8a1bYA+e3JPEG9FGzyl5Nnp0yHAf78LPcQshvB98x7dtb0yqVzeResrnlCd9kJbELeHXGoBHZQOKaSZcKvPY7dURO8hbI9cuDMwRvZpJs5i1cvqhggDIB3HZ5rCfJ3k2rXVm7XblE7Wty6jp13NWV58rPMMs+2w02aNGnSjZ8mwDtp0qSdo1wXey3K27/9TpN8r8VhwLrOMYZ7NtITyBqtVXMNnOmIQWvjFVvG+ecaO+uUtg3gKy8ww86hfmVb5h82DvwA3lU+9nREFpV3AUdFPiJvO7WOnXMsHs80g+3YhQCZgNLlfWqvSsBNyyrbEa8yjuwX8Qz2mV+uRvrLLz/uvWoaeYV19l3qSJdu9MxaGuSM7OwMhtywB7lvO7HCHtS18gytvEo2bg/6C+l5vvItcNe2mWUIwFOE3Yt95xf3oXMODWhZ2iYlRIE3GVIWbuuiBHjdDvb+s7wok/qmd27mYzDQY4gd47i3RiOgjucACrHtE7x3mckH2IT5rWfp16lf4E706ZI5Y0Xa+NuA1m4czfbqcJjuOWM3a2VABu86eSfvUHokl5w6xzr6irEKA7QGdz0md+3bAYzuw+A5pLWTYxHfeca8Mt8V+SVqzo/+Txs4X/eTxNt4zngS6TxeWHfcPr5mfCzlTbkZKiW9nD23d9786Q3s8bvDPZO3bMukPb1pJl83ghObSe+kpeeq0XUvMEibzHSxeVGcIk/k5sVgocl16hZMfs4d2rx598yovzsBefKcd9+4Xh0L/h06IfNwg1IWMWsNuDPQ8fI0dlosAzyEXX9480SZE7YB5G5xkCCpO5/zIS1lEiSdNvUupCd9nrEHLJTHnWgj603H92hw7iYA59HplO9Rd+u3gfXsvCdD3s25run6wsekSZNuUDQB3kmTJu0ceQ2ca3CMO9J1Hnms+bF5DDTaNunK4Rl7T66dKuzWuwkGmT/XAYByLXxbB1ZQXnplkk/le8YZe0e17cGLvfP+9x8/Gm+70EAAeQIyAAgbnDBYW98LXAS4SzlYfsVH8QbwRvsgn3zZG+R2xRPNIEvVM52n3A7YfZ3t5jI6HUw+OtskMYDODuoAh/peMjNInpgC3plcJ8wGbVggLW1dn7xsrdKVrOu5AtOr7m73BC9pA79gqsjxZK2Pda02BgCX6ztAu/uU60r8YMDmlJcduizD7Ce0u52a2DjpAJzOdh2BO/BEemMzxgyyPTu7n+c9nsBnyaIDaKmbx7+urfyeINv8xkEggHr6tvGaTscTTxp9T0Aw5XttaYQzJHia/HZ90LgalHiYn0WmeD1DyMzzi3myvpkfY3F5qoH2oH2sy86bNmYcIC35+5PTDJ7PqKeB4ZSt5xTqaCdHy9162cmhaws7SBYRHsabMdZT970Eit3v7ZE9GmN5puvz6Si591eJmh0f74IxGNP5GMC7QbUDdA16JhDnWBoogJWVST+P3LhSJu/IebBNSg9iNxjPsQhID1Hzax68g+iBnIEQ3ruJ243ILol3urjn3/bcPcxizXLLsrv27CY333MHgW90JSnd41OBPZkmf8iU38gxJyLz5Ta5tjTqaCN5s/DjWvaDSZMmTdohmgDvpEmTdo4SiOlO19kAZc3arTPTscD3R3ZJxmk1X93vbi3tcl0Pe97Wseoy1rsXnkH2zMr62V7kRGLxjJeaPWXtzUrMTl4+BXgInwW+kRfAaaUFNMSWxXsYmcFDB9DaBjHY4PU+tt8I8KYexKe1nY2nKV6KCaZV/apetq9c9gg0StmPdCCvJdg1SscnIS86/vjDNocvwCKO+wOOFNhb7VLxcgGCaRMD4wBXDhVAuWnT0n6ERiSERN0vz+iUW9qkBm4BNJP8THoKsjlhRyfyoo3hwbpWxAaEbenOw5hPxpbUH8oAUELX7U3d2dZ2YLNnNvUEeK/xIMcJ+pGBRb9MLe/5ZLIdBykPO5t+1oG81rPEnNxPEtiFOhDdOj26n7iFy8h8nGYEALvfZN5Owzjo8njGoCbf7W1tGeU1l1ufebLBXtreSKMM+mH1FfcN6wXtZGzPmx7ZPoyhdgJ0Hzcv4DGeZxLvc3r3IcYXeDMWZc9kj7/wRl6MNaONj2x7v5gtcUW3ebe5kbq1/1l8L0eWI90Cw6AcE1LuPCJoN0guDiCE0S1o3IAGyEpIpcA1QDnWixUvXcS9sEkFMC8eBHg2d9QNYnoX17KBOGZDQ3sQN+hMmuQvF4OeJAxWe7J0vdxx3Oi5O+G24Hm7ujtNpzSuMwqfHcHtaaWmHAYDy9b6kjtVBs5zwO+Af7eN2zAXPd3g2uklfOSi2Iv0NblNmjRp0g7RBHgnTZq0k+R1soET1sJ4/vhYZ2cX+f5ofen15zbvTqf1Griz/fwb8gufCDOwjRIgTvsEmSCDsvkKzMRYBhzzsVfsQttCOAwB5hqEqGcKiKrr2IqWLR6+6Rlt/imbtGlXpQNLRwnIGYzKEAcJytohKmWZ7eTnOhskdWSN5w5o6fI5GSqeCsQl/AJAI0Bk5Us83gKISh+qXYn9zDF9jnIbpKy/An0NKlW7w2vdq+8AOJQJvkE+hATxC/kqXXkUFw/GBCwn5OLryDjxD2x8vP5woDN+kjGJAZ8M7FNvAFLALfJGXgaY6Q/msTt56rirPrltz2hAW2JdWwbWP7zm8ZLH09p2P0C9N4eKT04CG0Tz2Jp4SdajA1sTnM0+0wFn3XiW9dz2e9v1HCO7Z6xH3kzg05uItD/3k+cRDgKgzzhvUNdt5j7EvZyz4JcxziAsuGJR5mFske+Jv3DPGyFsYhT5JD3634G9LsPYVm7YWO9KzvQD5i/X0XOzy0qsLef/xNz4PQozkfpz7OllOSr3ewNmFmIi3H4rnwtP4NcM5qReRD7pXsz9GmA9KSdAl4Lwy7wMmHrR4kncAyeN5cnfsW+sbG4QT/g54Ft2GXcokfxusOlCFRQxCFp2lkWnKFw3/5SbHWlE3YCU+bi9vSuT8nasLS/QcqDwxJ0D92iBaj66Oo30aJSf6wQluOtJOeV+MpRtel3SBKgnTZp0LWgCvJMmTdpJyjVld3LP3rxc8/O5BvXzmS6Nw8NSroPTScflwDMxZ9NLrgNVijrwgTy551BtVUbZfHjY2ts164pN4N94yPqFPPXHS8pcT0CGBHgT8DHPgLz2Eh3JPoE+P9cBW2k7QwYnRgBWAkKdLeN2T3uly8/f834CWAbduLYGYPGM5ZGxK7GxShcKWC05XXHFQScq+hA4QWEG5JlhEesaulWgVIb+c7skyNSFk/S9Tj6uG3bdSM62+6zrjueMzGzjwgdAWdZnZKtaj7r2TeCQcoylUG59Aizbkzp11Z/k5f7o5/heMixQHkDfvBiz8TPpjJX1WkvTYTHZV/OenzXluNfdXyurw7mcNp3tiuy5Cug5AmY7Xqz/PAs2Q7/xKQPa3LgauFVthJCW68bnjBP5Wfq3vbVdR7dhXaMvo+fWdzZTvZnm/NzP4RtAvK7b8z7xSju32sHT8k25Wu/djvZKN/5q/NFevpSdALXleXQ5upzixUcqq4XiHRwyQZBVMRQrvUhzEPJf7ip0is8On9/YaO9Pvufg1g0sXC++WTg4r25X1rKxohq0ZgeOIzZcywEU5fNkbpDTndnAsQdC0jA5doOzOzR1McBs+Xhy7mRnmaBUqagmT9xWboPf2QkBww8op3Qp6+Q2yvZN/eW+J+3U824gzQVS6oTl6HbxJsCkSZMm7SBNgHfSpEk7R17zYz/l0XWMZscG9bo0nRK6tWgHwHVr2xF/eT/LyGfypVHYewajnDZtr45nrrNmxsjGozO9GYuwOzGE06sPuyE9Hzvwq67h7QvA23msZh2wzeAROy6BKhPea6Q3EOAQFPlOF+RN+SO7p/ueYFn32fHa5eNPAwv5vHGD3ATo8sajk7bvQE7yKp07++xlueSS4zY2oJO9yw3S2GZMG9sefMkbIQyK1t41k/KwzLv+5brl9XwGvTTWgMdkvpunfteGCB7KCR7xvRtvkH1iCQbJALtwenNb1b0qG696xrWULf3GIR07fCl1q4BCQDqD9N4YMt7U6XjXxkkd6GlZbcMGuu8jHg4zNufYl5T4FGOhnQiti9lvuT4Cnj0uGyzmhZaUnU6D6WXteqWjqPEee3V7IwOeiClcegLY7znUIC2AadcG4E1897upjGv6z9735Mm7sFKX7blrzMntQZ4J/Bpfs+OlY3O7Ppnn8TZsdmgtcAvXBQHO+Y11mTnPIJAcWHMnC0WwYNzg7CDYo9WDtxvIefLM8UofFDTfjZxbsc0HOwTeUS5isQGPFTsoPZvd0A7fkGQZW04sWCynBMwNNCZQnTLICYB6dgrkAcCfOQFnZ0SfUHg/n2WlzLvdYHesPEriZ1PZUw87uZuPrmNavjlgdGDuWjmTJk2adCOnCfBOmjRpZ8lAVec0gb3AvQ78MaXBOQKInCf3u3z87DZAxLYCHrJl53BsmvU1dbPRPyrTpxENtmEL5FFUg8wAXNht9Zvj+gaMbEul0UwagLzueLzX/PAOSGUQsAPHOpDP/HAPUAawklANKT+AD8CLrn06negAu5Fe5G8DzZYJoDRtnS9fMmCdbWh73XaywRPbksRmBcwrIj5vAX3cIzwAupVYAu1vb88RdSBYJ+ME/pyWe7yDZ9RnbV/yG0wC/UzHLnCEdBCre2xYQABpaXunnrtuafsa96E9unrwgryi8qQ2TkA69Dhj/xrPsB4YrHTMYMoEdHYZiRNlW/qzu5ftm46ImYf5yTQuf03vurJH43GR64wcjNcZxOSay+B5xs2O19ygyVPXjH2M1Txf44HHKcZ45j3y5T6bBYyF1gdv/MGLHUu72LX0C4BgvjMG5NieG5auY+J4dgrlvkPXwlfOQ9SPDQ7LOEOkUn/GPOQ3mmOsqwfum2kE1SkknRtPVQdq7gaMBN8sWL57YCd9unCjHF1IA+dFugwC7kq7M5g/hO04JTnAeAfMjemd5LpHfKDRBJs7KB0oCn8e1FhU0JGtIO50kOuanrkj+fhZ89NdTy9WyrdeGKx26Izc5c5OlIsI6m2Zk8717EBeU9Z3VP98Hh7XQPIsj3bZtpDoqNtlu67o+sLHpEmTblA0Ad5JkybtLNmG6NbS9ZsXCvl6kdfKucYcGXMdIDDyrh2tS51nrnHNGwDduefure0/8pGDthcA6Bq4mJ6VrN/rD69MXjBlT8ECjgrgw9Gm7vmFafW9PAkz/iHggV9OTXkZfzfbw/LmKG59T/DNcixyeQYdfBSYWK/1V/lx3Ji0Vb+6V9eLiEHsGMLpjGSesx5duu6ZBEL8bN3z0WwD3OiHXyxmO8LgBUAf9hsgCOSQFvaQq7Z2uQUq0v7IgnwTJ3CcWNfNAFjJFyDSepL6mzTqL+aDth/ZqsYEwGVseyaO4j6boF6CkTkepBew7VzjB4nzoLtO53bkFDMvo0tQyoBkd0rXoF72Pb+I0bw4lEWCmS77MNfMp2kN3F17dq3cHMu7PtqV5f6Q4UqQSX2Cn4DfgU0U2SvU9WJsMzZFfzXWMjphQRl5Wp106QDpjULX1bgSfYdPdN3AbRH64/LAz4jrbSwRWXicYhzKWO2k96ZF4nWAzm5TbyzZkRX5I5NsC8b/xCGNXRmEP6BL9XdKdHIPxClsdk5zV5QK2OOSZ+xpivA9ODp9eq92FXfajE3jzyQr4dok7gnY9c8wFvDtYwMGH60QVjg3vMMieECwQvta5VeTkxcNePZCHoxzUDb/HqhTRvDu9k15WGf8rHfjqIfb3J3RCxO+e9D2QsMyGLVht8jKdj8M8Jv3kKvTdnm4Ha8tuDtp0qRJNwKaAO+kSZN2jhLQ7TbJWRsD8OY6OoG2olwrd2vVBALSMPbzHU/mIb+zpq0j4PBex+XLBnrPe5blox897lGZ4FXaafwuG65eoOV1NbbFZZcty1VX7eUP4FsONNg8VT4gL/UiXidgEx5QKS97h3XgaIIvpkpfZRi0GNlRlnvavoBiVf/Kr+qLd3QXdxXPSYefyPKSzzW7uHsm8/N321PYnADcjhFsj2Q7ZxkYMXEauNJXGxd4xwZCyQZP97TB6nelr+dKfvXSMHQHT7nOFqZe6Thk5zZ7pXc2qWVlLMO6Zg88841edEBRgoIli/PPP5h3XceD3fFNuW9Pb+oCQJ4ycFnpOJVgK+MIhOcnL7KiTIBEYiKDWXQ61R2Fz1jUJYP6zqZGd9oanUtwes1WT3zF19JhzmkoM2U4Sutr3XhyGHDXcwLjBi/PS55cd9ocANXgrsNbWP8Y4wFCS/7gXDnOpdNltzmZfcQYmQFK7jkuNx64Hlty09O6lM6O4EzefMg+YO9d4z2eI3kBZMoJfXVezqNrc9rAJ/kZJz3GGWzuMMF0BEzn3L0qBjCV7u9FRrDpRAyObuzsMChAN7kkEGymEUCnUB4gjeD7WYSTLux2p7bw3BBWAA8mVkSUyY3MYJw7ld5x6AZxywPFxZPYsZ26wcX3cvHmBYzl15E7Yg70bisPoOmx64GVXVuD4rmgzDLdTpk+J9jsoB6QrbspB5fTtbvrwGfHezfJw2e2xaQhnX766ctXfdVXLfe4xz2Wz/3cz10uuOCC5fzzz19ufvObL1dcccXytre9bXn1q1+9/MzP/MxyWS1+D0GV1yMe8Yjl3ve+9ya/U045ZbnkkkuWP/uzP1te97rXLc997nOXD3/4w8PnTz311OVbvuVblm/4hm9Y7nKXuyy3vOUtl/e9733La1/72uW//tf/uuFp0qRJ22kCvJMmTdpZMgjAWtOgiQ1O0uVfXu/Wp6YRgNAZ1enNZ+MSQ7o7Qs+aH5CvDHBehs26u1szmy8b/AB4BofqewE6eOLWNbw2616BeQVCEBogjfEOOMMO62wmO5ykbZG/E7gdAUnUr7N1+G7PYWSXNgegNSCqw/XBV1LaVU43Sj8C/zoCaO7Spveuy+/KsCczcVV9QtXP8JzbkRAI5UWOd2flU5sBpZPGIbpYlo6jbCyBNKV3tuUIE2Agtz4dKxc5GJCy7hRwnUAVIFzn/ee6k3e2A3Y4dm/2N+sLOta1hcvqxpccL5I37tFOpbt4V3e2c9r99MPq/7wwr+RVBDaSQBu64FPcOeZYD30v0+S4YTKW5Hp2mM4o/66s1O+R7I1b+QWCCThbJxyvOUMJmKcuHjVjb85lTm++0tMcIJp5w3qZGzaOiZtgKekqry48CON3burY09jf0TOup8zt1csf9XRolNE4af1AP6mfZZahRMxD/WYczbEG8tzifrEnr/oSqHXnIZkK4Qp4UuK6B+XRQOIGWhNGN4ki3Fx4OM/soF6QOG4Iu6KUy46YlYCdDgRuvrsJzML3i9zcKRmMfRTH192QfLc7N+Vlw3eLiNGiz8+7HdymlJVe3nxSR2TpHXN4985CegJbbm47ex54l69bPHa6lfx7Md0trkeL5m39wM/noIm+nCzlzsx1Sf+IfHze533e8oIXvKC9d6tb3Wrz96Vf+qXLd33Xdy0PfehDl1/7tV8b5nXTm950ufjii5dHPvKRG1DXVCDtp33apy33u9/9lne/+93Ly1/+8jaPc889dwMoF1+merb+Hv7why/f+q3fugGcJ02atE4T4J00adLOkdejXn8bePE6EW+etbygBBz9OQL8On7Iy3aA7SV+O0ZiETaP65TGftqDHWDCGr/AHzuQ4MWJfYGtBhiKrWZP13Tkcd1YSwMyYH+kfdCBaPBoAJr7nR3bybu75vayrZS2rJ913TvwZ8THGs/dd6dNmyjTJZ9Fa+EZXF88sA3o1z3a0oBU5/mbGyOVFzw6bKIdeawPlEUbd0fNkYFBMadz/Q0m+VpH2UdMHZ/on/tS2q1dHl2b8t3Xs51zUyf7brd509XFda0NmerXgFXmz+C79fUWt9j7Xl78xFi20xxYAJ6syD+P7fO5Rh3462uWa4KOPond5WkZdf0zMZsE/hMb6cY6t0sCtomvdSAu18nffZd5i/AGJWs8a8nXZSeemN9p824eIy8wMOYAA6zWF2TjuQe+LC/zYbwPjCn1kXveQKnvDg1SZDyP8v0iQvcL6kR5xiCpv/FEn9LPOZo01Mvg+fH7pSjH9CUH9RzsUrkMBuYgmMqZym1wNvNNJXVDUG7G6fXiyR3HuwX5tkYfVzDPlIXgAehSCRzHKfnkt49hFOWREIO/lmkH7rKwghcra7dw7MjyTfLuSZfGCpYxsU5UrONlJRDvYwGWdzdxuY26QS954x6UO/K5+MsB1168nf67vJRryrg+vRM9qaW//Mu/XH7jN35j+eM//uPlPe95z/L+979/A9De/va3Xx74wAcuF1100car9xWveMUGeH3LW95yQh43uclNlpe+9KUbb+Ci8tT9+Z//+Y3X7tVXX73c7na3Wy688MJNfiOqMisPwN2XvOQlyzOf+cyN5/Dnf/7nL9///d+/3PrWt15++qd/ennve9+7vOY1r/lHlMqkSTd8mgDvpEmTdpJybZnrXNbPtUbkzfNQtz7N9WgCSWvrftLk9wSEbQQnH4Am9bsM6IwFaON8ZD+Q3kfy01uKUAwYymvAJGRZ8s4O2yp1DZ59zNvgtW0My7OeJZ5otk9nT2U7jnjOenU2Tdocea2j7rkuTd5Lfrq8oAQynZ425M/Ag0MfFgHOFWEnF+APIF+f9bv6h18wDliPTV/fKw15FhE2gN9pH27TKwM29tb1symbvNbpzJoujNrFDm/Oz8C3j7bbzu1AtG6sSeyke89NUXo7JrhnnMDjC+EkyCPl7s2XIrAX2v6MM/b0qfIosLjyLwDY3o3Y3JlXR6PxtQNAE9fwM95AGJXTffdvy63DKryJ5jbq+jl9zZ/m2/k6T3goudGXkGX9ruuETyFEj3nhpWIGYK1HPvHuOQUyON9hkR6jvQHhdiaMhPEz5pGUAXl4nslT9na8JF82kqiTHTfzOb/0rnPIdN0MpJM/wHY6IuZY0o1p+7q//7kSpxVBuVOYQRorJ8f6NLDqQSLJHcVK6c8iJgmDtymY5NdlIDh3Ah93sJctis2z7DRaDt0k7sHPaVAIgD8WIvbydEd1Q+euRZF3w7Yt8txpPEBbYazgHWDqtOSTSkxZBqEdXNrtQ54eoL3wSn305JILjGz/bCPXNyckt099d0xjy6Brm9T3nCiuL56410MqYPeOd7zj8P6LX/zi5f73v//yspe9bLnZzW62POlJT1q+9mu/9oR0Bb4WuHvNNdcsj33sYzcgrOlNb3rT8qpXvWr5vu/7vuW0gadMeed+0Rd90eb7T/7kT248daE3vOENy6/8yq9sQOgzzzxzE6rhrne96/JxH0eZNGnSAZoj36RJk3aSbASyfkxPRK8nWXN2gIANQztMJKXR7zL83XZdggTmL4FeG+vk4TByvHysyw+j1/EfCzC45S33gJo6Ts8fQAJH7cs+4hPbCS9RwkOUd1/lw1/lU9fqr777GuCjj3sniIfHGvFgDYThbIPnoONbdnbYCFTs5JR2+MiIP4ytt9buI75G9zvdyt/IrNqP2Lh2cnH84MyPWMwVPu1DH1qWyy/fC7lQ1+qvbHEDSMWTwRbb5oD49UmZ/rM3dMoo61XXKz0xfgEp1+Tta7ZTu7btHJzct3wc3c/YrgZ/Gdnqa5RgGv08ASSPAdj8HWDo52z/Ug9CkqTcU/54iVb6Anc5vVx6QOxtO4DZs9qnDGzLj/oExHNrYK3v2ba3jNLhrRvTu3bgM58zgJhy9fMJrmab5BgGsJkYELItWTu2NrqXIUSMG8EXIVfQF+uMCT74rPzBxdI50Jij29Xjd24+Ye+Tl/Ox3D1PdZ9d+zg8KXx7MyoxorU51+XYi9mhaJCfw7hk/ieM5UebnSmj/850BOS5wXOgcr45YXSDlssdDbpuqPq0KzODogcSl2FFwGPTu44J8tV3FNCNmw2Tu78+WoKiuSMBHqes6DCWlwO+8xse2bmzAoyom6D5sxdwR+YPPhgQrS+kM0/WG+/4Wddcv1x4dLtQyavltUbZoc0XsZU6GVHfwy60kOnaQmxEXshcH/7+kagA2W1U4RTKE7cIANb0qZ/6qcv3fM/3bL4/4xnPOAHcTfqHbN9j9J3f+Z2bz0svvXQTEiLpXe961/LkJz958/2f/bN/tnzN13zNVt4nTdplmh68kyZN2jnyWph1qR1HWBvy3Z5q3oDuDLYRgOt1aUdrtlj3TF7r1toZi9QeTx3Yib1I3QFQAWqQUYGDla4AWYx+bLRKX/lyGtLev4CxAHzIHbCBt5vXb0AM+KlYrYB3AGb1DLz4jfLIrO7bniDswAiE70DAbe2W8u/y6NpnpBddOaM0CU4672xX9BgQvWQD8G0Q3S8FQz8AdOr+pZfupS9Qr/KoflEv76v7dc22s2M1X3HF3mdtGFTa4sMy8JFpjpeTl18ABkCUckK37fHIZ/eHTLwZYnnb8zTbxaBukQHy5NNlkLbr2w5bAA9O6zHL+IPzNgDK+3gSPHS5HcBZxIkFjtKnTrHhVfUrXcLbkpjcyI0YvbQPoSIBFH3M3/V2naGU27Z+adxi1Mam0e+se46ZyfOIvMHUlWGQ1ONYgpWJAxmjMW5jgBEZuI8w7rpeCWQm9uR3PKWs4cM8UK5xKD9jR1Duea6yPsNHOiwa9ysi/AL9xG1Gv7XXcGKVjJOQ60M7Vlp0OTdZnbYDjo2N7dXjyHLE4KQHOD8AMzkI0IhG2nnecWxhAMFbARMk9uSYC5wiBnY3eKc8XojwrONeJHBHg5MPu7T2uvVgQb28e5SxfNy4DGrsQjn+RoK3KKdBXMixg1AYJsikbuDYtnjrJh5PbjlxOJ9sQ+tTevBaLm4z8qLDu4N1fI8mki5PPhNczAHa6d0XslP7e7dQ2rZwm7SVrqoYTEuttf+/E+49+tGP3sTfLW9aANiTpQJs73a3u22+v+hFL1r+pnbrG3r2s5+9POUpT9l8L4D3F3/xF69VeZMm7QJNgHfSpEk7R916lPVsEWtiezJy/NjvnDhMOVAHLnTr5tGaeK28PFHHc7Zv8GQFuLLHlr2RsAMAWvltQLVAnQJcy2MSWbmM009flrPPPhiDl7ztTQawyx/2lL2OaYe3v/1gvEXaqfI488yD3qd4jtqYTm+zlFfKdy3NWvt1bb6tHPjqdCE/R9/X7Meiar8CV29/++MvSityuAw8YA0qlUzLU7fa2/qB5yCbHlznnkE8XsRXoK759GYJbUS56TEN/pAOLdiJxZ9fHm4ZgBukbCq/siUsN+uyMQvuJ37AS6XoQ7QFADVe7Ogkjm11DxnW/fQIhAfSGNRLfQELAV8AoDJ4T315HiA/QTTkBb/FWwf45ThooLba2flT1zzqTlgW41c+9g7PawDqNmwhweOub4zwC+51/WoboJtpkk9jMdb9HO+Ra3cv75eMOfVgXU1g1x67rr/nBWNyHkfpsz45Tz2qDxa5HNe3a1t0exTj3jJKfqmHQViPWyn30djBJkQCsvDmOhEeI3mxnLieWF3ysPfskeXokSMVivcgw05kRgzUMfCmG/xhwbKcmNzB/Zv7o7ysDAZnixgc2W31rhPALQJmoC9FJqA0A1Tu8CSgTH7mywMYZdUz7Bp6Rx/emcBQEBTXu4w8w0DrtklKWVmZLWfKy3xcP+uFZeeyurSe0LNtvQFAXdAnD87Z1h6gPNCP+F1b1OYE5Y5Mmdb7Tnf93fKcx/g/IfqMz/iM5bM/+7M33/HkNT3oQQ/afL7xjW9c3ve+9+1fv81tbrPc/OY3Xy655JLlr2thuUL3ute99r//1m/91jBd5fX2t799ufOd77zc8573vFb1mTRpV2gCvJMmTdo56kC4NNgdX9aApAGXbj2/rTyXuwbejp4Z2W5eixfZ66rul31VYRAMojguqEFYXphU9668cu8IfoG2Ds1QNhKAIGXjvXurW+2lx6Ovni8nAD6rrMqfuJ2EaMBBIAGVAuHe+c6DMrGdZkCj2geeiDuJfPBoTtsj7baR7dBdS3C1A3zXTsKt2Smj9u6uW2ad3VRyqvY566zjoKvbrmRf3rl4Stf1888/DsJhbyFv2h8dwi5EvoC6fGfDIIEoOxpV2dhkAIDodAJX9hpEHxx2MAGzfNkSZIzA8vMGw6htMz2f7tddvnnNoLHzdfnGBrjPNYC5jLtqbMi2OfLw2GZHNgOG1XbI3jwbNwE8RMe4j7OgT17b9k7PWrCc1OGse7ZFd4o1QdHso8YKkrpxucO3RnhKpnE9ut+J3/Fp71fIJ9fp1+6X6IzT07/YdDBYW+XQ342RWa7omGWaMW3h1/iPHUPpF7R7JxPrquuQsqUsA8bMdXYGpW3QKcvR7Yb++jlvRPJSUbBK43MOx+D+aDA3HWShTR036fS2OnvEpmu0BwR3UoTkXVpX0rsxrrgHYPLwgJhIfH4nH6PsfmkBzwOm1jV2zsjLXrleaNkVOwcB5OBG7hQ347mwc5VKYmX0JMIz7uhW7qpnN8BYcbtBxM+4Dk6DIsGLB0k+vXtnwNj6wG8Hxnb8o/Rm6MrKRY7rsO171svArd9KC7mTumy+MyB6B8rldWlPltx5r2vqJqh/ZCpg9oILLlj+zb/5N8sTn/jEzUvUip7+9KcfSHfeeectn/Zpn7b5/ta3vnWT7nu/93uXxzzmMcttb3vbzfXy7H3961+/PPWpT928RK0jvHdHILKp7hfAe4c73GH5lE/5lK3g8aRJu0oT4J00adLOUa7pITtQdOtIbA978o5snxHZTunW9ckj3w8D8iUghO1VVMBLga6ceGSdzbrf3rF1rYxa7LL6np5XlZYXbCELgDe8ELGDKu8C7wrcLcAYr17A3e5EYgd2ea0PwOt2rPvkbaCQPEanDRNAGtllI+rsjFGaNXuva/O01ZM6MDF5APyoNqp2KBnVJ2AuIUgKgLedTHzdtPnxWu1wBJP7iAHEfA69NVhvHSkCnCK+K+ElLCfrSdcvRiDcWvumjZp2n/saf8ZN/GfQyHk7jfGPIvqv65bAm4Es8k2A0eUZ9DIoha5QBniI79EWztsAX90D+KeNLAvXDYDMoRpyk4o+a/DaaSw7553PQMaSEt/KtB02kX3WeSZPTpfXOkyEuhm/S3wCb9NK402LxM0yjAenMXgOHgiXClaYJ+e7TZMENP3pOcXypX+nDGgHh1XIdrNMXJ5BWQPc2S7Zxq6fPZkdahV+7XiKPDLsaW6uwrtDOHjcO46FHlmO8pa1DphL4edA5YDjBvJ43gLJAdEdk46eMSeKuji13aSDYuVRHdBtB4s2P7kjluRBoQOj/VwCxZ50mPSYCB2fJL2g82gJxMLGA5/LyIVENyF3dckJzM9kftSLSdJHW7qJhbJ8nec9YbMwJJ07uDtzdurkb9tk2g128O/O3S2YDLx2A3GWnQD/DZwATdfove9977XKu15yViEQRlThF37hF35hCMwW0Fret1/4hV94IM2pp566XHjhhcsv/dIvbWL0Pu5xjzsh79vXsbJj9Fd/9VerfL7nPe/ZfNamWD33jne84xC1mzRp92gCvJMmTdo5SoPTa810gvA6lmvYK6yvne8aQMD3XLOmh2f3nJ/1fdtovofNRhmEQHBcWkBsgBQDOfa2LG9bjF0b0n6XCmv/kWMFIR4AInKtn5+2G4rSMw37BJAXO8vgMs91/KSsoQQJ1tp1Dcjt8k4bOfPtZDDKx9+7fMw73rN43tZf2bqA8/XH8Wq3r4/9rzlzrdl1pAGURWcLOHZ81gRD6RdpwxvgS+xhJCc7fI3AT/ObMnad0y5N2zTtbGh03fnT75BRhnTsAEc2YupatSFgXwdoOR/jEXndPHEK2UCYn0swz7GYzacdzMB8kJvBZo9BecIg47iOgFLXx+2Tss7nU87OY9TnO0wl2zmvjcaf9Do1YG/MjJAe9l71mNmNeZ3MCog3dsjGGF6p7lduZ88fnSMn3w3e86znWe5z2gLHTeNSCVqn7mUf9DxEPcgjw60mKIsc6rP6FXw4Br3bbTRXmEfjeR6DPB4c8M51R7JSeGDKCbQ+c7Dw7porSHrSeLC1Eqc7dlYgjx10YJ0BQ8pyfulSbd7sLu3JIDucJygaxV635hP+XQ6LH1MuPjxopBJ3uwfujPm7W8TlbytNDqJZfvHOgJ/gsxWQvB1PyeVkeyZom4thA+/5XOpSN9G4E/Pb/Iw6E4vStTI8SV9fPHE/CfSGN7xha5oK+fLJpDe96U2bOLt/9Ed/dMK9c845Z//7Ix/5yI3nb3nr1kvX/vAP/3C52c1uttz3vvfdeO+WR/BjH/vYjQfuT/zETxzI5/TyPDlGH60XOqzQx2rheIxuWTHHJk2a1NIEeCdNmrSTxDrUHqdFXvuOACNAFABOG5oJNHVAXYINmbYrdwT2jda1ANh4QeJNB8Brw9hGPnnYmwkjnRi7B4zTZcwXdiKeuuTJy5cApzK83qi90qC2DQm5HgaMDktd+V2bmq8Rde3blZGAT8eznx2l74ApvLCRfYE6fpt83avwGADl1gGANdcFgGkElGbdjCG4b4FJuO0NCIEJVHq/Z8f2rR2YRuBeZ9un7BMz6NrO4wV9yDiG68h380SfSgyFvA3WGQyzresxCdCNjRvGIQOXPv1sXXHfNz++n2MOgDygfHqaWg7pTWmZcKrZf+hm6gOUJw0sS+vfNts2PTWRATxad0bUldHhIqlXHa+Wu3XTGBUEEJovRqQOiZ9RhnGYIsbvOn1B38p40w73YbKDp+cZ7rmubiPrIrge+lLfOUXgPMx/9qNOfxhPyN+8uj2NQ9o73GMOMkPmGQKU/NDFHK+9aeox6/g4d3SvTOr1DxGHxUAXhbijIRzHqkFJEu2n0G7yzEbMckaCy3wox4AugqhdJyYaGtuTmAd08vYkjjDtNWog3OncqR07xgOuXcS7HUTkaAW0Yrve8O9rbp/RJOKFHuVbpgZ2vRDLBUTuXJlnK7nfGNrt0uWE1NXDebs9ukVODnLdZFyUfCEf8rVM3N7+ngNrTuAnuwCkrOsLMPz/iI+Xvexly93vfvfN9wJqK/TCgx/84OWiiy5anv/85y9PeMITlle96lUHnrlFLRyPUT1TYRrufe97778k7eqrr15e8IIXbMDhAooLkH3Sk560POtZzzrwIjW/vO3vfCqhob9loXqszEmTJvU0Ad5JkybtHBlk6mwfX+/AVdaOGJa8mIq1uPPgubRp0n5y2iSvXflub6N0bLEdNDLWbSCn/ZDrdtsa/gN4Qw5+eQ+2AJ6/RX6RGqEf6lp3lNp1Nh8pH9u2ye9Ixvlsph89k+lTVrZjOiDIMu0ctBKMy3ItF3/PtNgnJWNeqIZOAPBCtUaudgTwoR54a3vzg36DnVy/idFrfgxKOgwHcX+pd90r+x/AlD87EwH8ka/lDH8GegCr0ruwwyyyjXzfjk6ulzER541cHDays8uxaQGK7eGI3PDi9RhFWIQiO+sBmNLmJV/GI57LsJJ1r8rOF8RXOp5Nu5IXxSHjBN04ge0TAm5DNhSK7B2Z+s+Ylf2I9oZPe2gmWEp6t3viM06T+IOxBWMOqTOdLnWfo2eN0ySwn7gJbWidt/Ob+QDfOhFY3PsjJIPHajYLMkQCeoh3rfk33uI25K/a2SEgPFcAxDKOMDeM5kYDuSnDTtbp/ex+a14yooH7gtvY+uS+6g0Ry9tyb/Ww8j2yV4EjuWhIwItd2pG3KYOpB0MvaoyK50KHjtSBcDkAusEolwUGR5oQCoNCAoGg8ObJSu6dCvLKYPoG7kYDLQ2OAtYniw3XC94ZeAweWyG6QX20UMpOkt+7TkRdWCCxwPQ9p3VwbQOmpEv5ZsdxR/PCg/IzprEnP3ca33f+1jFPBPzlQGDKZ3Lydr1Hi8aRl8YNmO5xj3ss73//+/9R8r7yyis3f1CBsi984QuXhz70octznvOc5eUvf/nGS7e+QwXgmn7wB3/wAHAL/fmf//nyUz/1U8t3fdd3Leeee+7y5V/+5csv//Ivt/nc9KY3PQDiJpVXMNSVNWnSpD2aAO+kSZN2jry2TFAur9sQLcp1Jh6qtUbxaTnudw4EHdhE3k6T1K1VO0OYawb3bHR2636vp4u6tbHz8IvYsMnwys3YiOSHUY1TEt5jPpabdbKsU2b+PnLUMACQz43kmfb2Go3abJtdgW4YrOHTAMKoHp0NVQTIUG3vkBqVhhfQGfjnWt3nOL7542VaaU8lEGNQyeBo/bF+t13nF6iVXQEPxfPZZx9Pg/eo1/LUt3StTvQ53qh5BQ8wmJjyS+/9orTpeY4NDWSIByTlotuUnc5qkMMNmA/HwKZ84xBc6+zpSkPoDWTEc8ZweB55mLcE2LLMctip/N2v7XAHflJtBR92GAP0K5nxQj2HAjDQbe9PE3pKOjyX04OU7/503f2bP788Psu0fuT17toIW8k5wWCux4GcfzreOwwEcvxjg8O8+JK2Anyl7/OJ7jE+G8Sl3bv5i7YYzTvGLakbGxrwwtzgOZm6W99Kl9wX7AnOi/1yM9fYac4tBtgh45O5Pugc/bKs1JE9/qtCR5fNo0eOHMN6A7R0QTQiA2wCsm500iW4a0VIAC2D1fvTytApdJEDE3s3zjs6RezuebIj/1xgwQ+DVyqav3uXwooJzyUXTzjeIbKi0yHg0RNiArG+bsq2S0rANycZDwRWPr+QjAVUp1wjGg1iObmPQFue9y6LdxpzQMqyfd2B5bNjOT/K6+Ru+WRfIL8bEbhbVODutY2xe23pec973vLVX/3Vy9d93dctF1988fKKV7xiufzyyzf3rqqXahyja665Znnta187zOdXf/VXNwAvQLUBXudTXr5rAK+9hreFc5g0aZdpAryTJk3aOUqDm7Uza8wEeb2GLErDGm88O1VgszidKfMosn1HGqc1z2lIct28A+44PXaYaWS7FNlry2UUuHv++QffnYIXWOVXa6/kH57sYerjsWsgpo/4bmtbA2fp6LO25s829nMdT4cBdzuAymlsz5r3tLeSv6ybgZBqm/oD5AA8cXxkwDVs7rJl5RxxwPbPa5VPgmG8fNAAIfzZY9hyhVc8e40N2N7LvmLvObCM7DudvLifGzudzUv+XT+FDDplO6XNie4X1gG46bRuxwTTXK8OVER3Spa0jfP0Jou9DBOIMs7gsgxmE6+5vLKLwIbAT6hnEQB9V49qc8aLAoRpe7AY4z+WNQSICG+lPxnuJevga3ZKo+7e+DPRjslDtt3aZ353nSgTngzyuj+5n1Mnrhuj8+aB26KIcAged/ydjRrPFcbF/GI3y4b6gKcRHx1Ze2PQuIyxw7zmjYgOi/R8h4Om28ibj7SXNwMSU8uyE2Py/JXtb8zK+pYY1B4+e/RYeAYKlUIB4OagkjsZLoxKGpBEQA5H0E0gRu9dKQZ6g3kJKpIO3jzou/JeWMFj7rK7Q9Kg/EZpWGzQeB4o/Z2yRki+lQpecicK8gCBDKhbB4C68S2nbkL34sfyyt2znNw8SJhPtx3pSZMDey6MfI+Fo8kdJOXpDtTtTpuXPHZgHlOObhN0xJ7D7ljOs1vInQx1OzfXFV0P+Cjv3QJ4C3z9yq/8yk3IBr/wrOiKK65YBVyd9vwyHER+sVq9OO3SSy8d5nOHO9xhH1De9kK2SZN2mSbAO2nSpJ2jBIvSlsp1K2t+bI4R2IM3X5evbZ2iyqs8E208V9p8Qzkeg/U+gTw66/Wsyetr1umVBu85DF9OVRZg4/ywMQm5YFsJOvPMvb9u/fynf7os73rX8eP5ZXgjE2zUugYQiWFuZ42uTiMQNb/ni94yz1FbW7ZO5zZNGyLzcpl53/nndR+ppg1sF+bzWTd4rDa+3e0OhirAa88gRTlCYLOaJ4M/trNdpw5kzPom8NWlp571jo3isXSx+sRf/uXBtOhtgkojXTF1IHFiF+bfsgRnsWegvYWd1v0bux3vVF+rPKq/jTxUU44J/I+eqT/AUvPofmWACmDeeJLby3oIiF6fnAQvfaLvQrbDDTYiG3Sw2rLGM8BiPKKpC6fRjeG47okHMKagr8je46jbyu1EHeGbT3Sna2/rXPLSYRVdH7CcjekA1trJkY2TbJsMjeK8U57EjLeOGZNJ8DbbcbT5uE0eBj7hwX0LYgPBepNhd9w2EBtL9qx3OBPXxb9Tlxhnu1MMjvWd7ecXv3WYYmJZ++DwHry7963QXgZqKk/hNBrHMbIRzbwHDcef7SYdL0xcWYN0bigmiwQWEYJ3ycmjvhOzhYEU/gzWecFkb1IrpZWBhQn5pjyQYQ6YTuN6eEKhfC/A4A++RztAbmgP5Nnhsg0sC3dut+sB5dFOR6fcbhcr7tqixINGdo7RgsNH27xQGYHlbqvM1/mP5NXx7Ge2LTomXSv60Ic+tP/9jne84/73d77znZuYuRVW4dT0sg/y/X+IzYO3ve1t+9/vcpe7LG9+85uH+dR9AOO/rnhjkyZNamkCvJMmTdo5wi4waJJrZnsKlYFnG8br11zfdl59afiTf214+wXI3HMcwLL5iFOaeYwAQIMX3Pfx1/oE9LNjjNfnPjrt488jhwLbMs7bMsIQB+BBXnkasrMn0vN4BPKlEW5bLfO2HCHbUJ1n88g+cpkuO+3OtLcTyDMoZ3t7zWZxHiXXerlxAaWEPfAb7Qss5ZQb7QERvzVlYb6t+3kPYCXtedJnKAV0vtq++MKT1957KV/nh6xcBwOu3fNpE2Y9oDxxnOBg2qHIyzZ3ydltUzw51ITHIeMKLi/5XrtnwC/7qj0z7Sznvk29+Z34go/z4ynMOIGsfOSeNJRd9hhgI7yVnmYfq3KJB9vJnbTWJYOJbF4B/MJf4hapD6TlNIY90pO6/ui26z4Tq4EX9xPjau4vyN1ycPxm+hcAJ2USh7vS2ZPewHnqgXXY+Rv0z37huvnlYx5/mUehHNN5+SabTo5IQLm50eGX7lEeuJZ58niTHu3pLQyuSqxoNiYor4hNyXQWTSzQbex40ZvyjjYvqsqByRnkZO/Bj86Sg6FBSnvZ1ieesUk5UCcQmSAvkzexbOn8KCJlUb8cmJK8C8Uk5h00AlHnYuuAcJvjPMjCixqny11Wy8YKdtjdjm6SSWXMjki5GeM2+c0BMBXRekFnMFkPPIFRvheQHYhuRXfH8qBtGXR65rp0i6VOnqPFnOWYfWDSJ0QXXHDB/nd76RZQ+wd/8AfLl3zJlyxnnnnmJr7uyPu2XtoGZZiJ3/3d393/XnlV7N+Obn3rWy93vvOdN99/7/d+7xOo0aRJN3667n3/J02aNOn/MeV7PLAZfMyYtbIdSnAcyTiJXlfb6xFQOPMzmJLAg9eoXuN3JzP5tK2Q4FaRY6/WZ4FM9VeGK+CujWPeS8J989KdNEw70Gt6wBbAw1ofVsit+ivAB8/NEQALAdYYgKVs0wiQ7fjrwF30oDs9aVqrs9PQHnly0eWP7KEuf9ctZVV29hln7IEPAGTIt8AKH9PGFjfhmQlAnyEdOnmaJ2SWR7vT8xy9sH7j0W3PVvcXvjtf+iTgSbcJ4H7lNqCc7H/Zn90WLtvtkHqRYJjHFABQ+LXM/I4cbGf00XqTsjAf5TFfOlB/5RltTAeAincWkV/Xp91OkMeIer50pADa+qtNKOtA/dm7ktMKlW89x/hjPaBNGA8SvLfM3WcSSCt5IbMcf/3p/HLjwrK3N7DL7fQm8038jnztoeu6GRA3hmL9IG8Dhoyz6HY9Q5xdysnwBJaZ+5hxMI8/Cdq6fl2oHfc37nGCBAyQ+9STuNWUyWfmX/mU/hAGwpsXHmfqGvHIidkLRol+VDqfiufTuoNeej6kPrm50ukXfO/XeVO35hiQB8d0YQbBd0Xp0AzoDrhsBbLye7Fj5bTQ3Sly8PKAU2lq0KFhDRqzk+NyqIePQ8G3Bz0GkBwE3BCOD+XJphvcKYc6WB5ueBaD5OMg9k5n5Xen9GA6mtyRmydGlNGxikiXHT8XjhAyTcDbR0/MgxcmniD9fO5UeBK0bFPxLaMOXLYcOnkm5aInF6Dd57WlnGCv67/rmB70oAftf3/rW9964N5LXvKS/e8PeMADhnlcdNFF+99/53d+58C98gTGi/fBD37wcvNaCDb0iEc8Yv/7S1/60pOqw6RJu0bX/cgxadKkSdcB2UnCa3x+l0FojynW4+nxVpRredZlOLB4vd556iZwl0CVyxgBil7DYyOQHyeZDLjyXK77+bPdSN4dEGReIK/7LWOAUwAe+LRNkXXlzzZXyn8kp5RXlzZ57k6gjvJwPTv7yOl4Pu/RLrZ7kXeGmlijKqN0trx3basCJrou1rO65xeFdQBa2qlpa6XeG8TkdwJsxjHwBC3+jRWUvhBLmM0V8qV/1v0CMstzuf7qN89TNnqXYCc6xcv+DE7WMwUIlTxvf/tlue1t9/LHO7Wzg3NMqPx4vxB6Dr/1R5gTgDjCtlxxxd6L5wo0rb/aDLnssmWpd5t85CPHgXj/0Ra1gVJ5VJ+vv+q/9YlHd+VXvy371Dn+2JRxOBc2a3DQA2xzmASPl3UPL13aJkFPE7gOhCdr6tw2TID2xXmN+qVOp67TjugautdhF1n+6M+gfF4zZXxZex/bK7dkbGyL+qDH4FgGKf3CP/oQ45bbxPOD5xdjfbSLwWKuWaZ+hucMxCY+5H7l5xwiBMDWICv4X6UF3E8wH3nCm/utxz9vABWlnM0z8s75xkC59fW4LCuT4/juEXunoqyOQUslyZTMzBiDqkHcbkcxBev86CRFPtqP8DKuDJ2cHUErSA3kKCENyP0cfKgbE1XuyphQEPgxsFzpPcF6craiJihqPvwcz1hhOlDXMvWzmSaBUjoEf+bdExPUlZcdNb1/PUBQRueVy192Pr4TS8dlucNSn669Ul5rAC75dgC2020bjCdtpYc//OHLzRxjqaEnPOEJy/3ud7/N93e/+90ngLM/+7M/u1xyySWb7z/8wz+83LYWSkFf/MVfvDzsYQ/bB4g779unPvWpm8/yAv7RH/3RE+7f6U53Wr73e793HxCeAO+kSes0QzRMmjRpZ4l1KbaUQaoijN0EgR13L9fREIY0gGb9+cRiOnDYnqi1tD1mATnSPrFRaUCVo9T1eeyFtwfeVI4B7zrZtkg7Mo8CJxgI+RmDlgC0nOBzuL7u+U62PE/7pGef5bG2vu/AaZP5dhnbgNYErNbSd/dcnm2o7tkEXyn/rLP2PnmRUgFqBaQb6ATU5BnnYa9dyjDOwL38XnmyEWCykxl5ghEAEtp+xpOOl5A5b7wT4YvQjgWEWldwzvKxagN96WkHSGn7t64XMAsoWe8Egd8CR/MlZu4PBWaCb9DfXH9eQJWexD7WDj/0F3tMFqV97k9fN8iUOEv26dTNxCU6fAM8hhil5FVp0bGSI+EZPG52+JQd1fK0dJUBENdtfmU7JDaVL2NL5yj3BeoLwOr+Ohr7/DvHNnjO+iJ/9KAIPaXsdJrswjm4HxICB50iH7CZ7P98R0ak86ZIYos86znEYKp5hE94Ss9gy8tALJ9uf2/SOOoA7QYZh8z+7s2urp0gxjgD+xlT246g8GCQ1+3cpSmE98hRId6Z2ML15JZu0Xwy8Rcx0eZxIwTlo/TEXPFb8cxsdg7vlDAwVx41cBPbwjthzs+ArvP0RJCdJQe/jN1BfXJgsaKTh13QWYjkoGFPaOSdiy14d34pZyulO5DbIMtiYHUeliHPWzb8eWfX6XJxgmw8mVvn3HGK3PFcZ8vDk5d11pOMJy7XJWWV912X/OzS+NpoITVp+aEf+qHlx37sxzZeuBUm4V3vetcmBMPpp5++fOZnfubyDd/wDcu97nWvTdq//du/XR796EdvXm5m+tjHPrY8/vGP37x4rUI5vOENb1ie/OQnL69//es34HG9lO3bv/3bl9NOO235+7//++Uxj3lMy8tznvOc5Zu/+Zs35X3rt37rcpvb3GZ55jOfuVx++eXL533e5y0/8AM/sAkD8fGPf3xTXn1OmjRpTBPgnTRp0s4RxizGa66DDYZ4LY5hyZrV4EiuobGrWJsD9Drmrtfk9Wx535VtZGcS1shpjBYZIIDsoMFLq84++6BTh+0JbCA7kVT5OI7YnrJnUoJCvkYethUBHOsacTjtbdnlx3c/g8PQyB7IdnA+eT3tAQOryCjtGOuJ87Nt1fGW17KOnd2T7e20CUaUfM499yCIZh0uvbr1rZflwx8++Hx6bFMXdNO6yL0EiNOG556dilL26XhkGZZeZP9zGxjkSTl6Uybt72wjnkOn08GKsAOAyMiDZ9baGHAOgJwXh1V+9HG3gzeYzGfazZDDmoBVAMqNwF/Iesz91AfjTGwMpDOWQUVeuuYybNsbYOw2k7yBU/cdd5x3S6Xudf1s1Gc8djHW4enZyQU5eNzMMkYYVM4JmcbjInWinugNhEyQFc8YxzM+ZhnmGGLHR+akzjPZMZINhLv93bc9fmfZ9Ye3PXOgvYnrk02PIjtmglmSL/yCY2aZ3E9A2jJyn8m+Rn9NXAqZeiOL59gsRSYdLsZ4lWuM06qdrzm6HD1SQK92o7xTlgsQKsig60HQO3EwgIBSGWDKZYyQaMo1eTGE8GpXi3xw9afCnVeuwdMsE0HmzkJ2Zk90RQ7ETRndZNvt7pj3VGY3brdA6RYFrms3Afp50nfP5GCdssoQDjk45mDgRUTyAbjLd3QJt/mcRNFZ19mDxNoiJ3nNgZL8k8dugec2QO+vLbibu3/XJf0j81EeswXc1t+I6oVmBb6+7nWva++/6EUvWs4777zlaU972gbkvfjii09Ic9VVVy0PfehDl9///d9v8yjguEI8vPrVr94Aug984AM3f6arr756A/6+5jWvOel6Tpq0azQB3kmTJu0c2evHpwK5lmELvFbNmIn+XPNcxEj0O0PKu5I8a/1cx7XxVKrfDjMHeY1r28PrQJxxAFHrdxnZXucDbgDEkofX1tg3jlk4AjnzOdt1XueXDcgLahwnE49L8+BysHvSqWlEnQ3g9hw945cHde2cRnradFmen01HIPM0snES3M/QjKQtEJ8XFNXvkqdBkbpfIQbq+H962maZnHj1u2ysZwn60G6W78ieTNmnjMg7N18ybbZR1z5d++ZztgEN7hDagDjRdY1TyGlzub4GcygT7KPyYsxhnHE7E1fU+g4gmvJLZyk7R430O/l12sRzUifhJ3koqn4McGcgmH6NIyFjX4et1DMlH4N1xg3s+eyXZI1s/ayv5ezxOUHUDmNYk2mOUVkv6us+kuCuManEaQy0Zju778GDw304b8Kg+KS9ebXDp8M8+JQ9RPvaUzbHZrDHrJc3OpAtbcrY1b0gjXx9Hd4c05iykZO9gLvxiHveUEpnSXSE8RAeakPW42K2m4Fy09GjR4+lPTY40KD1PY/XwJyVgO+gzV0MERrECpMDtXc8qKTdvt2I5Gnl886CG46GrEGP8plIPOhZoRCcO5Q7jHcSPGjkkRMaJOOFGPzzRIcsLCPv4ucEn7uZ+QIzg5tWoMzbcuc5Bs9uIPBnDjZZ36yTd44sI094qWsMCuY9JwZ3Lh/L8qTaLYaS3MkT1M3658TnNDkA4ZE+qaX73Oc+m/AL97znPZdP//RP37zErADfv/mbv1k++MEPLn/yJ3+yvPKVr9wAuHVtjZ7xjGcsv/mbv7k87nGPW77iK75iA/SWl22FdShA9ulPf/rygQ98YDWPekHbhRdeuDzqUY9aHvKQhyx3vetdl1vc4hbL+973vg24/OM//uP7sXonTZq0ThPgnTRp0s6RDUHCrxVhi3iNmd5zNgjTCSZBAdLbnioDl5OMnZNJ2mm5zscuSICR8h3aruy/etkS4AjrcQBWrjkEngGuDjhy7MXROp40vJCmDOH6XrFECflV98u7GBCivBrrHjEUCT8HLxV7tJ7n+H6W698d6GN5ZvqOOseWvH6yZScfnTNMgmq2v9K+cn1qcwB7k3YqQPe8846fmK01OhsILscedea9+CPUQLVV/aZd6hnzBLjXyTZlQjkdbtHJ27punT8M6JbX89kEr8xz6VrJqz7xaE+MJPsqfY3NHGRbukt/q/6ArW2nMHsHY++7Ldz/qk0tJzZsakPHuAvjBUCYx5xO3nb2G+l93gO4Q78os67XtfpeeoQ80Uf6QH0yZhWPePpzn3GEsSpt+Wx3t2VuyGVdwTlouxxrSYcMUocSQ3JZlqc/jTUlcMumVydj66tBTtrbm3bojr11u3Gb8nFaNEBv/TNPrkfW2zIqeTq8Cl7T9Qf4zzPWecYnxjLGGtIau2KOwMGQfmQv5w60NX7nNnb7uL7IyLGnjWllv0m8zfxv2mJT3sClm4YoohDvsIKSjxpyTTGTIQYHK6MrnYLyRJWNwIBGPCr4Qhg1AHjyQUHJ1wOqwdcEJhN8NXBs92/XwZNHKqsVIIHZ5Iv6pFes26GbzD2I58LSPFJ3Tw7mh7qncnnRaiDeik3anES9eLRs/N3K7cHMmwCus5/JSXNE3UDTpfHk0KXxcYBJQ3rHO96x+fsv/+W/fFLyK/C1AN5PhAoU/m//7b9t/iZNmnTtaQK8kyZN2jnKuKLp5MK6ME86FnntnAZ9t37mntfevHgJQ9egATz4ubX1buaf9gm2GzwBnmB0k84hGcgTUMX2lZ1LRvxUXniTAtDUZ9l3gFsGoSp9yaR4KyDIJz3h0S976wBO2yOuV/7urneGeP4e1XWUL9fclieTtwEcgA4D+/ZAK3nZ87XuFSiCtzRAi73P0BcToCRAC4CT+wjPGJjs6mP9SBs562vw0m1+i1vs8Y03suXoY+0u07a8+6EBLqeFXGfbvNZ/28rkY0c5xwZms4SYvEWEPgG7SICJe5BBOtu1gEzwzL3OiaryrNjM1JEyAd6M4fh+2u3Om/v1ojiuAd5Rd2RUmwzI8EMfOj4WkJYwGKV3dY080Vf0A90mpm+CarkxZl3JT39HxoxTyIz8LBvAe+tyBwaaL9IkD+nxaXwtdT31FF5oq9I5dJc2zRfVsbFW8vaJbvdNl+MQQ8mzn90HLAW++/1cBpXh1x7Yzh+9ScyK9qB/pBMosXLdr3ITq6jGEXslM955LOF64oodbkofyfbJMaHbtN0fAquO9XHaacsRBghnwuCdDZNv1WPnLhsylfEAE3GMwMIrQjiQByyHf/B93sqY5fCXwZMpNwmh+YgRjcNOlcvxmx67yS13FD248Gn39TWANettSqVbA6YN5qccu8UcC7JcMHYDhK+jzI4t0oGpXtzapd0DYQ5OuUvNd2SYk34uDsgjFwv8dbu/1C0XHQn+5htmD0vZh65Lyn47adKkSYegCfBOmjRpJynXoOnpxXrf66tcd3aAbFcOaezEQJzRAjwN3OHJRnxa3n+SPJC317NlwKZjD8CJ18qAKkWOt8uJPewwgz0OXTBa/xosLiAGcC69JDswoY5nF6Bn+8/ebX7Wa3w8hV1+x1dn4ybfSWmbcm3t+TVgeZvN0Nkr2PnmxzZV2S84S9FuJfPyeMb7trwoq83rM2MjQ3bGSWCjruUL7jqZWl+MFaT+wadBYtuZgDr2GibEiG3W+qs6dvZi6ZPlVM9l3Nq6T5xX28p4l1edAWyzPTxGOJwEelvfqw14rvp5PYP3atrP3V+GyKBc2rO+1zjhPOg/yBbZWQ8zzIfr7/CeyM/vRers+gRK3ZZ25KswIQ7lyPhAPoyJdlo0EM4nJ7/dL1ym+bJ+QR1win4Tw9njo3nx+OOy83eCgWv3Mh28deU5JjLAJptpjnPMSfu6jxe1Acwi6pnevf5toJK8PQ5ZrxxiwfOjcS2Hks2wDAa4vbnAJhfPUCf6IDzxXi+PI6Sh7xvfIm/Ln76cOs2LBN0HPCdmuZSR9/fuHdmEadjI5kgNEGp0hOEJw5MnGTIgusMYfGWg8hshYQpBuAG9O5CdqBMcjZpenygeypnxNlAu6tfVLYFJrrle5GtP1VwsmAwQdxMOz7psy8uDvCeyDrjkuxdjtAVyoZ34dKfi2eQN+STfVuBcLDgvL0Cdxt/ppG5/ysiQDl3bWRY5MY8GRsvCOtkN7G4bU+4+ecCaNGnSpB2jOfJNmjRp58jrZewF2wrQaK1PHkXOp8iGtJ01ck0KuFRATXe/c7hIcMp/nIpMG6XSluHP0WiMUr+0KEHDSm+7kBikeIEV4WiUdk5R8YH3JaEi0saAAAYwwAEE/WInnsPQt8cnnoxVfwOPzt+2l9szdcHXMp3zy/bo7uX1BETzd/ecbRbb5OYT27AAREA/QNlLL90LDVDPcsw52wxghFipYAcAosiV5wAHEyxFH7Bf4dc64/qlXvNH+1a51on6zQnffJmX8+M3MrAna8azhm++J3/ZPn4OW9o2te/b2zxt/4zxbdkkWJT4iQHmjq+OUsfgOR39XJcE6DpHKuTrPsS45b6KxyTxYQs8R6cAqOsZvPs5ZQD+Y77qd+ly5VXf0+vZde1whMQLur5QxJiZ7Wsv8G3l+dOYRzrc5Sffs53pd8iFMdLYlMfM+uNdV2yy0C+NU4Gb2Zmx44P8GWMM/lo2jFMGxU3+TX7ezOj6E30BfNC4n72V0UuDwfkitMS6DBJ7/nSaxF7TuTXHBHRkhL9dc83Gb3c5pfLwAJ8uygjZHqYe4LITWoDuwAYPUYyckB0Wwc95AkDABmo9OXnnwZ62PNOh8BZidjB/7yYvA7ZO73ReMPByAurl3QfqRlke1Mi386Ad/TZPjq1MPcjLk1hXt5wscxGVlIMKA3CXJieb9DSmY7A4cP2ynbJcp/Eznqytk1nnbrFlPXRZpMvjHfnCgUmTJk3aAZoA76RJk3aa0r7wunIE5CVI5/VormVZiyYgyxoUgJL1KB67GTKhPsuodDnkU96KBX55bQugVfZM3QdwAbgFhAFsSu+kXJtXWVUGQCv5dXZG1am87LBpCtBJQNCADevy4rU8swjXYICOUAG254jVS14GKakHMhnZQ2kLjq45fepAl6d1xWB92kiZlt94j2Jb2k6GaIuuzY4DCcfb2849fKYuW2YjOzJlZVvZoKRxi05uo35lp7Si7mQp3+Ez+1/maXu9u5/9trtv4Me2afIzyiPzS/46ICzbwI5sI8p8EqTq7hsgpDzbxl1YSF4Sad6Io11jlbEo+K174A1sbrmeAJGjF9qRX3dcf2T3r8lorf/ifeyT3Xbes2yNPSUfrmPH30gH/JuxzeNCh+Mha8DIGnvJh/ArOBJ688VzH/InlFBRBwLnplsXysehZJnv4Dmxuay/5ZVjp51APdZ5jMOhNDfFyNvtw/NFxbO9uJM/43TOF14MIqdcjs/dR4/J5sjGgffI0Yil5ErmQgMBjoBCD3apqEwGRvHdEAncWXge5N2ABtIqPR2f3ZgiB7gucjD4HARGE/BoceLrOfnkAO9jSvWH7BLcdv3oWF64pPJ013JHtjsmA3miTGXJATh3QSyD3LXzpN5N6Clne1zTwQ3wZx4e+LKT5oSbk57zMNCbclybUC0/f4fnawPwdrtM1xVdX/iYNGnSDYomwDtp0qSdo7QlfD0Bi3Q2SBsLsleeTy6O3tDOs8RPzKPg2EmUdeWVx0FcxxcE+K3fAMAFrlYsy/KIKxCm0tfL1igDj1zbR+nVhYx4GU7lU/k6DiWU3ytNpQWgtTdzkUGB9DZzrF0/g9emTwni6ZthAgG4fTyZe9nWnQ3hNk69yfS2R2xT2k41kG4whutZFrFGqTNAuW2Vkh8hPABRDL6BFaQjDJ/oIrKD//oDjDco5brbVrRdabCea9TTbZO8uvx0FnN7WE99bwTSZd+2R2im9edIVuST122bU2/K68YK138ESvK8+zp6X21euuHQJB1w28kk5WdZ25bscAZjIOkUaCAOoNixzhkXDIQVOYyAwyTkKWG+IwsAZL/ULmkElnb5QYzd3jwhrESNg+7TyWtRjvUp406XOr786dMWjHfwTj9nDMj8S0/sXGnHPLerx2HGfTYBrQedk6GB5hwH0X8D4/Xp8AeAvyPcxyEa0CXjcrRDB7wyHlmf3Sc9PmVbeWz33M8GFBudufFD+tykRe7UYxOeYQPxHrt/TKCb3wjXACmZJdjmzgmDRvpdOb/JMRXOjZUxmlD+NfDLFaQsBgOUzDuVjv1DR4bsnczgwfUcFOGf9Pa49b0iu5XnTpkV2YriOC2dcluG5ssdzQrVIf55rMMTmL2l7aXtjrgGonYLHw8yDDBeSOSE4AktO0fqU+cpYG/obtc9F0/kkxMt13OCsCwsvwmQTpo0aQdpAryTJk3aOUqjPteDXn926+YOHEyj0EZjF7PU6fwyN2ygbp2eoGeCZLbvqh7nnnvczqNedt5h/WxvSU5+YpsVqFzH/Ot+gTCs3dc8eOs6R69tEHfgUvLPkWKOSANgXnDBQW8s5F3Xii/I3mv1Z69naA0cHIGFaY+MdMjfbXsn8AEfBj9dhwJ4688xjG1/c9oV+WRow6LUo5EN6HbBWQl7LwERPtM5iXzsNZdgVwfO5ie2rtMn8JjtYVl3YFoCa7YTO1Ap+3Jno47K7+xj19ntbh3qnKvgz+C28RLH8nW/hMfcADIIn3JN/TAIx2YJZbu9wUj8Yq0aM7hf1/A4dVxXyuClX44Zy3ePH/CYeJZB9NSTbM+OjJNQHnU3YIe8q29wkqHGOI+tna7aCTBpBPZ2uuMwBL7OmEmMWML+cM8vVMtTAKMxIcco+rWdDh0O1fl0G6ekMzaZGA73U/cY6xKUNYjqOc/jTsaN93f3Ad9zHpRhADw32rrxo2sj8jngbLtx3eVBGlw7Ip6oAcaKEgykcWkox6Rwx2Qg6EDBjK9hRTSgCLlC5GHwz4NDLpA8UDJ4jMDL0Y5cTug+iuSJD8XJnRjXLfmyonmh1i0YOuoGg6IcgCkn03iR4x0IKyTfk9y+nqQ9oHS8Gtx158idy5Q75XQDiBfTnYwzD/PbdcpuAHF5XduMBv5JkyZNuhHTBHgnTZq0c9St5U25Fs41bTohpFGbIJaN0/wjT3s/+l63tiUv7JUOYMLgJy4vJyIpjzqyNsdDDc8tvHa5z7FrwDvHQU25mvcywPG0JdYuXrqUX8TRXQzoKt9vPT/nnB50K8/m8lSuvwpFwUnKyqfADnhOPk9WLzq7xPdsa3X52Lbs7FN/d+zIOmJdgA22ue9Trr3qyB/wu4iQgy7LumLwwvl1J4ST35SPNws6Ozbl0uVlr0+A5tK3BAgNltgeLCpw3J579UdfsE2YmyYGnHiOPgGglDE/K703MIqKt1ve8mDfNnZhTKPaFvs6cQ70ym2DJybgPjzUS91wtIM3HzX3uEV/Jh1H9vFW5Tp9GH78knm/M6jkjZ6z4WKnPLx3jR3gXep4rpUfYQWod9cPAbnpDxmCxH9dX+uAX3TKmFimB+jlpYWE2DHOlXq9tpHgMixz8rJ+2hGSPBnr0Rt7ltL/ObmROkU642yWeeJ8lE19rbPJv/um8agOCDbGQx4ZdSD7j/PyXILsjE3ZUTPb1/hW5UN7duN9yRkPavPdbc5YFk53QCeF/12zHFlOKZ5OOXU5eso1yxFXxgpgL1grkge0Ig9SxbB3et1ZrEjOL3foiLlEx3fDuHzIOx+k86BtAJj7qSj8Ue99YWlBxG/LwW8S7TxOvQtmANhp3Gjmv6s3v9d2mgzuWu45sZJvgvse+KxclJsdBLl0Suly/ZwXnxk+w3XpJu3s4OipJ9Osp59DJrkLnGA3bWX5uj4eVHOhdVhCHtcHur7wMWnSpBsUTYB30qRJO0kj4CnXst1nOhl0xuAI1PU1r2t5cZABIdsm/Pbx+C6uLvaQPdwAdRK4wzu0wArKKtCiABbeVE/+eOH6vSkd8FLEG90NJtVL1+pZ4gVjlMNPgT2AXthdlNt5KluOGeaAa6O3nI90oaMOrPT1bXln/pmfbeiMdYm3IOAu6QjPYHvHuuR88ci21ylH+80bdiSgXcYypmzb3KM80gbHi9pp7eFOexkETP2yVy99gBiiBe77BG7ntd0BhfCW8ih9LXCWPueNg7pGP4UqD/oQxKaGbe4EOEdjCX3ZmzuW3cj+w/s922zkZNfZwymfzpZn/MiT0lk30taYgsysx1wj/AwbP8Qg7/AW6mz95mVj6IXTZx9L3CYxGfcrU+YHZoa3rHU/cY0RHtLdy/Ywtmev4g4LQd726nbYC3TB77myk6XlRH3c1l17w4fbK3nwBhTXHJKVuMuUXfOS4wxnHcnDXt7pYMkY5fbyHOoQIm5XxqHOYZV6e8x3G+an29l9+bj+Hk/YYaQHKoeSepBxxhl6wQOsAdA8OmDqKkfe3t3xmymthMmv39RqQTC5kI8HQ9eRMqmDBxkDnAjNE6E7DwMqckllSXl4R6ab2FMxLFvft1zMG7xbZqT3ZGpeMhaI5eoBKxeMTpf1YFDINzN6sMv8cpDonnPdDZB39ztZpscE6Q3Ym5LXtcXYpEmTJu0ATYB30qRJO0e2EzqAwnYL95zG+UBeU6Yt0q01cz1a5HV6ejEW4IR9hbceXnf1fHqw2UbBYC3DGcCvPnn5Gm8EN3DM2t/OOuTTARaWR+VH7Nu6xnOAuPW97gOaVXnlAViGPt5ovCAOD+CUf8oeozm9lKlTAoZr5Pp1OpD3bQOlfqzpQNYJwqsToNz3AXfxyqNs4irbHiR/wF3alBdY2Y7Gc410doKyJyz523bnHiBP2mx5Ytb2eMp21O86W9HtDT/dCVj6c2f35caA28T2bIJH5Onnsl0TTHQ+nS5vGyecZ5fvCEzs+O/0rgMdkQObPQlo8aJDqHs5VeVRYw0hDVxe5VnxwRkDqv0qrfEYyIAppwvoDxnewWOq+ekAOZ80z/rns8jNoSnYsKLf5XuKOkpeEjspor8yfibG4z5tntjQcZ82FgagSh4HQccT8Sc7VqYXbtc+qWfeEDTQij6xseQ+zRjDZqX5c58wJpR4Hs/Ad9aDvPzJ98SJPO7nvdH8k/id67F5dhODd+8la5v22HyraA3auesAtgQUSWsGmHgt2LpG3CIYMoO5E4ViZuO7chZeKiTPG1T28SJQdqd3g3kx4sbxW2ipG8eD3GG7mE5u/BwMcnDNQTLrZRl68krwNq+Pdh1TcfI6OxN0cPIYgdpuG+dj/kdu+KMOkYvWrC/37O7vMBv8zokt2yO9j3N3CfKOV5Hzdn0nTZo0aYdoAryTJk3aOco1MGSDtyhBHK/j0xFkG1iTwE5nGxVQYM9br3956RbG8uWXH/RQTTJ4hrdZXcMjFOANkMV2Ah5xNojtHZx2StanyiivyiLHC8W4NTBSPFS9AH+Iv2twg+PfLs8EqALQw3MAGT7C7Oe7E4ymtD/WbKYEgJI/5NiBbH4W+wTv5QQRCBFQAK/tRh/Vp16Wh73HOts9Qwy4ntnWnf1JuV0oCvPUAWaQQZ+sP/etp/UJ+O8y0ztzzXa1nZr5jK6nXAysZ5um/Ax0rZXLc97kMZnvzj7uKJ/JtCObeGRXG1Oy/qajFWNCUW1UFRlTKl1mbON6gbzcN+ZifAAixAVjjfEP9MHgoMn3DHCmnlqnLD/qX5smVce6ni/MHMnX44ZDKiRgawzD4wjP+uSD6+h2JB9vEnLfLzmzt79/e2zKECOk8waP5caYkHGNO5l77mOOpY4dHmTZgvMVuQ6es0mXWGaGIrXuZR/IMBnZZs6TOmQ/2Tx37Mv+748Xk6csR0+tyn58OWJgLBufDD2Ik87B8b3bgZLxLAUbuLVQPGFYAG60nDBQBjeK0+VLAdz4dv1OMDvz8ZEN3P47ZfBznpzSk9md0Q3u+ykD8uzi+7pNRspkJXaH7CYFHyFhgZDpvJPha6NdJi8OLLdusbQ2ueQCYZvMfG9Ub19Dz7tB1WmT/7XJcI08KVzXdH3hY9KkSTcomgDvpEmTdo4SgEiHDq9Di7o1pY1x0hsE6NayaQMYUAMkcB6dneU1M9+xb7xeTq9LvEIJy+C6dd/J398NNoxkU/eqnAJ4eekPAC+AI95lAM31nReKEYMTOdTzALQjexJAxYY3IDU2j8NeJCUokUCWAZEOGLN80lbK+MOOqZm2O56zBuedBtC66lvyIr+0Tc1LhucwZmBvM3+6/oA2yXNHCYKRlqP3ae8RGsH2aIXyQA5pH9veR+8z5mylKdnUs3753sh2Ht3vQLjsD5mf69aBqO4rbp/Uy8zHISTctraRDwNk+tOYSbZp1jPrYMwHhzxjGllv+iUhJNL5zmmM9fi9P/BOjGB7bpImNwiMExn8hD+fOC+dGbW5x7wOC/OmVQHTxObNk+Apz5Rt5VH63IVScLsmTgWAiPxrfEBHPN6m9+wotCvy8pxi4NVtzbNdf0hnU3sg02bGGWkjYksbm0pcz9eQD2Nbh6WlZ631NAHfrtzsF7mhw/0RD90agherbWLv7n9BOYQI5xGIbAgqSCM6SHunfMTHQEn4pMERCGBsKiCCykWQd95y1wCB473L81YAA6WOLULeBrHdGeDJCHrKCeVxAGYPxqNFn/PjuidT75J7AswdTfOcEy7PdG2FQsKHva9TJt1kZEVNhXRnTJ7MdwfEOk9/5uIU3Wg7gMo2P87D+XrQT57cgZ3npEmTJu0gTYB30qRJO0cJaOA4ko4nthHyVKPX/La/ujBsCbzmqUPKTMDLa1rbSPXdL0/zS7Nt62DvEO6gi4UKdQCqeUtbYAT0ub5p/wB21ncASnit/AlHgBwAgfMov7/Xc7yAy3EfOZ4MqJ12h+VsoM1ADun93AgMy0/qW7xVPOP6TRsQ9xVwxZ5t6QVrm7xkVnlVnoA4tCm6gR50Jy+zjY0ZIEs7wCQwkTavr3e6Y1kaWHbZaf86prRta5dN3ywg7dJLT3zhnz0fEwjsbOiUdwI+BpfTa89yI3/Kz40ByysBSNqe/BJY6/QtnccKHC/9sDzBBKzz9A9jCga1DBhaTqmfAPcpL+sCGBA6yykFv9ALHMehRs8++/hL2pBTtqPxBofoIG82S9wfeIb6JyAN/9nelA+u4rzgmXA5xBOmnp4fRuMoeeORnoCk62rMxt/tvOeT8swTtB2basbGCIdgnCpxGYOfzC/IMD1kU1fZoDImB4jMBhhlGhtEFsY5E/+xTgC0p6MrOm0dRf/47lAfiQm6neG9w9DAI1N2dpbcy/vIcs3Ro8fB3b0abYI07F3SToonHwcP9kKEcAyAq95F8addmyEakh0PlIdOgqAsvAz94E6KMueEYGVhku+UxUK14nsBxDUU3oOu+XAZ7lQ5sHY8eoA0eOudCQKtJ+CY5VlBu8VXpkP+uTCx5/K+2gRg7Rcc2PW9K6+bEDsw1+mzPOSCnNwG3Y66y3WebjdvGJgSxDcfTCSuy2ihOmnSpEk3YpoA76RJk3aSvJ5MY8zrxvSOShDGIFLmT17pkWngxutbbDSfqiSPirnrl0fBN8eCyb8II7PScHQYINjk+nbgTJKBY8r1M3jzFfBmz7ECJgkxQdiEBO3Ka7e8fuG75MAL3+rZ+jTPfPrlTG5Py9DlbVvvZ1vmM2n3GPjivnks3op35G/PVPjqAF3nzxF2ALz6zSlc2rSzWQG94cfgje2jIns5pl3ktuJ+52wDuJJyw3vQhBNZ2urw63AkBpIMplYeJRN0Letx+unHn0n71pspxTPe0FD2NcePdv2L/DJA7mFrGpSiLXGOs77WZ3l/uszSe2Ixu88jT8KtMGaceeZxjAb+qv9fddXBE8y5oWAw2TpunbTs/D0BXkDCxIUAQEseVc+Ku2sZgktVn682BejES5TvRcZXKJP7Hpf9fqaSAyEcHF7A40SCk6O+nnIgPTp81lkHx8HsTwns+jugdncffaGNEwcxHph9nfGZfoR3u2WIvJwH7UL5Buc97pGvw2QUMd4xNtDn+Y7uWO5OS72MI1ouCXD7ZW+5MZPPOpIBmKTv5+mIBL5J63Ytsk65n+WYec01lenRvfzr+qYiy/Lx0t9NG8QOQhIDA52h0rCbCWKfIJuVPnemQdftWZtoeu62dGBq7hxZAd1BDVp6EM88GZwZVDtZoATeKciO66P+livXDJy7A1puOcF6wreC2TPZE3ouKBLo9ECfi0Ta1IuGXCzSEVzvHLT56wBU5OG25TPB4MzTsrT8M73z8CKgA7+9sMnYPB1PXUc/WcoJ/rqka8P/pEmTdp4mwDtp0qSdo1wz2SawzcEn6z2vLw2meR3pvFjr2lZine61v72CcIzp7Asf38feMFjl+hX4g70GOJxvsrc9kevklJE92CrPAmMJpYAceKs8b0EvkKYAyQKq6rdfmGaiDth4AG7E8q1nqw7wkfW88srjXor2Tqy8AMASxKYeCcwaLEjbLL+bDzv4VBp76VrWrjP1zpOj5AlATozikiNtDu/WU9tT9iQjP3QTr0JAIPSRl68B0lCfAuTsGGM9sp529UtHsKyfw28YdEGnMzwHoT58fJy2pw9Zx9ApvyzQzlnpgEYdOq9xeDZmYuzCMgLoxH61jQyIl/qccZBJlzgMeXlTw2CXsRjzPrLrO5wldbGzq72RkvZ+B4YV1XhQ8cNL1wjHwZhReZSOG5jtNt+QKWNcespaFwxqlp5U+QYtLbMcz63bHZCXMrRzIicVaoy0c+FaXnzPl9kZT6OdfM/ewsbvciyjbdA1eMYJ0XpqfjxmGuB1H3d5GXoBOafMAYQ9RxYZwCYdvHUyc1gJj0vWvW4Djt+Wq0HfogR9M+/cIPCGcG5qpaz26nhkueaao8tplU/xsBnbjyw3Oe2U5eiRa5Yj2VlB49khSrQdpe8mLiuXfyO8HABpbCsb8XNIY9T6eKVOFL5BQAvfyLfBRQ+qHrxHEw7PZ6OZNw8mCbR6J4IG9CTgsBIZ5sG7G26nEb95z/LwhJRhLtyZSOO8uJ/As8vJic78pox9vZO3yyJvt3G3uDRP3pnKCStlZxnmYJb8ZKefNGnSpB2jCfBOmjRp56hbE7Ne5pgmIRnwSk0nhjSgWdfmOj6NRXsFmR+vo+3Fy5ofDyu8/ygPY9hlGFAD9KiXG9m2Sm9DA7jkY7nAj4HLdCKp33g+4rFLSAHkmnaV6+4wDgX4IPsCcsoL0bKm/nW/AEiHD8Qew1uY9uJ72rPZpjbA00ZJ28LAWgKKeaQ46841AxS2HfF85o/2NxBjT03sU2zzEeBnECP1OnnE6zjlmDYiupM2ve1l0vlZ52HnsCJkaKCa62wuJMDYyZc274Bctzv8p6NW6qvlMOLdYGpuLrAJATCdQJqfNyBr+9ahApzeGIv5d36Jb2QfSJ7Sju6AbPdJ1zfxJzx58agtT9KSQ41PeCYnPuV+yoZI9QWATbAVg7zkQV/EY9y6WX+ECEAOqavojn+PMAbjSJWvY2WPwN0Ow7DuOU/rmcdtb8pkn4d/y4T2snc88shx3562Xb+gPJ8qcPnGfyiftuD51Fe/Byw34ainx7oci91vSGMZus6O6cyz9kr3fGI+UidyHrDsu/7tDaKNrh/7UYDvTU47upxSLrybeA3NEZHM2AOvFybdoGDldR45EefuIPlnbClPkJ0nZu5Y5VEbC5MO6FAT2Sm57+dZMHkXwM+QN9fpRL7ngZ/65M68J7ScwLrFX3bkrn0sQ/Piju52yYVINxDl71yQ+qiMdyosu1wQelBOnq1X2aFzQsrJJikXCFDqf07g/p6T/aRJkybtGE2Ad9KkSTtHufb1mhMHjbJF8CrLdF4Xj0A/AzsYygasMi2/K10BHnZCqe913Lw83ipd3S+PVt5MXyACNhlggsPq1XFolwtvCQLjUUldDHIDLtY1bBRempQOIw7JUJ94sxk8SBunfvMCsfrEe5Fj2+X1l4AZdkrJAdsygZ401Ee6QJo84Tny/Mq2B5yq3/BtcDSP6zsfdABQGqAXsBvwxHYwYLp5pa3seJQAq8uE17RVzZ/fo5MAVVLqPOWkdzF2azqgIT82WLqQIngs2jOT/GozIe1sP9vZleRpjKS++6h34hFpm2c5lj266HvWEfQrw1i4jcxz2s1p56aud+2W5bs/Ob3Huo4Hk/EX4zwG9/wi+PpdmzaElvDGhrEGrrFxVPdqHAS0TYyivjvmNvG+0StCy/BcYjhZnw547TADZEo56Dchaor/GscoE/m4DI+Llidp8p1W/Bm8Ri+MfZnsENhtvnRYovtT4oR+ERyALPn6NAZ8IBvPGek8ahmyCcLGmT3YE1ujXDuZuj7kmX3eGKJB5cQfLSPrTzoxdv3PZJ09cqTA3GU5cvSa5ejRPW/eU089LuCjp5yyHEGxYDob0zvCRvg9gVGwXZXzHs8loJoLmm4QpHNbWB4IIL/Z0OBlN8GOPDzTQ9eyIV8DiwaE/byV28qVHZHn2BHxczlIum1Sth25rGwnHwHxrkY+PyqzKHexUfrMx54HHU85SJmc1vc8GThNejrQ1m5jns8JqhuouZYDWS58Dkve3Liu6frCx6RJk25QNAHeSZMm7RylEZ1razzDEgDj2VwD22DzmtZk4M12ij15uAYAkjYavws0OOecg/FXnQfxFW1Yu34dKJW2o8tMcCgBMl62bU9fwjHwRvQ81Zg8AIbh9ebYulWfEXhoEAADHT7JM1/WlGBCEbwS19TecZ3tYxuCMAoOXQDIgPzxSAbkz5jI9QwvUgMUB/SzvZF2te045OhPg6uj960ksJYAj3UEPbezFGnrd8aE5mV3qYd4V3dYQoKxzg/gvHuBWMnf/HQgbAKe2a7WndSRNf1NJzoDSWljOhSCbdMCqNNex8PQVGm8+eTyHcaFtPnCPQObxi+6zQCe68YAg6oGvRyCwrKzZyYvXKtniK9t4JOXxRms42WF1mX6asqMzQ/qzzjlvmCZ8Gzqhtsz29Zp4N/eotwzyFx19libzouWo/mzN6o9aa3PCZBmHdC1HOsTl/N1A7Dw4zGQeif25vHCL1fL+QOsj7nW/CTQyhgDPunyzC/t67mCssy7sS73iRG5fySwm+NKJ8fEAstLd5Pfnv/ucuSaf1hO2wzY2rEoWR4TyBEDXolyw6AnJu45iDKN4Z1MGoxPnvcg5gmUxvEzORAYYEXw3K/OADmPXHRkx87J3w3pXTjLxrIyQJqDmJXZvDmfBFC7QSAnze5aTsBJOfl54kmvXoPO3cIg9WPEtxXT1G0QdHW2LnrxZF10Rxx1lnweYkOi23HPhTi/7VUwadKkSTtEE+CdNGnSzpHXowlecM0eR15Xdl5XfLLezrUn69U0jhMgs73Buh27qluz23sKqvRlP1XYgjQqMbLTvvAfZE+zBKE72yHzot55bLgrm3tVHwBev2AK0DX5QG7UCdAH4xvAGHAdWab32vnnL8sFF+zF8v3AB447RBmA7bz2KANgljAYaRMXVR0AfPF8BuQlZmflUd6JgMW0L+2WwHTKwWBiZ0/Bs3XFbWlP08yf66mLo/uW28gJZWRnur9x37Y8oDHhO5xmBFS5vCIAItvKtk87e9d2avaBajPXocNaaCPHDyZf4yXwbCe3xHQILcAzeB46HjH5FG/JN7qVfcrlIVt0k/b0kXY8yQ0oZjzi1E1eNMeGSqZlU8jhXjrgmVMRrivPGweifgZfHd+4I55L0Nd60WEQPvEAeczBOx0QssNJjLnlfWN81ivuOxxF50DJphd8Mj5385b7HPrl6+Tlfs+4Sl3pp3XfpytyY4fnHX/Y/cgbVgnIuk26306LzNIR1vlbZsg5cT/riNsgMUDAdM83uYYgFMPR026yHEHQG6GXcCsDXqw1iPVBxhl3qRQtr1Epv4DNisWCx8f4SWOBk4cVyQJzRR1L1kLKxZOV20dwyNeKaeJZD0wGlrMseOh2tD3B5cTgxYrzSoA1v///7J0JtG3ZVZb3ufelT6rSQ0hiRKICCgTBAKEzKJ1BwIROQfrOMAwIMgQFIgMEbGAQRmh0KD3SBDAE6UIyQAJCAImAISoCQgIhfSodSarevY65z/nu/e7/5jr3vUrzququWXXeOXfv1cw111zN/Nfccy8DYDfTJBiefFv2lnGXPifd3HR24GpuiLOt+TuBXH93k0qmywnHi1GWl/V4QXVZI34mTZo06QLRBHgnTZp0IWkEYCVIZYMv7QXv90dGnx0P/JSd7SeXwV4dD700+M1jB7ZRfwKCtlU6wCvlQFkjAChlxm8DqdiXgKDE4e3KxbjHG7by8uniwPLt/gFw5eO/AXQsQ+zOepHby1++TVNegvU3MW07GxFyTMsCoepR8+wrfgNy2LMXWeEBbY9ny4m0yNMec267bfjUS1MCU2nHZ3/b2zFBS9JAjmda5BAMiUmkc1DxUaFHKl2VU3IBrHKsTOQIWLgPqPS4qkMP15eAMNcA6OAZgLGIR+0tV2MX5o0x7hAo1gfaQ14875EXoU0SdCpQtLxeDYw6xnWHM3TzRDcPdL+rHrzoPQaZ24wvkC89l9Nmh1cfZpHGoTpcj6n+ZoxmSE6Dn67fLyFLMNHyMKibetvhS26bvXh9v64Vv7x0LZ9SvgL02/NUtHXJvCYYmfnQEYBx8iUu1pHnHNI5NEQCu3akYy0zyEmefC+V29w53xk4zvGdfdJhisYzrbM5Nzmcg9/xlfOr8+dhAOkNLJ/yu/Xe3f7eCKs6WC4dbN+4tk2PQAJkzU6hcSg2SLiVnjQeKFzLxucjGpxEEvyasuvbsVe86FQ5DFLe5JdC6gBNwEGfqCUw6JN312lBc3KWj0q4zd5QueyRUubpY+dC3m0GO8pFZJQv+fdCnCeqHaCaG5gc5Dn5OV3q2KgtWddoA+L7eS8nvJSl9dXl5+TYlXktlJPD9aTbCh+TJk26XdEEeCdNmnThyCCuwT5fS9snvaVclveilGGQwTZIF/rB+1hsMRv+HRjq/W0CGelB53Z25WR7zJMBq3zDuPNkvsrzohdtQbWyCcu7teII3/veV3olUofrIURBeumlzG2P1d+OEVzlFRhWn7IzDZBiL9SnYoFWHQXQVrrir4DDAnqzjZ0tga1b3rcGhQwwdPaIdQ+gt+ovMK0+tBsQy+EJ7CCDzCCDK3ZoQZd4NN66kXoCTmDe/TvjgXZ2VWdTp62cfFIOIT64ZlAcD2iAcPQNOfiJW+tmemt2YB15DL5lG9Pu7MYQZaQ9m+M19amzvd2vLnuUznV1fdOR+zfLSWDX3509PwIsE9upvwEJmRvdd9WXgPL2yi0qoJSxjp6kTBzCBn3uDnrSW9ztgZBldz1l5o/lwdxC2+o62FiGT+mwDssJ+bl9tLHTTeYorz0+tEycyn3mdAZ3uc4cnGAm81Xnwco1xjR60MnYuGXK2XwhI+uU28Z82rWVsmhLF66Ge5ZDN7ZGY2nXo+u/Jx7vx8fL5Yq9y1pS6dZGLcvmUnVwXdjzwi48frPD6Ty7XjttKo4bZaVASQFczbwVq5voWdTpWAc2p8MyYD5lO+yC2801eKR8xy2BX7/4wHKDjPb7cYnRpMDv0clAN3h9LxeA9Lp1H9I3uYkYTebd5sTl5LWUbebNiSfTIz9PAllfTlyWue/7M+J51M5OJvvkNGnSpEkXgCbAO2nSpAtLCTIazMj9vcEo7+9tO5DXBjC2FfYSYKbLcD7qwjbhcfTkBzsjPdts7OJok3vudPogXwJYPE5cYCNgK2WkrUKYAuJcFgBTgIbtLuSVoC4AJiEZ7BmLw1DXzgTfXCbtdCzfIh7xL/Kj8pWmAN3KV0A0ISI6MNR9YFvO4Gt+kvdOD/HuReaAI9ZP15d9luWnU5TvJXCXBwlpI6VtZ0zAHqaZDxu+c1CyXFJG6D5llC4R5qIj+rvzas9+68DKvO7HyKtueOzsy+Qj7WL/pm2ME/jrHHUoB90wfzn2O/u8A/qS/31yyLxdGzt7nf6uvxljxn66fIkPgNnU+K/xUAcuzKWM6fK2BxxMr13COzCPUDcHABwY4FyIbLo+7bx6uZYOhB0mw2/CxYA/Ff+Eghl50KaszY8BXntBWzcSmDSv9E3qnvvAY9rtdjicDAPKGEUXXK7B3lwLvb6wJnTjNt8pxlqVbejmBjDEHDueB5nTcg5xncZAu3APltdpH9YL1M56Ex8cHy2Xir/N4fbv5WjZHB1tYeBuoVChxzvl2TAw8o12jvEDU96wWBh0hjcrnrRQBCP56THscinTSomyuIMy7IOVNXmzEnmguW5k5lgePv2jLZS1DzhPj1HLMvulU6aRN0Eu2p2SU083OLu/u+tZlwH8TJeTBnlSvt0Cmm3JAZUbiyw/FxDz5rSjOt0mb6K7xWvSpEmTLgBNgHfSpEkXjnK/XdQZsSP7qovTl/vQIoM43PM+2B6Yuf9OwMrX3IYEPimrrvsR933ATgcO+jcGdedJzO8CLwwIV9nlrVvXAXzsjWuvVH+4XvkBjQ3cZp+4Hcil8gPK8VIj2k9cXsBf225VfoE9BfDWb0JF2DPQNkmVw4vQ6jrt5jFobGE/stzxa1kmQJlgfGdjpp0IjYCm9PC1DqWNbGAOoj3pRLXPFkz7zMBVesu6Hbbt/dI5nMZsu1tHXG/aftkH2W7jIegTcvN46gjMIME6p7f8rU/p9QrG4VAutBUsh/Sd/dvpnOsajaX0xOwczZy2c4jzNziP+5j7jkNrHcMBr0BQ6wDe28wP5TVfxHgnL2PddRhz4OAMeWZ/Ja++lvfNX/3mcM9lFfESRh9iGQMzfybrideJ7Osc154rTsK67uYmH0aZLIfU4/r2GByFILVDqcuhLuIEO7SGwVP6ebQumx/jd06X806CuznfeBwam6SMHJvoZ/axy0xdP/mu/Oh63a9wDce3LAcF617eZiyQtypZQdx1Ym0W+qOjtawzSuJOS7fr+pvFL8HLfaBbxhNBYfP0xotCfTMoWShRFguI0418rCYVMmOK5ILW8UEnufMsj25C80DrFuoM35C/c+HJBTwXBSvdaAEfbVK5lqdMydtITqPFIflJuThtR136nNx8n9/dRrrbuNKOrKNLc2uoA9avF91W+Jg0adLtiibAO2nSpAtHNoB9zWRbIvOmIet7fhzU+9UETZyn2ycb0PCeGFDLbfBeG2AXg9Ztyzxdu1NGVcYNN5x1yulAu2ovcTq55xeQsX/Hew1vVQAbgx6UWTZhATgAEnjTJt9pkxmU4xFogB4e/adtGQez0hSwy8vdSGsgEi/gSldtI8xhPU4O38jPzkidh5771TYLL5zzi7PSNuzKof0JAtmDLe0vZJRPstY37adPiqwLpDOA1+ll2mN25rKTGDpLX/hFd25TOgZZtgnWwnvKnr7sDklwhAOUM5BkLCKdyAxmOV9n19veJka15Uy5tM9yNUCJrGwL5kvuDTyZ58RJLMcae55zkhxSoQO43D74S71Ex9GnGlN+RL6+GY8Gd3kJITIzGOdP4jvWV8cEN8ho/fAnr7tMwi+cPHrf6Fvdq/nCTytUeBhC2IBJee722EOWWUddt+54zjMIy+FEF8+c316n6Ad0GHC3k0eObwOqCTQD7lo33C7Wr5Qz5dgLljjq1nVjgiOcKfWFMjzHJ2bKJw86O/I8djouN6sX7wrqLsdbcPb4eDmumLtHelMok3LdPry0gr0r4FteuzvBbtZCN8vxTkgbP65Dh1lgNNpKQ0eRxwPWADANQRhFDstA/pzUqNOgricyFjauecLLuBoexAaRczOTA5bB4IGep1JW5E6prTCmBBctU09C+8gD0Yt0B+zlIpDlWA6WaU7Go/xWeOuJf3ftzntuj+WXm4Pc9HgDUZQbidHGdd9p5aRJkyZdQJoA76RJky4c5R7c170f9ROLTpNlpfGYe3CDJg4LYPvK+1oAQ4xUh67r+E77gHTwlGBE8t21jXaXUV/gQ/FRL8CCeHEO3oTYasmTPaYANvxyMR63tn2ATchLx4iHi+Hf2QVZN7IAJALgqLJ4VLq+ba8C/uJ1XAAXHnnwiFNQATV8aCMvyUrbFlvYIK/tt9QftwXwy32W9m6Cnp1tia6dZ9O5zCzf1zrPP4OlfjFRgkIGf8gLDxlLmHTpnZhAofWmKJ/KrfsFFMKbwTLqyZduka763v0MD3bqcgxR9xceqHaiq3K7mMn1XXXVQUHlrToZA/biJW3pKVTXeCEh7TfGAT/kr7ItA9qF53kR8w7xq7u5EICNPLwMr5uvOqzIukwZOBkSZxlZEwqg+pEnBqxjjE/4Yuy57a6He9av/HTjLMdDUfFU4z9B7w5HIaQEemA8B4xrhPOMsBSD9sZy3Je5RuS6YBl4XNTHh1aAya7ba555p708vZEe6QZrKafD0twH5s16BNFGzzf78LD6Zn4FaSXKAAEAAElEQVS3zL3+O5REYoJ5AOt+dz30+V3vcrwcbJjs6//NCtiuIK49VSmgQjacdE5VdryL5Ft/7wTKIPRJjE/iOsDOCsVkxwTgoPh0SA5gT64WghuewLHrzLRWwiJOfb0wJODbba68ocoFpFMq83EeUGhwsiOX0YGRI2CUPvDjBK6X9qTsukkmwVyn42+fWOZi78na/ZJxgjq5dIvESIYj+UI5cPcB2KlbWdakSZMmXSCaAO+kSZMuHNkTNT9FNlhH+3T/7T2lPfnYd4ZTzhVgW2czGCDJEHO5x4a/SmdvWBucaU+ZOhvB7YJfANpqByCo35HSgT8Yx1UWcVS5VmUVcItRbzCDF60BZBWAUvkzdunIbiQN5RjcLXCr6i8Al/JIh1cu/V/1E1sYGQN4EJfYNrKfXiVtAqudw4nlDPhtHmgnoJttXteRQKplknZcUfGLl6oB2gR/Ui/Ta84e2fk0b2IM2U/27OSR+/JsJOQFdRhcdYhFg0UAndRnvWIsAoQBpAF+5Qu/Kl+BrZ4L7JWNfo2wDPTKsk/bthsvALcGwO3VyTX3h+3y1C2Dei6vm3NcngG07Du3xzph3UuPWO4zZ4BZpMe254uaH+qACf26z33OhgixzI37GLtIns1PzvHZVpeRlGPI/ZX5LeMiPOPrxY41J7pMxrjHkbGOBCK7ceD752Em3d9Zjg/LLLcMY2CH0PrNGkF+vHepK+d9z3ekyXWsw6NGazBj3Ty5Lu57fsr6Ux/cpzmvZR7XdSbE0Mrw9ru8eeu7QNwK13AySMpz91gvslrzxSM8dYkG0xCDbSgPk5oVIoVHh/CbAda9XdWDbgTC5SmBEXIEnUS9bDjMO/yN8rDYUJcff0glc97RhIyMz9sceeLtQEWD75nOfVGTiPtuRF7QRmBtpu8Wcg+aHBy5OCB7n864XrclN7jk90bVbUh5+GPP35GeZTndRvpaqDtZu150W+Fj0qRJtyuaAO+kSZMuHHUgUwJXBqc6UAs7IoFgA0vc8yPIthnsKJP7fhubBg7dhqK8BghrynJtB9GW3BfbhqwXphXghoOJX/zGi8C6/bbbnKAzLzUDjMNxBZsQr0hsS7xlAZhTTvBscAI+8crlGw9Bg2qAttynv+saoFP2nQEE7JkCpQzKd85LSWknEh6CuuCn7uPNmXltd9kb03Y49dv+MjCD3ljfDcaZANyw8YwnEIPU/WIgpOMdmdZ3tb3T7268+jp12iZyORwwpJ7BF4B9pSmdt8zwqq089qhF/xlHnT763ggvgMfOhvVv292pU5lmn66Zz8QaErRKB76uTvL7MMrleI7AvndegEDmRPSOscAL9uq7DgGsU/bS7eYw6wP9lSFFMjToCNRLEA/ygcsofd4jRnrpVo09QkYguzxwoQyDrJajsSzjN3bw7IDL7E+PD5fPgVseKDmf1xVCaFSdeGNbvtST6wV10h7rVa5ZBpW5b33OJ3HcJtrg+dRyyXHiewbxjXc57Si+dHneru1c6mVqB8vR8WZZAy4cHC7Hx0fL8eZgDd+whmZg0YVhLzYdY9Vgv+XOyslkTTl+OVtuTlhsfELnjvEEk79dpxf2FIQ7k7zudPiCclLr/mZw4+5PWz0RjCZHl4Ncu9NY82pwlzy5ENOWHHy5eesm8AzAPmrHaIEYAYTn9V+Wk4uOy+9OC7Ms02jhyb70BsaTmmWSdXbXJk2aNOmC0QR4J02adOEo94zehydIY2PWcfmyLPJgN3nvyl7VQC73sMlst+VTlgUE5KPGtgH8beOVthhYtdcXj9riVZu2l4HGAlcJbWAZGFxMLzN7Drp95KW8BNrMA2BhgToF0NXH8qU80iJPwi8U/3jEEmoBUP3lL9+Wh3cv/URbzav1w/YxoCGhJojdasMeGaU3qYEaPJoBsG1Tu2/cR+kkQ7noWoIfbkeRY9xejU00svN8n34EG0BO+eKlfMyb6z6gOA9wI33aiTkGkBVp7WkJ1bXqS8rwu39crmWa+EPy1jm5dXbzqH88no2t2Emvq7uzs3O8eC4Ygc4p17yXoQ1yDsk63WZ7g6I3BuR88IUO1e/y6i4ve3tD+iDCsqcM4zR2HjRYZ5C3m4dyTcg0nW7uu2fspTyU8eJl7DiUj8FM897hYuaRvrXcO0wwPw5tYUA0683Qqhz4kI8DNsYVaelr5nYftpkPj0+Dx9lG8+A+zoME+rgIXj0vZd93srHe5z7AH+OZPtzY8rzCutu+W8HeauzxcnhQiepVa5tlY8WkoJxMimikT/4QsIXrD+m9eI8mEx7L4JTZE7cHoHmDZwsjNyqdciZwiZJkfQ6Mb56pDxlYdt2pn+s+b8IziOl0uQiz6NjTmJNwA80dMOt2ULY3CJaR+exk67JykbJecG20mehkkQvzvlOWjlf6hsOL3GRRhjfcWV+23e3sxsmkSZMmXSCaAO+kSZMuHNne6ACVIvbgCUz520BLAgD2GvKeNveyyUOCoN4/J5jiD+AidoA93DJ+Z9oYEPcA2Byn1oBKlmV+bfPY2K59/CtesbXXHAahvsuTt4AbHDYMotqmw7sWINQywlmIWLqAx+UdZ5DRNl/VSb0Ax9wzcO/+giwDeCCuKX+7n7Lv0UMDAfZyTtvQdvJIP9IrN20jyxU97fo/AY7U1/QqdBp0EMAKMAQPTPrK7YOXyk9sZ8uY+x1Q5hcd0m9+/B+e85F90jM2i/AMt5xz/FuWtosTBHLb7YGf3rGWOyBX2q7U280N7rsExrjvmN7WGefb1++UkfeMp/jQrOsvQFjq6eYyt8d9ifdn9U/pR41peLM3tcekxw1zoD1kM0Yveex1mTL2uOrSdHjCCGOw3lWc5vrNSxqNo9EG4z3ZT92cTpsNaHe6mh/PSQYqO53tdNgHPPSf8TWnSy9qrzN5oAEm6bFJG92+nJeNt5HOsYBH48J/851jxjJLEBx9yf5Z8+9CMhwtB7t5qcDd00oL4iV8w0nnO86FJ3MrbXawNyEWrOPauoOoJycDruVJgwczDS7ixQHmBWKhc8xfdxYeyJTtR0h86kH6VPoOWPSEnaf03SYwJ+DR5sygKrJB0fymQCtUt2HKgcQ3vHI67DYlJcieE3jKIxfBlF3KIPnrFqFsY24cuwnLZXSnpebJupYhKbKffe1aKSeC60m3hv9JkyZdeJoA76RJky4cpSdtUYJ5vpb70nR+6PbKNqgzvAJlJwCXtpD3yWXb4FWaIR1yD4whzN9dvdyjPX5iswCH+i4wJfNkWUlZn23C4t8v+6k6C7ituJqEX8D2A+y0g1IBw3i42msYm4rwEcTZBRxxKD/SuV04KFUaXoC0r4153XY45fvJVtKnfYitmza4QckEZ3lMOsFLeyva7uwA2ZE+5JOP6cEKHyO7iTzpDFTXqz/wFOeax5Tb2fHa4QjY985jPuubl4MBmmU4CXCODpzBXs+x7r/BPjq8oLPli0Z2reM5ky4xDfJlH9fvknF5gyaeUgcrBsKRR841lIfXPsSBSfaHD0xcX5Vhb07awpgAe6LNxiYA0oqH0nWDjQC8Vfa9733al5WOAx94Yv4ool63mXmItnehPd1nnS4mvpV5nD7/Nh5U+Ykxjk5br5zW86nBa/Ph+YK+Nr/m2+OMeikn9ZF0ned2fThgs74b3IUHxmKOmXT8M7ZlvuBj5J2d84Dr99qduptPhLs+y9DAdJblg5ws4/j4eLl0SAPLS3dZLh3QKQBTm20cXnX68U6R1+ueOEnjSY2G1oBAqa04PgFOND29Q5ng7E3JAEtEO+P/5oCyJyrkNO58BOfOYkCnd6zjuZp3hG7lqDI8qeQGLAdudyqbddAmn14yuTigeMZJ8QLTySnbYHd0Nk95GpFt8DUvNlk+36PNznkgo/vN+ulrpMvFt/OSSKAXHYV/yvVjYU7vE+/bClA7adKkSW9FmgDvpEmTLjx5/2jQrAPD0imjKyvJjxoXJQCTAE7ykvZT2Q3el+fevajsGINDuZ/Hw83OIXXvhhu29Zdn66g9HQg9ArlwZDHAA5BB2wo8qnpf+cptvVznSUzaA2gL36RFtgY0cCCykxKhGsr2tW1BPp5GTZmdR5aHQyCmvBOYTNvSDlmmfBzd5SagaOenBITSjk37qLPvqSvtMoehIB+hMbJM6uOAwjZYlms7Fr4BVzoHKuMFXCM/ICNlkdZOb/BOrOUEiLqyyYMMKi/lGmwuPSN2L+Xywr+6lmEqEqBKjMNpqc/yrDYVwGt8CA9Ye0aTtnMKY65x/9O3mTZlY/1KoG6Ekxhgt5yITUvfcHBDKI3qK+YHYz/oEIc7jPeqg2/GF/1nAHCEmySA6vHoPhv1VepS6n59an5jTsvQAeiCefC4S5yG/JavcUDzzW/rYzpGejyaZ/c7843HHO00aG3w2vNgN+dkGNi8n3hYEX3oOQZckPUusa/EJH3dYDofHGp9rzskcJvWtJud9+4u7u760rSjYgrP2bOu4vXitdbL0grIYt51Wk7STIy54chTFi9IqRAGWg1YelHPk8AzQlDoBgsaoWZg5vqbydngrNtnPuyunZMCMYlyohp9d5sdZGBZwYMXVYPa8OWFzAN4n/cq7bRscsIdbUrdt66b8jzhuQzrmol8+9J3i6gXYfMyGsTok8v34tT1SQ7qa9nETZo0adIdiCbAO2nSpAtH9sZhj+n9JPZAkUE577tt7NorLcFB9rTeF9t2SieR3K/b7qlycBCBJ/PTAT98Y9fxAquSwatetfXWBWwiHEM6RZhy/+zrrgvCloT3Am0MpAIW4uFJvMYCbyxL+EvvXuRC7FZ7h/HbL7kjnZ08bJ92gLv1oANwbEu6r/wYssMvdKCQgW/zgJ4CRuUb6Olv91na5tkOy6IIfgC+uJfglj0w8e6mXXWf0Bsps5I3aSxHALcEi+g/y4e82Odct73ONTubuSyPaZysqBfv8Wrfve51JcZg3cdmTnDZfHksWmfwELc3tmXS4Qoj29337VBnjKVzQkvsJctK4M55u7R24jMWkZiU02YcZKeve6VLJauXvWx7DZC3PvXCx5orSnfoYw6lmB/98kYc9/DyTezBfVYf4nXnOM12j+a8TNv1oQ8K0Kmaixkr6EZRjtOOZ9dhzIY5yOM5wUo8ZOknA+7m0XmyPWBbqcuU4fYAvHuMJTZn0NohZcC4SEMYz5xfzBflWm6p38bBjDvxndgp8mQv4bwcnlj/Dw8Jw7BZjo+3MXaPK9pu8XsAc2cfrTleKzwd1NuoDZvt9XoRG0LPzkAIPsHwws0A9cvV7HpsIVgYVlZfszcwgKrfXmr+0p0+H4EwKMuiw+bBSuxJ2byQx3KAD+K8eOHpqJvsclLvFK777bRegBwnzO2mTVZUK3vGJMlHMXJSythADvBNOi8aOeGbxzxhcbkjWbm/kEW34bXsciCO+iUXGE84Pmm6VvLkfL3ptsLHpEmTblc0Ad5JkyZdOLLHp20a7jld7rN9zZ60XHOZlJF1JJjoMnNv70/Fqi2Qs8CPDkQCZOmA5iLzSvsBnOpvvPywC+xxadARnnmBmUNCFHUOQHWfOKzJG6AzQABvX7eNUPYY3qHpWFRyASAt4kVpgMKkBTwBCDa4j8zze599AW/wbsDV9qlBLGy7dIgCfLLDETJy+AXbgA41kR5utnXsWZd887sDGbO9aS8TC9l66PL32b522ulsPLfDdiwHA1lORx1WYd6QLWBT6U9933TTKdgLDuBQDQCQ5O9ssJS925p4hNve2aNpa1s2/m2d4l7qHuWgDyk7O9btow4sdP0GxXIcJYAHv/DkOQAvaAPCePsD3NIO5rJKWy9l5CCpiH6ir/3Yv/sAsBBMaQTmdv2U2BPXUs6MVeZX56WN8EYbO8c189CNJ8ccNlBph710pDTuRNoE6z22ycMawssqOSSiP1mbjOfl+sV9Y4msU8Q3h68ihwFJTCnHk+XTHc6kl7PB5+zvBIA73eiur3p4tHuBGnLcVCG7uLy78Awr63W9wjaQEKD3ZCKvxgwmXBZZP8KQyoLQAD294KRXaQKAXkwYZAiODs5YFQjeoQwS0PTC6ck9XbKtvHlakYBxAp10PhOFB1R+52TqhdYLOzxYIVESBlR6PXd1micPuG5R7oDYVHjzDn9+1IHBD3/JV05e9L37i2vehCKPboObJ3k5WXay96SV9aeuuj+7SXrSpEmTLgBNgHfSpEkXjrBHIPa7CcQk6GVwM69Tjg3QvO69dgKDCVra2QGgCQ9byLaK+cp9rffIOLBUWkAqE3aQ48jSBkBUrpXHnA1w10ceyvR7VaA0xMuDjXyWkcEHQBFAtvoQmxOQuoCN4qfS8Bg38gTQc5nZN0nZz/CbTkZ1Hz6KB7/4DbvOXo70mYEHA3WpRyN7MwF1A23dIcWozAQ9KCcBv7S9fD09XysNL8cr8uP/Bt+MK6Ssq5zy2nR7XL6J/Pb09VijLp5oNkiOh7hBZMvUugcYjH2cB0PIxaB/UrahA1U7kKgDsJzGuEACh3wn6DjSi44PKPGVBNlcRwLBdkSzvW+dr7/Lm5oY2QZ56SvmDF9zmBLAUQ6v0ju1w0dwFkz5nAfqWS4ex6YERrM8ANLsV/jm4KGbq9zPdlDswE+nyY/Xi05/Ol3IF6sVef6rNcchIPy0ejrqGTDmKYy6X2UAFjtmeoagzX7pwm54bORhg71v3S7nZ94f5fU8UN67B1eMj+M1GkNNCyfZGbfb4A3L5uho67G7An81Ue28d9dEmjjoKB5lYQE3Ou8NAt/ePFiILFQ0NmNLuYHcc1gEL1A5mfu+Nzzmx4pnvhiY2cn5SJbz5CDIcvN0zp05mkQ9wL0AEI/Ki7IVKNucG0rqtJK5v1J50wU+B7k3CD41og4vxtmnGffFC5Xbb9maOtl5I+iF13W4v9KrgDZ4s2zeKMuHB9m/kyZNmnQBaAK8kyZNunDUeY8BBALuJPBim6QDcIvSY817UMeI5ZqBPGwsvrFj7GBRdgJgpvfD3gOnDQSf7I3xbMW+yTamg4UdTzCs0zimPYAydrThd/FswMN887tAvNe+9tRwBoijT7he3nnlxVe/K8/LX342FESFniivP4eycDm2m2wXdKBJ2qcd4AMI0Xl/AUoTPxivV79Mjpdakd4ysW2eOtsBnCPdrU/n8ZZ2odvXtZcPL7vz48g+rEg71G3obMwE5Ow9W5+SkfnosAPbhtZF94vtauxYHo23vhvM4nCl2ss3vEI+ILIXpJ3ELKPOPu4AKrfR6YwfuP5qR+oD4Q5M1Q74d/lVDmEtjBWlve/5DT48vg2SFWXMY/OOXoIt8E29NdbrMKnGtMdXlVHXqv8ARmueYX5kHrT+V1p7tgIeJh7CPNrFB86+Ssc72s/fqaOWk/WsPsUfhwfIBSzE86rJvHhs0Z5cn/Bedt9n/7qffDBgvfIcQhkcnDgkA0CsZeV5LccbZFwMkJYx6vArOQfm+pU4WbcGJ37nMhKoT4yQctyGUyzsFNw9OllnVhR3uYxOnZa8HJUX7/bnenN9wdrJJLIV2PqytaJErg3A8Si+A06bOQaaQd8cwBaYQbbccKRSGmxN3lL4eQLmiY80eaLRTYRe9BIkTNl4IeoAZ+clHZ7BOdgsDyYNn8zTNp9OwaMB1vzO3+TNReFEdZrHO3ICz7RVnjd03LO8uw1D9m23qfN1ExOv3fU9mWQ5PgHySYsfjbE8kROb5W7CPI88mK833Vb4mDRp0u2KJsA7adKkC0veG3pfPnJa4LrtDu6nHWHbww4xIz742LvUH+917XHsR5TJn8CfbRn2+sS6Nc+2aXJvblsEHvCUtddWGrv1zYumzE8CRGnL0AaHdMh2kYfHsd0XGT4gQW/a4P4ykNXJJsm2n2N32p4jH97X9Te8ETICPsifskhQyDLy39aTvJ96nR6nabcm+DGy2yoN3tuUzVO41iU8atOOMyCVBxqAOHgBgmfAD+ALoCblVB5emgaP6VhmJzbykx5MxDY9OoW9nBhChh6xbhikQxYcOkAlQ7ASj3teLNaNGwNjzF8A4e6n+973VM8qHS8vs9c9OmE9rdAnVR5AqPUBbCCf7DaYlqAYem5MJvXEsasZswDszCMeH45PWwRoTZxtQNMMz5D6gS64/EqH16jnBdrgfurGTodbpDxyngebQBbMr75n4NpYDXKn/NRF2m4HPL4T6DS/1rnEopwOfWQOs/MgOpovkEw8K3kxvgRI7GgAua6SL72F3afZNoPbPoApcqggrnEfjCk9oa0f27i7gLsI9/jk7xXs3Ubj3dWxvbY5A0aegjybkeD5pqGOzZsbCm9MmPyYAPwIjxvtcixsGurBDSEcL6JWDA+qLCsF7gGTC19uLkzU58dnUDI6MMFsvv2mVrc3Bz+LN7yShkelckNgJclFI09H3S7zlosy+kIaA/gOrk8+x3zi8QgvfF1a15d9Sv3WO8o3qIuMPCizHA9UrvH4ld9SmnKgLN7AaT2eNGnSpAtEc+abNGnShSPvKdljpzNF7vdJz7e9P7t9qgEL1+O9u8vmMWLbMt5X28i3s40Ne/bAtf/Fiy3ts7QbUi4AXgUsOL/lBPB2z3uetXUSIK+22DvV8oRf798rfdVbe3PHRLSMLH/27gXwspfHU9e2FfUmb2nkV90AKpZX5udvyx/AociPk6c+ABQWeEbMYNvGgH8GPu24kvpom7BzPKk0BoToS9/PNu37jUzLq9JelqTj4KC8Ri1H+s8vvypZpyOQvVuRHV6BtsMpD1l7rDg2NvcrHzGgU1YGdxLcrjyMBTwUq6wCDYkLWn1Z4OMI1Mx6ykvdOlH3DeTCSwfwMv6L/KIqsJoO6/DBUF2rvnEoDOMCyMAek25TAoEdxpI64787jKDLz9/gAzUn8ILErKerF2AOXQBnsicxeuH2I0vzk2ly7I9kk3zluHN5Hu/oGWMLLK6IA6RuXbKuuVza2s0P1vXz+ivb34GrODG6riyDNSrl4PHH3xAHJawZXf5sTxcf20+4eB3IOpG5eTJ+mTrjcXCqHzsgV+Du9t5m14dbT96TG8fH22sudwf/nhAnKzkoc6FiQeW3J4Bucs/JgBgY2UCDyCwu3aKUfJm3TJ+Tghe2VAQvDN5AdIMxB0R2bHcqmR/z5KDdlrM7PScPrlGOvz3wfXKfEwJtyYHoNPmdiupJxP3qeCg+Ce3K7CZu61ROap33rOVPvKzcOHqCzc2aN4Gu13pJvQDJkyZNmnTBaAK8kyZNupCUe+i0OeyRavvHxu0+gMJOKAbgbDMYJAaISKPf9kORPbyK0sj2I/LmP0EJ20n8XQQAhwwylMONN14JtAKo2NHFAJvtRtdn54pKV49h4+VlUDNBSuwR7KGK0wkIVPzzmLa9ZBPAKeAM2wGZFmBXwF32d9e/7iN+wzMgEvGKkSOAZIGGFVqivqs+2pfgjAFenGrsqUy7/Ji5yTa6Dxj42+B3Ok2ZD/e360yHK3ulJkhrsJ2/O1wCeZmq7fRLkcNcMD7Q+8QE4JmxlACvwT/Sc9+YCDzasa36L5989TcyyXvuqxyX5s1kEA/Zomvn6WrWlXZvzgOJDRgATBvedRsj6mTiTzfv2p7vgOQCpjtQ0bw7xANloS94v2aImsQ/fGiG/icQmDwkv+bJ/YWOux7yEX4n5+h88ZiBaX7n+7Rol8OnJP85DrLPzBvlMZbcz4mHGUdK+e7TgQwF4v61LhIL2/pmvbTnfc77XVt9nfmCObfDm8jjfjWv1hnPs9mek7av7dh67fLZNvDKU9njg4PTEA2mBDMTXfdE6QWEdL7egYm5SHQDgXo9oVC287sTqMtCcjtQcDZIuZB0ip3AcvLnbyYUFjQrbNdx2e5usBQ5PICVy5PTiOfRRJ4TYk7G3nR58CUobQVkEXEMMT5eALsJ24sb6VOHvJHktM6Lq9O5LWx0PJl0OkdeJkrzYh6vhboF+HrRbYWPSZMm3a5oAryTJk26cGQD3jaP97O+lgDGiBIky7wGjgwo4cTAY8mZpyjLYA9rm8SGagFiGP4YxAYYyvu27uFNCEDgJ/d4JBqeAYbwPIVv23S2BYrKu7H+LnDGdgs2hQFAvNYqrb07K13xgp3o2Kf1u9oKaAuwC1iCp6yB8iq/vH5pDyEAeBlY58SSvyH6w0AD3qIY+ngejl44Tt+k/cx3Pi1pEMG6lHnNs3U3bbfMu6+9nU5mPSMQzJ6oxhMSgMz6EmTlkXnCEfjpTac3/7Zz+RvKQ4yiBEEB00hTdfuAwqCbZZMHQXU9XwyV85Ftcbcbop7EBEZzRmcbW/+st55fapwQE9l80S8j/CFl6fvk9TXjCl15yJ8xWrJPRz7KJSxL3U/nQjy98ZDNuMTuX8+x9e2X8iXOkqBh9kFiUF2/0a+MDV4mln1iRz/rQOod7cl+6fqqu5e/zXt3LdtsIJ7yHdKAtc76kgA1lEAyabs6oJHOu3+8Zro8+LPMrwBlI55wp/sZUqa8c7dz/Gb17j3Rl3p5Wv2Z82YyzG9vIrzwpgC9uLqTEgBzeQaGO0XvvHq7BShPtnLQW5m7wQdvueh1myO3wxOZZZIvn3O4gOxcd3ACop0XNJNN5idfKpL5T9m7DSiYZZL6MVq0c5Lp6qU9LARelKxXHnRFPrFOvbLcrDd1es+iw2av22Dn4KfejLNi0N+nPx58XWyuSZMmTboANAHeSZMmXTjyXjKBXBuwgHPe53f2VmfP8Nv3XA/klwobqHL58JC2F3t/e7MW8fi7bSj204CMgCX1fdNNp+W6jfa+7YDOBEL5beAc28Fh11IGRQW2vM3bnPXQAogp/srjteRSoBPpkUO1FVCEl2A55AXgKnzgqQuwC3Bjz+HOztinR9YDQkTYJiv7hnsGtjNkXfZBVzcgVerbPsC0A9WsS7bnsn2p952NbfsVHm37pcMUbTcY23nXJYbBdQ4CKk8dUkAAcOgOdaBPbg/lOY4rMis9sucmPMM3oR8MtKUejIAzy8PljgDt1EXkmDhCUgJxvu65r5unkDF6xqFOltOBe67D6TIsSqYz4FzUzal+CR9UvAG2V78xp/rpY14qZ/naK76oA+v4UKb7e5+8rUtdm1NmtJsDJvPi38jbfeP5IAFhqMPrkr8irzHZxn1ldPrrNoJjJQ6TjoSjMYJ+EhamGxP0S6c3/ttzUuZhHTB463Yj93TCTL63ctgsly8fn9GFunZ4uPXWXdk/rjAOFXd3e+WEZ4du2F3cIIBceLuBxb08SbLnZJ7MQp6APDnxN/VkXjYNKXDnc5wdePcpGG3J00vzym8WE7clJ20PGDrQoC9p/M2jIZWGmCjwZj5y8cz2M+HQ1m4jafmwYfKk2p3EWv7k7QbaqO+y/5CP7+epdRH9lB7Ulkn2Vacj3cDhd4ZUsIxJw0bZ1/L0xXVPmjRp0gWjCfBOmjTpQpKNOodIy6fObLCN9srpVWXHFNLmvtjgMeBu/U1cT/a1BqX8CCveT7lf9h6beIPYJX4PiNMU2GlvKECPfBFbyiDtEAML7P3xts13XaRci6eK64oc2cMXsIsXMF6xlFu2F4/S4hVp+7XaW57KfvEcNhtAisE5/zalDNzn7lvi/2IfFu+ABeSrNhBCAmDKHs6dPZKyNwiTaZL3rh3ddcuH/vG3+y3LOY9vqPMYzt8eS12erNcgjMMIps1HWjtMdR6JfBzCEv0mD0Bf2q/k8zjIR84NyiXABn7j8tD5lHWCX/BFHN7UhbSxOQDJPvf4sV5wQGO8IcE690mWy+EMcx59wTzjdtAW5kvaWnMjZRBjnDQlpwofY12scU7IGfrGj97bEY22cbiWMsm257xr/UldSnwi20oaXvxurKY7PPA8ZkdMxk03hrOPunQmj53UJfOHPmV/Wz6WQXpN+3oCqh0v6KEdJkmT91x+N7eR3nM/84PlnvOHw7x4nkk8jGun80d57u6u7/45Wr13twyt93aevOvXmrkqqUKbU1ELJDccfiTeCmAA0MJIQM7M52BwPUnuwEybGyl3TF5zXiYUu0RnDK2sr6OcnFIGnUu4B583h2xSunYYfExZFnVe0AZK97mmO89oQ5Bxujo5uJ48cfHvDPdA2yk/PZq9cCcAiw54k+zJGBnnJOCDDXtiu37L2RuIWxOD1+243jTqw0mTJk3aQxPgnTRp0oUj7zXTG84AkI3nBDPyu/NQtK3C+yQoE69d6sOr1iBLEYBEeo5VuY53Cg/p2YfBC2gLqFt/l+djXSuAt0IgFEhSAMrIYYTvzpAHbPDevz541CFHl2c7xvYbZRJigbKIXwsYAODjPB0Y6zr828Z/phldpy/xhMY7GHDNbS/+Ki0vVTOwhp2Susbv9Byl7hFIO6IElpIS/HG+Dk+AOuevtItchsE6e+C5HzqPwY5Xjyt7ahpDwHsb0AzPP3Sf8u3tbkqdchuJ31xe2ZRj0Ih0VbbDiZDWhzO0sfQ6wzkUD3h+m78arwVmJk5TeascQpRQVh1yOD42xPxhufOCRuYgAOM6fBmNl66fOgCz5GZQMkFL82dwzfMEoRUYP+QHz+JwxXN2HtrQt4Cp6E3ynfpocA+sKPu2w2NG17M/OJAzrpTYCTGEAUo9Z1q3s/zE+Lr7o/SjvFlPYmzwzAGm+8FjlXG5D8uyXnQ4UPZx4paAs9zjiQ/vBYwX+QV3RT4kzb6hHn+f3t++UO20jm2YhhNeTtJuM9ZL2Q7QSW5S8OXLJ16/q8evwVsvDmcrPMuQT6A8Ebqc0emRg/+nN2o23kAfHWflMEDYAdTd6UGi593Cb5A0NwRWUpfnjnQd+ahAt1jCnxfEbmI+qxTLFeQYwPCUcZEzbz7G441SN5Aou3u8ptv0uS3Ob48Ix1dOYNl58dRO2XuAsRH2xpvTNxYw62fK3HrjRWbSpEmTLhhNgHfSpEkXkuxEYHvEAC2U9gpAarfXz/1kvgiKfa5fjFVl+kVadQ0Q008wwq8fPYa/AmK8D8ajif2yvZIMIBMCARDMHoSUbbJRbflZro6Va5si7ZDO24lPtQcADRmS13x2AFP2XQdgdmDVqIxMD5AEjwC2fqFbvfjNdnKCv/7YuzkBXmTnp1ETLCnyE63uo4zpjI4Y2AKgpm73pe3AjDmbPFcaALyMrwzPDoFh/aefaaNtbMs+MQycgEjrx9UdJgPwE1ATwnPaOEpiGOlFid7bhsxxks5ebhOgreWcGIfL8djhWgKMyJbY2oC0HRCZ7ey+GWf2CjVG4zkxKR3KoMQsDACm3iZu4rLrb+YWOyrS9/DJ4Qv1GpfgYIAx4ZeUpZMfc53BZJc1AiW7ax125r8LBHfdOVaIqY5eoP8OGzCa01yOwc78NsbkPsly9hF1OLynX47Gtz2qR/waf7LjJGkYP6kr9FvKmoOfHNMuy3kcttU64fyuz0/IpL4wnk4A3FUQp98F3G7l7dOzLYPHayOro+WizETkybE7rSCtH02wkFNwkE800jO1y+v8FhJ5cmC5LLeB+rhPu+gsb2TSOzR5tAI6H4uSefUkxwbKb9bMRSvlvG/DlOm7ycMbNZ8o5aMglgu/PVFbngZWKaPaxcTnuEbmuzsgMKjKhORNAv2UGz6ueTOcZXry5UMsMfrF4K4PCbKtyGbG4J00adIFpAnwTpo06UJSB7Rx3d9F7CkBworseMAe0zYQj+rbmLadAnnPavDJxqHtFfhIm6oAD8pin548pMGLF2ql9+Pa7L8tpxGoS9kY6nihGWBKj03yJUjCG+TZu5dnJS96c1ob+O7PtHfy2zbIPmB433WDe7SzvHMta4BDvKHhudLWNbwki5f6jZenQSR7KOIxDA/YVLbH/KI+gzj25HS7DaBRd9d2y7aTr+9ZPmkHUr6Bet93/7lsy73jH5lZFu6HBLM6PTGI2cnJuEhnY3fgVOIaea/DU7p2p7z9O9PTTjw8aReHC0kdLoG97d8OK5HtTcCtKxsy+EWaLCsdsUhHP3BAAXBY1wDMeRoBwLOuc+iS9TPPUH6lqQMAQr+kXvqQjTanzqQcO2xkn3yKqDtlxPxo5ztjQXaey3GV9Zm3xGbcF10Z2Wfmw/IC3C1y7GKPP4dD7XgcydNzCPWMxoxlz2+/RA3+s4/y71xHUw7O43SW5dHR8XIpwOPLq74fb712g+/6sSmv3RPArzr58rIx4zn55SLrynwa1nlsQumBmpNm3stJvVN+hJKxoLoJeaQQBmV9OpOLfOZxuVZqB+W2rMiH3DmR9wJtmXbKMCIDyNleZNQpj2VsWfsUj7KZHB1j2CeintR8UtlNBu4fbxYAh+l/DxbLxBsN6kyPBU+MPPZk3baeeSNLO9nk5Gbmavuk66PR6eVbm24rfEyaNOl2RRPgnTRp0oUj7+m9t+We0/mbPPb28h4WANhek3Y4sAdQEXl5hNUvELIt4f1yvueCctjjO05gARZ4fNkuoT0AizyqnDFMTf7be+7aj1f52FkFquARXGAL/ONhhjzTIxe+7nGP0706ALT5rrrKO5Y6R32V/e02pB3Ype1Ax/yNrVI8ApDb+9ZPthawW7IhDAbycNgA2u3+R3cMuHRtMKiTbel+d0+hpkxc/8gWT9km5Rhx2D/fN3iTNn6OL/JbD82b28S4wFb0uB/ZcR4rlJN2qOWTgE62379TXt18YAeylMFIzgYhsx9Td7hm3MU8doDeedezz3I+dZqUY/5tbMN/Ixtibtd4KhnxYkXaiHcmMjS+AT+pOz6gs8yo17yTvtN/j3+3I/XAf3ucdXhPlg0ITLgKymMd6eTqMrv+Mj+dPiT+lTia53Hk63i4nZfuCBdLXbMsct3rQjskruS1Ed4yjXlGxyjX8X697qdsR39v6znezkN1f/fZyrBesFadcXrtJP+ZxxQqJkfEI3Fj8gQnJxVvWnIyR0A+YU4AOBXEoF03CTufF5CcGHKT42sWdCLstD29eT2Y8mTHrvk5APjORxRSAb3QkiYngpS9J5OcMN1WP8qQfdqVy6LWTUqcfKSHgCfDopw03F7nQ89Iy+YF0J3g5dZZTt2SL/cfpzyUWfd8wjbSR67lhgteJ02aNOkC0wR4J02adOGoc6JID0GIPTx7T3uAVbryELMN5ZeaYX/4iUCDD7bVbAt4L297wnymfea0jhHrmIHZLp5880vIDMJ1BMBQ+3l7CuOxy34+7b0OgHR/IIvy2AU4dT/V3wUYP+hBpx6KHeCWgFIHWnY8dP1u3k0Gbuhn7GN0BICg5FGyKuC6ZFRpCBVg0CEBo+Sr49lpRmBJBwzaFu4ONjpwJe29DtzK/CM+yZeOU+kdh77X7wLzUrcSpHS/dO0BDPOhDoccyVvK3I5iLjdl7+8EKKmzs/fT7ncdWT5tsPyK8unUxD06Pck6E29IEDwxDtvnln8HclXM75Rtp9s+ZLK8HHKmqMZTxSKuAxPiiePJbk9bYyfGOOz1CqhnJ7i6Tpztup64AwBrHlakjtBO2pZ60s3j2RfMywaPicNruechYvIywuyyfzNN1y7L0+UT25Y8jrFL2Z77cq0YydHOhrQ/+e149cFnzi3WNQ5Y/TJTl5dPlec6nXMS8XYr7MJpW7cZjlewdvvutFOH3M2prh8c716y5li79Uo2NYqGjxZsd9LI25aysiO604ZuUBu49eDqNgHmy2AgZXtTxgA1jwa2feLmkwTzVZSD3R1vWZpn85MyyfanbHIhcXl5jd8O+OxyvDgbxIVy8+GyE6hGZqnU6EOCohkawnkz8L03MVxjE+fJOCdX8tizwKdElofrtseuB2TKt/jKIPiTJk2adAFoAryTJk260GSbpdt/J7CaT7SxZwVY4IVNXYxegFE7NZgH8nlPbpvJdoK/fd9xTInjm/FZ/cHRg9AK8D3yqiPEACCy7QPSlAwKkENu3vMjt85o5lFy8lX6qu/Vr96W+cAHbkHpzos5gaLu744SxO2Avi4/tlXJonizvVF/+300ttMNXNvbGuCqA9yQv+/ZpvHfZwGGMaCT8jGoh2NO2pT0YeIG+wAhQED63uEM0w5FrtYP+LKHJvmRIX/j1YkNabnbXkW36cNOJuYndSBtfssj295hInjUpy51/WE7GipZvvSlVx72jMA5Xgrn/uuA/SIOJ9y/4AcZzhD7uWu754Yi5ozO0TCvZbl2xPM8/KpXbeeHOjypPDVPGDfyfONYvcai4Ncvf8PZEUC3DmQS4zE+4f7qZGoHRuftDgBSNnxbB8FXSkYOrZMOf/7u1ppMm79TR3I+MZjMfJEv8/NhF+V0Yzy/u3FjvjyOzcMIOzMW5KcEuM58zZzutJaF+Ycvz8On8+4u7MLajuMtMHsyTxxf0ffOf1AevTuP1TXuroSBGE6u5CKXiujNijvAv1mYEijrJqQEZBFakRcKT8Iu7xTNvrLsbEPmc/n8nR3DtewYJliDtqkw3GfR8kZpJIucnEeTsfNZUbrTD745ceJvT6iWORtK94f/Jr0XmZzQqNd6QTp7AnvhtnztJc1JNuUwkLzgsvGpb94K6mD6Va5jA6Gj3OPRKCYdNpC5MRhNrvsoTzWvJ91W+Jg0adLtiibAO2nSpAtHGc6sKD1YsRXsgJD7Y4Bd8uIRm49KY0CSvsj30t5K8IB0pLXNlu1xvRi2DgEAMJsv1SpQ0m1OewhbwPtNG/jVrgIcsAUqX/1dHrkJ4GSbkIcN/PRGKyDHLxeynWSDHIJ392valdaBDviwLWubzOAuYJ3tlZIloFh94Bs9wJYhLwBv8uFHhtELgxXpeGXnF5eV4EjacIBFrtN6mQBbgiTWN8vK4yC955zeMiANfWoes3+cF9Cr6uSFg/UhpF+loz8gA7/mxwc39KPxD/QdHqof8xF029ket+43913ql8dB4gSWrXGKHP8eU8iJe6MxiV64TH+SD8apqfISL9ZpDe6fR50e57Uqvzx3K2RLzQ8OSwO25Pjk6EhXJjqXMqtySofy6QzSeJ7inufIxFFSlomvjOTAPAeWA/ZT7Wa9Av/Ip0z4dttGsk4wN3WyS8e3D1tyHDu9QfaOh+ybDk/KMeR6IUJ5eO7xQSfj3U/ceIxDzt8B1rl2nebZBmRY+V4Tnh2zwLTluVtp67Perzi7FXv3RFmqgD0D1kx4QFrxcvFDibqTEws0QVMLJid8k0G9vO9BAMCHO7oHUxdewPywYHhDxN+5OaJeyyM3HEU+Scy25aaOa10/uE7kCo9eFHIBMD8+pewmWQa8+fDGxwuIwXHLPr2ovThbfi7HcmaQUw4nY/Yq4DEyPxaRPNImu+U7LEe2gccEPKD8MVg8adKkSReMJsA7adKkC0vew3b7XANhgD2ApbyhnX1rAq9pKKe3KQBq7p+9Z4UPA1+USTn8nWCmbRzv88nr/S+essjBIHDKBc886mOvD0BcvOaLxGzHmP+0+8oTr/gq2RYwXFT7eOL8GqQGROJ+vrDHoGHu/d1P9gbz31BnxyXIS38CrmDHFNj08pdvX8JWfKIzlI/3HWCY9a7KyLB29eGlUeSjbh4vtiew7fdRe9A/h5dAb5CHH4s3sGm7v6j6iEMO60kCXFyzjVrlchhQaQq0A5hLgBj++QCkFt3znmf1uABAA/COp1lpAOPJY08+5giPX9qKVyf9nY/Le8wx3myvpv2doF8HZHm8d2ET83fmS2e3DmDb5zBksL6jBNoMEHZtsJxcRoKhrjvbWv1Q46D60e/nYT4onarrNSdVWpdrHc4+djhIPKAJQ1PleQ6x/rnNbmMnm5wHMy88Fd/MCcwtPJ3hsVFtBV/p5N3pSYdjZZ9m3qIOoyK9DxyzTucZ8ZF5Ldtcbw0qu5703KUc46DcSxC4W6sgZO4xdaVOHy+HK6i7vXB8vNHhwCmjpyEchFsWKAy4u05GO3C3Xri2ljXwrnWHd5Nzl9ZgsIXTCcsDxItLKm6i8dn5Vmzq4jH6XLy7jZMVAr66U8siL0COz5MAZQKFOQizHbSx6wOfjFk+3iAiO/IZtOa+6+n6xAuZFdA8mcc8oczNqmM0W9ZuUy7mpPOCzn0vnDyOYcAakNan0uij87MI5uFE9+iNJxg2Bpb1pEmTJl0QmjPfpEmTLhzZWSU96zBQC0grSpsETzDAIIxI773Zoxps9T7fdlSCGd7T24jtAI50wOjA6bTvbHzbuQaD1zZUAsbkBahiD+062YuXbAqYSBCiiLjFeEfWY/VVdoVgwBkE0K2Il5IB2OIlXI9kFxCYfUG7DXgaTLRtA2iSj6V3nnVpz9l+oJ3WoeKP+gscom221/w0JSCg+8f30TvHWC6i7ZUHW8r9nTpAf1qP3L7Otsx87vMO/KZ99INBVjsd2QZ13o5nyLzzN3pRAG+VUcAujkToIXKr646RjGdkYhCpBxAhOHwgkEAQ7UnAqtOv8/Jmui79PjJgWWQPygSn9vEwAr88h3o+cZ+RJmPE2vO5A/c6nopK/jfcsP2bQw/C39CXjKcCPusehyxgDjUm628OiBIngF8OcRiv1ZbSKY8F8Ab0KbGWlLHn8m5e52/4h0fk1R148ELNbgx1uFpiQ0lgMt117qU+WIYZdiTblnKx/nQyYX6lXI+nBG4N4Ha4HWPWcaZz7Cc4bswq25Fr+2Y5Wo6PD9YwDbecjL2thy7pj2peDC/w5eh42RwdbcHhEyBum2n996Amslv2K1H+RiHcALt5W1kSTEPo7kgv+s7runODYT4QoCcOC9qPRaFkuWi4UwxipsJRTjc4Ul7wzCLcLUJucyqgldX5PVF6EvZG0XkTdEV2LGi54aOO5C0HRoL4Tu/FPSdwLxbd5jXBYTYzeSqai4T73CEYirKvqJeTGwfkz42oy/Rp19USfXBboNsKH5MmTbpd0QR4J02adOHINgd7bAAiG49FBoZ42U7dq/2n4zae2GJL7zWZQJj3vpnX+2r+tu2SdkkCc2l3pf1jZxKX5/2560/e8KbFw9KPvZPGnlXp7QUIUy9NMzBjZxs7hfBSNYPulb6AYfqHl74ZDK+PY4cCkjpuMOApNknnmMTfaZMY2LGRXmUVKGPPa4CiBAYACBP4S5DLNhj2MfI30GK+zwAHcbAxogRt03ZPHbbupr0JwY/twA786mxQAzTpWd3xA2BXRF+iX75WhO2HTo9A3uST8BoJHmU6+ot2pXNXkUGhfWCby3X5+6grs+sfp0+5e9ymrWlQywQW4fKQe3oRlxw9fxikyzYwVsh373tvrxeY7ycHCMVBP9UYqLmiiHkr5YBuduBo/XaeIuI9MycZ6M9wk50++3qCim571VPzJNeZczqglDnS9zxP2UnQ8u5+8zfzS441g6iWk/l0/7lffW1Ut4k5vpsfE3eyriZ/1ueUJekSFHaZnqcTIzPmte337cA4Ot6cmbvgebsGbcM3HBWouxwvBwXrHm0nqk0hwyvQuwN1T6V85cLkRjLR+LQzJx461R3nBnULnTc6KVQalB2beQ0i5ul0twlBaInOc8JrodNJXTyhbgPVedpm+1KOlNMtoFbABEbdLuruTk+ZOP23wVHLgQHNZONychLxoEuQ1XqUPLld3ii5X/0ogeWYPJh/gGo/DlQfFuA8hbdsCfeQp5SdTu6bVCZNmjTpDkwT4J00adKFo9o74jVqIzydJwjHxv4UI5/9ddF5j+dC6TEH+JaGM5R2lr0Evd/NfTC/016zHdXZDJkWSvvHdhn7bMIqlLzKKy5DVmS7LDO8JytPhTLghWUAsQ7JVp+qp+qoaxXSgTAFpMknTjMsAu0HRO5C9KVtdTVAWhE6U3XWS7AK5H3AA7ZepUUVrsFhK+iPfOTbMvIn7dPuPSzWj+x75882WSf4NkjltnZlJm+ZpsrCo7Irs64VGFfyKco01DHSV9vxxMylDQWQFd100+lhAHxWndVPIy9c+LOtinw6QPQ8OQHaWd62t7OuTg5gHGnDOta2yYBgAlxJiUkYdOwwIse6dbvz5eW22xOHSYdAP6HMQQZjgvkA73/SO+43oTnod4c18EvJiBme2A565jEIH5aTn06wTD0G6GuvC/s+CcBWHcQXps6MIwzxQsoEOT1eEtPq5oLsN69v7rMcE8ZZrLcJnibv3W9fM9CamBH8WybIKMen+5g0GdonxzHpuoMM87z9HG91bfXU3V485e30xWoVc3d7fRt2obx9Dy5vNxsnVRe4uzK6FrgTcHPK5okGgXQMu/PojAROc0LN+DQ5IY02DnndHZl5LXhvKpzPiuwNGOX5sSR45oVb9vyt30ySCa767wTMR4MkB1AHKnrzkpsyT8w5CdIeL/6cWuWE1fXHaGFx2zvePAk61lHKBp5Hj+N4E9XpBfl9+s7ffstrEnLKDZI3Ggbo951mT5o0adIdlCbAO2nSpAtHeJ3y6D+OAQYdirxXxFHCNhR7bbx70z4a2TJc6/bCpgSG9hmZXb0JtHVp9wHBHe/edxvYLEKegLB+CtGgB3LlBWSAepXmVa86a7zbRqj0ABgF7hbggoce/UC/2fbzY+F1HZAH8MX57Kzj75R1/k25BRbW4UG1A3CggCZA6QTsDIrYvqvfhMKgDXbEcR8noG+bznLv2tEBINadDBdopypkZv2ysxbfDmVhhyP6hXFHPNyizt7NMWPZmUfyk4Y68eS185dfyGVcwS8mB5wmTb7bBuDRtqRxliIOi1L+XCs9BnjONqXTGABvglFFhCBwP3huc/4EYYsYlwkY++DBWEsHjIMJpE7lO5OMQ3huxZEr5ymn57f59KEET2MQlxcgD7k5b43NCrmAx69DnhhP6eKmI1vimJOXPq+yq8wkt6v7WFcIKZL4Rc7RzDcdBpfOnMZ8RvhU/m3+sg3IMuvbN8eYP5dv/Ure7NhJntRHg7s5F1o30hM6x5MdKjO0iMst5PWk3u3dirRwgssWkLs65J55OeLxsjkur91S3Mvr7zNCWRkrn97TctYfa/8FEx5EKVgGrSlPCHJi9eSVJ4umXLC82OSJqtPl3x6QVngev7ELuTcTdJIncxZ1TwrIKN3Ac5NEek9qnVerFxf+ZsHIEzLX052emVLp3Tfw0YHkeSpN+tFGNMvONnjR8cmSy07ZZZ+6PtpkPuHbfADa0n9+JMLl5eRlvbOMOhlfDXmSvd50W+Fj0qRJtyuaAO+kSZMuHOEZCsBhANF7T2wH9pf5VKDBLtsNBrvSoC7yHr4DbW1bQKM0/LYt5rLTqSLzdeWO7LEEdDM8gePZFmCCh3Qa8QbSy9OOuKnlwWv52guXR+LrOi90c58Z1MIexEZwf1ZZVWeVVWXarkl+O1DU/WEA0aEfeJlTAT5FBfjygqbOdrMO+DFg26fYKn6hFwS44BAI8AKwCnCWvCMnxkLlpxynpX48YPPpSoNPBp0B1TyuAPT92D7gGmEn0nGoe3GTAcYMrYLXp9Nz+IDuGbSBP+JDkwbeeNEVIQV8oAMwmzx6fDludzfukId5SbCc3x1Q5nFq/c1rqXvO38nXc5fnhM7uzHmuowQJs87kZ185xqLw3DXAWnrGS/c8znkBO2OWcvi78jDf+IDDznaEgSiqb546zlA4fpo8x1IReNI+3Kf7u5OPn2YgnYH5IvSf9vi7w5c6DIpDDqdPoNTtTCzmvLbsGxvk8Rzj8Z2exaSFB88X5tllWb8dHsJpzeu6zjQxeevPSyvoe7Rcvlyg785z9+B4OTi+vPX03RwsB7nYlufvpUurB+8OP94WtnrwxoKeHWgGPCH5XiocJ4mdALwAJYDnzU2WD185CeXE2E1OXuwMTvu0NvMy2LpHHBjYGUbCwKBBRnew6zeobNmMZJR/Z//kppF+8UsOnD5PwQzCZ7lFflyGjYr7z/2D/DghHNVLe7vQFdYL10MeE3UzQQIo+7EITy4ux+X5Xi6c3shMmjRp0gWiCfBOmjTpwlHtJYkjW8R+ugjDkUeBSZ/gqQE9Pw1H/nxCLm2jonRAgDqbx9cNLCbYlV5yUAI36U1L+uTXdk++w8SGL8Cc35GBEw6gAp6U+TJlPgWI0i4b1s7LY9e8WClBswJv7YRjOwDQr8rgt71kHTc0+w7Q0R579vKEl2p3vfypPIzrQ17HcS6iffm4Pm2nLve9+9nX6rvAHWREHFLsJ+sAbXUIA9v76aFqnAAv5Srb8k0nKcvLdiXtgk/ba52ujw440pZOGzqxCqe181Hx4f4A8DdwmM5vHUBp4M/p0Ntsl/Mm4Je/fS3TduVeDTi4r+68Zrs5ZW2MInGFrp6Oh+ynUdu7vw3C1aEPBzcQcw0Ygp3RKh0HJawFlZ98lGtwtNIwnogL7hCUdQhgnKmo5jQOT+zEl2BhOo1dSz8WcQDBfJLep9RhzCT7oTvU6Yi1zY6OqUMJsnZljdpkffdBK3/DW+Jw3UvfXJ69slNnOz2mbq9DEDxsyyqo1oNjWQ4KiN3xfPPRltEq4vDgaDmot6vtUNvNLjRDbhqOK+6u3Xe3FZwVcnqSutFMxFZGvGFpXE7ACXAauEQQFoAnd+5boQ3eeRI2nzn5d2m6CYqTXeRm3vwYiB8Tyg2MFz0WOhSJjQF1IKs8JU3g0nw6XVKC8ihobhbtQew+h6981MULMLJxyANvOK138OSTKk+0lpW/XTcDKGVC25iA7ZFLHYDLvFzNCzXtdB/TP3mYwAserJuTJk2adMFoAryTJk26cMTjuLl/Zn8KKMCeEc9POxjY+8sGaBru3ksncDoCrEa2jymB4S5PGuq2H2zP2H6xcc0nnUQSEOZ3ehwWsAEAAuDomLpF9oa88cbTe45PbG9e2oAHHfaLPVfZ45tfPC8Bkm1vOOybbSPLkXLLTqR8bEYDQXwTVxc+yos3Pbrtddz1Yfa/wzRk/1pmBqIot9OLrq5O5xLc6HTBbbI+8G17cAT4UJ77PvsieezAQwNBTk+/VJoC89ArXtCXY7ij9BxMEMp5R/07GuuWH3ntuej22vkqZXPevDGSW9rzHbhKO9Nj07QPwEVWOadk2tHfHVnOjGUOl8ALKi9euSbmP68HzCfgCtTNvG8gnxjinlN5moH0np/8FLn1Lefq1K/ETVIn8ikS8nOQ47AExnrcz+73To9yHilyfSNd2Nd/3b0O1/N3zgfGuayblgkYk5/8Tlkl6J19n32TXsUnv1dwt/x2t6EauH+4XF42FY7BHYdANXEebzZbh93ThPX6tW2+boLrJh0zmJ6vpONvP/qSC3pOavydsW4QWC6cnsC9oPN3khXflCBudrTLZdAVP3XKSjtYhHm0Jstjc4JCGcy1knCy2w2yXLgsv9Fppk+94cX9aLmQPj1o3Qf5yIBj1PC3+y1PUNJLlnvIxIt99jn8ZKwfeLO++zey9VtuDeLmBocBTT9az60ft4belLxvbtq3GZk0adKkAU2Ad9KkSReO0lPS+1uuGZT1ftcAXZH3y7YDIDvD+Ptq9237ABz2oemYkkAtZNut88J1nFHaajvScVQNDiRYYMA4nT5yz+53nqQdmWBoB0Ji6xh0SeAZWwCPWfNL/zjknJ13uMdL5HhpW10re7H+Lo9gv7QN4BkbBa9X91/qkG1JvJK78Bb1t8MD0HbbcpYJ7cq605NwH6iWYAn5OnvV3tMul3sJMFp/HSIly9wH7mXfe3zkGCAOrw82TPDCy/5yfqDclJ/Hvse4dTsfH08+O29Fy62bXzrsJR3BRocIHWhlzCA9krN+4xbmw7x3ZSfAa3ly317+iW24TcwpxOauw7vCb3AIc3gXvPZz/qDMSsd963gC3tZxwjMwfhlv1r0a/xx2kcYHMJ0+mL9Rv5K2rldYCdpb9dWc5Ccc7L3K/FFkTMpythzMU+q7+zd1bN/vTpeTuvUqPeqNCSWeZh1McDd593X0tzuESOAf/k7GdYG7a6jczW4u2axeu4eb7eS8BW63Cr8xWNYJSYJar3qA5KLpRzISqfZgzsUn3e0ByjzgUwAG0nw9O8xgnMt3ufbMzPq6BT9BUCuqByaTisHumhhq0abDuhAHnvQ9GSboaZAxwfZuochJh3KIN0xfOE03SVvJkUFO8DmwHFOr0y/L0xOr+ebv7sQ1y7HsfLJV5MeBihwg3o9KuCzK52/3MZu1mtSo117lucBPmjRp0gWgCfBOmjTpwhGem94Xs18HiHNYBu5jF/AUG7aRQSrSpa1jozPtuQyrkDZC7lHzmp0u/LfT52/K8B7ewGwa+x3IwP467aMie8iaT2JlAjIgT2xQe+ZWunLA4eVldd/vULE91IEUNvzxnIM3ZED8VEDb+i6QCICU/gE4MXgLH6SzFyg2Bi++LgCmQCg7S3XAoWVIOQl04U0OuJH2vJ/O7crMfrfuWC9c58hO6uxF2+sGyTtHH5eRTlqZtgNmXI7TuVxjCsjKLyMDrzCoB8YBz+7jBHiyL21nEvbDuAt1WIbGKyyvfLye39jFlj9hJrq5De91Yx8jgA0HN4PReKsnrxx8WL6dVyf4SgfsMaYSE/DBhNtNGT7coC9r/BJjF0DXOI/l7XKpzxiIHdToB68LVT4AafUzYWOYSxzmx+UVwSftS2zLupc6nHMGf9PufdfgM/vBfeb2jnA+1+2/aU93z/c7jGjfGpkfyE9op95ZJ+mLLId8KWvrhNtjR0j6dE27DZC7u7H13D062iyXDo+Xw83R+hK1Ana3n8Nlc6Q3e6YnKT9330RqWF/EtqvwePcStrp7AhT7VAQBeJLwxODFxYuDQefRqamDvXfKm+XndadNd/IuHTyTzm1KZaO8DDNAe+pTC3ydgFgu2e4EdCkrN1kZtiIVyGQe2XwQ28oTVbrZU3aC0kx4rrtbKIsssxyYuemjLzy5+pt8HgxMyC6Le55E0bHcYLCR6iblLMO6gz7YG8Cb0G7imjRp0qQ7OE2Ad9KkSReOav9XgAWP0duI8x40DU321+w3AXoBi2zrGLBIUM175ARHE5Qagbtp5NtGGtlUWXfaZ+kQ4zq8b7fTje0Yt2ef8Q8QZZCq8hWIywvUSv73utepLWC7p5xw7AGH1+wICIBnCLuEPLQBO4HrfqSZFxiRhpiXyN2ev3wqLTacvci6fkY2nb5Yfm4P+pheaS4jAaZON+yZTp+S3vcsR+TCOMA+TiekInvmul3WFQOb1h8fOuTYSgcryyQBInhG/8q+L31LXSc/np9up8tPQMj4gNsDIAlVXoBOt6nKYx6x/mL/ux2VtsZAArw1dupAhHnJh1aJnRjn6QAv62diAPST50yDlx7r8JvzqHUsebOTVwKDTpvYELrBCw2tE8YPsv3wbN1Jnoy/+AVrpSOkqfulV5UGsLeoizmeBwDmIXW6w2vcd9Yt5lYfPrp/q0yA7wyNmmPH+uZ0Xts6rM71juYv/+7uWe/MQ7bXaXNO5X6GZXC7OnCXe9aTPJyhDw8OjtcXrK0I7FEFUijv3QrHcLSts/6qPq/+OrzT+l0xeFewlskFhnkMpEDgXQefNncXumGNz0uFmkRy0rMg3EAP+Jwk8xTE+Xzi5IWgixu0r+NzMGd93cSdZVOvX6pGnfZI9uTK3zVJ1sRPGAcmsA6UBkB1OTlxmCe3PeWb7Sji8aX0WLUXLfcNpOai3Q0gn17y96ivrCs+pUZ38m+3IR/J6jwhcrCRlpMw3vKacuMxOz+K5DY7HpcHqBfNW0M5KVxPuq3wMWnSpNsVTYB30qRJF46Iwcp+104Q7KkxvA2ieN/NNWwMvKLSGSNtFu/lDfDkXht+EmwwOR22V+d51ZVhG8b2URrVtnfYb1O+PfpcJuXau8r12IbBpq28BZrgacseHRkWaFH1vepVy/KKVyzL/e53NpalZZs2iIGH6ieDJgC1dmaCD2wR2mpQGtCWkA20oX7by5CyDCyaXwNdgKXohg8Z+ADg0FY/fZmPmEOpi6PQD2n3p21MfzkNbUaGyCJDRxh0xH7C5uz0J+vunuxMD2XAdGMFOaZsAxYVUIqcyeNQJYwBQH/rPrIdjV+3yfcSI+B36SJgOG0oufFUMQTvWT7zT+lkytQ85d8dBrMPt8j+6UBI65PLNJ4FeT7IfuoAv8QazAtAOWVW35b3PHphzAOcKucm+tcHKMwLBgAr32tec+ol63nTemHsgXQ+GOLJAmSdNv1oPI76MHUk7zNWGK/pne45pVs3OudEp89woh1145Lv1DP3S14zJmUd8dyd4K7zJ7jr68ghcanT9Ftwd/WwPdp66VYBFY3haLNZDgB3y2O3yi5v23WhOFqOD2vjsANwvVCuirf9e4V51/AMp5PtKbi748HKlALPWEMefOm9m2X4k5sgystH6ztw1p2aCjDqdC8uTpsbpjzh4SQH0DDRedLUpyZbTmfMgzd3VigH0+68ej0xIKfRIOgUnN/eQEIMqO5ENAHZPDHzSUVOxPBiHTAftKObiKGM9+uB6fxuiydBJmnXaVlynXT1Td8C7lo/EgCeNGnSpAtIE+CdNGnShaMbbjgF4diTYit4P8o1jGXbRLZzHFvRMU9z729KG8Z2mvfcLsMettzj23vizOt68neWk3Uk+SVDtpf4G6cMA6PplQh5n08c2wKzysGGtLbXAFsKsKl85alXVH1ZQAt9W/1V9luFRKD8eqkW+/+6XnWVt2OlA1AmPmWVVXygA3gTV7r64IEJQAIY7Xev2DEHItyebckEq/wIt8Nf2HajbINotvNG96DO5qLuakvJ1X3lcZL5O8BppMMm+DTYlmUZDE7Qy4+3W+bZxk6P4ZNwBox7PHexWes+wLRtY/SS9rue1PG0t8kzsvHNI5/iAY/RpNH8so+yvuRjn9xsv1vP06uz84pMoM46alzEZbmMdCYb4VKMrfrUXOKXrXncucx0cnRdxhToD7Ak5gGukwbsKPua+cx1oHsdkN7JwjIZ6Z3bQjnMz+npXvdyLLh/aCP8e50a8XQeAG2d6K4lpjQCzBPcTX3x/QR4uzzIxnX58Mfz3om+h8C3L0Sr74N6rdpyUAk2xOeNl0ZZKS9fXo7XStPDcveIQF1fwzKsN8eu814ovODAeMafYqG2UAwqotT2ALVCWNFS+XJhOAGx4+Sw25R0gHPG+uk2WX6sBXnQdg+Imhh8CuDND+1k8vWAd9/kBq7bTI0WCSYmnzLBp/sTflFiFgN7UZOGRTX5SRmft8B7o+v01jVP4JaD63GQb4Pu8MdEmWB9tp+yfLKdGxkvSj6BnTRp0qQLRhPgnTRp0oUj7JcMw9AZlN3j/+mcYA9R8htg8n43bYzcS3dGegIuBh643j2mn+S9OjZAxhodAU2QbTTKNChpEBwA1nYEMuiAZIDyukbMXbxlDcLhgGO7005G1bdp15IGo5/+ArCwbeEYwbZHMh4u97E1eAlb6lMHwqXNbfkn+Oc8kA8jOpAi67HTlW3lAqvhHbuINnQefC7XtpPbYNDMbbSnonUwAV3aYwDceEjqE1R/l15knEzLrrMZSwaV3jpn29k2s8H9BJysz5197f4Y8ZR4B4cfdUBhMLxLO6J9c0IHplFvNx9mPvo9AbQ85MK+78rJsAgGX41VGXfqeLTeFHHQk3Gzu/luhBkZCDUISz6/uM3y8NgZvTzQ/ckhVjdXdGCp291hY25D1V/6wxgsnpERTyWAiRUVH17zaB+HYMaP4K+rv1vPUs+yHV1/WK8SpPUhYdbT6WX3t/surxWQytpaMXW5tqbdtv5sR9GW1X+3XrC2K+fyztPwsOLv6tGFPMHbZl42xwCZBe7uAL2dZ++a4JZbtuXkZO9wA7mweSEcTRpWBE++7iTSdQuiZdFtSEZpc/B3k5yvdydIHoh856TpRSdfouBFw96fbCYo1wPAi1enUJ1HrQeOH9nwBJcfbyi7yTpl1J2sjzaa3sg6LpVPttwX5OkAZPcF7bcnucF2FtrcjMNLtjU3YyN9cv23hroT5etFtxU+Jk2adLuiCfBOmjTpwpH3jdgy7HFzn8ne3o+yJkDDfp8yDLbalur2oPl3t2/mXtpBI7vIPCY4kKAD7xspSi+2tE1suDvEhW1V9tVp+5nSXjBghlNH/S6gschP8BXI4JcyATwkEJQvt+JjoNd9mDaDPfAIEQcvBVzTRyU/dAY7piPqgXf3jV/GlHLvHFvwFLTnrcszANYBhtYTQPh8DD0dm2iDbWg+brf73XYkAJl1wfF6fdgBn9h+aaO779JzlAMZwOTO9u3wg0pf3t/luU0sXB9YVP+f926htEcTvILgyfJBD+gLg1dFDkfhwwvXP3LYoh8tgwTnPPbzQIv7HlNZVv7tUJjk9ziH6GP3h/mFku+UL0RZpdf1IWSKD4echzKzrNSRBDR9Dx112+zohtOdQxikkxnj3lhS9oHbmddSVu5TwlNYhj6M8YFXUc1p3CMdcw3jzWEccp5x/ekAuK8Nqb+eq7Kv3JZuDMKXDyDgN/vY9Z+OzS2Iu37OPB1wFtzd4r2nk0GJAXB364i7VfoCY48B7zzxwchu8ltfxlZg8KpAW3B38/rXL8e7Nx+uNRhg9MD1Iww+pTJ1C5SVAQWkLHuOpsJamO54g3P5KEUuUibn607NkJUHo8tKT10HxYcXYipRhhcR1+88lp0noZzAO4UmndN60eJeLrQdMOzfTutNWE7KTCyu1xOQJzUm6Jxks7+80cs+sAzMo+Od0DcGlotI45ckuCz3DxtQ64gnUvjuxsCkSZMm3cFpAryTJl1w+oM/+IPlz//5P79853d+5/Jpn/Zpy0Uh7z0BzAizVpTegjZkO/uEvacdPwx6JNBmuyXBmtwrm3wtbQ/fd5kJBNMebDTvi0cgsm01yjf47TZmmIqURxGytcOReQb0ZF9fn3o/Cs4eBtuK4MVvS3d7Daj4bzznSFvXC9wF9KYcPFvRE64V1d94gWJDppMUtoi9CZGDDxkse4PWCfym7via+w7ZWSbwmfaPw9kl0JT1d3bfSBeTt+xv0loOprpefV/fxECGEjSiHXaE6gAy27UFBBaoBRBW9RCb2QCrvb2LH9vSbhPlI0fXbdkm6AzA63L9BIHfQ8P4tf6Q3oB7feO1afKBhPuhrtF2t8XhKl0GhzEjvAYeGG/WRdpRoVIMEho3SEAuy7Bdj8yYI/JwxH1F3tGhnfXL7cl1gOvJq7G3kr8PhZBJtSXnucRpPM5G64XbmOOT39l/3VjwPQ5+CEsD6FuU877Lyt8dpnU1mJjbnn8jR+tR9p8B3syXdV3J6w7c9fy1pgnP3QAW6yVo2zsb3rm2vmyNdOtdDzoz7AG0G9yb17/uJGj8GmvXA8onCN1A88JGOgdL55oFZxSf7+TPJy++Z1kwKH3y7cGYoC/UgZIJ7rozu3o7noqYGA3u5uYnF0mDmAZEyWuAsluIzLdByDztys1aB0rmIIUox33mOhOMTqCWfs8JxOV3gzTb482c5d8tZkWcnnJq6Iki31jq9mVbunHEPT+qMGnSpEkXiCbAO+l2T/e6172Wv/23//by1//6X1/e8z3fc3nwgx+8POABD1judre7La985SuX3/md31l+8id/cvmP//E/Li9/+cuvutwq71M/9VOXRz/60WuZBwcHy4te9KLlf/2v/7U885nPXL7ne75neelLX7q3jEuXLi2f+ImfuHzsx37s8i7v8i7L27zN2yyvfvWrlxe+8IXLs5/97OVnfuZnlh/+4R/eW8af+3N/bnnCE56wPOYxj1ke+tCHLm94wxuW3/u931t+6Id+aPnmb/7m5c8IFjrpmiidKADtDKIAgrAPJR5ngnfsT73f7/bLmSf3yZ2zS7fn7vL7OnnT3jBQi11gACrtpQ6Ewk6004jL7pxLsk3J68jgP3009uyj8+n15/ikgHAJ3Lhu+r4+ZT8bnOUa3n+WiR2vyA8QnOB3119uY/apHVTSS83yNYDhayNva9uFbkuCLWmLjSjta6dPG9c2XvJHer9oG7KXteVW+QtYBZR1PGgTIKV5sv2Y16osxnTxY8C0fjMHZBpjHm4vugEoTFk5lhKMq9jQfpEXMZENIHpcWl8oCwDccvNYyb5JO9zYSqbPvqNdXd+6nM4W3/c7P1lm8t3lRW5gA57vHXvWc1SCqwmi5vhIuRkT6mK/mk/3ZeIm2X+dHmc/dDrVpenyJnBcYHBtKxy6gfne4Gqlq7GTIVGMsVBHhp8Y9fM+HUh55jxkOaLzHcC7T+9WcHf9jUJvvXLPrLWb3UvVJLwV3F09eA92el/hGUoBdy9fM4rvDmgW6g3u53VvN4ms5e/K2HSek/DCJ12r7e1IXgvPAaVZbO3ZagXlN+XlYDRI60nSGy2uWVmyDWrzmYkvPYetzJ6MIerNjZt/Wzlcngc3k0oni/PaT5/lYpcLcHfitK9cynY/GYgebUI9IN3GBLI9idvL2Kc83lAZmE8eczNgmXqR49Et+s790G0gHVLCPHWb4Kshn85db7qt8DFp0qTbFU2Ad9Ltnh75yEcuP/ADP9Dee+ADH7h+/sbf+BvLF3/xFy+f9EmftDz96U/fW96d73zn5clPfvLyGZ/xGSuoa7rnPe+5vMM7vMMKtv7+7//+8mM/9mPDcgrQ/b7v+77123SXu9xluf/9779e/5iP+Zi9AO9HfMRHLN/7vd+73HjjjSfX7nGPeyz3ve99VwD6Mz/zM1deCvCddG1ku8JPhhXZDnDMR3twpVOB7SWHp6Ou3P97v2yboXNOcB2dAU+ZBh6yjc7Dnr6M+KqvHk1PMhAxsiHzur1taU/aI+bHoKjrtPNP/cbDuj6cZzgGMLYrj0oXuAd4bUAGG86PLPPoPfFX6XPHBbWeFOiBg4nBwAS7iRFs+67AYD9+b7vIwBDtT2cp+E9v5FNw4kqdMHAMT/Bhm8sAlfuEdic4w3XbXeYtgcfkFSzBIR2470fpjTGU7KsNBvhtX5oX9795Tp213MhjpyTCcxCX2Lyn7dWNd+uEQcbO5raNmvcSkEq5mkaeiWkbG4T0x3OXQbMO+M0+9bxhfo1JWY+N4yT/nQw7UK7jpfoNXcFxL/shY/8mSOlrnR6b35QX+o+edB7l3fgmj+cTY0+U0WEQKY+UX4df5e+i4rXWBObRohoDdsgkHzF8kWeR9cQ8WEcMvGYbs287HXX6PBDr9DrTZD9t++F4OVyB3RLyqWDwxq13pB0elAC2oRTOKsrhCsIir8PD42VzObwO0yM2XcytZLjzsxh1k2m3AKM4DnieE1cqIxOlOzhj0u47xTNVvgKnvfixUGaHZl5vHjKNJ8kOfPSEwjXa23nY5oAif55IW2lzE5eLXHqZGjT1xjDl6Amxm1gy9pOVOTeMObl6AeVvTkZz80L+PGE1yO6Ni72G3bf2ILBuJ888loM84QMwno2a+4w62Twjl9wQ8kbbCZBOmjTpAtIEeCfdIeiP/uiPlp/7uZ9b/vt//+/L85///NVDtsDZhzzkISuI+tjHPnb16n3a0562AsK/9Vu/1ZZzpzvdafnP//k/rx7BReWpWyBtee2+/vWvX97u7d5uedSjHrWWuY8KvC1+7ne/+60etv/hP/yHFVj+4z/+4xVA/ot/8S8uH/ZhH7a8//u//7CMRzziEcsP/uAPLne/+91Xr9+v/dqvXcssz+RP+IRPWD77sz97+ct/+S8vP/ETP7F6Lr/mNa95E6V4sQjPQTze/AZ0OxZg/xgsy/1o7kENtlJGAoB80uEh7b4sl297sjn/CEBKO632x7xgy5S2jcl2CnttQO+sK+23BNMo3/YtNoUfP7dtZkAVYA/wBrCxgFoDh9RHaIRKc+97n8oBIKgAPAPC6IdBTDyXU6bI1X8TzsH3kydkCh9pP3bOXl3deZ80Lj/7cWTrZp+bXP6o3AQXi9LO8/0EfrhuUN72JSA7HoT1sXNW4hjmg/JyHHKdUBs8Nu9xRtsqnAAevwaCKcPfHo8pZ/Tc84ffNWNbPTGOlJ2pA8OK0hudOW6fs1LqiPEJUwfEui7PiZ3e5bVOD7iWmM5IBswT1V8ZiiLxhvy74yN11DhTArz0o8vtAPLCNxx7HNk5RKb7vztQ6GTV3Us5d3/7Wo0rnOm4VuOixp71OmPYJ+aV/I5i4CZ+mH3r7xw3WY7LyljIyPHsenq8zb+LoLspT9y1AdsK6tfJOrfGye3f2Heyf6iy1nv1PTi5tVJlBzQCPgGUuzyepOpDPA4re06KpOUR+SImtYwRnALLer3Y+KVZVm4W/5zEzGfKIb1HR5Ty9eKZcvZpqvvQ/JhGipzxnrp6upAFowkz6+N+bha6AZF5utNfl+dHUVKvmMAM8uYkRjneMJuog8mi03seb3HZeK1XX9cpdN2vCYiYVwa24a+Tvw8Uuj6dNGnSpDs4TYB30u2eCvR82MMeNrz/lKc8Zfmoj/qo5alPferqPfvEJz5xedzjHtem/bIv+7IV3D06Oloe//jHL//u3/27M/ef85znrIDqP//n/3wNv9BR1VF1Frj7h3/4h8vf+lt/a/m///f/nklT4RnKM7cA5RE96UlPWsHdm2++efmQD/mQ5Vd+5VfOtPl3f/d3l3/zb/7NCvJ+0Rd90fKVX/mVw7ImnaU8/Oexb+910/uyCJAP6gAX50+gh33pCGiAt7RtKCMBwM726Mh7X3vn2Q5kj4xdBhls9l7Ze+1sQwIetr0MjFiGnc2bdWIXFAHA8mb3ekt8yiT7tPMirPsAhrbJAPyrXOxLHlm2PTFywBp5ITrmMP2dTjZ8KMNAs/nPehMMSz2n3nxEHTKAR7kZDiP10r/RH/PmNvmAwHVkexMUzXR8AFoBZHmycwQwwX/qGX0LgIzXbgH/aYMD3FXaqq/mDvoo54P0ZOTbaVMnO0/DffiDZWS9yLz2ljU/WeYIVEsgM9uV+bMcf9y/XZ+73MQ0HPJihJUgd/gtkBfyExnGnVynsaSUhR3wTJaP8aMMa+o68dK3PiZGlmM3x7h/e53JuW/UnhFxAJAHodnWKsdPWBgH6uaX1AvrO9e6NOY/x4jlmnrWjaWz8ti9KG3ZveBs96K0ZbMLtiudKGC3QjMkneSpdJtq9FY4W5A3TmbPOzFjYvFppge3O6HIoRxQHg9UFM3eqRmHlnQ+hTC/uaFJ3vmb8j3ImPA4kUWYedrjgexBlAuYT84hu+dzj0XbJyWuj0k4B6B5yU1atjcHlvml/PTY9URsfr3YW97douLNHMHVPYGMZGmZsqHIPjc/2T+jNNTB401ut/Ny3ROlZVltIW5uXcvNhPs/43fxO0HjW0P7Tj3f2nRb4WPSpEm3K5oA76TbPRUYex5VKIXywn3Hd3zHodfs27/92y9f8iVfsv7+lm/5livA3aRb0sthR//kn/yTFXS9fPny8nEf93FXgLumAm87qvALH/ABH7D+rtjBBnehr//6r19fivbO7/zOy+d//ucv//Jf/sshT5POkr39EmAp4p4f4e2cROzlV2TDljJt33HNe9Usw7zsA6myrAT7OtCxK99ttUHuPbo9Yjsbz7Zh2gRZf7Yr+c22GShxf7j/CsCp3wXIGUApO9mP9MMr7cWWKqC7gNwK/8Df2En5Yjf3tUM6jMj2EE+vup08KdmFBSFdtYGXNKWewaf12Po16uPs66wTSvDGfZ79mzax+3gEXqf9nuPTj7Enb3ZGwi40EN7Z5VxPj0GDe/Wbw4+aonF0Qqfs0Z9OT5TZeXa6DvPCNzF3DVAZpEqAjD6x57kf7+/ALrc5iXTlPNWVAe+eA6yDLocxZ1kb/3D78BJ1XzC+ANzvd7/TWNnI65Wv3I5Zv3QdXAB+61qNnerDul79aqyjw11Sd3KdcNvdZv/Oeb8IXUUuHCzR9+anftujO/uv6zvrU+q1r2X+zGsyjmidSF3kkMT9b5yp071OJ7u0macDhbvDuysB3m0Dj483W2D3RA4KuRAC5mpBuCu4m6DUKuQtyHtQ5Re4y31PvgkU5gbC6RwE3HUB1HKfmDvEzzC4i4J5wTtp1O6+3y7aeX0WpRdu0b7BQnu8wDieTV0vvphgGXypgN1CkpsLbxbyJCjDDxjIhA/u2807N2rZj5DBzS6f+e36Hv6t0CkHxwEzPwC0fozEMjJo70XSA8Ugr/klD6emllW32HOdUyAvSN40Mjl7k+NNIxNexkmr6/CSwb6thz4gOW+ynDRp0qQ7OM2joUkXhirMQdFdcbkKqpAHFT6hgNkKh3BrqMJCfO7nfu76+xnPeMbyq7/6q7eqnI/+6I8++f0d3/EdbZp6hPC7v/u719/3uc991pfBvaXoS7/0S9f66vMjP/Ijq5ygP/iDP1ivw+e7v/u7r97JFTbjda973eppXGB0eTSb3ud93md9UVx5OVcYiwLCv+7rvm6Nc/zWoHQ+MLDgvbiBqbTN0tOrA7a4t8+odp6rOK8Y7lk7b82RgW+eEjjL8rEzDF4buKHuDuQYGfddaDwDLd7P+ylSt9FgSIE/9Sm7sb5Ljerb9hAAbYIpVU/ZH3ip2a7Ci420hAiAx04ulr37IEFZPlUmIR3g1ZQOSgZv8kPZriedirJ/iixv24x5BmXMIQlvWu5bvnZGs/3ffbr+ZbzxskPKTCCRsAMuJ4Hg0pEqg74tPalDAkKW8FQo98FJCvh8wAPO4gHWfesV/Qg4zzdOThw+1DVe6sdhRdVTy5R1FLlVujqMoCy+SwbIphvXiQ8gE8eV5ncRsuVDm+Db7alPXaccYyoJBHo8ZD+l/lrH6C8+hOewLW8dR/8qbcmT9lJvfqxrjIPub7eFQ4W8btzGH7ALHzhluFKPPepHpjn3pZNdN5a6NmZ6l+exRh7mn+qD0suSu8cfHz+QhOyz3Kv5WHdGPPFt/Rz16RbMPQV08drdfs4ukmuSbaSGk7/X2xWEF9LktibdbLblnAg3wGADgSl8DwiDWulZm79RHILIu0wGKoudY37kBoPrHogJGLrd5jeBTMpiIWUS7OqukxnelMlExOLL39UGPzLRLeako17erun2pdxz0uhOzN2ubgOTC2AHSCcInJsBD+r0CjCf3mBk4G4/BpAbSefLyTjzWKbpddzJL9tQ15mUAWpZQN1GFikvVPAD6G+PcybO3IjlRoU2AganXCdNmjTpAtH04J10Iegv/aW/tMa0LSpP3o4+9mM/dv3+jd/4jeVP/uRPTq6/7du+7Rr39kUvetEKWO6jis9bcX+LKt6vwzY8+MEPXuP4/umf/um5Xsfv937vt35XXN2KKzyi//pf/+vJ7/d93/ddfvZnf3Z5c1OFgSiv5KJv//ZvXz7rsz5ryH+9xK7iDVd7oYc//OHLF37hF64vg/vAD/zAVY4VUuJf/+t/feYldvXyun/6T//pGtKi0r22UIy3ELFnTuPWoJSfsPNeOF9O1cWlTFupAyxIx3fGEIVG9kYCzl0bRzylA07WlXt4y6fjCzuys39G9k2SQRl7fyUYWsQ7QijTXosADdwHdCK8An1I33Q2L3WYL8sRT1i8O52ftHh9WibYJ+lQk6ERbJNhw5MeYAXvP4NQdthK28byREad7QsWQNqitAWRpWWX9ls6JRHr2DpDP+XhQgdGIY/EFvJpW2QGLuB+tL1af9vzFT0yVlH83eteNQ9vMQTKLmzCgJ2dqWiDY5d27fB8wn3PLZ4vwDuQeeelzGEGdXeYRYKrnSyd/jxcw21IJ7gOF8j5jfvGW8yX63zZy5bl5S/vMRfyZbzV+hCj2XF485PzXnqfIrcMbZJtTNnAA3nsLJj4RMo4DyDBOzxPkq6TWZZp/jJNXst7zAkcrHRpaVORn2zItnTOdYknGsPxtdQTvt3OnD/Wj9t05veVcSy24RkYLJtTXFede7wTOuEaCNBAsIcrkPhugfEknYullRBiwi8C+PSjJl4sqQ/E3fFUzQuLQT6q1PHsR/pzk4J8mHxqok8gOE86HLYhB45BXS/mTOhuK5OdvUYzBrHb3Q2QnNy8OCM//vbiPdqsUafLguf65nEC2ujHIgxOjk5y3AfIsesXykoglHzWOa6x4UgdyMenLEPKdBov7H48iJPIjHWTepcy6+JpIT/S8MgD5TlO77WQ+/5602iynTRp0qQ9dBuZwSZNevNTgbIFLv7jf/yPVyCUeLff+I3feEXa+9///ivAWPTbv/3ba9qv+IqvWIHeemHb7//+7y+vetWrll/6pV9a/u7f/bvDOt/7vd/75HeVU/X/8A//8Jr3937v99aXrL3sZS9bvuu7vmv5C3/hLwzLead3eqf1u7xay6N4RAaryfPmogJfKzwE4O43fMM3LJ/xGZ8xBHff7d3ebQV3i+cKHVEvfiuv4u/5nu9Z71fYin/7b//tKr/6rjjEf//v//3lPd7jPZYP/dAPXWMbF9XfFQv5LU1pIOde1ntKOyqk44WN7c64PA8Q6AAH85j7XwMHHYCSHmyjthssyH37yLjuQue5blMHHvnvNNRdh9Om3elvg7sZZg9w58Ybt58C6ujXsj+7kAvur3IuKmCvzhnqmz6vM576rmt/+qfL8pKXbAG/+lTa+uDJam9T7NQC4uwRWMQQx3O06sajM+0w3mxvhyc8RBM8sWcp38YNHHqj8+RMByNkTNzjIucDWE3dsjOR9QxAGj6o0x55aU+OdMo8Wm+LPP7sbdoBcv67qHgp3an+q76vB0Gsb25b2uUJPHXj9zywrRtr2T630+l8v7PLrwDCGuexfdez7FFfeQznvVF7XF9R9VnJv8ZXfdd4MyBPWg5AEkQvneUJ4lF7jBnkPN31gdvndInVGOdwfWBS4HCdDjoGdjevd7LtZNmtGdmekVzSa56y/LsI+fqeHvY5g/FxP8vz2Kf9ztflzTXqTB+fBFlQvIUr/zgR5OrVqw6v/AfHl0/B4JMOkCB3irj1/o3wBB2Im4t11wnkrTR4qBbhseoXmeVgtSCKqL8Dcs0Lf+cA8IRneeUExmLkybXqQXmshF6M4MEdT17LzwuVB5YXEfhIMNibFCvtvpN3bxC7hTUnsOw//81izoDuFpuOh25wmii3A8qtC/7gYTsq028t7cDsnCS6duekzGMX+ebTBGqdL8FzdLgoT8nr2y91o9598bMmTZo06Q5Kc+abdIeiT/mUT1m+8zu/c3i/Qi/8p//0n664XnFsofLSLUC4QgiYDg8PVw/dH/3RH11j9H7e533e3nIq3u9P/uRPXhFy4N73vvfyyZ/8yWsYhsc+9rHLM5/5zDP3y/v1AfUc8LIsL3jBC/a295WvfOXq5Vt1PPShD13eXFQhGL7/+79/5a/oy7/8y5ev/uqv3punQjMUAP7BH/zBa8gF6Od//ufXsBjlIf0Jn/AJy4d/+IevoPfHf/zHnwGLK6TFL/7iL65y/8zP/MwV5N0HbieVh/Q+etCDHnTy23t0A7w4OxTxjbNB3kuQtygBjs6Dkjptm+Q+204cHThDG2xfZL2d3eJ83r93IIX3yQm0dXYEv3HcyPesuMzct3f82ynFbTSY4T5wuQ5Nx+PZ8FOqiT1hL0u3r67jJUvZBlpIX/VUeVWHbefs986BKNtrhx/rIk+duo3WD9LzaH2GVMAZxx7C9buu247H9rRdnPqYzkD2lLV+472cYJnDNHjcJbbQjae8lrY1f9v2Lt7MS9r4nT3a/V1pC5gHYKzrKVfSkS/fn+myHQvZ5DYlcJWgm8vd144RftQdECVG1NXZ/U7bvOpMT08DdCl/Yx2j35YP4xEHRtI6BIJ1LvGdbr5NnfL47LAY2p04WfbDSEd9QJVYV8oAR0bmK5z+XO9oXHR9P1oXzkub8isqXggFyzxLGvrbcYTzQM/9mv3dpU89zbTbaye+tLvMNGD3zw7IHZI6an2xWrtIbRfQ1dl3ZbLSb0HGk/QpQE+c+xZoDw5vVABQPdF1p64OuWAwNxfQoirPbuVOzwKYgDVpmQBRZE4mPXEzQfIYihU0PVq9gcj66m9OdbwpIb8n/Urnx15y8FNHLsqZDiK9wWZfzwk3F1AvbH50Jgew25SDzXKzjubf1IV83VdOk/nQAb45RHBM3E5XR3LLjYp1FcqDD5M3EOhXV5fHEuOEvJyET5o0adIFo+nBO+lC0HOe85z1xWX/7J/9s/b+fe9735Pf5aVaIGN5mJYHankCFyj79/7e31s9cIse//jHL//oH/2jveU86UlPWoHX8nwtT94CTctrt0ITFLB5ww03LE95ylOuAGbvVe5iOyrw9jwilMGbK3btPe5xj9WbtsDd4rOA7PPA3aJKW8CswV2oAPGiS5curWBvxTtOT+D6+9//+39/4lFtsPxqqMDwfZ9f+7VfO0mbdg9kUCK9hPw+kjSmvWdOwNQ0umebKY3jkUFLOr6Th/N46Ty66BLngRd7UiV/ycN5AIPzpf2YTkluKx+HdXOZflTc8XaJHVlAbH0UQeQKO9sxeDMcIGBM51zidnbySDknCNzJPEE+9NDAyD77aFR+4g8ZJzfxgA7YYfzg3YdXrz2w8XiuDyEGDNoUaEq+7kN/0redpzF9gpOY8ZCO732UDye47TwJTKxe4utat902+MsPXsqmroxufKYu5PjryGMj4xbnWOZDbNnOQ5Iwi/UhHmvJpJafWrrqm/jXdb++iSlMWuIMEzfbcZu7gwvkhSeuX6hHDGP3nz25R4dAKffz9MDjeDQPMg7sZFbE/Xw6gTWFcQ1eluA3YK5feOh5K+ejTgdSf86br7O9xDvOctJJzpiS7+dY7mL4Wk5ei1M/Uye3eXdxdgvcpT/D0fYE3L2KRXpjcDfSbu/twjLAxA7YPfOyNspzJ+Xk7zRFCMKPV9AgnwZYuLkgGIx0+Q6QXZ+amA2cmS+fAPsE0gqUE6wHgfN1myjacsMNZ5WEAeT2EX8I+XhxsuJ5oGb4h27g7ttUwWe3qXKb82/HQ4Yv5O74sOYh4w8nkOzyuo0n6T3ZZfwkl+XNEt61eSpWv/GUTjDZ7TY/jh/Egp0TsHUr2+S+zA1Y3Sc0SW6eLH+3P9NeLXUTzvX8TJo0adI10vTgnXSHoqc+9anLX/2rf3X9XcBshV34uI/7uBWsLI/UL/iCLzgJBZCgJlT5KrxCgbuAlRU79wd+4AeWX//1X1/B4gJTn/jEJ64hCQxoZjnp+VovJKs4s694xStWb+J6OVq9wKwAY8gvgXsjluseekNZuLv63lQqgLq8jt/rvd5rufnmm1eP6JLb1dBv/dZvDeMb/+Zv/ubJ74oTXO0/L12B4dUPbwlKUKOIvTagYALBtQ92HE7ue5+dT+4lqJfAWvLUOW/4u7MdM73tug6kS5shgbBur53yyb2029o537gNlmumSYealEEn2wQcbUMUGcwqkMJAYdm3eMdmfeSzbOrvArFqyBeIRVu7UIjolu2szra3DNx3/F1TCt625qMrI4Fzg0JdjFTjAB1obVnzqHX9xkkLAC/xBD8K37XdOglIbHuvs7spI3U+cQzjKX4CusMiso5Ma9nwRDT2uLES9wdzREcjkDF56QC2BPwAtcFJ0lEqwxe43s5uzPLrbDGxEY8Ht8e4jcFOz63uQ2NFfBvYNc/Eex6N+cS03Gfwje4ZYHVZ8G3eIOThPNn+LK/DLVKW1Ou4tg5R4MMK8hK6lPLSe7zDK82nccCcJ1IuubY5f/ZHzQHGrYrQP8fjdh0OFbPvIMO8pw6cfuSRu7rUbr9PQNjdxROw1hXtE9q+dLERWEM4dKd2pC1CSZ3X5TMwmVws7HwUworpzYUfqbDSdbFjd5Pv8WHFENoq3Cbf6FnfBv+sRJRNWzi5qUW1Fkl45nQPZbdXZcZM9YTLYkObkJt5y40B9xjwngxQOivyaJOSfyPP9CB2/+WA9wlP1kU5uYAx8N2enHQps9sQ5uYRGp18om/e2HmTlHoIv513sCfgrm+zzCSfXvmknXuWG48FUD5pcnMxAdJJkyZdQJoA76Q7FN10003rBypA9gd/8AfXl39V3Nsf+7EfWz1067epAFxTxd/tPFErvuy3fuu3Ll/8xV+83O9+91tfCPbjP/7jbTkveclLln/1r/7V8MVlT3jCE9awAQVAG+B1GeX1ex7xQrOO32uh4uUXfuEXlr/yV/7KGqaiQioU2Hu19H/+z//ZG0riWtPZk/lqiJfb7WsfXrwJmthwtA1gwIL9pJ0aivIJPQNb2BcQafc58CSN9vnUlY4eSTbYu7I7u9Xp025xW/I9GVlf2kdZj4EZ8rq9CZZ4r277CDnwIR/hCx3rlRdk1adArAJ5MzatvYDNR9leZb/WNc5eiK9bjvTICXu2AFDrScqh60/SJkCVBwu215CHASzX0YGadvhx/cSoTbs344Aaq+hAIngzwJZPDicI2VGOlRyzxjmQWU2heGkzBo0dWA4u18AjPPpldjUdI5sqH4ei6meXCT6RPLtuYwV+OjZxIWSfIR8qbeEp9u4swqM1wczUtarb3pfmPzGeDrDs0idomoBch6UYa8r4ydYhj/1ujvGc7n70vN4BhNn3yZv7zPXmvOXrvmY+LQOHZOjaUuUA6Jo38B+XzXe2IduY7XZ+U8d7Ef2QZaPDjp/teLyEl+BJess2PZY7vk/7FWY3Z9Nc0YAr4+i2i1gSaXLRHC1eBexmTNAE3rwh8GLQgZT2esy8ViAvDK7Lj610QKMfcalbd7/7cnzIS8x2cswNiieSblKhHk5RmWRrsvRphDuUkykCrzOJuk0ovxd3v12VCd3AI30DPzkJUT9EHd1mJf/uwFOfwOQmhnueYFlQuk1jyt4ThF9KBmXdqbPIgntVL33kCdcbOeRuGWdQfeqmfIP/9c1jKugdE1Zufknj00G+4cnt8oaPtN5QeOPqCfrWePBOmjRp0u2cJsA76ULQ937v9y4f8REfscZ9ffKTn7w87WlPO+NF+up6c45CBVQ82BH9zM/8zArwFlXYBwO8Lqdiz5YXbEcVW7Zi7xbwXEBxeavWi9yyjKsJu4DX8NWEc9hH9aIzqLyTrwXcLSpQeETH2nTuS+ewDRXz+FqI8BnXQmkQs5808GRwLT10i7y/TrsubUrnTdsx968dsGqboHMASkpbbWSvJnhhO8t7ZHvxjpwwcg8+uo88R7wkAGQ5Yxs4lB42r20Q2wYAcwXw1tB/4APPprOnmUGlDP3mp1rTfrC8RgBStiUB2CzL9rxtfYNeCQp2Mt+nOwlQYfcZX8g8rts2o2VVhPdxvlfGddtDMu1Nj7X0qDYm4rTYlNiOALDYnA7Nl/rnvytd9Td2bH0Iz1DfNeUWoMo5XOUFWE5Av77tBV1UQLQfTa/79oi2s1geFlX6errZ8iXfq151th0ea9a11CH3t/l0n3f3DPZ3Y5z04DM5tY+A2QwRkZRjbIRDVRnVL3ieu97EbNCjdJBErzwf2TO4m4OTZ+uysaqqi1Co9LPfgZRlErLUoS2Mc6RcujKuZu1wW7u+SEzJ75BiHIBpJS/Ilz5IL+muPauslqPleHNw1mNXjrv1zwmga8F3v11RpukWdTPoBYYFKRc/D5quDpdpL8TkIxF+3+PTeeiipPay3An/+OBwOTo4XA4OdpJLgI3ftMkxM7wRYgCgAAwKA5n24CTcAtdJx0krefDc9RtKkWOe6FGn45zkAPAiZWCSDUU3waScvaHI0zjkkp6w5sf92W2SfNox0qfUG386PnOwkc+hDywLNkJsmNAtyIuGF+AiTxK7JwvPvBSwFmIWVG+qXbYnC08suenwfYO5PhHbtxHdR7clz9/bCh+TJk26XdGcOSZdGCrvXUDTD/uwDztz7/nPf/4VLy4bkdPyMrTunn9fSzkVcuGlL33pVXmlVmxgQODz6juP6gVnf/qnf7r+/hf/4l8s7//+77/cUSntnW7fzLfjhtpWSDBunw23D8Tb993xxn3Xlbaer6Wdk/fdXqfL9lpmDs/X7aG7dnovDsiWdXdluQ0GqrBZsP0MHJhvrtWnbI0CxG688dRpiJdl8ZJnv+y5wDbHDAWkJGwd9iR2UjpmYXP6g63LY/7IE89ZnmCsvwuMLjuJJ17rmzT5dC6ON46RCo+UZ/s7vYEdz7baSpvru2RcdRPSAr6zv5E5sVF5H5DtOYcbxIa3jYeXdXlEV331mzi+Pi8zfoE8HZKBcAqJfRiYMy92GvLHgDe/8c4mtMTLXrb9EKc354Mci/Qb7fB3yrMj6zZ5s09yHHkM2361PuRhSTcXdJ8RZbkdD93fjLH0+DSe1vHpj8N68m1cwrK0TNO2N4iZTmV2iBv13QgftB4WgZM4TIPzUo9fPskcavC+m2/PO0hzP+R9x8O1fBw7F1nTX9wnH087uH2UU3OUsbdRv5X37opFbgC9GEA7jHf3wrMz4G63IHZKOkrXpTdYmQMvO8IAXXfSauoULFFwB872KVA3+Jm08qRAnXywQuLF3+5WLgbuNINmriOVBnCQhcqLI/lQbp/2pAIn8Gfw1t7SXuTNrwdY/vbGByVLEDMBxZzUnb7baCUwl6fk+yZQt9FyNXWTmGXnTz4G4HSWLbLwiRanSVkPsqccT8r0K5srNk+VhgHvSQfZeDK07gM8j/onJ3Ev/JMmTZp0AWkCvJMuDFXIBOhhD3vYmXu/+7u/exLv9jzPUd+/Jd7Q+tznPrdNd63l/M7v/M76XS9n21fOO77jO578ft7znre8KVThJ/7m3/yby4tf/OKTF6096lGPWu7I1O33/e09+T7DOD2b8qkwlz/a058H6FDOyBZNG4B9cwJNI9vCe2ODLDayvRd32zpwM/m3LZp2UvKYPHW2GTZF94Rl2on1zcvAiupMxC9aA7SzFxn2Y6UlbCC2ksFYfsOL47Na3gZQEvyxfOxh6rL57oBa29GpJwlWJuBD3bbtXU6mtX5kf7us7MvUD/d9B4qmfu+j1BmD9LyUK3EO24EdMNbhPGAXxbfB9gKh6R+HeLGN6m/rV8oxdSWfgO3anmPbfcXHMXFpCx7KgOn1Xe3qQFfzTyjNDohLfg3onQXszmIzBgn5BgDkEMfl1DfXycuL3LjOeK+0dc9PPed8YR3K+dxgpXE4h5ikrV3Zib/Q9x4vPgDK/qdcY308tc1BRndAYZ3Zt7Zkf9uz2CCuQd0EequfkH/2Va4hbh/92M3fhyuou/1swwdc2ZYTQDc7MReFjlJYubiloOxF6gm1K7ebVLKBXTqn9ylM7gNpbwLHLIxFORmpkze33Lxs3viGZVMvh6vf+ebKBPOyfUbtLf96Ao0wY+YPcJaYN7yIjcf4rXQGJcnH6SWnst2kY4AdGeaEa+qAXPdP/rbX9mih86DuJoScXFIHDLp6kjB/1NN5e3eeBo7FhFztGQ2Y6zAbnsjNu3XJmwZPPnW/+sog8XkTruWb/UidedLq2MwpU+Q/adKkSReQJsA76cLQgx/84JPf6aFbAOsv//Ivr79vvPHGNWzCiOrFbaOwABXDFqqwC/toXznlTVtU3rnv8R7vMSzjAz/wA09+/9Iv/dLyplIBywXyFhheMXB/6qd+annv937v5Y5Iud/v9uFF+Qg4aW0bdI/Tet/pff4+INcATwdsdYCs2zCyb/cBZfDTOU3YSy5l5fo6EDGvddTt47ne5UkAy2V0bc89v/sJD0zbHwAZrgs5dAB2Z99l3g4kTPumsydTX7r2uMzRIQR2TnoS254mj+1py7LIHs7oCC+qM0iYXrsJanafDnROuXSHKTne7CnKy+VwYktgyn3R9cO+vimMosIgEO8Wu7Paz0vW0vkrQVy8f40ZZP/l7/w7bWs7QHVt6XCClC3562CjwqBXGIj6Lk/u8miv6/VdTln14Z2gGVLTWJFt8tGhWhKe3HwcR9te7iVv+gGQHe9xrhfe5CeGLcfUJ4+H0byYwDzprWPZf4mxpU55vbBnsA9c0Gvy89vp03kvZZztdTsN5BpfcvsT8D/9fbxcunS8HB4er8DsZjnafbbXfcBm+ZyO1+M1lNPWU3f72SpKNeKsp+lJo46Pdi9QawZaNwDP+3QDJoEye1aOCMGM3Ke7+vJaLsKZjsHQUSo3QJcnBntrkofBZUVOd3KDkN1pEY8xoLiOI0I9CUbmhG2QkXo4yQDg5YTWgxRezHu6oFN/LqYdgJ7y7vLRrhxsPhHyZJCbh+wzb4i609XcfOVmIicp0ljW5PEgZ2OQj1YxCXXgtut00Hn6ET7sEew63H/kY3JnAUnvXp9kub1d7OqiWwPyeqK7LXwmTZo06RppzhyTLgzVS8Og3/7t377i/o/8yI+c/P7oj/7oYTmPfexjT34/61nPOnPv//2//7f8xm/8xvr70Y9+9HJDWccNFXBbL2jDc5bQCNBTn/rUk9+f9mmf1pax2WyWT/7kT15/Vzzhn/u5n1veHPQ//+f/XHl72ctetvL/0z/902us4Tsa2QbKPbiNWoMUpg6M6vb/WW4HbCSgkw4JI979d/KUIENn2Ptagm20v8iARoJVaX9w/TyQN+2VzNsBWBnagTwdIInNkeEbyj6scgv0qXxlV/IyNANT8E06ywzPUEIYVH5CORDaoD4JFlm+/pvy85HnsmETwLdOpfwta9qBTYzzEyBtlQsIhmcwj39b7vQjvAGKV7mVJ0Mp1Lf7cB9+YsonShOoSlzDQF869djrkfCK6I+/rZPWx85+Tf2yrlaeAj2Jz4vcu49B9ATKsm7+7oDt+ps+S3vYnqCJc9hxy2FISl/rN4Bt561pHfV19MVe5vbKTsAxqQP7E6BMMLKTTc5NeShjbKEDbBOYz7EKL5DlCIbisrs5N4FSdNl6kQC2w1IaL8n3L3V4JTy5Xdb51JGuz6+U0RaIxcO2QNyTTwGyR5eXzdHR+ikGDEx3HtyF3B4Kx6v8W/B2x2eFXzjpzPp4AjxageHjfYtTfqfiWSC+5+v7JrFuEdwH7kIJ4Pi3efFA82BPfq1ojpnrWKy56Ca/+UbHboNUZFCORxrqNwsErvddHBOUksXXbazy/biM4+cQhB25MqF5I1fp/HiNFzBPQObfAyo3al4o3I7Rxs5tcRnua2+yUl89maUu5CbLfePJhfuZ3zqZi0nlZWFEVpTVPUayb5z5d+qcA3XnoxFZTvWhN2DwQl57BntSyU3SpEmTJl0wmgDvpNs9fcqnfMpyFz9v3dAXfMEXLI95zGPW3/UyswRmi7792799edGLXrT+/sqv/MrlQQ960BVpPuADPmD5B//gH5yAxJ3X7Nd93dedgLjf+I3f2PLzDd/wDauncNG3fdu3XXH/137t1068gT/jMz6j9aL9oi/6ouWd3/md199PetKTrgjz8KbQb/3Wb60g78tf/vKVz6c//el7PYlvb8Te0I++5v61KMEWrvG3QQn2yaYOoM160q4oSueLjrfkKffs3B8BDb5n54e0ebCDRsB08ui0yWsC4JaZAZK0bxIASjtgZLfa4cpPIgKOjexe+MCLcBS/1h6taXtZnticgF8px7RtUp4d2Jl9wG/bxAmyOQSEn6hM6vQY3pFlPnVpuadejtLQ/9neEfBmmxAcgg+hGHAEsyyJG1wEcM6n8AU+gJzlpUoYD0BxHv23FzR9zyPqRXY6su1f14inXN8lfxzRykO2loP6ZjwS75hQEJ5jGJP1ssAXv3j7XWHba/mqJ6TBNqy3YB3uF+qnP+t3tZ8+6EDlbv447wmFq7Gxu/mw+CuZ1Kf4yv7ipXR44xtAREbmxfLgXtcGZMGc1M2zBkVzTcjwLJ1c+J0vrccjGfCeeu2AZwyIcg1EJx5n7Mjtzn70GPMhyWk6PGyBWLcA6wZA97KA3d0kc3B8y3L3ux7tvHsN8O68fQ+Pt7Fgjy4vd9pcXm5Z9fQUMqZxx2uDTr16V9B3s9nGje0mmzwZynTd5DRauM4Da/ctWF2dmTY7z2+kNPIP6o93q8sxuMdvT/yejKwglhcKkCCZ25CTSLeYOqaK5eRT506W3ozRZsdD4lPEoPeC3C02HVCbi303gXWL7Giiy42iH/vKMnLD2A1KT14e/JajH8HJRzbcz/lIAXrRyYs2Uif8+Q20ow0gZSVgzjXLpz7uU5eVpz/ww8ltysx6k29hzY3MpEmTJl0Q0jMVkybdPqleCPb1X//1qwduhTb4vd/7vTUEQ4UYeJd3eZflEz/xE5f3e7/3O3mB2Wd/9mcvR40r0Wtf+9rlCU94wvL93//9aziHAlm/9mu/dnn2s5+9Asj1YrYv/MIvXC5durTcfPPNy+d+7ue2/DzlKU9Z49cWoFzetwUUf+u3fuvyR3/0R8tDH/rQ5XM+53NOwOby9n3yk5/clvP5n//5K4B897vffQVYv+Zrvmb10r3b3e62fMInfMJaTtH//t//e23/m5v+x//4H8sHf/AHL894xjOW+9znPisPFb6hrt/eabvH3T42ujX4N2e8RrEtsF9yv5p2g79H4Fb3d9pPLtd7U+pPj0O+4dFlZNnm26Dfld5Upx5kXLMnZ1efy04e8+8ONO/kA2HrYN92NkO3j7csO9uGstN5h/Rpv/nbPKc8Oq+/BG9NOGIlUOR+TAco7HDb2MjaOmDwvvOoNZBKvakLaa8SehH5AQjCV30MTHV9bP4gA+IF3CVIa/DNMvBYdYgNt79AUjv91IMVHV8JChbQZkcrPFUtuwICeQEe+QEmK10BrgXWZt8ZhOR64gp+ybmxEnhCZuntWl7VPqDBsc59Slmm1OWkjkdfz/Lz2gg7SbCS6wZa4bcrY+SElzzsm2s8znAy89PlWV6C3aRBdt2T6VlWEX2bYTJdjvvEIDa6gG6g+90hkD8e9x7zZ/GbbQF5eAWwe/JCLjcyQc1d+oPNLcvhwZ2XTYVu2OG0K3ZLWeWxe8stq8fJwcHB8sbLh8tdDrbhHZYjN6QEcXkXj/dUiCsv5cW7Y/TU23fP6UJORp1id+l83WTPyVz4OvKk7bweTAg+J56UtRWKzsyTDPM0WnhzUu4Wdz+eYBCuAFe777v9CcrZW7T+dpD7lIUHjDdlTM6eBD0YXV+W5zrSkzb1wf1POn98ApRyG/3tdmUf5gaOBcAyzbAD3QRY8kzvafetNwHO75MrynIohyzHJ9apY5meDZzb4XnEMqZf3A++18nd+pl8XgtZt683dQvYpEmTJp1DE+CddIegiplbwG19RvT85z9/+fRP//Tlmc985jDND/3QDy33v//9Vw/bAnk78PXVr3718kmf9EnLf/tv/21Yzsd//MevgPOHfuiHrsBwfZJ+9Vd/dfnIj/zIFXTuqIDUKud7v/d7Vy/aApuTCtwtsDhjCr+5qADoasPP/uzPLve9731XsPeDPuiDVg/f2zOd7PNr7xSgDo+pG3DKUHWkGwGAI6DEe23bGR1wa1sigcjOtuv2gS6XfTH5AEwJT5D7e/bKBr6TzgICZ+2mbHN659q2s/1K/gQec++ftknaMS4DD0bbCdRLGIQCxTK0G96Bti1quAJglpwqFmtdLxAPvUGHkLNlR72dPAzQElrAsVqdHiDVoJfDLFj+xIm1XmBjwzPllDwSVCVPhp8EfEpwzvrS2VrGhbJcA08dfuQyHFKCaz4MoVyDmwl8nUfdAUV6aFb5pRfUVbpkr17rIp90rHL/44Frj0eXk1hA15bED0qPnQZ+HI4E+RkkH/XdiJ8EEZNSr5zeNnsCqG5j4jTgBqm35sNesokNeF4tQiaMhU4PjDl5rra8cj4azWsG461bBvWte9Y7H27gFZ5yTnlQf8pm+xEIe9rTinW79Z69AujKQarrVd3mTtVhNfltweHjtXE7MHaXvn5fOry8vPF4s1w+2iyXDo5WfPfgRHhS9hFYue87F88zTdxzUju6P5pAHDOjqwPhe2FJOXLd3rFQKmMueCPQsOOD8nJw5SD2hJogNKeNVi5PJql4RUyQ+dbVohp4jq2TmxDz64Hlk8hsQ26k8tSzI8qwDD1ZoIeevDyoU1e68ro6E+gexVpOPl2mTxD3Acq56XKfEsMqN58Q6WqDgQ5k2724QDx+Qx9zKMCkxt+pSzkZO14X+mk5j8b6pEmTJt3BaQK8k273VABkgZzv+77vuzz84Q9f3uZt3mYFfP/sz/5sefGLX7wCpf/lv/yXFbyta+fRt3zLtyw///M/v3ze533e6sFaQO/ly5fX0A4Vj7bCLmTM3M4buEDdAmgrhMQjHvGIladXvvKVKz/lJfzd3/3drSexqfh+13d919Wbt9r4kIc8ZHnjG9+4xu0tT+ECoK+mTW8KlSdzybg8eKsNgLwVq/f2Stt9XxmRY3Ak7S2o25d39u0+O9T5igxSdbbAPkpwoXPa6WxSv6wHsKwLNTACLdK+dRucBwAxnXHSQzNlYpnZbvLePR05DPj6yb8EVEnLI/fV7gJos+50ZkpgyOAocjaAZOD6amzuzhZJ24b8tC+dcjJGcdq7Jj/JO7I3Xa6dpYr8RGS2odOPxDLygGNkA9tON59dvxrIgqeyFwE4eRdQUV1zCMCOOH8rWRXuYCwCzKAI+eDhXHVUbFvns3MUeldllPdvgr0OgWGHLdv/3fzgsWIiFIP7p/j1S/HcTurxHNbNU+nJ3YUA5bodw0yMxez7PLTJ8qwbDudoPuzdmngZZRjorPYV7pR4mQ/0EsdxeY4P3PFpWWd7GCN2krSTG3+TDjwEvSBthhzywYLznv1sgd3Va3bFUk8H89bhdov6DsHdXARjQtsQd2J3f1ODzxPArpGHh5eXw4NLp/PargNOPIazbAl7bbIR8qR9YM/o3r7JISlPP/J3t9HoQErq5FGaEZ+5WBvgzInRIKDL8iQ6msAdGJrrlnM+4uPA0FY48+ZHMTJ+b/KGN6rvuSwGsTcZTAZ5Om6dw1Xf7U1g0H1DW+G7rjvmUzdBmSdvDnJB63TWJ7BFBmw9FgwyUzePPuSGhDaNTqFcfhHe1fDsEyW+u1NW6yInsVyDL/qVhdMLjx9RIr37y28zzRPh0YZt0qRJky4IXXFOP2nSpEl3RCqg/gUveMH6m5iW3uPyG4CGvawBNu+nvZ9t7NmTe04L2R7yXjjtMdeV9kzab+yhR/nghzwuBxDSoJPfWp82TwKb7LHtJet2JECZtnramKSz5yVpsHXsJGUgJwHXlBVtw7Yq3KEAnZtuOvXCLMKzN20e4qcWVT4eh69zFjssVR1VRgK8xWfa7cge/IM02KnIFZkS+zXtNEIWpt1vIJy+t92WQCx9brsSYKzyAAre5z6ndhhhCnhxl+3dyl/xbWtsuU/cB/RP9jsE7pHvFvL9qtueqoD2yLHi6tpTu8Io8I4fA33wWG145StP+8eeun5qtdrFp+4RHtIeuNjC5Ks+pC7kncCf5ZHYAX/n/MFhhfu26rzf/c4CfwCJFULC2IbBWvqb8cOhkPms3w6BbxylczS0HW5eOiKmcjr/daA+cvT1LixpfaoPC3wnFEiWT38wp+RBQqcr7hNjSF14TAO3ppSb5WyMxKFI7Jns+Yr71EX7Hbpz24aKq+uYugJxuwNoA18JDCYo5s7K/JyuMFHvThiP73zn5WhzaX1521pFyXoN43DLGnP3CoHl4uQ6EIhj+yRAmnl8vQOIcqGGunbmQgh1MVopkwmii0+adZ9F6K8EW61AVmi3LdPn4/91nYnN4KYX9ZRNts2Ls4FDFJsFBYC38jJ525PXgB5t4DqTOkHWE/g0QFn8VJ0GhTPuLZ98JIc+ZVLwqQz5AZVzYvDTegxQZIucEhgvon73j8ce+k06NnIZpiM3WW4PcmBDyIQCAJsbU7/wzhsP2s2JHeCt9Y9+rQ8eu7V5AJRGH9y/XKNNyNJvfXUfkL/mmcc9br1cDjJ//Md/vJxnHyzPfvbZWFTXk2qReq/3Opf/SZMmTTJND95JkyZdOPIevLNVbQTbAcJOAen5aFvT9ThfXnc+l2fqbEDyeW+fdTtt1mlv03zcHKC2K4O/HVYBHjsbO0HdDgzx3x0QbuDLZeJlR/904d0ct9f2GjYe9pJtrLRR8Wy2XQoAyWP06EyVB2CIDIvPtKEznGIH2KUOWDb8BsTjvgF6PmUHYWslWb7GIujXtOsMstvGpR6AaMJa0A8FrHosJE6R+mVe3GY7Y3VygzfjAMjZOIWBMNvrWaYpcRSDbea/6ucFbPR/B/AC2mIrF6VnZQJ81gfb8QYnAWizPSPnpgI6O3ASXMN8Yet7Pswx3pHbM5ojM72/0WX3Z6bp8qa3KjKnbSUnH2iMwGjaPsIGkVEC9J1sPHen3iU467na+E566BrwTdzJ/HT6tf7e1rZ19/BAp8COrgbgHQGvgDg7L7zjur57S2KBywdHN++YO1wOl8vL5eOD5eCwJrHTU70V7GVgdJNKt4CMwOZu4ezAsH3gbdfOLDPL5m8rNeDXiNeciJzX4Q6yXm9cijwJ8nfGBCFfLtw+ycw+92mir6eMWARZjL3g+pSWCY6JJxfcXAR9EpgLG/LoHn/p+itP793+DA9gWXghsnw8uXYLvdNlO7qTIvdPkRcY5OHNj/XI5Vj36L88HfOJdJd+3+mdFw54LvJpp6/nSVUuOCyaTH70jWPWoFujRWnSpEmT7sA0Ad5JkyZdOFoNytXG2JzsDf3iavbUCbSMgAzvZdNrlvu2F/J6gitbHq+0rTob1mkhbItM499Zpr8NmtouMSgBD35CL0Fz2x3mMW2OlKP/NrCSNpavpc3tNmF/QAZJ8E7tQJ18etN2BuWQD6/w8mQ1ANXZtmkvdTK4GpDI9ni+ULzDEZLgM21933f7qROgzO20veVxYwANW430jDUAc9eR8uY63qLIAPuRMt1npDXYZXDfoDRYgWXotuAdjNORATXXTV14nvJkcX1wUrK83O70sDTegxNUAoMJ9uXY4u/SS88z9GOCpeiyPcETf7Ju5nzYzWnWPeILWyeZPwxiY/ePwG/X4XZWupIxHtJuAzxXu6svkJ/bml63HWib843v5TxjPXWf+F43nxuHS9lazz3HJv6Ued3H27+JrLuNf3sGpOt+m9kEazogLycVC498DMh1EijmL295ufnm5fjOd1mODg63uN+afBu64fDgaDneDdSNF2samMBWdl6mSeoWk8zv9nULvvP4WpfOC6xPJEf1dsrv07aOPGl4UHixs/LkBEcbvWi4Da5/xJtlbzCvk0Mqbw1oJg74Y3OAzJiYDToWebCRP2VjWXf6C++OVZSTC8Tgy02UgWnX57ReqLjfPeJlmSNDT1wJtI6AXfdpfTjRzgnfHgiWI4cRbKq4bp31Y02ciqcOVd+xiUIv6WfLMz0rfALPIp6nYZMmTZp0wWgCvJMmTbpwdFj7wMaOKgKQ6gDIzlb0vS5cXge2eO/bAa/83ufEY8PegGs6z5hsD7B/tmMP122PuQ3On08SWh6dt6D57ni0/cg12xi2GZy288a0A5BlafuYb4Cksi2wB+zBnB6x+TI4ZMgBQcrU/c3vtNewX+s68VixS2yjAI7hfQg/fEhr0BEwqMNm4KfAP2zkCqWQhwMGSIvw0DVIee97n9ZR5Vk2xfPOQe8KPhJkpD5ekp56hCxs0/Jkpx2XRtgOdiRpcQArL+MqJ+13fgPQGpA2tkAIQZ4OLr6qvYRrqNAQjgWcGIh/55jogErfT512PnuAWm55CNE5s7ledCDHUJfWefK+n+blOo5n3fzJk7IJ3tMW60w33ya/OQZt/yfmQagU8hlD6bBM7ndrR/a55yP3C2UZt3F7jXOMwjy4TV2fHR5ugd3173ppmiv1ZGsQ15NyAmCdMPydnRrf60vXasAzeHYu1muoiLvebTnYHCyXjzfL4ebyNnb+crBsDg6Wg1veeBYkBqBiQjYZ8OsWbwssJ46Osu3ugKQcnC4jF8VM487v5Es77a2YA7GuczLlicFgWC6syMwLr09zvViPwN3kxwPKp5yURWwfFjNPtPsWfr/kDb49CMjH5GO5Jb+eBLIP/EiQZea+dT/kby/EBk+RjcdZboJyM0M7uZYgNnlHp7zoG+Ap/FBOLqbe/GVdnvBT1z2B0d/eMHGdcu3RTXyqWniRh0Hk+jiWt2W277DjPMoNz/Wk2wofkyZNul3RBHgnTZp08Wjde26GTg5pi5xk2+NFy7XO4akDHRLIYb8NT47T2jl8eP/tNK7Hzg62NeAnnZhsB9m5ogMvbHM5BIFlY9Al5Zx20QgTsF2RfPrdH9zr5O/9fheOkcfaC5gsm9JPuiZIm/1OmSlz4RRn7NjOroRv0hIGIu1NPDnpf/h0aIROB/JaUtVJiDvKMNFHiQPY+asLK9H1Z9q2I55c74j/tDtTN0njv7EZPW4Y67yIzPUj65LRa15zOgbcp1CVS/xa+ocXjJ8X0i91jDHbAacd6JoerpZfXnda4yJZRtqWHTbV1T3qT3hKXKCIAwCIfuAdollmzqH75OR6GJs8zQuGZbIu2Sksx6M/5LPc0+Et5Uf/1YfDEs+jdl7zB/l4HUgAPueAnG8PDvTiMoNA/tsD3X/n72xc3u9Av0i7eu3iVr2b2Mo7t64f3/0ey9HmYA3LUPF4y3u3QN7l8E4r+LtcvmXZICgAoqwrwSza2vByRlCmXKxI313PMkegoZXHsjZlB3ogS15n7vuTwdZRfCuUdcEK7EUyJ4Q8EOjkSDpvQiwzp6lTMHgF3M1wDVyj3d6Y5Gk3fHsxdp25OPq3NxI++UbG7tNu41fkOLXmE6Idvp4xcHLx9QFGN5Gad29IIMrDm5a6vOFw/3cbptS/bhHwRignYZ+aeiwC6hPwnw9lJTifQL/5dTsnTZo06YLRBHgnTZp0IaleLrO+M1zeUtvrp/tTwKCR/TaydUdGtq+N7Gk7SRT5EfIiexh2NnQCH+SxbZIeyqS3vYHNYoDAZTj+aPfE4z471XYk7ehAkASacfBIYCX7xPZj2iuUk/1D3FQwBrACp0kvYMvDfNKv2Z7O3iJN1eWXkHVtwwGJl0Oll3UnC/82EIpcsMHyqUnrnGWYupV9SFnpQDfSCTvymC/ALetGglguNw8rnDbb5ZAhvAwNMLEAWrcpvUah1F+8f6sM2l5l19/Vr7wwLGWZMqI8zy1dGvdL2tVpTyMPvvO60zqvMRUDitznYCR1ygcBXbmdzo54Sh1EZ1J/Oxl6/rJeQWCB1Xf2mPVcZydCl29dS/1yncm78UdkaNyMsQ2OARDdpTUwTB/xm6cSjCudtm8XmKHCIRjIs0B9vZvMRgLpFLdbOHNC8QuoTLu3Gl66573WtOV7vLn8xuXS5ZvX8A23HNxpObxUQnnjti00Mj0t0+vRi9yIOr6vpn2dUqe8fA1eRl64HlzkY/LKEwqn8aCn7T4RsjLlowsGQ+21mbrRycv8ZvBwg3GU7euenBM49mbEHrEG9ynDsXlJb1naFd8Abp6m+7cnJQ/4XLRzQnV+b2ByQ+HJw/1sueSilHV5g+WNTh4S1KRXmx3i1dD2fJTCE63bnYuyT0bpuwSA68OExobHk5rLybFMOZwCOs4PJ+P24k+v7kmTJk26QDQB3klvMt31rndd3uM93mN527d92+Xud7/78tSnPnV5db2ae9Kk2yglcOQ9coJmdkSAbN/sAxkpO4HGzn5J5xPvSxOATu/BDuhwmrQLfd02XHoMJ0hksl2WwJTb6715J9N0ikm55X3L2PLBhvOe3qAm7Ut7y+0GXMFLlrKdx/UZG3B6/gboxN6yMwptMmGTWG4GBQ1k2pkJL0M+BvQrXYVd6ORGOQBctoUTH+jsJNKmp2n2IXLpwDiHlKCNtN/9lfX6Ok5N1teMo8p9y9BAIU8GWwaA/mm/w4PHMnJ239B++qXCWJj/s6DblQcfCXq6TMvbHwP11nl7jnc2uesz9uCQGOQxzuFx63YB3Occ2wH/yYvbSszibCPpOABLxz1eLugxwvhOHKHqwMPa8uW+54gOK3FbEmtJXUUmHJAZz7Gc/SJGQpuQx1gPbTOeQX13veuWyaOj7YUzGGH9nQ0DjMsJtZtsc3HIhuaE3aVzmhzs+r15wxuW410Q7PXqZrNsji4vB5dvWQ4OLy9Hd77rcnynuywHBVjfsvNKtDJ2IK5do/N0qBvweX9EnWyyjJwAPDF2ssmy4L1bhLJP/MlTCJc3AvmLuphCqRPZzm7TBI/U6Qnfk7UXsLwPeSBQnk87KAu9Ni8Gd3Nxz4m449GHA/SfF3Zv2LK/vTHqNqF1LTeD7j/znn1j3rtT01w4auLDk5cYQ7koZHynbmPqQwP4zCDubmdNaMSb8qbTmzLH7WXhqMeL0CsHs2fT5v53WddKow3P9aDbCh+TJk26XdEEeCfdanrIQx6yfM3XfM3ysR/7scudsKSWZfn1X//15XnPe97J35/+6Z++fM7nfM5y0003LR/yIR9ynbidNOmUyuC1g48NZNs2nTPHyObyvaTOHsryOtCvA1BswyUAyndnd2S+BIwMXHivbZ679jidbVUDKAYMbcOko0ja0ykHe6CmrG1Hpf2UNrBlYjsAu6Hu+V0jzk+7OgemlAF/247v7NV0jkkAyWBltsnX/RTq1XgQYxulbnLf4HzKmutp07pv8neW43Ymr1dLabNmW7P9/tQ9nlI1/ybiE9M/ebCRDk3IwnYtntmve93W4xV71H1rbA3ZZLnwi7NjpXWM5SK8aonpDBE/GN7t5JVtBkcgjrCxt+SnyoUf98WNN54FMMkHz9ahDFvi+SmxL/cRjnoeU3UPUN6xfsF5aDOyr37ACzn1w2025pLySpmY0tmOtuHMluAudVGf+4IDI/PgwybybNMcLwcrX9vvo6q38q0QKS9XC1CIvz1pJ9iZJ4Se/K92MHcTfTepW8alaG78CvIeLcev/7Pl4OBgObrTnZfjw60ibW7eDTgWAgvYdeWi5PaZTy+S+9rTKYIH8mjh72TY1eeJAgXnugeaJ2XS5kDkOx/vcb0dQJYAok/urA9e9AySWu68OI1BwsmqF3tvHnIzQT0e1EWe6DjxdH94MKZ8vXgSW6cL7eHflhkTJi8MY4LrBq37IRcmUwb+ztM361Pn9ewFy9cqv2Mz0958bMV9675wvW5XLsTIk1M0PxYByJtzCSfbtSHzwkt/2kOb8lhI0BPKmjRp0qQLRhPgnXSr6JGPfOTyEz/xE8t97nOfNS4adNxsgH/8x398+eZv/uYVBC6A9+lPf/pbmdtJk86S968JhNk7qshecAk8XI19l8AP+9Pcdxt4S7CSa/Cb4GQHYsE7aQxqsKdmX5+xbG1D8J1gd4IdTuu2cR8ww3iCgZORV2sHslJHen6mzWGbyU8MdnmoC3vMXrxp33Q4RvZdOvV0AGQHXnX9Dxhuu4enEAELeULRnr3Wk2xL3Utb2eCS22ZQO/sA29VldDhCgnOWWwKIqdPZR1zzC+ccQoB6/JJ1l82L5KzjBb6WbHnq2TY1ZeNEVPKu9EXGhxIQp58ybVFgVWeASqejbrCcAlNvuukU+HPoB3itF8alM1vhY8kf4HAu28Y4AG8dszb7Nuci60LqRlKHPeQ82o0960iCs2BGmde/qx30NWVQbuew6Haeh52Yb+usebRs/LfHN+OdMuxMx7ipF6Zt+d3sxmMxtAVz1zrXxl7exqqtT3Z2TjoG/HIS93dO+Dn5Xy11A91ChADNgt/1BW2ve+2yuRcIeAljF1uJ9qEQlOsF2PEvulOx7u+81il2Xk/lTepOx3LByHAHzmvl7DYnKJoXQgebp44cWB7cBv1Lpt1pa7bTg4QTmfSC9WMu8F/parLFa7PqYvMkh5KTPJSHSz8bG8vPGyHLl0nLsvAJtDcblmUOfGIo5WRi6k61PXHmpsSnYeTxQted8CeomXrkvmKByYkM+Xki9YLJAmTw25Op9Y0PsqGNgOFMyLkYcaJlfcrNCVRldZ4J1zIXTZo0adIdhCbAO+ma6cYbb1x+7Md+bLnvfe+7vPCFL1y+6qu+annWs561/PZv/3ab/iUvecnyUz/1U8tHfuRHLo95zGMmwDvpuhNvEd9u/TbDPb8dEgxOjmy0zj5MANR7afb06TDhd1DYE9W8UF+Csq4Te8p7cOrjN/ZVtsEApG0H21PZzpEDkj3SsBkyxEBn+9LOxBxIZ7Amr9k2NShFedj12Iq2q3hy0fLG+QSPxVOA5azNRl3gEdiu9Cf56Dse67f9XDLixdG89AxgsnijjZUmX4xmxyH3GfwnaFtlEK/T3oLwaLs2HZmsSy57Hy7k68itw4kM/LrvzI/zuvzk0/iC7UDkU/1Sst2F+zyjS7Zlsz7IPOZvYy6AyPe4x9m2ptNVlptjIp9E7fIZ0DQmMOLZVG0tnUrsxvYzH8eJtezSwW5UV14b/TbPeZiQsuqwl8wPeGpHr+xb43/MkTnXeOxzP3ExO8hRbmJAdlDkoMF9ZmzKbV8xkIPj5fj46BTQPT5ejo5KSer/An7rX1a7SleFRCcWgSq7oaZcIPl2g3yvA1oM+HWd7DI9gLzI0Sm7SWot4XWvXY6J03t4uL2WvDG5ZgdQlpUn+YFG91PpoJRjTg7dwtmlT0WDcqIbeVG6vvqd4G621RNgth9lTO/V7FPfz1M/FmEWJ+RE/xgMZiHKx/l92u0J1RO+B2xOguY1gUVk7kXLAGOnKyycPjTwRJAe114c8qCFdubk6cllBBa7PF93fbSPMnN8ZV960a4PGxFvBPntt5i6PcwzjpfrRyO6McgBTS5YBp5dnvs+F8+rpU5PrhfdVviYNGnS7YomwDvpmukJT3jC8sAHPnB56UtfurzP+7zP8vznP//cPM94xjOWj/qoj1o9fydNui0Q2/J6lHW7BzzdCNom6EIDdqCK7yWIy56bsn2/89zNJ/qc37ZT5ylnT0CeZMNOYk+ee0Z4SC/YtJc68Jb8tgedDxsn7V/bZCN52mOwsxdGWIGBR2wgPJcNWma9to0L4KrH8ynXtht2GniBwwmSHt5tKyWQR12JjZhH+tNl0W7rgGXeUaePtpOqTfnCs5Rz2oKpBx346n6BRlhI4gid52eOCRx/0nmnvv3Eb6ez/o1+FNkrOQ8JqIO4qNY5+HFs3/IuJsQhvOTj/oyTlJHHtWWQzpLIYCTrzs7dh6+5Lb7fHcR4rFlHsj2ut9NR4wiWh/nv2pDObKk3eMTaqYwwFg7Lk7xQHmNu9NRHp3fGguDFc6TxrsRP+NvzJmVsx+rxcsgYdZ+psyrNZnO0HB1vC9gQzuAE5K1fW5D3uO7ZK47FwoqXk/qoY7Mh3cDrFpMRCDMCH4sMUNbn9a/ftqM6FoEzoJm8/aiDkfgsPye55GHf4HF7OlnlhmAEjHeAnKlbSH2SCACIIroOYsZ4AfAGxZuMjpduAcgBnJOFy0hPZG+KErAlfW6sfD0HMmnzt09YcgI1sRhkOz0Qrds5+eWmkY2Z67Ws+IxO1PnbG8NOBw145ybTsbZzzPmklb/z5L/S0wYe+eJ0nM1D6qHL5ETN13LhQjc96XGi6Y0t6f24XbdJSPlMmjRp0gWhCfBOumb6O3/n76wGxDd8wzdcFbhb9NznPnf9fod3eIe3MHeTJl0FrXvC7cZvfaS1efrUthG2EtTZuR0Y5vQ8bZbOE0Xei9vWJh/75nTiMUCagKrtFurxE3cjkDNlkQB0pnF9/M19P13XOYukPU1bXJ7rd1sSI7D8sGcyJFt5q1KmZZJtwhYpj05sF+wXHuuu31VegtfWH/dR9jn1uf/yhVGU43fE2PbuXnydvNj+SZsU3aryM9RdensaC4Hn+nZISNfv96fAc8mOkALwn8B1xlF1fnswmofqJ/iHuA/GQ132gDaASnrjW+gS+JCdglI+EOmsYzfccBrq0PY/PGcfe0ykI9Y+2zXBUNvCibG4T3PuS2wv68o01ufkLfmwU535cP3WNcvcepBYSb5ELvvJ12gXhzN+at15sp/dN25vJ+f8eO5HDjnX++N5//Qgp+LpnirBaXiszXJ8cLBspKTrS8hqoSs0eDdQ1qdWDtary1Iev7uwDcfL0faFa11Q7lS6DsDsQKd9i+QIsNyn3FZUJg2Vs6Z+7Wu3A63c8T3RAbA5jk2CaOYvJ8BR+0e8dm22so7uu34ogfWUk4E75JRt8cmiQb/sx1x8k9/uNLbrt5HOGJTf55Vqz9mUB+XTZ47h5AHG4pmTir1EvYFClt6MeCHuJtaUkScf1w1Z5jkJ0nYPfvjz/aRc1C3L1KmciHOzkZuzPIWkXcgKfWHyJX4vQG6lH4Xy8EFBysd9a33NTWIuUJYB84PDeUyaNGnSBaEJ8E66Znr4wx++fv/CL/zCVed5xStesX7fUJbupEnXnY7PGscDR4r1rkBYh+7z/tvpEujzvbR7sTUNLHVgXFeuPdZsB3RgcabDVujAC+pKAGVkWxmIoC632XaM34thXixjtyPl2NmN2U++hrct18AvePzcnreWD3+XbUCoBHsKwiuy5slmdMR9NrKJs9/qU3VZXvBo0BHiqVbA0Hr8nxdLp11MrFrLBrAR5xjzlLFW+W2PYfoG+aaOOFSE+7c+xSeAOfFpbcelnCDfS4/MDFvgMWZyv3MfGdrLu+7XNQ4prJtJaTfnXEBZ8I1eVH/jdJi6Y1vdHrGEpKz7gNXE0qV8+tPlWBbw1AGlIwyjS4ssPWbpE/C0LvRDlk36xK1IDxmsdxsoG3mYR7+UzjgGelvjgD5IffVTAMWfYx13+FgnR/edQ7T45XjG1Kynpzp8vIaWXU8mNRhrDSsP3C2T5aGrzqrQDPWysVsub8FbhLoTbF3bevRW/oPluJ5k8YuvSGtK8JD6OqAmJ2cvsM7rBnfCREgZUJt6ksddZx9Xh2527VmBnm283pPON6CNUpknK3WCUQmEdp3n3zmgkvbJJQHXBO4sqwQnR6cz7sdccFye2+fFbB+/vlYDkkcXUPost/qJQOV4jeYilPIz36lr1JVArk+WfFIJr/Z89Yu/DJZaLh7onZzzQKI7sfMGiPba7d/ycB57Obu+Tk+TuOYJ1zKkztxYJdjbeTxYZj59trzMR1c/p788euZNSvZ1p4feIHshvBbyGLnedGv4nzRp0oWnCfBOuma6687iuhlr6yroHhV0cH0j+e6Z50mTriPV46rbqIRbcDdthgQxfC1tLe9lu3112gSkzyfTTAl0dc4O5PX9BKCo06BTkYFq26odIJeysI2Uj8bbtiSN9/Ypq3Q+ynI6+XMt7Vy3z3n99Kb710Ct01vGgD+FGRiMwSmEuK0GOd1WQseZ/2xf9lXa4l0a34fne9/7bPgI3zdPqaN87wu7l78pKz0l8wAkvSbpm1oGahnp7nf5fM9tq74FmM106FcC0vUxoM3YqT4tPAInswRc0VXsYo+1+tshBUd953FYdaFbxEHGJgWQRM7cAzMBLDa2YA/keglbzmXOk/rR6Qv12TO2HCQ72xfg0/UlsFpUPPgQwnNoeqlTB+M352fLx/zvs4e7+53e5H3zkJ643ZilDOZHMArH8U3w3hhszgXr98rA0falYgbZUKwVwLIb/44BHsffdaibv5a1NJV1QdnzNM7kiTOBq07g7vxcXOh8YqCkK7MncpfjjivFu9Odl6O73n0LYR8cLAd3OdzG5nWAbiboBJpc5mgzMJocndaTo9ONZAMPlmlXTwfcJWib+boFKDcL7o/Oq3k0YeTv0h8HsmeAe9FgQq3FwHF3E8zLzYg9OF0WJ0IJAPoktusLyKfhyMaxeJNGm72sx3GDO53P/oBXu/eTv37jJZsyz37ueNy3oFMePHvi4x4bDCYtHm3JzRd82MseeXLNG0HX6wmTkzW3h4XZCzF5/QSC5T1p0qRJF4wmwDvpmunFL37x8pCHPGR5+7d/++XXf/3XryrPIx7xiPX7T/7kT97C3E2adHVUzj1b23a7ATw4OOvJW8Q+23t0AxGdXWdyuu5JODuZGCDbV3YHWmUaQCquE1u1c8oCFLId4TrScaNzQEl7sZNFtp2yMr9t+cybQM8+29e8wKc9PdP+dn2FD2BDELbR9il2BMBZ581XeTrgC/kSas5gOGEJsl1dfFbS2u51WAr45De2r3WYkB3uZzu30Q4fAMATegXYnfUV4PzqV58Fu2x74hHpPkmgzSEesA/TKQfHLMJvJE6V44gX2JEX+WE3p56RH/mCl5kv5JQv8vb7Z9Lu9nV0oah+80I8g4A4NnW6ZlvZH88PtrsNoKe+jcau+6WjrK/qwKMW7AX5ZD1pv3f1drx1f2f5qVd5aFUEpuTx47kIYoyiC77e4VAGb9HzIt9DTzz/U8YZ/KPi6noQlgfu5cvbsAur4HwCKWZ4k5wVVcJen2Sp+LylB7vBtNbDoHT80+5xhK4ToZHCdYpp8qSRSp2PSHRU11/z6uVgs1mO7nLXbViLFVgSSu8y3F4PFOTNIOza17U/lc71dO10HoOfnUxHck/v2m4wuQ8TlDNP+zYh6Sk6kocfMfGEZhkzkAxuUpcHgyd66nTsrNRP+s4LX5bvgwv6148dOIYKj9BYB3LzlTJNXbf8c2HowPbcXBkYtSxzk5lBw61buRhZ39yXq8f7bnHGm7a+/fK0PNE05abRYTTcH/DnQxcDtJAPACjfk6g3XV78cqKfNGnSpAtCE+CddM307Gc/ewV4P/zDP3x5ylOeclV5PuuzPms1Qp71rGe9xfmbNOk8qjiEJ+EK60KEYkvbriif+PNemDwdAOI9pvfn6QHo/f9oT2ogwV6jjsFqcKkDKcjvfXna//CSj02njQAfDjNh55IEyHytk1OCammDU84+e9e8Ybuks4gByw4MK6ci5Pma12y9TQ2olr0KSAg2UGCWPS8z9IbtxioPm4kQEFV+hlHA7qSvbbeSjicZKaPDPwza32v7ovkz6bBljelUWjyXu3caUW7ZgSnDBA59n3zYdV2/ZZ9nm60v2c7OpnN+k8c3fQTY19WBrZvAvfuK+hNb6bAdwgoUAfLWJ5/KdRtTXiM8qTugSRl380za/smz+ciDqpSDAV10JfvBbfYhj3HBTo7Zzq5dXZut89TnMCWJBcFv522b8qJc18nYSoc883FwULF1a12qfNuMa31rvN2avKuCUtBmkXLjDqoS8rC2qYEGh3fCradZThsjgSMET5YGuAw+5QlZkReyPJlwZ+Sg5tuAnsGtbvFoaAW+X/9n2zjE9fcOnDq+y12Xy5fushxU3OFqP5OQUfv0BDWgZHl04G0u6km+3vVhgq3DBg4mywQ5aY8Hnhfi3Lhk212HJ5OsP9tg72gPHEDUXADMBx97szqEQRffNd37Dcq731j84DvBXcfBTVl7gsqBvK+/cvGmzNyIdBtM88Akmn3oyR45dKERclLPSYv0+cI05Gy5sEgavHUe5M41t9dAbaeD1g0/gtXJKg+eUn9Hm+l9ZN253nRb4WPSpEm3K5oA76Rrpu/7vu9bPuZjPmb5xE/8xOVJT3rS8pu/+Zt703/913/98m7v9m4rwPtd3/VdbzU+J00a0XbPt9nuIQ/PPraa5L2p9/ejvb1BVYOW3LMtnABY7uUyv/evjudoHtmDky8BnrR3KBNgz3biqayutFFI7329bb90QBnZQ/mxDDPtCJzqgJ/so8RF+FhWllnnSIJtmKB/gXMFnGIjIpus34/Jl51WabCdCkztbHs/Em6Z2Y4x2J/ydnsTL+G3Y0HTZnsg0247lpE2QyVy32B3p0PWmc7uTJvTXo2ksR1mXS+q62njppNXB9QVuW6P1Upf4HzGss02uG2pox5zYEZ4hZY+VEjKAn2NO9mzuOO3u5ZjKesfUXc/5ZcYYEcOT0C6ulY65QML7hEXO/GZxKpSpvYaz5CNdmYzlmKQ1vJJvadc5OJ2+wCtw3/g36B/pzeAuwXKHta3BVohGXzasFPGFZRFeU5eInTqubtxZ3siAsVmEDAhlXcwjc+OtqAyuHOenHXfKbjzAJcEKhkYnrRHZcSCscFz1AP5rrv1HkWpTymkQ1kkWN2V70d7zFMO/FxI/bsbbKNNRZdu32KK/HNyZzLPdNSTGxYvHN0ivY8f64cX1W5A2yM3gT2DrgnmWT9SXyGfDnpSID2npOmdSj2k6RYN2trJkf73BNQdkriffK/r95zI2ZBkOATz4s2MZZGbNm8Kc7HiBNJzA/GgLHPX6/HhsBs+7LEe0Q7KzrnDGyaPP+rNU+BJkyZNuqA0Ad5J10xPe9rTlp/7uZ9bHv3oRy/PfOYzly/7si9bfuRHfuTk/qVLl5YHPehBy/u+7/suT3jCE5ZHPepRK7j7oz/6o8sv//IvX1feJ00qOj7eXGGDpIdpgrLsM/Ox8dxTGrg4W+fZfN4Ld04HaV+kzWngwE4TuSd2XreF/bf39HgCGwA075SRdXSAtTEI9uKd7Zqyc/vyXmd3j+wqbAV7N2d/pI1hQIYy8NyFf94ZU4AUNgj4gG0v81QhyJEnj+AbHKcvAJYICWHeknfLxSEOMn3aQuUxDKibL5+CHzCjamPFGa7rL3jBlX1S1ysuawJz5M+xYDCWe90Tnmn72t61Uxb5S560xU+O2tnJ/BSAmuM1vWrx4s6wKTk2k1L+5jlt9hw34BV+z5D1MsePQUTk6LCIlhllJ4/G5877cNiQoG3qH7I3npG8Whbd08Qd3uAXrqUsPbfZEdPtQzbWDe7X3461bR5SP8AaPJemvM1XvgTvtN0VBX4teRsWoWLiltfurrD1GhV74bH78S6u7nGUc2bB8gS4a8B6l3R46WVHORanT4S6DjCQZ6U2/1ZmkxfeXND82Py1ADeUY5C3rr36VcvBXd94+lY9B90eefL6lCVPpRLcM+W1Lq1lmOkzbeZLmcN/DlDL02Atfzuv6+zAslzcMk3Ho2PkMngYTD5IIASAJ0wPSIOS6UnaDbzk3UBnjg9vHAxY0vep954UUi7wmROa0zncgSfwHL9uS/YN93KhyscIvMCMHkUbbcT8KAYvHCDmF+Pn5JApZO0yDEB3YRo8B9DHGa835ZXleq7jWsfbpEmTJt3BaQK8k24VPe5xj1vB3Xd/93dfnvzkJ6+fNQ7csizPec5zzqQtb5Jf+ZVfWT71Uz/1OnE7adJZqiddi9hfdl6u3v+nw0HaNN1eH/K+1Pt+7mVZGXZwBBLZCSftgazb9XT7+LRL0nmi4xPbqyhfWuW9evLZ2bCkN7lP9oFpHeiWzjJOa3vS3qedHIqQBfZpEbFYecFX2T31SRCOssBHKIvf1gvu4eFITNgMF4lNxaP9tM02joE8YxP1oR7Kqo9jx/LisiLXn7aZ+6mzo91+g2Ujsq5TRnqLZh1pAxd1oJvTZDlZvuVSZRUOZN5t/5tn4y1Zp8eSeciDFDCOqnNUth3PRuBsOrEBdKa8qv7SW8ZvAaj3vOeVcxZlZD3GvvJgpAgdzTwj+Zj/HJNFeOsa0CcPYVJMxueMhVmO1I1HvdvgAx/SGaBOLMjflsMp3nZ8prxVdgc7UHYHvKy/Gbh5KuZGhIBOwGCuueNcpt2cO2DO3wgGZfWEORrk/N15a+b1zO90ALM5wXRgV6csXI+FZQ3J8LrXnSoBEzGTX8bSQIYuK4HCTiY50aRc83q3gGeavNYtjj7hShmNwPeOn9Ekn/03kn2RT875jU4TVJx+8KTL5GRXe8aIB6bjQyd46QHrPnI7/aIu0jPJpHx94GG5jTYnBiM7vebeqB/2kSfLopwnOC12f+emqOvH0eRMP9R3nRDnxiEXOfcZHzYTnG5nHh9CWU/oJ8pFt71Q79tkdqf751F3CHW96LbCx6RJk25XNAHeSbeKbrrppuV93ud9lic+8YnL4x//+OXGG29s073uda9bwd+v+IqvWG72690nTbqOlEBMgpNp2+SLi88DHjtbe58dl7ZXOkslqJZ78O5a7p9tj1CfHSac10BmZzNnPQ6pNgLkEsixlyFtLOrin46wgM5OtT3nstN7kTR1jzqdx7ZKOpZQH1NaebkC+Hb4g/EA7FKHXoBvv7TMfd7J3Pk7gAxKD0/qr3TFt+1rvJ3Xl9DvAK/6Tfm00U5syScYCSEY4Q+nn2xH8utr6SxnfMs2JE9ap+6hvx4PxRte2aRDB2hPee8WWFhgJ+nw+sT+90vdunCNHcZgHQBnsp5UnaQt+fllcJRrPvk79YInjiG8khMfrM+rXnXqlFX6kPW4LThTplOdPwk6m6znLtvldPNj4hDVluLZdr/HUoe95Dxj/uzsVfoOn3aEBJMyTtUB2+5n99uJHkgWtxztThuP5B3YgZ0GE1EOBgATKUwlIFB/c2JT970Py4Fs7zcLB8Xy5G3BdYrlSTgXkX0KAhm0sQBdxgj4PI8qDZOc66kJrpQLBTMIZrDRMWTdjvzuFmq3P3+nLBKEM9i4r5yu/lzsRwMl8402ADlg/e0NjCclg33mxSCeJ2pvRCxrg5QdkOfx0vWDF5cEPzvd7DYGmTd58ckq9wF3c3ORRLndvax332Q3GsvUnWMo+9b1eSHxBsYbgNwgUQeTpRcKymXO8omuN6fmoVssqM9PIOzT30mTJk26ADQB3km3mgqwrfAMX/M1X7N84Ad+4PKe7/meywMf+MDl8PBwednLXrZ68j7jGc9YXlUW5KRJtyGqmIdHilmYAFNR2pW2ZW3H7rPh8p5t9qwLux27MgGttAHZG1NOOlR19ds+T3DRe3A/Xp02ev5Oz7isL/fiyZcBVsups99dRsofG7zDFVKGxkzSqamuVUgFezXisVtTWdptdogDA6G+uk48VTsf+R0mAEFgDQ6bgSNOPr1ZPAHAwnNRledYptYrfjvMJoC09aaIMBJ1r14yV984BHVObGlPJR5FPxvAND+OP3wChOkQwDY/OAFAeIGk1Y4O4IVP11lp8bymn+xJS72lAw4t0jnEdd+MJfeLx94+XAsd5anxxM+6+WUfPpR4iAFv0qB3N9ywBXhTfllOd1DiOrLfk9Iu78Z09l/erzoI1+D2uJ/djm6Odh761i9KtB52OAX65va6zNPvrdfuymfF1N0xU/9eIqRCVmKwy4LziZ/JCgz4m7FpuGbPx07wCNzgmut0Z9NBrsOTrcvPBaTr7Owwd2S3gI7ArVHHexHIN4iSr05VmMw53aJtnVd1N9klH11fcj/jMzlNR52HcdeXpgTMuvLPA8JyUHbkDYPLtay7DYM9Y9Eve/V6oaSdXixH/e203M94UZ1edfqap6megLsNEos9f7MI52m99bJbVHMM5eSJnBwCJfn1CTzljvRuX7+7f1LPWJzdBsu004Fu8s8JnYMVxw+n/3Jjnu05r22TJk2adAelCfBOepOpvHR/6qd+av1MmnR7oe1ecmdsH2+uAAX4nXvo7inM3Ef6eu77XU/aQrVHBVzNl02n55kBoNP29PZH2sDO4/1yB/wWZV3mww5QlHelnPt9d+IKKQ/n7/i2PWDAju8R6EybOiCofgMCEsMXUPeVrzztmwTlChxKm8c2R9o7/DaoVzag+9pOLVlmeZliu6WMDJDSvz4MyPabL/Qg7Uj6uXgs2eCha90gXbbV9qC9Gt1fCbx1upu2tsekgVz3S1La8tjhlMHT23jtJ0jLb/IkwOe+dp2dbjgOrPmoNpWMC2uyjrp9KT/nN5/+nXY0eQvMrodwOrDSZOzFfeX0iWuNyP3Qyct9b/0qIhxDysJ8ZntTFsjd1/2EvsvpnGLzHr8ZO9tyKsbuNs7uWsfl46X+q5eknbDuQjrAJYWcj4k7b05+9kw02MX9DJbt0wnK6jzvLIQE67IcD5RcHNLjdx/lJJdyynupkFY4y6JTopoEiM1i2SYw7nZYJtnOrNtt6tKet2A7bXqfko77ufFIGuncvjx1H49JTwbItKvDlG3OBQOdS69d639ufrwpcD9wjYXVmxzrX54EehJJQHEkH8r1wsGE7nZSX7fI5YlppvffpLeMSFO66kcMfFDjNrqPsm2ZLsd66hynznkK6DkgN4oOjF7XHUzfk79DzeQhARNunkB3unc1xGJ6W6DbCh+TJk26XdEEeCddM73/+7//+v1rv/Zry+t5hvQcustd7rI88pGPXH8/61nPeovyN2nS1dJh7RPXX8fL0dEW5PXetch73AR7EhQbgZid3WX7BAARMLF7v0yCrNxj35zea1lf2ujc695VYTuJcryXT6At8YbOpuz22d0L0NJ2ynJS7unAY7tpXx84v2VLugSI8Xiln7HbeGS/7BIAIuuD7bDqM8IcJHjevfskHfXMn+0x+o6wmvWxflC/+9E643ITEMv+zHanPZqAGPXwxG1iOa6jAwyd1uVWenvuZl7bmR11OpQyrb4qnCdtdcaq3wlEGwCG0wHSModPZFi/K195pRICg3tuU4K43TyUNrnxjkxXPD7wgacezZBBeBM2dOrIKaB5ZZ3ZL8ZhzK+B6q78rj2pZ45rbb4SI7IzYB6QOASJgfcOPzOOQ9mXLtVAqbTHy/HRZlv+rnFr9k1BvruYuQaQsoFWRoMXOYl7YKZywJgnBcdOcdoEj3Lgu6Os0ChqhlToTrfIZ0U0jRYwp+2AtW5xGS3Gbvcob8nIAcgt424gmXfLLvnJQZVgbfLUyccysHyRcfaDFzH3Y5ab8uomz0zDZMeptPP4tCMn16ybtDkmUs95w6kXTA9OJtVc/JMHiInaIGyOQ8d36hbfbnORC0on604XfAjS6b69t70xzMXC9XQLxqgfuknfhFwTJLZeeEMJedORckzdTPnkxtp95TfVZhvcF5MmTZp0wWgCvJOumX7+539+OTo6Wt71Xd91ed7znndVeR784Aef5LvTfKvppNsK1X6w9uAD55+0pzOOKenXogZ2TLeXTtvZ+16e5HPZCUYleFfkR/vTIcyf5JXfBpf9vpITUcmBzDzt8wTN67ZTwBvMA7ZH8mu+O7sZ2wjqePLev5Nb8tjZ/X65EjZWAYCEL+DpaHCPtK0rfXne8pK0xAosU7fFISzMh/sGO67O3PbpV2d3WbaWUbUreSyqdhYY6RdrU0aR39+U9lcXTzpDB6QDjctK+xw5G8Qr8vg0/1xnGXJMW+s9ebifznnuW4dctE1vMNff7reiwi3KO7xi/hIX2TK17ro/wR864JJ09ZvYwZZ73avr5b2b84J55zrpE9BE1x1j2fqY2Ed9pz4b03Q/Uqfb4nm4k6vz78PLLC/CoFAf4UnMh+vw4UY60K3JNihBKV/EUl2B3nqZ2gBAs1Jlo5nomDjt+ZYnN5SxLySBHxewIA0KJQCTgxohUh/3R5N/ByLlZOGO2wfEdtevBcRMon9qEN71rsvGL/FKj1EmZpQmFy97Pp/HTwJ++XcHkHsxHcUmcvp97R7lGQF+9LljyXjSKUoANIFL97PBVU/S1msfcPjgwxNHB6yzaSFffedkZRl3feVTYI8NeHcfe7LIRSnHVFK34XQ/Ow3l1IfA4e7fHEPZD+av2/hk/3syHOmJ+TafLI4jHeV6B277Pn3B3OVrGUtpn5wnTZo06Q5OE+CddKtoM9r4vYXyTZr05iS2fad72VO9zH1yeon5uu0O58998ch+txPKyKEn76VXqe09OzaMbEIDRuk56TJt96eNajA2bV94TDDVYGPaRtneBJFTjv7b8rQdcDUYgJ2MeLowQ07YngAIsk3kl1fxYiw8dGmr7cv6FMhblHE8y06rp4N5z4/tHrffPPKh3RlagPY6Xm/mdf/gIGObrPNOr3oKkDSo6P62vZx2ZGdLul9zDHHdwHk6A2UeA4wu331lGdFGwk/wqTTVziqrwNCMs+y6PW6oGxDa9dt2py11rWI8l/4UvlS6VnFxGcvpiGR5UG59/KI/6q8P4T+MwVTZxFg2UNzZ29RlPAmsJEMmUP5rX3sKkBvzcOgJ0jsUCnzYGc960eEz1uHUKc9f5sP1OLZuArwZVsSYZtEJ4LyuLNsQDO0gq7ubw2VzHGArCoPgDZK4AVY8N9STjRcmx2bxRO3TCvK6Dk/suUDkYwUp0H153QndJGDlNGVnZt05yFM2qSTmpSNc91FuJtBM70E8Aji9aciF2+m478GSk5zbyuA2mJ8Tnn9nexOYgxfSdnt1p894JuY30442GV4Us93ZhtwU5KD0gu7xkYsn+kBfeSI3725LLsLdAuC+9TjKTRy85RjxN7855OniLicf3eMVXlyyX1MXEqhOcnu7OSj7Lp86cP91weA9/q233YbF/Z0bcGTmz7VS9v/1pGkzT5o06VbQBHgnvVXoYLdYXu7ic02a9FamDdERB0486XnW7asz5Jf3qJmvsfNbW8j2YLffTUDWtkJnJ9CWBHzNk3nNvbXvp73a1dvZ7J1d6fdleP+aNkPKJ21S15vOMcZDst2UkWCt7el0BirArbxWXaaf8DQgikMNwJWfJCzcoH53LzirdJUXoC7taPNpPc2+5CXXDgFgr0emYeLNJgAHbwa5bKNB9Tcep6kv3VPngIDYXXaocn3oQuqH5V5EhCB7lhr7SIwLPMRev8jIgGz1c8mQcWPveNrN0+5FCbRSL/xYnmnzk6di4BYgijwKY7Jc84llZJge2dYNg5jWc48XeywDnKZOeS6BEo8ZYUJJOS7zd5bN2En8EvklXpP1+J7llh+n95MaCXxT9hbbaxaQo+Pt9Z2w1iy7dNsD7gB3clJP7zeUk2+DG+5MKz0K4w7L3zSsC7idgJW9Na28neCtXGr7EDTK3wlSjdLuU7ZUKK65TS4nvjc1sMulnhM9XPuRBZ7PeYqE3HMhGSl81/5sW7eAWQcM8uUmwzLI6zkBXa1s3Qbz4jq6k2rIOkpa7vvto+T1Yz7Jrw8s6kNajxcDgSM+fZ/JptvQ5JjzpM7484TCtUxflC9683177mYfd6AyPCa4TD2kzw1Pbtxy7OfYNo+UywLrk83OG8EHVqkDbjcbVutXLlzWh27zaZ5uK0DtpEmTJr0VaQK8k94q9LCHPWz9vummm643K5MmtZTAYbdvJHxh3nMZaTN6H2rQK8OYGcRgj2w7yftnvpPnBLmK7I1JzNvO9s72pP1gYMmOGbYrR+1PsA9KO2oktxFG0AFR++zbrMegcNoaljM2fnlUuixsfTwScfoqcO7Vrz51BMNeqfTlDUq81QJzbYMmGAcffjk15RgUNdBcRLkGpzr8oABevxQKYLkDn4tn25boVoG2Tsd32pUOi2Bd8hOV7nf3T4Lt3DM4meCe7Xzz7L6lf9OG5bF9g4IA9ebPICOUHrfJu9ts+VT55SEM+G9v206voQxXQBsSZ7IcLetuTCV1Y9H85fjuyk2e00Y3xpK6kGUneeyaZ+uZ+9IyN4ibZXb5t3WcvjjtGM9dlD6Y3fJWXr27ibjCN+SgTOaZWBLQyEnKHeqA7dnBqeA0Gp45EeomzwTrijrFSoXtTtxy4NFmA3ouw/Vkx4yoW8Q6wKpb9LLtdXrFy6q8IJAfF/8uXmzyMRrIyU8qva85TQJq5qsrjzLN36j9I5nkQpz5/bcnvryGDjqODmOie0TF/Ftmbg+gXqZHrzNkhj95goeu5malk4N5ZEKxjGlrPq6UEx9/d/Fn4DFBYaibwFyu+R9tojwWu81aAtTOa9l2dbttzFWUyWLV6Zbr3rdZ6/IwPv34zKRJkyZdEJoz36Rz6aEPfWh7/UEPetDymnq+85yXq73DO7zD8lVf9VWrV8tzn/vctxCXkyZdPbENNJDW2Wf1yRefeX/ZOVN0dvu+8imn83j0S87TcaHIGEDWk85ZrjMdW9IG9jeUQJVlQVm0xft9yzC9Ddnrp/y4n44+Xf2dzJPSPk573yEkLWfy+YXUtjU6x6AE1wi5kEA4H+LxEtYBwNS8duEzEyRzOzvP3iTA3O4R+pSR7S/b1u7HtOcMiDn8ntvga9mXaYO7rA476tqJ9zM81+8C3O0dy3X6mXqqHyotYQYsc/rJHrweA7bRGcfuQ49L4xrGI/DmLtDXcWFN2W8uC5laPzuA1wC3Q8YkvuD+JI4094u/OrjIPMkL17p4vfVBnqnX2Vancdp8StntMEhrRzuHsLU+mN9tui2oazVb4+iiEGuGgy2Q63iuMbGtL1fL07xsNGV2i46Zy0HkgeFTH0/SKZTqvHw7nb9ZSAwKWzjpiTwCpLNTR4AT7eg6vgP7/HeW1YFM3QSXiuXFoD41EJkInQdl2jcRuQ+Rf/KVE3WCfl0a6vLCuG/Cp5wu/lHHR7coj8rtNgujPEyy6ZmL/uRBhcuyl63jB7k9yLh7aRr15cvzfN/9mXJynmx3nth3ciNvjiXLLTdUpMmXInQev5ZXLtjpNdstEBnDhzakjjHpZ/B9152bS4+fHEduZydz90/K0+3o8u3bGI7IJ7TXm24rfEyaNOl2RRPgnXQu/cEf/MEV1+pRw6c//enXXNZ3f/d3v5m4mjTpzUfer3v/jpfkaH/Jk6u+34EQ/E4nkdyHj+wr/jYogpMXe/LObrN3WgK0XfnUbxDT9ym/s9VxyLEtlnKwI4tt5E4m+Rn1QfZj1tnZWwnM0zfYMnZySzCM9rpP6Qv0BceRAggrrmrqkW0ge3oC6PvpattvIxsOwsbB+zTfO5LYTr5QDN4yRF7lLzDYIRfTEzXxqIwvXX+/6EVn+4dyO3wlnbRcJ7rJ2OscvpBnytvOWrQxPdIh4tYSf5k6U/bdOO2Ab+tPh3/kPESYjfpgS5tSNtbVBC193Xzai5X71SfFa4HKmb/uATanDndtSbDYByrw7fFk3n0wkPznO8hcl/sAPUiAl2sOf3Lp0vHJGHzDGzYqbwvunoC69Ri/QYUTxq/sxDUeb06+CaKk0Pg9Uo4ExfKEwSBZdkQqRhFBmgGF8ySAtrodvu+OoaNz0s7Oy/a6neTLOruJYiSvEeVEkeVRZsmwJu9ctEzdgt5Rt7mwHLuFOCePLK97dCb5Sz3pgLqu/b6f5XZ8J/8dv0W5WfEk33lyWl+RhScPn7y5PPI7YDqfPH3uNjRu28hr1mmZZLryEzBOOaYsfH/f41qdvL0x8ELok2jz4gXbG5+u33MO88Sd4RA6vfUG0DJ23+d46nSy+6Te0B5vUCZNmjTpAtEEeCfd6hejXcsL017/+tcv3/RN37R8x3d8x5uRs0mTbh2tXlYHh8vldc+7ucIe5bvb++ce8rw9d9rktptsd2VebIN86jb32LaD0xuX9Abs8r0o+aRckZ+ks52Qe+lsp3lP26SzaTv7MO+dZ4PuI3snjqardCRDRu5/y8x9aZuTPPVdXpekKxuzHMDqaV97DYKpJF/IyrFh0ynO12xT0QZ7JDtNyrXDZmwX2d5KUDvBwuyT7N9KY5CyrpVNbBvcac9bXqxrxi5SB3M8d096Gkw3/lX8Fo8F1JMu7Wn/TjDT480A6j4HN/QNByliMfsp8QQrDWi6jKyPdnQAr8eJwVGn82GRD7bqU1iYyVEGzMfI87za5qdpyZNhMfJQLfsscSmPTY8/l8mT9nX9LoeXl83dDk+8vM/o4vHRsrEn3dHRCfDbPhZhxcuB57/zxMmghxuVC4AHaffmRQvdZBdylKjqY8LPQZmTgQdOtziOwCiu7QOCMq2VvgPi/A2v++7lopHlOQ0TdFc+fUQeAL4s0387vU8WXGYHxo5k0022bnMHqu2TUy7iI4CtKyv/9iaHBavb6GS5HgMeT0wQyD1Py8w7A9r3ciPStc33DEaP+tOLfFFuFODdoSggbx55fKd79KabT/j2o0LZb26PT8OoO8NZQC7T7fBkTpu8WfBY7TZ7+ygX6/N0Mj+WqeXqg65JkyZNukA0Ad5J59Knfdqnnfm7QNp67PDLv/zLlz/+4z8e5qs0Bey+8IUvXJ7znOcsr61nXSdNug1QeVUdbzbLwebginAN/p3f3IO6/Tq/bQPbXsu9a2dvGhz1tQ4jcD0dYGyHLFPujxMoMS6QIKP5NxicfHeySVlbpvts73xiNT2EXW7Xj12707ElbRvkkPnc3q4OvC6rvIq1W4+0l81ZIG/K0fIdySfbU4TDnXlLUNFAXZblfP4bPep0xralgUPkCPBnXjo73XrTHUoUOX6wr7tPAAvT6ZB4uYB7YFZ+MhfwFswA+5VwIg7JQR9V+vrUb+IuW3bGE1LH3Ebi9Kb8UyaER626jE+AF+TYNjbhw4P6Lgwh+xA98lh3v9KOkkm+KM4HT/WbFwvyISwF/eWyUl89v5jsVDbSWV+3riVA7es5RtCB9d6lg+WSnMkODo53stp54+YEa8U0cDp6TICGGbgwAOXvXGDyZMWNJw2NslCcJsnALsraAWTuNLfd5eZpWXaYB3nngZrtchtGQO954FFXxnlAX+Yjj6+RrhSdWDdWVvdXLlaUlSc99ojsNhz59762uyzSdoth8tSV2/Vh3jd/1mPu55hBhp4IfY1DB0/MOVnkyVTRPj3xNbeHhct8GRhMOVlfvZhZVl7wcjH1GLfHrzcUmS/1tXuEYaQDlk+2p7vn8ZKyQjaWv8dydxAEQNyBrdQBSN7pnudCb8T2bZL4sAhdC+Wm6XrSbYWPSZMm3a5oAryTrjmsAl64T33qU5fnPe9514mrSZPeNFq3tDvDff33+NSTt7NlOvAw7Vvn6UA1HAo60Kqzm7P+5Ml82OYwMJV4Q9oZvpY2LPvyBOjYczusW8dX7svTXujaYawiQwhcjd0+skNt/6WdUWkNcFn+eAxmHtIA1uGxSD08Al62f3lOGthEFoQ9KG9BP6mJvOHXno3uG/IBSlJf6pe/HVqS2MDZJtLT7roGQAhPtimRFWEMAD8Tz7HTD/JxiEvzUDJLANt2VzpGGTPhPjzb1jMGV+0v0L2oPFDho3iruguYBwCET4eQNL/WBfcj9XeYoMefwUnAZONuHT7j8rr+cLmZ3vo0wmyy3sQzuvkxcUu+LZe01Tsc4jzsItvtjwHeDuzNuMwnYG/Vc3x80ueXL9choGLtNpNd/bp8cKfl8PiW7cHhroLV09cNyoVjn7cbgmSC9cmIH4nuThIt8O6EJPkBKLIy1ocTJPhw55nn/J0dnB6QXftGgJL57IC5TrE7ICt/Z9rRAnPePeRHGwAhffrnx2K6U2ADlN1JR+qNZZinnlB30jvaqIwWzH33Pdjzem4+OmCPfN1BBGRgzidf6CsnbQkq2qs0J9puE+cxRzkJ7naTGuT4S9x3H/oUOetnfBqEz7HO9ZyI3cbUA0+Ers9zidOlDHwwkTrr8ZrytQezx7I/+aK1kd51/Ga6/Jj2bRwnTZo06Q5OE+CddM306Ec/ehibd9Kk2w2tm9TaAG43qefZep09M7IxuzIM7qVdM6ozeer2sP6dtkXy0/He7Y+xcQxc5n3bSEWAwV0bbJt0dXUeo3YMSVnYjhm1qZNRXjOmYZvKYK/LTp7xRkxP4PouwLAAQvq87JmySW+8cYudpKdrAmBui71ILY98KtuORJZ1go1de9z29AQt6kIpGEdA9zK8h+3FtMfSO3qkH9l3xjc6XeC6gWO+iz/CDRCewGEA+AbMrT4z+G7dSN1MWfobXaEc97nl6RAG9iZO/G0EhHZzQvLSfWdbXF46EWW5xgkyDfmNN9TBhHWiA3Oz3qwv+fEcsg/c9cflrWnq2uXLa9iew4NLyy2XT08C1zpRlghxcLiWFS75dOToEe9uQCR1jSWd4+cwGHJwJgiTHndM8r6OYAywdY9t75t8sxMToPFCdR4Qk5OOZe805+Uzj/m7mxyzLd1E5NOffISdNhuMdzme3HMAjQbTPl2B0qOyWwzPA76cb5TW9ViOBihr8ejyX+1kX+RHKTKwO/eLfD8nk26jZpn4kIPFmrZk3zidJ+xR2f7tU3LKKmKRycXR+fOE0BMof3PY4EdX0D/K6PqV01JPjD7dNXmuyHZ4E2TQ2nNRLty0x3ndFretO5m3DK5GbydNmjTpAtAEeCddM/3CL/zC9WZh0qQ3jbQZrG1mRVLsAJsEUuyUlffs2Zp2mj/ew5ImX2rlNJ09d56t19mxyWOCm4kVZLtcN5/O1u7k04UAtIyy3Skrg0PYAkVpJ4yo4y/rM9iY7TeA2fWjwUzKMJiPs1GRvTwtgwrlYHsqHVeyD9JJKdvJvXSK4yVSHaDW1XOeJ2XaoNi8xI41uFaevcjVdnvHy+hv10dbyhPX8WWRbwGJBdTaa5iwB7Yz8dhFpoVLEMIhdQB+0kEpgUNkaTu9w9w8ho0JEd7D80DKfSSX8/CvlOu+Pu7GPv2XMnGoAwPaHR8e1/bUdh+aH4//9LZ3OYw96yHjz32UYUzWMqquwwLsLleI9mWDw2DtlI97NHv7srXTtyKuf7vzU8E9wSVA5snFYIiVyJNf53nbDeRRh3J6l8rsDjCoPQqgnLx1CuOJ1W20ElnRO2CSOnLx7ZQ383vStvxGE1+3iHZtxls309izc7RQu2xPIinHTna0Pb03c1LJPCMA7DygFbLXqRdKl2t+k7pFpOtr60e+iIDrTLZMmO5Pjx/3e+oqbWFx6E6pGQP50i7rb24QuzI6r34ee/EmicXIHvweM5aF9Sc3DH7Laj6G5FNLj4VK7wDk8O15IUHa/J1gLfwgr5z7cmOHbhk47nQy+7q7d2soF/LrSbcVPiZNmnS7ognwTpo06eLRbpNaxvjxuk/enNnvJ4jHdXs3hp1/xe8OVPH1tLNGNlmXJ3+7WR2OYEo7p8h2BH/bXkgvXvb9lNc5urjNvH/Ge3rv2dMu6TxW4dH2BnFu98kk+8egeYJrjvuadlU6Rbk9oz40mGQPw5R5ffzEafKePKedl/IeOXDRTvJ0IDHxVB2CAF7S0xUdsB1WtmF9E5bCuEWGoUi+R3LsyLhR6UG92I68lF0e1HaMcv12dnJbin/L0fboPr4Tb3Ia27wGH6vPkRdp/VK2atNrXnN6KAAPtpuTEmiGHz89C9/WS8vUuByU49q6k3gLwKrnSw46Oj4MuCZ/BXInX9le7ls2tA0vbcvdGAV6sepEhZ+9XId9l5a73eV4BXxXL+7DAWBlxbLycvKVcTxyUOViY0oApsjKyN+dN5zf0GgEm2u+R8DqBFXMM21iwHT8dgAp/HsA5WSfp4g5oKAO9DSw1Q28rr+67466RZfrlmV36ovyZt8k4JX1pEdktylAVj6pS4Xu2pF15oQ7kpWJQZqbgQTmurqz7E6+3QDvNh1F/EY/HTfGi2ACjVm/AetczN2+XBQMwhblJijTWv9zobPMCBZvvmm7Q4B08kEOjl/MePULAz3n8J0n1d0GBzm5vtQvn4abvyzHY5/73szlRiY3ti7HeUZ1Tpo0adIFognwTnqT6RGPeMTybu/2bsv973//5W53u9sKlu2jr/qqr3qr8TZpUkvejJf37ro3XF20rip72mbQPkDWabx3TlvfeXP/7P1s7m2Tr9wTJ3/GJQzCpc1hPgzkOa/38+bV+bMs2yAGuDrbk7IAmv0+m7RT0h7u+ok2+J7r7RxhOrus6wPKSicQ4ya+X+USMgCwL51cOuyks/vTEY+/CbUAQAvQlSEdsu9GlDpivXAf2k4FR+p02uVmf2S7EzNxH3VjyOXUdwHPyKHuE8ahPuUJ/LrXXYnhpP6bb+NYpE8sYfSiQ8ZB53jGC+CKiq9Kg42e8wxEOdVGx32mHtvmBn4tJ+sl+RlvBbZyWFPEuKjrvAgeqjy8eM24RqVLva52oSvmo747j/N02LNeJD7pp7qNbXgOO9Wbzc7zvJ7sOFoODw+XN+5ClFzRcTBPY/INeYmA5+TSAVueYIxod494uMFuhIHhbjJ0Z/tNjQzYDkh14G4re6ZL2VhB7c3cAT2e8DqP0E723STodMlDph8tEKNJiu/Oy9N5kKPBWE9cjsubnqfct3KbUh+sc91itO9aJ8dRntw0WGc9FlJmXd0JdDpPji1PCMiMe8jRBxrUkX04apvryoMatwO589uhGXIzQX7A3U4muYgW+aQrZdm9hIz8nHR7I+CxZC/9LCPnoxzb3iR04O7o4KUbp11a06jcTre78ju9nTRp0qQLSBPgnXSr6ZM/+ZOXJz7xicvDHvawa8o3Ad5Jtxk62XDXm9I3q2HPy9bWq3scBUZ/d3b1vv1pZxON9qkJOnX1J8+djZi2bZfX+RNcSbzCbUzboXMCsY1q3KADoeArneGKupBsKT/qMADXOeMZYzD/XXgJlz2yIf0iMee3w5DxGdpmmZEeShAQmQAG+rF420luB+BYXbPXa5ZPWdaDbAvfALf+dLacbUk/MZovcMPGBdC09ypPj1pGBSSWt24BoYRlMNZiHMLYSYWMqHx+jN+UWJRBQjsfGcynT+xBS/sAk3HGIqyExxT2eJVTcZzJTzjLHJN2XrTsc9yicx4HXWgEO2CNbHXkWLIrKrnn2Pe4y3nIvFtWIywu+8Sy4rf7KJ1WDQjjDW1AOcuHgYOD7XpQcO9JslQEPpzS0HDH3s2KUiBXA8JxKpFgY3fikfdRurzPqQtl4O7sfG6zgUsPTPO1D+TLCW+0aI0mVpeTwJTlkBNl8pPKbKWC9oFF5y2YRQQvr7+ZyGogJ4hIW9IzmsGTXs91n8f6izJ8QQ7CTr7ZlvOAMXSiCzHQLaZX03cpA/e96/VA98Tv+NG5gHnBz40ZY8F6k5uCLM/tzMll3yaAdHnymmV7kuzGNxsJn9Dm5ovy2UQhH2RFWVk3xHxFOAd+JwDtfB2wzd9df+Yi0G0ac6M36peU5dXo8dVSns5fT7qt8DFp0qTbFU2Ad9Ktoq/+6q9evuRLvuRcb92i1RvmKtJNmvRWI22ISzO3vrulpwfL5XWPuH2Tehn3ufe3Kqedkve97869rNPtGx6dbbbvd/KVlOBK3uv2ybbJbC8ZOMJGTe/TtLW9b/c+2uk6UDiB87SP+J2AbNoJ5/WB7bLz7IUEwqwLd7/7FsBzv9PmAvoKiMRbFGAy24dsjbsAHL/61adllk1U9dVvHo3HYxfbEhDOciCEgfGaUdtHf1cZxp7AHyx7yx1Z2YmtPECrHNu38G9PY2xc85vjixAT1i2Ph8rvl+MZULVd6qdvrRPdu7M6eeWhgr8tk3Teg4qf0glCNYzGbQKaqdO+lngJn/Qu9zhOIo3xzI7/zkZO3jI8xj7e83q2Ow9Ccs4gLXxblomprPkvH+0O/Q7XdWClEYhgwMnpPOmlW7e/fT3Te2I1w93EkvVaIKM6zVdOBLnAgYrXYKUeP34+Ar2sgN1L58jTuWSnHLtTmOTdbcxFqKvXi4ivj2Q3WogMkDGJoBslu5qEffrk+rt+G3lpk9+LnScvl+tBtE/funbxd/eyrX26NiLzmH2SZaBrOZGiGzz6YH5I0y1i1inLbHTi63SWI31sGXULgUH7rv0pZ4+v5NOnvsmX9auoFo0un+t3+/Mefzu+TvLjOcqboHxhnPsl9baT+T7d3LeIur98La9PmjRp0gWheTQ06ZrpkY985PKlX/ql6++f/dmfXUM0/LW/9tdOwNx6rPEBD3jA8uEf/uHL0572tNVI+sVf/MXlQQ960Hpv0qTrTt5Ur3+ebnx9q8I2dHZqR7ZvR6BE7U3x4jsPSBmx3f3u7E7/7uwj8zyye/n2ntrgqx1FcO7iugHctMVIT5m2E1Ie3uczfQDSJEDc2Zu+l8CgsYy0Y5BXyrKTkX+7zOKz7J36FPBaH8Ba6s/wD+6rdMTBBrznPZflPvfZfgMkA4oWaFyen6997WkIvgT2HJYPwDTtXABOMBnCR2RMW3ufdvhKAnXGyJxnlD7l7fzu23wPTAcEGhCsPim54clLSAGXgW6CzVgnANINUqKXlp2f1C8gm/4CBAcHso7SLvqpeONjD+zOtrUMu79Hc4jlBW+ZjnvFV7W12oMMR/1nvcv7nh98PXnd14+ja8ZiXD86TFuuxL9OJ76D4+qMzdZ7enOw7m9OBJGAICct+8CiBFROKz393QmvyEplSmDVdSbgbDJIk8Lz4LaiFbCL2zbKysCrtpeguLYPWMpr5inlk8qSf2cfuO4O6BlNSKPF0/fzk2RgkcndMYxrgrHsGNQGBc27P257Lsouc8Sf0zmt6bxNRddHufCNyjOP7gfX4b7xWxC9KUvvXAN/+4BfkzdCI+9a94nb4s2c+Uv5jGydHN/oRvavec9TWLeDchiHCcZ7cXdbmQC9mSryG0jNgzd2ed2btOzL1EePX6f3ixW8Ocy8uVnI/kpZT5o0adIFpOnBO+ma6R/+w3+4fv/hH/7h8pjHPGa5fPny8s7v/M5n0rz85S9fnv70p6+fz/3cz12++Zu/efnpn/7p5b3e672Wm3l0bdKk60VpMO1AXjx5T/eVZzeII/vO+8x9jgl13wBfkQGxBErO27Palkz+ujQjPru60oGL8slrfKDIdpbts7RRXZbfAeLH/Ed8p5wMfHbYwMi2M7DegWsJeHY2V1LaVCbL27LxE5C2Wfk7+5U8BawV4FgyKyCXvjJWQD47fxm/cT385knQdJ7Lfiyyd63bmX2XckuAr67Xi8Qsu3wZG/avwwFmuQXS1tLSgYm2JW3LFhBe7ShZGtRMGz51vr63sVrPyrzGNg5U1lt7jdo50n1vG97jpfhiyew8UjvcKsf6CA9zn5nyXTcmH8Ywds1X6prxGuSQfBEpIOVPfa7X5VKm2wc/Bti5xt/1qT7H0x2e1z7a8VCA7tHmYE239s3mYDmou5XAICgMJ+CRHWDBIsD0jHN+C9+TVQdyeZB7kJA3T/gMQJEHQNfKZSCwW1S68j143FnuHA9ytzMn15yE4G00GbuczpOzW+hSVnkNOm/ip80MVgNhlEeoBrc/J2V7Y6di198ZgD75SD7PW7i6e578Mv8+WXZ/dxulXIQ8VrwQ+XST8QL45/rSg9y8G0C0blL+yDuZ7wTtcwJz2/aVkwuKF1TK9SJfv1lMkAc852Jc1wj/4f7zZEyc3txwmD/zkxugXAA9IXuj2Mnemz9+e/yTh7mri72Vhxeea1LPLPtbQ97YXm/q5qJJkyZNOocmwDvpmulRj3rU6snyTd/0TSu4ex5927d92/JBH/RBy2Mf+9jl8Y9//PKkJz3prcLnpEnXQmwHvRc9OtrGYLQ9MrIRbdOO9pZ1rwAD75/Tjh7l6+yktI+wnROc5b7xAe8bu3YlIOc8aXO5DNspLtf1pUOKwxVm22xX+Lr3+gbEsq60hcBljDf4fno5d32y71rKMG1ArpftVqAkNmvHu/M4r/sw81neCbJZFu6n7Nc4+zhj71hPAOdSfzv5dHaY29I9Nk9fWZajcUj92MI1zuxFjp7RvnKmq7LLA5UXf7lMg46A2QCE5rEDbDvqdBty2EPkaXyH/iqPbeopkL/uGRhNfbEO0FeQAXP3eTqMuqyqtzzEkTce6gZRXT/gKPnTuc4yyZfCwYPDRyaoay/+9FQfAbzWWQPn6M8b3rgNy3N4eOfl8q7fV1S3vHkPSgjH27XiYIV7z3ZoTq4GnBKgsRBScTqg0YM4AVU3gMHkjjYxqKwgRd3bLiknY3iSxhOPXw6Vpw8u0xNWt5Bank7P9RHg0S06KWeX60kywbaUfdZhPlOOyKBbCNxHXEOZDc6hIz6RyP5x2bnQuq3dot7JpONzJNuUc1e268jf3QloTlxMbOirFwn3gw8YTN2GKa/nqbLTetJwX/kEdJ8uZj907fViw2m379V3LU6jzQ9yqsVgX11uD79r8uPtnZanw4p0G6RcLDpZdPJk7vN4ywOn1CcWu9zopQxHupe8TJo0adIFoQnwTrpmqlALRc997nNPrh1pw3bp0qXllrA6v+d7vmd53OMet3z8x3/8BHgnXX/qDEndwpc3gZvcQ9u2MyDY2d22UaD0yCNvOudk3Wmnugm2R0Z2Wtol8Jk0qm+0l7dMEiDNPLk3t2cgaQxgjWx724V2TnG93Xto3D8duJ7yTn5H9u+oDNu2PM1svvPpR9tZtssKFH7BC0554aVRZavZFiQPT02TH34cyxa97HTAGIudnty29EYd9ZHtQuM9rsf9lJiF8Y68xnd6iRYVmOuYviXD+r7Xva6MI5sgoTEY1wlATPtdT7bZAC5ttBNT5alPgu7Y71V/3fd5Kun9riFkU2EgHAc5MSv3Qcqqc/YkfYG76FP9XfJDhlk++fz0MTrYhWFNGVMnTmypO5QFmc8Eq1OnPJZTj1329lNhp5blqPCXBYCuMjaghZlxIdz32+65n4PTCu+GjcAkyIrsSdjlWvmSP3egO9FgpCcJrrus0SSSwLC/O4Cm6+DkzbJJ4Mf8n9e+5KErJ3nJgWGlssx9qlKTM4sZA4YYIT7FykUxJ3Guj5Q45dkNkrw3ypv5UhYj8KxbrLvNU+orOsQY8cTJJO8NUvZ710d5QMAgdziV5LUbcylzb+T2ycGTy2jcM8mnFzITeo41+AAUdtxnlw11hy95Spm6m3wjEyZqt6/TRS9w6XHgObCLrZQe7inf1Ndu/ti3IZk0adKkOzhNgHfSNdOddpbji1/84pNrr9EzthV/94UvfOGZPC8oRGJZloc//OFvNT4nTRpSPtJXdAbM4/rmClsk96JpQxLLswgvO2x7U+dVmy9KN3V73JFdQfm2Fa42rduZNljabdiv6b3odAmesPe3Q46BrbThOkBnZF92/USZHWFbpX3f2Q0juzfltI9IX6AVthL5KrSlZcg93p+C/pStX2EZkBF2L4+cwwNY0sieR99MCSYj05S/9b7A0vSytecmwDOPxQNIw3fatpZp2t8J8OVYoT/x1EUGLE8ei4Cm9qD2GK2xW2l5J5KxMTAZQFf4qN+EKIU/QmowBu3F6nEJLwlEgkWUzhhLqnJKrtYrHywZC3Ca1EX/7fFp+9zpHBoTHXLfud+ScowkFkfbRocECdwic4D7Dojv+ElcyfLwNWNOR7ccL8eHVWAlrsEnb74UZjaSgghk3Q2kFHQKKNHqBHw6YbtRPmG0553rzVACvpfC8cKVj3fkgkMnJCCX7enkmPLpFLrzmk555mKSaTogydTdzzqtyCUfTlmKv+p7wCz3J8qZJ7/uizxh9kAYeTiPdOq8v5POSz+aYLr7vpYLDG00sIceetNgXXL+brHOkCbeqGQ8o+TLfyNnFiyPRcu5O5l3OanjHks+oGHhz8dFOmLRynHo8ch9+HQ6t4N6yZeHOwaCs31uo70MXLfnIS+IXEO2bEw8fpjo0ws4+Tc/XgivhUb9eD1oAtSTJk26FTQB3knXTC95yUuWt3u7t1tuuOGGk2svetGL1nANBwcHyzu90ztdAfDi9XuvcveZNOl6U7NZXmPvLpu4VS9Z27R2Q2eTem+dj0N3QEOCCUWjvfdofz8CU64G1M12dWV6v25MIZ2y0s7qZJM2PWXxOHzngWtbtws/l/Lp7HyX6XCTaavY/jN2YOrwmH1yNmhHOoB8208jpzrLKm0tt63TGQPwlEOdgJqkBSBLGabNm3mwufKpY7cRO6swDmx2t6lAYre1KGM400aeKjVZP5B31VNgq+XLi8HgK50n/dItdMM2pb1k6/c97rGtw561ibX4EMN9lRgH/GffY/f7EMRkb2aT+zw/HRZiMm5n/rLvqadA8MQW6O9KCwCbOp3f3XzYjWOnp2/cL/643LT3R2WfpW3IhstHB8vxpePlaDlYDo+Ptk95eGI3It4I93j3dvlNxp51IGDnyZOMPEVpWY3Yvvz2hMrApI70CjRoCNAC2JPxNgChivxGRy8YCfAlGORJaTS5jsCoTjFTFlZ4ZJHldGV2acx//jZo5QmEe6N+Mm858BMoo0yu2X0/5fz/2XsTONuuqs7/3Kr3EpKQBMIQhNCIRJBAEJWAzDgPSItMooJMggqotCj+nUBtBSdoQaQbQSZpZjpAIyCiCIiKKCDQiKSBljAGSQKBGJL36v4/69z7q/rWr3773KqXhJfk7ZXcV/ees8/ea6+99rB+e521hwnv3VXg1V6eawGafCYtDtJvxmD1tiJp13M3PBepb0p/6TVKvWebUfbijb99AKf++mCY7rFMlsW+W6RdK9dVppNHAXch04LCdZy8+C697jP2jS+YXMYa6Fmuex+zrXwn0RdnqX+nMdZ1kL93EUawU6dOna5q1AHeTnumCs1QAO/Xfd3XDX/zN38zXquD0+r66aefPoZh+Ku/+qttzzzwgQ8c/37yk588LDx36rSNgvFQ4O4wGyFeXJ3tsO0IbLgt4DarQIUWWEFKHncOtHoevm7n9bTu9bwczPQ8vbwWIMI6K50Dwfyd3m6kXFm27CraVu7QRBspycJBrd3UuSVTykHpWvhLsm3pPE4ws8BC2kR0Fqp0wlrKa/Okk3bypUPaK+01rrEF7BKME+C2xJoiSO/AnmNGrN8UIEcbt17tJ8BHWRCvcF68P7GNWZbbzoWXKQyDPF0LGKas6lNycP1RvtUedb/2KnlAuXiuMkrGFQ5BB7wl3VJ6Olqxft5PeL9IbZXsVPYzB0id3H73frebvPWbgD7HkJYOUG+8H3reCT/TfemQ+oScJOu7Niwc3HWchvwtri8Yctnx2RGDUHvNAKwoUQJHVMAm4Dlsgbs+cLPyAlJ5AuUUaKfnXEEpeHkr+uQhxfQJwTugdke4K+YTYxEB4RaP3rApn1RPBw0dkPO80qCiOroyJKVUHj7guGKxMziQlSZY8uS7i+woXl//cHOBg3yS326ut9L5oDuVX5Kp1yFNiFxYcSBnvgQ0Hfhlf+JrKypD3p8+wfFZTuIEHtMmiPhm/ZiX80T98HvKS966vO7ptNvI8siz+nJakCo9wVofh3wB4ruHafIV/9QDTpjqK2lHne3vupImMu9bPmi7Lu5W1zt16tTpKkYd4O20Z3rb2942fOd3fufwLd/yLcOzn/3szesvfelLh1vd6lbDQx/60NGD92Uve9lw3HHHDQ9+8IOH+93vfmMsu9e//vWHlfdOnbbRtgXleGHb4rIOWdvYWHj1MilBKV/76uChtBb1dbt/T2+Gua3SZN/Ww76Gl22jctxRRORvBfqaPNleaV1N0Mbt4wRW0XYgrpGcsJSe9fD6J7xF19MB5umNzVS/ZFu27BG3ZauMCy5Y8KDX65UnnYpYR4K9yq+eVZnSRYULSB6i4qXSFAjs3qDEDJItP6V7tH2JfZCKrworUQdpeX5s42SXqwy3Q50/2fAE+KofVpk6cK0AbsegqCclG70V2gon6vxVnlWG8C/KhvVTuS27U9c4fsg5y+Pppr7u9xKGxRAcLbxN7UdAnu1K3VJe6e1y4SWebwKNPW4yP6o7vadT3dnudCR1D3bpD7ELl8X4fOW5cWBctxQGvLZvfTi4MRv2H7xoGI46epgfuGSY0WMugZ4YfGcVxFcN7YMyBxAxxvx4Pw2+ZJ6dSWkJRtPjljsHBM446Ksh6VGqAYs80UuSMmlNYOyA5LM12Hgj+X3l2QLHfNDhc2wTKQ53MHSPiuWvgRA8Y56rAFBSGhgdfKPsmJaDvy8wkgwSebq0QGDaNOmlcjwPr4vLjfXgBO0Djvcj6h4nU+p4ayPGvUYJcnITp9XHV/VRxoLy+z4oK612IClHf16LTgeIfdFFuTqo2uoH/O27wal/cRDn5pEvbpKeU27Mm/VgG6UFDstOC4XdUlqIHy7yvt6pU6dOu6AaEa8go1inKwuddtppw/ve974x7u4pp5wyXFCIxXgK9jHD+9///uGrv/qrR6OIVK+5n3vuucOtb33r4ROf+MRh4rzTkUw3uMENNmNBb57cg4XqfHMhpQXvfJjPZ+N5Ogt13vLmdbtGa1SGjGP2/NDBSs9yjUwbxIE+/uZzLTuQNgltVtqO7szia2M//8X5YDmeV8u29jwli3TWDPNUGAfaHn74uOfLPFIbuDz82WSnO+CddIL11vOldl/4QrY9WK7qoZAGAniLKsSA4sOy7QVe1vMVCUeAo97+rnQVi7b+ltdpwlKoI8RM+Mas27ECOUV1rQDVAiZp89Wz5RWretGOVt4OwCWAsMBU2jx6hnGviQ3Iw7NIB60pP4K48gD1M2vo4KjyKp08dut71VfhGs49d6cjZEUzYnxYEetXXs5FlbbyK1Kdrn71nW/X11+G2aBXa8kghUTwdhUAShI/jAnM9LSv61NlCYRVuqIqv+rkZZbueaxcB1spJ8UeJngrYlgGhRhRnSgPjnXStdIjYkzUu1F3ZvNh39rBRYie+XyYz2bDly9ZG44+eOEwP+roEbAdPXL1gDqCMiLSzY86pDeON1CRgyirAEspFa/5wV7s+JWfOojc/1tAR1ImVxzlL8GTjwQkSW5pAvN6+u6TD66SuWSwakBOvKscgkTqzHoVQDxz0lAeBMjJKwFMlucDi9pbCk25sOMzP/9LALqlI84H69tKnwA1/+26Slmk51hP1391Ru2OCcDm7rlPytQB3WcMoVbd+Js6T+BUXrYuby6UVLYfpqDA8B4aQn+521v3dYImAV4tMFueu5UPT05NfZTPauDUBFD9n/GI9LzHI5ta8IhPDrRchDKObnpGsqpxlHGJpRf1qgwXx+JH+puA3Zo8f+iHxq9lr7bsz232Qf29ooR2KBmccspK/jt16tSJ1D14O+2ZPvCBD4zeu/v27Rs/ov/4j/8Yr7/whS8c7njHO257poDfCtPQJ6dOVwhiMNelkTFbenrMR0SnFrQbw2y2NqyvrS2SBxumiOt4gUEth4Qid1Zxx4iWHe32Me1pT8vnW84I5KflOKX7Xo6ecb4dQ3A5Mc/k1OM2E/mn7Svim5eeh9c12eK81nLC83xbDkAsJzldKE0BXAIQa29MKkjswW19Ak9VZ4HELn9tMCgkgvRLNpVAOwGsrjOyh9lOup5AcR5spTSyGd1LmvpGr0qG+CMflCFBTA9XoLLrWoF23s8U35chK8puLpu6/tZ9ybrS1HWCiY7bSE8k07pWedSzwvdcJxy0dAzCwW1RlVGf4rOAX8cGVTbl3AJLeSBbkfAKx0qUXueBEYegg5bqIR2gbrDPsu+qzV0fSK2x1WXIa46l8p70PZXBfubtsC3xeGE27N9XilahFpaxJpfA0bg5uG/fMBPA4g3pAB0r4LsBDly6UMk486WHIwcrBcT2V7tVnsAe8sIypnhLEw47pMficb5X5cf7yRu4NTm2iA3uE6c/z8lM99QBnVcqtLf/FCiYZCJKr5QkT1efMDgQtyZ2L8uBR5bhuuu8e77+nbKYWtB4fj7xC/BzHgjmO7jNwP4tHluLLl3ThONB60mMpZT0Sm2SeGA6xvnRrpnSSvfoGc/+xp1Zby8uSpSHb0ZwUSSSfTc1fuk++4mXndprSq94TR/fZfZ+yF18b9NOnTp1OsKoA7ydDone+ta3xusf+9jHhrvc5S7DTW960+EWt7jFCACfddZZw3ve856vOI+dOjXJXWOxaJzx3mw+zNdmw9r64qCdZEO6zdKyUXXf163+jNbZvt5l/m6LJ17crloFBLs90rLl3JFKRGcNyWoVeJPqr3usQ7ITlI6OTgR1kj1C+RLj93Sp7t7GbqOQX7enaIMIFKMTWLJ7yb/rQ8JqPKyF2oNvNfK+H6iWaBVWonqICJDRc9ad4ohfOCjp8ve681D5IoGycnaiM5Bk4HarOwcpb4GgbL/is65rM4HOViQ5XSVHuKRL3ue8HWSDV70EHvt97zvSjZZ+OvlYQfm7Hvpzyp/OalNYifSYf1vPMP1UWt7374lcv1rlbrXNbCi1qXANqvh8/9EjwDtTrBN14H37h/m+/cPskqXLMQti4UUOhrAx2CA+UbQGeLrA614CazlAFqnzpsHQJyjftUyToQtaAw3nVB/EHaDxfNhQXifPh/IhCDZFlAvlQ8A8tQcHL5F7EbZOQEz153ffwdJfgrZpl5V8pN1ZL6+1u+y60JJhawJX2S2Ame2ZFkJqAy423GuZO308AE15coKZ2pWlLDw+VT1bA6/A3dRW3mdaQPPUZKo6Moau6uJxl+gNq0lYr/m0FjE+IHo7++LWxxJ/LsmRfyXLtFup/H0cU109VIbucaJheu4mu56v6vstanlFHA5qTWaXAdWh59/7vd87nHHGGcNtbnOb0Yv5Ote5zvg27vnnnz86c73uda8b/uRP/mR8A3cvVG++vP3tbx9uf/vbb7u2itbX14cf+7EfG37kR35kPOfn6le/+nh2z5ve9KbhaU972shTp06dVlMHeDtdLvShD31o/HTqdIUkN5rX1haxajY2hhkX7NsWeotYvLqV1vp8bNWbbAn4EkurbCO/PgUUiT+ul5km2VZT61vaXsnxh+tR4gTu2ORyasnKr9E2bIFQbquSL3dkEU/+Rh5xkFQ+bafkhJfaKBFl47gKw17SI5ae4gS3GA5BfxMmxDdP3d53O62er5AB4p9hKCuNwj54nSh71olevvIWdv1sYV3bwbedNrhsPeJKwgIkO7UXQxAkR0PlVX/LM1hez/RaTeCi5+M66v1Ez3pfELirdIwq43lRvyRjgtSSgXvgtnSyhd25LnHsavVTJzqPpfakfBimg3JiW7Y+LN8dW11+5GGznsNsODiUwObL32OQnuHARmW+Nuyvw9Yuvng0Wmfy4t2/bxGbVwJK4JUzJCGmjqrvVGp1PD3jnY9enXrOBUkg0necOCj6AOOTDJUggUtUxLTDSMVJE1sLOFTens4V0UGrVrlSGA8X4V6UPuExDIVPcrzvYPPU4iEBarrOQN5pF9MHT3/dnrynMtPE1WoH1+s0QHs9/LsDi+wPlKd7SHOQY4Bygrv18TAhXh9vDwd3NVlyUdNaQLFO/KvQDIkP30BgMHI9S7kIAN3cVNo3LUOWSf2nPrR2aOnV79fZNmxXB3DJA/mm7AlicwxS2axzqz3Fi3atlV9LnzuNdNvb3nZ4yUteEu9d97rXHT93u9vdhp//+Z8fHvCABwxvfOMbd533Ix/5yG3g7m7oWte61ggoF1+km9zkJuPnQQ960PDoRz96BJw7deo0TR3g7dSp05FHycBZxtgbD9Wx173K2PdHuD5tZevXkGXTrmutSX0NT3t7yiZMtqQDHL7WT+AM+Suize5refLZqlOyTVO5boe7jSI72nlvlUf5lW0o+yHJLWEOqntq/5bsyE85/un1d9mO9V1AqdIVbxXOgTiLyq5ris9KEJiOPO7wZCq9A+NROQIyZVsVFcDLfPlavvj3uKp625TyEGCpNpP8PR3tam83xynUjopXXB629E52O6/uMx/Z1GWblkxL5vWMflNHZPPW94o9696lHt4i2f3JVmYe/JTc6aTmGwnUV16b0j/yR/0T7QajScT7yevWvXH9Wd8YcvDcNzFYDu85wJvLmm/q65hPnaK2+H+YzTeG+WxtAdKO8O6wOR/U5t++Cl+xsW+4eN8xw1HzZYepAkflW+6E+IDX8iYlsJsGUU/nsWUTcJXAKym6KysB3JSnD4JE2B3g8V1BlZ92Ab0DO0A8BcqwjupEvjPldfeJg/zKO1D3fLfNy9RvB+cSuKvfnHScWgsEn2B4jWnIR5KVP+v3WnVME3NrQGCapP9M7/f1neCdZMlXLVgeAT9va01cznNrMnf+CPYXOcif+rD3Cem0QMskb7YbgXhOqgQqGR5EPCgm02bg8NA3k646/9rN9P7obe+LI6+P11uLDO2mkhcRFyR89cfb0hddes5jTdPzO+3Qd9rx1u2b3/zm4Z/+6Z+Gs88+ezwgfW1tbYz3e5/73Ge4173uNXr1vuY1rxmB1/e+970r87z+9a8/PPGJTxw2NjaGz33uc+Pzq6jKPPPMMzfB3Ve+8pXDs571rNFz+Ha3u93wK7/yK8PJJ588PPOZzxxDPb7hDW+4TOrfqdNVlTrA26lTpyOPaOgW0aAQ2UJ4Nlt4cm0G4x12Ai98NNlTXCO7/ZjsDwenfM2ta7yXiGtwX5+TdwdKE+7AsunM4fcTIKV1/Ha5TtuHshWm6k4bK8nQ8QOlk/1UvBZOs+psHpab5N2ysSlHHT6WwC7W2+VEgJB1T2EJW3rguLxiqAABAABJREFU2IrLUrJwm83BSvGjOslGpL3NeLQO9hGb0PNJLxjmQeQHctMGLNCVB7yRT2Fclafevq5rJ520+PulL213ZpJ9Wrap7NN6VuWp7goR4XXi29nsByLKlLgZ4+LSI9ttXG5QuIz1PNsuec5S1ny2PopFzHJ1xhSfYRxm6pEfZEb98nKLGH6SmwbKW3LRJgHrxv5dPG7Gda7BevNcs0WC8TnJCJ2m7lZAhvLInRfgW791qE+92QHh7T96bbjk4Npw8foxY1zetQrZUIUUc9otEBHc02Ge5fXLA42oqP5cEU/680nDBz4NbDwl0DuR0H2BvL7DxUFYg1UaBDiQiTQYc7KRK3wCyZSH1y+BisqfCuRgVvrrZdJb0AfOVhuQHFT0SdrbVGuLNAG6PF02XqavXVwmSuP18MOyUhmJn5YcfNHCwc7bkPz6BOcnaXKiS6+ZcLeNg4nyTJ7o3sY++PkgRb1nGgc22W+4SNHCIsW+TjKu59Q/NLGwDurLfF67c/7qEevCgVFypR6kXV/e8zZn+1IOlA/BafGdvH0lJ/HATRZvN4LCXCyo/X2xmcaZvRDH1cNNh1qHXVABuze60Y2a91/+8pcP3//93z+86lWvGo4++ujhCU94wnDve997Zb5Pf/rThxNOOGH0tC3P2/ICXkXlnXvnO995/P5Hf/RHo6eu6J3vfOfw+te/fgShTzzxxDFUw81vfvPh4BXlILxOna6A1AHeTpeKbnWrW42D8td8zdeM8Xwqfs4UlXdkxdfp1OmwUjCkRux2aYiOGK7SyT7B41xDar1JG8btq9YajaAl16RuV6X7LKvlfOS2ptt3yW5zZy46lCTe+EzCCVrAJMvwZuHH8/RnlHcL2HRbhM4lvEZbifVNnsFT9nGyu2Wj8eAq1w/FeaVNI7slxVWVB62AMcVq9TdU+dYibVRhUcQgCAISlyEfjHWbyOsmSmEhHFtyGSbdcPxAvDAOr9Kr/rT5Sy6SST1XoeWIvSgUAg/v0yFqcphSWtqy4ue443bqcMK22JaVT3kOq104pqgeBG3ZT/Qc+zpDw/JDG1o64WmldwXOpgPbeM11hcCr+HBv2uTAJRkTj+QGCHVK/FEmal86y23WycboUdfXZsNsbfl2xnzxdkZt4A0bEuyI/malXFZw/zherA+XDMcN+9YuGtYu+fIWyMvdjSJ6pckjkN55LMMBMx/AuLOSwF39lWdxa9OSjdWK3SHBeUf0DuhgmE+IVdeSjTqCT0RedurkTOOTpt/jNSmtiGEYRKs8gFtlpEmH7cZ83ds0DZStBURqZ9XLgceUL8HIBKa3Js702+Uj/thuPln5s0qnAcnjtWrQczCRk6HzSC9RW9tt/k0LHv5ueacX+S6zx4R1MJiTc5Iv01I2zrvkwDi+Lc/m1Db8zv5I3n3MKWKIC/LqZaaxQu1EfWD+usZDKTmhpjJVD4HmnAhFCeTt1KTysF1Fr371q4cPfvCDYzxcAbBT9AM/8APj57Of/ezwuMc9bvTE3Q393M/93Pi3PH4rJITThz/84eFJT3rS8Nu//dvD137t145lvOIVr9hV3p06HYnUAd5Oh0R1iNpznvOc4Zu/+Zt3/czoGdMB3k5XBCIagQXiqKMFCSx1dZspwDVjABi38mg7GtEmH7NpvH7fWufqu/JjeQ6G+DNuQ/FZAnYJLOW9ZPt4fm7H0uZJmEWLZ7cXWW+Wk8pKYe8cKNJ3nldCbGIKR2C7tbAY2YHlUVqfCy/c6VAnm7s8T2W7uL2eyi6q9OV5WnwXsCh7kq/1l1crZUgdbGEBlI/rZkuvPMRey/ucfBQJ70qkMBSUreNHdb3A3ZKfzpshpqO0labuFZBID9XCwfSd4RJVD3qRyqu00lR5IoKRJW/2Rekwz7Oijgr3odMjz9UhqS76K7BastEz9Vty4LXkxOXyVH2E+/Faffc3/cWXA8qJ74StiAcC6MQeKVu/3sKqtnRu3LbbfHZbW1V4hQJy9WaGBvUa9+cHd2a2DSFezAfr6wXAzIaNgws0fO3g8qS9ffuGGU/Fw2A0FkVA1cEXVib9dsCDYAcFzdihCTwSHz7AsnHUkTioUZHIf2vCktAFUlFhnTcfRL1hKSfP38FG8kCefUAiUdmT3CmXxKN7GvqAl+qX8nYgzXlXWrW9P+uy1fc0+ZEH58upBZBSvpSj1y9954Cia9qJ46TDA7hYBgFFycr1Pnl5Sw6uy9xx5ODJQSQN0L5gqcGMnvyJOLClhYPuKTyDeNIOpfInwO5euS5blssJnen1FoL6K4HvlA+Bd8nQF2DOB3lXW3OX3fusxx+mDqSNhaIVDkeddkcXXHDB+PdqtbiZoHLy+sM//MPxe4G0uz2YrQDb0047bfz+spe9bPiP//iPmO55z3veCPAWdYC3U6dp6gBvpz1Txdd561vfOlz72tfePBXzi1/84nDeeeftakewU6crBLnBs0Q0CuItcJeG0wInGCPxLmGALSNhba3A4K0sl4/sWEMngJXrcoJeyoPf3RZp2WLpOtfw/D31XLKHPG3rnspqgXxclzsvss88TQofkWxhltUajpIdznrRxnCbweXj7cTnZKMIuCqvSMqEdluSp573tiDg7psLjgG4xySfkR65F63kr798E47tQduabcmNANpvXkd6SrPOeq7AWOdHtq3kJ/ypyhDAXXm6p3F9l72nUA2MY+z2qPLlG/e0ux2vIWbC/un6wbZkH0nPcAyhLntZ+su28f7g3v2pHIKgatf0hj/rw+db45LjGK5/BNzl6V2fAtElIwHOCfRVWAaGi1h8FoDqetXHMYn52rBRmITGg9GTd21Ynx9YxNxdFjw+tg0sRZ+qDA4eHOMHllfwxuzoYY2n2UnQ9PbT/WJaCs60VI6kQJ5WjevpJDzPlwMrO2UL8COI6Py5126qC5UkeZHqHgfGqQlGdWXZTMuBN9U9yTUB4VOgpQNLyoMTEmXKyT8NAi5LyoDpEqVFgf/1CVaDoe+8pPRJXpRDiy9/3uskuVDWScbimfX0nSwfHH3hMSU76kXaNdd191L2viMQUuAlJ01vc9c3XmdsbL2mQ74YCF4y5CDv8iEo7bKl7rqu+ymorb7pusxrSsv82Tcpc44xXi69s12fyBOBaOr3XsnHu8NJh5mXcua69a1vPX4vT94pKvD1Bje4wfCWt7xleP7zn7/rMu50pzttfq9nW/SZz3xm+Nd//dfhZje72XDHO95x1/l36nQkUgd4O+2ZfvmXf3kMml4g2LOf/ezh93//94ezzjrrcLPVqdPeSQtmGgQVb7Hu+WJ2/F3/L7zClhkUHLz5fVvSYGu11px+Hgufc7vUWUvXCPak+ylPt2uZh9sgvjbX88kxKNnICWCi3FR2sj9pt9BOTTace/h5vR2cc4wi4RS0iVz+qi9tGdmbUw5O5IVxZxnGjoeFExTkK+3udVuyOeGELTxJdS9P4nKu8LcjBa4RJCsevvCFBV5UH8diWuS6RrDQ8YYUlzUBguJRecgOlFMg7XW2P+1hAYJ17se///uW7UgMTqQYt+LR+wgdMQmuuu1PYFrkHqVK72/eMp3++hv1kiPfeGb8Xl1jP+J16o7yZ5zhxJu+Oy8KQ1KhI/QcMQbprIP11Dl66Kp9JGN/69nHV44h4735fDhwYDYcAIC/uDfb3HiR/tRm3TEbFw+zSy4e5nXxmGOHjbX1ZT6LIV5bfHq9Q3PFbOPgMN+oA9r2DzO6aZNZKYTCJ3CQUyUcCGwNRCSma6VlQ/hz6RqF6PkngCt9pwLqdyvQeQssTKAfeSriBOC7hv7X80kT6apdQi/f82FZvlvp5XBS8knI+fFJ3NOxvdJffjx+pYNlLMMn4bSAcPIO6tfpeZ4WNL7Q4CArT0/1H9fZ1B8SP2lRJdlwwNQEmfJME7/vRHtaL19/9QoJJzqP4asyOAFxEnevYwetnQ/9JqCr9N4mlC/5ToBtOqBCu4bupcvXbZxHgd5pwZr6A9uq0yHRMcccMwK197jHPcYwC/uXi88/+IM/aD5Tb/P+xE/8xHDxxRcPP/mTP7mn8uS9uxsQue4XwHvDG95wOPbYY4cLazHbqVOnHdQB3k57pu/+7u8ewd0XvOAFw4//+I8fbnY6ddo7ET3iIp4L1G1IUy1Al6/X1qu9o8PXIsCjlsBpPenrUTqB6D6LJzsJwEhr9CmwMNm4bmsmO41lMk3KMz2T3ih13lKd3I5q1Y3lpXTJlk+8eGhGr6M/67y77cS3CN0hK53pQ379ubpW9l55mRIM433GEmbZKpdgYKUXeFx5ylHIbTzHHHSf5TIcYIvED3nQd/GuMoqfAl1ZPkFpAn5VhwKaCyOr5+qtQYHf9Vv9yEMtCADUPQHcwtncyU4yl81NvvUMw0soX8caVK7uedgDAeoq2+3s9EZ/OX7KQ1ltI54le0UIcG9sAro+7lDW1DW1e7WHPG0VU7qo2kPe6HpGcYtJqr/6usuJ+IT4TGfvMJ3qEL2NR5nOhvWSLy5zPGM+499KuBl8em0YfXjn8+HgvAamMSLD9oDszHcz1ssyjkc6YEkDB8Epr2AagHxQSX+Zv5SVDdkavKcoeSpK6Lwu/n1nkeAcFdR3NrwelAmVm2CSA0o+cLXIJw9fA6S82VGS+z55YBkJ5HNQ33lwoJL5+oS3l7b0erKz+4TklEC9ljzTsy4PDvYOyHHzQ88zbQq6TdLA0aqH77imPih+/fUTblAoHRcPGhSnFmgkTT7iV/qkshiWgsHiyZMvnFgXr7t/p55TJ7j5xJ1SysbHBC50OFYxPhHr5OCu97l6lt68qc+12ngv/eJKQl/1VV+1Ms0nPvGJQ8q7DjmrEAgtqvi3L3rRi+K9ffv2Dc961rPGN1nK4etf/uVf9lT2Kaecsvn94x//+GTas88+e/xbZdVzH/rQh/ZUVqdORwp1gLfTIYVoKCqAt1OnKyX5opSLTRp9undwschf4AU0rvRl5yI+gbUsnlm5beMACPPzNbrb9n49rXNbeYmIPWgt7V6yXNu3MIrkjJTsWfLEcv3tQ9axVTelcYcbt5cla9rrtEWYF+vjb1cyP4JU5FtgWN1PMWcpE8+PIBTrQhDMbXXyonoWH3IcTDZSq10oZ92TV2UKcZcwJHeqE0+6VzIvcJb1Se1cfys8mzybC9wtwLGuqYySr0I3OI6i/EsOioec7ETphOQlz+YqK53x4m0zZVdf/eqLvKt8HZDGcIRM72+vJpA/4UgsNzlw+V/udfG6PFyZH/Wj2kybBpIZ07p8qF/UN3o/sw9RR70vOO6w/aO4ugtG1tfKTXd7Gh6itzartzaWzxSvxxw7zPcfNY7qs/kyZM/Sg3dR4GLsH2O27yukfWMRc1cd49hjh/n6MYtQDz6g+OCeXkFoTQx81SM1JoXLQbz+6nVvJ+9szIcAD/MlSEYe2KA+ILmSCURPvCh/DrwE/Jh+im9P16rrbsCgqQnYO753BqUlgFzE1wJSHVrt6/VaVQe2oXdSequ28mB76HdrETM1+LXyd1DP686J1/uKA+LaTeOk4+WmfkB5iA/tgvppp74Lre++a+qLGpeD2oUbMdQnhp8oHjS5ceHiAyB5Sv0g9QF6BXMM4WLUeef4QuDWn/XrzKv1ugj/cieYk5XzksbAQyV/0+FwEnh55zvfuTK5wiZeVvTud797eMQjHjH84z/+YzPNL/zCLwy3vOUth4985CPDf/2v/3XPZVTsXlGFe5yiL9WhE0u6ei2mOnXqFKkDvJ32TBVr97rXve5w/vnnH25WOnU6NOLil0YXF3bL67PlQnW+bQG+WEAulpRbCyoHMlo2D21jtwvdztdvX2u30nrZXAu37HgH9fgs7U/3imS5Ldsv2eDkyZ9zRxSWm+45OW/8nbxk9dftxGSve5smu5nP+2v/7tXL78I6mF64DIHN8pZkuIYCORna0kG0usaD1tzzUXzRJqTTED1wEzjn5eq3PExdJpQncQ7KVJ8WgCyAVyEU5GlbAGwBp5Kb0gvIrTwLh6tnKnRFXSuQ0nkTTkAZCvClLc/4v7SdXU+Yn8KuMrav2s/tcXnMEmfzDRG2i6h+13PkiWOO+oD3D29jktvVnq7Kkyx53/t1kdrDZUy8i5681Ft6c/OawPtNcFeArNVryZWujtf3D5cM61/+0pZ7eIXpmW0HHGoemBVQfHBjGC6Cu/KYfkspx6JLEAXy1mFrCeB1gMrnnzRoSvGVlgOZ50XghOV6ng6UeHm6x3zTMz4RtRSFA6F2vui+nuSUJpSpCcAH71adnHevgw/4aWJo1d9BNgdHlc4D87fqNrVISPWfej6lIcjLSWtK7uxQPimm8km+0GjVgV6kus7dIAceE4jN+6xX4pXXPV50GuDVJ5NHMT1hfSCmfrQWWwSLi/z1GvZJlknglfVOgLdPUsyfz3GhwHUzY+Myfy4wGI+4NZY4UWb+4YmnSZe8Xaf6SqdNetWrXjWCtArRcJOb3GS43/3uN9zrXvcaXvziFw+Pecxjhj/7sz/b8dypp546hm0sevSjHz1cxLjyuyQe3lYhHqboyzo4Yclnp06dMnWAt9OeqXbyvvd7v3cMvv6e97zncLPTqdPeiWhekRbz/m40FuNjygJ6d6Aiy9ANm5eWh7JhPeveuMqarx+n9b47JtDZQ3m0AN/WNZLbCylfpSNIlDz1WA7tAOaltb47DLm9JXkkEDx5L6a3d/2tT9pCDnDSDqcDEMnzYz4OZum7qNavfLOU9lL9pp3vekJ7z+3GBNzxuocM8NfjRcSKkmwEjEpnda/su+OO2wKQmV6hDXRdctUByQ5kqh6yGZOtXs+U12tdU0gHAXv1XR6l1AWBwPooPi1tcj8Tq/4WH4Xd0RGJoDF1RG2zxAabDkBse2IpjiuIdBgc+aHnqesgwdHkfJn6G8cex3Q8z1SWZKfYuJ7G9UIhKVoe5/Q6F4YjJzo9zzAT/KyvL8diAbjzxS8dtlbeTZtjxhh7t8Dg2TAjU2JYCP5SmdbGRt/eQce5gLE3SimlfAUEH7VUCIJBFFILOPWJgArEDuyDpjq9v9pdxMPSdgOUklpAUAKxfAci7aapAbVTw9e0U8xRB1tX8de657J0hS9Sfdxb2gElPtPKP/HriwCCX6125++UxicdB9rENzs970s3udOnfHxCcNmuapcELrfaxNMwHfnnROaDIfU+LU6cH/YFlyvrro97lus7D0fj80kP3PudfUXtQL3QYsgnKwdJfWJ32bI9kuzTJMGJzjcquMDwcUGTFj14XQfZtgSORe4RrOfo1evtRwA9yeBKTGecccbwqU996nLJ+/Of//z4oZ3/0pe+dHjAAx4wHpj26le/enjYwx624/C0Zz7zmSPQ+opXvGJ4/etff0hlExQ+6qijtoG4TkfXImhJ/6HFZKdOnXZQB3g77Zme9rSnDXe/+93H1zZe9rKXHW52OnXaOymumhudHhuQtM0wGi9sPrp06N1mb7gjRbIFW6Ch2xq0m8VmspuS3cZ8mdb/Emtwvmnjup2XbCUHdt0JpdZzPMyriOv3lv3n+bkt6meO0LOS5LZsfSc2U3YJHU/ctnbsgh7GtFP0u+opcK4OLFP71Uev/Xt9acfWR7ITGEp5UN68Vs8LeNO1KqvegqPjnIN5qpPuK61CKVAmqjd1JNlelEtqZ3fUSuEV2RdUvwJAq06lU8xD2FOBzwSVJR/FsZW9SHLgsIiHpwn/4T22V8uuJlHeLXyEdrGwsEov0Jdt3cqbukrd1bXkIau6sE8qHAZlJIfX0g9hD4oEIPA9HQaoerAs6abypu64967jA/psHci2AHLHfrMEfteWb1xI1utrC3C36MCwPsz3H7/gc71CMsyG2f5hWJsvwIkZGmO+BHJHyHj09NU88OVFSIa6VhuBle7oq40Hr814+p3ycoDDQSHd4zX9Tgg+G57ADJWYAp1STC83CduVm4MeJwEvW9+J4Ot6AjsdEHIQS9fIg2TtIJmXT2pNoMrT6+ntktrN5cmyqAcEChNP/N1aUPCaT1ItT1cvh5NWKtPLmqob6592oVuy8oWU88Bg6HxO8mzx26oPr/mE6jrIScz7ItPpepFPyD4JOv8Mpk8+uRHCmL/OT2vyYbm+0HBZ8RrTE+jmDrDvilOe3odr0qBM/PUVrzvjNnl7er/zxVOSx26otUN7OAi8FLh7qDF2D5Ve+MIXDt/3fd83/OAP/uDw9Kc/fXjNa14zvsVb9JCHPGT41m/91uELX/jC8DM/8zOHXMYFF1ywLezCFMB7XHkU7DKcQ6dORzJ1gLfTnulNb3rT8Du/8ztj3J1nPOMZw0//9E8PB9zzsVOnKzoR0fTDNPiusBlEY9zF8VuZ+JVmcX2xxgToa3aLr+l1XekdFPPrKT3tkC0epm2tVhraKbQLnTevS3Jocvuc9wVQEuPgc1O8u3MG6+Tptb7X0OR8usxo17pHrdtz4oFxXnWdHoipXg4C19pW4F2lK8BMQFq9gSZZFXhVXrQFTMprVnZVPVv3Ba5RXz73ue2hBQRmqwzySTBYADfj1FIfvG1CV9lhJ3tabw954tIjmXpXHzkFKX6tvILpYUuwW3UXKMs2Fq+VRiC2yiGYKf4qnTyC3QZMWJtkRj33vuRAe9oYUb15EF2lK12hXup5jg38zpAXuk6At/StPvVboS6IPSiONHW5rlW6E0/czkd9lAfloDYhTwyhIZ6mzhMSuUPdgQOzzWub41PhD2OFN8/HXI7Tc2zgzBZtsvT9HTfsNJo7iDcKYJmeA7rvsFx88TC/2jHDTOi3DySuKKqg33cl1Hefo5gXG5/P0kOWHcB54MDlQDLr7MCde+u6fDgI8T4Hnlb9V3UQnk7oACB59PqlQZrkA/82PTBwlH/JLycTlsNg3q2JufWXbeCAHb+7JzcnKPFAGemeJp7dLC7SpCCaAnedUgdn/mp77qjqLw8pS/lygEwbLC1d0bPsT2o3xdnxA9IIVnKx4BMf5aG8HCTV+KHdSKYnLy5zTjQuC36nTldZekWeQLO3BeWVHCI0yHss5NbCSh+Cu9ol9IWo7wQrPwfPva6dDpnKe7cA3gJf65D1CtlQVBhA0Vve8pbhzne+c3y2wjmKKg/F0X3ta18bD1arg9M+V4vWBt3whjcc/25sbKw8kK1TpyOZOsDbac/0wAc+cDwl82//9m9HL9573OMe4+sZH/zgB4cLy6JbQX/6p3/6FeGzU6dJEuLT2pxIgSI3aQnsLkGBAhHK64u2oIrQ32Rvp/WnYwApzV7WrwlPcHBNf91mTR7Gqp/W4G73pry9zukcFAKnXPMnnnXNbWNf21PmyTOZeVMNaDMIs3Hsgt6juq60yT6U7aEYunW9cA3Jo4Bb2XP0UBWgp4PaaNPRS1Lei8k+dk9Pl0Gr/V3eBAvFY8uuTjiM5KHraj/JoaiAW9VR00nCEgQu0gaVPc1whWxX99xOIUr1lyEHFCohhe5IskkyFB9yYNoEIO2N9oT3VRsXoK+D6JSe3vySp3A76iXrT3zK+3jxorao7/SoFYDOc7E0hFadxJdjIY53Jbm1ZEmckrKlfFr4xeaYUjyM6O5WwvGZBgYywrcqxweiTWEuvX/nbfCxvHbn8rqTAB2wSpVyoXn+nFwSQMvniehLIB6nJblLkxIA6YMn06UG8UnGwT6BYfS69Y7ggKaTA5kOxqnODuwlJdR95pV2Mpk2tS07qwOdrI/XsUUtcM758slvh5I3wGGWIf1qtccUb7vhX3ly0p/yHBZPPpn5wJZkxHK8b1GfJDcubNJkxlcOOHmxvalfq3bhfSBnWXzdx++1gNxWm6aFGv9yweCLCaahXNi3fHeYMvdxhnJQWR56gfV3YJ68qz2m6t7pkOmzn/3s5vcb3ehGO8IlFAZQn1X0kpe8ZPz7//7f/9sG8H7gAx/Y/P51X/d1wz//8z8386j7RWefffau8IZOnY5U6gBvpz3T8573vMWp0kv6qq/6quGnfuqndvVsPdcB3k6HnejWKZTCF6JFWriaIb1tfby4EkFXf8svra39I3K7xPMgMU+3JclTKsvBPuffQVG399ObjK26M9/yRpT3KW0E2gQtm4jy4Xf+1jXaZgTVWpiBA15FHo6R+L8ca1QP5u94iYA62jNy0KFnpurQAv/oIMO2p51DXSD2QrvJZUlcgNiT4xstWzphVZSv8iFPrK/rWQTg4HUqT0/Z2LSFve+4I5DI+WDbiS8eps72IPl5SVPE5x378muiAnflyCWdo5zozEa7m9cSZuLtVBsNPp54n3bZpTFtqu7keeo7829hmeQx2/hbY/Y2nV0maOnsjmK2VXSxmbftUd/BqzARX75ojMNb655Nb2Dl5cLiPOOgHwVKwJICcKAmldUqm0JoNV5rEE7gEQdB7gYlYJSNq07tsT29LE6InhdlQTk6+b2Up8uwBaCmQYP19md9ouL9JHMfAL0O7h1KObTa0wFxn2yKtCHQmoxXdfSW9y712vW7VfeWvquclvz8uk9kzivLoBw5cWnCn4rjROB3qn5FDKeSJlXtqmnXzWWTdKLId9+9fol35eHhUlgWFwmaeF2XvL3c+9rHqyK+7cCJm3mqXPdcnuq3e6XWpHA46ArAyw1ucIPLNSzC3/zN32x+v+td7zrG/k108sknDze72c3G729/+9svcz46dboqUQd4Ox0SKe5cp05XSqIBSY8NIkSODIq2owTLW/Pt9mplUYBP2QTL/kK7m2tarql139fByfZy25BsTYE5DtYkhygHm1r5JABuar3N324jiBgpg+t5kpqGuIHSuNwcvKWMKUe2g0BEhUbg28wiXRPwR1mmt14dLOYbkJXP1a++PeaqwDaBi1RZgbtKK6DZ60vAlzJS3t72BT7zrCnlrTMwHIhzm1hOeK47kh0PKXOgT3LUK/98A508CdSVt6m8mOt7wNg2vaXZFi4Ldz5kXyVelfAO3dd1x6d0T/pCkJg6pbIZR1o4gWx8HweIB5BXgqEEfls4kdvqkj3b2vuq9/2E37SolbePC6l+olabOuC9ld4HOYanmG9r7zFl5etgy+ZAMV+AuxvmdWdlzJZhGrYpjQ+ufNaBqlThBID4YF+DBgOcqwxvrDS4pslg6rr/dUVwz0Qqkjq0npeCu7eeg4Je3zQp8m9z/kad04DmQCTLYhoHeH1woaxZvncWBzwT7yzX9dO/e4gFDrZpgeCTutrPPVhbwJlPtH5vVZvpusuxtZhIC6mWPNS+XPOl8v0ZTtaSn16nSTuwHgfYB17nzb1108RBPnxi4kDHhaOXxTJ988HrTBBZ8nKwmF6+LJM88nnqHMc63zxg23tIB/HAEB2sF8cMeQ8w1lKnQ6L73ve+m9/f9773bX6/8Y1vvPLZN7/5zcPd7na3SdzgrLPOGr14TzvttOF+97vf8NjHPjYeoPbgBz948/uZZ56553p06nQkUQd4O+2ZdjOod+p0hSY3pt3Q0oLavSGSG5kek1PP8rJe9S0MQI/4GllrUwJ4DtIJYCyiw0XCnv1NwFW2cLI5XUwkX58lvMCf8TU489YaXjKgPMgby0s2mtsSrToXEWtpOUcQpFTs23objerh+AmBvURs/wTGErBOepCcVRwfcjVO9XdAjfmpHipP7VPeowTP6M1aJHuw0lUM16qfYuWS/7pOuSkvybPoS19a5Fdgs/JlOAxhJopHW3aAH+ClMBiKvys+1IWX52SNPCq8QJVX8ZC9zygtgX86I6leVW7Vn8OG6lXPlFxk/xMo5qF10g1hB/VXNr7A96obAX3XDeoa25se0WpzB0fJRwJfW3pEHfNrKR3BbrUJ21B11jXJccvRq0IkbO/Dlf0+bAqszRYVHX8jVvrWeD0fjjpqMXCPUdXr2bHxtsIv1AFplW7TMC2vXL2W7R2m0lajGHg0u+TirZMUfU5JnVV5qWEJIBZJmT2gsoNKzEdleUPpOgXpgCOpBXJ6WvLC/FvzrH4rji6BSC8/DfAOVnGCTbtRU5Odt0lLHrsFHzVY7txxmJZf6jgJCEs8U0Yui5Y3rvjjJjcnJ+piS4biswXuTumnp23JqSUzv9b66wugdE8DNWNJqc95WAYCkWnB5fm7nqW1ZuqjXCDUeJL0j+MCxw3XUV//Mh+NU9xRTYswX3SwTF/YqW7cyPL0uq8yXFbk0xdvXEjUPY3PmkQ6RXrQgx40hk2YOtTsMY95zHioetFHPvKR4W1ve9vlwsvv//7vD895znOGa13rWsPv/u7v7ngr+Gu+5muGX/zFX9wEhDvA26nTNPWRr9Oe6WMf+9jhZqFTp0tHCljq8XW5KOV10qZHxmznqTwOrjaccGQ/sIhKJwCL9lRRelvOQc3kkKH7tP+T7Zqcy1q2pNuRLbvZ8/P1egoRoDwZujLdZxN5ucQMKOuWnZfqJQe4Squ4p7zP2LdunwmwcjuYdo4Aq0onD00CcmpT1l/AHoE3T6/rdHzRb9qFbuMlOeuwN9pq9V1dR9cZ3cTtqWQ3t3Ag/XaPWmFmlL28ihlTt67XNQHMAuUFuooHhTeovwWaVjp6SbMdJRvVieCsbHzd15uLCXtifr6vxN+SKccA3Zdnu8Di+l7gto8tag/xTNC06ss28XTUa+oD86DtT31UaAf/MP8ixux1MJegLz21E/6xf3058C7DH4xhEEZFXYzL+0p2C2h32NiYDwcOrkFG82Hj4CLd+HsM0TsbNiqOeuW1CSTvH2Zra8N84+AC/FVDMLBz2vTj74rFu2ywWdqh84GSFeV3gkjssAlQaiH+DtoJwCEo1KI0uZCmJgxOMLqWwBvVk69f+0BK5WqBnH6P5ZM/ThaJF8+H5aS0rL93Ipc/n/Gy+YznmeTm8mgBuc5jiw+Bm0mPpmTDslogJ+WQeHA9cr3z/Kcm9JY+p4lbz3Aida/8Vrv6QirJqyUT8sD6cidUHsR1n9fJj3vH61qr/q3rHOC9fi1vBNVd5Tm4y0Hc25UTXsvpInn58r7X12Py7pXY9w43rRp3LwX92q/92vDkJz95eOUrXzmGSfjwhz88hmA4/vjjh9NPP334kR/5keFOd7rTmLZA4Dpzpw43uzzo+c9//vDQhz50LO/Rj370cL3rXW941rOeNZx33nnDbW972+FXf/VXhxNPPHE4ePDgeLB7/e3UqVObOsDbqVOnI4+4mNRiTggVF9st99Oi8Z55hm19HQ6Oa9JFCIcEhDJrscPT5ell6naIfotdAS3yWHSQjWtrsU4vxIQROFAqPvmb6URyctmNbeg2OIGkqWf5cdud6YmFMJ2uUc5uGxHH8fiqBZTRptHbgCpTPCSnHPLCs1UI6tGZSg41+vA3ScA40wm70TV5IdMTVh6qdd/fOlUZBHHpjMN2o9wIjqrevOZEnSLIKC9Vhcqg/SkdkSduXS/As7A0PVv35H0sHpS/Ytqq3SoP6hX5pJcxQ0eIX3kr06vW68c+l+z5omqf0q3yYtZ9pRWwXqE8vvCFLX5Ud/0uHpIeFt86wE7tpbFFITjovMcDBCk773uSk8uPns6UgfKi9y5lzu8co7bZuUsUdgRdN68td9TGhMvBeARsF9e3y3oB5G6N14sQDTVeK6sK27BM2gZvKWgnBxTdk5SDqqedyo+gHzufAyc+j/mAydecfUdR/LmCsqwEPCSwrbXzyDr5M4kn1tcH693kT15asp4CExOf+u2AagKo2FkSSJmAwxYvTKcO73VIE4Rk0NIzToRpk5v3E8CSQDfnbQoIdTmsei6Vn763ymF5nKDYP3wC811AkQYql9kUf5QTdYwDbeXLEzqn+mkal6b6gPPhYxF38uh94HF0PS99p5z8MGO+ieB645OM8vBFscuvyD2YLydA8qpC5TFbwG19WlQHmhX4+pd/+ZeXGx8FHN/znvccXve6142A7n3uc5/xQ7roootG8PcNb3jD5cZHp05XFeoAb6dOnY48IpJGd0RHUYkQmlFQ4MJ8vLf05t18bmNYG73J1uptX7N1FumSjVl/Tzhh+xuAijHqTkxy6NDbrEXyiiPwJmDMbbsEsnl1i+o7z/TxWLNpfe9rfOZPsNrTuU0rUMcPkfYyaAM4PwShdE3noshDN9lE9Dq8xjV22gk8o6/k66CrA7tJLvX9+OO3gMkC2di+tLn0jDvAtPCNZH+5vd7CYPjXvYodX6rf6ZwZtrPrepKDvgsgFZCq8AsFesprV/kzlrHyr/5TVG1SQC/btZ6RfSy9Ul/z+LiUndqYz1EW4pPtze+s+xTWVbwdd9x2vajvBURLNwTEJ5vX8Y8WHuQ8JDufOuB9hHn6d6838yF2wmepo2kTgBsem8+QOZW5uLt1eeR74d27EfCyHbyNzy3y08bctmq3BgsHSDy9wjpU49UOyioBesduDagijwvjg5/nRw9KH9hYlm+CetlsvPSbwnUwzRXMBxd91+Cd6pGUkuCQz90s1weilmxXkYNRrgMsywcA6o/LzvniYMS61I5QfbQbmRYWlHPahdRvn2hI3OEk6Jd4T7J0vWotFPwv+V8F7k6VL77TZMr7uqcJneVq55qTHevksbFbupXqyGvcoSMvevWEes1XWChn1zktdlRP3ld+bBd+52sUAnlVf/1NepDiP7su+7PUPU22Spc2wlzOjFesvBxY7rRJ3/Vd3zWGX7jjHe84nHrqqeMhZgX4Vvzbc845Z3jPe94zvPa1rx1e9rKXxZi4lzV97nOfG+5whzsMD3/4w4cf/uEfHm5+85sPxx133PDJT35yBJef+tSnjrF6O3XqtJo6wNupU6cjj2hsaUFIpIiL6Akal5bjAhv5bi5iN4Z1AcDm9NKyhbUWF2sK3aj1t7zkBEgxP75VSdskvelKu4DgH3lxe5y2LPPx+riN7fiB8mvhGPq4M7XStZqSoF/LM5c8C0z00JgsX3IjL/SClb3jNorz5/XUd7VVAXtF8ipN+fhB2u6IQzzGdYDn5OgZPwiuJSvZeM6XA2SuN8SSXLeoP1UvxbiVrAW+1vOMf1u/C+ytT9GFF251W3kryz5W+5IPlS0shCE/2V71W165VX59KMNKU8/qecqSZRGzqrblPT9srfRKh4jXd92TbS6+yru36k+Ql/KmjNk+CXdwuXh7tjAnyop1YJ5JDvxIBkyTnnNexjQjaps9s7bVZfFkAHwWQDAPfRnzVF8a4+4WSLFAk7d5CosZdmZda6WTe7cPuOysKW8vZzc7NnzOG1Z/NUh6501CLAUn6NQqj3mnya2VluSgD5XWldc7LWXk+WqybPHneTv5vdYgz0GXz/q6Yoc+Bj5aAJierUmjPgSNk3eug3epTmyLtEtEXfMBPh3qxXq0dNjvJZmwv0zpWOqLXkfnkeSeuEkWfgAaJ1KCiL4QapXp8hK/1FXfvEljgy+S9LfyYaxg1Yc8eTlpstbETD7d6YEnxjJv5sM3BhjD3GXgO8g+wakPtZ4Vr+L7UDx4p/roV5qmxqVLSR/60IfGz3/7b//tcivjW77lW/aUvkIv/I//8T/GT6dOnQ6dOsDbqUl6HaO8Wr792799x/VDIc+rU6fDQlz48dVZGmPJm7f1cQO24i1qrb04r2cSLJH3Lc/zEBBSr1XrlfIiBz4VV1OfchKTV2kLLBSQTLvIAUCukelFx+r6G7TuOeo2acuOpi3rmAPtO17nNYak8LW/YwOrACR9J4jqQKHitnoZTrzuaVhu5V+gnjyuZXepHQWGqXx6DBOILr4SaMcy6cDjfKb28TdXKSuV456vslHd9vTYwAT53MasulC3K12FJ1CsVmIOfMuTIRe0IaJNE8mSdZdXr/jw8CB6u9R1mTqng7rVRvK4VX4CaQVgq+71nMoX/ifgmm9e64A2yZK6yOHL24bt53VSmnQGDfNlXmzjhA16n6LOkF/Jm4Avf0tGFSZhUdZsRxmx083ni2fGwXe8sJmmvHk3n1c9l0HTC8Adv9dbGbPZsLYJmJVSWvBsB8DSh4M4ldoHb4I0aSBig3jjpIYQaVdnapDzxkw8eIz6KXLFc6DT6+KAjq61ePTXApzvBPCxTFdGH8yctwTOpTK8bRL5eoLpHeBzObhOFdXgUBNGCyhzUK81OHg9k5cs9dR5VbskANnz8Ilns481ADifILkYSPl720xNvpQF78tLN9U9efxyh5c8t+TH+qa2KuKJoExHGTAvT5f6O8tyHUsLLOfdxzS2i8YakU+Wyp/e+KwL40WlericeJ18Mm/m06lTp05HIHWAt1OT7na3u41/9doir48Hmuxm0b8kpfe8OnU6LCQ9JCI59apbMkJ9EevI4SLxAkYYk+3sLwRC6lNgi+Kg1jMF7pYdV98L7GJYAa7x9YyAMq6h3QGDoJqv32n3Jnsm2c1eD4rX7Qdff/sQQrtd+bUcmYhz+Ft8LVumPvTEdC9I/aYN6bZPydqBbMqA1/2a149UbSKbnYCy8pnCeKi+3kYp8gjbinkmIJA6U0SnItrclJ/sNoYH8WcF5OlAO3oJ+9uuBYRK93mYV5VXWEeFZhCAW/fr71d/9TB8+MPbnZhUXsLopP/UacmuDlDjPXkWq56UW8XH5WYMPYkp6yqTTp2Ml0z5J0dN2tsCjZOucGNG8ubYUOTOpPVXmz+eJ3XMQVkHYDVuMW+e50UZt85zKq/aNQDd2/r0DG9ObKVYeOculWi2rFxlvaYCRq/cEIdy+dmWpRpXlfR5gh3Ld3y468CBZwfLYVCdGhxZLvPj3KPytMOhycXzpCI4MMvB1xXY+SeY4oNvqmcaGD1NGsh8ciJwm0Af1ifx5vN84sX/ej7+nfXzZ8mL89uSl4OzanOd6ijZMC159O9J1kzjvLKfeLvxNFQBe60yEuCWZOuLG1ICIlO7pz7kCwgR+7Z7fCZ9cGDS65IWAkm+rT6uV7EEnPr44QcicuGmnXvdd+BUv7VI9LGMciOgyw0jpeVHvLhHAa9vjr8We7eIdfJFhbczJz+1A3UjeQB36tSp0xFGHeDt1KS3vvWtEZBtXe/U6UpDeqVMi1eiFSIiKTLYiZgQTdUClW6WS8+w+q82N+joosf1l6CLvPpEXAOLZa21FSagACV5+fLV9nqdm2teP1eHeIDKcvvI18hcZ/s1t7XdBhcRSCUWksAs8ZVCurE8/XYwm3JUU3t92KS0w9w5zO3NZJ+xjuLBX+GnrEnVZnr9vu7VG7jltco8BPzX32pfOXEJvFQ7JM/bwgTkAUsdE8ha6RTn1u07bw/WmTZ567rb7Z4XD5zjgWUlgymcTMAuD84uGX7604v0DHHAslv4RiKmp66QfwdW9bs2BCp8nUJ7OIhb9eQb/KUDfJ46r75PvZL3v56hh7Bk4xs3xCgEQutZ6Uelp1dx6se8zvbWIYQ1HolvbioJdBc4v2/fwoP2oi+Xp+5sk4f1pe6V/IQJFF188Ww45pjFmLol+wU4O8a7LcLrECPgmwZaMS4w1EkKVGn8lYdlGWMc9rVFo844t0gYdMd3cEbfqTwJwKKgfceLzzlQ4srmjedela10HAz5HNN6J9lNvlSaNGgznccVctl5qIA0WLkXsKed4tWv+wDnE2erLrzvZftzvmPJHRbpuToLwTVvm1RH14sWsJnqooFYwB83D7x+fMb1NS0kEj++6PB8vE5TsvcyGcydE13yBPUFgtcrlellO8+eRm1MAJk7bpwIqfu+66xr9MJnWu93vjATL74QcnDXPQh8fEoez5xkxJOnd/nqu/hnn+DmAg+i87ARu6U00R0umtKpTp06dWpQB3g77Tl2zl5j6nTqdIUkX+DSJU4LRzeWCfJqkUyjmwgqDJDR2z2EX6TtRABElEBYeRQWiKK1rsAwAbsEFwnSKA+uh2kvECQjb27btcTZukacw6+7E5nXv2VLiWgn6DtfiVc+yp9gd8JMmJ62Ku0dNjHtPWJILkP+TU5Zyr9ex1d4gWoPHazl8Y4ZUtI9KKlfdL5xu471mGrbVfYy9U3XEh7G/RS1g9IJ9GN8XAHR8lAnuKl9lfp7wQVb3+s5PUMMxrEkt3ulEzxUUPekTwQqBUh7HqobsShu7MipUnpW9dUhcjwnyfEj6m4BpwV61rUTT9wO8oqHuk9PcOkSedF40drgID6QZOZ6rLZVaBGXjYh1KnB3fa0K2xjWZiVcyW9LcTY2KlTDAtB1nRqBXb4wwQo4eMFByEGDdBiPKswdEOr/KNz1YWNYW3gI6yOw2AdA7qqIJw5Y4ofKx98cPJKCpAGI+aTBzsEyPcsBZrPCAI9cjj5J+MCYACU+73noN5WVk5QDWqqbK6XfI9+Uq5eb+Jua/DyvKaVv5cX2dP3loMn2ZdByDsStiduv06U+gar+DNdJ+i7ddqBZz6YdvSSDpB8tWfmE00rn+TIt9cL7nz/v99hvvN38mZ2DVpaxX2Pe3rdFPqBrUnGglRO18tWYKD65YGp5Nes+9YDPpzGqiHF6/UABjtHOM+XNRQAXApSN8tdi4lAA3k6dOnW6klMHeDt16nTkUTKkeFoTkRsHCYjw0KNCCIj+mrdReagtvs5W2rWt1+tr3arXv2WfyK4q0FdgTd2rOJ7ypBMJePG1uNbKEoFAN1WTYM4qnr1uDpbRriLYSnwk2Q3JXkq2LG1tliNbQs0ox6OteJ/bwwQQXHd+k4OH2yOUk+MbyV5m3RR71t+kVPkKE+EAOEFGyp9xVt1RnaC+fnteBIEpB/FMMI9dwR35ksd1fajTapei0u3yUq6/JZPSacqxPJlFBWjKhhS4Sx74l4fxsZ2IkXgoAfEvvllXlxF1gc5ExOgUF5j2s9I6WCse1N/ZZ52SDup5ys7r5s97HVQ+20/jhMYp5SUvcI+NTdlt6kA9sxTCbLY+jJEXlt64y0C628JBJZxoc1j1TuhAJhFrBSv3mCMsSIMGXbCZ79r6cGBeQql6NF7XFzn4loAV/fYOxsGoPsV7EWNesEzuFjJmj+fnnrgaGH3QIPnAxY3QVHcO6N5xvH1Yhk9OBIrSKaN6jh6ZlD15IdDtdXNQaRWlwdefT/VMnTB5PqcJQ1R1VUwffy6BjrouAEwdmHGhxAcHaZXrusJ8JU/GgXG5JrmR9grGtSZd3ucAnNogHZCWKG0ciJKceS/Vq+UlmvqBJkXWVSdy+omh1DmGa2Cf4PjgfY1pyXtrPGHbchNC19hHtWtbz2gx6nL1v2lsFF8+SXmcp5bsO3Xq1OkqTh3g7dSp05FHXAC6US+ExZE53afBoLxIXODqsLVNQ2lxWFCy/8gC2dQaVddrjVyv7df6WACXwC7ZAAWYlSco38YjiXUCTbouG0HAcQKAKCqKxtfqrXoR4yDIy3TEAgjQEvhyG1N4Bx2aVE81q+w5HYyVgDLJhHVk3i272VXBr7lcCLjJNqpyC0uqNjz//MX9a15z8Vu4juRV6R13olMgQUEHmIVtOQjHtxqFo9A5Szx41/G2dTtfvEiuAtdpX0u2LK+oftNWl+ep8hTmw7fsHRehLUtcyuuwA4BEOu7bEOxk/eSkyeflYav8ZYuqrapt+dYq+51/V5+uMaBIzznfPnQlPMnxSvFLnXSgm97MqS5JL6j322U7utwuQtnMNzREbo+Da3ht4n3rAbvpwJcUiUJ2lN9JA0caKCoAzwjuLn+6N2Da4VAjsgIMPyCAwoFTUt3jYOiAKRXdw0Jw4NRJnO7V6zzxec6Pzh/zaHkRp7SUNevg4I6uEaD20AzKO4GlzKv13Sfo1iSW7qc0vM4JMg1IvqZgm/E55idwTve5S5pI6WvHrMh3mTgAS84OjvrES13gZsRUfZPM0sKhVY+WnPlcaxxIOu3Pshyvr+tpKw/XYd8pbhF3Gl1udU/jGGMyaU2qCUH11l8P2eDhCwiWpt9cNLrec4x0eXODhwtS6pvL3SdWXVvl4cvd+fQGwm5pqv98pWmVnnfq1KlToA7wdurU6cglX1DS3bOIiAcXpfRUcOOLi87lgnS2trY4FMji3yoJ2XF7kqCJiiWoU4Bb/S6gT3aawEi9/q286bmosJP00GV1ad/TLiI+4BiF20AtO5lgkturqXmUls7VfIa8e7O57UO5s94OUHm9W3z574R7eB60VahKVKeKPVvAX4UfEA7DM5/c3nZ7yNszAX4te9r5qmsKoUDsiTJ3YJC8MW+B58TM6lNOktJXgqRqO4G3rLs2MuSA5mGyaR+LiPE50cFI5Vd6eca7c5J4kxzkaVx9kQCo+kdR5aXNBdqqBO9Vl2SHK6/a0JHs3AnVvbBbwKjrOcmHQb9HcNc3ghjLl+cw+WebkpQH7775sLZem2BUzgp/sFXuFt/zxe8xD5Vs4IQeSgMTBxUH9tg4+p48Fjc2hn1r1bDVQS7eXibnDB8I/S87K127+Qw9YLl747tqTMcBUvV2z1WCQd6hixyMJnBK+aQBz9Nw8HGgZmowpaxUZwJZyTszlUXwkWkTvz5wtPQilZnAvyn+WmlaebDNXMYcnFPH5iDsO6HUNffCTesblin5agKQDrr+t/TEeUy/faLaTTqPTZwmu6lyUznevv5sS5eTnnNBVcT24CDtIDxf7+EmDdNr0vGwGQRCOWGTWu3fam+lZygG1Se9RZD6ofdTTbDUH+/zUyB1qw906tSp01WcOsDbqUk3vOENL5d8zz777Msl306ddk1caDv6lRaZNJiFWGghSZDAjQEaOsN8fI13PsaMnK08TyfZuSR5MMoTsoqpV6MFShXpwC7aBQWKuR1QpDxkM7g9RJ58fc+0bsMkEInpPK07vHjINXoLMl2R3lYVuSOJ6kmbpIi2kuMBrK/LoWVTsByVxfzSeUgO4lUbnnTSFn86DCvZ8ipD9wmQCnR0W1u6IzmJb8d3lI7OQ7ouWdALuAUcMm19CtD0820EpspOVNcpna1rAkZV58pDBwnSk9nbhzxo40OxcNm2DuDqGj2gRfV8le/DAz/C4Sh39UcNG4lnDx9C+fHtWsfaVB/yQCCWb/nqXtWNGwd8PgGrKXax2k7EsuS9LJCcnsx1/4sXrg1rs/3DvvX9w2w+GzaKlwpoM1+48u5fnw8nXn2+GeZGgprN1oaNeX3U0MMwOgDT5Xgp2I1hNsbJdW/gApPHYBCScX0OXrIM+YDGlresATqzAqUHi91baRRUuQRTyiuQ1F8Hl4DSgO+gmHcoB3a9USRkKZ/iltBT1AEj7or5YO6TEAc9n8hY/hTQmJ5tgXYcxDVoeEDsVI5PsGlSSoN6oiQD/53Ka4GEesbXG8yLefhz7i3OwOdTMtfph5yg2M6+q8RnXd90zYFU5Ut9S/m16tjivzXIpzb1BQrTe/9KbeLfE021q6ejrH3BpOe4oULgteqitafaRwC9BlyNfQRayb9vCHEBRL31CUvfmb/KSN65WiwwretGSz5MrzAUlFUa91z+Su/xpzp16tTpCKEO8HZq0kc/+tHLPM/5fD7s94NGOnX6SpMbrcmoomueIytazMqo0v2WYbA8yX0+ZlEL/PlmuAYWmwCxxDZJ4BrXwX7miahYLI9HAcH1KaCKXo0C2GSb6S1AX5M7lsA4nMQkpvAAj92pfFiX5KxE2eg6HdBoA8gWcmBMdfA4x+SVwCzBX6+jA23uYetycBuvZYdW217jGgt7XK/xV3qGSSBflIXkIY9Yjy8sj1jHRegQpN+00/kmpsp34JURTpRO9aaDofRL+aorFW91r3S17guAFKDKtmV5CZdS+fxL/SWfKeyo97mERUmmxO9orzuW4WBqKkdOigRW6flbHs/qz0zHvFkmvd/ds5gANvs+STLVeED7mc+KKs/yQq80Bb5rk6Gelf5ubMxGvV5fX4Ksm2fuLMbGcVPj6APD+nwnQLCxdvRwYKzPQnALHqAEaKB56fOwOMBtM5zDuNE2X57LtgydswwXsaPiCXgi2MFnCJpKkByQOFgUqQNQcXzwSPk7GEKeyLcHb1YHdnAwHbblHUSDBjtcAmtS50J77BiodwOQss4CkHyHK7WHD9rMmzzx+xRolyZhXk9txbpQJpz8Ul09Tx9UmB/bdYo4cIo4wPtE5H99wKIOUDc5cbJurtNJ5qnMJI/0DGUvXUg62JIN+fdrSTdJqe963mmC4nX2ST3HCT0tarhTq/t8NtXd9cfTqn9y4VSktS+9crlIpCcxx5FW+7LvKq2Iz9Pr3Meclj7UeMXFyW7Jx61OnTp1upJRB3g7NYkHm3TqdJUjLnDTdS2WGUyUrmxFXPxqocqD1swwXYC8dZDQ4t3iTWChwQrZSTYAfxMQcic2rrkLbKl0BfIKSONbr2K77imEg2PbfpYHsQy3D1W+r//9+YRpOFbCvJNtUEQnEgGbyWYlMCpHEZXnQLXjGC2sINmtTEMb2tO6t7Hy1Ov+9ZvAPMvQfTr3yEM12UL6rfoyDjMxMsfL/DfzlFOY8i1Aj96ass3onVt/FwDfFoBJGSsshMBfpVcZjJWcPuRPfKS3WYsUk9jbscoWOJnyJ67kIRDVBi4rDSdK6+HA3aYuPdYZOvW3+BHYTQ9898an/e765nhJ0nPJwvlPGEbSH8lH7ad05IlpGUN5kdfysLXktZVwWIZowN9ay2zGyVXeqN8YEkLpiYKnClMwCQgQsJHAKA1KqhOFrms+oLEsPxU+KaGuK293xS+SC71PPmnuYx2oIA52TSkYG9sHUs/H5eyvVXg6B6rS4JwmVu5gJRAs8aLneC8BfS0iL8rH8+Mk2eIn1c8nudZiwr+nTQimSXl6550C3ZSeu81Jpq0FkKdvtZXnOXVvlUxa/Z3f0wTfahd6pDqtsrMoG8lQEwFfu6o02gn1zRtvR68bd1opX98pL3Jw18cMPpfk4pOH67vLjc9rgSsemGeaiHbbLzt16tTpKkYd4O3UpIc85CGT9x/5yEcOZ5xxxnDJJZcMb3zjG4d/+Id/GD7zmc+M904++eTx3nd+53eOHrv/+I//ODzjGc/4CnHeqdMK0uK0SMhYEReoXGgmA4r56L1z94IJngkFNpQne5W5CNywuIYkO8iBOl/LFrEoAmi0q1XV+ivPPz3LNbLWz5WGopIN4NVL4qNtwHolWzLZ4MQ9RFPr9VR/euAmOzjZ0GzuFjjmWEWy82nzJDxgCoNwtal2KvCT3q4pD8lW3ykP2X30NGUexIF4xo5sO4Kfyovlst6OU9AOVBqFOOBb1uJLeUqHK63CNAgjq4/iTvON8xY/ut/CP1Q+213P0+NVH6aX/OStqrL0l7JVeyQsjHnLlpVXc3nsKm3pAnWcepNwtdSP6JzFdmKdE4bnfYPjgNeDaRjlgO3LD/PelM3obJuAq/m2dKlNdXNR5pjTJjK8CPewsXijYivxAvhtuVaz8ybhEJBIYG0aEAK/zQHfd+58UOOgpA5Ml2w2smJzOE8ODqV6klcHw/w+FbB1zwdd3Xf5MQ1lzYHPlX4KmNM9Tpbkz7+7giWF87qk8nwyoc44GOiTU5JVEcFTdkiWk+rDYN9e59bzKl+DkK+NWE/pnwYcH4T52/uDD8Q+6Xl9vOypBUPr+fTbefLfaVHB69zNSx7WnBjSYCzyncEi9WHK0Td9/F5rIcN73JFtAbbk0++z3LQ7L95YNyfqOoO5O/Cbnkv9r1OnTp2OEOoAb6cmveAFL2jee/aznz3c5ja3GYHdhz3sYcMnP/nJmO7617/+8KxnPWv4ru/6ruHOd77z8PCHP/xy5LhTp12Se+SK+J336dHkxhOfdWMpLbgPHhzjRM6XSN0C3F2ADw4ucX3q69+EE+ivQKFkT6ta9KqTrcZyCqgiQFzp5aVJ8TF/lpNs7GQn6i8BSH8m1d3FqjU/vR+VX+LHMRTZILJZ3YZwzMO9fL25aTs5wJlwEpcF25+gmLxaCcC6fUggjW0rO8nDBsiWUxnUAz3PQ+rSuTX87vWjjVbep/W3dKnK0huUciIizuQfyl+hJwSy0mHeifXid15LbzhTrt4OkrOHTHSbNPVR1Vvtp78FePuBboorTbtfQHgdtKYyEtbk8vdQpTyE3WWjmM8pr0SsOzdXVIaczng+GHWFOr/1d4ybsCU4DIazffvr/LUl0LsYQ8d/bWBaXC0P3vniceW/VOzNkAwtkGkzI+voVEzOEfVhPMyUpw88KUaphECQjAJqAV4pJgcHLHeTZmdgJybizrxFHAC98ci7DzStATkNoD4heloOhASbODhS/izXOybl25psHQTzCc6f8XZJ99nGic9WfiTqnjp66zm2sQBXxpbxZ9Kg7hNISxddbq4zrfr55Niqv+dDWU7RVB9fRamO/te9/92TPvHLMUTP+o4b24I7iE6apHU/LT683dQ3tYhwnWQbsm6+GNJ3ERcpnKg979RfxA/7M4PAcyLm2MI8d9OmTuktik6dOnW6ElEHeDvtme5973uP3r3vfOc7h7vf/e7DxsRiqoDfe9zjHsPf/d3fjc8UIPzyl7/8K8pvp047iMaKECwigwnZ80W1L+S1wNTpZzSuGTNtuegcwzQsF6zlRbZ4vXinoZhsZ4KgaR3r9oM/mzBqAWx8td/FVVUTbiCgkK+XOx5BW6AFjBEE9TM8nMdUH6VJNmOSn9tHSTYJV2B9CIRJfVrpyZeDi273JrWTfVOAe11TTFqXSaojMRoBbYp/mkhy9LcftRnA9nPbzGXvuIveCC/i4WTqMgQqKce6R6CRZUkO6rr0AKZ8qhxtehTJ+9eB8M9/fnudRATOWXcPgcg3cCv9F7+4SC+PY529pb4k/hjawcOhJBtVYKl7VYvco97lQeLBay5fpvc+zt8s34FbypNy014Zv/sbzKOsa2xcs9PoxgrOh/VB8ViWPNYJbXqQzF9yYHF42njIpQaAemgRMmdr3F1696YdEA5gVAzGnxR/infrnnPi3cGeltBZfhr42Mj8LaXiAKtrLE+NIZDPwag0BybFSOV7el8nrgJRlYeDglQszqktnnwiSQCbt0VLvlPfU9uke84rwa50T78dvGrlod8OUnlbFrUOpkuTP2XuOtvyvuRf30Bw2fi9Fj/pnstlFflEm2RzqJTa2gFfptNfvg6SNny4S6tFQUv+nHg5DvGVDfGl+yn8ixZq5JuLFR/fxJ/no8ndT5Z1Gem+Fiksn/qvuvv629vgsmjPTp06dboSUgd4O+2ZfvzHf3x8xfwpT3nKJLgrqjRPfvKThxe/+MXDIx7xiA7wdjr8lIwzGklp8UzXRr7LTXdYvU/unsF63g3fAnqLhbUF4CusYsHezkPY0vdW1dLan/Y+gZgivUKt8Ixu4/EvgSUH39xW4l8Cv25/ugegnknOWP5hHd3xzG1kl5vbXMQRHEBzoKrIh0DHDBxHcXuX6kW73FWRsVg9lKF4VkxaPlP3+BancB+1G/ERAfbao2AddO2CCxYqXmXpcL4pZzkB0sKNKtQAPXeVr9tv8vQs4nfJhrJVW/lZVUzjsY9bAGXqUwnEpI3t6fi7qMDkE07Yqqt0nHqueNF1T/1PfLp3sjy5JSflJR0iaEve0xv+wiKVr/6KH0/v/Zn8s150tEqYXJK59EnX6vOli9aHjY3aBNviY9+++XDs7JJh7aDFGhGIgUxHD90CfpfKwXAP82OONTdleKRtXgpuyaxManwKXOBGAq9cGb3ynh8HIX4n0KnNSu6YcLD32PACqTkRUAmSkqd6+yBK+bXq6HXiTlnahXSF8cHU5dPaifLBOJHXgeU7eft6HVfVw/UglS/dThO8e/8SFJ+qn/Pk6V3vHIjW5NKSi4g7cS198LqnSbzFZ2or/nb+VJdWGf5MyiOV7wNdWpBwJ5vXGOOW9Wx57lNnCJ77hCweRP6qjiZO5pl2MbkZwH6aJn/yomvpVRu+vcC+q3ueh/h2PZrS/VW62alTp05XQeoAb6c9061udavx74c+9KFdP6O0p59++uXGV6dOh0RcEHLhz3eJaUQlI8wXwERvRI6MYKE6W/4t77LFAWyLOL11CJtTy8b1Yrj+Z1riALI16CTB9TNte74Bx3OCSMIK3NPT1+zkTzy6kxqfJcjL6+5RS3tBeajeydZ1Gy7ZvEwj3ERycacqr5OeoVp5G5JHv87faqsCCwnAU17ysKa96IefMWwi5S6P7CIBkQSbxQ89iImTuA2mvOVtqnSlO/LYdS9n5ZmAPseYvMuyy1EmrIeo0stTnR8B6NSf4pWgunhy3lwP2O/Yp8g/gVqlK+JZN66DlUfpANvONy5YN8pMeTsOQd33/u7P6+BFlx11oshxH8eKHIfw8nxsUWSBTd7XzcXZvdLINDPcVtmtNPq5TZD+m3/VgNqp4Ml2LlDm58CPDwyuXD6IUbnVoekh5+7kuu8NybqxPq2Bic/RPT/l63WmUrEzpo5NOVFp+Iw6lFzfRRrcmJfLNk1ALts0v6cJ1evgetO6noiDrYN5uk+dSJMVr6VJz/V3twsIHyQ8fZoE2W7KgzrvupD4T+W0+qLz3+KxBUhOySX1GfKcykvOL95nlM7BXeU9tTjwclu7175Rwjao75z4lS59nK/kBZzk1BrYVSceYkw+OWbVNT94QLLns6nf7qbvOfmCoVOnTp2uZNQB3k57puOPP378e93rXnfXzyitnu3U6bBSQmN0nWihrjkKSve0ZDQwjpmIxpnytOtjbN4CeZfAw3gY26KgzeJaNiSrk+wwfybZwVpD6xAnt725pve3mHXdeXI+JeK0pnfvVbe9CQb63+RtqDzdS5Z1ITGt4y76nXCPJAe3wxJW4d7Jq2SncomvsCzZio5VKI2Hr/M3dClP/q6PgFr3FnVMpEjdRTiM4sgWMCnA9MILt+I8C6OR/ik+L/l0YNL1gU6KpNQnKv8qn21SZZeXLc9xkRNj8Vyex56nAFp2ZemPv2Wb9EBguWLT1keAL9NT3pITbeoWxkD7ntgXKdnlU/1WB/65rN3bfWqPK11zPWQ+RSxzlPcBixfZIgdHthn/W4DDYsxd2x6Tt5UvByyfC9RZKKAEgvlg4QOTrvtA5QKrZ+j+zYYXgFM7QmoguVpzgHJwMXUkr0e6PgUW8u+m/G2AdwCP171czr2upD5gO2jq+fg8nSgBXQlUc/5Se7XSsU0SuJa+J3m17nt9Ejl/vmvqdfG2b00o2u3T4LXKEzTpWkvOLpck41Z/ZplpMTU1OPp4onLS6zcaq/R6BV+pmernJAeA+RxlSL58IuEOoB+yyP7vfHBxlMZIb0Py6QsrejWn/DVu6XnmJf4pj5bucXzu1KlTpyOIOsDbac/0b//2b8NNb3rT4Ud/9EfHmLq7oUpb9LGPfexy5q5Tp11QWlhyQc7Fqgwc/XZXPC7i6y/fnU6usX5QG9376vAgAcjy5h3Pe98CerkOdztQ15Pn3dR6n894HFyxJmBF+IXW2KxOsj8c53DbjTZ54pF1cscV9xJ2+yPhCcRVprAUt7NbB1WxDm5nuu3ID1XK77f4V14FdhVmIyfzulb5nX/+lmes2uW444bh6ldfpKlndL9+V4xY8qd6p7Jli3sd2WXYPeQlW8/xdX85DFX64kdOhwKCHUtItmbS6WSPs+t5Xp6nt2XSW9ql6sqMLay+Qdn4oX+UN0FR4lCSB4cXhkCo9qcnrdNur/m9KSxNHw+v4OmoDykf6ib7FdshOfaxDce0KiB5syXQyRu0sqgQD3OL8cqdrRYo6GDcbj2+0iBN5eCAx3Km+BFgJKFq/mnteAl8lkIR1BEf2slJnY+ydKCvlbbVNklB+HxL/n7P53MHrNLOYcqLv1tlet4+QbTSuAzSb5d3yjtN/EznQD/zUhnkKe3C7GagJLHPpL6n7wlol+625JTk6mW00qu+riNJ3k6tQa6lF0qbPEq1QynddK96373keKAPFyfKQ5TAcdaRg7L6vyboJBufEFx39J15+RsSrL/rqYO8/M2JMJWrslS2L95c9/wAwU6dOnU6AqgDvJ32TK9+9auHxz3uccP973//4Z//+Z+H3/u935tM/9jHPnb4oR/6odEb8cwzz/yK8dmp0yQRHdQiNRl+PGGJrxa6i5ovwvUcERtfzBLx4ClWdbr7Mv86BEhA7zCbb1v7rq2Vl+9OoDJhHslWFsu+1vb1dLLlFZ6ROAJxa9kgdNxw25HiU9lugzkQ5LaufiewTHnIaWgKl2DaZK9SHZiP29xKyzag7e11S8B1wl1UL76R7LiPgHftSag8hUggIOhguNpTXqv1fHm6nnjiFm7kGI7bX5S9nIQKXK78Ki/xpraRN6j442v9Sf68rrZKNrC6kvNKrEf2KTco5KVbPBHgd8/novI+Vhtxs6MAdbXZMcdsdX+G1ZCM2ZbUleQYyiGi0kiWjsO5zBJ2lZ5JeSQchPJO7cShMT2X6uu0lXZxs0LVbB/XatNrbeugygTaMXM2HEGm1k5ZAtoI0Ihag6PvPHmalhCSR6gPMEXJA45lcmdBpzNqMNbulHaIWI5kxPwdMJvik/XyAZq/NYj6jtqqCcsp8ZbAJeXP+qRJwH+nCYL1S+3LtC2dTPymdK26OFimNA54uU7zfirPeZxaFzk/7PD67by2SH2Lu65pQEoy2I18W17+Lf31slO+TOt9lGnV98QHd3aTd3RaTDhozLZZ5VVLPnRdZ0W0FjBctPFZlqHxJr3K5fKVbnAR6PJyJwt6Gng9uJamF2/alJrSuxbtdsOuU6dOna6g1AHeTnum3/7t3x4e+MAHDte73vWGJz3pSSN4+/znP3945zvfOZxzzjkjkHvyyScPZ5xxxpju1re+9fjcpz/96eF3fud3Djf7nTrtNIrdWCSgy8WmDGJHNXzxyvfkAdpu5qW/PA1JC1eiJAXuLsuZL0HetWXZC5xjPp4MnzAKVtHtT4ogOfDQ4Vi/uW4uzECv3TuOIYCUeTtYyWfIi8jBOYJdbkMR3PY6eLM63kDib9qZdMR2SvgF6yPeBWC62kgWyfOY+wduh/K6bLz6Ti9PyYyAarLBKT99V+gAqmyl/9KXtusT21VpSi/qWYVjqE+lU3zguldgb8mk0ghYdhvRsTJdc69V1VdOUcqXQGOFY5CnrRwUZXdTRytdXStQWmmkAyqTIRyqHjrwu+5XunpW/LiNT56JaRTRQ5p67bgY61yyVptT//gcv7uu8bqnUz2pM257s704rOl56qPAaQHbO8ucD2vL8WzBZ/1e/L1kvhj7WP99+9aHDdZXnrhLhmZu/FMYVDj36mwNltyUkzB4sp8DMsrTDz1zBW55vqVBysFp8lcfKSPz4jzjcToc1HNgivVqTSDpfsq3PupITJ8AKB9UOYCl/D3cEdvMPbITAOT8O39+jwCYA6ZJLim/JAOXF/lO9ePzniYtBnxDpKVn5NPzSLywvkyTgFWW7eUnD1/P2+85z5Rr2oiYopYsfKHi+qBrBFx9l7nIz2ngQQitujkoqvox/nhLDqyT0mmibPXrBBi3ZMU+lvSB8tF3z18yay2mPA3X4pQ5x8NV7dmpU6dOV3HqAG+nPdPnP//54du//duHP//zPx9OOeWU8dC1Jz/5yc30ZbB9/OMfH777u797fLZTp8NObuBwIchF96qdfF9EMz8Z0+6lJEO3rsuLiiBwEVHBpRE5HsQW3eOqbBW9BH8bjiRedccIHBRluDza0UzHN+UkAp7vI89M2sJpLS7x+DqeTtNcxydvX4J9ys/rrHQqx5uY9hRxBbfdkrwoG4J3LCfZaq5OfN5lxdAGevuwgNdKW96jaieCaDpozYG5ZPvQuU58C6grD1eGeCCoWgBulcOQDHVN8mP3KhBU6tyyv9wmpbxaTmiJ5E2sLk07VGEO+IYw26yITo4up1bbkf9kQ9OZcMpz3h3a6LlbbV0hOXTPQX33AFa/JIbCfut2NfsB09aHOiDw9thjtzyfVT5jNjMUh48Xm3LB933S1YMHh/nG2rihxbbb2F8ZLIDf2Ww+rM8PDPO19XG9sXgOhwdpQFGFkqeX/iYwieOuN3gCERwc82eSUjgvTJPAEpadwJwaJNR51RGlaDwp0kHQNOdNdTafULy+7FhpwEzyJB8auCjLKfApdTZ1phZ4Jzk4/xwQfKc06cxuAKU0+fpkwAmCzxFUS3JLoCzl6XlwIPVJNMmbg4PXh4NYkqV40F9NYKWn2vXh5J/iPbkcXX7UwVX9K9FUv1z1PD1zKQ9RAnv5mo3zwbow6LompBYfaSwq0o4gx8RVdXId8IWl+NcuuD6pf/J70h/yywUWx7jUP7lQ5CLMJ8VOnTp1OoKoA7ydDok++MEPDre4xS2Gxz/+8cNDH/rQ4ZrXvGZMd9555w3Pfe5zh9/4jd8YLrjggq84n506NYkLVRpnCXngItQN8GSQcgHsxpFQUTdgy8hRWnlYyFByDyUubOcLrzcBHeOlJdjbwhgcx0hVSvY3wUvZHJWOABztaeXhIfb0HG0xB1zdVqOnqjej86kyvd4Eh1WPBGSJV3owMx+CyFQPxhZlXb0s5uO4Adsk1dVtUGIfBN0I3O3GZnV7Wp61hQ3JI9a7h37rUD555tbvIoG9yl911XWeoyJ5M1/qDQFGbyu2B5+VTSuZSGclJx5ypmfZ1VgOy0v4H9uspZPSA8cAkj3qeuE4UwG8FQJCJM9p6YTaIJXt+tPClhwrEJirtmW9iYE6mMvQ465HFGT9VLzxehNoMarNF+0bPJo5fA8HDi4OSFsWUrmMv3cD2qyiVsM6ONECNshoAu3SMw4Y+nd/LvHCgamURZ2xdmrYYeq6vnuj+8DklCYNBwnda7hVV5aT5mafT31Q9YmN6Yr01w9nYjp/Zd4nCE5Wrlst2SVgu9WeSse24GTZyo/58MP6sxxOHGmB4Hkm0NLrnAZDEgc3n+iZB3eQ/F4qS7JKr9pM6ZrXw/tUas+kX2lxwjwYq4rp03jg+XKXnYHsfaeOz3PRoevafXW98EVRqsPU+Ml6pEWH9800WWuBwAWAQON0gifz84PifPe0NW5NUdrk6tSpU6crEXWAt9Mh0xe/+MUxFu8v/dIvDd/0Td80nH766cNJJ520Cey+733vG/7pn/5puEQBCjt1uqJSMtL2AgrQ6HMXUxqCCRVkeUSmaOSIL5WzDN1Q8XlHYKRCOGzmtQjZcGmqmXACgjMCbBTzla9dM1ar2/Ysk56itBEc+OKzKtvBSIrTPR89D//euubOOPXhW4Fskil5u5wdmGKZvC7vWLeXvM7F09WutmUT8dwUkTv9OMCm+lKuAvMI6BIg1Z6E7LUKb6D8yimrrin2rLxoiTfVAW8CJAtAJhhIHsWX5OC4kcvQ5a/y05lTtHU9n6nv4jP9bgH2fF4e2PKM9nKkY7TPmUb9pzA76kmqn5PX1eNCS+6tsl3nlV5e29KN1gFwrN82+cxnw4HRTXccwmoUW7Tv+v5hvUI3FD/VXvJuHzbGsDUFAM/mB4eZFGzfvmHOtx9Y8eS2n4CIJMAEhnk6KqUDYelZzglsFD90KQ0C3ggpb+UvtF8dSvFXvNypOW/VfJjmOs5f5HMKdEkgnndUH1gdLPMyfZLwNuP1BBqTnylwtSWTIveWTXLghCN+CB4m3WvJo/6yE/J6XeNpkOKPk0ILsHQe/T4ncBJj2zh4S3CR9fRXiFiW9+EWv1PfKcdV7ZcGdPHufYltTXBXk2VrjCE/GgN8J81fT1J66oivLQvcpR7pOg8g83HL5c52IX/eTzTpU49a9WPsIx8zHajVpCIZEOBme1Gevqjp1KlTpyOEOsDbac9UcXWL/vVf/3X4h3/4h+HAgQPDO97xjvHTqdOVgrgI5l/d018u1OktksAA/XbPCqJpKpdpuPgnOuLvhuu+vHvNSJC32gj01gFEy9ANy392YAS7sbPdTnCMpNgUrnLRRVuenFqPy56h3aj1udtCtK0pOueBvLs9yCajbcR0AvsoPrcr/DmB2SmEJfla9QZychBrHezGMM603Rw8LJnLk7Oun3tuVi3KkiAq8yf2pXsKCSCbrYA8fYqKz2p75VNpy54s0NnbnTiMHG90j/Jk2eSFsvZrjuMoT+2TJMeeApZdVuyu+s3QodRbORnpt/qE43MCQGVv0lO3VY8U1pD9pdqjQl2wPWXDU8/YnuTLZZl4aeFJaXhzufsz/E7P7a2/s52bPcu6VLiGfWOa7a7xm89zV6eutzzk2EgiR+SldA5s+GAjoickx3X99tcZxIfnSZ5ar20nMEjppQh0Wa+/3IWTPOhiT/4InLkSpMnClVN/OaCwY/EVh5QXBz0qO9OQT29fl1XiPSloajsvN8nfAcA0SfG3T26pLJ9QHJTTdR/MWIZPmrqWwNIiH6iTrFxfOaF4fdOrNgTOySfz5wKgfiuGDsv0dnJe/S/l2lr8pMVAup/01uVNj1T9TWA1AVUfJNPusrcBJ28Hd/ksN7q8T2DM3FZnDur+vK5Rri4n7sJzEnR9dv1h/g5ga91LmXOBo98cQ1pt1qlTp05XceoAb6c90/Oe97zx9ck6XK0A3k6drnSUFuwto7OIC203KNNCtQUIc1Gu71y0ymVSi1m5xjZOmh5LNORqPFl+tnjReTyArV56LuB3j+tcVodrbTpRCCvgul3Eg7pchEznz9HGowOS4zBc4ydbzvOi+J0P4hvpOV5LDjRu27ptzbJZnj/POtE+c5xC9+QxrTev67e8YekoxJCbDrx7rFbxI9C2wqYLzPS4uZKH9iPqGXr2qh4E+SU3hrhmfRgqVbx4+7n3rOSp/ApgFk/HH7/4XW+lq1wBjNe4xhbgX/dLdoxdrPIdGCUPzoviHVNH1CZ+nWU4caigTlCPFGZVQwRl5/2FmILrbBrSXNcSjpY8qOkI6G3kWBT7oz+z+F3hZ4ZhVvF0NwP0blfUmRfq4JZXlKBLUQuU9Q6a3KTrluLbClgm6KLOT6XwDUB1Rm8s8qvnvLFUN4HSTKPv2klhWCA2SJFic04d9rSbCYT8+rM+kaQ6ci5jGnYAPpPamLzwr08cBLgcQJuqH9O1AD/y15qcvL19AlEa12Vfh7Qm07SJkGSutK3J0b+LXOb1XZsIafJM8VmZHydWxfrxQS/VO3mITq3lnP+WTHi/VW8fJ7yd0uKHYCknRMrBQ4h4G1LGqa0IHjM/1iEtVLw/ed5sg9ZmAfPlBlJLxzjJsRxfQFGeacx2YJftsUdaBAe64tAVi5tOnTpdGagDvJ32THVQ2gknnDCcddZZh5uVTp0OjdzYSYtVN8SYPhlpnjdd+xy5SOSGjACCMszlLulgBb0imHcBH8s4lIuXnbd787aK3w0YyqJpS7g9mfJIHq7p2VRuAoZkF7gHoTuN6ZrbJi7Sli3uMnF83nGlFihbRKCPfKX2cIcmb4eygfmmrexiqqDkIzuLeJjbUiS3T70bFLioM3KUd5VdqlqApnAjeuEyLq7Lk4Cze1CTJ8kwyVb1Ydcrfip8BJ19tJfiYSGS/hAMp54lvXCnI95jW7jM2Sa6VzyVHEu+9Zy8hT0P4nSSX6UVoM0y0gFn7lS5SidYPuP3KiyHAHTVRzwVDso3d32jiNgj6zOGYhiDis+GjTFOwwLrHYHdCk2zUea4xV9M4Il/JxDWAtVUSY3DzEfP7z9qmO/bvwChL1yedsgKyoPWBw3vyNx5cOVvDRK6J7594CWA2fK6U3kU/Crwy8mBLX13TzzKjeWwLpR9cmNPdXCQzwcGptMAE+bMbZ6QvO4DvdfDf6c2dnKefcJw+fiOpqdjeS1wl51bvxknpsVvqr/ScyIp2WpC4LOJZ93TIYA12FWa2iXUayNsK4+PlOrltEpvUtqpBQFlwfu+AGFYhqmdbPZvr5PnmxYXPkbomUqnQVh/k755eZ4365vAbMo+8e7AMsfU9ApP6je+280Ju4gTCAFl343u1KlTpyOIOsDbac/00Y9+dPj6r//65sFqnTpd4clRHJIv7rng90UtgQHe53PJGHNDiUaXv4rGk6D0bjxRMAG8S2NAuZY3mbzbRm/e5SFsPIBN7NCm9bfepqrG6/pLTCGBRS2coYUhtOwa8ejlUpR06pCt5E3G/Nj0TO/1FT+JzyKGWxARZHUcJL3N6LYT5ee4hJ4v2zjVL9mk5NfxFNVB99xDlvmXLa78FQ+Yns7kQc6OhQG4vNklGc/W24Z1d4c/4lr6rfOkUhoHZFu2oN8jBrXqeQLJKtcxLGI4Amhlm6fYxJSD7GTiNPrN/se+7c5bni/bJMmM9RC/GoYUWpHXiwRUM8Q4D15TdAGWv8B51hZlDfNl/xnfSRg25jWeLeL0DvNwENNUA62vL0PZlKJvLMBZCi8pRmjgigFc8X5Hj6/Z2vKwS1Mc8tQCpVpgoCs38/Iy9F33FepH9ZFyyZuYgyfzaYGlU7zpOf5O4IoDObyevKalKC4vKjQnLN3zAc8noxQCw8nj8aQJKnWg3dSVf/W91b5F7lXOQZnlU0clU+6Css056TvfHIxZN657eF3y1EZGqrvreN2r2EI1YWiQk5c8Bxh6xbN8z8/l5npNHlxHvB0oI5KuJxkwD/ekThs09NL1iZ7laJLwOrP92OfJl3bdUh9PcvEJg7ogAJW6wXWq59FawPhEzDp4/ei8QJ3whSrXzMozeXZ36tSp0xFCHeDttGc688wzh1vf+tbDPe5xj+HNb37z4WanU6e9U8u4Svd3k8YNIC5SfSE9Rck4omFDNz43NvQpFM2MvAIeCtgdsx3BiOWrzYZ1a609tTZOVUjrdLEr+4RxN91DUlX3tX+R27G6JqLt0xI183aHrURuX3nT09ahnaK3IRkTlfwIyKJd5LF3qT4JtHavZXnEKqwmbaSETzhQ7k5zJNWJB+kVyaG86lJxYLkPQcyF7SkAsoVj0Y4vu7/+yuPTcRRiObT5vMzKo0Bv12u1A+s95X1LXIhYCTEs8qnv7iXscnbblPJgG7vN6uW6AxjzodduGl6SbZ90we1+v846+TVhi26/E0PzcWDxe5FBbUzV9zUBuosjJrf6zfKBMQ45Pb5ayrYNCAubdF55Fzry0IsR4y0fgJLCtwAqHyy8kdjgvOd11V8OulJWncLY8pxj+T4wcIB3gIibjK5Eqquf5sdnpwAoKg53jRgygxPAVLB176TsUL7rwQ7Ha05sG87HaS2Q0k/lo+9pAkyd1tvPdw49TX04MadOz7Tkhe3r+pRkxHwkl3q1ogZ5DZRsO9ZBO0Xa6GaM1yRDv8b67Ga9l+qf6pHk4CfApgnXy1U6n8Sk8y57590BWAG99V2yo2xb4xInQe4GMo0/y00ExhtmPbxM6q0WTb4Yo6744pCySHLnWNVq2wm6omHDu9mP6tSpUydSB3g77Zme+tSnDg996EOHn/zJnxxe+9rXDn/1V391uFnq1OnQyRfdbtS2jDu/now5fW8Z+1yI0nvFDStfROu1O74jXVQghwxbfcTukocCepeReTcBFJG/rZzI77mjh65p7U6wynEIOpcxbweSHMuYcmhy55nUJOStZet407qdwdAPLhe3IWmL0AaineNl6TlhM2p6f0NcdWGYzyK324l30A6U/BkGlH+lQrTZlNdxxy3K1QF7yXu5vsvp3OXL3wlfoF3LtqdOsf0Jouq6MK3iQXGFactKvvWGMN8aJVY19T19xBvDSFIv3O71T4qL7O2+qs8mefr1hHmtoiQHfhLAS3knLMrxvchrfda2oiNupdXDVUAAL9JYXCFsJLwEPhHokFKwsyyfqU2yUpct/ide4Z8C7BKv3igJAKTQqQQEVVWehyWgC7sGCwJ1vpPk/Pugxb+MaeIeoqmeacBNMkyvEIhHuYSTZ8avYbs60JSIQBLz9A7tsuA1r6+DUy25pA7CSY3X/ZoPkEknud4hGO0Dj5ftvE7pOCceL19/pZM6TI26Iv0tAPhLX9qaYOjV6QuKNIEkvlr8T9VN+XjfYN/yZxzM9fpTPuIrtW/ih22pfLSg4iTvfU27tARwvb8pLx/zfGPBPcLJm6OkbDPqpIBp8ae0fI3H89U1AdmpLkq/m0mtU6dOna5i1AHeTnumCy64YPiO7/iO4RWveMXwhje8YXjuc587vOhFLxre+973Duedd97hZq9Tp9WUFqC8V5QWri3UJBnfjmh6eQnZ0/PMo57TorwQKrqBuuFJhMmNv2X+s/H15C2QdzyILeDZtGW4zk4gjFeT9gXTeUxXL1Plpbca3XkseSR6E1G8ycvRPSS9fuKNACjvKT1jjiZ8x7/rEDIP05zwJn7381J4n2EPKo1+63V/2n76lM1cqlT2c7I9FRFEakYbUvxXCIRKW163Cq1Hx0F6sbq3LdvWQUG2D7EiYRDJ45b565q6iuLAKg+FdFTby9vcdSOBu7onT2byzbADjpdxU4B7M44JURYcNpKjIWVAXpWeebf03PvMlE3suCI9mT2PdL1Vpre5eJXHbh3sOp6zlsCi5UNzHTKZPAopaAcmJKACmuq7gkhXPrWDQaYN9KoNtXGzbAMgDw+M8k5MQCKBbyQ2nNeZykulKt6lJKWg6pDFC713OfhSYfRaNxs6DXySDxtNIKvzSvK6eL4uk1VAHkGhdBCeOj/nfK+DD76exudan9hadUyezqm+ibyMdE91I4+659edz+Sh6bKVzNJ1598HdfLjskx5MV0NxorJS5kr6LyuExxsyY5l+hor8ZQmQsosLXZSu3qe7KeuHxwwkzxafUX8cczhGOMDKxd1PHlViwYv28FjhoCovzW+uHdt4iH1Ed/BT7veKtv1X9c0XnPSTuNip06dOh1h1AHeTnumA7Lelx4rD3vYw8bPbqiMtP2yijt1OpyUjDkuRulRK0oGuRsPSse/XOgmb+HknSSggp4t9BTRNSFF+p7AC+NlDNlQ3r7LV50X6+LZjnU3QUFWKeETvo52hye3SWhrFDFepwNSLVsr2cayk2iXEhxm/t7sLZIzdKmEH9bM8gQeJptZzaQm5NlLyl/2Kh3q3NZqOc20bDl9BGr6dZcL8YEKj6ioIPVcgblytqp74r/un3jiTmecstHVrjpYrdLIo5cylL3J8gSEi3cRD2ErPErlCrAWbypT3Zk4VL0dTLs66Z3aQHJLeI3bl/rrGyIOFEtPGHtW5bc2N5IDIz2saRcL1yNmIhk6uJp+ex2oewTbOeTwmj56lmW7bb94bssrtkIybHMmLBnX3w0JxRSY4IYb9xyn/T5fD1bn5O4ABcvOzw5+cGNYW18KSwLXYEBFSQNMa3DzuigPT+eKog6hxq7fCopduzhqCA0+VHb9ZXwZdRxvTHV6yYc8su7emZI3b5KJz7MODvngrrLSZOOvMyhP8eMxSrnzxnx8gnNd8gmlxb9PHn5t1drCJzGWwXo5/84Pf/smMdO5h6fXJwG7qluaxF1e3ibUMemjBiO+ys/7qb3SIbfOo6g1oTpvqR6el7fNVF9tlUO9TAClT+KtvPXdN1040bb4TZtTPCWzqBUbmGOVj4Nsf9bH28cXPOKJYyx5466q95890hUNE+4hGjp16rRX6gBvpz2THySy42CRTp2u6EQvqlULfRpZDs62jCyiI0VafCqdrikf5eUeCEIG6dlQ5DHLHC3TJxnhYn+5gB693lQdHMDm1aBziTsJ6z69OyVignHyBqX4KLoELCVxU0wEVP1QteSkxHwJ/DoWIbGxDrIvRHyONrLboGoK4g/EFfiM7vF58SA+So7y0i07rf46+Ky66bm6Rgc+qiDrREBOwCaBS1LlVZ67X/ziTpkTN2AZBGpTO+h5gofefViWO+DpeYWN0Bv2CSdhm5Ff1zunFs4hmSUHSAdRHVPix7s7AVKXm+65vAmQKk1hfS47t5+Zr64T3xOP8gwX+F5/FadZvylPpVVfWBygthMjG8ujd/a8DoacDfPS943F2FQHrY33NLQevHgxnrUGFJGftqdOo2f41zu2OhfH3hGMrufNo6/lYagKK6/kEepKRgFSSGkXqf4yEHY9U52AA5Hy4o6L0vrBTzw9z13nvcNSEfkc6z0Fau0GgOMzrZ0uypXAH3XC51yPm+oTgz9Pnvg9gWytuvi9BEZ5vT3v1trD9Ur5OMDmaXXdQTsvQ3mm1xBW1XGVfOq3BgcOMu6drecUo5fhOJwH8k+5tfhIcufzaUdUv9NE05JNmmgkfwdtmR/1NwGsqQ4+NvK7+re++2JH6ZmG8icvIvead5SSPCQd8nLVR+U1rEWRxxz2caxTp06djkDqAG+nPdOv//qvH24WOnW6dJQWxPreMiI9jS/muUBNQLAHOXXjN6GaQk/Se/lEp1iOo1lEW/QB7+MGDWLzlvccgd4ifwvS7QtdI/BLYIlsu31AW5rAEm0obzLiDfreAmndC5FlJnvfiZiMANbk+ELchsAYm0ZnxMjbVM8Ik6E943wy3FzZv/XmeOVVcXDL5jn33AXQS3wj4RL87WEPWWcdiubelpShnACLBB638A8nl7mDisQfeI06VL9l7wlbKnmWd27C1dwJUffIb+JBbUWeHA9QV/Wuz+eUP3FGxQUmgCpcgzpQJGyR1xQ7WDgHy2OfqO+VVmEqCpQvHUoyET+UuedJ3fJ+5DywHhwOt/efxQFqY37VxmM5ldHywjINQf3x8hi6YcL7cTe0CghIoIg6ZRHBUjUUFYAABJVXz7hXJgXs4OEUKCTF0qDCQUMNkpSIoJ4GbT0jcMXBcZHqqg5Ij0vKK7UFd0Ja3pcsL4E/lIXqTiV1pfR29TZwcsDM1w2Jj6RPKR31INXPd7USj6kTeudUh2NeHMj4PPWUPFA/uKHsQCTrn/KckpGo0uvVDNdB7qCJBAi77NLiwSfHFqX25ofpdD/VI63r9JtyVB7S31Zbk5cW0MwymL+PEb540n29ZcmFmWTsu/dcCFLm7LvigeOKXgVSW7OOrkO+G0vPYcmw8nBZr9KzTp06dbqKUgd4O+2ZfuM3fuNws9Cp06WjtID2hbovLJNRygWte1QxX0fVfLHvnl98pc4PIHE+3RuMr6PS86EFEojNSjJeVuCGraRuN7L4ZPNzje+elRSXA2pu79KmJS4iXtz+nbLj3UamHTFlk6tcf5OXmAXVIIWg5D2qD+XAOif5EgBVuIHynq3nC6ijrOlY5Xnxu2MGLJvnFfkzRbKxdLhbfer7sccuQjnoWXc8TPrC8qf0Sdf94DfanvJsTvsf+kuMgHVl/Skbep8mvgXIUl6etoXDJNzMHSbTeTk+7HjeqXxGnfE2SUOD9wnVL+mk2oX7SImHKTzIqTabxpFIccK3RqXx+ljOttANQcESEOcdPwl26llWrDUQFKmyOukvkYNhDiK5cHwnTGnoxUgAjwAvT2JUGg5uyoedrDWAkzQo0WtP8TEJFjG98qYcUv3FY3qez9Hrkd6CPnH4jo6+p8GZ4JXX1wfYBPRNgUvpWb/uE2KqP9vF1yOtMtiJXf/dy5c8Je/gNIGkevK+y8gHAX3X2kftw1dNpiZYr7NvenudSWnQ5vdWv0zpfBeRZdB5QPqbDi4g/4lX58t1lbzonsByTUDcLWdbkEdNRDyJlPnr1Q31e75a1fquGOEcN3xh5DLyvpkWNK2FxC6ptdfTqVOnTlcW6gBvp06djjzyRXEy1t3I9MU9jT8uNh0Rc0Nfv0UJFJBRW+59tQgWkqf8lbfz5IZsQlhUJtHAJW0CuyOYsj25i82r6G+1pvW2e9OuAmu5rnd7qoWppJADnqfbfgnjadnstBv4yrmwDAfcEt/CUMoW8gOkyWuqN53x9Ex58ZaqSI70AHXVlHy8rZySjeTtKvkXVfklD3mkKn1yjvP2d3Wlrer8SX6+J1K/U3g+l52uE7+i96zXtQXsig9/89SfF/lQoWstOSdMwDEp5uHXPL+i8mwWeExv3xaxffy3eCTm49EBeMBeao9VNL5FsPTaHcsDD/vW5mNohpGv9EquC6FdyDQo54BOGvtTfnL3T4CZ89UCcJinBO47TbzPnQ8OqB5AXAexed3Tqw0+qBCopkLTM1igru92UT5UcsmSgakJSqXOp/Id4CGo7em9HXxw1LPueq6yWBeCXw6mpvZLlObmVtumCYng3dQkzXoob8qI6xbmx3Id2JVMOKn7YMh7U/0s9TltEvgmgLe566DLNpXD513feT9t2k+1L/Pza/yedmC5yUJddm9lXxj5c8qLOq6Jkd+TXNTuXmYR8+DGkL+5QBDZF1qcoBVnSl7ZdZ0TiO/Ec1xQvbz9XMdXjf2dOnXqdBWlDvB26tTpyKOWcc77RauQieRyqr++gJfBlE59djSnSG6GNOqJrHneHoeXsRHoosjf5rpYhyBuufLOm/G1HatwsbFKbiPS5vO3KOu3n4dD0SpNEYFRt7ndkS3ZcN48Xhav67AvHtoscbvTGB2Nkt3KJpwC7fgMP6oTHePqo9+ys5Mjj3jV24yVjw5SEy8E58SP8KJ6Tt8VT5lvWNZBawUi1nlOtSeRsA8HRomfOOZFfMg3Dih7tbHah93G9aieqfJPOGF7W6kLUUcZ99b1o8rx6CnSPZXhMqJeJjxEJPl7LF8n6kkCYv0e8RvXuZR3yoPYA/+yTMmPOJHb6zvL3d5ZFvfr2mxTDvvW6/C1RRiZtYrhcPDgGKN3G9NTAIwYcgCmPjr5L4FjLmgHbPSX4InAC75yzSDYDuS0eFc5POkvecORHNwUGMMwCuwoPi/xHnfupPS6Jo8+nuansthJqZiUJ93o3fXdA4qz7g5gsc3o+Zc6gusJ0xCQTxNWAv5a5J0hlU2iHvGv3+Ng6r8TX5KtT7Y+qUi27Q66PU8fSHiP9W09z3q17ul1DHnm+kTATQXXH++zzrun2YucW/VLmyZ+n5MaZZgWAQ7esi/RC9frlHjl5OS6kP4S7HW5U9f8fAfnVwunKlsxpLQTrjrIk5ehWVyOqR+p3TX++Bi2So87derU6SpKHeDtdKlp3759wzd+4zcOt7zlLYeTTjppvHbuuecO73//+4d3vetdwwG603XqdEWgZGC0jA4uWNP1VQtJ9wRKhoVIqI8W41okJ5dULXCdd/c6oUsd3RET0jhb5LeAVerSfKgUBfSmqiacI9nFJN0jQMfrFK3bFAnA4vP6zsPchGdQDGoW2vEJw2nZsRKl8hRuwmZxpyo2Sfr4fVcL1pPyknoQByliDNUUG5iq4I4vAmDdXi4wuJz/lM8FFyyePf74Rfq6VzacznVSfrS/JTvVQTakqy0xLba1dKLKELDMM3kE8urA7+KJz0q+VRd6ngq0Fu8ewkF2JLtzpZWN6rKuj9rF34B1vMuxKNdJyak8tWUH681axzWoB35N6RkvmDpD2XO4YBhvPasD1fyaeFV6RpAhnwLPFet5ucW0qP8orBLqYpA4ahOk3Bj2VTiGAnfX1rbih48PVUWWwMdS4CP4W2EJ2PCscH2vmCIJjOSAp06TxtsErAj45GvQBEY4oEyBZGyQ9Oq57y6If/Lpr1T7hiEHLBG96Pg6APlVI3u9HVB1Zff68bfPbSqrFWaIIKq3V5rbyQeVkuTPp7ndJzm/5yAby/F5l/ylOrTyd9lRz5yHBKK2JiDXc5ZHHfb1T5JZWuuktvB6kHhKpu4VjwILySPrrTbyDfWWTEUOuCYv3ha/qd+6vul7kr17/JM/383kROOb/r6wUnrph/d1/mXeKa4116aa3MSHxwD3+nBXkM8UKaA/vf/dm9c3rlhX5alyp9p7Be1m/6ZTp06drsjUAd5Oh0zHHHPM8Ku/+qvDwx/+8OGa17xmTHPeeecNf/zHfzz85m/+5vAfFZixU6crAmlRnBA40apFoi/w3QvXnyEyRGNFvAh104JWKIgv9r1sX9Rz4UuDzOMS1se9L2rtP6yNIS33CYSra/P5sLEhL9+dYmKxyZ531olFJKC2SA5nrIbbbl7lZNM4HrAD0254RvI6Qem6xwO9XKzKm6J1/CE1X+KBRHuZedAG0j5A8Xf1q2/VoTAuV4WWDU71mVLdyrOGdAGdCs9QHrwFntK+czteb3nr8DKBw5ITAWu+zar2Ux34pihBYoGGXg/KsUhgsMtVIKXSqCuKP3VTtb8ckFoOdMyTgKuD3rwnx0jxTJ1UPgJe/a1b4XKuw9xjIhZUuiI9Lu9rOW8WoOzOnuK17uk7HeyS3a4yaYtTVzfbZD4fZts8zFSpJahboM6ILC93cFxom52yMsVhTexQ3rldUBIgB7KpQc0HlqkGa/HhPLnyeFl+zQEU5UWl1LWSmQYElUEAmvL0uvic5yCPyOOacPBz2ZF3yd4nFMqBE0BrME3AYhrspwZi5uVgbrqW6kW5e1l+nXVLvHt+zrcPYBzgp56h/DVwaqJgWgfDXQc4qXvbOE2tp5xP1snBS153nlyvU56JHCxN6VJ7JCA4leNtz98pBm8KyeKDrfOvwVrtyDUleeXf1La+GaWyfUJUmQyxQH5bZ0Fostc9f2WnSLqkND4JUw6abBTXt9V+nTp16nQVpw7wdjokuuENbzi86U1vGm5yk5s0X+MuKo/eX/iFXxjufe97D9/2bd82fOITn/iK8tmpU6RkVDklZKooGWYtw15EY5kLb0/PV+jkhiqkjGiQ8qLxRi9d/RbyQ3dPLczp0rqsy2wEzWbDrFDd+cbSc7dOqV8b5mvzRUxMczhxW6YlAonM7UXHFRyv8bemicuzXOVBJzLa4I4bJL4SBiCSWOlYLaCX8nCbX+J3W5NNyLSuXukZdwTSdZIDevQqZhswX8o2qSfTFiAr26uA2rKtzj9/4RBZz9Q15qXvHkZPfNAeoy1HW5FtxDwKUP7iFxdtU6EhVI66kDshVnqVQ+CSsmcIDnoZM52wLYK88hx2eVHeqoM8Xr1dFc4h4WzEUCqN29kEf6nz/hx1RMON65vkxjdn3eOXfZV1deyBNjtps28v3xRoAnWqBMfAbTsvmw7AuZC9AE4JNJsCChIgp90LvWaevIMJYrjQ0nd6vqkc8sDdG84lVCRu9hHI8bqkgZCDsXvWpcEzAYsJdHQZE6BiGh+kfCDjRMFO568wsEwf5FzO7OwO+jHvlp45T2kQW0VpLUL5O1/slJStnqPuKW8PHZA6rE8eqZ6rNrqdVyfP02WQFgGr+rd78rYmVwfxd+P9y/QuM9ffqXRsy7RDrXqwDR38TX3X9cTL8nvk2ycZpdVuLN9QqN8CWFUHgsPuaevjOde4WrsyLI2TQnd4HxXf0pfWJkynTp06XYWpA7ydDikkw+tf//rh1FNPHX9/8IMfHJ773OcO73jHO4ZPf/rT47XrXe96w21ve9vhwQ9+8HDaaacNX/u1Xzs+8w3f8A3DwRSDtFOnrzTR2KLB4IZf6zlfWBJF8+fcIKE3g9AtLZbpyVvExb7KIsriiJN73vC1PC2eFeBTZcGom60vY+8u67kAeTeG9TWdYb8VrkFVS2Jy+4+sJ3sw2airmi0BqglUJM5B+4g4g9vgvMb6qKkIVLrN3nKIYR3c3vGymSbJQ/VnU/J5ehYT3HWQ11W4BThT7VWuHL70uzxBPW/d53ksUzaXO3/JdtQr/e4cyLoLcC9PYvHn7SN98NAKukc5CvjU28DkLdWR3qjs7vrON1vZjd2hKuFfbquqfHrI0q6lXnv7JszK+5XrpTymCfImsNf1ieQYm9pP7XC1o0O8FK8EN6bY6cYwD4t0880gM2CM+fB6YspBsQTQeaUciNGnGr08Zj1vNtTUYOFy8AZxLzZ69+lkez1Tylwu9uKxBUZRZvzu6TnYtAbV3VJSXLW3K2cCs7wN0+4Vy0gTDAEwB4bT4JiIcnHytYVPNp5Pq6xWGUmXWacECGv90dJ5kk/elCvz8/ZPE+oqSnLhoEfP+9a6S3Xirq/n1+LNv69qf8mYZesv+7nLroh9x0HctMOsSZF5qSz3dGU+rfpykk6AsMtOb0Vw48HXnfpOvjnhEejl5KX24jimNnad8EPedF2vtjhAvkvai5pe3tRaB3fq1KnTFHWAt9Oe6cd+7MeGm9/85qNn3xOf+MTh137t14YNs9jPOuus4W1ve9vwlKc8Zbz/K7/yKyPQW88+85nPPGy8d+o0Umux7+gNF7iOsjhywpO/aYR77ER6WYmUpx8578a/yF3piHalujj4IEOMPPmBJQIQgFZVKevr5clbSRen2yexuvOQE0XH+25DtTCIveAHrK470bHpXGwshxiDbBa3PdiEaoqWvb0KX0iySHV14E3q5mA27UZXZ6p6CxhMDmT1u+yowq70diblpbckhf1IZgR7qZ50Nlf+ZcfTIV2esrQXWX/aisK13HtXdWZYa7evxRvtXdrJCtvg8qI9y1CW3Edh26q9HCxt4Y7iR/l5nbxNmW8aLtjO1GUS+aCMXUf8OfKWvuu3hp5Fuy83lxxYECVPzXpmcXEr3wQOeaWYj1c2VTAJy/jYkQ93ErxxityDt9XwLjQPkM28qZxU9OJBMUlYZgK/nI8kB+5Qiac04E/Vxwek5E2YBqmUh8ufHw0Qnl/L81jEgZ3ySvy1dC7JMtUpydvrpPz4t5XWPwmAa8VXbsnUKZUzNfGznVsT4NRvXudEJ2BTba2yUls47/6dz7bqv4pPH5B9LcZyfRHFyYa6qUnV9U/3NHGqvyfAO9WXCwNvf41ftWPKCTzJkHkxhpX++iZCLRz4vPjW6yvcNOK4z/6o+xrXVAbHwNbE1KlTp05XYeoAb6c9033ve9/REHvVq141PP7xj59MW+me8IQnDLe4xS2GH/iBHxif7QBvp8NOvrB2lEbfmb6oZZhoMemBOJOrIt8J17P8rUU1iYgODeEienw4qkhDw41nvXZHD18ihsx/02NOh6/NhrkBSVy7u0cixeQYDZ0sKAJ6M7IJWN10n+XQvk9OI6qu276ONyh/P0OI90TkK+VLzMDBOC8/5ZdAPAGfDAPx+c9v33Mgf/KGdfBSf+mJKrvLbSY5yciDONnTiiMru7PyF0BbxLi5FWJB9xXTV7yQxK/sQ8lf+Yo3gt7iu0IzKA89W2V5GdIJYmlKU+VWXRSCQoeNqS1UL8cJFYLe8STH/vTXvWUdH9JH7U77VnUg3sIhIX0X+d5Oa7jj/aSTC14LsK2/s/HARvVvb5fxWn0fxz2MZQ7W+ADBcZLXEkov8vFdCqo8vPOxjISqp1e/Wa4apshdvN3bVu7YiXyOEqglvtzbVIMd3dTpxZo8+xI4lxTIB2F/Tt+ngDwHOfmcA2z0qHXQhnlwgHXvwqT49AokYOTpHBDzGKg+8CVyeSUZJxm5B3NKS6Ls01pGxDVHkQOHLlfKkTz6xMt+2jpgOU0WzDOl8/S+o+prnpZMk+6uar8pPtLzPkhTTxxE9efSG44aS1Ls3bToSosl709cGHl/8XGT/UWDN+XLQ9iYPxcUWgRw15OLBO6Me1x0ju3UL/JWH56Q6hsznTp16nQEUQd4O+2ZbnnLW45/n/Oc5+z6mT/5kz8ZAd7TTz/9cuSsU6ddEhfWLZc1Ryv8WRoUeledi0ounvW9dSKX/+VimYtuLXzruxAufz2tiOXwnvghuKvFPIOWmnEyAx8F2tR32tJurxFQdQwgiZpgbAsITWATRb4JFJlDCq95E+l38m5NjjUuatpvyW5zW9iveR4tWXiT8DpVg4d96cODuvSM1IgYVBG9aMmf26J6Rs6Jss88dCZtLR3eVWEcyg4jT/UM1ZltUqCs2qPi6xbv//ZvizfN9Ww5/Zx00lZcYI9mIqpyWWfxQV4EPNLhKMUHlp1bxGuOw7HtKRc9q3wUj5d66ZhO1V/tpxCERQSoBc5yqJAcBHx7PyPGWSTQuvDG+i7eGHO67jGv8uxXW6mu0rFRntUOJeP5IoBC/Vaa+j4+VgepsUEOHhzmS+GMXrk6UY4u6hRSArYkVAmJ6R2wopt16ogSqpRD3m3e0dNhQz4AOADB+rF85iuSAjlAzI7P+nNg0evV2rHx/H3gEblyc0DygZDAvK6n3bEEcLH99Zft7V59PkDyeQ76aZ6ULFM9OKEQqFT7O7A/BfSlMlM65pV4TTLyMlI7JkrAo9eH9U2TouTD56VjfvAey0315vMpfeu69zPqRyqfG+weP5mU+l6amNPz1CWCp6k8H7v8Hg8hIw+pXE4aLM/550TE56Y2Pzgh+kaI7m86AmBnmHWTHGqsUugabWrRA9knraSf4tsXREyXFo27IIrjcNMhsN+pU6dOHeDttHc68cQTx7+f/OQnd/3Mpz71qfHvCSeccLnx1anTrimhgaJkqCUDnQvpMmjcI4aGR0JWWBYRJy2Quaj3wzR8wc+FLFGo5PWrhTgP4eF75ZJLLbxllC/BgzmMfIJnU3ZtywZ1eyLhH7LTHMQlriP7m7aFSFWVTUc7X2Xor4OnbqMx7m7LpnKbzW1AL0eiTjJp2cZMp/oKuBS4V5jTFE4j71vWiyEW3MbztpL9Jtu/PsWDY12UMd/w5GHtRSlkQ1EBmlVOpS/wsPj+zGcW4C43EFrOXKlry7asNMcdt+BZmGGrm4rEC7s6HSITeMru6flWeQKZ6RHLuLQEVQms13MC9OUdLLlSF9z+9XjC9aGNrWuy52vKLuBc4VzreekXw8CO8ZdH9/7tdd6SVd2cLz9rw8GN2eY5OiO/a/NhfRSYWdfeWZipGth3cFIHYhrmnQAnT6d7/j3NFSqLf6U8PrjpWQeWWwMAyyd4w07sHp8EmVqDqNcrKavX1wdMDsgtb0AH5tV2Ln+XQwLFEs8OkPFv8j5lHfjKP4newz6QukxZpv9u6RZ/p7Qkl0eatBydaoFcaTLxXcoE7PH5GpQ1iTBN0sMWL1NrLZdJ4j2ld3DX0/hmA8tIa8LEq+ul66brHtNxQtDH2y0B5/SMdb64OeQT6VQd3DvWQ425XLXgovw4qape/iYF24oev9qYKpLeMMC/LwTFm14fUhptKoh/eQJPjaOdOnXqdBWlDvB22jOde+65w3Wve93hxje+8fCe97xnV89UWj3bqdNhJzeq0mI4GUVKz+9coBPV4cLU32FP4K0WtUJgxIOjOyKiTDSGvRwu2MkbDVuWx/fNhXoRMN70Dq5nFp68JLcB3QbyqjmQmOx7FysdRsSWNx1tb3qX0rYgOEtbhOCd0lTTuEMe7VVXKcrFzrHbViZlRBsm4SotNZUNLrkUIKc3Hwu88zZRs6u53RnQ83e7XF6zRSUXvm7v7au6KIRCS6Xd6U9AdZXD0AoVyoHyUfl6O1P2YrLnFdNX9mxNR7ITiYFJ5tIZ2ZpVNuMA81k9wzq4zHmPutwaahwk9WGF9q7AUrepW97Y3Gyo34xpTM9mkus86zb+Xbj684mddZvNdhy4Pn6W6bd5etWbAmrABKYkgXkaHwxYmUQOBPK6vF6pYI7s61qRFKX4V7BqDnDiwwE0583BoyQHuqYnYM07ojwDubvSKs/BU1cCyoIy8cGc9a7fXjbnraRkUxuyLeBQPHlwct+NSXFO1Pk4YXAycl69Hk6pXVeBupRB0mtvY5dJuuZtl/QqrWVYPj3iyRPbKOmMt2ua2FoycJ5bay/mN+UJPzVppTJ3064JvOXzXFy0Jna1LSdlB3clR05aXLAk+boclJaAPF9/oQwJzkrWenWHbSC+ORmrPAbU12/lwzi9HG+KtAZl3bXw0W+lES98haVTp06djjDqAG+nPdO73vWu4Xu+53uGRz3qUcOZZ565q2ce+chHjq92v/vd777c+evUaVe0G8Cg9YyjNLpHJI+LUV+sE5GkWykDizp6yL9aGAuZSwievvOVRDcGtVj3OI1CtVxG9Xr12vqCNcMNXDz8nZyKWjgKbXmvFvEDEcPB0WZReneeSU3qNjvFLLuD/CbnJPKZbNskF2IEKodgq9K4M48THRvp2VoAqYdlVr1YlgPlLc9s3at05TWq1/QTqEr5qu6rwEx3gpcNV92iSCAu79feYYVn+MQntuqdYuDKjtT+SXkHe4gK11/xW3IUEO4Oip6WUQQoT9bPsSXHPhIWMnW9APCql+fhXT61aV2Xd7T4UrsmvvnhvS2e5psxd2cF2C5vjN/FwHy2A/MZU4k3NVgLBJEH12Z+E4qXQLX0vZVmitLg4gMdeeZ9KgHRdv7eC//uYepAk65RiTnut8AtNbLK83QOKvuEkOYxffdYnhrkEgjmys+BkR0iDZIclNMmp9IkHlsdiuWnuKnOV5IL73nZzrt/TxNv6iteloOazkMLjNOHYB83oxPPzosD/av6rQ90LgdO8AL5yPNu6kle+KFsp2Q+VW8+I9kVeSzd1I4u9+RRy0WIp/EFi/dtyU1rPe24cXHmY5Lu10c7xwSVWT9vB/3mBKq1J8tSf9JH/HmYFC5aNK7REUF5p765glprmcNBrfVSp06dOk1RB3g77Zle/OIXjwDv3e52tzG27k/91E8NF9Y7s4GOOeaY4WlPe9rwrd/6rSPA+6IXvegrzm+nTk1qGYNOblgkgzIZpUQp5SXBhaie8Ri+XPBqAU1ERTxxUd6qgxuSNGpoINdfLaJleNsJZOMJ9wfLVXDrpKxVRQvokvMbnY4d+3AwisW7yMg21/AuRudNYkzOWA6eEWsgtWxT8aU0BIKVP3GBZHe5ref2uNt0/hxVysFS8uX2YF0/9tgMNFYaHqpWzxXoWn+PP367mu/GIFG+xHcE3gp4phyqfQnMVjgA8Vz3avqp79e4xjBccMH28KKy+xWOoYgHpyUHzCT/SlfyEb+0XendrUPbWA+lEU8lO/GsbsfuXX/LC5vt6bpZJBC/ZFLlcshptUPCPOp5xS+W53fyqE77RJv5Lj8bxCvKw3+8KRfdRcEj+IuHN78qPAMLSECRdkPUUFMAl3u+sYGnQDIOKhy7OcAIQOCrwp6v0ilPnlbIchNw6OSDBQXIVxooJwdDtCOjDryjERogtZSAnnr01mOdCAL6YDUFuLkcSHzlmzt9CYzyujB9am8fKB0w43zOZzmIed5TE+NuZJHSpPQt+el7a3LxfCmndAqn6krZcBJNfDFP6qHyXkWtSZaAoa+/pjx2U19r8eLjQYsvTqDKK8k8ga2eT2vDqAXuqv5cKLE+7Hs+JopntquHXijycyO8b9R4plhD3DTy8gjuFqksH6OkTzywWPalJlEfa1WexmMu7FoH/XXq1KnTVZg6wNtpz/Q//+f/HH7iJ35iuMMd7jA86EEPGr73e793eNnLXja84x3vGM4555wRyD355JOH293udsP97ne/4TrXuc743Nvf/vYO8Ha64lAyxN0AaKEkLcTO3T0TWqjFMd9Zb72SykU/jcuUvxvUIiI1JCFfQnTqORpwRHZgIFcu48FHs7Udopuy6ymGJEqGoSQwqrU+1+wEdh3M4n33yiVGIBGktzpZbZbpNmqy4922o/haMmH9XQWZl4O7LdxENlvZXIrPSv7KJnP8ix6nxLdoA1Z++i6nmgJehQckebujkMBPlxFj9IovxwMUhqDASIVtkO1Xdfrc53biLfW7wN3/9J+G4fOfX+BafCNVaSSTpI9Vnn7X8wn8ZDtKZgRsvf10gJm6PzFC13PPg21ZAG8Bz9Qz3wtSWupxyk/8F1+K6+xOiwR7BWJv9qElurvw3F0+s/xHfrzL/4ejj16AvmuzeTn0DrOhGrwBUDnwoR2G1AG8k9PQbwmQeUsIRR7TkkIoVLzyrtMDJbD67jsdTK/gydUpfQ5pgUyejvd43YEMDoxSDo3zuqe3NNQhOKBRiXxecZDF55gEJNLTTztF5JPKm8CvtFvFvL3jS0kJOLGDeV7Ob6oHN2jZSR1gc730wTpNAqyLd9xVbe/UmpTSusLBMnruUif4yrtPmC05ukycJw5IqR7pWhHbWkRd1KJhqmxSWk+lPu/XfX3n9303mjJlHpSTl+sTIe/Taz9tZHEipx6xPgRcxY/kp0mba1Q9RycAhkeQZy9DeLCPKy+d8cDxmt64muxVBsdmhg1z8NsXW506dep0BFIHeDsdEt3jHvcY/uzP/mz45m/+5jEeb4VrqI+TvHT+7u/+bvj+7//+w8Bpp06BWsYVv7sROZUX0TAaRVxsE/1MnkCr0DpPS6OEi3e/J6OUdSqq6wQaPH/WXwjU0ridHTgwzPftG2azqpOqt4itmaj1VqxsDYojrcuFQ/CNYhcbv9ORROUnkRMUc3IwrGWnp7omrET20pQd6yEhXF67VUnxrIOx0gFqVJNUF1cLqi/rqvZT+zhu4DiT7lG+/tamyq38ZOexTXgAt4De+isvZGFZAnevf/1huN71Flie2sZDbrpMyRttUV3TM3RASl0oAak8C8YxBJbrspcnM3Eq2dSqB0F4LzeVUx8eZk68sGQn72T2PcmaYSuK1UsObsXkpkNprQPW1ip0w/hrPIxtbFMBv+6J5zs3PiiwQ4rYAETLSe5pSCCIZQnldtCFLudykVcnk5KKP/51wJi8saPIpZx1TYCnU5KTd3g1iAAYKrCXSaIMxD8BGf2u76Wc6lhKQ2CIOwMqX3kQiMKG4jYefMDwQXZV/FCfGNgZKDPKlbJlQHMfVFlf5yG1U4vSc2ld4L/TxJkA2OT5mNY/lJ/v3CaQ0neCdltnAtqterJ+4odBvMUnifVdxQvrljyAWU8fc3yBkNaP7OMue17jM0nOvOfPpJ1z50l5er/ixgvv+zjl4wUnSMpAQdxZZ068NU7wVRHu7qqPKg+m4y60FkuUv3TQ54I9kmPGh5Naw3KnTp06TVF4+bRTp9V0/vnnD3e6053G8Az/8i//Mhpw6VP3Hv3oRw93vvOdx2c6XfHoox/96Oh1/dznPnc4Yigttp2SEZQW3n6dngW+eHd0KBlkDAwqcFb56q8fvuEL6aKEMGmR3KqP8qkFu1AfHsYjZO3ii0eQd9g4uPlqtlMCl4rcG9HZ87/JbnP8g9XyvGhb6fnd8ClxOE7iop0i2h58u5t8Kvap21GJH35nszlPqn/ZSAXGFehZH53jR69cnnNSzS0wk3Y98Qu3xStPOTN6emI5vM5ypxzMda3qIeCyyquwECeeOAzXvvYiLENRgZHFR1HVuX6fcMIiPm+ldRxPIHAaBqhz6g4FDiu9ZMRwC7JZvQ6tusmBv3guXuWFy/IdP6oyi48qs/Zm6q88qVM4VQ4LrIt/Kp9yPq2PPJx55g11k21MXRx9cDdmw8GDW5+KxauDGOubO6ptfnGAKAkvgVBJuLzPe1OdqjUgEbSQAHfbOVOZdE93AEhjP+ulzuKDoO773ML8XG4cKIvcA46gj+YZuegLZJFCaS6qvMq9XScdKpgzwZzkQVhKp3yVHwdr1c9jnYg3dWYOgn6aJOvo82LycvRrDkxJdsU3QUnmwXQtPWoBdmwryorpnFJ+nj6tU0TuHepAJ3WPbZ/WQO6t6oNFa91EHWyRy4drJO8DKS8+7+3s5afNDu9Lnk8CvNl+zi/7O59Ja7EWIM/+6n2Bz7PtfH1JfooYFoHtrgUKN3DUt7S7qAlKr7toEqm/Oi21PjXJcEeySH3KQ0RUORpbfEPHY/JqQZNA3k6dOnU6wqh78HY6ZCpQ8BnPeMb4ud71rjfc8pa3HE4qa3qo08nPHd7//vcPn/70py93Po4//vgxTMQZZ5wx3OY2txlucIMbjGEhKv5vgcof+MAHhte97nVjvODia7dU+T34wQ8evuVbvmXMc21tbfjMZz4zfPCDHxz+8i//cvjTP/3T4d///d93nd/pp58+/NM//dOwf2nZP+95zxse8pCHrHzuP/2n/zT89E//9HD3u999uOENbzh8+ctfHj784Q+PYTH+6I/+aPgPfwe70+5or4u/FpDABbsbc0TGlN7dGIuEqBG4VRq9O55A4QQQO1DiBprS+OKeZdBo1m++Frn0wpitrw/zQt7Gg9e24momkNIdfGQ3JBGyOrzuHqMUA72E5eQhJ59WXrT/ne/Eh+rhNhVVgXYYDziTvcxrycbRs+rWAgI9/4ThuLyraeTR6mfiJHuRjugMd+cqR97luOftonv+FqkD7d4W3qaO+QjE/cIXFr8F/rIO8jCt65VeDpmFF+kAMToiScb00q17yRHU8Qw6M0l/iHWw+xP3UMhCxex1+5ry4Xc6TQpfq+sFzFa9XZd9GEoYpupBUN4xReqeg/TehsyX+ZTnbiG9FcrhwEZ9qftbwlofNoZZxeFVgWl8c2V3bzRPn+45cOt58zoVkzFMvIxUrg8oyTtwFWhMYCPVw5/xQY7EAUfK5gNa4t8BaZdZ3ZOcuIMkhWIIIoFFytN3D0T02tP9Fj9JWVUOwWB1IAeCk9wpY10TcKXf4jHVpZVf6xrLYpku79a91nXeZz5Tk4mvY/iMA5XOm+QwBbgmeXhdkly8T/AZen/q+dYBW77uSXJJfV1lk0fXJdZbz/siwYF1lusyJq/puhYavOcbG+oPaSODfVdy9F1cTkx8tp7jKx7ev7SJo9dO2HfFk8qnLopPxnJiuRxDFMaB9fEFYadOnTodYdQB3k6XCRWQ+5UAcxPd9ra3HV7ykpfEexU+oj51INzP//zPDw94wAOGN77xjZP5HXXUUcPTn/704WEPe9iW8bmkq1/96sNNbnKTEWz9yEc+Mrz61a/eFY8FfD3rWc/aBHd3S9/3fd83vPCFLxxOLBe0JR133HEjkF4A9I/92I+NvBTg2+kQacqwIKJBlIWLdDdAaQC4UeoL5ylPmiIPhKpntZD1ZxxhozHfMprITwIfZNDK60Lv/C/zGMM17C8vvUVMXschxBZtYF7zV9VT80zZexS7xETAUeKVOFt4S3LCIQ/0rqQdxualunh+7lxTf9Uswg1kW0kd5DAtwJLN6jaNN19R5VsAp5xpBCqqTK8HMRgHdl2tCO6585qrl4OVU1hVSks5EeQXX/WpNi85VV1KZnWNIRm++MXFb4G4bIMC02UnymmdbUZQ3ol8ijd1FcmWfNNWH/dGQkxo/uV1HYRGIFaO9h76m7Yt29Lbtb4rpCExufrQm1tRCGoKE6icMCO2IfWmnHnHr0tv3wMHFonW1JaFqYyMrwBQKcCW4pMIhLDDpvz9nm+WMb/dEIXim3ecQxiE2XlyoaaOz827BNSRX6WVgrpre5KLD7a6xo7hwBf55umMaWePYAwHIZdhagcHdxOI7jLnRCRK86nLoag6gF4zZxxh/VV9Uz6UyZSOt/R5Su9SHj6o8h4nrJTWgUCf0PzwLQbsdrmyD7bachUxTeJdA28LnCUfXr/EA19j8U2kNIFNref0bAKmfVHAj/PmQDHz5ZqRfZHpitzhoMgD4HuZ3lc5jnr8bvEj+WnDh4sE3/kWUMtJkjut3H3UNU7iXETpvtdnD8S583DTIVahU6dORzh1gLfTVYI+9rGPDW9+85tHD9mzzz57+NSnPjWCs6eccspwn/vcZ7jXve41evW+5jWvGQHh9773vTGfAmDPPPPM0SO4qDx161C58tq96KKLhutf//rj4XKV516owlTUoXPlAVwH0O2Gbn3rWw8vfelLh2OPPXa44IILhic96UljHcsz+f73v//wiEc8YrjZzW42xkIuz+UvFoLRaXfkC2g3irlgpmFAI4WL7SkXtpbLn+6RHCkieXluqCQvJt1vGVYsk4a1GxR1T8ZT3bcDi2oDo2Lyrs3WhvkyYAPtCa3Pk01NEbtNmf6KBDolO4hhAZinmqi1aHa7keLhdd4jIKfnVc/CAAQ2FqXoHSyzQgpUPvXKf3Vn3SvR12v8HuYzqY941H3JqD6Vv17LZ2gIAaGsb9qLcLWQA48/Q5lxT0t2GG3YBIZzH0GgJuskTErX663PSl+yZv3rftVNILHqLr6kxoxTrDyEgdU1Aexsd8lAb6XTviZArLoxpGtRtafyJ2hNoJVtms6QKpo6JJxdujXkiEe2ocBjpecngbc+hGwvI487PiSO3r1Dw0MwAVsOcjjg4UCJM6+CE9jC+J4tfqqTqpPLS007S/qw0bx8DnpUoJawKAdvxAQIJaBVdWaYn1Jgvj7Qkjfz9cHOeXNZqa58jh0q8S7l8LAVHEQoQ4I/U0RwiopLnn3w8wGfwHzavXGZK0/qmw/gLdCQdeL6I3VET+Py97VLi7w9CFj6pofyZDzVBLo7SJraPsnP06VFBEE9DaoCHtOBbMpvN0Bt6nMuX3/G+2NrDeaDa/qkMrlJwYmU3uVFBFI9L29Hb1PfDONEycGbfYgf7v5qUqnn9Fttw80RgrwcJ/jaiupFnh1gVh2mFnudOnXqdBWmDvB2utQkD9kUouGv//qvh3POOedyLb9Azxvd6EbN+y9/+cvHA95e9apXDUcfffTwhCc8Ybj3ve8d0/7Kr/zKCO5ubGwMj3zkI4dnPvOZ2+6/+93vHgHVX/7lXx727TJ4f4V3+M3f/M0xz/IifsELXrCr55761KeO4O4ll1wyfOd3fufw93//99vqfNZZZw2/93u/N4K8j33sY4df//Vf31W+nYIR2jKOuejVQpSeK/RYIVLi+TAPoho0dN0I4yLcje9k4LghmIwXulim/FK9tVDWdSFhWugv783m82G+f//y4LWtw5Za4qR9LXEkgNJtHbc5lJ5n9bCKBGDVfO6ZmWw1iZ9ev56G/LjdqYOiaQ85piG7uP7Km1Nh6gRMykaSB2595EHpNjPrzGtyOpONRvDSbaJku/l3gpACeCtP2fhOzJ8yoeoKqFT96lN5lgey8qftJ2xF7Uj8gaEVhL35nk3JV7KpsgrnqnzOO297efVdILU7sIsUioL6lHCYhJsRF5EHctIV1Y0yEw6p6+JDdrLKpC1Pz2u2oa6X/FVPTXH6TuzG8Ys6RG3RHnWI2nwcDypsy9I5d5htVAgGAVbz4WrCNLcBhfAIUyFqAPcuU+N6nBUpmRhnWIIEcPlrwAQVJCD3DCzyw7pqZ8DBQgqfHYjKQf4StUCedN/lwPHevWPFjxpZO1GrgEcf6EQOzOhZ8cKdCY+f6d8TkOll8n5Ltq2Jgx2UYHGqr65RJ32XinlwQvP8nEdvL/113r3OrbZhuU5J9zlIJICMz9RfDfbpHiePVTo6VRefhNPzqX04SLbKcl3abV+S3rYmXKZP3qxF6VnvL2nBo7+tTSv3dGXevlZMeuj9R6SxjuOzn8SJg3e3LQ4INHNC1uKsXpkRoEugV3XjAkM86r7Wn9wV5f2kw506dep0hFEHeDsdMlXc3ac85Smjd2wL7Dxw4MDwyle+cgQgL68QDgWcrqIKpVBeuF/3dV83HviW6MY3vvHw//1//9/4veIKO7ib6rYbqji5J5xwwvCc5zxneOtb37qrZyr8wl3ucpfxe8UOJrgrevKTnzzG8D3ttNOGn/mZnxl+67d+a9c8dTKwtSgZrY4qySB35M+NSgcViD6lwKRulIsfLpz1vJeXXot0Q0n5KT35V5lugLjRzBPgyQN5Ahq2tlaHLu20JRJ7tDOSTUf7qoUfcC3PtT+BOlbLQV4Xr4dzIL/kwz/1XGElAhD1LN8grO/CjEgFRJZjoOyfSksP1sqzntOBYy2cRTxSjvWMMCgBlglv4HX+btmBtLsSTsK8p8BOPqfQAwShkzOfY3PEr6qOCjGgQ775pjjf+FT6kjvfViU+qLRqY4LLxat7wXrbs76slxxBFYuXeBHl6/Wta5KRPIwTtsjzqVSnFBva+18LECZu4RjC9j4zG9bXZ6P+lm6sVzlr82Femz+V51iX+TC7eHFY46ZbuQ8OAiFdsX08klC8Ei0Qq+XZpXvucu1jMZUt5dEayKY6wSpAInV4L4NEkJEKynwU44ODYN1Xp0n14IYf73vn98GX8xYPVvM2bE0WLfkk5U+TTALsEiiUZO78qCNpMJC8fd7ks14fkgN/Lt8kS/+bBlUOwqnT+sTG777uaeWXPl43/3Ai982bKdlw8naZakBOHsQ8HM7Xfa22d9n6GOJp+J0TcGs88Hv+TEt2utcKkeI8stzdbEK4rvtigjuQtWihdy7va7dRwe/Z7tqg44JMm3uaEBnzuq61vMRbus867oEcK+/UqVOnKxv1dxc6HRLd6la3GsMc3O9+9xvDGpQxlz517wd/8AeHf/7nfx49fA8nVZiDoquVNRyoQh5U/N2DBw+O4RAuCypP4fIersPYynt3t3TPe95z8/tzn/vc5iF38ga+5jWvOR4Gd3nRL/7iL47l1acA+5KT6KMf/eh4XXx+wzd8wxg3uMJmXHjhhaOncYHR17rWtbblefvb3348KO7f/u3fxoPi/u///b/Db//2b49xjr8ilNBBfugZJhdB//jhFkVES7g41sJUz4mYn8rjXxlXPNWIfNNwoZex3CCFaul5Lbj1IRqajBHmrdPPeQI6ZFHxeLeMivno1Zfe5HOvWrctUlq3CVt2rp5J5Xo5Egk9GNkksuN1zz0f3W6vZ0o0BRSWKPSs88kPeSuwr4Ypd2BkuZVvpaOtTnk6j/wtm8n5LownfaoeAqvrL88rKiJYmNpEKk/1Sw6TTFP1UpkKqSBedBg3u1TSG+FzchasZ6S6kkl5BvNwNpFAYQHD0oXKhw6jSqMwHOzSVXZ95I0sxzfJg16yxBslH9aDuscuqi5YeairtxxWHVNhWX6QXMKBWn2SGJEA3cW12ejJW5+KtbsxHqg23+KFCiABiCFVpuZpxb+gsrjyJPIO78LgNY7jbHiNc1IeNT7HXV1zb17d1/NK497J/gyvt4AyEQE3v5cGJh/LeZ/zW+pYiVcfLP3DvP01CLqN+8BMAIhtwvmYg6fLhvfYcRwAInjlO4dTsqPSSwYCnrR7xMnF2zEBwE4sz9MlvVC+rfz5TNrtdLmS3AvcBxNvi9YayXdFE+/OR0t2LYA8AeAczIrURqm/pb+SARcF4iXxyjVh8rplHclHStuSNftHyodgqT+vfFkX3wjy/PSXctcBAT5+envJoaEmb5/A3clAcZQkR745oTasv5yY2bZJRp06dep0BFL34O20Z6qwARWmQIDdm970pvEAsXe84x2bXrrl3VuxbusQsAovcO1rX3t8pjxoC8z7StNNb3rTMaZtUXnyJrrvfe87/n3Xu941fPKTn9y8XnWpuLcVP7cAy91See0+7WlPG78/7nGPG8NWHH/88bt69k53utP4t+LqVlzhFr3lLW/Z/H7HO95x+Iu/+IvhsqYKA/FzP/dz4/fyQn74wx/e9JquQ+ye/exnj6EwRKeeeurwsz/7s+NhcHe9611HOZZH9+/+7u9uO8SuDq/7hV/4heHbv/3bx3RfqvfUL08iguFGii+wuWhNi2X9JYhbeckopUsevaXSYpiGo5+ERd75nC++/TVJLuC1ONbCmajRFCKqfOU5Rx4pz4u3XEzdScNFn2weL57PyjbzUMcStT9Hx2RWQ+zLmUfApds2BLQodreP9SyBUIHDwoBoe7oTka6VyjvOwLL0V8MQgULxQHucaqN6SIYCMolbUZ0c0+Bvyd/O29smI9q7uu+YDPEkYjiUF3lVPgSKfShS+b4XQnxN+JIAc7dvqTd0SlKIjJI/8SHK2t/4TrrO4aCAZgLAtKeJKbguCqx2r17v+t6n3OGeupGAXH0INLsDFfugZMXhbKxPhW6YbyxCN4yxdheJ5xsby6jdQPt9MPAO4R1R5JtfSTH4WyAFG5+AA8GEUvZjj90OJKnBU2dmPF6CfS3+2CjegP49yWWKEmiksoTw65UDdjbvsMzPX6P2ObTVMYt8MExzr+5xfvP52uc9Ea9NgeAcvFvy9AnF66Pg3yU3hjBgXeued0wHCBPPHGD43evga4OpujilfiF5eH9aJW/VsQXktp5r5ZvSt9YnnGw4hvirF1yjuay8n1C/OVn5wE+5pb7mfYLtzk/iwcFon3C4QGK4Btd56rq3L+vr4y51S5O9NjQ0LnJhoNeTfMGmtJoYtA7WLqWuq/7jax/r2/nVWxX1IVDsE5CP3506dep0hFH34O20Z6oDw+qwsQL5Cuz7ru/6ruEVr3jFeLhZxYutT30vT8/v+Z7vGUHe8vCsWLSPetSjvmJ8Fihb4OJ/+S//ZQRCy5u46A/+4A92pC0AugDGove9731j2sc//vEj0FsHtn3kIx8ZvvCFLwxvf/vbhx/4gR/YVfm/8zu/M8qpwjK0vHBbdPOb33z8W16t5VHcIoLVeuayogJfKzyEwN0Kx/Gwhz2sCe5+/dd//QjuFs8VOqIOfiuv4j/90z8d71es4N///d8f5Vd/a0Pgh3/4h4dv+qZvGnWoNgCK6nfFQr5cKRmuvtDmApf3POCnL7pbi2xdS94O9DJSHgziqrTuBZZ4F6paC+Ay2uV6qOeYn3vY0ADwxTMRnyL3YFsuymeXXDzMDlyyCdp4ESQHL3ndwVpVk+LSd79GVh288vz5rDt8ycHZgTCKXFhOgbO1dyXnv/pbv4XvsFyJjx6qEuXU/gGbWx6tlImcHV3tKFc5SertR771qPoSmCPPRayL2pdq4xiGO7QnuSevVfGjMmiHe3dhG7MryHtW+cgG5B4FuyrlUB8BupItMRrKx+1v7zLUG7dDq+2JBVY5wom4/0I8oj7FVx3UVk6uAvqnhrIkP/YZpnMHzlb/YPgG6TlfNGCZBfBesrE+fg6OMRrWho31/cN8bcvPYL6+Psz37R8PbBwfcwa9I5DJKSAugSccVFo7O+meA2AtYMoHLY3fmwIJHqOtvBJY5p7DCfgiwERFdFBWCteSWZJ7ArQ8Hevq3oQuUw1GVHKXB+cmflKbsh4t3n1u5/ypj+ZgDdatOmvgF/jEtuHAkTqmd0JS+r1Kh1JZrTZyOXE947JKAzx5VxpOZpzUnM+WzqXfzme67mWzP0ivfMfZdUD5+fhA2Xrw/qTXrU8r3RQ4nPjzgO8aD9IiS/fZx5SWEy7bk21OL3q+ukK9r48vsrRZpMWUJiqNQXwLzCdUH1u1C6y1rV6TYd35XX31EKg1zByuT6dOnTrtlboHb6c9U4UcKMD2ec973ujRuYoK3LzDHe4wPPShD90E9y4vetCDHjTy1aIKvfCiF71ox/WKYysqL90ChCuEAGl9fX2sx//6X/9rjNE7BVZXugr5cPHFFw8/+ZM/uac6lPfrda5znfH7xz/+8cm0559//ujlW2ENbnjDGw6XFVUIhhe/+MVjfOWiX/3VXx0PipuiCs1QAPh3fMd3bPPSroP2KixGeUjf//73H0H/2hCo0B0Ei8sT/G/+5m9GudemQIG8U+C2U20gTNFXfdVXbf1oGT5caK4yWmlI8Z4Wmo6SyIhNBqwWwXren/VyhUq58cjFOdMSRZMxQRdWGhHurkp+afjQaKMb7Hi40mwEa9bW1oejjpoPl1wyG9fkRXLuJu6QxE7WiZ+z+mRJ1ySOBMYKlEpYjqeXDaJyKFLiI8ThJWLacC5OqgkX7w7E+nf/KxxB8Xj9LUbW29VV3qgKLUA7rEiAqIczLDBRIS2++MXtb1k7fwTevatRdrLJCeoWb7ouRx+399QOqr+6F7uFypITj8I2yHBSG6v+3t7ExBRygV3AZe3esd7NVW953zLGsnt5a7OAmxNMU56/9WzxVLzpUD7Vn5EN2H8YMlTEmM7Jk1dEcFe0pV9S8MXNxbOLa4uQTdv5mQ/7xr/7tvx3x9gNGyW78b9ADi61QNQUviCBp6ki+k5EndfVECxP31d1PCl1ArJcuX1ucfJBMdXD+XawSc9JuRWkO9Uj5eP8ekdPAC3f+GAd2OE42LKMVh0JuKd5nbw7eOl/W/O+yqlOyVcIBF552CWeh6D5kfVwGbVk2tIL6tQqfUn58FnJhO1BnlxnvDMzbZKvx40hH857q90kx1XrsiKuwXyiFZ/VZn76ppfL9P68+OFmeeoDklH6zTZM44+Xx3bgGo5jEientHDRfT8wTcC3t7N2gr091BbctFIoBl9caeJSeuWrPsSdTJcz18W+5mW+rLcWDbsZRzt16tTpKkgd4O10SOEOil7ykpfs+pkCCwvg1bNfaXr3u989Aq7/+I//GO+fdNJJm9/LS7W8f8vDtA5dqwPOCnQtYLLA6QISH/nIR47es3/4h3+4I6/y/v3jP/7j0QO2vF4/8IEP7IlXhnEo8HYVVSiDAngvq9i1xx133PCqV71qDJVQAOxP/dRPjYD2Kqq0BcymEBz1fAG8dRhfgb3VFu4JXL9LbgXwlkd1ge7lTb1bWgWGb6OWIbfKQOXCPqMcqszW4luLWC2EiZzwnWYu8lsGhRtmBIKdF33nvdZJWDz4jZ4vacGv5yQDxkoDr2PKo44a1vZVjO7FFa7/R3Bn+WYe7QW3MWkL0fnMxUMWUxU8vRw9koeuO8e4iOVIIu9Lpk+2stt/jt/LvinAjs/x8GmpideFB3yxLsmmpvrU/QIJ614Bt3TIdrCWRNnqN/cICAI67uLyJDbBN9jFv4BzV3PWy+0/yVL1596JnIyYByOqMHoKVV8evcQZKAcCpi28grrh2A27HUFitruuSZayj4VRuBNUUfKAduc21smdPJOnL59zGaXhg/xvXVsAvnV5jdNA3aeyeQf27wn8ao3ZrTHfKyWBUYDeiA66eEgDb1wKyXlrzT0uh5ZSeT1WPc/71bkK3NXum+rsAKXLaRXPPuBwcCDoxPQ+aPjcw90ynzO93XxCSHL28luAkNdFOkCgmmBvyZKvlrsHOmXpZasOaeAl/y6n9IzrRavODi4WETRL/cT1zyduPsNA4y1K971va1BPskh9QM97/KEigZkcONNiwddVXm9OLj7Bkbd0b9V1B9+9vXynUvy2XD5dvnolxRcvHLQVg0mTDTenVFaSiXjipOBtoE0R1z/1HV9IiKQHkgE387QjqjNCWn2pU6dOna7i1AHeTnsmAYkVU3a3dN55522Ch5cnFTCpw9wKpK2wC3UQXHmiFsj8mMc8ZjMUAIl81XMFLFZ4AYGVF1100QhoF0BcYHHJ4AlPeMIYksABzQKFb3GLW4yHj/3Gb/zGnuvAQ+DKA3gVfXkZQ7D4vrRUQPfrXve64Xa3u90YaqM8oktuu6E6dK8V37gO2RNVnGDpw1S6r/mar9kTwLsn4mK+ZbSmhaFfo3FF98360Oj3haYDBURukjHvYIbKVrr0qjBRGRrsNAppKLjRyLSsO6/V8wxgq1d9l6DvbMnD2tq+TXYZKUKxTCu0ZYGbtMvEuvAGt+3cWbnVfPytqrbeZCReQPXg3wKoa99FAGSysxlKzu13Nqk8Q8WLg5I6yN7j2DIf2VCVhiHqqJJUQdlp9OQ88cRFG9T1CjUhIN6bnSH1HMNgu1FFkkNlUi3JTHan8pLXLTGUqdDRzF8yFQbjXVLyrU8N43W/hlH3hk4yFG/yglYblG1Jz2S2AynxzWe820ke8jimtzIPj3OHpimnRm8v6aR49mdYhg8Hi0PVdvKd9D/SUsibXr9eOAWWALs0ljJ9IqWvhqw1gBpK8U+cB/eaSxXkb/JWzyA2fRywErjkgFmrHgno87E+AU4eOJmbgGnXwfN2/nygY1rJkGlddg5Y8XqSc5KFKAHACbRLvLXyZfneZgKYVIf6TYCTgzXz8jab0lfymdYJq571urfazim1t+TbAnfTiZqtMpLeSgcTz0kGepY7aSyX17mB4TuRLC+VwfLTWMB8ne80XiXdSukJSOu7E3W6Nen65EY9lO5W29XkVmkYA8hBWe4KKmwD5cxg+RqbtYjgfaVX2b6rWem1OGBcKcpGkzwnQtfBXVBLtJ06dep0ZaEO8HbaM332s58dY8tWzNcCO3dDdbha0b//+79frrx9/vOfHz+iAmRf+tKXjod/Pf/5zx9e/epXjx669Z1UAC6p4u8mT9SKL/vf//t/H37+539+PGSuvFz/9//+35v3y0P5l37pl8bv5fl6KAfKkZcKlbCKdKDZpT28rkIYVLzgAqcrTEV53BbYu1v60Ic+NBlKYq/pdnsgneiUU05ZWb93vvOdix9uZPEj8oVvWjTzNC2ezkzEje9+J2PEy+EiO6GQvjgX0TjRAleABT1svS768BVTGnAJbdJCXAtv9+zYhr4uvPUEmvnZGEV669WdnfQcwcRk+yTxsBoUbcued1sw2dzVxb7whS0bg96Qyo+4uryEHWgt0uv+LE/q0jIwvF4s123OknPtxVFWjNsrBxu95q94tfW9ntXZUyyLYR1qH0rlEahObyuri7iqEVBkl1KXYSxa5iVdYvkO+Oq6fisWr56jt7LaU/kTCBYReNYenPhgeA4OLeJBQ8EU6TnhQGlYEG9J/4mNORhO0LiVb5XJMBn6rfuMq7v4O1/q7lZH2cpvvlVO8bmIqLuVDofX1fcxD1Xg4MHxILZtbxSoggnsUMF+jwqVQBsplCot1LxIyL8ag/EpHXhKIRp0nzsFO92Yd/KVBq8EwqXBT2nlQUpg0cE5AkUCSxSnRIrKHSwHDxM/5MEHUB+wUjqXnXhIoBjl6HM0dUDfObG05NbiM4Fk/koC5codFg0szCPtTHnZzNPnXl3zCcJ55Nyd2q313XeEyDdlOzUJs594XbyefM7L9LbhOJHakf3d5ex5+i4lX+VIz/BZz5exjKb4573WuOb1c0CX11lPOhVQ31UfTppJp6hrmsR1nXF7VVcexqg4Q94np/RcfLJd9dt3YqmTbC9Ra2HIxUOnTp06HUHUAd5Oe6YKWXDve997+Nmf/dkRPF0VJ7Vi11baittbzx4OeuELXzh83/d93xj39elPf/rwmte8ZpsX6QUXXLAtVEDFg23Rn//5n48Ab9EZZ5yxDeB95jOfOXrgVpze5Cm8GyIvuwm7IO/j3YRzmKI66ExU3sl7AXeLChRuUbX9btIxbEPpzV7oE5/4xO4Tc6FMQ9O9CXRff9PCn54NAjuL6Om1KuCqfhOpYj5eprsSqvwEEDi4QCLypjKTS6o+zIdoDw0MoV06yWuYD+trc7wuPtvmpKVHdW4GX9X34ty5TNSyIXmfJLyG+EHCsmlvVPdSnNOqGj1cZeuw2fR8wugZ1o7NxDCYVIlkJ4n4pibVTfmXR249y0PC1FR821EeremN1kpT+y2qX3n7esgD4nG0ISlDgr9uA6c6+iF3yo+4idIn4FJ5V70UZ7baTcAuz3+hExdDOArfo36pHuwS5K+I+kTQ3/GPxL+3s3hJuA7l7LKkLax2UD+kN64OkhMuuBPM3crPPYy97pt1G5kbhoPF+/L75iMlw/XltXkVsoxNsgQi5hsbw0yFqZIce93Ip4D0neSdm9eJ3JO4G8AyElCVwAtv2DQ2s4HJk5PPN+qIriRyvT/hhO15sXzKyQdA5VM7GNrhIUi3CgSlbHS/pbDMqwXWEexiuQ5IUS5MTx5azzlvXpZvznp7c6OBb/FU+3BuTYCc5+d8qIwEyKWJzmXZaruU3uXCgcQna04SXLOQR8+D11xHWuAu+Usb0KyniHrsuuNy4bigAd3bwmXta0fyl/o3ZZDawvsNN1Qc0E3ryfqdDt6dkp/z5te00NFvrW3VH3iSrHRB8Z4oQ+44u3w0fvkrJwLeuX5WndnGfp6F6uIxplpjS6dOnTpdhakDvJ32TC94wQtGgPfWt771CGI+5CEPGT71qU81vSb/5E/+ZPjGb/zGzYPZDheV924BvAWafvd3f/e20ANnn332joPLWsS0Ogyt6Ju/+ZuHu93tbuP3v/3bvx3LcmL6G9/4xptp3v/+9w//5//8n82QC+XpXHFoV3mlXuMa19gEgcnXoVAdcHbqqacO17ve9YZf+7VfG2MQv+1tbxuuktRa9AFk2GYAJAPJERouLoUC0TXQF7+O3BHJEsqUeOU71GWIC8FyA1L8bENdGoatDDhHJGm00S3QvUAcAZI3zFFHLbzzNg4ORy0RHTmMEeT1bPw33wp0OzL9Jjt8jjYRgTi3tb2cuq+3FfmGYOtZ/aaXK9Wp5bxD8FHNqOZjOay3PGpdhepvqUWBsWy+Anxrj6VA6qqHDjST81596rkK2yBHRjnoiD+lYZm05RJelhxv2BasozvcUQ5eR4ZgIBWvaqsiqqVjU3yTWm0rvqquOribctTLFZVGh88RD2rZnew+ApC9/pW+rheoTl7pWEWsLpXFfR9umigt5al0RQxlQTDY+5E8d5nfll7ORp/d+ncxNM12lDvKS569uuFvVbggWWkCHg4qJcAsUQICpgDAFnjgSpVANgexOCD5cwn84qDg8xLT1IYvZeR8Sc5C8vWc6uagDBtWZaZNR+cjySHJtTUo85kEjHGeS7rCfJwX58uJ8ifI5q+b+6at7ut1BslZb9DoOYYHYL3Jm4NkrkdMrzYhr7zXAk0TJVkX+asD4oU6lIBP5yn1H58UE0/MK+mV8iAP/juVpV0tvVrkO4ouj/Tbv5MX/5CXqbaS/rAu/l18EvycWq/yfuqjqR7Oo8aK0ulafGgRwbQCgbnhUVRpOSFzEtLk7HF7OXGobH3qvrwCVK7r45SuN4jruk6dOnW6MlIHeDvtmV772teOsW7vec97jiEKPvKRjwxvfOMbR0DwnHPOGYHck08+eYzj+h3f8R2bYQbOPPPMPXuFXtahJUQ3utGNtt0766yzxni3xesqz1HeP4CFukIlFNVhbKvorne96/gpKkBVAG9RHcx2l7vcZQRcq7yWl7RCXxT9y7/8y3BpqMJP/PiP//jw5je/ebjuda87gvcFhBdYfZUkLh5FRAaZJhmXDjbwfX26GXKhrvK0mC2iex0XtYnXIr7z7ydsJSNWiA/rx3fAiT4xjfPhK14ZQzzwQuUJET366GG+6TG2MepyJWcoAhVJRzriH25vEBzW32RHuQ2kZnP2aUcLgFR1dE9xYAkSJnuUtqbq6dEx/BnxVOJSbN8iNZHbiQTrivhmeQGN8shU/QgKKsSE1EF2kg5ZqyFMzV/AcIHBqotUWbabPI15kBfBQlcf1kFtp2eJzyTchPhKfa/yPbwlZUs7UlS/GbJC3U5voqvLMtKNh9YgwExwVu0o0NzPMqQ+pXAO6pIEzUt3tH9Dj2LG3PUyWnhowkSok47LuS47OQbl33kt7xktMtAjCzBYN5dxHchE6mSe8RQjqQIOoLUqR2G2AAMKig3NvF2BlNYbuDX2JzAn8awPXwdI/PLNE85rRZpXXD4JoOKzCUzzeijPpHySscdgoVw9Lz2bQDTnqcVXIpbh7cKdQ89P9eAAzrWAe7uq/dOuWOIndeQExKW6ta6zDume7+744JLWSD4RS45eBieYKX4dmG1NqIlSWuqDT7biy/Up/fby/Xv6pPrpL/ud17vId/jSGOjy8LGslWaKxyLuKGoC5PpVvDpQq2dbjgFcDLpHuIgLM75CQ7m5x0BHaTt16nSEUgd4Ox0S/dAP/dDoyVtxWgsUvfvd7z5+nOTl8/KXv3z40R/90eFw0g1ucIPN7+6hW0Dt3/3d342A64knnjjG1/3c5z4X86mD2w4pLMAevWkL4C3v3G/6pm8a/uEf/iGmE0Bc9Pa3v/1Sl1vA8rd927cNf/VXfzV6G7/+9a8fQzccrtAaX3FKC1v3JuICt8iRJMV0VJBP5pcMuhRUk6EXfEFMdz8Ct0R3klGluiSgQvnSAEgGtCNv9PLS4lvGLIOczmZjXM219S1nD2WpRwq04sHO6Y3HVfa521Fc88thxJvS86QHLe1RHajl2L97bKr5PXwkeXTwWb8ZKkC8eB1JtLdUR+an6yXzCk2u+MH1NqX2owrElTdqtYHaR3aUQO8CPiVDRuIQf8SJVG+1K3lRiM8WjuBE3Ivt5W/Ws93ZDYSryIYXyFsevh7Gj2Es2CUSIJoA39QOSku5+hAyhT2xfdlfXEakFq7m+KKGGe++zqf3Qx8KfYgiD9KjhIFuArvbKmHCEFgqhn0MdsFNARjO3BQwRGY5oEwJo0i7FhrERO7J6GCfrjkY4yBG4pHgCEM4ULE49iegkAeAqdMzjkwCiVSmaGru4PwylU75JFDMZZGUU+l8/mS+Lj+/luQzlU8rX24A+8mN9eErBa2NWoJ4qYw0n6d0ft0HF1HSMQK8muRaebKvJL30gXrVYMY6tCbUlH5qw5t/tX7RICUZtHTR80jjDfXVd2innvPNlNaHMvHdVF+jJVklPUj19ufqvl7zqWdqIcEFm9rc+6X0nHGapBOVjutYBuHnc77jzvp5fycfqzZOOnXq1OkqSH3k63RIVN6u97///Yd73OMeIwhYB3wVmMtPXat7Ffu20tYzh5MKjBa9733v23H/la985eb38k5u0b3uda/N7wxh8Ja3vGWHDPzz1V/91ZvpK1yFrv/6r//6tjLKQ1pUITAS1XMCzSuecHneXhZU4SLKM7sA7hNOOGF4wxveMMYavkqRL0BlJLkHR0JKhN4lw0snVQkBS6BAWuzTIygZnY7MFOkZfRJQzOush9w+tZimYa+6k98iBuYUICDXVvHOei8X/hVLs8Dd8uStv+vri8/VrjYfjj12vgk06oAvgk4JZHLALdk8tK9VDV/nE8gi9sBYsgVqFgBaf8ubUm/eihRquD5l6wg4FVBYaeVtWsOfDi+T+OUJq7dDJdL6uJ1MJz+poPinOsqe4rl/VYfa06o6nHTSFo/lpVtlVfkFeBYIfO65W3moTlIlqb/4SGCorss281B9zIdp5fFcn+KvePV0qlPpCZ2HaCu6TatIJhXuQG+Wupe22k/pSy4VoqLedpdXNOVMEL+eL9lV6PSSH+MSp6HDeWd39q7nmKB0VG+lckhwUJZ5sN9Mkd9Pz6ytFUPzSYxlk6eS59p8fIaYbF3XpxjcBvLO51u/yYR3+ini+MeOVMR4LxQSx2DuDLAD+uvBvKexVB2egIfulXIwnsqU8BPAZHKaBNdUFuugMV8xR/RhiJ8idUIHOpOcfYCi3D0tQe8pZeQ8wsGd7cgO4nJoedj65kCaV5mO+uBzNAOEJ5CUk0nd1y5a/WZ4DMrF5ZM2JHxi0HX+nQKjp66xvixH3zWIERD0+EkuJw2Y3jacCByQbfHr7d0CQB2k9+e9XbVz6zJNdXLAtiUv9Tcft1qy9TTenmkw57WWPPh8a8xo1Zd9iPUq0iJD8qa+u04S6HcvWy4cGAKlyMeUVh/mddZXk/QeyUVwOD+rprpOnTp1StQB3k6XiirkQgG45fV6s5vdbLj97W8/fup7Xat7BfJenvSgBz1oW3iERI95zGM2PYwrpESKLfuc5zxn+MxnPjN+L8C14gc7lVftAx/4wE2Q+LLwmk30zne+c3jrW986fn/Ywx42xvd1euxjHzucdtpp4/enPvWp28JFXFp673vfO4K855577tiOFYKjPImvUuTGgAy6licrPVe0eFceQp2KZEC7scBFthsMNIi4eBXRiGa+yQDUXwcfBDo44Kv8VwEKNORk4MpbTcSFfgV6JXgAQ2Tf2sZw1OySYf/axrBvfWM45mrz4bjj6iC2BRDknoTJFk/2L69NgV8OkkoExW6xrWoUMCqAV6/FL8803GabqvnrQ/BNNiubwXEjisbBP9rpzrsAzzpP6ZrXXACYxVsNhWq6Ah4rMk2BjwVa1kd2df2t+5UHQxpUcxVQKW/dyqtkUulVP7dbW+1BG5/1oW3rbeRArasjbT/uT0ypdMlEsYjLli95cH+G5ctZSCC49ISxch3PUbdiOA7vZuzatM+TXao8S+7VRs4n95gcX/L8WbeEKda1alOvK3/zugBvz7dA3BHMnVUfXvwtILj+js/X/dnGsDYcHNY2quHQEZadYtwM4m6ACqJiqDNRAehBxnscMwWwOripXReNVRqv6nd1fO3GOGAqtL74rHT1UediZyWA5wohBSe1wK0EnKR7PjckQIfzg5SNci95VH0YS4TPTQ249NYkgOVxQh2ElNwdMGwhHHre58QkQweH+N3nWvLN/JPOTXUu3WMn1ODp9ziwqCzea9VfdWHc0Ra5TBII7AOtfnMCTuAk28AHHdbJ1zycBDRxcvDycrzerBfr1wJqXY/JiwZvtjl5TM9M5c2xzSez9LwvCDixJdmKT04izI9ymuJXz/GsCJbhOqH+rwlUCyDXPR+nEpjrulLEjRP2Wx/HmJ/rsRZHrX7ZqVOnTldx6iEaOl0mtLGxMcZwPRxU8Wuf/OQnjx64Fdrgwx/+8BiC4fjjjx9OP/304Ud+5EeGO93pTpsHmD3iEY8Y+XX60pe+NPz0T//0ePhahXMokPVJT3rSGFu4AOSKR/uzP/uzw759+4ZLLrlk+Imf+InLtV4/8zM/MwLIxx577AiwPvGJTxy9dI855pjRI7ri5Rb967/+61j/y5re8573jDGU3/SmNw3XvOY1Rx4qfENdv9KTGwtauGrBqGCYPLxB6bgorg9dJWkIOuriC1BfALuXyxQ6RNdJGthF5DEZ4zQGPY6AeFNarwfzLxAged2ID53IVbI5+ujR43x+9NWG2bHHDmsXXbTIdm1tWBO6NMyGDcO4E/CVbL1k4ySxex6OgfvhaYxfW/iOnlOsVeVHJxGKjqriWILbV/orkNFtnyqzrtNpWvXTQWt1re4LoFUTF/jbkknlVWELhGfJ1j3//J3qUCBpgY5uS+sv60beHdwlH5KzdxXK0rsF5ckyHDRWtyocTvidrquNiNnIg5qHi4mIc5A3dkddlze6y4C8i2SH+lvP1Pnkrcsw3q5L6tbcwPDhhO2qYUwgLv/u3AiZbeqaA/IFXXF4qz5fZyuOIqvnx4sLAY75jf9gDKIgpOgCkDz4tcfsZGO515Yrho/RVF7vIEkhfex1PlQXByh8YPNBiQrgHYVpPC354/MEQlTPVt3UwbjBKSDbeUq7Mwng4SDl3z1ftTPl5TySnHf+ZmdLz7FulLPHNya//rwP6NSNVD7nR+lzAsc4AaktCJj7IJjqn+qdZDCVlnVhe3DyTHrqG+SezvuEJiq9CqNNFvLm/c3rPNWH0sTv34u0s5fWZq22dNlRNv58Kj/xShnpngOvWtsxhlNaM3p7Oq8iPruqnl439mNOwuzPXK8Wab0sUN1BWJ8QuVOuHekkS01kvnjs1KlTpyOMOsDb6SpBFTO3gNv6tOjss88eHvrQhw5/+Zd/2Uzzspe9bLj2ta89POUpTxlB3qc//ek70lxwwQXDAx7wgMv98LECUn/wB39weOELXzh60RbY7FTgbnkme0zhy4re9a53jTF4/+Iv/mI46aSTRrD3W7/1W0cP36sE0djT4pAeWkXJSCXyQhfItBhnWZXe4zIW0Uj0RSsNLV3nwr6F4PCvPBqYXu/Ey3uLskjIGssnT/7KHf/ydeAK0fDlLw+zL1+0Zdju2zfM1tYWB7FVgN7ly9kJ4G3Z/A6Y+m+KhQ56bncKJK2PvCaJ0SjsW93XG51yAJQXJD049Xxy5k7fGY6O2IFs38q/unmVUUBria9+F69KX3xViIUKN3Dta2+XGW1GqrTKLhC4/laejIlceakrSHa+70G7jqpQ1wV08m3JBPimPQs9pzJ5T3wx5DWHQal8pZdXtuxDgZdqM8beVaxcOioV6Y11V3HvKgwXqOcFGMuBVPwJTFZ35oF1qnuB73y7m0NQAfLsjptAK7yvxaO+K3ayfhNrUpnEv9hG1B/2r0X+s206IP2fb9v80DgXwIMWYKrf6ZOM92TYt4BIdrbWM6IpTzAfh1kn341hg/kAxWfc8y+BjfrtQJjzlgAg5zXVVTwQVOJ9n+dac5cGZgfUyK8PIlMgqbcj81bnU6faVMRQd86jbJdUXkvfCFgS+GZelJ9vsKayHOTlnCyA2J8jpX6U6uj3/TnXOelRcJDY0X9d51g+0wro48DGOvoAl+Sb6sL2dzAw6RX1W7z4s6SUp+fvz6YxgrL1tmEaH5C5GaJxTOk5wJNf71Psn626ped9cywtMrwt0madl69xRTuarkfsR6kvul67h+8uqaXih4M6Pt2pU6dDoQ7wdlpJt7vd7YbHPe5x4/cXvehF22LVrqL73Oc+44FsRb/1W781AoaXNRUAWSDnHe94x+HUU08dTj755BHwrRjA55xzzgiUvva1rx3B27q2ip7xjGcMf/3Xfz086lGPGj1YC+g9ePDgGNqh4tH+wR/8wfDpT396+EpQ8X2rW91q9OatOp5yyiljLOPylq6D6wqA3k2dLg2VJ3PJuDx4S64CeStW75WWfHHJY+y1GC3iorKIBoZQIXqc6Bn+Jbl3S/0lcuUAshsx4p118EWsDEfyKsCA5fE1aJWdvNi4kKeRqfs0+lugBcsqFJJuqAcOLEBegT8G8rp9RNxdxXvzuPOcWPOz35bFj/cYNlP3ZEMpNmyRQNZKI6/X+s74vBKBgMdk81F0yltpWY8C+Kq8KleqqYPRKk3dr3IUXqLuV5xdhWNQvYgruIOQmlNxbwUQVviHUnMB3gIaxQedKilvkUBUgZxUS6ox2444QIGqVWYdDqfQE46zSSdc9bj3INtY7cm3/et7hbbQW/rMVziDd4cEULdwIdflBLTzI1l5eEPpMHl3OfBDr2jyRo9q1kXtqfspDIRjcZ6P8zNJCVSlgNL4KaExvYNvCcDwclg2dxZabtbMK1XMwYjEh88j5F/KmQY11lUAiW+4JdmQNz7vcqWXKPNOCp6UWOWyjt6RmW5qXuTAnWTosvPO53JtAXAt2SZgNMmZdUx60hocVD/JesrT2O9RLmlHLZXnfCW5+O9UR8/f6+dtknTNBxzViZ+pQcTHiam/SYauA0l31L9ch1PeKb9WObuVq/oWdSvpLhcqBMKdvG1dh4roZesxb7kxogPV+CqT0jF/30xRWnplE7B1r3lffzsvaezzSdVB4k6dOnU6wmj0ozjcTHS6YtPf//3fD7e5zW1GcPYOd7jDnmK97t+/fwwz8I3f+I3j37ve9a6XK6+dOrWogPqPf/zjix+vec12tz5fQNOlzY05IiQ0yhO5Uarna5HMw0XcW9iRIQcIkuFUpIWvA7VyZZT7HhGa9G640B0hXo5ApUCplI2jQvQoEVqqgK5LNGs+nsy8Nhyc1yvgs821PD/EUBxYnEqrv4qn6/fEmqJK0M4sNpWuQMYKXVCfqlaBrpWfPFXJW32Xd6bbYLS1JCKGAFRTVXmVd5WjOL/yOq1y6xrBSYKoAmMVdoFlOVbDOK9q+rLn6j7fhOczVP+i4oGqJ7WT6hFwpV3GfQrvhlK1qpsAXoZPYGzYyqeAYO436D51pEBstSnrrN+yQwVMF1XZzFcqXTLSM5QRvWKlG/W9ZESnyLpeAD3zJBBf14tfyl6ycTufdXGsTPnr8D7GcBYIL13TPYW28K5ef3UoILu6AGnHvPbvXwhmcWl5gJob6RKedk4ENqhhCLrQM68FWCQgyRnT7k4R3arZiRUThXlICBJeNarilmhHgumVj3ZIKr/qcPWMlC0BdglIToARO3MCzRMgyuucO5i/85T4aYFJqj+vJ4Ap8c7ynWfdV75epueVBl6lS5uU1C9fB3hnYn7qCAnYcr3jb3ppe12Yh2/8ujzTuqAlu3Q9UQIgU1tysObAzvmfz2gA9wk4eVsmIN7/epl81kFLr7/rA3cAfbMl9bvEQ6ssEWXTKoN6Q/BbfHJS9vwpA45nrKe+c7Hiv9km1Wb1io/GhFpI6TTR1OZT/TZt4Lmec8LRM1xb+sKE9fW1Zy2QHvWo8XY5yHziE58YVtkH9cdx58NFpYqnnDKs5L9Tp06dSN2Dt9Mk3fa2tx3OOOOMYT6fj/Fp93qQV8WqrecK3C0P2wJ6Lw8v3k6d9kS+ICdoSbCBi1wHC5KR1TJIdN+NCy7A3UhrGW26l7xtfRHt71vTqBD5YTG6luIRtgDmZHjSYKPBLUTM5DXG6K2QDbMtwJnrdLez3X50+9ptfVbLX0vXOUoKp1AkrCYBy96UxHBcNXhWiotJIBtfqRfP5YFbWJAA2kpTgOKIgwNkY7ho4mJJVt6ciU/xIr5UX3pzCgfhvWRvCgR1HlQWQUF5Qid1YwgF8ad7hZVJZpSrujT5kX1amJwDlh6PmOEfuA9CmdVf2blqF4LeSe6sn3d/huOUfEoPi1/xrPpItjzzKTn9CWBWeIjkkesy974lomz5fEu36rC1bbeoJAT7KFgx7ocMsYHTd7rlq6FdyX2sSq8a87salPwpDw0aAq2knAQp3LO3Bf4kWUhh/fVr8aC6OniYGoQNw3TMj/MAZcDBNc1vDgSn+Urkuzip7fU7DbQcgJyoU9wFIqDk5ScgymVNmbQGOsmLafms66x+u8eyy8LzSpOcDzaen/PnOuNlp+/pNwFR3ifvrpuu8z4pMm3iMbVd4pl66esdL5PtoL7GdRNlN6W7iafEH9uf7cXyWnJJ6SRrysxlrDTpXtqI4XUtBsSr3lgjX75+ZR1TfVwmnDTT5MI3vthG5NvznuoLK8j3Dg8ntbpqp06dOk1RB3g7TdL97ne/8W8dXlaevIdC9dxb3vKW4S53uct4OFgHeDtdIcgXslyQyl2yFrKOlum7L2Jb5MgkjQ8uTh0tSQtzGnr0giMwSxfKKYPEF8CeZ1qwe72I/FGeXi+umOVFrM0iM97X9q0t32DdCtUgloRTE4tw8TItbTwRQVo2nYArHrLl9kLCvPXMKtvTATM9V44x8n4lr1XPOixNTtQVLqG8OWlzSty6Rv4YiiIR5eUYjUBQgZdqZmJblJv4cHtR3Ui/JR/yrLIrTwcfqarE2dxhjvYyHZ3IF/WIz+g720gHunt7U4/4rHdD3ic5fy0AWKCsPH+ZXuXtBozVb+Wjg+R4gBo9ef3D+mzVaT4cfRQA3LGgjUWYlZK16lR/K/XB+TAfj1lbMLNIPwxrX75wK1MyLo9Zb6xVAJA8urzhGb/DG1HlOFhK5eL47yCZ7lXHrPQa09RgHIA4vhOcYJ0I+LGDJJAnAbsO3hD4occq/7r8W6CMlyWiPFtgVosSD3zOFTBthLLzJ3lwwPU5O81xiQ/pEEMNUV4OpFGn3FOY7cJO3QLixDv1W+kYbon8JJlTDp5/AsWcn9RelKP3R9bDX/1nGp8YWMfE4yq9TH0hpXWd99chWru56W9Lf6b4FW9cwCQZTdUn9QcCx1NtSH5ZfweZNVbV/dqFrYWB9z2m977FNnWdVr7awabHMMOYMHwM24xvn3ng+d2MP506dep0FaUO8HaapNvf/vaj9+6rX/3qS5XPa17zmjE8Q4V46NTpsJM8AYqIaGhBSBfDup5OdXZwVNdb3hQiN0jTAt2fT0Cw6kGvorS4psudGwQ8ZIjgcEKdxIfyIMqm3w6eKC0RWb8m+VUs3vLiXV8f1mbrw9zOJiIRH082Jm2cKoaxbflRdQsAqzT1VyCqDlJzsfI5etS6F674dOyCVOrF0AYKQ1DlFrgrh8ACgYUhUbT6y3ACrqLJtuI1ytdtNeIH8iBlWfTqJf7goGOy/V3t+QZmakvmwzQKz1BU8iP/4pcqy/Yjn6pPUdWl6qswFd5uVH+FUKDXMMMaKG3lQbBbaR3HJMbAQwHZruq2dU/tUW/8e9ckLy3bV2XSvud1x0Hqc9RxGyO4O14rVHeYj+ku3thaUrLNF8PnbKvNKvyDYoqoQkVC1iVQKTgVRcSxxnd89CxfgU9jG5F5KgErn8bfNIg44EDBFx8Khp3mBjaQD1QUqCsBKYFdSUasu4NEycM2DcAtSmCYz4lM42Akr3GOTSBNAhV5nXO832dZnkfapVG7+fzmc6qnJyVPUr1u0To0zQc9n5B0XQMw+fCNa04QLmeW5+BdaiOVkTYfPC8vg2sSpePA4+Xs5VqaIBMPzjP7JnnyfpRklfS9xVN6toh9n+2jtN73vQzPmzzrWa7XfIBv5Smd02myKSwCqbX29R1Q9lERJ2dfYHBjhPVhf0syoBz2QN2Dt1OnTld26gBvp0m6yU1uMv593/ved6ny0YFcyq9Tp8NKtXAsNEhGOMFdvgYmw6mIBhEXylxotoxrGl5c5LrHrZ5PRlXL4E4eN1OnIzk/NFL9O41DBwNUDuVHWbG+qivrT28oenAcPDjM9s2GtfIIHItf5EWMms3Daui3shNIVo4nCnnJ6hHQk+cuWa6Yru7Ywry9SdyOJnCmagrT8ti3FRqgeFDeDANYqupvrMtrWF6Zsu8pUqWn8wsdG3VNuBqdBum0pnuVv2w9yo/7I6523vwOIkpeJ564BZaLFDpBPEkN2eVoF8pTtfKvNpc66vxEfZfXqjy11U51vcILCswu8DbhJ+ymBLyTg6e6YtVFkUmoA+K3fle5asv6rUPvmCdtXXUjhrDgUCAvYIYecXzSyTE4OrJJLypW9uihW+Cu7RTM5wsglzw6PjEM4XR6Y2a++XAJ9+DmODDfHMPq74FFCIgWgNMCmViee1myU7fAjASOufCYzsc8lkWFYCd3ZZsCVlyOKa1f5/wkpXJQyDtbAo3Ir5eh33zOvRNdCVt19/y9IxBUagXQnALNPI0GBY/N0pqbW3J3AN2f0cDDSS3psgZ1pfcdvfRqS9ohTX1jCkVKwF9qY6+7A7aULXkneC5eWsB+ajOvj75TBkmeys8PVSPv3EBvletAcou3llxVTtqh5XfXHe+L+k7eE6DqE4n3LQfgHXxfNS6xj4lHxTLXQoIngGoyVh0JBmsBxwUJ+5rvRvqzLdl36tSp01WcOsDbaZKucY1rjH8/+9nPXqp89Lzy69TpsJJOxOLC3lGpdFy9Fo5uXKaFvBsbep6votHFMxlaju6IiMTxN58hv3ITpVeZA8tFKfaB14vP0+VSC+xkLBJ9dGOiyhTyVV68BeyurQ1r64WQLfLyMJQOqHq29feCC7a8dwnqMs6pbGV5VjoeVGJzD0oPzycblbF92STKq65XXF2GsKNYJQY1i8DfOiOkDllTGmJCkgHfmiyqewSP3SZUGj1fnqqSFZufTUpV9LOhdGYe20UAp/hVOyl0hIOhdN6kqpH0PN9wT3iMyi5QX+CnnqcdqDwE0jI/2f6qJ3ngs/4c0xGL4RDg+yIM913Ew+MqneStZ5QP6y4gl+nYJvVd8iHP7uXLIdDxlB0RYGazRciFRamx7cYwDuP32rRZ5l3ev2wsVn6pEAeGfcOBgwuw+Oj1rV2djX1HDxuVVwV+OLgMRO2C978ODLCxHAhzENCpBeQlkJDgHOcSz1dzisfBZZ5E8BMIRr48bZLLlMwkDzU6eeB8lcp2sKwFpCY5tO4lICqV43Wdaj/f8SD4Tl1IepDmdm9/L8fr5RNA0iv/rfWD73DqeYU+8kHXAeSk76k+zpPz7nJKH/FBShMT5eEhJ7zc1nor3ZsC+lr8ks80jqwq05/xMl0ORVwXTgHz7l7KPt+65325BUqndWXS61TXdN377eYOIRYgKk+LJG4aKV3aIOM6lKB0qn+nTp06HWHUAd5Ok3ThhRcOJ5xwwvi5NHR8vWM8nuj+H5cRZ506XQoSmsUFIQOvKg6kjCN/NY3hHUgtQ8EXvY4yFfnrjsngc5CAKJGX4welKT+PbZa8ivSbRioX9/6OuFxP6eophIroIxEkykK8Lus3O3hwjNi5tr5vmK/V69+zbSzQ7iZwpuaqa/RalCckm0QenjpIzd/CpfOL1IR2ijdpspcJwtHJOdntinkrsLG+C3it77LRVQYPiSMfap50nU3rdWLYO/HE8lwejqswLIGDmqyv7y2wHd1ZyNWOlDyGHZSstnUVV74Cqqni6hKlL4xfrPqlGMwOjIqnFp6g+kkOOtxPz6tLCatRuWpHly27EoHq8vomZqi8pFNeD99zSns1I4+bgnQPtEVi9tGiCsegOizynQ9rqggzpoCW9zY2ChQuBdlKMxY5gss2RhEYcFBNjc7xehWYxudaYCMblHUhsMX0jBeT5pMWUDoFMJInl6d3nlWA01QZ9P7zOSLNGV6WbwC2+EpK56clki8vm7JLA4crPzdytcPGwY5tzHwTwOVA5JR8SclTNJG8HR3k9YHK4+UQ2PP0DsL5JkRrLZO++0fy9b7JNKs8bKeAwxYPKb2n5TOqt+s6B+sWD6m89NfL9Gdt7NuhC6k/UkZJT71dWS7blH0i6SEnVh8PWZbzl/hXek16PGVW97kenHJy8PHVx+VDpEv5+GVKyQ+jU6dOnVZRB3g7rfS8LXD31FNPHd72trcdcj71vPLr1OmwU63e9F6+UBAumBOaxpOluKjmM2mhy4Wnvx5HVDK9cuf5EElSPnVNAGsi8srFML20WBYNQz3PfJSOIC8NSLp0MgwDjY1kMBrQW56B5SFY8Xg3Ri/ArRieyUZlE4j9Yq3YoLdqkYrRa/MKDeA2gwBCYgC0rWkzMbxDetOQNk3LbpUtXGCvQkaUJ67y4WFutAMpZoGUeuvRbWk1Fd+KZGgEpSUW5WpQRE/l+n6ta+1UTfGuukk+fOvZVUF7D4qty/yEwcipx+1M1knpJAs9q3xoOOmani9wlOEhlLfbyMledt1MXci7JM8bFA+6T6BZeSRPbOqBdJ/dTmkE9LItGErC4wKTHz2jA9NcgfetbYwHqm3xuzyEbZgN67OK21thHZYCV4BjF8Zyl2N9/cBw1PraAje+ZMsNf33t4mFttjbMDlQH/vLO+Bm0zn2Tiw2e3Lr9WXYGKQg9ypgfgQgHGkqo1cnYQD4O6nsaJFyxOFdMefKSHLRpEXkntcrngOuDsteNsvY0viviz6c5zHlslUm+1Vbe/prnGVPHB7SpuZ3yZbsl+abfHqrBZc9JTvN9aqMWCEz+W7JMddkN7/xN3aCHPmWndL7bxfv6nnaj0jqLvLQ8VD0fX4f5uDElM5dR+p70JQGfzIuvqKQyUtnefhyDfKHCdP4cZaff9Obl9SRL8ugIKScfva6koPkcOzRG+sGGHFs8rIZvXKhv+C54p06dOh0h1AHeTpP07ne/ewRnv+d7vmd47nOfe8j53P3ud9/Mr1Onw05CyuQaWYtAITpC6rioLJK7XREXw3Spc7SKRmjyuJBR5wvU4sFROyJTbozJdU/X3U3SjWEilv5aMJFO1l11Yn5uROu16/oUSunvdBP0IDBAQxT8lCfvsG9tWFub7cBFkthUVNkOBS5Wc5100kI8ClmgEAnlwVvX6tmKf5twG1VFET2EZTMuL7HtZNd4bFgXNePEMnxBhWbgAWzJ87Wo0px//tYz9bJF5auwE24LET8i1pGaM+EW5F3NR3CQ95gXKe0tSK5SZ+Wb7GvKkPKQ85ra1e3X5JzEe5RFyVJtq7zVLVl3to3ypqOog8yObblOswv4vg/13imFbvB8lUYewmoz/dY1bk54m4+8zypAQn2vykop58P62IAHhtnGdrBlBHkdbGGAYe0m1GcZ+Li8fNcGALRLpmYVxkXPKFhyAjM41lApqewUpuYEdXQCaAT9fJBoAWKpswh8owJ7AzMYtqfzPKkkqUPwewu0SyCPdzrm43OceHO5sk4a6/UM+fV2Svz54NkCbXzObfHN+Ydy1QDC8pILnfOUQLO9ENuGwddVVgIKuemcBsvk+u/5sj6UvwNqLX4dZKTMXL/13b1jGQydaXzdlMg3N1yWXif9dTCZcpIuO8Cb8kl/p75zQmEdPD3XTa7TrX7MOjNtkgFlwwmI9V814XIBkcp03fC8BO5y4eSLKo4lSsu359hunHQ5Z7QcHzp16tTpKkwd4O00SX/+538+3Pe+9x3uec97DqeddtrwgQ98YM953OIWtxifn8/nY36dOh12qgVhIWCF8rmhRyCVCJgbgMmwcW+TZPTprwOoaWGcDHs3eLToJYLDfMmnG/HJQNVfB69Zp7SQ5qfS0/hUGgcQnA8hnpL9sl7r+/aP44cOcGKV+FffSwwV7ru+V9xbecVWcxeOT/uBoRycNYGkjiGxLN5zm7zs1sqjynRnIUW2EIgrj9d6tpwb6yMRSiUTQKl74p2Ac2FldAbSdTUHbV3aeWra5MxIMFTfBV6SaC+7WhFkJoamNMLuPM+61/K2Lqq4y/rOWMtKq8grlAEBeO/q5F9AbemQd0m2OzE86qMDp5Kv8qactAkhT2TqDttOISZ0jXVycJa/pUuuv+KX+rBTXxbhUhZpFnF1x+91cJrAXAmFoIGDiGTaBU/FcAYocArZFS9VyMdD5pW83HSf4FgCfKjcU4CUGk0K5+NxEU/gc1CE46QrXRrL+bsluylKcvb2FZE3ArjsLAR66Eru4JHnrXxZn0RpnnL5uqewg1M8ebG1AZrqkwAt5ynxxeuticjlwrp4+AXxot0bTSIMCD4FAiaZTfHD+rZCViUgjzymdPz4zmjiy68lnU/rH96jfP1+WsO15NMaI1o8ermaBKfqk+rkgDf7YqqHiON06mdJnznmuS75s+RNeujjWaqnOxYovcBddwzQ5gj7bHqDYwWtGsa/knRF4aNTp05XLuoAb6dJeslLXjI88YlPHK5znesMr3jFK4Y73elOw7nnnrvr5691rWsNr3zlK4e1tbXhnHPOGfPr1OkKQTLm5D22G+8iGiSel3/ngl2/RQ46MFatjDaeUNVClGgM1HeeopQWygJQuAhukS/MiSAlGVF27ulMcIWgMGUr5K8IJ0GN8XjX1scxhCCvF0O8pMR5vestsvn85xfAaX0EmhXo+6UvLX77K+liReqhqvEgLHn0imWJWfYtVUQ2SDms1EeOigVGymNXoRhUpqJbSGweOpTNX2mXIc7H9AKMla7qKr4de3Hwl6AtuwTtu+Kv6kH+BKC7k1595BifHCfddlfbiei4rrJ1X873ykceqI4N0VndHcsqbYG+dCatv3LgpJergGx5h9MRk+CpZOC4lsuCbeAe2uxK6Ttl6fa2YyUOxiutPHcJBns9EvbmtG14c+VMlnJrJ0CZJPCEv9nAvvmkPBIY2wLaWG4CcBxA8QZwagGRzMPdrJneO4QDQf6M18HJ+Uj192tpzkp5+eDAa14H1VlzroP+rBPnqxYw1QKivG4+F7rcixwcTzFA9YzPxbyXdDTJuXVd7e8Ds6dxveTc77rMwdzTsH1cfj7/t/om+yLlSd0gqMsBTWsXL0tpU2D8Fh9T/devOXjK9uf6yEFJbzsvP31PfOyWfwKaPmE6TfWNVv/0ctMas1VGyt/7tI9dnIzJC9ewSqdxwGXC2FB63vWJi5xOnTp1OgKph+/uNEl1KNoTnvCE0VPnpje96fCe97xn+M//+T/v6tnv//7vH0MyfO3Xfu0IzDz+8Y/vh6x1umIQF7GMCVYITH0KrRKip8W+kLkiomVTxrAjj4kYUJRokBa8yjsZ6v6qoRBHIYd8JVB50iVQhteUd1qRe2mwfPItj6GSYZJJ8vbQYlyLeY+BMB66dmCol8Jp97P5aPPJdqihpsDdAlILzCVLAikrNEN9+Iq6Y9IKnaB4vUVKp/ANipcrcFbenmz+4qvU6sILFzxVfvW98i5eK32FVyiwtr5/4QtbYSVUVwGPUkf3LnXcQQe3UTUYZoI21VTz+zV39JlyfhSQqPQCRhOoyK4i4PH/Z+9NoGzbqvr8faruew94wEMRUVExUQFNoxIlQ8UuxmBHbLCLOoYNqBmJMSZ2sTf/6CDDaJQMm2ATMRobVASj6CAYZahJbLGJTTRiFAVR6R4izXu36j/mOfVVffW7c+1T9wm+pta8o+45Z+/VzDXXXGuv+Vtzz3UY/dLZ0QZWU62tem5z5SFUtIddEf3pa9RfntUO52FANNuScktZIQfa6XI6LMPl1v3S4QKn66/4qs+6Vm3C+xy8yABy4m8J8qazfeqB9edMh8JV2QV2ipFKkwrWAUP7FHOkzB0Q3JWVAvdfxhvvgM2RwBIkM3iR853nb8vCZTH41+bvtd+jNmZZazIdtbtLn7JHP9y+0cAhve+PwGxPir5msG7UT8lvgmDm0xNwyivB4pEMkhKszV3Hjk/y0T7HL/VEwQRs/kZgtSfNXMP4evLe6ZAnCYOmuZvVjfnM2+l6p7Mup5t0XY43GvjkITmag3KsjfSIa/vG05qeUJ9B8G5OSL1NvjNdN+6zT0dtSnmZp6zDOpVySr1IXXMdpPWO7+iNMD97SDdp0qRJl4ymB++kvfRN3/RNyyMf+cjlUz7lU5Y3e7M3W572tKct/+///b/lx37sx5Zf/MVf3HrmvvKVr1xuvvnm5cEPfvA2bcXsfehDH7oFhinjm7/5m+/spkyatCMWkOl+ycLeyBLpMKSKQH+4xqISNNCL385bi++gc37NErIhlAv3BINZxHZBS+0RlEFZzUvm80J9ZAy6Hbnwphx+s0jP99dzkW6jhjQnMt4cXFkODird7jVxzsjD6ZmshGOo73h62unOYC/2r/EWysFjE89fs9PZPO5yYwFcK9UosLnqu+WW3fUC5orfivla5QBGp71HeWmH8Xp/7gfAU8kBD1+rv7sp36x1uiQDts7vIZH2FsOi7nnIwaPrR406gJW6kQXRPJCRw23gEV0ezAV2gotx8BtAOpgkOFBRgaSkNwEKF5AK2J+AKIf2JQCcqp4gq/va2Eym8/DJsro6cyj7DXTyngd360DD0xa3fFk3Tuuo7+Vlf1gdt+ziZ9sT0gq82WwPUFw2VfHxsnEnd+AWc1gHUHTU7QRlPnjxK8NO40ZbUH4edOCG5/L0QOM7npSZ34i7yzNPCZhnp+TE0XVaJzfLxK7xXYenXLrysv3O52eJAaPuWen08NURfFsmHWhlfnlwuGz/ThkbhOrKNwDVAbr5zE3vYqdjYswQEeaDOvHw9ITqMeR1hh9I7kP6zDJKft1vyNvtcl92112vqQNg88HaAXbd2Mrv3WeC8F3/uB1dXWs65nT7eHSeEYjL9/SSzvHi+WfEU9azptNr48cLnFGefPDBtzdcDPa7HckvMqE8j1NT86y5XkIF7wp0V+Fj0qRJdy+aAO+kC9E//sf/ePnjP/7j5Qu/8Au3r0q/1Vu91fbaGhW4e3R0tHz5l3/58q//9b/+K+N10qQLkxE4jCKQoc7ILwKhwm0SZKgz1hI4tcFbBIpkDwYvbg2aJpJEGi98fd1GMddAyfwaWy6QO9DABiBt4bdj6GVajLI0VmyIu32AHgAoktU23ueNB8vhYYVq6MEwi65A0urKairneTh0W76C3nW5y7Dtm5hGgnDGLmyrVv0F6JanrkVAvFmXg1dx2rhpX2HTdTZWfQJqVr0uwxiAvaCzi9M+6rxX8Vw2f8YAAGsZOla59JqmzQC5CVzT14DvuZ/AcAbIhV8DvJW2+sB2NHpBnF6mBkULOa2/QGPO97IcUu3TbjV+xye8pe7QRuOaKXtkkcOca8jS/W2HPuRf17ae54fHy+GmFOB4GxbF+zFb4HcL+R5vwdzjbblc0wA6KKU/Xo5lmbLRe8q4gTTPHTkX0qicQ+gwx00xJViBADxXWWE6DzYUgesoAzsqHkwJkLnDu3TwUnU4ForzpWWfoJu/d4BcgiTd95STPzug5Y7c6wCWBH4zfQfOWE+yrzJ9t4nZycCTS8q2A71Sd5K3fAitbRyY9+SryM/F1M98CFm37VafIHXnTW+wrJPRPvIaxJ/Z1m6SNC8jkLeTY/I4ekBmnzptp0v+PtrgyLHf8TLir+NlrW63xSCvd6Hp19zl3af7a/WPKNubD3TPW9Y/e9S6PaTzpl63sMNjngegAeKUcer5pEmTJl1CmgDvpAvTl33Zly3PeMYzli/4gi/Yhl84HLl9bdfNV5enP/3pyxOf+MRtmIZJk+5SZMPep5aDdPCarI0NL27tVcMiHLDB5EWo8/t7IU72Ysj4cICdRpk6wNdpqc8ID2nMTxpgKSN/TxAjPYDS6Ewg14tuy88Il+VmI4J0t9++HN5ww3K0/boZ4hEGsBBr4twWp20NuhsvX4sq81V629UQNohDJNTvCgdBLF66i8/ytK18BcTWZ6UlYgiqWu3yG6tpp4/smSrDb+k6TwKytsMss+zmtMNSbYy1ONQEKonXLPUCZtLlxCWuYeUD05CnI5tYlVAz4icb7CyiLPoE+dJGnPgTQPU0ACZCH2fITMcHdt8AhOfQsU7BH2XXd/qu8qI7blsC0NZBOzohY/ZSqoyqw9c3m4Nlc3z1pG+Ol9e+dlcofO8g3WWpiAx14Nq23oJ8t43RPHYYIIAFVGFXPLhMdIYDLncgWdXjExMdMDsFkUrrTtlHOTC6uS4HQw4yK2i+BQLlcyEVzjsHCYrmRDhqg+vyZ1JOEAaPOu/ors4sp6s760meuolpJC8GdPccymvdBNhNqK7Hk6LBNZeX/OWuXdf+EV+Ul5vCnWz82wOfBxTkNYFlZU/mrv+6+uCPdiB///ambXrNmu8sx/czPk9u9HTy6/pzVHfXxtwxhf9OD7p+GX2upV/jMYFRP+iyL7LMbnyujYlOVzvd7Xa803vYPPPg8hwGcVqodzBdV45r80VfsDno17EuMr9PmjRp0j2QJsA76bqowNqP/MiPXO5///tvD1x7h3d4h+1Bave73/2WV7ziFcuLX/zi5Vd+5VeWn/7pn15urSCSkybdFckGa2cI4qWVr+L6k3s2krpXUv2981Jw3ECMGd7/7oAJyEbUGvrm34lOXoTSOE+goQNTkk+TEafO8EijUG0rT8DjK1eWw8PNcnh4vAV58crEbiVOLdmwGQz0+g8HOvAUQvDhIdrZiQbMyGNRUZfzZwiBulZ8A77WdYOSdiwvsvOK7Ss7b1nk3YHmOCDmW5HcT9vJquXutcqT1viPhwFqQnuw5fhz6AbuV94///Pz7aywCLTBNp+Hpfc8CIFRssUZs6iAc6sbICp5HSYSW5ED1/Jt6cTgHLbb8uI7sX3tSEq4b4a/beDOeb/kYB3is8O1Ei/ppgaPi4qje/vVKmCnPJvj4+Xq1d1GypUr185Bpyq3BXkpmJs78PcaRteALRjnWgJmSR0w6Dmqq9fljbz0rGC5SZXxXLMz1gA7lMn8dZ5oGRtkJK+cx/OZ0wE1Wd+IuueLy8q0yWvHQ/KbIFVXTypxx6MpwaMEgUmTu1fu464ef+8eCtwzAEwbUxYdTx2hh/biTYAMmfrTE0jW3W2spiyQUba9u57pfc0e+E6XO1+dZ2fHV6ZN/Ur9cXtSn0Y8j/ql8zoe9VlXzkhf8ns3T+XvDGODXHLeM/mhlWlynuo2JrKuzNO11X3m120ybzdPebHDtU6Gvp5lX886V2QVvbPprsLHpEmT7l40Ad5Jd4gKvH3mM5+5/Zs06W5HdtMbGUz2qLXhUNQtJknLfahzFe0WxRn6Ib3FEqzNRT3lghS5/A4EcBu7NDYm14Br/3VGVtZltCplaplhyNhYBFE9KQu7AbzeNnA5jFAMzh2OuQrQaXupwLb6XXkBHe0l6WZkd/iQLKsYhFcwcXbLI5K6OeyL9nCgm7vFh8+7XLrbNhehICx+eLWTjNWIz7TnXC7dAf5ksNgOYxXCoLO9fRBchoUwUI5ckKdB0fqNjOzc5fNasp3p6A6RlnyVh9AQHv7kd7hsykt5jnA49K54B1TuhrWpu5dTSJfH/e2pIQ/iYy+Fz8OKb33aJ5tlc7A5AdaPT4beWaVn5eLTe0LVZrx66wuhFCyQ+kTQCQRYYdKozzkqN4JOeVDeRNu7snMe8tyX850HC4pqxJ5dGgsp50RPLOTrPPJG82P+zs22TtlTLhelnGxG/Izq6Z4bIx67ZyQ8eBJJHlxf9+zJdtNffmA4T/es79rQ5cl1RcZbHsnKMuh00pPsqH89sC033/cDy/x2r2vkmOrG4qivc2x3Yz0fEPaOzTJy3JHOfOf8kTLK63lvlNdyNU+djPbJa/SA6ABMHoxdHQZ5U7bmOedBU1f/Wposx/Ok+84et/vmEuszmw6nb4Gc7KpaP73rSb3edMvNm4mQTpo06RLSBHgnTZp0+cgLxiIfpsai0N6kawtnyvJBJ6b67TKMKpof0vJ+ereQ7hAho1SZ1otuG8hroKzb5U8vrLlGHEkW2Zaty0tUKRf+NizSTbVZ2O+q23kI4hVZgB9enwCCBh19OBWglm1bDsciXi8HosFeOg5xPd9ANz4BiEt3w0d57gKCmkfKsc1iVe0OiU/xpc1GeV16t6PDOtLLN6+nXYiq0412WIwu3FLnoGNeKx1hKlAbhhlgvWnkqZ0ygpCth7fxGYa1MRH6rLOH13CgzlaHT/jrphmXXfUT9sOYEQe/ZXs7bDLf2OaPaAf1HdC60pYOb8urDYoTAL4b3jvX3R1AfA1l2BkLuH53AHD+dSAsAysb5gYmAJUginka3Ush5rX8nuBGluvgzqS352enKPBoV/LOA3ENqOmuj+Rwkeuj/Pnd/JlHy8kD0Om45knKG4QJlmUd/p51rIFvCTrlfT/PudcN2ix/lKaTIcTE6ef8iKjLAFjuTnrdUmTgmHMF4DXfdHLb/b3r39GfX5PIMrLP8+GbOp+/k7eOZ98bfXbf87yBrqy18ro0CXKP0ndjiV3JTn5+oLrMDshPGj3Y1tqXnsEeH/70vOf+yzWp20GeXDBwjZ1Xj1kWZvvmrEmTJk26B9IEeCdNmnQ5yYtJu0baoMGQNnIC2dCs7wQHTUMnX9ks6l5xKzJyhHGVi2HKBIHxqVDdp9tB3dmWNJZHQEXyYTAi0chsW/fbMjLqivttIaw2HE7+8Ook1CCenwVyveIV19rBAMGmBB4rLyBw/a6YuFYLmonIq8xK09kPda+AOHu6VjrqeMlLdupCfQC/Gb7AOEZn3yVOYpstsSPydV2CDeUu6jCmovSKtR3nshMYtWqnbZ84CES6knd5JJd8CJ9BSL8Oe7EzJLIfqV53vfitvgLgTIei6nfLakSdrN1fXZuzL0lDO/Fedixh9KjDq5gqKMMeu9R1Nu3tmBphqeZvl+b4LO02QeOBNupg5rY1QMYbbunhaq8tCzbnpq5DSMME0vFBeR1IlAIpYgA5FrtBMmRRCsVkxC4Fk5ERdssu252ySjL/qUyZbt+1rn/WFD/TdF7QprWNydEATY/lfe1Y4zsn05R5B25xPfsmd5MSEMyJsgPjLAvzaJA3wTnz7OsAYPkw9HjqZN7JrxsfI91Ifvww8Vjw2LM8cl2RddE2X09QOfus0+v8vjZOzG/G6O34G9Xb1T3agb1oeZ4Hfa2buF1npl9bZHQLAu75sDXrcM5hCeB6fUzZyBfq1pPO7x1ljxPrz3VS9+i4s+iuwsekSZPuXjQB3kmTJl0+SgMiAVcbPNzvkDau+31zKJEyFsAJTOSC1d4tRhUTPHX9LstkwCMX7wALicY5TbY7vS0qTaFNNijzPnVl2W6338Gv36B4Lu8kPXYWYB+4us/YsK0Ae64C3JiyDO5SLo4hxopoSv0RUs7NMKvGYQxIF75T3rsFAOMdmYeNOTxDerR2dq7tTdui7pIRZVfAb7cHMOIh00SXnQsjCUbBgXHmueRSVLKxqpU8yus5MRU7qHWgJGk6nrrvObQZItVPBsDrN06nLsNDwl7jHn77vlOP7da0izl/rGRo3YFvrnGgX6UzsJuevoyNM5t7t4my07+KwbtZDg+OlnvdUMI8CclQB6xtB96ZQX98UMBk3a9xetYJG58MV+RDoDoAJ8GbDjyqNMQ1MaHAlMM1u3zbDTzBoVSKpAQ7qM9luVPNC5MGE4jnxfRO9SBe48O/U+kot8vrT1MCmp0sRtdGZZPeg7UbdCNAxmBQet92PORE0Q3yzN/pwUgPk7ec7F1PrgtSRjkBjPoGffBu2ajt5q0GvzcdDMRlPyL/Lga+82cfeB2S4yjXUS63Wxfkmsw8dOufNXnt6+PU0cybfcfbVVnmyCO842tUX3dvH5+52HC/rpVrfq2z2WbLqhs39pRNYNZU9fGKVDdPeN4crVf9hlg+B8wnG2XkWzkMfNKkSZPuqTQB3kmTJl0+ykUgn0aV7BbH3+iUYBvm3WuHNnA7w7dodCoW8RrhL72ERgtvtyPr9CuZHUicBm5ey3QgU92rs/l6qOvJPoF8Slq5bqo/bj86WF79ms0WRCtPyjwAyxgAYgULKgJXwfOXTwC7v/iLM9DYZdl2KrDRtkPa6wC6iePDYwHKL3/5+QOfAeUAD0c4hEWXto27OK+NMJrsXpcHv9WW4qvuITPjAB02Yc9nO2HTB8jToSi4jnpW11d9gMEGIeE/PXS7dnSe0B4iVlXKQAXRFW8EOEy2y3FIDnCfnBKQpx1N3Y/Ilc0F27CEInH/0i8A4IRqQM/qUDmXYV3IqYnxcuPWwfR4OapD15BDgcQbx/wuxT37XU27/fhgOTrZZNnG4d3+RfxEqBgeea55EKGICVx1gnWH+rMD21IoqTTdoEnhpbJnO9zJ5GXCyfpzjrS8PNASdESB+OsmhI72AU8d0MvvDpzdRwku5UDsgB8/Ozp+u2sJDHGtA7uyr90275SM6iSPJzPrXPZ99wxPHe14T/n5gdelyYcBmwsOvdDFaqF8j58EAw3S+npXf+eFa54sH4cdcR50Ptci6aE5GrMjmXQPzbX7XE+P/xGg2l1LWsvX8bG2GChiMTTi3fLu7jlfjrlOJp73cn7Isop4iCeI28XVhvwaVTeXd4B9vgk3adKkSZeMJsA7adKky0e5AE2DGYSnMyx5vdahHAxCYDzlwnO04DYwnK8r+vSsjlcbwLmQtUdYAsR2TbVxmCiY4wonimdZdkaoAQfXlUabUdK6DuqJCy0nnp2UVYBRfa3LALN4MxpQxJ4tELhAMHth4kgCeIVHr8Wb3w30+g1qRFxlE1kCXJq8uVdg+7DyAGzWb4DmdEJM4NoiQ92Qh0FJp/UhYp2jTLaZOh3OouRYwCFdb3WjDeWBi/xRI/ISR9btNN5RuB9lE3uXe1Ue6oCa5NuY6dGKvCkzQXuAZex2O46jS4TksAc2mwv0IXFwq231Z0f8jPlM2xmGHjoOqZ22OlMOaZAF96ijrpPfoUk8FdCe7MfUh2vs4wSobHAfFaMHpzxv+53GjOYNz3cdAm2gx/fTgO+AlBHwZWAgN+3SuzDLWHt2dHNwzrMMCrclAb+8z1xIB+Zr99mmvJbpsi1r5eRg6uToa/m9I5eZQKVB05Sj5Zx8WkfW6s9ncafw2a6u7myn9cnP9VE9KQfriNN3/YN8uk2FLn0RA9+bJQ78Tp0JSnfjNx+KORacp4vha3CXMZ6Aba5FEkjNfN36ZU1+2Z6ufZ0e8UpHeqx2ebKuEV+pY/t47fg2UN6t6UblGMhP8HSfvmef5FqPvOxYspDI3dWR167LRd5e7HiXmXIyfEYHaO8hq+GdTfum0kmTJk3qaAK8kyZNurzEYtQLVRvc3Qqr0JtKYze+XA16IWqDJwFO1wEil0AG7/anYZuv49kLIj10QZlAJhPZGYEDIwMyXwN2GfAyMlDT8LUB6nugbaSpv9e8ZrmyOVgOb7phOdoCSTuw107KOAYayKwu4y3xAubs8MZb3rY16BrEVWUmcAiYa1vbzk3lOVmAn+0q4xZ1/w3fcBczuLx5AaFx8Ms3QYsKGEwHK4PKdY/wAO4++LQtZF7ScRCHL3cRuFTVl7ylLZdAJGV0gKJDNThqiPc6DB57mPpNe9t2Hf7Ad5/H4rL4Syd0ZMPhZoCqBtDB3jpssHN4d/sS07HdnPfWMKO0zbGHS9/Rb6YAf9orOumaSwl8Oe329y6EyvmpLkAsl5XAkdHwrLdrdEfuCAvF5YyAhGxjCtiAixWt22BzG/37ZB47BYlS4ZyeXSvc5jugxt5xCRan7IquBxRMJRyl6a4nrQGvI2AzgaZsQ97zrkoCU/kcTn67QeBr3m3JycN6kHIxQJnljvom+ejan7tbHXiXn0wKBsGYPFP+CdLl2O/APu6lF27XlgR1+WNSyjHmdN0cZB7db53OZbldWd13qB4E7JxRVqdXWQ8T86j+lHMnP+ehbzLAPZN9ttXydxm5NqVu96vzQu7ztfGNZ7BpqQoAAQAASURBVDHtYXe2k7UfujmGCDXiRYM3u2g/ep78T5o0adIloQnwTpo06fJRZ4TlAjvByjTAMTbSRc91rC3Ubeh0AGcRqKIX4AY9vRC2cegFPwt9vwtvBDANA/PmOkCxKD/TpfFsRIr7neHtdht9q2vVfk6UOkEON1fLs3qzHF654QT/KK/es7i8jsWLxyqekgXUOhQnIgYcBJeHjfLC5dC28trM7nTzK7QDAGxdq3qJfco9Dm6rv/vf/7yK8Oq9uzHtqYtgSCOMwl1rFc7uSfWni5wuVdnpKSfBVurFAcq/y4O6ZG3HHg+t5NXD0m+8W7U9pFLt7DVcBNaW6ui2GQwtKn1IzMH5UzakHYUETFt2JFv+0vO5yjZmWFRyKf1lE8RhH/w2b+rBqd6N3sTPzjjX0MizxX2vw6t0tLlG+R58CaJkHjcoPQM78MXt6+ZE38sJwOX4egaaRmE8ELhOOXROgr8OGZBgVz47mD9p80Xk5LRr93wt+2hEXd0JNHnyGQ2IUX3O24FtI511Gveb03UxaU2dfCizA7JyI9flZN0pZ8snx0TKKdc5RXhSdvFSc/2TadJjlbSp45ZVV34H7CIrdmvzLzemc82W7ez0Zy1t8rrvundhc0HgvJk/5UKe7rp57fTAD9pO/n4VJfkv8mslllX2YS4G8rC8Lq/5YS6q793Bgy63ywsvPgDBr6zwgIYP78Z3/Tdp0qRJ93CaAO+kSZMuHxXyhnHN4tpIX4fMcM1oUWfQgLDgbZBoGZTIXWeoG+miLlBI6jRKQ/kGgUmXLoZ+X9vUeZxh0NgT2K/b5UK9ricQnahXGnv2eOZaoWjl6lplldfbyb3yCjw+PloODg5Pq+NwNIuWCA84whWIaCcS0gEM13Wfg1SAMPF2C6TtwhxYTICNBnmrnJe9bHfv5pvPyi2+br11Vy42LiBv58BU5QHQpY1qGw+Qj8PaTNhBqJXJjlPwX/zgtepwAIkx+FoCxane9ralPjx3eRPdKmK7rgg1xL6k7xzP2CqdfTSylfkcAbyJNdi+pj0lK8t6ZDenrEaUfMB7XietD1KzrLP9dQ3d7PRp9+X4zG7e1lsZoxA36Ph4OVhKMMfLNjLD8fHOq5eA0jmPJlCKUGucG+ShExPNHoE7CYpYGRI89ibdOQEojcuzlyGKysRBuwj27fwO9J27AVVWKY7n9RxEPtWPuTiBpA4g8fzePYNGcjPlQB9dS5nn/W6wuSy+0x8d4GtwuxsY3XMISu/aEZC9ds394jQj+eTOUso5J4SUR9cfCVTnBJV8dToMb/Z4zrHhsWfevD7KeaCbbDq+s01Q7gzm/OC1AjykTBmfOT46+XefptG9lKnnL2gEvGd5naw8V3Z1FnkN2OVxP5uX0Xp09Nt9ZrC1A6T96Xwsqtj1zjcS6LP0vnW7eRjV95ovvcbs5iEfgnCdRPPuCnRX4WPSpEl3L5oA76RVesYznrF82qd92vLHf/zHdzYrkya97sjgZi54HXbBC0vy2ePWrpDpTcVC1YahF8Wdcefrdmf0dfMJeOByHCA2y0yjxO1NfrJeG14jEHitHWlcQ7jbgtax6CeAqOXI99tvXzZXrixXDg+W4xtrvb85BV1ta1JEXcOuKAIvwevXwHClrXT80bWwgOMOoqY+g5DYzYVVlXeqD+aqz/LeLZC3QjN0tqJt9k7M/g2wSBvJm56lxkbWbE7SWzZgT/aO7bASqz91G6+BGFIJsmPXAVSiajg72osWvH9ko3ZYQg5P82y5d8Ar/YdssHe55sPgrBfGRuCdT4B440HIygAsaX0+jfdo0EWHXbBdn/qJHiCDxEtuu7pz3z2tZ8vfZrm6XFk223KrcZXmPDB3ePtty+F2HJ/Nn5uqhPgo7hgb7J7PHPB5pPRdp9JYz9c0lM9uDrIyePLwvEV6JgIDYj4Zfo0nPwPoECuAOwsgzemrHpQ+gVsP9g5UTN66QTsaSE6b1PVFNyizTCt8l2YE8Jifos4rl+8GkrL9F5GH6/PzbgRad9/NY9Znsk6MZDb6neWOvDW7scN1A73IINc3uSbowNWuTvJ7DCUYD//duKdNXn9k3FV/8r3b8Lgov5lvdN2nha6V1T3I18ZdznmZ1kBrJ0fIG1K+N9K/zE9a90t67nY855jKury5MJJbznO0m80wzyHMl6m3uXExadKkSZeEJsA7aZU++IM/ePn1X//15XM/93OXb/3Wb72z2Zk06XVD6XXi77nwzFdl6169a5+GSWfk2WDzYnS0QM5Fq5Ex3BxZsLOQ9eLdhhP5qQfAII0rgwpe3HdePeY1iToTnTTw0MnCKJMX5ifBZY8VN2ET3ioHh8fLlSubc3YMDnX1+ed/vkteTsC29Tnkqz7dfKrmt3GGDpeCdb9xS5M4iIsYueWpW2Bv8YIXb9pVKcLOwTq7wOkStEycq8M2XHdiNeDr/s7bllmO5WfMCRVLYJN8gOt24EH2RfVJ2GsOd8MRCBvb7bKHMmrl/sp2O633YBKYxlmo7EscKAnD6DazeWBg3MA1n0wzCdS6Lz10bFszTRFv2W20Yz3OofUd2VmHjNucxxZ3jd4Bx2eKdrxFd0vBiN4Qm0K33bYbowk2WKGtkHY9T4AtO6gDM2jIGnlOzcGeyjsqN4EK5tK1PJ7PDczYC83u1siD+DApk7xnrzej991gHgFY+cxymg7oXAN61753oJGVbk1+CfTuA+pIz45L/eah0OnYqO41UNPlZLq1sjvQrkvHvdE6oaPr2cXLDWnaY8/wbHuOHV6lMF8J3hogNnUb3dm3nogNEHszxukyvx/e2f78nnysXc95wWuSkbz9O3VglGbEh9vkNN1uLmm8QFnbAOgWHO7XIgPtWU93zQ+xBHRzbeh5spO79Tbnu1x3Wl8mTZo06ZLRBHgn7aVbbrllefKTn7x8zMd8zPKEJzxh+f3f//07m6VJk/5ylEYjC0eHVSCdF7csUAvFKdTJC2fQpCIHBfWCGRQnwyrkwjjRqayfPLgKevGdi1zqzQU19+DV6Fv3DvjIELNbJ9dsHHItgWQMj5QZ7ShE9AToPb5yw7I5lodvAb8nZRxuCuSt4jen4FYlK/ykPgvYqmKIgcsb1IltJC6STTNOxHe8S41Lk8YEkOyD2Qrord+2XRM38F4Doef8Rjh1Vlm2z+qzwG2HDMBpxiCnvZ7T/qr63uANzn7TNdWWAqdN1JsH0eFRSp18R00dzsJe1YDIjimbMXcr3Abfsx+rXfR/lUF4CQ81Y4vwl2pvx33LwXrg9oIppWOnXwo4wUFPQdgE3hMr8bUi9CKxDspDVgkcuwzb04DNSbvyEewOyz3VUzG7vZVzhHcBsnEWIA06X+m1XqieJ1NQa+QOT3ChAw5HIE5e98YaHWtK0MdKRXgb5rJSZJTNCuF6HTeGNzRQBA+ODqQdAUnZzq69mWZUVgcqpzySt64uX98HlLpvXT/XGGRM+AZ5qcNldfLwoDIPloP5hJfkJ/XNsvR3TwqdPLtncN6D34zNmu3r1h3deOn6je8Ze9eT0ai+URu6MpzGOmHgeLQucZ6R/LM93e81me/Lk/dHOptpuvJyfehJPOeMtfpTN0f3uzZ3gfWLcqx2dVhn3Lee9/bpO/VnnGbInsE82DJO1QWom9LvLLqr8DFp0qS7F02Ad9Iqved7vufyLd/yLcvDHvaw5X3e532W//2///fyRV/0RcuTnvSkO5u1SZPuONmA8IIzjT4MHb+Xz4oL7yAfXmajyKCq6/UCH4+skYGZMfKMFBmMrk/cGkEzSWewpANb8ne38E/wwMZk3rMRlgBDZwhkmU5zcLBs6mC1208C1Va7TmMd3LBcPdqlrVfIDdqBl9Rf2fcF7NrpuopCXK7SjnNF9rg04PqSl5yBk7AOGEm9BTBW3vLahaeKwVsAaaVFnYwfWC0rHcBwgdR4JyN2PnnLO22ptAf5dOxbd2Pi9Gs2W9rv9dlhU2nLWp3tBUw7AGYtx2q7MZkqB+cx7MMcdgZqRzZ5qr5VuQNvu+kB3t1OO55ZphkSkHqSxxF+BtmT2nLpgF3+Su9uuaXKPT6R/S78wgijsm6e1rFt6y4uL5672xi7m83u08LswMZOYTDIfY9YHAn4dAfnUM6ok1J47rz8Y750fJDk2Z9d2g5ITgDGaTwgACUNfFBPKgaTkr15UyFSTokU5Jw9GijZd0mdfF1uV5dlMyrLz99RHX7G5vOLB0JN/ADj3lFKb9NRGy4il+R7jUZt6fSmWxd0fdsB3EyyozKQQXogr7U/w5O4vvTWzc1oj4W1tZHTeZ5wms5rN2Xc6f9aP639znpG3zP9aO4ZrbNSHrTFv1NvXUY+YLo25WaFr490Lvnv9NH91elkemQXpaOD60ge2d1O2TEPphyYIydNmjTpEtJ8d2HSKv3Mz/zM8rf/9t9envjEJy5Xr15d7nOf+yxf/dVfvfyP//E/lkc84hF3NnuTJt0x8qE3nVeCjSQWobx3zTvaueC0J5VPL0rw2ItZjB176SZRhhexRht92hTtSh5GC3gjml5sA2rngSektXw6jw/z2S3WqY/33ov8rjmH4JWraCGkoKVQlfuaVy+HR7ctB5vj06YQh5RDwYoIjZCv0hd4SrUde3x2f4R38J+bANib9o0xeYcV7oA+bCB7/Y5s1LTPO1Uy/4geXjKv/1xXN0Scz6psB02rKn8d7wCL1V+WDyFcE1R3fvdthwll2uojQP70NIZHD3O++zdewsYy8K5Nz2zLBF4S01ijlC+yyf6yMyd57nOf4+Xmm4+3YUPuddOuvWwydPWYvy2WC56G925tuoyAgBynps7gdxl0XoIBnXeXmUxFRcFG+c2HA25bGR0PA+V1+1IxaqKp+aqUokDF+s2zwkoLbw7V4J2ABK+69kHdBhtzfXXuyPvU7cmJqqNuDt+nvCMgM9N0k41l3ulEymYEGqdMayKx0uezPsvKNKPra8Bhl89tSv10u7v2dLJwWvJ3bxF1cuv4GY2VInTeYyw3qbtx7geYQb5R3xYx4XVyN79FDkBumef4G8m0u3+Ra9nWbG/OcbkudD5T1we5lkyd2pff8h7p8+i7efRaNvsh8/JJv/v1k+z/7Nd0vvBYY46DcpG0Np9NmjRp0j2cpgfvpL102223bb12n/rUp27j8D7ykY9cHvWoRy3Pfe5zl6/4iq84BX8nTbrbUBoSuej1AjYNofq0p1Vdw7iodBjWXtAbKM5FL2nw5rUnBPfIk/EX/dopvxPxcn67Efo6aV3+yMsk+crFtw2HLMO82Q0xvXVA3ny6vEGLOmStrm9fvz1ejpYbT9kiSYUosN2ZmDvN7QA4us/TWnZngrKUnU2zkzZvWhN+wPykTe8DouEVULZrS2f3QW5XpS8cCjDctldiMu7OtB+T0k63t6nfwiQtsjKwai9U5IB9T1QUq6ptxMSHOrs6ZZNy8pAw+Vraxjncihx313XnfohlbL2hXNJbn1K/OuDX1xkPRRVb1we43XDleHntNlLALo71GUCMp+45KWwZO73cGPTHuVFVHvj2JEzhJkCB0DIGLUJVudeU54HgOQplKB4KdPVcWukyRALl497vdrqDPAnUZFNu/bjaE8PkQQ86G+hWfvhkJ6GARwal2+hBl22z/Ljv/rCHNMqQQFDOzV3fJF2rGOMy1sjPjq6O5LMbnG7PPkCHZ2MeQupntfXG13nedqAY6bu1Q5e2A+lGwJrbadl090ZjK5+xHe+pF25/J3c/GA3YelzmJOz2+9qozZ7c89MPmwT6Onl2/eQyO+p46vp0NB46/fJ6KOe+Uf78nTrYPezW2kR+5r/MuzZPpxzW+LO+eR2a69Jca/sB62tdTGU/J9C/XLTsW7g0dAezvV7orsLHpEmT7l40Ad5JF6Zf/dVf3QK7n/VZn7V82Zd92XLve997+/m4xz1uefzjH7/80i/90p3N4qRJFyOMAhsJ6VVi5CsX9LwXXr9BS4o6gDMX5CMUznzAgxe0Z+jLeRCE9iTimICHT5rKxTayMBhgEKLzMF4zzg1EYMCk+6KNaeRnr17e1Tf66TJPvh9vDk9DNDiCRWEmVQTOv4isfmOvu8gO6E0wz9jQyJmm8BzjVWBbYC11vV6ZN87u7xZTqRbl0M2UvQ/vyC6BuI99hywMUEIpm1GXVxngYYnbVD+AcXGtcDbCLBi4LAAcB27K44C1Sp8xcenztN+RU3rnGiDNsKVcTyelPL/Kf4Cn6TVrNe7sTfJRRpHL4pr3kRLcTbzOtrDlsYttvFle9rKzeurgtCsC0T2VsJFA2zflVb0rbefCO5rXUPIbqrPx+o3Y2wZ/jNATJ9GotClfNc9GG6TywHSequMVrzgrs36XghTAS31Wgtzk6uZxX6v0Ge/RvCWAkgOp+CDueIIsHnzc6wBbU266Z3l5raO8vwbujsobgUVrINlFgDcPuDUQL3Wge6aP2mId6ibdEaCdfcW1EajZ6Wv3uSaPUbruMLT83smq42mU1w/GvL/m2TmifOiO/pgvuk0L18F9Pyz26WV3r/vezQ2+v7YD28lx9Dt1agTYdzTaFDDI6/EDJejPtSwr5e/PXOuN2p8bBL7ezYUJCHujgTVrfc8TYSdNmjTpEtAEeCddF1UMv6/6qq9anva0py3f/M3fvLz3e7/3NoTD//yf/3P5wz/8wwvlf5u3eZu/El4nTRpSB1bmQrrzVPVCkwUk75VDRujSg8rlG1A1gMppWubVngn89qFkuUCmHrt64i2Wpy+BnnlBTluNbPFpgyUR0JRlUnpYkB5QByMclMv18yqz5HJ85cqyqaZofU9T6ns51PGGZv0R0xb2DGrCth2eSlzk8V6AATbbeMUysX4RuUWaIGCVXfwBYhqbKmDU8WVt74ycmtKxyqpolbDKjDC1VHu3n/DTJjyVs35AS/NZ/dLZiAwl9hvIX/Fjq/srHc6R9UkdgMF8B8fhOuEYTAyHVMfEIzNMRIK85AG8N3ibZaGfPvTN7ccJ32EfPPQAv82rdcbgNvLzJgHTwXZP6vSFgbPGn+Flu2un/c+95XgpH95teAbPNe7IU8QckLeJ+5ACT1CgA4VNHYCX1AEh6fHlwbUPvPTuUfKbruj+bnJnefLxPGqwwr+zrqJR/Pa8dq5fYhfjegAtl9Wl2dcvmW4NQB9NRDlhW0Yut2ufyxnpzagNozyZplsvZL3dPfM6KqOjfTwZ5L1Iual3TsN48vcOZO/WAqP1wUgOoz8/tNLLd1SX55U1MDavX8/Y2DcPdemSb76PeCzKTYdRvWs8+7fBUOb10Q6y8+c8Zd5zIWBKnXEZeRBix3snl0xPHVVeLTYmTZo06ZLRBHgn3SF63vOet7zv+77v8qxnPWv7eXh4uLzVW73VhQDeSZPudALxMACQSE9HabQbwLUbHwvlBDQyLp4X2wFeXoM+jUCKzuvB7XSbKNduekYrMy1tMto2iluQi2/ydIv1+uTAtPTKtcGAxw284nFyggIe33DjFnAyywZ6uzetARB9cJkxIFirT+KsWl0qb8UytfrgCFgOgi9/+bLc735ntsXucKszHgjP+YAHnMUJBuh106tMq6dVwKpV96s8HzBnG8wYECETKMu2FiJO+xMHmFH0EMs9bXRsrMSjrLIuA6C5vheAi2zr8773XZaXvvRsWMB/4oyVv+Tp8hNwpZ2UlW9tdzbmqA/YiwD0BqwvSqd1vLdLV9ijsRzRN5dv2bjfTQZ33Z+59+T0h5vj5bajzXJ4uIthXWDsdrPkVD82p4eqnS+imYcs0CvFfDGpfAkQJejiBhHQGkJJPVd01M0zrqvub0O6qNxzzWreNHDZnus64LkDvDxx5BwNUMsgs8v3CNihfHtK5vMhvTXh46JyS0XvqKs3ZTUCgTswy2VluclDl6cD7vLZ2/GZ7R7xPJJZ6rHveULuJvGUyUhWo35IftfW1h6vPGPX2tnpsmXpcZVrEL9Kv+a9mzLv2pxgMvx70h95snaTebZjJINOHqPv+WAZUffQWtODNT1OXtb6fo3I5w2AUVuSt3zwpn5086jlleN31P61tuaa3Wt5j7/rpH1T5l8l3dGunTRp0uWmCfBOukNUXrjf8i3fsjz60Y/egrZHR0cX8uCdNOkuQRyQwwIwEbNcYEM2MkxdmlwIg1jZBZTFLnkcqiAXvf6D51xg23jojGYjdIDNuA5mPoAHxxbuwF3LwjIzQMy1fFee65aZkS3qN7AB/yfxPakSoM2HXFEN3ynKr/9bxGvd6E+f/UNeurfA3VKvOiisQElwJWxfDn2r8Jx48VpsxqBSlOl4Z1vd3rzm07zjYZq2uDGTkfNkgohJ8OguosuqjWD1OAxZNRkO9uAtOfgMQzxf841jO6VTV/Uv5wB1fQivyDr3VlBDt8vyt84YC7FzpeWPPArcrTZQTn0nLCzlewqwk5pDQUDw5SkFx3f6Gcd3/xX+evVoF4/3xgKmj3bC2tSNg4PltuMrZ/2OXLbAbnS6B87R0c6z97gUMN4kyI7oBhyNHAEfIzArgYIRWEQHMad0ipyAbAeqJD8uIwGHbHsCiAb/PCd24RUMtjlf8pLedx0Ik+1aA0JyEvBnV/4aUJZ5uzT5rCPPCIgelbHWllFbuw3R5KkDL0eTpXXyIqBq8tCBn117unaOfht880ZBV95oHCRPuWYyyJt92ZWRaFp613vS7srIHVrL76LA6PXo05rOj8h96T5Y61+ujTYvLlJ3zjkd+UGa67ERb9369CJzohcd+9rUlZV8+JoXKb4/adKkSZeMJsA76bqoDmP5nM/5nOVLv/RLl5tuumn7+9d//deXT/7kT15+4Rd+4c5mb9Kki1PnYep7nYGS1zujw99ZcOIS6lOtuE9IBoPHieiZD+cF4TMKlAvmNA46N8D0PqIcn/jeHZQ0MtZ9PQ0Zn3Zt49CvW5oPe0lXerzdCsm78cZlU26Hm81ypTwRt96em1OWLUqAQ16BB2wtb9y0Ay2qDss3e/Udb90q68/+bAequSnulkpjURXoh5eqgWhUZuSsV2kdNsDX6zPDT2Qb6j5qt+bEzhlU8FZiLzC7k1M6V1mejihS7a1226vZIDjgLE7eRR5CdkajjCKfxefh2uErdZ1QEWkP2kakP1ye662+pv98EByO8sg1nS89BI1PAHL7z5659FeC5CP7m6GTYTUONjsg9jWvXZYbDw+2nrybo6PleMvotmQpT3n5nvjK5zzoTva9BH1GYAygaoKWLpuG+DeNzPmlrqGglI3AqsPJU4rtcip9HZbG5MGrvR3PRSh0DcLqtNrZ8TxsZTKoU5+E4OG6FbUDPLI8xxK14qZirYEha9cvAgh11xJo7vjbB2K5nfvAr46nrv7uOTV6dnUyG8lntFM2KmutLanXHX85Nkb5O0A2PxOo7tKN3BhTHo6n3fGb/ZhgXso2AV4fXNvNJzk+HTi9y+Mx1slv3+99aVNWblcnj6781FFfu6guXM9cUN+9oe/5eNTO3EzKNifvnus6Gul9x6+vIRenof8z9tSkSZMmXQKaM9+kC1PF2v3Wb/3W5Z3e6Z22wO5tt922PPGJT1y+4iu+Yrl9BrKfdHcioyY2ZvYZuV3Mt0T7WMhSTxrliaIRR8BAR6JILrOIRTgeaW5DtsuGpxG4zkhJYyCDpxppIl26fPpdf3jP06gM8FJPoWNp2IFAkg9DkhATBTptqozN9vXyAnlvO9h5JvqNZ7JzuBngG8WQtnAhXpEnb+E3gIupOuTj0LDChOwI7a4EnypciaYiMjwuAQf57HAId0f+jezX5IffeMQ6jfNnl9Xvko/DNdB9Djlg1adsqyWyQzXwYgX3AsQd2eVWYfNX5JjLVkuDrR5elJNhI1Lu3bCljtKb+it5Vj0F4ufmgvvO9jNlIcdueGW/dQ5KWY/bidzQ9d05aMfLweZ4uf1os1xdDpajCpp7fLR9tl85vn3Z3H7bcvuVey2vLU/f+rctbwfybq5UWtV3dHWb79SFmwFDI3MjzZtFNNLxtru5yfOc50Yb8ChhuciXojrmRQGwD3zgWXnZuXWtYqxUnhqkxE8ZASRFKFUNaAIrZwcjEw/4HBiUXfUW7wZXDNzS0Z6HLUMrZSpCPt866p5/3XNkJMOuvA64zvz7QKsOPFzjP8vp2nARcKwo+2G0TsgNiBF4mDL0vdErAh2PnfxG7VkDy1M3OtmN1gq+13lmjvSpu+e1U0725nH0x33WFgnyu65cn6VM9v2+yL2cjP1Q8vWuT7qxkg+CkW6MeOoAXesiVPMfu4HdnJF5ktcEWknj8ZGb+KO5qRuvuWb3g5z7Xud2oSL2UNdVdxbdVfiYNGnS3YsmwDtpL91www1bj93P/uzPXq7UoUabzfLzP//zy+Mf//it9+6kSXdLytcIE0VhUer4iHblw3j3e+Q2UgAjATdZcKYxBVE29RodSm+4+s276rmQZtFrUMVhEYwmpdFn4yFRJB/Ylgv8RCp9zYel1W/AH/NUv2lPGl8F0NR1UDPad47v811rz1oDYilOPC7B1zvs2+AhacB1CtMpPAZMizACdc+hRElv3MsqRhNRN/h2iE5ExG/aSXkj3knH77yPxyi8eD/Bhk5nh6VtmPsfbqcNlZLDrbeed2a0fJEhHrJWRfclQ8z4v/sR/ugLyyGHjm197lt+6VlrnlF7bxbAR4H+6EfpSrUN72nr18gpMzEI9KSzbZPPHOro/OHBsrzqNYcn+rI5DaFxdHS4zXef5VXL8ppXL1fvfdNy29WDUx4PTjZPKn+Nue3WSoG+25gPJ8rrOc7j2crhgydx0yYQcucVxuBBYYtwx6ceD6wi89OBLh3AYTDP95zWdXnjy52W37trfEdeBHKGj25Otly8A5JK0ymS272P3L7MN8rfATDZhixnLa3LuwjKsQ/8SmDojoC8maYD4kaTcD5r1+TZyaqrt/s9ujaqd8RftsfjqwNFL1Inck+9Gnmw89eBuwkE+2FGXV07RjI3P933lMson8dOrguz7IuEaUj5X7QdXVu6sZhzIHMt67Z8eHdld3NapmXuZBGTDhHZ7843mlty19a8IN87APBOmjRp0t2dJsA7aZXe9V3fdRtr9+EPf/gW2H3Vq161fMmXfMnyNV/zNfPAtEl3X0rA1GgISJEXjsQnI32+i25EC2CBE60AAUBlSJceDx1atobc1W/4NH9e4Pp0K8oxuGLQ1vJg0W0DJOMCd4iYeefPHr2grjZ+QLyor4yLQqHsnZx8dQbm9rXzZbnpxooJvjmHKyXQCct0HQep0SRE6cgZbiLX7Jhnz9tyFixgj7e3ETt10XSrEPgV/AIYlyjAvlAv6iZ+b6maY79SH7wmEEwai5WybGu5/S4bJ0Lj+fx2uvrz2ViWL22o7+BaRdXe8oZFDdhfKT74zTX3p+3QDINA2+2YhIw9pM2bbUurs9WOoZ34ZNXDYWuof/U7h+nxNr/7xPs/1k9jBPx5jwSerEtc9wFwOJlu23fars01IWK39RYP25AMx+c2Rdh4KN2+ZspyqBka4bGaHn4QzHp+TPAp50HmU89x1FfXSsDlDev50MpKGQaJOlA1BZO7Am7XCJRwOzoQzJ1rUAVZpgJ0QA3leDJKXhKo6Z45zuN0o7Ve156OOrkl4Ooys45RPt/v2rMG1iUZSMv6RuV1Hrf+noO4K6Pja62svDdqy+h3184EUke8+VoH9GaZnXw6MNd5Pekmv/4zrx43+/rFdaRsLyK7UbqRnNbyeU7MNDlu13RobYx2gG7Hb6ar+afznB/VlePPD6x9YzTvU89ovWwZjHTPn5MmTZp0yWgCvJNW6ad+6qe2nwXuPuc5z1me8IQnLM973vPubLYmTfrLURkEnHbkV8fyhKQiH/LVGR92eQQlArHyaVw+qbgzqNK9kHuU5YVt8pNInoEVyNcSuHaMu86wKDLYasQ0X7+u+1WuAW6fHJULckBgkKRC94z82ZvZ/HCo06ZgqCqrXiQ/Xq7UC+cHN5wCgj5Pr7Mj3JX2+CWfQVeI/MUeYFflr1ADhSsRYqBAvWpOUX0nvAGORqWC4FBWo1MgTiCoPWqrXkIbIOK0/ztbGGB2BCL6fCnq7mw/yyBBVrrZcXIN/iJz2pHytJrgXU3oVOTm8HqVpvqq/lA52gW4mTa+HUyTnDY3BEZt93mNlOEhbrAVckiFDm/hM3no7HUPx26on0+7A25vvLE2bM948vSzHO2UocZXhT6pe6W72Pz3uleFdxBfMESAZsBKyCfr1aCsDq3C2FmhMzKUgRm3iztArct3x1KHyRtWBoDy1Xreyug2khJY8WDqOjK9e92Jec3zPUHCs2ORS+cd6LISyMpdmn3ARz4L9gGVbn9+97NsDUjztTXgeQSWrWz8XXNtVI4/O9mN9KC7PwLTO31Zk3H+pXwyf6brQD1vZniySuBzJMdscwJyluFoE8VpUo65rklvXc8JfgWlK7/r2+5a1ptt7n53affdT9n5QZHUeSlfj1f92nhNXerK8C55zjldXeceIifk9SXzYfcAzvrzlaF8uHYPTLe121S6IHmP8s6muwofkyZNunvRBHgnrVIBu7feeuvyeZ/3ecs3fdM33dnsTJr0uiEWnRjRnIpVC0J7gmBAdICpDViDCzZqAFHtDWFjKkHLzlAxoOEyvaD2vc7gSnSSPK7HiFPXVgMOHXBRRGBbEC0W6SXfAlyIhYB3Gl66Rbyz7tU1feT3zl1XHQpll8T6uHJluekkLi+gIHiNRWzRuktIY2c436smcPAYmBOAcLECiMsf9Rb2xX6C8fXsOuqoPw6EA/xENAYOUx277vN9t6Wzg0b2Z+JG/mSImJ8MOZ3YXeJt9Z02QwC2DFfSed8E2VSfZIgGPGstZ7/Z7v2cbL95zCFNuwGyScuQdhvr3C5kRXuyj2hz6mDhlHynPA/Tbn8ldcD3T7GE480WoL3hhl1jd7LZJdqWfzJGdx68x8vhcnW5z+HV5ajKqjTF75WzWLAFGW/zJDBUn4x1u7LzifIUWUGsQG4QHeE5MQNCUxaC5vsIALRSe67Pudw8ZButzL6Xc6Y/c85nwsCFPd3FyZtAh+Xj1547hVgb7KY1cO96QN783QF7o/rNd8qqm+w60LYDftb4HvGalEBoXk+AKsHerKd7Znf3u7bx2w+GrKf7zO+eMLp2ZzpvMnt85esTnhf8YM31SifXzO+0gIZZT8osAdHuraWLjol93/eVkffzgZq/M0/qyr6xtMbbvkWCaR+461dJTDzw3D+eQ3MNmwC9v3dzbM6t0NrcMmnSpEmXgCbAO2mVnvnMZy6f9mmftrzgBS+4s1mZNOl1RzYKjSx1HhNdPqjzLPE7z/w24OmF+chwS6O2CKSqM/Ipx8CGDTCQp87A9uI736dPw2skB5fjcBAcWFS/y10wjZT6SzADWWEsOjZvgiPnjLpd3QcnAU3rMpixHdIslgxtAEDL9y6eaQF25WF7yy1n4QL89ned03Tf+15rqybrtluwO4vYC6i/qoumAyCDAxk4HXVR99s4EHxU2dU9nBNFPpwgUS2rj+MSp/paxq4br2pkQr+4jXb+LtUoHrIdqAJpfc384yBqrA/ZGWzvVNsqBqiMLqE71ef5Jmvmt+MSskfFDQrnGTQJBLvfur2iEdbHHpV12YB6/c7D8bbg7Q037IbhwU6wh5tyU94p6/HtFY7hZKDsTmw7Q5/pYCoENMUztROYlcaEgiCsjOfN5lHO1x58Fey56ixFuv/9+9P7yFMDl/sIDTd8hOngzz4ck4mjA/M6gAteCcBcBJ+Um29NJKhnJeueGR2Qx3eX4zy0IZ8V1wt8jcoePYMSPOruXcSdLWWVIOKaHC7Sxn33s2x0OP9cZ9e+LGck5wQ4u7VB176ufB4oBuGyXwzCGVR2X3siXpPx2m+3KYG/9NrtZJrXi/IVlnw4W6ZJI93ed6+7lv2S4LzJ1zoANBcUI/6dphuXWZbn5TWv2BE4jaw73eS5gBz8pheLjXydyHx1Y8I8+t50gZ00adIlpAnwTlqlxz72sXc2C5MmvX7Ii3sWnN3pRSOjyMaHF5P8eTFsb5M0Lshno8qIEAQyBNqUh+ykQZXGvr1+u0W6ebPLZAKrNlg7dAweCYPh9gBYFBF+gfRcB8xhoW+ENV+Jdp/wqni9Vr45PgFcN+ccqQBk6ztxTPGSxNEaj1/A36oaTKq8cCu8Z4VGKPC18hOCAYCSrrLtjjh4U92ipt4iQkKAZQH6+XC24hex2GE6caWkziZKkLd+V5elOiUuQXvBpQAIrXppb8N7Z69zrf4Ix1DX7PHqsumzxMose/OZ4LbtVw878qOG3MNWdf115p8dNNewSdu61IUeepMhefN+DrZvOmnm8LBXr/dZ4J96X/vazSle6r2fbTtuuteJkA+Wo2VX4OamSrTtiWWzLfho2WwDC58ETEYwMFufnN6GglXllYfwK51nvoXkzgGJJk8e1jgCiwl+7E7IQTACRFAED1rPkZTJToIVvsidawANnj2AnabyGbj2Pb57I8/K6sDSHbhpZR0925K6+b57hmS9Obg66njovEjX2pDtGQFuI+A7P0cy6Nq6r77uXsoqaQT07pvEvZ5Z43/UHy4/1yOuIx8I1Ge+EyhOwL0DgPOh04G0HYCXMnJet4f0XbnmvfNGvUh/XzRPlz8n9hEwmXlzw39EXZ3u57zuOaara/S2AA+92thnkyrzj/SB35Rj3jJdjqOsY+SJfgHyNH9n012Fj0mTJt29aAK8kyZNunyUxgleWICmXtgaycrXBQ18+jvGu1EtG/LwAPBphI5Fax7AAR+ghaSxEWOkyKgQ97M9+1aU9nhJo8xIGr8N2BBg1u/LE1/X6FXynC6Zjqdp90de7Zbcjg+vLEf1YnkVW2ETBt1t4C4xC6rOpgHE3nzzmfMejn3gVsVq3U+7BtbT1qD7qpzCoEpkGUe2ygHo9Sv7XZdkW6GRvWM8gHPtEojsvHHTAzhtr5Gtzf10Zrc8Sha+j2xxauQ6OCEqgPqhPuYX4Jx+4LpxMa7BR6a1LjCk3a+kZQjksEHlR2/vcx8wFkdR7jlchXU4ywDfox7kcdYXuwwOLUE7TvVqc7AcH9dfXduc1HOwK+fkMMNNxemtTHicevPGQaOLoULD8d7Nw5CKEVzHExBKAImB2LlMWzk7oAoh5WcqMh3nUwpRtLrP3JvKO9q469J215y3eybw552fDmjsQEx+Z5rRgF3Ln787oM7gUfaH03TohScdl9Ol2/e94y3LyDZ3n1BuxF6EH9eT37t7yXfH06hN3b2LyKCjBNZcf+q6d5SYjD15eUznA3bUtk4m0AhwHl3rZDpKn2u0NTmN9GQk37V0fiBk+uvtw7V6rpfHbvwZ3O0eoHluhPUgN++96ODPcZVcRm7QpW50ujJp0qRJl5AmwDtp0qTLR2nA82ckzMZ1hl2AEt1xGi9obZAkOpOgiMvtyuvSOy0L6A7k9WI50c1sU2fE2buZcoyC4RIID+XmCt8s5CFQRbtr2lXSi31QukqfJ22dtKlAqeqlArBoUr7hnd0NaEhzKx3OiKkKGSmCQ6cIIYDnL3Fz/YYhona3umycpblX3ytkAnVZLO4m/jivyvlpC6I1YAwfAIr24qzfhcdVmuq+Ap7NM07ZqITtUjyR3cWV35hcXSuZVTng9n67vcqoe5W+wF4Dz6hYpaNccH6GSGfbenjDgx0zLVOHdE2Mkd9Ec3GbnH6Ez/i77WJ+Zx97mug8dH3PDnOdjpwfesfL4aaEsvPGPT463m2K3LiLp7tr/w7Y3XrsVh18r3+dIc1YNlLsMY4Hb933qXR+VdcNT8Gxw5Jpqa8GTJ5kx8BlgGdsExQWRWAQADDwR5kg7ZTtTk2lyTk+586RQjB4nYd7nvNGrzBnv4zumU9+p3djAicd2DMCAvOe+82y6LwpO13odCR56sCpETDm666jA+pHZSXQlECVy07+urK776P6uzRd+0ayybSjawmsUq7BeT+kvD7J0ydHbR21yROj03Z/8GHKXcRcL3V9us8jdtSHa9eu53r38CBd6lKC5yPq+mAEJu/jLT13R3rCnzfMPG/xOlP2RT7AvHDJdCmL7sG6pveTJk2adA+lCfBOmjTp8hGGu8mghH8XpSfV2mI7DR/nTQLggAA7XFem932QnarfrpfmORHGNF5wC3SbMOA6I9UAhBEyL9otA7+SbPnakw/wIhfp9R23zAQ0bECcUHqpAn7SdFivT5wGM6wC1NnWeG4WlkTTaFZdr9ANsJUAb6oKBAhb/PAGeoGXAJ+2p1yu8R6fEeh6rL4OPeH7fJIW3Asg186CazZktq2TpctwWFPO4bLKVv0vfekZTmAVKkJelLtmxxkgTcA005lnPH8ta8Blhq6HjsFUeyH7dwKxRCtgCMe+xTXy7Wxz80JkFA7qS6/ibdzig6vLfV72wp3gKy4twq/vJ0b4ccXWfW0NjuNlUzF5TxT5+EqNxduXjRuCZ37FL6nKUSIGXP0Vmg8677izDEzPWznHgrpnjHG7NHPKnpXBoKXroN5UWM8tqbQjEC5B0czjsjrQJjsVPr2rY69hFMWEaz/xzDN2S3pSJh+eOEcAbgI6kPuL9PBInXk/J+o1Xkb1rgFta5PBWh9090f5k6/s67X8I366z+7+qB2jiewiPOzjN9c+2Tc8vKxzbOYU5ebu2mZC98CwLHL8+X5O9qRxPq9PUm7cX3uoXEQXu/akTl8EZDX/KY9cl40e0Gv6sO/B6e/dw727zma86+i8b9MZwXXmMyBD3XQy7eamfeOxIa9F7my6q/AxadKkuxdNgHfSpEmXj1hc2phMhKkoF/rd4hj0jPS5gC3atzA3sNsZmiPjxwaV77u8XEQbMTSCZ68xG+npdWav5c74cn02uODFZbJwx0AE+MGbF9fUSg/qibwo5wTM2Il4s2zK1bBYWTbL1YNdDN50jqa5aV86jbvnla/c/QY0qz9AXqtJhx8ZhzL+ZOAQDLvK5Lwmx0d1F+B1CzBs7N5d1IUPTRs7HZzIQz2Ju9e16gbjTiPgt8PETFUGTpeU8UZvtCwvfOHZWV14R/OWPw7hOHIDduO9zPW0t91uewLDZ2dnd8PeOuFh53weAgxF+LIuJdHP6di4DwMwhpbgMvsi3D/FVKrM229fNsT/8Nx30jEbz2UcAFdhUMqDtypgPFoBiUXLnEKcXXtr1Sfu75WvdkUKGE5GPQfZTbybE92J3gGpT4BfbxKRP8NFWKAdCFPX2JlwJ9u72OFv7A5OWf6eoRZoK8pZ8V64nzsc8OV5Md/W6L4n+RlA/3M983uyHIHFLpe8CailR2b2uSmBoaxjBJp1g3Ptt8vbB3o5XQJMmT/BsO73X4a30SSVerxWduYf6UuCvM6Hl77XGUyUHne5xsr2dROex2fKOSfljLWda5ME/Zg0u4fVmiw6mY/u+b7H75qejR6evpagbupWXu/A2EyXv7trztc9/EnD7qwPH/B84L5hMeFx2zkGMKea35TjPoB+0qRJk+7hNAHeSZMmXT7CEPdi0kaJrxXZSElEyC58NoAcg87l2ZinzlzAk99eUCNDkba4HKNz1FWUKKeN6w4MwIjo3kXP+2nQGM008IDMisogJLgogVZB6HyyGKAuKBllUMdfvHLZgIieGh4VM/TKcni4aZ2L+c25UH6b1KrgZhWWUqBj4VF1H49dx8i17UH+rAM8qL4XhlPA5StecRYOAZHQZDw8qwwcIw2++nsRYqKNhBSo+xxiZpDTPFddxS953AX1h1drXa+yCKFwEVvK2AvDifKq3ltuWZYXvGB3n7OxikcOv3M/2v7t7Hrbn/5N2xMPM3/529NFNxS7IU4f8B25l85YxyibPvfZYWlbe4rht6cIyJgH4TkMyi8Vp/reNy/HN5Ur+72W46s7YRzUYWoF4gIsbgs53oK6212T2kDZNmpZjk+UZ2PFP9lR2Hr/3vbak8PYTjrEJwh6DOMW3wEWdk+v63iFoewAxQ5YjPAQzAMecKZwDq5cnsb1VwMPL0N7FnsHAOF5Z8XtqE+8Z6tMlDWfJfDt+lJJ4b92NBj4IyDJiowHZXord2BczvGmzJtK1YGS5t2fVmLncV91YF0HRI0o2+JJIevItox+r13L8qy7nXzyMyeklJ8pPcOzvATbOvCvA0zX2phld3lz/eEJx5MX9+uPiRtd7dqb5Xp8dbqSa4qMuTPK43WQN2RSfuZ/NF4ucu2iebjegaZreZK6sej8owfGmq6Yt33gbv3VfFgPPTsE2KPb48Rxlrr2++G9TyYsEuzIMGnSpEmXjCbAO2nSpMtHjr94ES9bKFGifQvd/L1mcKUBkoAxfBcZcM3FrwHfTAOlMdotqM1PZ7S7TZYrad0GG90Yezb8KBd31spb7p0+Mav+8J4DbcOoqwOfTtq0BZW25W2WKweFWMLqLqYonrcG1ewF6i5ATBwIXYBj5YfVsl/qmg+up5kGSDtbi7KJtVt5CleDv8KdsIvqOiEWEGthXVZhg9H8NgbevZFu9e2AQ3uVpnrZZjNgaTkYG+vewszvv//7Z+WXHIwDOKQDeJ3bBB7AELHNmp7L2IC5h8J9H3SHHLvoKYljWB4+sxHHtpQ5ukHsZvoLoLe8fes7kQ+ow+EILRN+ly5Tj3mnz2qMvOp+Dzq1rdGpmw5qXnzNcnTDTcvRpjp5WY5rb0vhyavY+ju46V472Pf46NTb9/hEWBUPe+vliwAZUDDqXQF2PRAA6REGuyr2CrY3MJT1ucOt9Kk02SEoOm8JoLwJgljAEOXmzoGR/DWiTMeHd5yQNdAx3dRzUhiBhB0leDcC1U4VaiU2qHl0/vydg2tEWf+oLSNZpWv8Wr4s3/Ioyh2fURtHAFU+P0fl+F6nB+khndfdHyOwcq38Tj4pC//2872btP1gcn8k7yP9Sf683lnz9O0A8zxfwX3LBNnVeRF98/U1mY4o8+YiIsfOKF+nZynvbszlXNctHrI8/uqBXZ8ctgt5l92yTseDEU8X0U2T58ULkh8DdzbdEbWZNGnSpAnwTpo06fIRB/50xpV/d6urkfHqRbDRQZOvGxHKhbbRJYARG9I2ouHBSFUCF9muRPwon8WwUTLz6HfAE9FiVWzg1fGFMfxwTS0q4IZ+AFDBE44yjXzZ7dJx3u5103J86607oOmEpwKYrhwcLIc33bRcuXK4XLlyvNx6604WBu4A04wbWyxVLXgUGDOvvxcLeGY6TGiRuwMHR7+FaHAZL9X6Dk9lF4HvUG5hXUSsgLdUTdTMHqdWWQ6As3rSXagWTpOn+LkAvuK1AMdUNeNJqc4Zd5Zy0o6ruioMLIfXveEb7oDusg8BeElLPGHLvT4rPXUWVZpyhkxZoJ6kc6QSeCRKiDcDuJdDxX1Of6K68IPadlgLZdnmJa2HIypuPgz6Is+cujxED0+jHuy820+niDpw7V73OenHzToWtM2o+eqk4wvc3d7oEGwGWxGDAUXAk7eUD2/+Ep5j6yIYI9r2WDW4lI1PN30LNZXZoROoMwGibvfG/JDfg2i0cZed5WDZNehLBrmxRvl4+cKnFTJBuI4MqtCWBGA68K8DjxNktnxHz1LIMuuoA63ycwR8dWDfGiA3ut8BqR3fmT/LzO8pjy6927gP+Or0cg3QvmZwN98zv+/Z69sPUK8T/Lo+17wGy3opc7SWgnJdlDLufluGHUhv3Xbc7052a79H8lqjNTlnmSNgd6QfuWYc8T5aO3Y0miPqj9jsePJm+3IM+doI7PX81PHua/TlpEmTJl0ymgDvpEmTLh/ZwE4D1K8Vp+fWyEhbu2cCXaNsXlH2++VpoKebZBp4NkCgjv8sw9cohzoBJOzi2L1OnHUWYcSBQBqwZsENopp9YWTS7bJRQFratjXGTpC8BIdP5Hl45WC5vV4vF0jpw5xH9gW4FOBeedLamTDDy4E9dbZZ5SNNfec+nqoArOBclRasC7CQEKeF94BXgX37ULf6M+5jNa0y7AFaxFvlxs5Ji2oYDyOt1TS9mG27pSNZ4lDcI5SFAdu6Vn9WxaKMSkKdPlsqcaUckoSDTQ9lq7jVNDEAq5qHQwK4iWuk1/Cp0/nBedkaaHfe5LWusQlBSA//7WR1vBxsdsEWKpPznjmcHp98VqiGun6SvkI6SIc2GwvyJHzDVvGWZXN80uHeSaCz2NkAaC2m6zdpSWcBEnS6lDSVzsJOT+FULpQxO9gbThBAtIGrESCXdZP/vMCujQFjnkjniajaXS7c3nnpnikGytbAbSifW9mWrn05/5r8DPWgQ7Yd7zkwDcLkblBS1w9d2fRHPuuTl4uAcmv5RmU5T+pqV27mHT1fO0C5A+1ywur6fNT+zNPdM5+pu96E8VgE5LV+5OsI1oXOi9f92YG7KadsR+ZJHtPDO2WUMln7vU9+phHQva+uEZjrMtf4G63nLlKm83f3iqp/a13G3M2OdZZNentid+XnQ5DrnWxygTBp0qRJl4QmwDtp0qTLR/ZKTbc5LwgTbL2IQWij0vk4MMxBNvFiA40z+Gs0y3UkegQaNjo1yqCIjZkEGzoXR6ftwAvLJl8/thHmvG4XBh7eu4TOQB71nZPH6neBPA4qeni49do9Pr66bJoTzI7rdfGDK8vtt2+Wq1d3oBY2Zp6vhPgNZHKvcJbK+wZvsIsTWyy9/OVnTUjP1Q6/MUiHqAH+HM6BugF0/ba27yXus6aWacN1NpqxGO4TctTgdDp7U56BQv7o0gQkkwfyp3MXvNz3vmfxjtOWQ54MJQP4OE9aBQGzqd/hGPhMsDrVOoeY80O2Tw0Gd/3jPiItIRnQHYeYdBhDPnGSIm6zHe0B2e91uDuM8PbjGqsHp/Wdyuj44DScBHS4Od6GadgI3N2CuDl46n59vubEU9dACmMaL94iOogGsNNR9zldD0A4X/n2PJuKnoCeBUx9do+mA5220uF95jzdbhDtLD4d58W7PXbDR+nWBi67FMhjTXHqOzsB+VwweUOso5SVv3d85gBwOQnMJA/kTzCtewWAMrvdnI4fy7UDeBNE9KSb7U2wMOvNvG6X9SR5G+0C+toaCHiRNKMHQoJxaw+O5KkDAf1sz7GR5xbU9wR568+7clluN0l6As61W/Lg9jKWPW+lDvohPZLz9fweyTcfyjmHjR5AXRkXpbW+Tr3Iero5YVS/89C/ubZOffLDPXUu5/3ReEza5/39us32eqG7Ch+TJk26e9EEeCdNmnQ5KT1hOk/WDpni99qi3oiZkTMATBv/vM9tNGefIeBraTS7vgRtE1x1mQYA7GJoECb/LLdcjHdyNsJKfbz/XgTYm0ZGoqj0ze23L8eUWZ8OVHpSbgG7t92+OXc2ElnyTWxYTFuk0lbRhTtVObfe2jsKjqizpfkOq8bSAVaN2xfxNjtgKGUQziFtLt6Gd/u6M2WMQ/kaXVLgKl7HXMvhQNmdjW05p+3MdYwqeyOTFr7SQTD7qK4R7i8xFvMCqOtzEPF8tUNZYgSdE7yHluXhMJN5P4k6cOivP8fRtY2cw5HvIzv89BObuf7OGY07r90K11A8bofi8fFZO4+uLldOGNgCuFRER4H+FxUoWkyWQtIwd2iCZ24kruucNEiw60rDHJkDAqXIQ8u8Y4JSspOCcvjwNncCiuHg2OY5BYyiVRwQy4Jy7AbvjUWUE5ft9FytNMQW4XenONz3/Nh5BafLfA6itXosn3zWrAHGLh+d4TuDxPxzL0E1tyn5IU/Hu4Ei+skTfE4i3ffRp9tonv3woE5vRjifqWt/AucZg99ySIAQchu7NiQfo/Yn36Myc02Ses2Ycmxpt5/vWVcH9uVfbhB44s5xnH2V66GuHMsrZT4anykbtytl7/SdbnbpR+vDO0KpOx2PXb3d3D5qU9ffUF7zgzPlu2/Mr/E/adKkSfdwmgDvpEmTLh91r/6xwHdw0Ey7htQVdYvRbgGankX5enJH3SK+Q3W6svkOCrZmAOYifeR+mO1LOdgoo+4ikFauJWJFHt4tL+CngBPCL8DLSb8UMHXu8BaMgpO+sE0IW+BKYMmZhmZjbxQLHHSGY19hWHjY2iuXOrs3VDvRZbdSDs7KnR1bf8UH1B0eblvX9zswMvlPGw28y6FAGTIZRjHt4iwrwfNODqgQewE4RuYZXCb4sHdzAdOokNWK/FbFdGy3p7KdOC2/xDKsR/YMHsmda/QP3rcMW+7Z8cyhLPDY9WF4yTt7JlsZLVd2ARW2+rUDcSse7/biUYFHm+XwYIcGb+NZ1+lqDlJMYxg4Vgi8bd2hDKC6nu7XjNvsdK7Tkd41KEUoF3rKwVWbhpK+BocBYfOVnpUg6ulybWW1Eo/CRNSApYNJU67/BVjX/eKnAFt3DopHB+UuT5W5Bt749wigXQMxE1BxfyTQ2k1WCVx1QJjvdc+vnDg7kG7tuZplu1zuM5l3z7eUV64NOlln/Z08cocpQV7LyPLwKyR+druOro87gA0+Or7d3rX7F7mWsrCXrq+7vUzATHLsRjp9vpXj+y474xMlL6lX1hkHxidfbjok//vaP5Kb0+VaMvtwVEZXdwcwvy6AzZR7x0N+5ubJaMzvq8NvgOQ8Q741eftBPmnSpEmXjCbAO2nSpMtNnSFrg2BkqHaLTxtL6WZpNAdwwu9TQ2kkd4vbXOian2wbaZI3rvOHIZRooctJNNTXzUvXlpQVqCLgNl5/9u7F4xmEju+Vr4CTene/8tb3kuOJi+PWq7fo6Gg52BycgGYVpqHHk4sS10+VKICzqsYJkHi46SSdYrK4u3Jt83TdNxKpbRerWXaX8/l3gs8ZXqAIcJTfPtfOPBusdLncMyZmPCvbCvAOHmj5+LC3+s2b+2tOneQn1CvDDiCYfOQBuCfcAdECqu7q/+LPqgp2iJOpD27jnt/qNwiLahucNRZB+V1YWjusIvvik76hjZW+0hbvW/D2UBsW9zmqyLq7C69+zS7UyZUbTgqJHRHeMICB17721HN+0xnTCNS/+Z7XujcmECCALUGYAW+JW44QAIgcWwPFYx7BS9YDhQ4jfaeU/u55NAdZemBa4T2vds8N5NEBP/RBN79D5gtFRsloZ04wCXb5egfidrx2ZXWUsutAmw6AI01uBHTgUvaf83cAr/ND6fLvNPvkP+I95ZSepJZR10cdcD96znd8demTuk3sUV1dWan79nxPMM/tZrJkfPDsZ8NmRC4nPdetC2zsZP/nZGw5ZdlZbwKGnTzW5L02llMf9vWbKecN1zXiqVtgjMrsgNp9Y9LpuzpGetytyUeevF39XoBdjwxPyHszdzbdVfiYNGnS3YsmwDtp0qTLR17B5cLVi8uRgdQtotO9zwYCBkyhMLzrnoAveUaG1qh+0pp3uxg6j08WS5Cic0EdGQdZR3jVnuPLxp7L94leNqgAKAq0BQ3EOw7DD0MQt027OALaVHW3F4K2LDdcOdzGDn3ta8/i8CZ247eFEWPhSI4YgSdpEfYn+Lzty6IEKYnMUeS31ru3hS2eER5SIsGTE0/i+o2oij/CFVi1aEMaDiXujIbh7i1CRvaAtnr4TfykbGM6k1uleDMdz+HiDbDUoDbAJipRbccRzHsHlafKATNE5YwhJC6QbxB7+KAT3ptAtoDgpGVvgj+GSrWpeCJCSYajsOyNjaJLlOW3wEeexcbVdp+7w9O2IRegbSFXt5DvaYxdKrWCd8bzCFxbA6Jcfio4oC4ofLptE8YBPgByck5x27jv30bCuY6Qu5P9ULRR21Dq0f0OpFu7bnd0g2dO1+0Mub8yMHY+43KXJvvQPI6eid1zq3vdOr243T8uP+WXfdQBb2uy7MDdjrrnXPLR3fezK+WTvDFxJZicfdS1acS7J5ecgEey+csgSp2c8rsneutZp4seZ6ljbpfr6Lzs3c70zHV5XgBkn2U/Xo8Muz5POj8R9+Wu6ekaOJxjONdvnS7nZ9eeNdA/+2qUrgPSR88Q63A+xLryu8+cLydNmjTpEtEEeCdNmnQ5Kd+XxpDIU35Hi3YbyjbWMFbWFtUYM2sL5yQvenMR7wWz0+aiuHsX34aOwYSu7VlnpgNZsvwyvINdGB1/0gioZWNQhnZWvoqZUAQIAh/bft29Zn6a7+DwFCuuzzosregVrzjftPQ0LfAQfAlPzPos4BQ14cw324awQp5qWoUL8BlMIxvJGFqqHCL3YWSAgojTr+l32ECKk++8LQvfiRfUJ9gWXXW/+53Hj1IV01E82+u2QVVuAZ+AteD7DtcKL4SxAPAkjcvnTf1y/CyVQVZ2sPewSkwv+6ubBgDXmT4sw/oDwKV95ON6fQIEWy7WIXQCwNr2vNtsh1H62xsB5/pByDGeuKdevZ1CCknepj/x7D32IDgZfe3OxUWBDQAYyvXmGRs41ZjqVNIbiO5OyTPaD38O3eDOQZDwmPM2fLqTjcQn5bydCuWdn27Qds8cl50gl+Xfeb8mINZRzu8jAGr0zOrAnuTPn8lbPps63kd1dLx2OjialPJephmVn+CzB3tOAKP6OqA9gcpR2ztZ5jP6IrRvHTJ69o/kRvsdB9rleOLtAuNnntSRnFcs6+x/T+4jkH0ECo7a3MmuG6dduhF149Ty6mTdAftdXaMxn+u6tXZ18xTfs+9G4Rb82eXrxuxF28hm3QzRMGnSpEtIE+CdNGnS5SOAxTQ4fTjP2kJ4ZDhi6BuQ8P3OddTl+Zq9zjogJBfGnSHk8mwkri18c1F9EXLbKd+UoHIaYD78yPLDvREgpgCdQvUKqfO19AzbqOyDgxPIaue9W2BXRXYoDOjP//zac3+6Jvs67Ff1vLZvAC/z+XvaryPbOPEcl9HhA/a67URY5IPKMj9YmuumnAyrCk8lPzxrbQ+nrNLL1zhd2op4zYL348BplXRXV/2Eyqhrdug2eFu/3+zNzvYwHB4hZWyQuwslkf1bZVY6DsYrYv8BXekc6vG2rk2EkiFvK1vWnNFFOWCbloltaMoqD13CkhBdwRhtXa84vKfhFU6EvY1nbUoQwXOmgd/seBjyd4OuWW6+PeD6E9BASAitlKDmAH677gTzXJ5BB+oHoEMJPVg8wAxKWR4GsPw2AmS0HuIQthycHCxX7fOJkLigI6vKwymLDJrcuaDtGarBMl8DnC7qBbcG/mWaEYDVgTbZD3k/f3fldGm7uvLTE2IHlMFTgoXmO8dVPuOzvk4+qcujdndg8BqN+qgD8HzNGzgdH9lWvndezqRJ72bvHq7VYZ5dXqdjKV+n6zZKPF9Y/9bA3bXvHaUcaIsXDJ67mHsyPw/trr7sw4uu7cjb6USnj6N1aae3ydv13nM9a3xfJ3UvCdxZdFfhY9KkSXcvmgDvpEmTLh/Zi8MeTon2Qbko9qIVIz49VZ2XOi9ipHRpc1E9AnzzXmeE2MhKng185OK8K69b3DuQaMrNhhWxM5F5gs82rCi7UDNOqrfLKijWSdrNNYbneRGW5y62U+JUFgPpLS7KAWgDUwEI7boV8qv99pK1XdlhIdwH2HMePFyJ/EGcWLChtG9zX6OuVRmVH76q/PJSBnsiXXZ52rupIubVQwuwMssGp0L2xdett56pheWSQHTKqwjP2OqfAvOJxWu72Xayw3S4nensz6cxPtS22sC+BMAvwLLtcvqCswRpi6cU7zclNpLY6jl+TxzYyxvXoO3Z/kslri8nN65c2YVmqLSOt9t1MEj0NZ1QjRiAUg7D0IFXI+DFHU4DfDKeD0grYQH0JojkPzqBttY1wsEwL8GPPYi9i5BewZRZOz45RzowcpXBoWt0Bq7zoPlQHSYHaFvX2UlioLL7gVdy7uS4z0bPG2RqYKiTfw6wLK+buNbudzQC3bKcbFvWCXX1jcoePdNGfOdkPdLX/Oz6Y6TvqbPdRumo7pysR+uAtfZ05XffO/67tlCnX52gTdxzugS/88Fini/a15k3H2RZ5gig7GQ50oHkb20sOM9I7vlGBem7tGv9Mqo7eezK6O5lu7rx2ZU1kluW2+nn2ryWMpo0adKkS0QT4J00adLlpAzF0IGdLBAz7EARRn+3AO0W9VwfLXRHr5SNjGfKKwKVs1faCAg2fwYaRsBugtkdqrRmCHXtSRngBulrBDctpJETzio4q9tk4MXXvLA/Olo2BwV04bm5OcVYzB5N8GFeaVNC5CmspdLiZekDyBBLOv50tiZAs/mpT2Lrkq7wnRJHfa+QD05vMXAWFaEU7BCVTuU4PQLuWq1TbbKrOdvOwGjXzZ191smi2lZlgl35jXXH3wWUxgsX9ck4vbQZwLQ+DajmPoIBcEJ6wLc9nH0+Ivd9gBn1WQb1u8oolSY99YJPOoQCnw65AY5nXvleZbz85Wf7Jj6fDL45HO50qoO5G09Q6WKiFAslAcwkVglCKMHXmDzpoO0BbQelgAfL5kgeZ1SGQBkIHgwGD2HUbsee2+hQOtOBkul8PFgTAefTQrSi+j71JEjQoe0oayLwkDuLAZk7BhmH3XXW78pXA5pJgYFLOXXNO1ZQTmQd2LUPyEL2CYDlMyZ5TuqeeyMwyoCb5cRn8tHVsw9scn+NJjtP3GuA1WhC82dOTPmsTl7Wnt+mUb+NwLBOnqOys94RsJcy2bdmGT1cO091p81XRTpZ5HqgexDlA9n3PTeYN8uw2xVOeaWe+voadf1kHjrA0v3TyX7t90VorT+7sXhRcNdp943pO8qzd5InTZo06ZLQBHgnTZp0+cjeokaRMDAcz9HGRRrKCQwkGAoZ7DB5UZtxytIAy1d7s5ysd21Rnvc7fpPXBIDt8dXxwfvkpM34kkYS09glNgCIXxGBVAGd8tXF9GA7QSw3h4cnVRwsh4dXtoAXRYJXVdLCtTi7LbucNH4zms8qA7YcitR/xoUsPsSab5Qb8IWMe+H5CSjrLqy/wt4APQEbXae7oMoktAD11B84mbvTXsNWD5wPE1ejbg5+c7gHO3EVbl8yLM/qoqqL0AvVX+BfdtSua/ZQhh8OnyOaR5VNrOX6/cpXngdpaU+l443/qhs8k4PT+E1/ETPXh+WBL1Q6NhG4hnr60D5kRJ04lNLHjqlsvfNh8+gbfOzwic0pv9508BBejs8j/zVOzrmWU6jHqoEN/hz/usr1GN/3VoPTomD2kKXcbq5FuXCThn/4AUxNl/Uc2B6YI5DBc5XnStrnZ8bavA/v7rhuY83exFZwA8Ts4nje9KDy/N65pec9qNsxcj7z7v5MsC49M11GB/ZkeV1/jJ43SQabs8yOPEE7vetJoDfbk8/Q1IOU+6g9LtPrkK7NXRldurxunck+uWhZo/Qj+XAvx073WoK903modPF7s02dXC4K8LKjNwKxu5AI3Tqpk4fnmBHPea3rnxFvCa6O+j6pk1u3ZuwA6k6uo3Z09Vo+3b01QDfr7sr9S1AO5TuTXkdNmjRp0iWjCfBOmjTp8hEGsheKndeXjYE0WDCA80TmjtLAS2NjzSi1oW2UziBF531cNAod4VVjvjtvw9LGWALQawtx0pbn3/3vvzPYyr2Qst1+ygaNrE8ClBaAUVTl4JJoT0B4MMgEMkaf1sFRx0fL0fHB6WXbjRRRLGJXGo/GzuzwAdsYlaZAYhz1cDqGDZ9f5++k4Q8HPWM+aX8aaK7rBmMNwu7isZ7n2fiZ4+A6UgnAL+qDSHF6txMkeHrazJYtMgUAh1/SV5tx1Pah6wmmMhzAulCJbmjVH2+14/XscKf2qIU3+g49IT0HqLn/AVnt3EnZDtfRDREPH3BKHGLRz/rMg9eMRXREuxOD8xS1TVPgbqGxBezao5bE7kT/GeAlFMLJ721YFIduGBn56QVr4IzgyJ6LXIbjaljh8fYzwMsgpk05z1NmegW6YzzonZ80dcpgKVBde+lLz+p1ByeAm28quHOzo0sBCPuASzttZCD7eeC2cN38ul9dZ/Z1tmHkFZzPA+uJ29GBMN3zY9+9fAabRkDPWpn+TruyvxLotjzSszvlmXJIb/Tk0XkoM2PZdMDxCDDLNqcscuLchybl/W5dYz3o9A/yBO9NJfogN7Q9nl1f8rYmn/Qw96stniQtn1xr+DO9Q/PBl9cSiPX9feVkOzvKtwOyvH31dvxm2m78dWOx05XRgzCdI7o82Scjfc151zozadKkSZeEJsA7adKky0fpNukDgPy6bdFogWjvmrVFt40JFuAdINx56NpQwshIz6jOqE8jy6iQDfMuAKkRNi+q04PJxgTfM319lmtkybdcJ/G0o540BEAOeZec9JSZsk55WuZKV4dOHdXr4ycHrYElp+i6t8WLSkyAbcZb3G28RV2sEwfXgKjLNchaeRAXDnopQjCpBGQ7Z0E33eEmsl2Ja6X9h0zgw13cqSS4U2fP0414CuPlamdrwFTkavCbMvEGBpyljfCD/Lp9DWLx0i6cRavcKqti9Nqet8exHcrgH3miS+4HeM89mDxj0enpX9ISFcE8Zz9534XvPojtTF/OOmSb/1QhggnGHgrSAXQGwpgrmEdg1q9ae47s5kk6gYb4xEJe0U5BGRjK+CYO7+A5iYGTbvjuCKdDEbwb0/FiMKQbaPzuAJGUi+vuPAbZUUnwmX7p+ivLcPq1NGsAZ9ePOZf7t+XZ1dmBxX7+dLIatcvXOpl7UGbfdf02Kju9pRM8HPGYMsi8bqM3WFP+d1QOHfjWeScnJXDc9a+/p2zzgetymJDJ67Fd5M33BNfNb+dB3a0ZXKYn9uQ3+yPHatbfrd86OdLnOYYzX/abeRzRiBff7/qyS5NAr+93OtLx4PyjPAlMj9J1OmZ+ne8ia/NJkyZNuofSBHgnTZp0+QgjH2PCgSq9OE3Pks4Lwp++t2bodwZQZxyMjDjfSwRvVHZ3PcvLsnKBnq6BnfFjAAi0zmgjoAll+dXwIpCxQlLr3fr73vc8wkefGS1Mz13XedKP2wOkTm7R3QWu2uOV4oz31/fCqA2gpcMjIF+lK9Wq8vGABXC0yCu94+say0BsAJ7Gs8B2KHMfptDZvV06YyvpwJZqYGfIBHS5b2cr84vTZ/0RggHbun7jKVvlVVtf/OLdvTpbr3BHYyGExMAuJH/1Kd/rs7yqHRrC8kgnH/rGcYnRAX6jhhyiZjyCN+YJE4FMLEt0q/LgWVxE+zwVMCwS1PU0Aj/GIu0Uf3h4vByec+oaAGgIBEb8B3IOI3w34g2qDkMICzfykbFNo/w955icU1E+0vh7elPahZxYtVZYBtbII7Y7tIxPlJhg1HWdgU+6DiDxbzoP2bvNjtlBmw1yUWc+f5LPBDTdnrzW9Y0HXiq0qevni4BkvtcBdym/BJ07/ej4ynLzeZynHSaIlKBfhgnK9cBIRrlJ2/25rWvps02j3+QfPQwS5HW7kkYy7j5djnc6vVbwg8AbQ8wr8EfafDB19SWv2ed+baNre1dWRyNw1N/XZJN59l3vxvuIx64Pkq81sHiUd59Msv6LpDfI2/VvV/+oz/+S3rvdXsSdRa9PPu53v/stH/iBH7i8y7u8y/LO7/zOy0Me8pDlQQ960HLve997ednLXrb8xm/8xvLMZz5z+dZv/dblJS95SVvGlStXlvd93/ddHvOYxyx/9+/+3eVhD3vYcssttyyvfOUrl+c973nLj//4jy/f+I3fuPze7/3ehXg6PDxcnvCEJywf93EftzziEY9Y7nvf+y4veMELlmc/+9nLf/gP/2HL06RJk/bTBHgnTZp0+YgTjdItLo23RK86Aw7qFt1ejPp97iQbHS7XC2sHPgV0sfdbuiyOeHWazosEw8vhGmzcdry7DZXuvPvg+WC1uXi3AWcZGREDaOF6GieUkwFOTwHkaud5FtdspPpN7FeHQDCYCAhoO7S8Ln0Ims+IMRGj1bFvrS4ZExfbt8rE4xfqHJgNCrvsug4mZTLQTP5RNxt3wgs3QUhj7fDr7sp9BvjEy7dkU5E9Ctt/2ct294yzoQ7+BCerPLU3gKpRJ2dUeTjSP4SzQC/qe56HZW/lnAoyZnL3mcCsvZ4tE8sf/jPEQqcbHS5zrh/r+0mY3HOJcvzCnOcGfzcA2ymirzNH0YEuhz/mtcrjNN7MSUDRAE16uhrEAnlnIHteM2BEUG53tF/bpm5czykLMLfulcLWZymfeSGWB3Jxh1lpXB9KlYOEU/MYcLSfHY1U1JQ3Cj96NuQk2Clc97zw99ShpHz+dODRCMQh/+g19PwcAUDuz+6B4LxOm5sH7tdsa/fczM+coLPtTtvJiN9rz/2RnPy7mzw6PlJPcg65nvqzLL+mYo985O71yJoX72g+y3ZkIPmunFEbLtquEXi6Bvp2D8pOXtmei/J1kTT7wNQu/6j8bk4ZkTcRuzov2h/IrevfSaf0qEc9avme7/me9t4bv/Ebb//e+73fe/mcz/mc5eM//uOXZz3rWefSvNEbvdHym7/5m9vPpAc84AHLIx/5yO3fZ3zGZyyf+7mfuwVo1+iBD3zgFlAuvkxv/dZvvf37hE/4hOXTP/3Tt4DzpEmT1mkCvJMmTbp8ZPTLxoORl5HnzEUWnDYGk0ZGEQZ/91oxhAFUBj1/gAb1WUZ+LtLtUeuFe+f+mSBIxqWDz3xXP+MEUpdP8LJXW8oq5QkoUq6bABMJ1Lhe8tnjzn13cOa966b4TVBjSfaOtQcuzTDIacwEMJMyATlxEKTMupchQ1NFOlWDl1ShLkzjCMNxV2d66ki7qMM70jmGcugiHDeRT4cX2rPXqlZyK/mWepvvCnlaZVY4BfPBcK7y6APwMPgnhCltw6HTh7i5Haeqo9jB8OJoAokVuV7jYTn8/J3NAju2Iwf2LAhPW1SbCIDoyA3cMcNJbvmq6aj6Yhu9YLNzFq166kanIEaOOwCIv3RBZ87grQgrqd2fMyA1yL7LQsFyY6sDExKIcBrP577u+R/ynE9ad3w3Z7tzvdGGkjsgswfZPkAklQ3+fHCl60cZasCVLOGF7yNgNoGQiwJbOSG4bf6EnK57/nXAnOf1DnB2uWvldIAV5eYzPmWUwK3L6OIbZ7rUHT9ILgqMjcrv6hqlGa1hsk3Zn6bcAbxIeWvUyYQ5gee4J+fRuqXr/7X6vKmUMiPdmizheQ10TX5GIDr3LsI3dWa/ruXJ/Gs85L3kbZ++7rtnPe3mcLdpbb64CLEY2QcqX3L6gz/4g+UnfuInll/8xV9cnv/85y8vfOELtwcSv/mbv/nyER/xEcuHf/iHb716f+iHfmgLvP7qr/7qad6bbrrpFNx97nOfuzzjGc9YfvZnf3Z50YtetPXi/YAP+IDln/2zf7b1CH7Sk560vOpVr1q++Zu/ueWj6vzBH/zBU3D3B37gB7Zpy3O4PIO/6Iu+aHnwgx+8PPnJT17+6I/+aPmxH/uxvyIJTZp096QJ8E6aNOnyUQIYBiwSnM1FfLcg5reNXBsiBij49CLXQMIIVMAgLG+zQqYKyfL73niXjdAo/3nRDCrk+0aaur9MD7rktmKg/emf9kAuHtQOuupDhAAmijhsLY0IG5yOHVzgUqFgJasTgGVzw/E2Funx8eY0mbvFuDohF6oJ5ZXLdx/M5vixda3erq5zlhyTFQc78pKWmK7GbWyP8NuAcKd2tovJb+C4syFz/8DiG3n9WkVT5RN3gRfA2SojQyQYkMYREiyq8pQXLl3u8gHM6T9AZKuiQz8A6ibvdb36yzFvKw8HrhEuGtUuHcBBEs9eZAnf9LfLSw9gf0cPDAgjG3TAfYVM8TR2X3U4w9lmxeZUB2nTjXW43H0ab/mTRhxvo1Vrp8KUQGkGgzbhjec0a28yuJNy0y1BE9/v5jXPf/U7XbI7MC+BhbVBx3eDo+nh6bLz+ZGUgxYlYFDzu9pBfBC/BkAHe+5zEHAmrATnLEMD4fmMSpA4PVTXwLUOzMn0+f0ioFl3v0vj+ka6l/nWQC1PZAZqu/GU9Vu/HNak0/F9gJt3zTqeM23yn/rf1dfJep8Mu3xud6Y3v+mxW38+VPCifZZ1U6bB3WyL8+Uazn3Hw3JtjujamRvjXb3d77ze1bmWPr+PQNs13kafnQ51YG62ybo7GnNr97Id2bZcc18HjV4+uDPo9clHAbsPfehDh/e/7/u+b/mQD/mQ5elPf/oWzP3SL/3S5XGPe9zp/VpPl1fvl3zJl2yB3aSf/Mmf3AK1Vc997nOf5Su/8iuX7/7u717+vHbog8o79z3e4z2237/+679+66kL/fzP//zyoz/6o1sQuoDj8gR+u7d7u+XqPEBv0qQhzfcXJk2adPkoUSyAjFFg0wQauj9WhQl45OLZi9d0t+vAy4glu0W+6l19jHv+QLbMh9FFPLsqnV1K+W5vPNLxijV5u++JYMIP33lfPgPIGjwqo6tQtFtuOUNIQeEKsKi/+g6wUZ91DWMNeeKSu9ksx6997XJ85cpyfFCyqwPWjs+J3Y51Fg1gLV3B29uJ5dBFNNMHgJUYq6xbb12Wl798VwZdXfdsq9Z3RFTpwKI6O2pk19FtBoLdtRa51dW8p52c2EHm5151AV1R/FdbSj3rj7fVvV9gcJT6rKoAlwbES65VfsXkLXlm2ASv8/G4dV/ZCRLMkfjLqJ9B2RzmDBmrGmAzw9Ae2tlX++xwY4/oZg0HPhkSTAOkw2nT7bNOdP1535uPlvvcKw6IcqbTr2qAK/DvnEfplAxv03UCfyPgmE/PRZ53ELjn5ZwD4bHu4Q6d7UKonJJIh6bX6GgAdpuBCRTzPb1aoQRd3R/esGNyYIKoz4ph8kd/tPurAVf81+BzG7twF10fmoecULp+7p6Hlkk+M1PPOmBydM/ydtq157J1wfrVgU4dDx2/nfwM9uWg43fKmfatoUkuI9cXCcR3/WiZdX2QPGZ9I3mO1kCdbq/1kcvL77ydRJkO3eB5IusZzGfXgLujP8vYfFEeE67l5bEyqj/XftaBi9BIxr6eZWf5uba1LiavWX5X374+H/E+klHyxpy11vauviIvMCa1dHQB9Li8cn/rt35r+x0AFqrYuBV7twN3oZ/7uZ9bvuEbvuE0bMP7vd/7tek++7M/e/v54he/eBsSIul3f/d3lyc+8Ynb72/7tm+7fNiHfdhe3idNusw0Ad5JkyZdPuoW7t1iZ5+xMzJ6uvoS3KB8wNHOCMWgKI+sRK2KbGCmgZdhKKijMwDIkwZxZ1R2aCExjUHCfM9GUxes1L9BVgvVqvAMBLWt+Jb1fn53IAogDQZcnXRW5dz73svxzfddbr/x3svVm+6z3H58cIp/4DxMN3DN+FCxZIdiR4cwOGqcqTxPwaIsIrB5H7wGjp6ga8bfdfd2XV1/YN7pZNfZ/amOFmW3F9HZvWk7IqsEHak7ZVFkENvAe10rBw+rCCqFirptna1IWXxPrC/bwX4C8gOwRqYGndl3sPcs7a70eAYD1CIPvic+ZNkTYrVUvtS/VL5U32Bv3UMPS287XCHxBvDKLYhc9WzKR3dsKFfoho2FCeCCcloxRrseCTwU5ZsBBn0ZvxkbcwRCdACCN6c4xdBecwZ5PU8agHWsbzreCu18+UwwAJi8jQZj9sMIDPGAZOIgDEaVW4pR32vw1M5SHVCZh7J1AEs+A3LySF7zeZDPLj9HPZGM2mc+UpeSv5y4uudwgssdyGsdzfvJ577+8T3LyN+7Z95obbFvLdHxkXLJdP5uXi6yvrmILFIG3ee+v+y7PAy3KMM1jNqc/eG5ZqS/6b3etc9rt05OXd/lZkLXzjtKXVvvSLndfDAat6P6Mu1a2R3/XZnIKueAUT6IB2Q3n0y6bnpFPUuWWn/c6w7lLw9eqGLpJhVg+/Zv//bb70996lO3oRw6espTnnL6fQK8kyat0wzRMGnSpMtJRndGBkdRGse58GUh6bz5Kh7fDbhyPdNxn2tluIMS1ff6KyOeV3ArDx6w9ec2uS57DFFXHiIEpYukETPznW1DFvZygR+MNdAut51XXf0+fYdAAuAA1iBro3mFjPEee71qXt68J/UcHGzOneOUIFsRuImbahvQXdyFO+AAtVMWGrvUIkxV4gA382Rwkevw1GH+8IcTVPLqbkt7DoCzCIzMKpJ7IunVm3Y3nrnG+Op7dWNibcairIK590K7K7/PGeReDtH6XUApYR/A/WhbOTwS19Y4QNbpIWxAmHsM0wwNbT3Lfs89F3vw4rxeaWrIw5MPnPPbwok9JHC/432wuZJK5Ibb294KN3ptOgeW51LqpbEg1WY8wx5YmNnJFrLnYoRUHQvC7XJKGQqNt+BdBt+zsyw3ZIISVR6HRnAnwHPK3ApRA47ySGdE34rN6wbEKaeMaldtcuH2bQDb1D3zMk03OWTerizrwKj8EViU/CXPXf1dnpGM8173PM/2d7x3fCeAZf0YycxljOS7xkuRJ03a0I2bbqxTr/U11yMdrckmr+8rJx8gJh4UpOUEzJEsurK7tV7ytaYvRX4FB3J5OUZyI4L0yd9fltbGgO+vycm8dP2Q16zv+f2i9eT6LufFbiz4YZlt9rqx4/U6qFtz3Fl0Z/PxsIc9bHnHd3zH7Xc8ea+XKrwD1IVVePSjH336/TnPec6wnIrt+3/+z/9ZHv7why/v/u7vfod4mTTpstAEeCdNmnT5aGRopaGTBh/p/Tm6lu+IA5QYEbKXVLegNeJkNAmw1++FG5ywcZfIkr3Sks9R2wxgI6dcqGddDlgLGoYXYPFXyJVdYEHcIMsoy4Y4nct8iv9dzN2z7DfeeLwcHW1OMeL0iKV440EJVLrJZrVwlXI8oLnE3+V7xeet3z6Yy6LObrJIiz97sfo6KmFxwS8HjtX62mEnrGaJDVhe7mKL1tic5QSmZnV2nFzbaKgg8k47P0O4mvdSI+4Z0wBkrTqLF3BDHB4rLXhB3QM3MKCfzny+7jqRMbJzX6azfE41qT/Zl4QMsb0K0Os+cD4+mTLy0LozzHUbrGQ53myWTbnzbgFfhH912RiIPJkLj7eFVoFSnqtXl42BTBqZ8SkNOCUY4BMKEXIqXHr95xyTAFV9ckpf3S9knEFuoIfdgfoDUc/BAaGAuWmVICY80AFWJssV8NVlpicgytXFRSFP1cHGHm9ReOMLhTBAj4LRPntRW1n5ziBJIKsDeTpgbHStK7PbcOie06PncleW86Uede3tPkc0als3wEf5TeYvHwJdub7PBEV9zpN9NZKx22TeOzkkL2v9Nmr7ml74k9dDSJ9rhVHZI35G9aRueGx0D89cs62lTVms9WnXHue7SJsT4Of+6FTXtTngIvq7b6zAO/OJr3UP3K7/ujZkOuS6T0cmDakORXvIQx6yPPaxj10+93M/d7nhJJ7Z137t196h8t7rvd7r9Ptv/uZvXnMf792LgMh1vwDet3iLt9jG9f0LwhFNmjTpHE2Ad9KkSZePOqMvvQhsRI6Mts7YTY8pynXdeT9BX76XIV4oHV5cZcDXCVDmx0CCDfkEA9LDAUrw1oBzAhhGRW0EWSaUg8cLQAjvl+NWCviATOzqmSe/G8Xi/XgW+m5/XdO7/wcHR8vBbbfvfBa378jfcAq8WixgzYi8e7PPESbSGc8YDiCiQcn6LLYBgusTfJ6mp53CuTI4OAIWIy6Tu8N2kO0hd7NV17gAvBDCwl2U9qjLNkicTth4Hac9X58+O8r8pWesVdZDNW1SzuYDDCVN8cQBeFY9ZNrZnPbGtQc0bS0wH7Cetldaez17eFTe4qubKvDahVd0EQITTA9yO7YlFpHpuHdUkbkqJvXmeDmq+5vdwYMF3h4cKWarjeMbb1qODiWkynfbSSzwDlhIoM4GvBvmBmU4Aadz56OwnVJQFgh/fS8eM3aG5ykEZAAp/9KjOPObR3+O5tsiFNDKb+J3Iv3IzTKu/KVc6TmN5xSxZ1KJPagNtHDN8X9HMUY7oM73TCk7P4O7tmfZ3aDP+iyX1MVsuz+778kH3x3TmLTe0ETWbLbm87/jvZOD74+AVuuOdyDNS+ZNHtbA2lGazkPYcrso4Nfx093nwex1iHc8O57Nzz6dzTzeBB/xlzw63eiht9b+fWBvd98P5aLc8O/GpefZXOx0bUxZ5fo1867J6SLkh6bHfKenngNT9y6qh3cTetM3fdO9af6oYrHfAapDzhwCIani337Xd33XdZf7Jm/yJssnfdInbb//yZ/8yblwDdCbv/mbn37/wz/8w9Xynv/8528/Dw4Otvl++7d/+7p5mjTpMtAEeCdNmnT5yAvBNFRsGPG7y0+e9MRyWTa60s0vvW1Hi9dCkuziSNru3XjKTACkAxpsJAGw+Hoa/iPAwukwat/gDc7HDLabLKBLxm4kHWio+eA67pfIDVdHe8WdIHZb38TyOnzta5eD229fjm648VxXUyXgGqLzm83uYouxw3QABYsKxK0/QLnKD+ZUOHc1n1fuHVUDtXDT046yTUsevzlqjAAwm3OZqgzOqyvi8Ld0NiecZ4KNdri0Mzp1194DIS6qXSeh2855n1IHh9wlOGn7k7rY36j6iXdbvKfaUR5v8JKvCLXhwDa/SY9ckIUPVKvrTmccrK7T52kvG7sz8G1VZ9i5DxKzsDPnPvxpjJfsvmz5pw/qy6YyLssW363fjKt0Qd6WcHB+irxyw7Lx/GVGRiCBmc88Lsd1u0wPgmykAWl2cOqvQhiw6ZP1dMBftsHKyP2cO9eAGk8YbgfXO0B820FSCLuYWxncZg8k1+HvTjfiO+d+t3Ofh2DKsJN1py/5zCWdvXA7hc/fTp/XO/Anr+VElFTX8jRF0ufzP+tJoDnrXdtMNi/WvyzL/W0X/tTfEY8djdJ0Y3hfGd31fXMFdWXfevyMwMyuvaP2UyabPXn92kn12nJHOpB8uMzrkVk3h3b9UNTtGhf5odXpzajdIz6yDd24SrCbP6852dHmO20w5foz57duo+wOUOdQfGeR+fj5n//5venrDZ3XJT33uc9dPvVTP3X5hV/4hTuU/8lPfvJy/4qPtSzLv/k3/2Z5Da9Vie5Xhw2c0J/XwniFXlmLzBO6bx16MWnSpJYmwDtp0qTLRzZ8IBuI3eputIhNw5r7aXjZrY/rvHrYLaSdloWvDbv01AX5Mo8up1sc48JoBIv2u01ZtssFrTPYQXqjbjZIjbql5xPuhvaA6owZu2jaM+8cjyfo4g03LJvDg+VAoK67uNacNNNdRXEApIjJZzchggI0fYhWrlN9CHiFyKTeAoI7+xUAMc+mM7BqTCAxGIBKvH8R34MedOZJSgiH+ivgk7CegM71GyC1c5hKcfsQOdbhyCuHBqEbkA381bUCZomXW1TfbfO5jdRhHM59WDLA6Rvgl/I4TK0b2tRFPWk/JhYELyU7e0Cv/VFOTh/WhYz/nEPYQ4Vhdz4W8PFyw2EVthvTdYDadmAc7Q5aqyo3B4c74HfobVh+v0c7mPgEJN6GcoCswAksesciAaIsw4AnDYcvhOWQAzlgrGB0IG7bzKGjNw4S5HB5eA3zvQMwus+kLDMVL3niuutjzqxPBqzlY3dz5ORrpOv6mXvJI/0xApNG4LhBt5TZPoA3+2QfQJeAcMo0y8x2J7+pr26n06Y+pUdkgk6u3x7V+YpF8uO2eBIgj/vAz91Ox1LOnT52+bo2+HdXTpaxBhjmvazD+sgDe19/d3qVazPI4O6Iv45Hr3syXddet6njdzR/+J7HheWzTxadHHMDnnxdG0bldp9Zr3WEucwPsVFIhazTz5l8dcVzftdfk1p6+tOfvvzNv/k3T0M01GFoH/VRH7V8+Id/+PLd3/3dy2d+5mcuP/IjP3JdZX7BF3zB8g//4T/cfv/v//2/L1//9V/fpvPhba8lDv2ADBAXn5MmTeppAryTJk26fGQAYd9CcLSgTrQlF69ri3eMkzSATWnQJf9p0Lu+rL9zkWRhn95I3WI+DUbXgUskrwF3ckz+eaW4UD5iaOGlZjSLP6NllosRPoCMNHJO0x1fU4QxC0eFcDe6a/09gcZKX2EAcCogLGbuGbgbiBdbIkhbNbGKTpRp65sSsxk5LvJX7S+eE0y2qO2tavWnbDB9q2TiHeTBYYdyHObUTu/IOT1gabO9l+Gv2kE8ZNqZIU1TF8DwjEe6rZ3M6w8n8qq7hkIC2B56VRYgM7LCKxkgHZsXbA4HdWQMiAsmBKBroPccj1tAt7x0D7fhGJbN4UnU3eMdYHtS8PZa/ed4HrR5+1eCkQIdaefBc80IGPKmke+3Y3VwL+emEbDg+ZG5lpMPPQDNm996SO/UrCO9bruTCBOUNEjaeV+ipA5rg4LVvZofuY9iuP7KwxyKl55BQ8sEHjrwi36EP3ZtRs+pkdduB7ZaLl0ZHZBrGvX52mTZDd7RszrLHD33Ojl04Gim7WSXOpv5Os9ej88EthM0TtklSN0Bebl+GPVXt1nSpe/GXLZ1NNbyGu3KuNLo9D59zuvwnHGMOj7zAe0yE9zt6vL8uCYT3x+V2cm56z/rkh9E3UaO867NuaM17RovfI7WiGsy6OpMyjcPPL7vIfQu7/Iuywtf+MLXS9kvf/nLt39Qeex+7/d+7/LxH//xy7d/+7cvz3jGM5bHP/7x2+8XoY/92I/deuwWPe95z9v+3h523NCrtZt/4403tl6+3YFtr6pF3qRJk1qaAO+kSZMuH9lo7f6KEpkqSgCgyN4Q3UI5DT8vfA1IkhbvA3v1kNd1+gC2rp7OhZB64TVdB/NErDSIR2VUvlqUwS/vuCNDG8oALriRVtr6Xrvx2dY0TpKPBJfc9jRcgioJ3q0j0JQqeaW/qyYP76rfALYmhwQw6FtNr/Vt2uJdXTSZT0QJ4Jc2Jzi6VRZvZJdRhNcudeI9zCcRNwhnQd1p/6ES5ivj8gJg4vmM16vPywDbol2s61Mm8GO50FcMsSI7B6H2XLOzOX3qYZ12v9UTubjNxOFNnULdsw3gcnUfWwfAmKnKfI90BJ53U8PxLv3V3cGC2/C6Jwk2m2psMbTz5j0bUruQDa0hT6UdUOT5I0EwAyIdKEYaABt74nsOMojVgYf53W3ART/fojBQiju35zYrFZ8J3nquRNESsFxTRudhUBlsZpAR4wXw1q71bq+9er1rxZsa3fPEc2WCwgmSdIDPCMxJGoE0XZkded7P/nQ5IyAq69gHomUg9X1gWtbTgY0dn76WAFU+cz2J5hjMPN1GA3V0ssr2Z7oke4B2bcsyLK9MN+rz7joPD2+YdN+znLWN7QSHR32XPHut5XnRfHst5P7s5LJv/KQ88oHQyS3zuQ7Lslvzer7t+tlpcp22j/fUhVw0dQ/cTjYpg25deB2Uj7c7kyyyAnfvaIzdO0rf+Z3fuXzwB3/w8tEf/dHL133d1y0/9EM/tLy0PBlW6AM/8AOXb/u2b9vGyS2e3+/93m950YteNEz/CmJ5nYRdWAN4b66QSxcM5zBp0mWmCfBOmjTp8lKCEWsG4RqykgvPNcMoF7V5PQNuUrZRKf82353xfhGvKyNIGYoh28NiH9fDehffoRbwMMtVsnksJA8Xy0Kx6q8WdUa6RrK1vLrvBJY9Pt69Ru7XAJsuBfBEDA6xyPUCIItFHAY6HAMHO75n820nWfSEEKi1atXjfOAynbN54l1pG3aio41WMcoB9KUL8bDlTDzULbGrxBzcTeBJxhkS8696wPaNYdVv+OhsX/LDN7hUAaTEGfb+SXrUIlM7TKLebodxtgSB+W7ncxzZGUb2qvXQsiOlVRR+cXD3oYDgfvDCuVrICYzytM4tgFuhGI6Xrel8LmYswqx4vCW8HRJ/OkROlGcrBqPdnjNSwe1m3YFYOR/k/FOfbBQZpCJ9DiQrW6f8pONVTlzDc+4FmadD2LHxgPM9vwKcQBsdQn32dszYMJ2yU16+nVCKjTJQXue5aXCLujq3dfOPPNKrz0D06NmSE5L7ItP4z9SBkJmuu9/xkUAb5Wc/jajjPT9T9zzJZVn5rO3k4fT0a/e6OrwB3HevR5g/g4+jNqzJs/ve1WWddJ7R87vbHLooD53uJrA7Akf9mR6fCcyONodzLqMf9vXp2rzYyTd5zvGX/bdGozQe70UGedfWqPk7Fxlu20X4JY1fYxrJ3g9x96VBaNJ1YbsmXTeV924BvAW+vv/7v/82ZMOI3uu93mv5/u///q0n7kte8pLlMY95zNaDd418sFodnPbiF794mPYt3uIttp9HR0d7D2SbNOky0wR4J02adLlpbeHZLVxz0Z1GcL7W6XuZ3582joxqpYew03YLbCg9dHOhbcSNBTInaqVrpvm08VyfIGou0ydz2cA0qmdvDQe3BX3zQh3+OBENdIsyCnklT/GDB7G935qmFI3OSaJ5iIXQbgCKla7APMBc/xHP1uHEEltxHXW98uCcZyzNoKKBUrcjnf/gzyJ2fsjtdhxiQGXOd/IZfyNZ2e5KWQNspo1fvwvYNnDuthl8Zd/AbfYQ8r4H91Ftg6mor23atLPB8Cz7DgPwsHTfdX1Tv0sNOfjNPLlvDAxbZ4z7eWrB+5sY0MYLjw8OloPDgzNA/+DG07yVb+sZfePxcqX05PhgC+Ze3ewaUZhv/T4+Plo2Dr7sHQEAU5gk+HDnyZuAVGeQM9BK6RjfHUDmedH33JFVLjsHnPJXipaAJvw6PgcIvT12E0x2h+wDw/J6fkdx2ClAtgw8JqE6jMaezu4Pz5+peB4YtNtvsDDYEhhOAMiy7+TutB2Y1QFGnlA6b+GujO4v0yd42dXfta2jzivTg7Mry+m4PgLB/Rz2BLamS/nM72SbAFcnZ5fV9eU+EDHXBS5nTedd/xqQOiqD9UCGD/GcMnrYeQ2UPCVv2c7Mfz3yyc/ccFgDQHOuS/5GfOY1l+GHD8TcMiqzu97Nw92CoK55dznb4XVlAs2es92XfiB6g5H5e9Jfmv70T//09PtDH/rQ1RAS//W//tdtbNzyyv2AD/iA5dd+7df2lv8bv/Ebp98f8YhHLL/yK78yTFv3i57//Ocvf+FXviZNmnSOJsA7adKky0k20BMs4D6/WYxjMNlA7hAtf08jbuTpYySH+oxsFXUeCeahM1oShBgtjhOYzj8v1kES4Y9Tq9Kr2Pmcn8NM7PIKiGHAh3yUbeSNewWEcFJZ9uEJQLON/SVjiGzYwFSf9hU2AmEKEgvCkc+ipiowGts6OOCBGxk4LB4KH6Opdu6z3eoQCWnzpCrY/k2RYg8llp4RTAp4BsROTI98xo58lpU/c3+CvPaMtQyJTwxwiuzMcxEOn94DKCI0NBgZqlNUcqZvAUWJQewwrTmsDKQjK4akvWc5nK6bHhw/1zznW8W2dY0xet8CPbE+n2EPu8LOqf42yO6JrPHtPXHm3f4d1e/KfLBsSLsN5zA40bwDaZNsoBso87zEb3v+5yvDpOtCOfi+UXm7RiO8znvQvHeAspXAgNKIPMd77k3P40TrrVRMNLiE20uNwZ2enrmxRXl2AUfZPJCzvaP2JdiSgM4I2Fu7bpmbEgAb6VcHnI2oA9DWALis27o0qqvj0xN1TsjwsOZtONJP8vr5bR3xhNjpcbY39T1lkDLbx+uov7v0a4B5fpLOcfc9vv0wvx7AswPyk1IHRuvGNf5HutrpYgeEroHK++Ym08iTGrm6jbmGHNWdC5HuIehyrK/uM3hz4P/0yi/KZ4/7cqRzFxDLXQUbvivw8ZCHPGRvWIS/9bf+1vJjP/Zjy/3ud79tbNzHPvaxy8/93M9dqPyf/umfPucBXLF/O3rwgx+8PPzhD99+/5mf+ZnrbMWkSZeLJsA7adKky0deuHoB6kVpArFe8No4yjRZR1dvx4fL6ICFTDdaRHeo1AjkJa3dBxN0oCwbUQkGu1zLIMnv03fXIVA96gAVtZumUcoEgU+AjOOTE6iOD68stx8dnIZjAMCs6BKOiYqotp6NN52FTKg1LbFRsSuLAIa5DuvJYv1Vfrwm67dDf2KL4AgNcEzcXmIFEzYhbRcOIe7swjXsxeEaDD5zcJf3GIoHsCYPA+RBm/ltMLI7QC5xiE7dwO2NWdFflFV853lT8Mt1AFj2D8gzsl9tX46wFMuxygKfASA2uH0ROxi5dGB31g0eVN8f8IAzvUHuAPG025jE9m85Xu51r13FBwX1Xr26bKSspzxtD2lbAbK2BcRbAvUbT1Qrmg9htCIY8PKbC56D05PUm20JOriMdGFPgDeVzuQ5cM2TtZONdzXcFt+HaIeBY8/HGQqj8tqzNwcD5TCAGZh5KFUqeyIJCZh0k0i2fQTOpcKPytmXx2WPJjXuJ2DksjrUJMGlTh7dc7bj29cpZ5TeOpq6OZIv9RD4PfXSYye9ai8CQJofP+tdd/eWTyev/J08JC9r/Iz0YI33Lk6zdaPTnywv54GO/y6/Fxajcj0O95VzPdTNjV09Xdv9sOj4yfK7Ojo9W+PV4yo30dbW69084X7fV/ekvfSRH/mRp987j9y3fdu3XZ71rGctb/iGb7i89rWvXR73uMctz3nOcy5c/u/8zu9svXjf/u3ffvmoj/qo5bM+67PaA9Q+8RM/8fT7D/7gD96htkyadFloxRKfNGnSpHs4JRjqhX8a4T6AJw32jnLRmWhShwJ1IAPlGBzJa6N6u/J9zYt1p0tDbO11Ue536SxP4mtmHEwDJdRX6Yyc4mJpdJMDkhygttpwn/vUSQzL8QlCe3zlhuV4OVhuv31z8ncenyeiA1gTHrvgK37t3mLP5mezUZf6XudCuNtwLjSeTvnYN9W0wsSIPpEqan7WcBX4s5gMsLqrwRrqzTc78Yz+UlWLcDzESZvvvHVPyOVKx1v44H/1ZxCebq8/VAfbz+f4lXzr7fX6pE76kfbmoXHIBZA0z/gzppdDyjL2QXB8N2aTerSGJ2Tfud+6Pq9rHFJHDOjUZf8dy113J7steruLszsw6M+x2jHuucTgjzdcOkXKgdPFe03Bo6SOgWvBeX7zYEvhJQE+82fQ2flKEXMQXSvks90JlBal8wRj4JbyraAMBtpAmZYnAynbbxl618XKQfpuMsi25PVUxHxepFKPlLsrI+tPvUtZd3VAIyBvDbhKWXYTfq4DRm1yXaOHB2m6AT8C43KCGK0fUo5F6EDqSfZRgpJZzlr/ZV9m27JvR3qS7bas+J5xd3MMdNdzEzvByJxz2GEcPYA7WVhuI53t+O36caTfazRK28neG+TdeLE++OGY8hjpYcdX8rdv3PCd647b7rblw3vSkD7hEz5huYnTawf0mZ/5mcsHfdAHbb9XLN2f+qmfuiYm7rOf/ezlTd7kTZbbb799+diP/djlR3/0R6+bl6/6qq/afj7wgQ9cvvIrv/Ka+3/9r//15fM///NPAeEJ8E6atE7Tg3fSpEmXlzqjtFssdgvzIha3nQGYC/c0EGxA+jPv5Wu31Nu1IY168+nv9jAjfYIwWUYiXq6nePS77YAYRQ5rkaeIFRVYwyKz0uGV1Blmfo3VbQA1dFu2PJ54JC67OKM74HZzKsoC9WDFTsQju7oTN3ZbqkGVVx7CPnwtxWs7PsHD7i3q5Kmze0ZpOhu2ayMhBuqvugsZ8Zdvzbu8/D1Su+THmL2BW79t73a6LH/67Xbzgqzt/Vr9UnjZS16ya2sBxFU3Kkpdth+t3h6yloW9oL2R4NjGTp+UTpn+bvIb2TmMzxzZj5fDSrdDcM/CLhRse/pV4OLR0XKwTbMbM7t0clk3oOE50fNFotjkT0V0TAl7nUIOS5ObagZ2UngcskgayiR/vmVB/cTUyI5wR/uQsyIfzAZvxPygDbSNE/OY49xh8Jfe0PkdnjiZ0TFHiH9s8MXgU/esugiwloPa4GCCvc6fk08H4Izqz2dEDrbks6s3wSf4Nf8uO+XBPbeVPsq6s44R2GhwrXv+u47c8EjZU06CWtnP2Vb0Z1+/dfrgdo1kkeW6jOzz7J/uQdvxQVnWv9QRP2CRk9dgll3y57kseVzT2+SvG0ujB777d/QwXyu/S9uVk4uQzOMHWdf2rt7Uv67vkz/0EFl3b351c4nzdw9Jv8ExksEe8jP1zqbXJx9f9mVftnz1V3/18gM/8APbMAm/+7u/uw3BUGEWKuTCx33cxy2PfvSjt2lf85rXLJ/6qZ+6PdwMKo/dAnff8i3fcvu7yvqt3/qt5W/8jb8xrPOlL33p8oIXvOCa69/+7d++fPInf/K2vk//9E/fAsbf/M3fvE3/qEc9avniL/7i5ZZbblmuXr26fMZnfMb2c9KkSWOaAO+kSZMuH3VGhg0sEJn6xBgycNgtNi9qiJKuKBE+l0HdBl9zYZsL9ETQ8hXFznggXXoV+15678AH/AM2+H18u0qWV20ifMQbAATJ9tvAcD9VHp++1S3yj452B0TB7rJZrhS+ItwZERPTlusuyvafnfrMmh2uyFNYS51LASZkEXf4QoZfrDQOL9DZ3u4O4zrdurdTS8rD7nVYhTX17ZxkOg9TGyZpVycfpT51reRG2fBrB8RODQ2uWwXBD6k/eTCmaE/pCsdR/CSo7PrwwHZbqAuVxjs5+9ehq7vpxnW6/e5b68crXnHmNe02XuOQdU4f6IDjZRMA08GRBJdghju4KGPcMgfZ0zUbxHeCOxN/xPE4iKXhDktFS4WzkOjY+vTODYL2b3vneScGRJ4yrbR2z895GWXkYEeUun5Xmz2vm4+cd1P5vFFGvBeHqeiAGwPryMgK5T7ys23U393gvkg6ZJJpuufuRQGeJNdBGtfvvvGz3/JwuTnxmtfst47f0WTrBwr9SpneSeO3+8aycBu8e5Uy5p6Dl6+Bg0k5Aaa+rMnNZXT1ja7lpDriCzJ46/yek5yn04u1B1TWuTZOqi52GK3b+8rrZLCmT/vKy37wPAJ1u5ddfq8BR0DsaJHhcro2dCB795lydiB6ePNmXi5kJrVUHrMF3NbfiOpAswJff/zHf/zc9QKBH/awh53+/rzP+7zt3xo95SlPWT7pkz7pmusFHH/oh37o8sxnPnML6H7ER3zE9s/06le/egv+VqzfSZMmrdMEeCdNmnT5yIZPGm7126dr5aIWQ2C0cO8Wukb3qH8EtOYi3cByV3ZnYHpx23mIFbm93UKYNqbhY4OS9+wNxhRgU+/4g7bVvULN6vd973vtwjs9zOyKmV5ItK/qBWVLo9a8b6HdbdDRc3a5HRDTtnM1xpNGODd/heNUs8trt0RQrJX3K9EmwHiKEA31+zwpA6h+E93dOsJE3J6RXQd2hY3Eb/Lnm+Nuf+FT4GUZNgLeDZS7i8iDLW6AlO6qa/e//3lVqM8CX2lzqVJdL49bYxfEKi4CH0RFKQ+513fa4T5IO5Pr8Ex6yoXqHgAx+w9gnPQ79QD81r3KAxZYnsN132EeGD4+e8z9X3/uBwPJO93Y+eFePdXj3c2jClrC7wQCDD51SLsVaxSHswM/nC+FnLsfNHw02EzOg8euXcE973U8+doInPL3EQhkQCe9yIpyI6sDYTpgx0Q7HdSa8rwZWOQJpNv1SaAS3hIkTZ67SYfyLgKAJTB3ETBxxDcySVklkJfXs915zf0wAvG6+/DT6a290FPfPPHmQynzdPrfPfc7va6/3Ml0mbn2SB3z/dyptGw6Go2x0fzRja81yg3f3LDwg8rtMwjsz+Q1dXr08M0HG7yttcV97boy7Ui2SaP13EhnzX+2O2XZbbKt8Zw8uWw/0Kzzft74wZvrwdGirdOfSdfQYx7zmG34hXd/93df3uZt3mZ7iFkBvhX/9k/+5E+WX/7lX15++Id/eHnqU5/axsR9XdOLX/zi5d3e7d2WT/mUT9mGeni7t3u75eabb956/Ba4/KQnPWkbq3fSpEn7aQK8kyZNupzUGVAsJkFZijqjYYQIdmWnUdGlI61fhbarYLdwtvHQeX5xzwhf8tm90ouRn4toPN0cigFEChQLVMtysRFlj790G7UXcREIGmWm5x2naXVo5jkZb3Hek/ij5+0bA73pwFxgYYG1RXbsK2fkcp4DdKtr5UX50pfuQN5q4i23nH9723YjzbJzXeWz6FHFzh7DCdBtqC6gjFQVdwkidIhjqwn4GPfAyuiayk+4Uh9Oh3rY69j5jGHYwTKjjhg4pT4PS9t3BQQX2JvttUNmqkndM4BKvxQvdVD0n/zJtd673T4OOAl93Dniszdkm79TUQ9VfjtNHlCX5Yxs7FN+Csw9OAvRcMajFMju6W5wAk5r85Cvd9fyXjYqgV/SMDC9QeZdEBDy3MiyUjNHpvFvj8n08stOWWtLdgh/Pv0P1+48SM7U1dOBSCgduxTE+TW45Eki38gwyGees858fnVhA1IeHQDWXevan/L388PyXdso7fhbo6yv+z6SU1E+RLryc4yZb4cq6cbVCGTM57fr6ryluzZ7Yh3tGHK/A2bXNg5Sd0a8ZHtHY2Nt3HV97f7oPJddT/Zp/na7Ru3JDWevm0jXAfWp2yNZpW6tyTH1yK/B7KNujWr9cJpcB6/xNXqIZVm5cTDSi27sUwdz7B18jd9O9Hc2vT75+O3f/u3t39d8zdfcofx1kNrZ20CvG6rQC//xP/7H7d+kSZPuOE2Ad9KkSZeP0gMHwzhd4kwjA2xtoW0AmYV258Vlo8ivbhoZ6gx92jIyyPMabUwwleteQOdJYNQDmkiQVrztilJ2tN3GiZHUNYCEtFUHJ265rQZ3jSjaYL7hhl31J4DWwcEu/i64y1qXcs6RwcC6VmAusVqLXvziXRxXgMPy2i0qELgO/QJXIgwB5SIa00XxCHeTMSp3I/iP6yjv0TVnMNug+b2zxTpbspPlyE5MTMQgM90LFsVnyZe31O317HajumAqCd6XMwpAOYBwAffms8j2epGdy7nnUAvkTzU1tjhyQOS7NwYAzRPgzj5IUPucbtf9HZx7DvTFe/f44HjZjKzINaO8rhvAZIDYbToZNiWgaubpRCuc52z/NvCLkE7G/qniwBvGv+vlu+tcA5e6wXON0AeATAKrHlwdYJHyyTglXEMRLQNvkHkgGGBOpfQATTCF+rLtIxmsySvblmXkpqMnuwQN18rPt2aSuvaMvne857MuXwPwBJU8W/7Jb153+113V1YCzh0ADPG6AbLw2O7023LrdDef+13+NV1fuz+6ZmIDpZsouwd+ltsB0v7dycaTtXnKckd65TaNZO45a58MUp+8Bk3K8rq5nnl+LV+246KUsuzmX8+ZqUd8eu3qfhi1e9KkSZPu4TQB3kmTJl1ewuDHUB4t9kdGhxeVa4v2NFC7hT+L0eIDgGQEJiSPIzStyMgP92yoGLUCGbPBAk82QGvRTWgG6iXWZAKvfF/zlEtD1Xnrr9A43EfhtRDW4iHfyT9naO9wrKPGHktntBRfsljXANvIb/wAcK5YKjYJMZpNSvGk3bsGtqb92TmOwZNBzSy/eDOGYIfHtIlGNj9yhJ8EfGmnw+IZf6AMnz2F3CqSB+EtyjO60hegSzl4WDv8AmA84PDosHj4IqQCZ/PV54MfvCy33nqGiaVTm+Vpx/oEqd3eEabg74kJJM9sMti7Osn9d76+zbkQDdtPD3+jyniCppFsphj3VSFCt+J0iuz5kzItwGxICgXQJgFI/gCquM53lIZB6M0z81dtKn6IBwyfPiyt6yyX4R0G8tBOp0MxrVT2MjZZwTzvl7ISj8QD3XwSCNoDoQMPnTefgaO2Om8qegJ7lkk+6zKv9SgnlW6HJAdYx0/Kc/Sczjb5ftf+bmLo2pHPQtoxOiQweUk5JR9+lWLU7uQ72zqS3z6ZdfJe2yTJ9cqIR76P9LADJUd9xYMqJ8jUy46nnJjzngOfj/JdtE+sQynjjod8sKcujjYLUjb52zLL8ZbpMu2o7G5MJbmd1Jmbd24faQ0AOx80D+OaNGnSJaQJ8E6aNOnyUQIEXnwaIbMBYI+yzjDoDIxRvfmdMqnHf6PF+1o5bltXdpHfu8932vNwN9cJCMxr0Sm79A7OhX8aCObZ6VxmfYLEuZxMb1GXd2L5Kh5vTptfeFS91o9TX/32q/Rr9gb2nKur32/8xjtxFGBop+vKU96+9gZNsbtu4xfYLThIZvd1mAhlJ45jrOEaGZ3kc6SMLBfVsFp1B55ll1JGvpmcf5Tt6Ci2yTL+rG11Y2Jp07n86psCjH1eYuFjYIFVzstettMNy7z0o3OCS8ymwz862znTIO/Oia4bwoXX2ab2n/Onc/6Vw2KwRkMVxPcTsDcP4spDeLJj2chJY7quoeQottH8FE4qpOca5iQUAR4RgBXanciJiaQh+LEHJQrmdnE9vV+7jsvnBve98+O0lGMlz0GcMnCfuDP5TqgcAPnOw6/qI3i1B3DOle7HnIgo023g+xqIxXfrksnps8zumdiVnfwnr115mde0D3TseOgAMefp2jsqI/kYTZbcS/3q6ka+3caBJxE/ZEa8r1E3HvKtnkzftT2pezDvI9qb/ZNzTvKb/OS8Rxp+MwYvqou+5u9d/1B/99Cgbk/2VRYbOR7HWdfaGnXtodalc9k+RCDrHOXr+CrKzZ1MmxsIbuvaYuc6KB9bdybdVfiYNGnS3YsmwDtp0qTLR93isXvFzum55oVwps1yi7rFu43tDiyxJ+qIZ/OVPNrjltcWDeYmWJ0HrzhWboLMRbgSJpLUUScPt8XxEijTBgwumYAFZVR1B+MAdKj8bRWBJQCcgqOARdEkugRHZoPDtmNscz/gATuv00pbwCFpi8BqypmQeqqMwqurKZU2Q0bY1jZYmV3BZ6XhLUocLEf2c6qMVdqxau0wWURUjg6Ld3emDWkg2PiWy0YetIMYx9isCe5SJ91t1YYH0hnbgw9CVfiN3uc//6we+ia9vA1s25ndjuXwVmVwcBoeyOhc6Ujlhw/3IecWwjPyAZSuOrjfbRYQCgQ6OjperlS/olgnN4+246OEuHN05yTCjT3SrIg0BPfmomogcwzesu6IBOiqDI9TG+ZWJncwg64DWhIFd+wTt8NzDu3IHQo61SBxDhLn9dw3AkQM3limbkMXm7UD2cibAwElMCgMEY8m5eYJxH1gNMF1rAFdaxNM7lp1k0KWZ2DtIgBvB0B26f07wbvRc3RfXaM0eX+fJ2Unu4uUnfrf5fUOWScrg2IJCmafmIfuXupQ8t21teO9A/a6Mjt5dOPWE3aOSd/rHmxFo02qLuRKx9+anjntSCbmh3sOVl9/tYOZD6RsRyfbLDfTXOQaepZzXY61TldNPJTtJGDAPteb1Od5MRdofoNi0qRJky4JzZlv0qRJl49YDHqBD/riNLmw7QBWL1yNEhrQcB3dQjcNAy9Ysy6++7cXtQYzQBP5DWpGns4TGMMh67Wxkp66CY6bxwRBfOpV/fb78PZ+8+vSxVOBSfe733kAuOvTk7/NwcFydHx8DlMwqNZ55JqFrIKutehxBkxnt2IXb14wJ8ReAJxtMKucyy8+wbesMhYReYpQM0BCQD8TaRGt1Yn21ie2YqWpg8fskFlp6r5xMKuAHbeMK3SO3xUOAVk/8IFnMrP3sp0WDWTSZuRAvGGrZvZL6gF9Z/yFOsEh04b1sMb+7JzU0Jn6gzd0znx2zkeJL9r5Ez58npbbRZpzuMg2WskJoKs5rZKcHZJSnbgLa3J8cHjm8euOTwDCY9zpPFiseNSdnp0GpBJoAbRIwKvrYAt5BErUvRqEBUjzpkJ69DJwslwU16CBgVBk0rmVu52dslBGuscbrOYaaVAOZM69ERjSAXzuY7eZa51nr9PmpJjtcbsT3PZ969BIt0Zgn/uuA9ZS/v7rnlNd3ixn9Hv03eBnx1/eH5WTOjUCeCFPcAngXuT19QTyuvIvSp2edGmy/ry3r07WGM7ndqTO7uuPNYB07XvqdwKpIz01dfJiEeMdQNLUPFAB5dll9rzQbazk9659eW0E1GZ7R/ezfUXeyeXPc6K9zfP5gAwsrxzPkyZNmnSJaAK8kyZNunzkg8FsXHbGcN7rDA4vKg0Y2JM20zi/yzZQ6TTdYtt8kK9DpdIDxWXZkMH9Mz18TQnsuu7OS8hGVBpVBn0N3CBDFvyFkHEqlkEAnxxvsOEk3ebEMKgwDWTFIbi+F15M8yucQoqQdFTF75H9hmoVuevrPqCru6UwJrw58fakLrxaE/PiDXlERHoc9dxOe4fSlXWv6nSZacsCwsKjgVRjSm67r6fdnG+tJx5ImsRnIDteJU7kEBKOi+x6Ejsa2Z/wCD92ZHfbDep6yJKO78YlR5SySvzTgHV6KtMm8Mhs05Z3EroDamyQyGNRQNApGJxelB3okZ8dGFe/Pa85T/JoKsVG6d2G3PzygEBZOqCXgZgDpgMok38j8x2vOb+nXPaBhpaxwYwEWJggrKzsoHRgHicOep7twFbrgdP5nie4bNvIMzcHdv7O9nW6c1EALdOPJpWujKQ1YDPbnWuBLMfPOuftJszkO+UzWhusUaer6fmYfZLP8331jMbwGhi3r7wsc23OSP3t+qJbp8BXrpO6tZfLTbn4QZr9md6lo7YmMOnrLAoMhtY9xxWqhzuHAXgBQzzuup/t6R6I3e5oJ/dOZ9fGgqlrY1GeXIr8mBfddhYnBrkZI127LkB+zN3ZdJGhPWnSpElJE+CdNGnS5SO7z3WAYy4004Aoys+iDOjK6syIT6JBuWg1+Gzjz3yTLtGnMh79ep7rdnmdUcehR+md63Y4n9vdgbiQjahCC2+++ex3Gui5ILdR5AC35MngsTfeuBw7pvDmYAtk4ZHJIWkF7BJywG+cu3kcwgXIR4iFDjtINchuobuwsXCkxh4EwyqQt/7q2l/8xXncBnH4tf5Uj8RYbG+mCndq4a7sbN205bIMq7EdLC0r0pedWqEtkI3PxUpewOIMcGLb0aceOti/yByvaYZn7u8YQLYO5P6M0xGfN6KCnHPypP9Sfh76HjJcryFiEJf2cXAfeluEd3A6rNnePe0Dfy/v9mWzO2StRsk20w6427Lh+cGd6LE+AslyLHfzQQ6enIOTLMhu/BtNr2ucwJdCpj7mu1T0TmGTHz833JnUAfgJfx2AZ4XiOpODAYqcJ/nttB7knezsQt6hF87TATvsaJhol9uQf135maYDy7LNWUaR3eZHupjPk04/qS+fW8lXNwE6bVI3bpik3AdrsnLZrqPzcs57zpPycR5Pai4zQ36MkKaunaM0nbyT/2x7N1+Yz64u+PdBjilHeOjA+dThTkc72eR1KB84yW/uPHryNw/EMYJ8YCPpGKscPOs1E969dY85IeXmOdP8XkTHu+9Qt5bsxqwP1HS+bofdD3S333PvSG8nTZo06R5ME+CdNGnS5SNAgaJExKARWIHxncYB5eU79TaYqM9hCowu2hAwr34f28aGjRTCMWSMAaNttCk9fQFDOkOZNAko26XQLp7k5c+y8nv0+cogyJ2v+Z1+ZGfQyZ4seLfU4Wr1ijlddrTjy+wUAezavkJM1RwA1gLUCFngcuhqxF3pit2XvOQMDC6gjsPuqwyLHSe8ApsrfQHKr3zl7rPKqbyEcsC2ybjAOO4QL9aOi/UH1o8K0QY7Nnb2ltUqVbHIHqPks3p34LCv1fcCsrE17axNnFmGA7yD2eWeDP3XYTT0aQKsdnJ0GAzjHB4CbofB08QB0vYk3ITLShwrMUvfN+8JJF8Y79iWtXPlJRxDQbtuYx1HuIvj0DCXXp8WOMp0rsImnqdBVt/zHJBu5iDYhGepvASBtvJz8Jp5g2/mGXvzen72POQOQOnMnzs+XdLrmjuajqh0zK3ufMerdGDqTrkyb/HFCYEGq+q+Aa1udyXBWz8PLEPnc/mpoN2zL8GhNWAsKb1bLYNO4btBlf3S1dvp+Yi3lH/XJybLuVtPmL/sv66PvFbpeHfgcT69MzWSZ4J52RYmoOzDlE0nO8toJKeL3FujlGdXd24CQF5D7OMzdajTu0yXa6RRWWtlZPtqAeF7jlXUlefXe+CDOYp1FTuFOVd3srjefhqNRa75eZDXO1lnn3p+95zsug38Tpo0adIlognwTpo06fJRoiEjg2TNCHIef6Y3boIPRQYbyAeC15VJ/s5TATDC94oHgIX6jjcHxoYNN/M8OvU8PVD8nQV3ooGJliWKRV7X2xnB8Gu5Og31cvLUDqo6xavSZgY0rfivxl5acCxsdcTGZ55nUjgUzjM0D/Hka/Xg/NwrQLfAXQDdAn3x2K37xM1FReADINH8A1KnXU9bvMdgVc+utb01wkvcZZ3jTQKYEPYZ9iV7FB1mkaqL86KdTI2V2ImbvYeMk1t5qu4CmUdlpB4YdM7rlgFluU7K8z4JOuXfBpzpD+rAYSsB9tLj+vN5hLuyj7efr37NLkTJlSu7A9e2cjw+WjbbztpVdBqSYevZu+zCm1hZE7QtcnxxvMtQxgRULUwrUAJdGfuiBkB1Er9RmPTQsqKOvPdQPJ+KV5SHEjnUgZWD+qibIMsjYC7mpdN73hBDAVLeOcgAapCT2+R7rt+bX9l3pgRguomjA/qyzHyOjursQC3nsbw7frrrnS7kX1ffiI/uftY7AqYuUm5u5OYmiMvm02uBrDfBVusvaXOj13qLHnbrnJS75TG6Z+pAUT9srpdcd4KAyYcnUKflOiBh8titvy4CgPphlYuKTgZZlh8qzKO1sPA4zHhGI166dZYfijw0ak7l4dKVA1n/uwVTEum8geTrWX7qJ3V6/ecHowFeyqNP842P66DuUXdn0V2Fj0mTJt29aAK8kyZNunzUgaidseD03WK3M4g6gzqNtHx1zgiPF6wJ2nYGJot0TvM68WI95+5Z14r8+htlJKibbTWoANkoTN6yPW5/tY1gt2nUdJ7PLjdX3enVfJKu/t+VfOKV2GDKtpUsjnQgc3MzbabzfacHiCyA9k//9Mw2MU/gS3io8v3lL98BvTgx0mTCEli0dtCxmtiRJ0FK20wGry1yQkLYFi9+rD62wdhboGw7lHfgp+0/wgNSJvsSyT/qY/UDZ0ushT97MFMnMrQTn+35nA6oo/4cjcVnYLk+57dXsj2WSWd1Lu9x7PGSf2KBBnHJ001bDLmXvWx3/9733mwdwQrMPTysztqBwAfLmeF9vBVwxa0+OovfSwyR0XzG5lSlS0DTgvW82Bn3CNZj3wCFByodZW9YD8g18DHn60xjDz8GMh1k5XBZ6THrdruuDgyjDoJj57PDg5P4LpZPtsX8U8fomeT618CiNRqBTfmWTPKU37vnW/aD+e+Aw+yHvN+1yWm6Z/2aHPJh4D8/m9bk6Gd8ehQbmNunQ5DB3Sxv1A+5FsiHndOm7nd6mL9zHGTdXbqst0tjOXfpvUkz0k2ffNk9DLr1ShI85MQ/kvmoPyireKoHqR/A7Bh7PHWAfyfjopxbmdOrjvqr+ScDx3fyHcnadRpwpc4k583wCy7Tbwgwl3k+c9/5wX4HwN1JkyZNuifQBHgnTZp0+SgNnrVX9hKktPGW1BmleL8CsnaIFddJ24EfyRsLYtwgiwoFzPe4i+waCdpIGZYJnwmwJsJn48L8G4FL+SRPncebDavOQKEeQB571wnw6Owr2wLpAMd1xJmiSPFQdnWpgcuRrW9cirAP5oc0eNWWapQ3r/EtDlyzqOs34R0AYw0g4unqbiubcQfy7dSm8lOmwWB4szOMRQ3mV86V2KKEW6jy66/K9vkviTtQj7s5w0fw53aUOhNXN8Ocuj9zyFJG8cr14i/t4oydm1MCZTOkiMdrT+ocHr4OGI8sDfhmuzvnM5ffOb+fpdlcg3Puyjo+++4bpwj4iUfv+UznG+D76eWa8TqcJwcnG1PeXbEQAD1pMErjgMt0KgLxYDTAQFq/WZGAbXrCJljntnZC7wDgERjp75Xvz//8PMCLUvnZYRl74kGZs130n+ssWTmkhCepNWBqH5DnNo3AGvSsS5PX1wDcnJy7tuZEzP3sg26Sd/7sq2yrv3cAffdAcZ4OmHMZ6aXYkR9ylsNIvtZn64vBMfdXticnq64tI7llW0fpujSeEPflJX2u73KdwfdRvyUvnS55bnCa7Bd48qfLZ7OMA2/ZzMmdWPdZyp+yRuPfscuL6kHNbiLOAg4B4bJz3OR4S5lm+83jWjksPLwLy/2UgdeeeTLqSC8mTZo06R5ME+CdNGnS5aORwdUtjru86cbpe51BZ6Mv3y83gmYeQIDsHpiHimHUE1ONe6R3+aQtAg1MFIn22MjMBXm2b+2VxA4dS1mvyXDUP5lWrzlvPRBP2nWW+ny+Sn7/+591i50Awb+NeVgU/rOdkfcSpzCrNLnDLtzlxr6KJ0De+kONKm4v2FgBvQWsVr4MZ8wnILMdghIDMNZmlbC9lva9MbjCqQA94SWHVOIgXfcmD0WltqXqhCElX2JCnRplGyjXexcjuz6HqcmH4Ll/MwSkywafdBrjep2XrmWyb2h0166ZcraFacfj6GjZjLxsS+jsHiCQROgRLEGoc15xSBrKNii5BupZ8XlLoQML7AlsYVkodi8fAWzOawDHYILbkhtgnVLuA8Lc5pyAPOGkLLN9VnA/rwxk5XX/pdeiee9+J785+WVaZOm+H9Xjz2xv9n034fkZ3D1/uraY7Onpdo4o67f+8dltllp+OQG7bWvrjcyTdSSwl+VazxMgywm0043sj46XjtduzI3kua/O1Df63iBpps/rOU7qd8YzMuX6x/3ZtaPTRSZ81nL0l9Y219TvuSnnCfdVyt79Df/FEw/tWkTU/MlCaE2nu3mgu7dvnHV8pp76WjdXeHOik/MFqVub3Fl0V+Fj0qRJdy+aAO+kSZMuJ4GuJBKWr7J6Ae534DvEh0V5ZwB5oWnvhA5YLcKgAJTtEEJis+Urhva8NXBigyWRPRtuCWyYb/PRGeOmzgg0wjTqlzQQnNef9BNeG9tyD5erR5vloIoQ7+A5nNNEBIsSrwFdRMF9h/LssJC0zysP9lmVY29RN8vis1MgzSnP2AIzK1ZwqV19Ug9YW12v77fcsqu70sCzxeT6/LYjculsW6tFdm/lcexcY2XcLznvszHZw7A95zfhUy6kKXwPDJGy8R4mLKrzuF+Nn9TvsmUZZtnPOdyMj/CmfF13GAXKMEaDSlt9E2fpDslj2jGeaGzOQ7z7S7v/DLyv8XG0K7MDjdITLcGdnBtyI8hMJJiVrtEdYOpO6IASe+9TPm8ldOCY81oY/qMuzz85d1pG7riUk5WNDbgOuM42Em7HZA/LIuJl+h58OHaw+U1wq/PetVz8vQNmOtBnBBZnX/gayg3/CfRanh2gYzk7fQcsjQDKDsjc91zzpJDP2K79qRM5oN0P3WTpT+uiX1lPygnbcvdrD51e58Mwy10Dx/P3SJ4jUDfrc56uj7t+y7Jzoyn58ysV3XqM6wmQj3RopO+dbhQx7h3byPx5J9YPpi6mVD5Yuv7LPC6z6uak01qElFx8Im2W05Xt77lWy/QeB6YRGN31feXt3soY7chOmjRp0j2cJsA7adKky0leIKdhzr1EYkBdbGCNjGEDBg6ngGGbBiGL1DSIbFSQv9AznxBmTzobCGlEwleCs6RJl9TOwOwWzSPjm+8GhOzq2YE9/g1l/2TdIGGHh0v57R4fbbZRRSvl0dHm1D4CQ7ADdYmSN6OrqAIP73e/HXZu8LcOQcNrlrR133gLIfPoNh+iVp+cQ5Vn71ns4PnEn73vfc8Ouy5e+ERcD3jAjjeHZSCcXqqTuxRRFk+VNnF1vmeIB7oQgBWbNLvXbU+sxmUn7pLYA5/wgTdzp3qdE2W2P+0+wH762Wre4USp3iMecCaySlvuqdpZl4ej0+V5QB25voqxu/MWrri7eA7vvNu3RWw2yybHfMcMHWHGSOdBYRCLDi3iNECETqeyAwJaDhjqV4RTYOxsJNJOOd5A83xjEBHggnkXl2qE56DNmd/BsiHqSz67jnIoHsfTrd2GbtPQsUjYibCyU17xlUBpgqbus3wGjebwBP78zErQtKvTNAIH/WztQLGk7tnW3R+BrmvUgUj53Wm7+KE5FhJYdnmdrLMN7u8E9v0agPOtyaXjxRuvo/K6vzXqJsvRBJbXu9/7yu6IibM7RBZ+cqMpefX6q5uXXD+fuTHVta0e1vUQZk6hLu9I57grGm2Qd23r5JJj32s0z6s1D7IYgpdsb1d2/nY9lt1ofkB2PnU0Nx49/1zPmJ00adKkezhNgHfSpEmXk0agob1fjS7ZKwqQY/R+tT1LXa4DZo48F2wgm0euA1qABLr8keeWy/KiPhfMCUQbeaQtXqgbmB3ds7xtKCWYm6d1WT60mzpsaKVBtqvsnMjows4RxqIhXYF9pMMBr2ydOh8OVSCOboq8qPI7RAGxccG7jJWZbeNhOBXVNYDj+iwwGmcjYgCjavW76it7DEwo7Zu0cX1Id2eXnhOrKO2zffbVGkZvFRjVx7Vqn2PWgm2BC9oedD8DStdn4WgG2e0Qiuy9t8N3Y4CUDTZoPjsMhbToku1pIg5Qt2WZQwjPcp+FQ39VOR5eDKnasLActt+vVCU1UqrQG3b1bQ9Wc2iT6CDPYUbBDfDSMZ776jpgQYIK6ZWfqHYqXDXS7tb5xgSEsBNs9G/yGuBNsANFQeAGweArQSLLbA1sc7s6sMh/1EnbrVgGZRKAHXmXrvGU9z0xdM+n9N41/ymnbFvyaPl6AlsDahI87epO+a5RB1CNZJN8eCC7bQZ5XVby6XsuL8HHbFPniZv1uL5Mg/6TPj1JRw+s5Dd/d/2Qshtdy3sdSJ58+Hfys9Z3uXmfY9lrvfTgTdl2sumo5rLanWVn1nVxRkNuYKz1s3kzjeQ2etADhtuzmVdjOIgt86yNr072nbxyHZmLq5yHqLP48s5nPhuuk7o13Z1FdxU+Jk2adPeiCfBOmjTp8hHGvz28WAwazE2jOI2YzvByHTZOnI5PFvFcYzHdEWADPBuZyji99o5NUMKvzBVY4HfBE9lKECbBD4MXHcABITvkzv10G02j0F4c+d59ln2SZwtQVdFlqw1saTepc4h62ct2nwV8Gqsve8ygrsE0yi57DU/bDtRE3IR+SGwkRWqeC+CttyY5/LrKKtASFah6Kw5v5aF8iz7V1zxRZ+ItXCc9WL8BVdpkb9/iCW/mzsbPP8ux2mT1qD9iDdvGrtAUDj2dTm1uMwA9PMA/tmGqtIeB+cy2GL+xugLu2/ko28xbuY6wYnnZGTWHG17XvN1b1zg8z7yW567L3E0ZG7WjEp3BuhzAds2A8VySnWpl8nenSQ84/hIwtcLm/AsfeP3mfOB5qwNHsoPtZo1wzAe82Uuyq3Mf4NRdS4CDHQjueWKoOnhd2s8I70xkexMsMQ+O+9GBIB041YGE8J339rU1QSEDOpZr7qZ0vGQf7wPW1q51n6nLXfvg1+k9seUGccdHt75IID3vj3ha47vTX/8lP53+jL5fRPaj8TNaV5BmXzkddZN1t4vYzXPdegZ9s7xGoHfX1x6beMZaL6wnyD3DMPDQ5Zrrz7l5n+6O5NudAcGCph7q9cdclPNUytIycr3d3MxD0Hxa3vx2Hd1Gop8nEyGdNGnSJaQJ8E6aNOlyEotBg6VGbLpFrxf/udA0JeqXhl8ucDsDy3W6XBsZbkcCpkYgHevXryJSFq87J7qYRjbl2ts2jX0b5Ak4dK9/ZvtttBjZKgODU57twsg9AR4HNxSyuFk2J/Vg+1jEKb60gQzkYtvg6VplVbxbmgc7BSBWmuzKFGN9PvCBu3uV58/+7FoHqQ4roUzbNMVb8WKsn3wF9mIfFvAMrmNA09/tvJ52Ld0Lf2lX8UkaZNMdFGbVyb+08yiLoZr2v/sqy3d7it/yZEVOBlR5Ozb3V5Ivf0fWiU/6uqOoePjxh2d3ThUGl7lmfLWbdjx8uikidYiNkAJ4d5hufYYSduBFBx6ZOjABZux9CnhRSDWArRms2CTVaaXE7GhkPSDkxAuxsmYsi/TOrXycWuhT460Y2Q63u/OMTXn5ewJ3nSJbPgab2UWpdmbcF3gt/lEmBjl1JR8O4zDqs+57TkpraTr5jcj9lGV4YjJg5H51n3RgYMdTR2v6vK8tOUnmZJQDdK2OTjYedx0vfmZnv/g+ZebElG3I8TviLyeXfX3dtWtUXqbvvjufH7AuK8dZ3st1TxEPilE5zptlZvtSlwnLwJzouSd5zHVi5+Va5NdL9sk5H2xdv3HNa0ufQ1Fzb7WDuXME9HoeM6VO5SZb19aubZZT9s9F5p5JkyZNugfSBHgnTZp0+cjvr+fi3UakKRfvHQhJGkDIovSQ6ha8IwMBQ97eVj50jYUxRj2LYNwTDXKkZ0R9GvFLUCMBX/Pl+p0nQVqjjhmfsqNEr2x8ETMTjyi3i/v1uxDWq1e3ANbxQb16vvNWHDlyJEad36vKwpjwjkx7ubNP1+wp/gz0dSJO2w5bK20oHyyGaGwvOhxAp2ZuS4Kkmc5O4KM3QfO6u4g0pMPz1GBs2rZcd9hTVDz7LnlIO7acIJP8dr6HJuEGcR7PfRLk4PzUzz0ftme5JS7Hnon59e/EiooIM0HfG0zu+iWdI8/EVkEaKjTDZtm8+lXngypTmTPnAV2jSl1xgkjd3JoATrpQk647oCtBMIMLFq7LXzuoqPvMjTHKh7cEht3WVI4OxOkmKNqDKzw7TZ7rvaMACOwOd/psV9f+tb/0ujOfo0k02zK652dYJ8MO5Mry/Dt1bg18HE2Ia+3Jex1InSBfTq7ZH90ztbtHn3agWq5F9gGj1rtOf9ceGiNZjOpymtHckbq0Nr9ctH5f54GZ9yw3e+3npnqCyF193eY/D61an9QnwG6GVRnpWi4WPI+OQFra2wHR5M+5cSRXz2X1xzq0nhf1l0Av+Ua6mLKnjlyH+rvnT/dL9o/z7mvboLl3FcffO8D+pEmTJk2Ad9KkSZeQ7MaYi8xuEZqulWlMAULYBTAN9zTyusVtokdG+uwumt5opKcc4l06HAJ5AX7JR5xKDBC32/ICbAZIII0BBOrlFT74SvfZlG8aTiPjD/SyjAnQtnS7fPWrl00ZUYeHy+ZeB8uVw83y2q0373kW3HWJZ6VdUdUWbgJglyE7/QY3YCBNztCGfHKwm8MRUJZ5NCVQWvlxQrSnMd/dzsQZ+DT2bqwK29Zvw8O/nQfdHThFpgw7WzijdVC+nRiRSaUth85y9uSANfI6dCG/rZ785ZmJvk7oDbcfPhzxxDGPbfN2+FzqmfUpcRqXRXq8jtmrsU7RBwZ4M4R1t+9kfqqYbVkjA9KCGs1RaZAbeHKabLzD4dBwX6syOUmQ0+9SiTz+E7jogIwUhF3N6WDzbfDEE4S9Y4vsKevYlF1QbSgDKPPdwZgtR05CBJAxqMHOB8HCDdqaV8+zlneCS/7LZ1e2zZNWly77LUHwBCmRt8saAVOkTdA0n6/mpbuelOm6fF0ZIxklmV+/epDPP7cpJ+9unHUyyPr8mWUW5YZJXh+1qeOha3O3BuoeDp3su/XDmnxHvBR1J1V231kreaOr85Lt6vV3vHYZq/XQ99tjrjM3xHIn2GNmXzt9v2vvCAzt1pfcz7Ugiw4eRJw8e9Fx06Wx3mcbu+dRpy8XHe+TJk2adA+kCfBOmjTp8lGHvqQhZYPfi3oDw0YHKcO/MaTTeFszTFwGPNhjy7wbBM5FPPWmp0NniJTxQV0ZO9j8pruiX6djkW+00G1KQ7YDfTsjNHnxSWnwLI/pTd37i7849Uy58V73Wo5uunE5OtqcO5fONowBP4sVe+wUFJMKnDgKb4FHH3JfeU/w5XNdZ7ut+HjRi87wcMgO2tUlxk186Ft90mRjONSBE2Z5eWJLUo67JnEFd1V9ogpWW8uKuhkmeORCI7zFw2oNEzEvqN8++y/VMu/bC5kwgsjaYSB83qB1oqN0HoL3VHHKTScn+HGf2GPYmFaW6/T+O9uLOT6pozY5jrexqSsUw8FWqRrwqD5RGATZHfiTwBzMWcg5VulwTmQHMAEUAAjhJDoazi6DFQ9K12/H6vbmlTuLchyfhIHYeYR5fs1TGi0P+PIciWt1AncdOJdeena/J7YkA9wTBcRgpN1r3snu3+7+6DmVyth5H9I+g5GWk8vqvnfP5S6N6/Pnvja4TteVfdLld9kdoDpqU/fszWfzWt6OB7fZ/Fo/Td2ztks7kt+o3BFvo3VOyj0fTMmDP9PD8yKgb15jjLiMlCkPV3vuZxl5uqZ3JNEldj3rN6e3+qGZ+u2Ho98EG8nS+XJdm23LtaPrt3y78ZbypP3p0QvQi0fvWjlde7rNG9fb6bu/u13Zr5MmTZp0SWgCvJMmTbp8ZOMqAUT/Ti/aXCDbOBuhPd2rp9QzQrpYrBr9y7z26KAsIz+1+LanrkM9ePHPddKTlrosM/LZzRRe/S47beK+gY80Sgz82M0yUcUie86l7OzKeZJ3c9tty/ENNyw33nC0vPo1B8sNN2zOebcSm9YxWO2MDDt4pVaoBtL5zUoDcu5qAEQDuWmD8b2zQwymuhuKCrytcjlUzWlw4uMMPTxP63c67zm2cO4jWM2oN1UjgcgOi+icuJFx2mxdWtvNhCYgfi3pHLLBDkS+n3Zstbvs0Je//CyvHa3g3Wcb1t5B1xc4MmGXVxm8jVvl4IDpN2Ytb4dQNNbnKANct1e1HURzGkrMc8fu8bI5ajrKlXadacCVwj3e6VQDHZ47DV6mAvGZHp7mLfnNA4lSeYoMwFyUEixMfjPNRQGEDjTpBozvoRg1yHmFgDbVd2TA7gQTU5F3nErJ4dkK6Dm/A0vcxo7XfK6Z3PdraYrsddzV0+kjk1dOkp7AumdvUoK60FqeEfiY8huBprS54z/rTnBuH/iWoHMHTnaT6wgcz3rWAEfz3I2RDojPZ31O3KN+7+pKHkbExJmvY3TpUp88v8FL1ycsHOq+x2Z6rXdyZpK3DFx+rr1S95PydNLsa7fX10f95nJZJBnope149HYHOXbU6X33PHBbR97Y/B6N7xXqnOPvLLqr8DFp0qS7F02Ad9KkSZePOne8kVGSi1wbo7kAZ8EJKkT+XHjn9wQPMCIcUNW8dEgc9dnFk/fVWWgbFPZ3e03Yk9c84fII0pYIJWVmmAqX0QEuHWDcxde0x0sarwaujYxVLN7bblsOrlxZbr754NTB+JWvPMNF7P3qtw5f+tLzjov3v//Z92wKrNmOAVSEAFoJJcw9wj8YzynyGSx25HZYQEDFTjXAbioUBKH//GYoh2HX90rjkAnd4WGpwu4euou2cZ1PrvkMKIDP3JcAM3QXU7/VCbCa9EQGMdZlm9yqkuEMbG97CKB6jjbCNduVhZ+5jcjfw9g8JHaR+xpWZWN2dk7thlhnQ1cM6pNvu3xroJQ72ErnCvy3z/rsAATPG+kBtwZE5XU6zR61HiDp7t3xtgZ0oLgJItf1UjTPv1zvZGQePEhTrjnPMTAIBu3BwjzMYC7iWimJPZM9gMznRWIPJ0ibg7DL63vd7xEYk8BkzvOjPhx5V5oSSO14vij/bkPyOCqzq88T38ib0vV1NNLtkV77Wrf+GfHd8ZEy6NZPI2CQsjvwN+cjj7GuT64H3E1guKOO75zr7FmfZTLp84oPc9II1O101RP9iM+19q61czRn5/zl/h1t+Od85gdqzVsA1Xj07tts6cgbUtmu0dzrNNdb36RJkybdA2gCvJMmTbq8lB4+XrTbOPY9Ft/2isrFpgFYaASk5GLaxiinx3fpjVDhYmhvChAnI5IYGyzY09vYi3aje+QzLwkAO409dc1nGoiWiynDS7jtNioS6KU/i/ya8u23LzfceLAc3PtwC3i94hVn2Tr8JbuoszPtkONPOyTDEqIqT8+iAlqxh8o5rzxIE8gEvPQb2fBnLJ88th/5XoeK1V/xVR6kxBDG7sJ7uXh48Yt3ZVXICbAx2oUzkXGpbt+BfO4Ok+1f5O/8iXGls1Fi/J29by/sEe5An2TIVA976sYLmvJRbQ8h8lJuOsHmFEPaHEo5RLo8pOPPMXhHIPH2+67E04KPN5vleHOwPYzw3Fgqz3calkBEzk+dR2520AiEoQ7K6EATK1hn0FuwfLKpZdBs5Bnssjulqvm3i9VuAKYrK+VxkXQJkKCIpYC4qwP4esJBedjEq/sOUE1/+bVwlKM7YC35SxmP2pWDegQ+JsCUsnU/dwNnTcYdaJnP1e65M/re8bh2bx+g1IHbXPeGSpfuomBulpmgHJRrm7y+1t4EZjteuzZ2lH26L++avuyrM+cQxs++jaqUseXKuPXDjddr6M/RBknHoydy6szNIMuh6/euzWvpRrqVadd00s8JP6x4aNaONa8VXXRjsKu3a0s+b9bG4KRJkyZdApoA76RJky4fJTCb4Gx6C5C2yO9M25s3PYnWgI3OSPFiNQ0Cu1Mm2miAxK9R16cN/TQaWHinAW354JZJWU6DcWRwlzLhKz19jZxZpp28khcb+PsM4PqU8VZxeY+vXl0Orhwsh4ebLYhZr9obqCM7r9LTBOMtvHXYHRadbz4jFpqNKCmXPEV49hqDcTfZlsRjtUDiTNd5iOK9Cy5EOAacaipd2aNv8AY7z+Yql5AOtKHSEabZPCWW0OH4li0yA2DO/JY5ckx7LVWEtHZqHA09DyO/XZoHiRefBYzX9fJutgqXHHJ6MFZgpzymh1Rhg7M+tzAPnYNPwH36oIj0HG5H3GX04Qx3QMgn+O4p4HWwXD0+OJFzVYhSDlBvCl4jz1cXDY/AAOveKIDsqg6ibXfxrN+bTQkGOHTNCCzolNzkTu3y0B7P407befNBLpcTBQGtzTcDFCW2S7xPhKQ//PaFJ6ARUERf5PcEUrJtbqNl4/Z5Qsu8eX006WR/5XM05Z1tyEHcgU5r+j5q0+i+r+VOlXkyeJhAl8t2u0d0EeByBO51bdn33E6+U2e65/toHdTdvyjYvCaX5HcEnu7Lz2e2rR6wPMw91ru25vci7xyO5qBujhrxnHVlW0ft5lrq41pZvu8NKzsH4NkM0DvSvYteH42tbPt1UPcIurPorsLHpEmT7l40Ad5JkyZdPhoZ1PzOhXnmTQ/dztA1qDkyPjtANfNDRh3TcPf74hgIBle5BxAAVT6/Ew9wTX287270KGVBPlDPDqlL2fn16TTKOiDaoElnsPi+38mH/ytXdoevHRwuN95Yh01ttmBZ4ScFXtYf+AnFYIcU2OniER/O1SbE1Nlz9UddhBOws3Hdd0hT3mz0GUoFNhpbshjhiXjB1It9lWKlnPLerbpwEqzQFHWtyuE6YrRqZMhjPH0p2zy4y9w9VmmD0+kUBbjOPoW73tiX49F2drsBUrCxzqkRj2ns0cpfeQknmNiQyUPODnlW7ZTJvvKcz9dyiI3s2Q2euecq3AG+p966BfLi4WtKoz5BttGOhEPFcM9u30b4Hb+EQeL5hk5GuXKu8PyHwIl7wpzoWOOQAU7K8BwMmOw24g7vjSzPx+YjPKNXrXXS41qO/Pw2R5bnutjBKd6QKwpu5eE3fdGBSDzfPDiyf/ntT5efrzEkEGWP7Sxj9N3y9usC1Ov0I569C2LK8rrnteXelUG9yUPysgYq+i9DF3V1drLqAOHksSh1Y7QuGtWd7e3ujXjo0nT6kGsjX0NmuZk0AoO7MeiHTZbdldWVwbXaKc24T07j+dNjm3nH80/nOb/voeO6Ohrpc8pobV26xkeODc8F3sCrOZXA9cxzXdnJG/cst5FuT5o0adIlpgnwTpo06XKSURgbc36lDupeO8UAM+ViswMNXH+Rjd804F1u97olr+Ta6N33eqYNiO4dep9ob+PDAGsihYDMPone9a4ZxR2AlHmRjds4Kgs008AQyODh4XJw5XD7FQCzii3gtLxXsRVt8yFeqjUoaDwHb0rjRenUTF4cDwEME9enu3HKKyrcJnET20SJExhb6WxFvgPWuo3wVeCmgVjAzwRZ3VV5nor5TPVxGSO1J5//uuHktPSNywXc9dv7vPHeDasiD8d8g9rpOfTNTusJYHcAr2WTWBzlcK4WgL9BXZcJZV1b3ak2HtWP3YW6fuotTIiGE8XaboR4vLFR0qHmiTrnWKUihOExzLikkZxeZ1CL+goMMB9F5MUN3XNZAikeALmhlUBERwnqdBt8TmtlNT+eQ52ejiveaqA7jjn9YWDb9bgvcI3PDTfHYWdnhlMXkw/LxPO/5TkC/FBclJe3Smgfz5euLMobgVDds8zPxW5i6/Lnc88TV8p11MasqwMBR21ZA6AyiHs3Ufp+ti0n046v0TOWvjPv7Jx5524EurmctXbnsz7lvQY2Z7neuMl2djwUeR5bk4XHrNvo9Zx54uRLx/3JtPmgz7IzTa5Dk9dci3lBkPqzJsduPHfldnx0vy1HzyfMfeyesoHmwPldeZ18ci3eLS7qmnfIJ02aNOmS0AR4J02adPnIi8WRwdotbBP87YwdG5J5PY1BI0YuM428XDADbBgIwNhhoWuwd2QQ892oEItvG14ABkafcA3NxXt6xBhQNmiRMiGv35e3cZRgRso/ZZ+uohWq4ehoOViOT+zWs36okA1lZ9x667X2GmwDsBo7SdyDtw4Bd2EfLAu2ykO2QGWrojEayuVNxrpu71R4TKzbmFKqcdrftMsgdP0GSyv1KsytQF7bSBlnOB2206vYqmhwMsFK0hobq3JwNLQXcjqF+uC5um/vaKs11+0sBfZVbQXPsDoRgxc+wBMNsOLpbBuTPRLuV5xlwFr3BXrh8tyHtLU+OXjP9cA/8szhcXS0OcX1zoG/B8c7GWw2y2F5uCcomn8J5HRKSKUJVCWZQQx8Bo8VtP6q0Qyc+qMjykOXPKW03pmxYnfgRA5eBnoOFoOcTuff9tbLObwDszo5FJVycApidmJOKDnn0wfsRjG/ejfDMWD8dkdOYgkq7SN44TUENh07/XEdtM2fSfm8HKVFqbv+c5pOnzv9QHc8OY0Arnyed88nP+PSW9g64jAcyVcHnCY42LWnA/oSGMu+z34iP7rVlZVzRMdLlw+5UX43X+Q4yvGYdaReJUDbzXUj3jqZZ1/wULJX+sgDt9P5/D4ai35IpOwuOmZHfOR8NeqL5LkbC6OymTuZf3wyaT1AidObeuiyzVv37HF9AMfXSd6cvbPprsLHpEmT7l40Ad5JkyZdPuoW17no79LbG2FUVnq7Oh9pcuE8WoR6Qe+FPIaEA3h6Ad0ZdBgFGJC4hzpkQyeHXLRX3YVQglyRx21LQMOGWRp/NjbSuyZBAUCczvBIzywv8g2QHB8tm82ZYUBRZVs84AE7IBcP1qJqqh1MeIN8zfYe2ZGwhS1I830eHG9a133iASMSwijgBOfy81yp+iuvZNtQ8ED7ECfqgacob5riDFjgJx7PiLq+uw2dTYqKpu2f6pGfhMxwWNHMT3oPi852dV90trmxHDsY2Vu5rlX7M+Rr1pF9b1DaQyUdO1NvrMbGX/jtOkzOn0MuPXtPwWDaIYZqI+SahpkZC9Jgrj10Se+GuiHuVAYU47/y165LfedEQk76q9+1O2KkntMLc97tBp93NkjHgEvAs+vsum803UrgzvLmV9dRJns55/0E75BlurTXZFGy8YFsAOeUk68QZNu6QUm70vOWewzUSlM8ZCDxfDY4iHnW39FoohiBP6Y1/ct6O8Aqn4MdyAqNPIat7/BkPe3k2QFcHe+eLEY6m+m79Qd6n+Aa/OaBqqOx4TT+zPsjvhgrowkyy8q2jPqwy5sPEct9rW3mi0UCJ5l6fKIvHv8Jxmb/u74OuM3dv3Q4MH+en1yX6+h+j/qsA29TTzpZJXl9bE9/15M60I0tz22jNy9G1ydNmjTpHk4T4J00adLlo84zwp5Z+ZcGl8GIRJUoz/XkAp/Ftw0qL975DcJm49/lEbuyyIvkfTHpuleHDW44GC1pHYuSPCBxNiYMJCeyNpKNjSGXYU9c7qeBDD+doQGfBubLk1fyMRYDEMd3Ijz4DdXCkgrwLCwFMBY7herTHgEctpdr4TB4g5LfDool7qoDG9Jvp4O3uI4Ox8JmT9vM3dDhB9Xe+9//rAsKKCa0JzFpSWecbWRX0sZUycSxkFWeYZWU5SNXA6rICq9ZA9z0r53QHQ4DLNFl41yHp256HuM8adwGPfBQwtEx+83O993he/Dn6cZDN+WV2FTufWzj756crbYUn9v8SmjApyvU84QbnO7dCSTkPMCbCJ7XPLfW50kc7VNgMF8V7ygBuez8TsFyzk9AzHNMlp/XLJMEUmgDckaWCRI7P+UDRjkuiN+6wHXcm1rO6wGbYF4nUwDtnGRQZPQFj+quvwGdiYuM17a9VbMfuj7Ja6P0nS7wmTo8AtBHQBZ9bfn4/mgtkLx7kuvq5HoC5Guyyp2wNZkkoZMJ8lZfsTs1qjfbbbn6cwT8p9w72WS5XRtHOpL8ZP8wpvbpkfsFYv3l10hIk1733SsWXRu78egdT88L3fgZ8e/2jvTteoDRkS6u6T/3c25KgLjbuaW8bi3Z6YUfwpMmTZp0iWgCvJMmTbp8xKLRYIYN/1xcjv4MTrJo7RbNuchkcZsIkEGFIgx3v8eNkZAHAMGPvbeKDBh44Q56yWLY4Al5zHcZ53Wd98TTIOmM0TScOgMgAQ2D7WmQJzCThgk8p3ed5L0N03B4fJJkcyoWd51BOF5vB6CsNAXy1meBngYWLTKznHgAYkTsqZaQ8xrnMqDpvAnmJgZV3wnz6TqSUEWAxWpveTLTLdiZKRf2JNLuQyWN+yFj149zoe3P+k0sYOSM2qdDaRI2NmUVzpT2tYdwEZgZHrukoU6nt3wZqn77vSgB5HTe88FxdmgyPggfo7dP0YXi2R7TiVd0mMsW1N1+qc8mhEwHeiSQmRWk11qCOJkuAcf6ZHejvjPn2GPXIEfWk55tCSAluJF/npdRWA9sDyCXw85AdlT+XgsB0AHHKA1ea8jFOxHeQTKIi0JYicxPfh+9FuDnGK9T43lN3GC3A97Lu7HKYTcs9SHzZP+kjDM9lM+kjrKN9DH3ukHT5e82J1Oea/w5T4Keoz7x2OnKT13vKOWdOp9vu0D7dtw6Sn7QxYv0f+bLurvn/j7yGivr4f5F+tF9Vg8me7dbZrkp3+mSx3in924jD8zU4euRgev1nOu6OgB8X9mpt92u46gP0a18uCYY7nzdpqPl4NNg6zlyneSuu7PprsLHpEmT7l40Ad5JkyZdPkpDnmujz8747wyEXKCnwUB6jCgvqEF1jN4ZJQLd4pN35L0Qhj+M7W6x3rU3QQeDIw4HgTEP4kWZ9ccpUPDiVzvNg8GfNLi6RXoHwLjMBEM6IAfjFUTy8HA5PLjSYhxpWzhspUPHVVMLuyj7AXzFTbKo8SJ1l4PPIBLebs6zlJIcyzd5NiXOBE8GhW2DpQ1H9xbfhaeBJdHNfgPdZ/N09qK7ns+RvdthEOkkiuczeUp2djJDja0OXEf2KS+GQZVddrtl6DJTXTsb1jaq60mcJvGLzM8ww4ky+bWzvPXg7G+3kVFxpw+2hR9vD1Xbpju6uhxsDpbj0odt5uXskDVvQNkDrZvrUHzS2eOf37lxVZ8AlRkYmbLqrzrCXqHsONx881nDARnJ4zkxO6bIoRisYClU8nfz0Etfevb2AnNj/b3hG177dkbWT5mesz05ZCd319wPBkiqbQW8ej4EWO2AI7c1ByVet64D3tklYjcmn4n0P7skxLkxgO/2O28HdGWaTkbOM3ru+v5FAMvM70koAam1STvLymeW5eL7CQJ7csy6EmhGl7s2dEAybfJDqCjXKq4v27XW9pwws3/25cn61gDO0Xdvkid1G8Mdj+z+EZjd8ZzM5xoylw8W15FewNmP++TOfOSd4bX5w3roDSenv5525IPcujua33LBlOV24yrXqJaPF0cV6mfSpEmTLhlNgHfSpEmXj7pFcgfc2hjNBX+6TyaS1Rkf1GG3wjTa0vvWgIvdAUEZbbTUb5/iZEQqjTpABcdozPfOTQDLRq1A91yvDUjLKBE4+DI66P5Jw9390RlSbt8o38lfgVibG+pgqQK7NucAOZrKb16TT0c27hlwTMc8ewanfTY6VydFlPkotzATO/WkfZ9OjFbLLC/Vl9/gVuBwAI6olbuc2MCQVcn2puvON/OhVGH3j9M6QonLT+9g58t9DPPjeivMK7wVllWYXuXhwDnz5TOukDE4ZIHjyKzSOoQ1OsTQpT4cVt0esLq6XkOpsE/ChzgMRepX/bxy47LcUMCulWor/M3uGo1AMDaQs2NQ/spTHW6Qz67pBg8RNu7wjlnSbXZZMe3u7UFIHT5MMuemDtDyd/hzWZ5fOiDE+Qxqe27lkznQdXexSjpZj4AV81SxYopwm2cXhv7g9foEXjwIDDY7YDcKVkR8Fqfzs8CbiuavFJ1Bnt6MCer43j7gbwRCZb+OriP3i4Bl3bMpn++5dsjn0z7+RvVlGj9Pcyz4u/sgr5lvT4rpvWtgMPu7AyH3kfWnk33KJp/hCcxmn6S8/N3j1GurfGB2Mqd8T+I89K3HqQ/dWsS8Ju+ec7rvBkLX5jLPgeY3x9aIp64vR+M0ecjyXKf1tRuPIx1yv/htiI63bm6YNGnSpEtIE+CdNOmS0+/93u8tb/VWb7U85SlPWT7pkz5puRSUi/j0VvM1L1Zt2NkN0IvUbjFdlK+nejFuwwPjwYYUIArp7O1rAyAX1j6EInlLBA0eoSzPoA/luH63k/x48aVRz28fDkee7KcOrLWxY8OvA0kwDMIrcbMcLQcHB9fYwi4CvAocnXsAcBx6X/crTi24CVh4Yt4dyFnp8YilTmMs6dzlMqpO8HXK7DCG7FIwHtuQIxUBuzFIW5+J29Be3l7HkRA1cJeBCYEbWR44DsKj7erEBOo6b8naJnZXG4vA4Sr5zj7C6bB+l5c2YWI9XM1L1UdEAYP7hEll/8P94OGQ7fJ99nU8RBIjNE+W8TYESYVd2IZfiMpHisHvNWAq0/KdsDFmhjz1Vx0OCo6A8IBLd2cLI12nE/gwDx3Y6nx53fmtWFbmjhIIrr+MrVF/t966LC9/+a7MN3qjswPhRoBGB/KtbT7CC/I3/8yxeEIn8IRyoaQcXkdb6Bd2c7pnipXT4Lo9u3P+znZ0AB085vXuGXFR8vN9pBujMlN3urdTspwOSHTbuusdr86TD6yu3gTdcszm2sf65L4bhXMa8dWBtiNwMMduB4r6ux+sXO/a3sk45wTHDl/b3HZg9Hw4uo70kE896+bbjt9su9Nk3aN254PfCw/v+no91+lU8jPq+66vR2V6zkpy/3stnuM++WBe8lsG+WC9Tlpj86+armd6mzRp0iRoAryT7vZ0v/vdb/nAD/zA5V3e5V2Wd37nd14e8pCHLA960IOWe9/73svLXvay5Td+4zeWZz7zmcu3fuu3Li95yUsuXG6V94mf+InL+7zP+2zLLDDoRS960fJbv/Vby4//+I8v3/Ed37H82Z/92TX53viN33h57GMfu/y9v/f3lnd8x3dc3vIt33K58cYblxe/+MXLr/zKryxPe9rTtnlffcHYUJX/Mz7jM5YP+qAPWt7iLd5iec1rXrP87u/+7vLUpz51+fqv//rlVYVETLo+6twbc5FqgDcN6Q4owFjuyssDbzpECm9agxmU170CiLGNMU8+85rXjdq5nSYMgnSdTM8+Gz0+Gcx1EJiUA5JsbKQR2hl1SR0S1uX3PcgHNZ146tWYPjoBwAzKpT2c3QnIBtBbRQICQtgbdCvd4TCdODK6fMhAZIZgpssKl8Ep0tgYZLARnuxwZ7XAwdqOeHbIxGGctuOcZ0c/6kSd7ZydQGqqZKpmqthIXdKW9adtc9qdIf+6N+b9xqexrQ6/MD8+LM+YRdrUHgIJGHftyGuJN/h61/7tiWpHA9fuNTCLnQ0UDGVHAXElLuI5RJgA6jGwmBsxuCXbe9aKXPeqLIeocV3UQeDk6wXqRiAA1zJsQgp7BN74Wno8djyYPMA7r0KDMh2oRwwVTy51z969PrmPgc9uhPMwYACBPTn4tQP/Jciz79nZgU2WbTcI1nS3o26y2Jd3BFxdJL95zzUB/CTwlffyWehBnXx08idv8mXdJU3uoPl+rgW68ZIyuqick4fcXezydyCk288c4k2kogRh/WAqqnFQ30vPHX+o8xpNGXmsdJtUI/l07Rh9H/32d/dtrtW4zzzrdZ/Xgt1CInUw57/krRu/Hv9+8I9e41kjt7cbXym/SZMmTbpkNAHeSXd7etSjHrV8z/d8T3uvwNb6e+/3fu/lcz7nc5aP//iPX571rGetlldg7Nd93dctj3/847cAkOm+973v8tZv/dZbsPV5z3ve8oxnPOPc/Sc84QnLN37jNy5XMmDisixv+qZvuv17//d//+WzP/uzl4/4iI9Yfu3Xfm2Vlw/+4A9evvM7v3O55ZZbTq/dfPPNyxu+4RtuAeiqr3gpwHfSdRAGahrjXDdS1RnZXXlGc9Lb1QBHAgP+BBCp78SmhCfyjk5S7gBbL9hZSHeeR5ABmMrrE70wYpyOtAZ9MK5opw+8cPnwnOhd8paG5cj4c/lpxEJ6DXVTcr7xYAfyhk04whTSiQZ7ie4qPMp5AAft2csf7ICBX8SxJfkpXj3VJAhs+9Zgr6NyrNlijj9MWrC+socBeWt6sg3YhgqIN+gBj60G2T7L2mf1GW9gjyOxB+pzP3nPw1FF6KMisC+Aa/7KW9r2pKMKUGYnR6tv8tSp9Wgo+H620UO0wwEOq84ReNN5opK5Otlgh5FlKnX82A60cpmeW31AZIKzI4CJa9UZCTQbSDQYljyYLFSfcAcB2vjkQAaeXefhMeey+l4Tw/3ut7vmwWpFYX5PHlOGjh3D3MoggF/qQdk9sHLHowgF57mTB3ca3IeHlGf3jEyPPO4nQJd6l+Cg+8iyHfVnTpYXBXoy7b66uN5NWCOAM3WatOkl2g30NQCsG3OekJMfX/PE1J3Q6AeH0yYInXLJCW303PZv0o8230nTzVmpQ916qCNiRaPrftMq22a55KY7/ZkPssznax042c2BeT/bS3rHGFpzRjC/+deB1Pv0b/TA4tMLoE4XUld9P+WQ88eat+5o3p80adKkezhNgHfSPYL+4A/+YPmJn/iJ5Rd/8ReX5z//+csLX/jCLXDz5m/+5lsg9cM//MO3Xr0/9EM/tAWEf/VXf7Ut54Ybblh+8Ad/cOsRXFSeuv/lv/yXrdduedy+2Zu92fJu7/Zu2zI7evCDH7wFd8vL9od/+Ie3YPJv/uZvLq94xSu2wPCnfMqnLI95zGOWhz3sYcuzn/3s5ZGPfOTyR3/0R21Z5f37vd/7vct97nOfbf4nPvGJ2zaWZ/LHfMzHLJ/6qZ+6PPzhD19+5Ed+ZOu5/Of1euWki1Ea637fPA0Fexs4b3qjJZDh2JLcSy8V6sjrGBt4t6Xnr0Mb8FfpDURgsBmwwKjIBXQCKEY6DULYIIUAEvhuMDu9ZywHy6xDBtOTxMZvZyx1oIONaPffqWfa7cumApQ2zkS+Vsnrbe3OSRDygWnGeygzVaWzYUnr9GBC2IJ47aZ9WW9+1xRgPKausU9hsdqTtRNj2kxgSdhoYP+ELwD85OyZkpVDo4LFJd4ELoda8mnvZdTIns+oENFKaFe2MVXbdm9iZdTNW/nUZ3VJDM960tmXlnHaq1WOw1J3Nqr1L72DrYd8Nwh+Xreq4AYMyM2eDqxi04kGpYHtDvNchkA9R1F2eo9lQ8y851DKZfPLDUZQpEkvtSzXwnWbEqxkbnW+GlgMLgOzlgsdVYGY66AfKzn1uF3svLg8z4EOuUAZBnizz8wTXtR4OlMum4X0MbtN8I43cF3PVxQ6meY1gzUJMHV9wSAYgV/w4nwuK4HMro7kNX93Axkdyd0/7nXjJge+60j9dxscr6fjr2tDyi/v+frovuNP+9UL60OCcslX8tdtCO9rS8rDPJunrm/Nryf2nLPc5pJ3xbL25hOTe85NHVjsOr3RNaJ8iO0DoEc6nDqf85fJO5Apy9ywGS0Acrcy229nhPSYTr67MbFPt6AR8DuSSadneygfHXcm3VX4mDRp0t2LJsA76W5PBXo+9KEPHd7/vu/7vuVDPuRDlqc//enLTTfdtHzpl37p8rjHPa5N+0Vf9EVbcPfo6Gj5J//knyxPfvKTz91/7nOfuwVUv/ALv7D10n3lK1+5/Nt/+2+Xr/7qr74mfMMv//IvLz/wAz+wfNVXfdXyWZ/1WVvP4v/v//v/tp7CHT3pSU/agru33Xbb8g/+wT9Y/tf/+l/n2vw7v/M7y7/7d/9uC/JWef/6X//rvbKadEK5SDV4acM/wYM0XHNR7EWugY0EGjCUAVlYPGNIA9Q6tIO96TD0uU9agGruJ+rlQKo2YvKgs26BbZdFyvPvznMlvek6VMp1mHejaMgoUSz3RX52Xij000n8gM02Fm8dtLYt6Jwdk01BBMayOxt06xgs5+t0isMWSuDVOE+Kh3LdhFSpivgC8Gp+HBkk7f36421ut8OiNFZmFa8/QlQUb4DLhWXd//47oBR5JZjMdxymXK+7K2PNXoSyfcYnijqsIm3Kzsu2cLo8vI00To93M2X7fCLLlfvmu2tL1uOyrOKpswcHu8zb/quv25+bZbMcLJuS69Wdom8MKAJmsoOQ8x9MARTaYxSwsMhu6Qa9co5wHSPPTsqxojiwscs1uJxgZHeYoxXa7RsNfNeTwJnb4Q5k7k7gJ9uac2kqB3OaAW828OCP+R25GkAi1oo3LDm1z9e981Gf6XU3AmI66tJ4AFofmCTpV4fh8PPBr0RYNvv48Gf2wQgszOdhPv+7Oroyfb2rJ9cdyMljJ/PmvdyVtE51vKGbXgd4DFvunnRyDZA8JZ+djnT9lZPjKF2W4zkm29v1qyfKam/pWcqzeyiMeEn5dmuTzL/WJ/seBB1vo3FJ345kk/Oz//Jtg5Rhzu9ee5qPkQ7uo33zy2j87bs2adKkSZeAJsA76W5PBcbuowqlUF64j3jEI5b3eI/3aNP8tb/215Z/9a/+1fb7N3zDN1wD7ibdngbksixf+7Vfu5eXz//8z1/+0T/6R1tv4PIsrjALx7EQqfAL7/me77n9XrGDDe5CBSLXoWhv//Zvv/zzf/7Pl6/4iq9oeZrUEMawPdISJChKA8rGsfvMRrBB2fRuS5SMEAjUZdfMIus21zHqbaQBaFR+t40Fvt+x96u5HTqFIWe3xTRO4Bdy+2yEU7a9kO0J0nnWuN2Zn3tpWJov91uCushRceg2x0fL4eHhua7NomlS2i6pUtjHZTP6XLzE8TuwMR20YR3285AuROBYunbIpI4KNZA2X9aN8zfgpNuKipoPqz/5qgzO0CqA1/wj9nR2TPA1VcxtHYGZ5s0ygTeGgb2A68/es6hEtbV4z7p82F45bvJGOzim8SbqAWfDuxl5pPO7PbONt/BnUDlteMq04+W1du/mhL9dnOmdfh0sBxuFfUnglXmMBiUwkKCEFS8BIv6MSjP3GWDMwVBpSigJaDBA8loKxsoOP52iJZqfZbhd2RHnBX0+GHa+ZUEa2pavghsETq9iyM8gl+2BlJOH3+ywsuYgIm4yk5eVNetMmZPGn+bZz6kcDP4jDjCblUyoPtjNsdxznl8D4dZ02APHn/7u+rpduJE8nM78dQBu5wWavLvM9DLNNmd+b5JQn3m2dzh91o0zUz7U/Mzt5JlldOuIvJcyyny+7nLyQeK+qjHBQzrTWF/XKCfi/By1EblRJ3V17e3aanL9qcNFXk9mCIduA67TVfPsDbGUb/LlMkZzZurWSOad7jh9yn1f302aNGnSPZia92YmTbpnUoU5KLoXh8IEVciDir979erVbTiE1xeVR+7P/MzPbL8/4AEPWB74wAdek+ZDP/RDT79/27d9W1tOgcL/+T//5+33N3iDN9geBvf6ogKlq776Ky/kkhP0e7/3e9vr8PlO7/RO27jBFTbjL/7iL7aexgVGZzvf9V3fdXtQ3O///u9vD4r7v//3/269nyvO8eudQGd8GhRISmecFHWGNQAu5eBNxXcb/Py2d2+5XZZBXUBH/WG08d57IWacolXXKn29TljX6zv5QNYy2KsXvfbOy4V6t9A3n2l4pDHQpYN8rQMBRmV64e6Dmjqes57sQ8vEfVexeG+/fTnY4gXH1+A9kPGTBGPzbVCAQ9KiCuA91W10V6lcDaXKU8BhhTyov8Ja6rOGQoXvrL8HPGAX65Z6DBjjbIOKoWbFV0139Uc9jjvrN7UrT6mc1Yj2AG6idhl5BJAY9SoVNeCK+F026qiuOLcv4rZ4WFk1GX6U43RVV/HhoUNa+MdZMIeu35D2cECm6cxmrMaOkDmE8i/3e7q0HQje4YzWizW86yxPfdksxx3w5UopyJtE7oQEhUdAVDdo2DEgFIB5oXNybJtPK2oHFHRxLbrOcGd3lICGlSfbZoCBuq0M3EuFHc2do9/Mi3i6wpODS1OngayaDGqyQebuIyYegFUGtAdOPv9oB4MwZetnHvnh03rgyYw/H+RXbaqBzPM2d5u6QeWBu3bdn76OTnd53ZfdLhWAdU4WOZABte0hnuuODnjzuOv0Nick1+n7XX5PPB3oaznk8zZBYetHNymasg9GY5TfLsP1wjs7bZ53StZ4sxv87Pqom7S7STx5pjy+Wz/W+svt6NqeuuE+WZOVH7gZZ7h78JCfB2n9sU517PPkJcdCB9b7eso858+RDLKcro7RXH4ByuF+Z/9NmjRp0vXS9OCddCmoYt5WTNui8uTt6CM/8iO3n7/0S7+0vOAFLzi9/iZv8ibbuLcvetGLtoDl64IqVARUgHLSox/96O1nxdWtuMIjes5znnP6/d3f/d2X//bf/tvyuqYKA1GHwhX9p//0n7ZxhEde03WI3bd8y7eca9/bvM3bLP/yX/7L7WFw7/Ve77WVY4WU+Mqv/Mpzh9hVjOLP+7zPW/7+3//723QV7uL1RpZ551FldMXARS4gMywCckljN42i9KLAK8kAihf8uSBOYAXDGGOedHhB2di0QW33Usg8uq2AAJaD+bZ3ro09A0OUle3KcpFt57Zpsnxdv5FF50PWbs/BwbK5cmXrxZtOddjfYE+262GbKikSsJQD6mkKfzWF0EXUYXylfgP+jkKM2sEuVcEiRCwWX6oQ9XfANXWmfWriOvgEISSrnYXLFDjNYWzef0geujYYo1uzB1M1DGBbPVOdHD4icU1wOafH6dTqa/kydAD0s1zrSg4x1+Pr2X/ZVz4IDr5Ocpx8Hi9XDo+34Ujq+2ZbOaCePGRHoIPHqD1IuZ9u2VaSnC994h91OlhzNp589uD0/Ej5LsP1dmBDBzRkW3PQdSDLaD4aycBzfg7+It6+cIxZl+tdB1+jw1GGlDlA6dpEAZBDXBVCYLBTk7wYSEMHEqBhAPm5aOVHadnY7N46oSwmFZeFXjj4d+3iuI581o5An5RLBzQZQHQbIYPUpFtDaLrnqPu34895nd58ZPqcTHKsp150wLXHnMeoJ8ARrc0vOd67eSMn+hHYN0rPnOX21r2LxpN2uWvUgZSdzHIO6OrytSzvIpRzgL/n2PcaynLJ+cbtHM2VlsOoTdmu7uF9URotRkb3J02aNOmS0PTgnXSPpQJlC1z8F//iX2yB0DpAbRRG4Y3e6I22AGPRr/3ar23TfsmXfMkW6K0D2573vOctt95669bz9sM+7MP+UnxV7N7yXi364z/+4+WlL33pNWne7u3ebvtZXq0dAAwZrCbP64oKfK3wEIC7//7f//ttvOARuPsO7/AOW3C3eK7QEXXwW3kVf8d3fMf2fsUKrvjDJb/6/Nmf/dnlYz/2Y5e/83f+zvbguYptXFS/KxbyXwnl4jb/7J3lNGvuhRisID32OjIg4sWnPaXsJZEeuXaTtOtiujRSZ+eBlWWZx/QkNnLJ4nnNs8m85LV0z+wA9TQ40rNklC4NlzSmcqFvb5aTv4PN8Tkv3gTv0t6F+A6o51ANOCfiPVufFcvV2IVZ7bDwtIHSfk0sogNAEYNF7vbAd2drZ7utBt7f4Nyp+uPNemxFAPIcetmu9I5NJ0mDmY5EUqqLdzFgcjpVZpsrfcUNJgSj5d3ZnXUNb+hqo0MneEhX3VUmMZFNlqFV2/esE/ndfZ462dFpmuV4OTi6fTm4/bZlc9tty+a1r10227klvNw9hhA4TGYnZMUdAGOGQf8rHwOE36UwuJmzM+IwLwnsuYFrAFKCGwk0JlBsICW9kXPgd/OT5UaeVEIDjwVM1h/t7tB8yvUzBBnhhZvzLGl504a3PnKDC4XFQ49XC+ptpyqjvHl9eqTb6h0g2u2Bi9t/KjZ9601GAFqeszzXyM9GIRMpZTDBQvW7yqpJ1qcy5gSWuz+QN0L9ST3IGx3mmuVAv+VuoOu2Z7m91L3e6P48GTr/Wh5PrH5AMbny2d3jN/mtp7l5kg8It7ubvEeenvnbsuy8sXOtwJrHn1y3x7nnkxG42z2UcvL1H/ncjlyD+AHKZwKi6RwwAmXX1kz5gOny+nWXGvv1l/ND9knOlaOyuwdb8tKV05XZ6YWv5UIo702aNGnSJaPpwTvpHkWf8AmfsDzlKU8Z3q/QC9/1Xd91zfWKYwuVl24BwoCwUHn4vdu7vdvytKc9bRuj95/+0396h3isUBAPetCDTg+ASyrvV+7/4R/+4WpZL3vZy7ZevhXW4C3e4i2W1xVVCIbv/u7v3sYILvriL/7i5cu//MtX81RohgLA3+/93m8bcgH6yZ/8yW1YjPKQ/piP+ZjlAz7gA5bv//7vXz76oz/6HFj87Gc/e/npn/7prdwrLnGBvGvgdtJDHvKQ1ftv+qZvev4CC9mRV4KN5rxmkLMoDQja5fvpBZzIW6I/8MXnCNFxWi9o02XRAHOimB1wk6AKQAv8GdCw0c99GzKUl2V0cs9yfb3z6B2hcvDuw5VcNuhkefBuPw+3my9dlW4iIiONRWsR5gFbtpEr9EJhLtll9uq0E3h9akid6wKL1LyTxoezobKOD2xRMiQSHO3EnfhFtau8dQs0tdjxeLVDX3q90l3GVDr7z+10d6JK5tGhOknjYQZPHcEz2Bnpqw+q78B2yh5O1addtKPDBZzG7XPYDdraYQmJf5zpRW1SnLTtnF0bQOsJ01uQt2gUIsBMJuCQ3okGDEdenwC2AAt+u6CIAWPF67zdfF/j+Bzv9oQFWIMMBlEG9fpVa+/WFOGS3yH3tAuwspvnURh3KvzAR9XnQZtKkMpOGQzqqh8gEuDWrwxUekDJjF9iMAmwt4B3lN197vmVEAMG5T3n+xmVYTfwzvWExETpfgZUdf30EeXxCkR9r4FavOfhT6mT5iU3AJy2rqEv9R35kC+B4nwedfoCAUZ7I/l6qWtftsUT5Bq46rLY8C3yzllX70jOownc963rRR5j3pXMMnMyTLl3fZB1dvw5XZaxr3/+f/beBdj25Krr773PuXcyJJNJMiEEEis8ooUIaBWgoCgIWlCCgkF5FCggVrTwQUpFqqAswFLAEjSUgKUIBf+iEFQkoKLyfqggDxGwQHmphIAQ8phJQjL33nP2v9be+3PO53zv+u1zZ3LDzNzT69a+Z+/fr3/dq1ev7v6tb69evVngzzJnTFgCLbsFraXfnVycl+tjoLxbxOrq67wvA0yX+OteUC7LL9N0bbvUzy6b5A9QTm1PJD1Z+Jg0adJTiybAO+lK0I//+I9vgdUf/dEfbe8/5znPOfteXqrl/VsepnXoWh1wVqBrAZPleVpA4qd/+qdvvWf/0T/6R4+JjzrIrQ5DIyZwF+v3gUJJ9lTg7WVUoQwK4L1bsWuf/vSnj1e84hXbUAkFwP6Vv/JXtoD2ZVRpC5g1uAvV8wXwFoBWYG+1RXoC1+9/+k//6RbgLY/qAt3Lm/pO6TIw/AIBNuRLYgIY6WXq3wkQdJ4WvKg7rcvgd5bPdxApe5CkUeDnDJjwPEij3SExlOseoIUJpMmgCS6q5jn5N09+OU/UCkOW60Y20wCkjCJ4WnrhT1CoA2PME4DSrVvbMA3ro6M9a+cHUpldi6OuE1PWOIVtd3Zd234Hu+gcE33YWRflw6IBSwGrcTqLIu0b289uOpzfspxMY1XNJsdpr4YAukRhRzholrzSaY9wE9SJcsCTsh3SbmMHutsGOTvEaNeNElPI52gD0nOQHBhah/NljGM+digkTy8U0A2NVYIj2bkzHcoS+N2Wv8+0xLENyVDft31+H6LBYxmKiitzNVRV0I1P5ZZC1SQoZCCPha+ijEvhBTMrpRukA1ySL8ZWg4QWdH3yVHiDqDR68mZF68CQBAYTtPF9AJW8nuBLegs6fy8s5sBAp3JIBoO2AOGVlnMICAjuRcusU61EsaKRdWZOgGeCilOeV7uoI/OTAXhOgsTzGC9SdzDHILHO5LxCPX3PC6+0Jx6enf52+uP2yVUod+QlgDH7nPXAE0bOreSxBPzmILYEomW5+cySbmdZ3cJO5nEnQGH3DpEyy+cs33xPcH06+ZguAymzzDtNn892+Sy9F+V7YMfHEnXtQRn87kDdbK+iXEHs6tW9f3XvYktyf6zttMRPp+v5vMf9SZMmTboiNEe+SfcUFTD5nu/5ntvvBdJW2IWP/diP3Xqilkfqy172srNQAAlqQvVcAYsVXgCw8i1vecv4hm/4hi1AXGBxgamf+7mfuw1J0AGaHVW+5f1bB6sVFXBa4R+SfAjcDTxEDtCjZaDt839rqYDub/u2bxu/7/f9vu1hcOURXXK7E/rJn/zJxfjGP/ETP3H2veIEd2EpMt27vuu7PiaA9zGRjVQbtt2LdBlyeThFt1Uw0Th/DCankQ6lAWe0LpEcjGaAWIATn+aFS6Q9qngJtgFsMGbpRd9efPCahonl6u/Jiw11Gz1GsLhuwyUNuMtkldcBFww+AFLsP6v1ehwfFWJaoRp2ZVE9n+eTTUU24CmItL57FzUYEk2UQK7FDZ5i5zZE4LP7EG2GqrTKpchrqEjbKO1PVL+ohqG6XtiND2szPoJ82MVL+Y88cl5XAGRkSF7uMsbjLBOfy8RBb3Uf7Mlqwt/E+QnRaZu08kMeqArhNCq9cT/4wnkvVZY08IU8APWpU4UXB1NkeEkcinwzBnEOMXT93ARQMO+uK6y2oO5mrMd6HTsD3H9pTMVPP2MCJXPh3HNfdB/L/LuxLsGMHHuXgKZMbwV2/qkU5ilBuQQrumc7HvMec3aOid3c0nnwHQLfqCfgKOncoSvPUlBOGOzmJyuaQeduLCfd/j3jtnHdHth0aMZUy5XfePpSh3r3qnzqPar+epCgjlWG3eqLWLQ0iOu68TzzJXX1KYuWufXC3ykD/t3JGMC9GygXIT0f5WDOMwDv7tiUn/2p08EEopfAruyP3ZxqvvLvEgCX71C+v+RBaT6zzJz3aUfXtXsueco0S+8PyVf+tryyPtk3D+XR6UanD11bLfGc8vaKpF8gumctj8vA1EN1XtI31z3zdx1TD32fPC7jq0vDAY2TJk2adMVoAryT7il6+OGHtx+oANlv/MZv3B7+9bVf+7XjW77lW7YeuvXdVACuqeLvdsBtxZf9x//4H4/P/MzPHA899NDWy/Xf/Jt/cylfFd6hwjFw0Ft5tCYPHS8VKuEy4kCzOwWaD4Uw+P7v//7xu37X79qGqSiP2wJ775R+9md/9mAoiceazp7Md0IvfOELL63fj/zIj+x+YOzxgglCRLxayMajgV2eY/uijbIip7PhZkPRXllZHi/maeQabSIPgJnc452GCGmLQJqq3nY7NbpkY9Qok4GefDG3h5Tr7nQGFjBschu4jRrAJdcbno1cug5L22Q7oImYBRWqoR572nrbX21HOluDcbCAfe41lgI261MiBjMrWwPbC1U39tBVndDIriIirt/gHpU3qgCYDF/eZW67t/uNmPhbwxG4DOsH9lpOHIe0/K5uXCE9fY4QADbgt7tZt25SRHzfIu86TxvTZST+YE9s2sHlJ/5lOfO37ledCqTtbErLwSEprENW464M/hrUTsfO/L37rC5gU/uSxmr/OWMuVxQQmBnz2ONxJvsyXpNG6K1AHl+WPMg6AUI53pl3u3G7v3eekvby9fidY1ZS1zC+lwDGIUDGjZfjdHZQ2qSLK5JepPVMKSQLV5x479UUK3iGLTAAZZn5nvkzP+RX11n1cDgMH54GH4CseQplDWIMNKxwEWCb1TMAXnv5ksZtstRuHSCLXL0Y6LZxMHHPXTl4pH4U5TuDB4M86Ms6stQXTV0b5v3U1+Q3AdOl9k8w0mn8bOp+TjBMml4dc5mOIdSBg36f6jyn/fF7VyePrr939XKdukWZLq+lvP3e47TwnH2wG0s8yfi6J9ClySnrxG/+XgakdnSZHLPcOy3j8fBCefUs77eP43E3wxNJS6KdNGnSpEM0Ad5JV4K+7uu+bnzkR37kNu7rl33Zl41v/dZvveBFWuESHCqg4sEu0X/8j/9xC/AWvd/7vd8dAbwVF/gjPuIjtt8LcP7Lf/kvL6Y1L3cSdgHv4zsJ53CI6qAzqLyTHwu4W1Sg8BJt9JZyKJ3DNhTI9ljoVa961Z0nNjJnwyuNAr7jnumX5wxmakPOYC+/7WWbRrMNSsoFsDACBCiRxhT5FtlL1t9B3lzv5M8H3bh8nqWsRMSMQJ035jkAYSDCcfzSUPEnYzmmnGzkmc80kE02BA0GOVhuHbh2rbwdd96P6aVZNkMlx4s1vULdjAYWwTQIE2lRoRpUCQ/YzhHOIq/y2d1c6QmlWYTIwUlcZefn846W7OC0mRFbETZUricYe6s0te724IMXHdJQOZ85BOZT4DhlZN7wTfl89zoB/NIl8cot+dAGda/AWvgxH5aDVZDnCmxmTY22TnsUPh1iofKhfNowHeoN3pqnxC943uEgEk/Z8r397CvguBVLgGyBZXXdQYgB5Cxke3+mFyK0pFhWRgus877tPH7zULJE0LtVkyVALMETyyZBiRxTslHyXoKGCewkoMMYadkahHTHQu50YEBdA+5+vvveAT3w6rSWjeeDlCvl4p7OvOl2IhYxsXvrGruoAInROW+NYP6r7zXwMXbjrezBxJ7EPOvFUM8lDp/hdmde9UBk/fAKVEd0ULv75+CbYU9yN02nrzkg+7rzt14lLYF/zt/5Lg10mXfW02MMz3Xzf5ZNu6QMfD8H6Bz8L5PBnVxPGSyl93PdeOJruWjj97SlPLLs1Av0NGXS6VH282zvx6s3qYc5t/DikjLtyuj071BbuUzPQ48D4J00adKkpzpNgHfSlaHy3i2At0DTD//wD78QeuCVr3zlbQeXLZHTchjaIfryL//yrQdxUYGm9d2AZxdy4Td+4ze2cWgv80qtcA+AwObr8VAdcPbiF794PP/5zx+f93mft41B/AM/8APjnqR8KSVYKkgQbpEYyvWbF2hvBU2PtAR40xu2yGDFkvcMfKVx7735BlgAN+Cj0mFgZ54doGD3TIxSwB0QQPOcHrXdNlJ/NyhtYyy9bdN7jbQ2iBzfoDNijHDlM5arvwMkHB3tDlw7OhpHR8e34ceukm1P22ouMj0vXU2nIWwl2I4PO0PUiN0iTzuGuLbd+gI4h9ckwPo6XMrfjYUYS6MejgPcOU5zv3CYwnEqDQecF9/s7LZ82bxg2RkwhxcwItLRlMb7kI9tPZq9QFo8rA1UG1R23UlX3wtjAgs1dtHZp5YjIW7tjImNnmAueSbAa4yJZxMz2abdMjDGZu+hXsEattfsis0YSGOlwns8WwJODH7dKVDAdfdZu4dXnl2YokMgipW9G4uWnndn97MG/hBqrrq40bzLwp7PnbwSnEIOdI66Zvd7xnRWc2gP0pOvY7nmWGdeDoE6hwBGt5nzIp2V2m1c3x1qIeOw4IXr8dppkCfllQxoawO1gLseZJiDExR17B3XBV3MQacLp4DcU34AznRQywnKgN8Gw3NicRu5Xbp0qVNJS+Ca60C6LCPT5qoS37s+aN47ANCHNGZb5YCag2ym82CY15bqm7x2dU6A1mm78S/l2C0k8Nte+yk/kydzp8nV0G7syT5uHrtnUu6XtXuWk/wsgbeXva8lr9mu6V3u9+VJkyZNukI0Ad5JV4Ze/epXn31/0YtedOHez/3cz23j3VZIhMs8R33/VrfFTvRFX/RF2wPZir7v+75vfMzHfMylzxT99E//9PhDf+gPbQHXKu9kYRX63d/93c++/8zP/Mx4a6jCT/yFv/AXxvd8z/eM5z3vedtYxQWE/5f/8l/GPUkYZ2nA8wEpAtzFWLTnjo2y9IxyfjYu3Zb2ms2XaIPDJgwAI3U+VI3ncFm0gWxPWl58qQdIXcbwtVev7yWQ0aGcfK9n7IrYAQ/wZKOhA8ANxPA8afN50qVB5nLhDxBgD44fXVuPk3V58p5ve08cwFi32bSdwW97jRqw4xA2yih1KyCUs49cns/KcxVQC4uJ7+BBxryWnCpTREtApcuzOqS9Z5u2gN3aRV6eufDPugJ8lbqmsyjOb0vAa9r3XX14hvWXki3thmp0suvAan+HX0d1QS94zqEp4C/VtOsatv1Jgze0Yzn7WdvFu+c2Y3260+vt4WoeWwxO1TVQbsaLHA8Z5zwm4O3rtOSB4jkmbX0cTiFBMgsH93hXKBd1OmClQ8mXQC4/z/iRIEt61lkJPE5a4bhnIDBBCsZb5+15Al5oF7xhWXyu61ZsnkFmOb4e+rhuHWiTfHdyyIERkDm9MC1TOiLpXV/Pz5RJR2Mw9YIkc3Wly3BVCcIatPUAkACc//K9exdD9o4zzAqVB3zXJWXmAQBaAvdyHstFTadLoNADhQeqpfa2THIwTN3uAMMu33wH8fO5AL0EEiYvPJ/8XlYnX+vK7PptJ+d8h+v6RNdvTLlryRMFPHeOBeZrqU5OdydyyDErXwYuyzvzTLmlTnmiWxrjXc6Szpmf9Iy+Q/KU9ETTk4WPSZMmPbVoAryTrgy94AUvOPueHroFuv7gD/7g+KAP+qDx4IMPbuPrvuY1r2nzqYPb7iQswOd8zueMz/qsz9p+/+Ef/uFtiIiM9XvIm7YA3vLOfZ/3eZ/t8x0Vv9B//s//eby1VMDyh37oh47v/u7v3non//t//++3oRt+6Id+aNxz1AG6BgSJ6wfA60PW/AE9Sw/eNAh9jxd3Xtj9AotHj72HeNn34TTOl/IIilrEM37W3kFG5LhPfgA08G/QpwM0/KEuS0ic31gznm+CUPmiT17cs5yzDPODJ0cXs9dGB7F4j4/HZuvFuz4Tb3pHWqxZ7RQJIoZ41nkmLl0YhpvS4S1zJ6Z/pz1DCAWHuwSj8w58yjbZUdsq6yZL71kwFvKD37d7u/PwFsZWcEbEu5eQE+SfMXqtrpa98QvbxaxxZPchTbYX8rZ6GrBPr2q8ph3lw/drCDH2RBrqBbZV18D7jAsmBkJdMzRDgsNn+lE+u3vwaYW7NETmxQyxKqoxAMhcqIEwL+4wp5G27lUjVmWq8hye5QbqgAJ3DFB/j2d+1mOIG89C9Pi5BDy43MwnG8ILXF5tSLfwzmuxs9LdWCyyWc5Vll3y652FvJBPhhDwaol58cfja7axO9ISOIZcsu7ZEb2yYflXm+LCjlyr87vt6fh0UmLwco382G3jOTjrap48J2RHKcqFBreV83d9u/akXYiPk+8MHQ+H5O0yurbwwOUFXp/UyQTCNerLAk3mle3aUcpzybOVtPncZQsv2c8tgw7ky7anjktlHPrejRvdZJ7PJV/ZrzygU0eXY369IJGrtM4/37+Sr05OruMhkJTnku/Mx6uwec/16SbanBNyIaXjr7vmsh5Lv5o0adKke4wmwDvpylAdGgb91E/91G33v+mbvukMMP3oj/7o8VVf9VVtPi95yUvOvi+FMPirf/Wvjr/zd/7O9vtP/uRPbj1hH0uM3Fe84hXjsz/7s7ffP/VTP7UFeOtAnT/7Z//s9nvFEy7P27tB/+N//I/t4XEF8hbQ/R/+w38Yf/SP/tHzA8ruBbJxmQYwqBMHrvHxNk/S2VOpM6oxxrtyi3BTNFCJZ27GC8TQB8nBEDZKRVoDmwY704OH64kK+kAlv9iDDjp8A3yZP+oCJXjiF/kOOURORrxsANhjOQEZ77OnjM4A7ow12n0PcB9dL5C3Hrl4eFUe5O6qG9OwPZPO3o704d/1vcDQfAag1iKjKqhM4SYO9wCYWdfSUZ34vTimwyd4SZJFaD7soFflsybCM6iLQ0i4+StN1bdwQHadP/OZ5+kqP5rFdio4Je3iOpA3PIJH1jP1IU/Ux2GhrR65e9sYIt0DmRfv9b3KqvrU/Rry63rJGRnUdXano65cc3QErzU55ERnexvHvG046NyQId/LT44bBhOWgMDsvx3YaaB4qULFVzU4glyKW57jyGVAje8nUOKG7uLbut40tMEx8uQZB7dO3syLn0FujKvcz4M/q2zPE6TrwF2eIY0V2+EGLqMEk7r2z9/ebmDlZN6DJ8b5+s5KSH0YzHzSZHUmDz7VwXyg3JI+Wg6mDEHkOqSX5NL3TOu2dMfNgds8djJMADrn+K5tKKdkZ4907nuuR5es51zv+n6W7XcE1zmB39Qx691Snzavzqf7nf2Ta5aZ65V1sszz/SXzXQKW/bejDnC03DJPJgc7FnTjuH9fVr5l54mmGx/NY4K7ya9XXP2OlW1JWvSRdPkOdidyXKpf8j5p0qRJV5Dm6DfpKU+f/MmfPO5jW98CvexlLzs75OwXf/EXW2D2q7/6q8ev/dqvbb9//ud//njHd3zH29KUV+2f+TN/5gwk7rxmP+VTPmX8w3/4D7ff/9f/+l9bcNQHut0JFZj6/d///dvvn/Zpnzbe//3f/7Y0f/2v//XxHu/xHtvvX/qlX3pHoR/ulAqULpD3ta997daj+du//du3nsT3DNkYSQMeY9Leuw7PgDcvbnlG7XgZr79leIIk2QPD+eGZZETOZRtc9j1iD/I3y+cFuJ6BD8pKHtK7yAA26Sjbf9Pw8Cf5SSMmZV8E3wYn0mOaZxNsT8O6M0Ipw23PX9d1L6vVtu1ujeOt3bK54KlqO8X4slWkrtdBXOAQtmUMzLpJEBe2Et6nhHGwjYhK2FEOArvBGbOqAq/p+Zl2WlJiC06bTVH5FiYHAJ55WEVsa1c9SlbgefW7+CYsNE5/bgPsU5dhXi0/p6nrVZbzso1rynZJeeRaRTrwp8NiJ+eUCe1Nmxev5dmcuIw9d7cyOtpsP+v15nZ9uHFjF1vaY0P2L/pAPUwcCLwAS5AFrNUH8JVxIBWj8irFq3gcnEboxqFsC8zAZpVVlQbgsBt5Cu0ycpps6By3nK9lkas2BjRKHt6F4LI6wDD5ynEUYM7jthcJPRab/25nSfKSIFQHsHHdde1AKQYxt5+VmE5WHbqUt84JqO/1tzpD8c+KDqdUVr3rXskUAN1u7uhD6VUdRFt/65Oy6OrjNs+O3D3DXNzNPR0YmSt2fj+oevo9wbqceSfP2W9SjzuAkf6bg7m97jM/TwyujycuyHP3ku50c78p3z88/3YAn8v0tQRF/d0TdNcPD4Gyh/puplt63nRI7p0esnDh98PumaV87wSkzckv5eUJppOvr/FCkWUdysuT1yF5dmN/jlFLclia2C+h7pX4ifxMmjRp0mOl6cE76SlPdSDYl3zJl2w9cCu0wS/8wi9svWUfeOCB8V7v9V7jEz/xE8cHfuAHnh1g9tKXvnScNrPmm970pq3nbR2+VuEcCmT9wi/8wu1hYwUglxfuX/trf20cHx+Pmzdvjr/4F//ibXl81Ed91PjKr/zKsV6vx8MPPzw+4zM+Yxvq4NBhbP/7f//v8Zu1RTGoni0A+e3e7u22AOsXfMEXbL1077///vHxH//x23i5gMhV/7tN//2///ctOP2d3/md49nPfvaWhwrfUNef8mQDBcIoM7hqVz+HREhgBHLcQR8GAxnM4MW0yrK3lw9lScMaQ4y03rLsl3YMVIMRue04vXZtRHXoV/eSznV7mNG3qGMXhsGySB46Dw/qbFl4W5+NTZ61nC0f5EZ5dt8EuNi3SQFj6/L6vHZtPConahPYBPapWTRgSdHY/fb6hU3bLlmG7SI3NSJ22rRPqzx2zhOuMtUpnb2WMJ+0qdPWqvxqt39hMLnmlDgMv5EdGA84FgReZKwQL2HbpFafxFJSVpUfbWkPZ6sQ7cJ1RwxgtzhEVIK6xpmCZaPXbwP/tmsTk6LdErh296XO8HSmzvW54HC/O0xt5ZUFqCuUilIYAE2OGyiAFdGdgjEkhd8pVN4Dza9rPmhsqVPY+9L1SuU8BOIk0OOFHx9w5s4KYOfx3wBe11jd2MdvFBvA08oNsWLjcc4ejskL8vScZeXu3PQtB+uFO2sCeylHrtERHH+EgRCXd1Y/aGfmT4ONntMoI2PBdINWuuN34J7bIq8vySWvdc+nzi6V3QHol5V5iD/Livyh1E+3q5+xLLv27vqUy0FnczEp06Y3c/Y/9yOnc386JKNu3FiSdYKsS/k8lmeX0qZe+D3LBwL6maUx0OV3ZR4ChHOcymv5zub2d99KEDXfwZIPy8srpE7btYH5zzGnA3kPgb+TJk2adI/TBHgn3RNUoQQKuK3PEr3yla8cf+7P/bnxXd/1XYtp/sW/+Bfjuc997vgH/+AfbEHeL/uyL7stzRve8IbxSZ/0Se3hYxXaoQDgovJ8rfAGl9EHf/AHbw9gSyog9eM+7uPG133d123zKrA5qcDd8kx+LOEfHgv9t//237YxeL/jO75jPOc5z9mCvR/yIR+y9fC9Zwgjxu56eEnZCwWDxYcG+cRnx0jzSzrGEy+aBmd5wXUMX9IkmGLPCJAi+LPR5hdae+10Bj1gLn+9ZZAXaFwgO4DXQAhpOoOCdCl3gw2JYtZ31y2NdaOi8IXXF4BBpkm+EuR3WejB8fFY7T14K1SD7TFAunJMMx5BcUSyQG2MC5kSWDV2A8aWNk5icompkQ/l11pF/QVExRmcsg34mo8Elu2UZRV2XSqPCrNQzmvGCBO3N64AblY4UDn9WW50R4BxQi1YDrZN7fhJDOCua1S7JY7Y2cLIk1AZVh2rDHLj7Ciee/3rz51SeTbj+zq8qNdtrNrsWIf/i/jNapye7rx36+8ujxA2gGX3Sf1Pz9QUSHp7WQmstHZF6vKwgBkLDSx241uuFNjT0OOxQaMEB1AO7juOrfM1z/a4Ja/iqxoGnrwK4bHdq0OuA0BoeaPiuedOgoxqEZhy4Zt4KkuektmmzjdDByVQ2YHfyDXTZLlVRvFrgI6VpXqmOjgKzKmSjplCW5dcGQDMZ4JACWj6vgFBexwvpXfdOloCn5zfIeoArUP5O+9Daa3f9sRH1/BItv74/cFAYv52O/q9Zqn8nDCWZJsgbw6kXlRxu5u/Tg7Wy2zjpXw68DDrdKh9unuXAZVcQ6721s30Xdt0fbZLn7KwnMxP6lg6Qpi3BNrzu98nna9/uw6pZwn8d7pvHUje2YVyqL0mTZo06R6lCfBOespTAZAFcv6BP/AHxotf/OLxDu/wDlvA981vfvP49V//9S1Q+m//7b/dgrd17TL6iq/4ivG93/u94y/9pb+09WAtoPfk5GQb2qEA25e//OXj//2///dbUrfi+73f+7233rxVxxe+8IXjxo0b4+d//ufHv/yX/3ILQN9Jnd4aKk/mknF58JZcAXkrVu9TlgwKGNyHI2oDAAEAAElEQVTNPfNsGUwAII1lg7oYUvnyChlo5QQm8+WXab+kA6JSvhG5fIlPoNL523sHI8ygDt8TfAF1TKPddcUDz959gD1plKWXigFkA+QGpYrMq9FDG0oJkNigTDmbGuNmu7V9vR7HR9dus3cM4rF73Ydp4WhmXAYRJMjr4hH1ZTaOsZDMw+ApzVDqBgaOp2zhSXbYZlc+BO8GoFN9kh/qWt8Blt10xgTTFrWjoVUMObBzFTWz5yzd1nZd/TXQzjWcCvHkBRMB70ind6so6uGyAKiNGRpDrHwJi+kunBEIrB8MU8ZBwBKR8bXjzVivdonXW5/dSt+MBwYTDabxl3HCnqke91DobChOxUOwjIHEqHUYGIPG/LZbtN226xoxNsi/fif4Ql3SmDeo7H7vMdNKhUIyfmfDWGEhd8wcH03Z4UnLAFEAJ+F2PLdUvhxSZ6DMc1cODr7mWKfdHJQd09cMxMBrjpsG4RJccuBr4q2QxyOPXCzXgI7nrG7Lfgf0eCDpBigD9R2AtnQt5+8ufT53COQ9NJDfCRB1CDDMtqHvMeBYHm5bgDCDqAn8UVa21SE5uG5cz3ytf7Sz79F2qb+Zn9OTf97L94/kNd+9sg6Hnuvq5bpBBse5Xv3e74xZRrc41dUxaUnHsp9SxpI3r9Mk5Ypk9yLi7UWpNx4Xc5JdekfLumU9vVqN/jxG6hbhnyh6svAxadKkpxbVyDiXtyZNmnTPUwH1v/zLv7z78aVfOsZrX7t7AXQ8ONwaMSzxHrKHGCiSjQkMcHv9FqXXqY0rI0G+Z7A0PRRIj0tfvmA7HS/M/u1nHIjVboIGQAzYkt7PcZ+/GItssSUfH7bTGQUZZBYCjfRzGe/N6KT3zdtgsOHQ1TsPALHLZCGh9903Ntevj5unR+PGjdUFlcj1AUIuglU5ZKYxsyou1w9o+ioSDA3bD/VCfew8jloacAbQTVATcRh3N4ZnlbFDofPONQDjW53ojR0YczMGZ1UgpDrluluQB7KD/8IZi3AORPbUy6pv/oqI72u1oxz4QKaEiMUhER5LfTkkru4X4cnLYXZVTt0jhINtbg5no4sjF7pA5c+BbkVgpfdd34yj0xtjdfPm2MhNeBuawaAMFckDlXCbRujsRPDYaGAIF2qDwwmsUsHaWYKClzCqggZ7c4XA36tsghcjJMYIBEA6B5nOjmkAknzSU5Dn65oVvgPJDRjSGXCttlJxnzA/XAeINqCLe7oHgQQaza9llddzMOGa+e+ArFR2A1Qu323FtfTm67w3/dc6k+U5/wTtfK3LN0G1lNES2J0AqQGm5C3Tel72b9ejA+K6PLp2OQQuwisrXO67+SyDK/3OA79XqUzmGxnSP5bq4LSHALrs+0Wdt2+Wke81TpsgdfbblPOdUFfXrEu2l5/zb6/Mde+SDqWyRFneEr/JT3fP9/1OmkC1X1o8gWecotS3Jb1PB4hss1yIPwToZh14B0XHH3pojP1OzHKQedWrXnWpffDyl+9CTD0ZqMJdvexl41L+J02aNMk0PXgnTZp09SjBWnvt8pJtoMBeof5uLwFQPbsDpoeVUa10jbRHFvk6HXnwIm7jOr08DPiSX+4JB/gwoEkZ7HHnd3rgJXJ3yAA1MmjZQyCD6W3GS3p6vrneyD6RTRsKHRBgPozk8RvZEzNybxgfH6/H6dYWXt2GU8CeHdbqe55dY/ycPHxWVV3Doc84jdUGfM3soc4AnwUqel2i8jDwSfOXPZT8uckpw7ZY4W7Fn1WSsA/pNAm2b1Wpe8YTbQviZGoQlPwBTqmjnbsr/0pD9yugt67jlJ/hWinLKmpQuuQCQE4+xhbrWqXBi5e2xnm1yuIvgD3hRjvHqLrPZgyvjdi+5dkdAL0Z147HONk+fzSO7q/G3YO71mUDUBaAwSyUletucI8v9C+DPEsLM1ScOB30UxTFRj35ovAZB4O8EXye4mck30qPErmx2QZtoCE9Ew1aIAMOjgOJXwIcIXdYFItQDCgU9XZ7OK/MP8vy7wTMEtjqnvVfy2+pjMzXdTX4w3OWZ7fYmWNvyt2DVwKxyRPPd23RgW6ewxOYWnKbS8CpA6A6EG3pmmW8BNwlcOyyqr5sHSliziSMlOVCn+z4WdLh1C/02CCk+2/Ou95+kDKynuXKm/tm6mm2pXUm3xf8TL4PdbJeoqzrEh851jAW4QFfYwirfUyuNfYmKNm1U+r7Enjq75mme8bpHSQe4rv1kJeOXNjJcjrwm3v5cmPdyf6XeSzVpeYwbz9aktOkSZMm3eM0Ad5JkyZdPeKFEa/dDM9goJbffqG3pwwvxgkKp4HCy2t6lXl7ng0EG80YT46pR55d3Wwg2ODCmCJ/e+Vyn++QgWADvSBQALMuHxDGdXfoBvOWwDZpc0sjf9MQTVk5bXrvuk6kyZgAnbG+qti7O96uXduFarBtkuIr/AcAEzGVmrn6BR4SYhJ2ciexy0hszmyytmBbKUWddmjaWoCU8JlrBG6eO3Uk7PD1fMa2XZbHdzt7ZvMA/Bropqnxls2wrs7Hf42Fpk3ptRDnQdu7ixamWXzZ+R27nq7hfNM7mjrY4Q6MhjwL3D0auzHo1up4nNazHg6yMTxeZeVgyEqC4OvDKX0ICbDW/Y5yyAfQlTGrAh6TFoHVd5B0Dhirsp/znIv91Q0EMELDWukNAnIN5J06McbDZy6UJSGveq7A2WpY3MWz/lYeeKm0Vb9atWFlwrLqvNmy4x4CoxJ8ugxMzN/5fHZEA9BugyzT+XfgnevqNs1Bzb9zXkzgy4NBgjkdSEaH831/z/zuRJ53MoA570PtmWBz8pSUIUEODZY5f7uPdHLy/Jw8pnw84RjU5/muL7t9cwtJJxfrTs7l2W6mlH83vyd1k1WXf343SMuzfj+qccAvBYxlHuwZZ3k2J+/OYzZ17U7GjSWiPTwpMdFl2+Z7mHm6E91OHlNPsp7mJ1dmvVKdHsCPkbzW90TTk4WPSZMmPbVoAryTJk26elRvTcSow+jOg9X84WW7A3XJzzEG0wvK4IINFQDSojSQDaoWZTBSvzD7BTgNr3zO6B3GntE4byfuQOBEGjPURALc8NQd2mTQm9/1or4EUJOnQWjX1Xn7JR9aAoo7I4k60bZ7N9D10dE4OlpvvXgRlR0Kwayw4cCXnLXVqhONQdhsVufTgZQWldXDzZDnQFVaO33hVOQwpGnLpsOg1yyWbGw3OyElEsN3/qTlUDWrDPeJJ+w1l/rOGU/1nHFAO4mST4ZbxSEfe9z2OjZ5lVt/8eLFCbZ4IdRC8VDp6m8XU5k6uP35oFtW7wsyGud97Pjk0XF6fH2clmxWm7HZJ94m90JVGv547dpg74AeGDQw4UaAUY8bKKABC5TM+RsZt9sy46U7j0E1982sQ4KQCUh4vOjGEZfBPVD69Fim/LrOvFDfK22lI9C146WkImQjd+OsP8g0Y/YCmnf1SqCD9sq8kaV3jnjASdA172eZHuw6+aeudfwkKLREmV83X162cJjtcBllnQ8Bw4fAWueTA3/WLeWfA32mN8FbrlZlmlyA6HYudSgUcs/Yp9n/Ok9bg+XdxOe+6e8GVbt2u5N2zLTdewPf3SY5DnIfvpicfMIqYxuDv9/1uJbvjUVeMSwi3wQ0D+ngZbLx81lvzwPd5JXj7pLM/FwHGrcTnlZDHfqLZ5PcHpMmTZp0xWgCvJMmTbp6BJi7FGvXgC3IUYZucOw08kxDlhdWg79c72L/8YKcAIqNKrsSQkveqUteqWncOz+DuTxvj18DLn5JN9Dg8o3K2XXRnj02bNJY9P0OkE70zSARwHEiZf6bXr5pLGDc3rw5VkdHY7Nej2vHO2CsQF5jXoQnrSwK06kQpPXdh2M7vLG9et1ENEE6ytnmOWQH+77zdbhiqpnRMdx0HQ6zVHbykM+RV64tLOXv7wZh06OFZk9gG5mXF69j6tquNo7mOkCWf2Jb4BcOY0nXKHyvyvGBaNmtLVvysN3s7kjeF4D/1Xpsjq+N1c0KQzDG+uTmODm6PjZ1MGAdurbS4pD1PwXordsAe+4P3MPTLOPuslDm/KkUYKhXFIh3i3DI1+Md/dI7Jyi7nu88D9lenEGtuUeDe0GN+/CKkFnxoC6cnvf2b3/OF3Ip+RWYS0diRcdjEA1vANYKvARsJp/Iwd5ypMl4t3eSX4J0BkANjuY4S/oub/4m8Am/3aCSfKN/8HFogbGrV4KJTtOBkSmzbqAx5cB3GSjYpTkE6C4NopmPVwk9mCwNkh4g3V/dlr6eQHi3aHqZXDodycUTp+0ml5zIkhIkXOLrMjqkV56Istx8r0CeLAxb71g1hF+eZ9KA/D5U93m5cN/KdzhP3B1v5GvqXhz8/VBIhow/5dBkCfR2LwtV5y7mcP1mRdf1ypXy5BU5wc+dtvukSZMm3WM0Ad5JkyZdPeLFm4NtDOA6Hm/G5U2gF4MqD8fojDCTjQFTer6kMe2XcQw1e1ulMcJzua0PI5AXd64DkhiJsnG99HEeS0aSEaqsM8+mN46NF3s1u/4824Ed6aWE0dXxYkMK19I0No+OxmqbZ3nxHp+FNiBL2xgUgTpxnebJ2LOuhkFYbLXE8101rrka5OdnsA9z3cDVtVO6q5/gcgGnaWu6DHjA6ciAstcLIL4DZloGjg6Q6uG/locxDADfPBPG6dzFsnvaWYm8KAu5Yd/mztb6C5BPfuCW2a4uz6B14i67Z0sYY6yOd7FAKibvuupe9TjZjNWjb7wd2HHD1F8HWC6yd2oqESFXHJOCShuYQIEYS6wsXkDDhZrAxYmUV5oMHUEayrOw2VZsUNoAMukqzyVQwYpaisziH3JIQMboOw3GLhA8eAmmnYBDLryRr8GRpAQFO2A9lSWBskxj+S7RUh6+xseLce5E2TGdd85tyMfpc46DPM9BjnWTdTB1IHU3uCyBi66TV3A64Mn1zHZcouSh09nSL1YV0XeIUx55r8hJxHqSHrcdH1knTwgZS9rvJgZgO7lYBksD+FL5OYd3K2iHQM1s/05PKAcv/VzM5juHQhYRc7fagFM5kx+/q1V64vjkZJv6tFQXePCYaj6XaCl/+GPbj8NuOS11YPdVeu2bx9QBdIfx12EueDbnJZeb+uLTV5PfO6Q7EdlvFT0O9idNmjRpAryTJk26guRYu3hY+DcviQC+9goD6AXstQdMZzhe5knQgSk2WvOF2ihPxstNY8YoXb6x2ih3WqOHS+Buev3YYDFPBgQ48Ig4cwZi/Gx65/llPvnsvIBTVgBNyLUzcrt8MDhIB9izr8PRfevtoWu3bu28eBEFWdqRhCzcLEVp86Fi3Mf5z6I2dsF5IvWb3fbkUXmzO5QyAKMtIux+YzM8n9iciWcyT9vdicMYI8OWK77t1JQOaHS5IkKfmoztuVzageY3ngiPVS42u/l2N/Ru2QTqcbqi7PoNwG3eCSNh3riOTLjubkfMXfIlrvM5jrQap6ebcVQy3YZk2AfiXR+Nzbh/jDe/aazsnp2AXgJzh8AZP195cliYmXdfoS/nGOX+iPLZwEeBOb2OxrA3J+CmvXEpE29aBOWDgxKQS0VKMMUKA5BLmTSQQzBA9b0CMXPfnbjzpIRXgyAebyEPJh2gm22cYGWCx6n0OcYagOJehsygQyArn7TYATvJo7+7/e+UlkJJuH7d/Nul9UDsv07n5zuQPr1JL0NoOsDssnR53TJG5/B0L/lw+qT7qxcdur6wVJbBU48NnkutR9mu3btOttNSO3LN5RwCQ91vXUeDit3k5nT89YqtAUwWoup+9XkmGxaWAHe7OnrsZAdBLoyYlxwvOhSS/uiFuHxX7cjt4GvmyTJ3O+W84fmjqy/Ee6A90b34znujVzutD3yor0MReRFx0qRJk64YTYB30qRJV4946QXotQFuAJd7SyBvom9FBkH9fYk64yXDPwBoGNTEwEqDmxdeKIFUv6SzPduG2BK46zLssetyEtzlGV60QcFIn8Yz8rexYeAI2STqVmRQx8Yj7W2AwYaIXWnT2LcXmYCn1c2bY3N8vI3FS9Y4i/AIoF7ZJ09/+u5a4UCVVdmBttcy+gfVsl2G6BzGmet2SkRdARTd9IXJGQjt8BfyLnyAOpCnd5tajcC94duYocMjGF93VzOPNEva6kU4pyWO72d83V3EjtnG3HwGDl0g7VdjW9TBbVfEznzb19j7OHaWLFF/2/HkjwOUwwy6fnYSvNAti8dtxN3T7f8VRmSUXX7/M8Z69aZdLF7rtfuBr7sxEpzysyijwYa6hmDdb7uVARqTToPXWSkdyDsV9SoGHaq+F5ALrzQknYBxjQZl7PQY4U5EWUsLdgaC6i+NXb+rU9lrzI2bXqcJ8nZzhRUxvSLNT7eI6M5s0N4fk0HcDlxM8D89Ar1w4IHMYFaCQEt8WG7WPfPVAZGdbHL89zjvcjrQ2b8P5Z1gWM7hmSaBR+Zpz/ndwJM8JHmbPL8ZRBhQGMQ9IKVXecoc+eSCgO97XkTeCcB2HtV5P2XoNsi6Zjslue3rg3czlLwWH8TH7sZE8mQcqoDqGbrC44E9/nOxhBXXTu71ckDwdlPxyWTuScArn6bUS4Bjj23ds50skQFjpxfKso90EzD6x0tKkeOwM+5X3XPyhfIdtOMN/SKMRe6omzRp0qQrRhPgnTRp0tWjzlPXW4vrw1Zbe5T5JdmffOHNTwIGnTFTZOPY143G2UW0Q9sATWxUdflgCKZRbSQujXIbWKTFwMQAcj07A47ncE+0DNJDJK/bCHD5pMswDgYv0pPDwK7Tu628XdCA1T4e7/pp5cV7tN0uj8MODlT1CF6XXdNZVB224O80SZLt51JXp8/qJPZjBybs4LJdkyfKxU72WVFLzZw2ptMYG+gwnHzGedFkxm3SJkw8BQyl+H7ggfPQfqTBEdNq73z5a1X1AW3ZXcmn8EdCe4OTGOh2t7MjauXNjlR44zlCPdjmbXG5baPuQd9nPGNsbtzYXbMi2KOOa44ti+AsaAN7Hmc8frlPGpSgzKKqCFt+3d/y9L/8iwAAPToglfEIPkjjcBQ5Rjm+pOVCejdKehlTb+drQBlwJcvNMffQYOB7dN70hnQ65LFU7gVlaba5p+edeYHcCXP+yue6vyaP+/YwJX/SdHl0IGgOMN38C7/d4NXJa2nQcyfs5i4GWAYQb8FHl3PFzvl3dfRvg7uQg3ZbFl48Nq/ZriyKpByXdBgdd1gWT0QpywSOndeSvPN95BD5naSb911PxifSO7QB7cb2mHz/8LhDn3R5+S7iFTz3YcD9AuCLGGtcH7cVi1xF3eSXv+HBq9BeUfZk4nGQcd4ewW6v1FmPV24vJkS/qKA3OaE7H571GOA5xgv8lZ7tLj511SFL7pB4LX4y0JOFj0mTJj21aAK8kyZNunoEgGtvXLaC2bOXv93LsA3zNNDSCyyNHQMX6UmxBELYILNHhg0Ie32R1i6VfuG3EdOBKea9C9PQeezyko2h4xiRUIc4drE2MQASMHJdzWsax8jbgVepi70MbYza8LZRZd6LOHTp6GgcX1+PG9vLqzNRYkdhuxW4iJ1hNikGkcE6O51thxsPMCsJgpJvqo5tOFTeGAEiSzu7qBxssPNwouzs/M6+TLWzulgN015NFUzKpuqcmZwnbWBsEjVyPTqsCJAVOx97leHC7caaUDl21iF7OBThjIpqs8aRjqVuJ8g27bbOq83+/krp6sFzYe08efeNfe362Nx4dAfydgJ1gwO+GKR0v78MQEgP3iIb4enCTWWJ9VHfHcsRPhija8uzAQGEZj6drzuIw1VwbysfLU6lyzxAshvOMsoOhjxyjnBjpjwTPO+U0W2XYQk64GWpzUzuBNTtTkFhz2edB/KSri3lm3MkbbQEznYDVTd3+p7T+Fo3mHVzcEcdwJxzaTc4Zie/kzr42UNythxTF91n8wTQpbqmTi61SfLu337X6Np2SRYJmC+1AzpsYHfJ4zfzRC6Ed6mVTvpkTX4FvJKmxh/GErxRKw3vj3jhehxKORJ+psgDO+2WfdC6uzTJZhvkc7mrywt0eZglfPmlI8vo2sY827O7rgFeL7VdkvsPThfwg8c06SDAecZz+Jg0adKkK0YT4J00adLVIwO33gvPS3q+/Buwzb9Ok4ZXpoeWjPgijCADjn75pqwEOJPSePWLuo16wBfKNQCTwInr6Rdsg6QdOLAEBtSHwKJ2zzTvBlVs4JGvUUJ7LRkYRpYggQBK2Q6ul69jqNgoq1ANJydjc3oy1uvjC16a2JZlZ5S9RzHYUXUPz06qm5hY15TZNLbjbMt1onS6Dkzld+IEdppht6cjbjhknkOU5u7hdDhcqmPyR5N3Tl+kSae/VGf4q+5dXrx4w3bYjHnI9QWfo+Mdp8jJ3cDRT1BTh5jA2Qjbvnj3WUlWY8fiPT7ejGvr07HanI5Nwbgn9V2gm4S0FeNmMzanN3cPs6iVDdGNXQni+BlX1mCBPc+4TzxQKlZpq1OwquGVD1YPGJcrD2LZ0qiVnkDHBhEgyoKvuk8D0vHqeZ5NAJtVDOpRaYipUvcLzEEpChCicbz12PVPebthLVe+Xwa0dnOMn82BYanjeF5wey51CtfJ6RM89DUPOF0ngdKlPeuWfLvOPG+9tDw6Gae8l2RjWSQ/KacOyLsMqMxBbwm8XJJDpWdSMTAHaMuqHP2QfFhx8iTBPQYkvFk9oKfMukmok5fHmczL87ZB3+Srk7llU3yyKyB5oWzzxHuD36X8juB4rnwqXQG8RYxjlfZ1r7s47jj0BquhPlnTK4PkVWMJ44XbkLbIiTwX85lEso45PjgP0qQeIIclvTUtTeZesEre3M/zfQ45Fznkj0P10MbuR/lemV7BkyZNmnSFaAK8kyZNunqUAC/hGvwdIzs9d4sMdPrFNACW264tGYv5opreXOm2ae8UG3eUx33n4+v50m2whnzyu6+5DgZPTL5vgwd00AYlf23oWrZOz2+XAW8JjpOuC8dgWVKeZdqBKQbdAafqwLXrR+Nkf+iVq2B7j+922MHGAzSsDyEQKm1dLzzJKpLetlYBqxS/uxDNtudQD3sHu7ltT5GumhB7tAjbK/E9PFTtzM09sLUsayl8NE6d1Inrdq60ehpzLOKwOPNp2xJHUTARQjkYrKXJaafsetSRYcQ2KffMowFj85N64hjC27bYV2T7t55Zr8fp6misVsXsLpPV6cnY7IVZCxGV4WYfN3eVQIsLN2hAOhoylcj9x3l14E4qqxXTiHv9fc1rdtef+cyL4I3HEa8+5PhAo1nRGTfsKYxwDTCaVxrTYXwAoGnc6ggouUGMlAP5IhPq746R6f2c55lMm3/dNulF6DnBISyWgDTXw507wRqXm3qV4Evym4sJHYDo675flB7N3feOElTsqAMVD8k8ATHqR3lLYFaXdwdw5ncGIw+mkA8izHob2KMfOQ4NAzjvPy7TQDo8uG7ZPt11l5316n4vtY8nEG+JSJ1POXoXVPVhA4ZLK60pAzx7O52udNUuxJe9jPIdLPtpB4h2+rDEbzdG3wllvq7nIQDYfYvFgiTG4dzhwYTO5Mi9fGmA/L6X777W6TukfI1/IunJwsekSZOeWjQB3kmTJl09wlg3sMuni81rT7E0siG76/HCmYZtAq6ZB5SGtMu0y5/BxgRhDULni3h6xyRgajAnESmDK50cfI2Xe/gG6SuyGyjpjHZhcBrl4yUfnmkbe9YiN4w8A1ZO77YxummE1vKiPgYtyot3v93y6Oj4NiyFRw2UwqYxCUBdbJq6ByBpOzQdlI3PA4AiJljE2RFRcD3tpPqLQ5LrANBs8cJznk2DiK3GxCTmWXAtH6BtbN5gsHd4WpaAr/BK7GDAWTuH1gF3Va+Sz8MPn9+3auF8ia1f+deHEAvVFpUG580qq77XvcobzM+xfOGH3ylDHEUrD7pEOjUaVEeeuy/rcVo6sE1QIRuqvFpcCOCV49VoiCro+n1j82iFa1gIGYOCMPYVgVYnsLcEbNgrFmQ6gUzGWFfcHnPwS14IvgRmbzhc4V1PFMzgkIEsKxOKZo85j9/kxYoBdSk+HJcXF2tAn24xjHqkwi+BRH42V3Qy32yPHNMTtKUDdSGCEtCjDSpPe4LmgOPyud6hJR3AtARepm663CXq5Njdy/wzjdPlYGk+XZ8l4Atd5noOlB1AZzl7Lk05dbzmQrF5TjA2QU3rkvsQE4fT0Fe69sxFId/rrneyzPQpM8dx9cJRynDpu9uQT8nZY4/rwacmgG6QRiY1DtQEmQtQ1IXxInXLsssx0+9zbj+oA6YP6RX3vWpsXXQ5RR6DMn7uUh9K3fLCQqcDjO0lGyZHv+h4FZr4V6yUMqlXfCQWPR566Pb6T5o0adI9ThPgnTRp0tUjgAHA3UJoHJPXQG0aBfbSyvvc87NprNgoTqP8TggjG+SOl2G7MWJUGMxw2XhNdAaujUTX+xCwkCAMHwwlGzHpUWFDADDI3h7pNWvA14CUacmASLSM8jAO7alImgRkLNu6vz/46ejaaly7Vl6U58aKbRF2dj7yyO1Ngt3O+gLionreqeiQADRvVQE7xyECE68jD2wmRA0P9Szdgma1ExfNx3XA5+K1gNR6ruxeuoFtM4sTYqe8+TRobDmhXrkrledoJtTZXq++DgbnLoSKOiQDZdnh3GWixoQWrGt4W3udAvAYdbHK4xDq0LDogtv/onP7LpPN2GwP97N8wHOjg50VuDo+3sn/vmL2N/cewA3AReOaloIc59hVDBVK7ucqr0LLYTRBVAumnn/2sy96YXkxqz52r86xh78GRwBaUPZSdHjkGY+HRQl2IGiCL3ONdJW3Vy0u87713wvN1SwIpqx9fWnu8FzVlZn55zjpDpgH6iU4ls/4b4JJvp/l5XzJeA2f9tTLPPLwsEOyzWvmK2XiPO3xnLJHH3Pu9H2HRkBHl2RjuXQg2mXAXifLOyUP+K5bUTfXmu9ON5bIffpQu7G9wosi+d7g7SPde5v7YK4c+p2tqPIjthKyYLIgmLvzL3588ibgbn2vmEBFjuNLGV6ENhBsftOr2mO26bKxpZMH37MN3DaQZebP0hhgXmkjt2Hy5LA8fknpxgqXmXpaH1ZpH4vOT5o0adI9RBPgnTRp0tUjUCx/7LGb3rv5UmtjN4HcBIeXvHgfL8GXDVpeng36FhkBs5Fo8AMDOj2ASWuD6gKapDR2X4T8Yl9USJbj3jof0pI/iNY+BMKZ19xtroxBzqfzOkrDiLaxxyHPZ7gG+K17oHJ7ZHPLzWo1rl0vL5Kd56RtQ9jHEdBnmhivsP2TuDhNZLDW+D0qV3ak1ZEQgG7uxAZops6WspgsZrAsbDLsqbJrO1G7eWz3dWTANu1Qy6bjm6YzgI78S+5veMM5zofjzzOecc6/8QrC1trWpFyHb+Rjh1TvSk3ZkZ584dmexaTzGYFnMq0uvVmd6cUZPlZ6ty9ns63M9ssFAO10HI3N6ngcP+3+Md4i0MFC9Cl0pjTyExRIwx0lXWp4yrKyVRqXb1CPv2x7rr/EysDjl04DaEvDGLHHc+4QGGJwhfucmIcyeDxkJaQb55c6wiFgrgNg8nrXRrSTQTnnk/ykpy/8eeynAyXAa+oAwXRJ93yY88wSkbYruwOnsswsI2W51E753QuzWX7qdXZ4PgasDFx36ZJy7svBMwfcvJ96k/OwFzQ8oTh9zp3O17LOCcMrZKlvdzIZkIffZbw9wtfx6LcuJN8dYFzkFVNW2iq9J1GX6fZmgae2kyB/+g5jiScwv0PAJ+MebcEuAbfp0qejbixJnUMOXX7dczlmkdbXu/fPbgcI8vaE7jF3v3h+W59bGsu4livHj5Fy6Hoi6cnCx6RJk55aNAHeSZMmXT3Cm8teuw7ZwAttB87m37zWgbydwfbWkl++8QSq+thlMQ8dyZdxXrg7UNeIohGz5MGnaDlv7vtt2YY65WNwAZBgFNn4gEcbSBh5DrsAsHEWrFQIoJEze+p0gHMau7ShgYv6zaFQ166N1c2bY7MN1bC+gGkRzxWxlmOQd6c7Hq9t37oOJk4xDmdslUqHy8Qy8rqb2apg8Vk9sskBPklTvL/+9RfFBDmPXGdwmsT80rHT6bJexg9S9QB2i1+fGYR8SVNOndU22PaAs17HScA1w7fSDrSbwV+rMG3mroaja4cf0Cad3Z02c2n2DtutGxfbrhKsNyfjdKzHpgopxXrzm2+PydsBOllwd52KArp6/CT2iMFRhOVQAVl5eDNYAOhSaH09V+7jCNrjN2VVB6QxAXftPWkQJAEQj+9G/A1WGchJENKAIr99r/OK7Z73olzXHgZhMo+sW/Li34yb1MXbC9wpoc7LOPlcAqhTNpnevLmjGeTpEJDsGB3YmbwkGbjtfue9Lh/nz+Dgzr4kx3y+k0tXV5O9QZMcLoK+QL/KxU5PDJm/9S2Dw1su5n1pXHFeed3vA+TP+003KHayyz7mcijbK3R+b/IKYYbagC+HnOKadYb2pg8xhjDZeRysZ8oLlXJTz2o883teTqxu0wRbK3wB+kdYrIyHTvt245bln21reXp8NF88y0uQ82ds7vLM50nT6VqVX/lX3br31kmTJk26x2kCvJMmTbp6hJGOsZWHq4FU2XBOwDaNTX/sYfu2pM4QtrGCqygoIy/yCaLwvI1mx59bMtw7o5JnEyS1cddtvXMg0voAyjgfu3YCFncIGmntHZj8G41Mw6EDAKhHepTUddDXmzfHan001nXo1enOixdQENWq73V2lM9fsdrwHcwI5+h0OkoAcAlUtdhtByY2Yu/gbF7sTNTKDtvwZse8VAtjGQnMGvRMm5hnyRdQ1PX12kOHaxVvFR2g0pXcU31IU45X1R4PPngez9h1s/1uh9Cyw7EjjV166LBTkuMDA9h3ssiu3WE9rvcO1K3EJIjtr/vGXp+ejvU+482162M8bTM2b3nL7iA2GKZfZaM5gHIHZJIH4w4eWN4h4UoBljg+t4FSKpaetAZ4DK6kwhh5Jx/GeQMkCDO3btNQ5FeAMuORxw83hst2vu6QVg62cmdDu/4GZtM7Mp9z2m7+8VjmOQ3ZdaBZyr4bXDp+PPAkPwaSDvHagUWUnfLM+azrQF1HWpqnE9T0837O1zoQ3ABopWWbxVL+3fUsn3xd//SSLmLAy8VMl+UdM90E0MmC8vzbfFhG3dzbfc+8aHfeX+o7Y4rr44X5IuIUJV9Zl9SLrLs9e4kdZNkyfhQvhG4BXMSj196kRQD9lM3YlrGHHKImJ1Xyc79iHPRkanJb5AKDxxpknuObxxXenwkiz5xR4DFlELyesi2DDAGS7QL/Bp4dn91ji4PYU+eayHlh6g4ZnDRp0qR7nCbAO2nSpKtH9sIEjDVKZaTNYK0RMf+20Z9G0tuSbGgs3YdPXnjx6k2XQIOkDk/A/Q5MLrLnjWOoGTCwsYlHGMYIH7ZBIkv487ZF7lm+CVaDlHVeKRgsHcqZ3zvvmDRKMB72gNFqa+ycjOOjAng324OvKjn2qatgdTGwZzZZdyg7qTuPJZ2+bI8iwrSJaBIf7m17mSrZHjV/HU5Vnq/ZPdJW6/AY82xg1/Uwbuc1CtuiBobdXIRd6ADm+msHH2zyUsPCX7JLZYhPh0/EjkeNaWc7pdtOzq7Eb+Ig20E0ncWyrS84VJHn/uvqkq385cW7KpDXXq/eSux+Z09WjOpSokrvA4esCC7bMT0AWi3kaozOi8+rGh6TCTpNehqClQd48xgEsNEppHm2AuKpb0DFXnX23s35oQPrXB4yyPIT4D4E6rojeWAwcJWdDp66dM4/+emAuZwLMk0CRO7obgPacKkM1yPrk+mX7ndpk9cuXcfTIRAWShB4aSWKzt6Bw0vy7IBpe6Cab/q1FxJcdpfXIf2Fsr8m4GyvVfpf1it1zkAn/ZQB1u9l5q2ue0vJEnXtuFRnJkLvSOietew8IVGXLsxAEauIvPcUeeWR9zX6hRcIlkB4y9A8MdZ4nDEg7MmE8vCA9XXPAZ4T3A530mcBeC07T/Seg3LlOPtJjpsQiwGPgzKrJ5IODWGTJk2atEQT4J00adLVowzLQHxBQF+/yHrbXGeEA576RbczmN7W5BfpBJj9MmzvC4OnRenFZpDH+8d5yU6PVsssXU3tLesDN5CfDX4HqbXRY7SMfKgD9eQ5DCSjnOZraeukjVTqSP0TJEFXQDhPTrbb3ddHm3F0tDp7vG5xDl7ar4QR9eFcpAHQrKqUgxB2n5vLIKXtLtuGtvOpHoBzZ49ZZXDANM9e1zC/Fg04G7ib86g6Fd90u1RVbF93vUpfsrJDX3o08xvZkdaHmCWYbiA1wWzK40Bv2qvus4MW+7/KeM5zdtfLkcnxd61GVlHk6LAQgMu2h/3MlufN6R7QXe9i7Yb8LgC7HtOsEJvNNqzI9hkqAEJtgxwlSM81vLXof+UmXe7P9Tzl2MONcAw2uukYGaohDXx3mhx3O2EWsf2Y0BBWWvJyf3bHsodyd+Ac5NUGFgkTWPOKQ4JaSwClfxtIyXbJ8cj1SkDKn1QYL6q5MzHg0DZLIGACXgl0J8hreRwCY7O9O09npz005ybQlPW47LklUC/T5HXyZw6h/gapkPchALIbCFxG8pB5dXyZPOgckk0CcwZiDcSxEGSvfb8HdMBfDugenD03d7zl4Or7lklOOC7LYw73WLFD93Llr+t/bncmd8Y6QiKw+scpnd7JwHU8g7v4PEl1HVCasYgFL+rBxJUeuplPfVix7N6tLKul3R5L+bpdM29eHPKdMtsIvnNByS8tPDM9eCdNmnQFaQK8kyZNunoEOIDbHkhThl4wombAxN/Ze2+Pz99KkNc8pXHtNOYHA4IXasfq7QwY6mbD1IaQX/bhxTHsyIcYmDxjQ8HlFdntEeST+uXWPRDBjufOrZQyATRsHHZbJvmdKCJlkQeePuv1OD66dubFa7GleLGBqXIVXyFFje0UllZZd+H6aDp2JSJ+g4YWHbygtq5CNgGYD92Fa9jctp1sU5GO7kOoCYveGF6WiSet80sVXsKQ0t6+zP7vumvxXO1SuD3NXXZx8czuX5ybyKd4fuSRi05Rljt1TjVMnrwoYHmv17sL2/TbDEdF0t15jm9KzzZjfauEvKvUNksAx9zeuqdtPjSEt+2mgX32gLzB6jtetCgI4yiKU1TKS5DjohLsww+P8axnnefvk+wQRh4uZKp7ABhueC/euGEMJlFW8ZOgWoIG9uS1khASAuUBzQecScWyshlc6YDKJWAuAY/MuwNgl6hrW8grHCWnmieysy3x1+WXAI15X6p/Aj9cy0DlmWapTh0g63w7wLMbmLq2WALBXFaRvSh9PftlymoJMMuB0ddyQYbyc3Wro5TfUr0px5MaIKUHaZ8kycdySODeh7XSZ3w4q5/zeFXjihdj8sBFTwBL/STrSlgGy7kbrE3mnTx9gqZ5ZhLhYLaaxNNT2XynB3gHyueYBd+U5fci6691yGMUC26ssGZa6sdzBmlzVbfb5eEys40hZNGlYXdFhg3KOW3SpEmTrhBNgHfSpElXjxyWIcFdXowT3E0XSe5DT/SeLgMOSYlq+TtooU9sXkLVXE4aGEYwkU8ak2kIGMS1Zw+oouMXOM6mjR0bQlnnzpCgDja802AhT3v3eoug5YdBiy4cH+88I9frcXR0dAFwta1INuDrxsXSHi0bhlCdhFfgHmCkxZLNtQR62rbr8A++Z4gD7KlOnLY9bWMa8ETtMt8OW1i6fwhPWsJCMp0xN65V0xEqwaphJ9giHLMA5X3g2v7ssrO8617lV+n8XNq14AA+TO+C3U09zhr/ZByd3Lo9BAuLHh7XOsHRx8jToInz9GnvpGNRBQYfeOC8YoAD9R1g14BCVbI8flmdMADNmOuxBTAXQLl4rPKoRylTleP+znPsVqBxHRvdwvduBoSfY1iOEyhGeu5a1vkd/nI7s4kBwLHM3XaZF/LuwLiuc6ce8BtdYEXGYTAoz+Nj8t153nWySPA7ebSuLHmWHurUyVNHnsNctyV5ZTndvUPP5faNTN8BiJm373fpO74SoHws7xCdPjmt52PrBd676DDvGPayTyCO7/ZYzzyzzs6vVuPg016x3eKE65X9Gx4AoXPnTj6fHs2Uy4cdCg6RwaTKVpbilzHWkyayyEUh9xuo88J3qAeHePD7k2WT+VIm72Hw7PAV/K1PtYHf43KxiN/2ok5eckLunCs8zuRhc9azx3nIGmJ/MtCThY9JkyY9tWgCvJMmTbp6hOcuBr+B2wQa8gWzA02eaFpCu3y/u2ZDiW3aoIUdyNkZlAYgvD0T9LGI51yeQQk/j1ECEGRvljw92mWmMWrAmedtMLqOdm01qON8OnCjM2z3h6usjo/H0fHROFnvvHiLUpSwXzYgofqsigZ6weu8g9E2INdtnHT2emfD5b1D6mW7zTsl09YEj8/dmx22YX7uBJztMLfLyCrYqbHVzud88SwyMB5kh02fT4U3dR3qRjmFPzJs4HCGg5jt4XNcYDOOt6q+GqutV+5mbFb1WY91+eduGTw3aDdbUGUXjmDn4duAhlaINJqphAHf7Af+ToXTuzVBPsCWZzzj3Ju2hFHXHSqn0r761bvrL3rR7i/eWfCUvHcfA0E8U50LANfjCeEHilBW+rB3CaQsvPvBIAwEKM53d6CcU5L3Qx0vAcEE7y4DJrtFwBw3kYlDVnCvk73vdwDpoXmJ+6mv7oBd/V3WZeWlR+VjBWgZ4C57PnlLyrSHBrpO5/i71NZLAyrPZb/oeO54uKw+XqRlorLXboeWkSegI9s16mPvXsfAsZd8yjDnYS8kH3o36vSrnkH/mcQy9q+fNR+WI6FhvKuJBXSAR943zC+gL6CqPXIT2LaXMh6zjMdMRn6JgEeHxLps4qcvlpcxYb0Y++1tTduYH8ZuVjsJN+G8PaFmu2bfdX3sYOF4ScjaK9CTJk2adMVoAryTJk26esTLobfTJsjLi7INFLwZnurkl32DpVW/Qqe895979iYzIsVzmbc9oUlrFC29f/yCnl52oF7pUWdjz9t3i4yEJsqZCKnLIh++s68ew8OAVmdEyzt8dXQ0jo+OLtiBVKcoHRXJprMlwdJwCIKFDms4ZO8vOWl1AOshbCZt2s7eTofrxAqcJp9L/MbXXf8MG1qEuhjoTnuWtC4fmxjnVBzRzDvnddEm9923Gc99bt1bjde85nxIAScgzAOxlus+tn/ljZ3rdt2C/ls7umI5b6W8/dy4sRrr1elYrws02OvhfhFkc/2+cXNzPK5VXU/2fbgDS1JpLGBAS8fBTZCPdEsLPgnwcnga4y2n5bn/0bdf8IKLSmmQBfDCDZRK6oU3XKspl3Gb0+4BX4hNCXhBTBHHyazYG5wYT4NRXnqMVX6AMwlSHgJHl8C2bnDorjmtwa4EoXJwSPDSgJQp88y8fJ/f9ki8DIj18wbNu0Eu5y/n0fGUlDqbsl/is8vrEHi4BDBdBix3WyI8xy61a1Gu7tFXDZ56i4DLYNC0F6nvm0e3QREDpd+VfIBYThLZbtknctLIPsEczTMepzw+JJ+McYxJlqnnd8ad1KlD7U3+9ur3aZxFLB7xfsHKLpOPPX0zfnG+b1kOHR/kl33Xuwesi0uLf/wltI1DcdjD2FuSqHvlX2F6coHQvGV4mRxHOh4B4S0zL+rn3DVp0qRJV4gmwDtp0qSrRzZiDezmtlmn8RbLJzMtGbVLabvvgCkYbV1aG2q8TPOSndteMXZ4EQfQQb65NdFGCEhaGrLUM+O8GYDKLbHwa2/cBKoSuQSA4l4aJ6RttjSu1uuxvr7eF7mLxWtbC3bt/YnY0p60uCtGr9cnwMysykV2snETOZzAZfhG/Wb3u8FV264WKR92cmZoZ4vZsXnTKdtgp/NN3MQYAGmxMbF97VBE3vDN82Af4Pk4m/pw9nTqJIw3zo5eE3IYQsrjsDYDusY4KX/7fee3O45Kftt/Veb+6l4AKzVWXb9+6zd3Dz/96TuP3qPjfS4CC/JgRQzsVDq+u5HwyrPnfQGmPhQRBXSYA5fnBR6UKL3mDepwrxByDnIzEGWQAFd45+vt4JYDaYp/FMmAgccQOozBpM4bmtgeuGc7xIEBlk7WHZjmcWoJ1Lus82Z7QjmwmK9DAKk7onnxMx2wQjp0yHOE54wEAD2wJKBk/ejqszSIWgZLwN1lgF7muwRk3gkliOcBz/LwwmfygEw9SKUHrcHXjE1KOe7v5NtRzvOeLymDAS138iB385xhTiodg/ih9vM4lhNsN55ZrrnaSd05YIzBv+sDXTt07xDIqfLFkxVvVr8IMPG4zfLdIwFexliPEz4Uzl60vCQwKXlhLcfsHC+6cSX7rRfNmSwZEzll1ZO9//q9ze9kHQ+VT9Wj5FdzAvlbp3mOMDOPkTqn8yeKnix8TJo06alFE+CdNGnS1SPCM9gDKw0hg4y5XfXJTHcK7nbeEb5e5AOJjOhxH+PNoG3GjSxKL9ncymdvFwwNgCgoDViMFwADx8qzkZJeMB3Y4i3BPGtEsItv6bztOVLfMajKi/f4eKzX51OtsSsI24st+/UpLAsQ1zgTjoJdGLx0Qiescjo7GhxewkDSEcz2O1XFlrR4+ZTnKvZmRxnOb0kdDcqaL9voCfAWlf3nNLYPwSNtU2LXo3a+Z+AYHs6dx1dnTqDGRK1qZYdWeg5Qx7mtulW1j0NfW+2236sNVptxulmNo/VmnK6Oxun23t5w3zfiNu4z/Qjmj/bGPA2XgJwVIvtNEQAq/dz9AYXzIWaQlYaKeXzNMhAywjVIZrCCfuo0BqPgsQgQw0qQBzJ24wFKa8ALVJ4xxoAVY4BXTeovjVsdORevTFl2XrPMEkjswOPsqFmO653fs83Ma8aXWdKlrl7Z/pa/62j96cbypbw7uZmWAOkc/JbqkuTBIZ+3bBL8TsrnrKs+kdFtaZA369PxmPVfotSbQ3nnM0XE2QVQTIDaAKLbnb7dhTvxnJrt5tVDLyYlIN3pZed1ylhm2aYnc1dvjweuX9bf41GNDQCU3uHkdmM1sGs3pzWPvK+RBoDccc29mOc65qmn1kU/Vx+Ps1D9zl0a8FH1TZAfnei8j7NvejGiVre9CIHO2ovXL01Plff2SZMmTbqLNAHeSZMmXT0C3OUlkBdde59wL7ePPdkpDfO8ly/maawkwlfXiIeZB50VpYdcevWeuSQKgcQQ8HbE9GrDcCN9GmFG0XgmwYJEAW3YUZ4BafNCPexxZuPXXnwGWyDCNNy6NY6uHe2LXV2wuV1cibaqViAvu7zZ0o86AhDihIMo6jdpjaOUXeXq3wml+PI61e5C3KVtaEqs4BAWs2Rn+neen5JYlO1p1iBsw3IPFbR9mOpCuaiC+TaG2OEo2OqoscMXVl7VtcrWp8vcuFExm7dP7jK4tvu93tTDq3G0ubWL6VyHq1FxGCujmr4F0MKpcTbwHdvaIAqK5D5hQ5o+mO7mrE5Yeax0CVh2jexGNG9uBLxtPWYDNtCfM//6JFhmUJm0BsD98eKOeUaG7CBAuRxYGZ5ri/KdgIhLgGPKMJ9JQMTK2ZWT41h2VtIsgY8ALLnVuys72yJBW3e4JSDLdc3BpZPV3aKunOzcuXDC9cvA1My/yPqoQzvP8qOPs7KWfOVgRBnJTw5uyXMH7ibPnv/oY7kwbvl0g7XnWRaR6m+tDlJPl2tg0iEhXDdk4EnAesM7hCcwT6Y55iy13aFFmyK8gEkLSFl1K5CSsYEY5cl/vpPZ6928+AXAsXUd19c6ANjrbUPesUBdOJjS/dUTJTrqeYIXkJJlPW9Z0F4uL+eF81XT3V/H6E098C6SzM8vDEvtOGnSpEn3ME2Ad9KkSVeP7A2WqFjRUxXcLToE7vp7Z2wvpS95cNJzukYaVAUwTYPKxqY9avEucZk2JgBPDOj6BT63dtvYJL8OtaO+BrIsDwdwtbwslw608vc9wIsX77UKqhpN1HmjIpayh7BPbaPYXrMY/bwpcfNsfkSduIV/E/6hrpfTUVe28yb8gO0zq0A2t23S3HVqZ2/LgC5rO9Y2KN/Tmxae8kwg2/uWpdVxiWerjaMC2KOY571z2U5WePTWs8++783jZByNm5vr23PUVuu963GFXKhyK/4uArDXm8axbbHWS7s6Z4MAHqQiEPjZCuTDewCa8PIt5bBS+xCeFKQbBL4BbBEYDUi/qvxKGb31NpWVA9XsUesQEoz3bhhAKTcw1+A/vfx9MFR98NpHZp2XnOt9CDBM0KoDdd2GXTqP7f7tMgzWuVPnXOht4rQrbZJAY/fd43TWvxsYMp+Ul+vWDWadzDrQNee+pUGqm1OX5tnkY4myvi6bvNFfX/egZT1xm3Xxdc3zUp0oc6mOOY97kHP/Ih8PvPzNeluHmPgqnfuX86X8rJ8/bInw2Oh+SH+lL9RYwsGJDoa+RNln3Tauh69zyibvLUx2HCRpkDTbIt85+E7747nrVUx/ZwXR707kzaTDy0aN4fUcISRYmWRhz/HHzYPHAR+yx3YVxvL6y0o1K9nw5fE1J2DKIF/a1UHx3W88KT9GSnPgiaQnCx+TJk16atEEeCdNmnT1yC+tvIQW+UWyi3f3VKQ0rP3XlMaXf/MdI6Be/jEyuxdpDL8EVw2aAIR0xqaNRl707c1jlM5lJMhql0uuJWKKQQK/aaylcZX1tM7AG/qzB33qsLX1fUdnsXjzcROPg6PZVkn7xyz6Q/Uc9s62D88Y8zG2t5SXHa4t+rRxcdbxTs0iH1iGrYYdfIivbGo3v9WzrmGXpp1swNn4h5s88Q/u2WHIZJVIPC3VhLILSyg54oGM0xV2/lZtNkfj+ukuvmCFZ9jCtdfrZLYynANUs/CtKEUccAYDthaNRCdYbGCYfke/xUBnC3Gdrg4wYmUgZETG4KSvYZhbaIAuLssN4Z0V1N/gcPHjOBhp+FMPFoDwwHUa7nGf9HUfL2Uf6Fj36np56drrzcrjtnIbGCBxJ/X9VDZfT6Ar7y399nN0glxtQomReekB+sJ2fNetG8ygHHe7OnfzTycDf18ChZfyTJnk9SzHutnNU+5z+VwHrLq85A198aIKz3ng70IUpUw836XekWfG+DFv3gKfcyF90v2ddOY746FeJrMiJgzm5NQTT1IdcOsyADi90OL7BiZZLKK/e6eSvfWhTn89UXtrDfI0P8QtcuxdxsZc4IIvX0O/GPvslUs4GTsxGJQF/OZ3jd/lUVzfawxjUZ3FNvLmEErqbzA6Xx48njBW4JlNGhbsHP4s25p6OoZvhvHqJm94exzg7qRJkybdCzQB3kmTJl09Sg8pvyzbuLgX6BBoYOrA3ZRRUcmlvF3qHoCGvabsdVeUACt5+WCVNFwMSHkLtoFTp81nbUR6K5+BZtrZiF/KwPXHIOkodQV+8GQpL95rJ2exeBNzgDVjXvX7DW+4HUBdAlhtjxqrySbI8HVpjzlv7mM32lb02Sa2uXPHq8XJ7nV4wiHTYC35uF7wYH7tBGWQFp6QB3zb/rYTkOPfwqdV3fzn98QWWP9ArVIlbc9jxwNII+M6OO3NJ9fHW8b18czjU45I2x2W5gpU+fXf8bWxOt0b0ei041nCACsGbhwDMtl3UJhsFPpTlVP9nzgg5flVnyIA4Iwv6fGB31ZqC83PAjRUvow9blAanoaxdy/51qfADBSXPBxmAW/fHFPMm8cjlAgPwPo84xnnnQzes4McIitXN1bn+OY0BlpIa3CvA5gTnOUvqxB49SGjpefIP0FOd6yltNZT3+9klmOyB74lgHgJ2DWvXf7dtSXgvCjnl66uS2V4sHDd6afuF4DreKrnggfpAcA6ILyoO9gMnfbE40+2BwOa+wyy4Le9NM1LgsD1F/DToLbllvLJd7ki6u/72S7cQ68BMD0mdBOoxxiPkYCXBj9ZteN9qPqReag8WCynj8EPsrF8ifHDZOiYt8gfneAZv3OhE65L8fDwwxffeXnHc5gQ2rPSe6eGQV+PwX7fKwDZizuVN2lzDvJY5W019HXiqHfvYtZ/5DVp0qRJV5AmwDtp0qSrR37pTyPA24TvdeoMPwMHHejLd0AUQN5ECPlrLw+e9ela/LaRineQUUK2EabxaLdS82p+MICMbKaXb4eKFtm7BD3BkDLCmsYnz8hwWct+xO4z2bkGOy5xurTZEp9OTArQmPR+pnPaS8fDoi6KiQ+n7lQmHczA4KpcwrwS7cMhXW3zYdMhK8vBXrg0IU3m3fQ0l0Fe82NVcB1yPcJ2ptP5ngFxY4gpZ3atwqtxmN0u2NU4Pd2MWye7g9VW9XuUB7i8cQ32dgCSQ5qcno7NPhbvmXZ2xj9CT4AJ4XIPAVdDAua6v9anvhMugecTmHVDAF4ksk+j4lVXn0ceGeOBB84VzYtKGPZ0Jit0Bo52TA0AE5+Yxz3vBDAIxGITY5m9AgHZSeeVmQTTkYPnpKV73Yf68T3HLufB97yWHZkOj8d2XfeJid2iVsev2zF5ODT/JJ9LAHCXX3evK2fpd7bPEkBMWqdfym+JkBHfs67IjoUFDzwe+HPHUfblrr4JjnbzoCcN0pAOr8rc2mEvY9JSDn0n62ed6+TlQT3rlW0F8JmevfRHe37W7wJnHePfC8/1l1ACHsc8abidO732uFiLTPQrxgbvhkIuhKFx+8A/xCIM408tLplHU7fCSZmA2QaGiycmaE9kBr/ZxVH3iCVMeAcOFSAPj2keh+GDcq0jyAHwuVu8yH6XIb9miIZJkyZdQZoA76RJk64e2cvC237rr43Yq0Q2uNLITACV9HjssQ/fyOCdGtAYqbm906giBobjy/nFPY2u5KEDsJaA2DQci3gGEMpgRaJ8RXYr3RsnqwJ4N6djvV5vvTRtNxuXAdg17tVhzZ2zVNqW6UBIHgCqFrl3xbvJc7ewy3Q5ZSMnCEqYPWMQON/QrLYV01ZLdXEz+p6bi7qQ1riXMQ3XLz1useUtW2OqVr/0qDYPzsPPZrskuFyfLaY2VuP0ZDOOKp/ifXU01puTM5C2dOqsUt6S6sULGiKZWQLP3IjoMkw5ngZ5lGFP2gJd6bM1NmDoW9kNUPiUeIDEEoyDPgM2UD/yhG9ih9BAPA/CbsEieAOwKIHdyYktTGMZ3HDDe7ypMnzyXypcUrZB/nZnX+oUzjvBzQ6878DQrgzkSMdEDxiQDoGh/hiwyzGT+hmMsgeh5XindGhguJN8si+k3DtAKXW6GywPlde1H0BjDgpeaKBcD065MJDxSnPwhP8iez7CSwZFT8/J+l6AJd71XmlLnYZytdKxsjNUVsoK+aQuZdu5X+TqmvsN73rFfx5S5nwdjgR51YRX1wCTTcTiNrhNua4nZdhbOPslk1HJ2pOkF6NSf3Ki7Po29akxj3b1YpVfMJxHpa26Zx0ZT72FxvXLMBPIxMC9r9cnD9mjTsQ7x7kAyrAi3eL/pEmTJl0BmgDvpEmTrh6lAcpLYu4rvyqUXihFBkUyje/bk5f0NuJsYCVCWWRvHMATDC2jav7Us/Y68Xd7Q1FmGndpDIE82mB0PiaMLT9v2XVAB14v6/U4Wl+/reqJRTgOb4nXdk+CjBxQXTYXO9ltjzpv/noNg/s+O8tVSfzFzcs1Nyc2GfiaHSvrw+5OdvYbo3OZnWqm6iX+0QHBiQOk/W4Mj3JRI+MdyMb4vm1Yl5P505auU+GURcZMHdlky8fpzbHagpInY7M+GqvtiWsCxRyn0hVmIQJQqBYYSuAGhTwGdn0xF00SVLFCVQNWw9YY4PisKEL2XfjG8HdaTvEr/tm27AUfxgbqQQexVzFK7kYtQXtcAfymDjQm8nDcSu4BaLCTADCjOl+Vhyczip+n93WgVzdeQEvgcHcvPR+Rlds5OxHK6HKRhb00nY87GWNbAocdwNnVxc+7zK4+mXd+z2vujJnfIQD2UJ4JpqWnpL8vzR9JyZP7tHUSwIq6IDvzlp6gBjsTQM65i7QAd9SBgdyrYAbnqs8Tmzr13O9XOTB7IklezJPHHsvrkDytnw5jQBgGFqBIT39OPc72cz9B3ksxkzMOUoKOTmvZ+92iWzB2XjgksMJ6mbfqkhcsBIjM+OcxwItZNZfkCi1bc1gcy9hLdc9bdaijwwk5vWXoxX2u26Pa6ZGrZTlp0qRJV4zm6Ddp0qSrSTYsDZZcdWDXv5cMLxOoXf0FtbKhbsPVaB/37BVm48mGoOPxct+ulYC0fs51MtDq2AS57x8DAT4xcgzcFKWnMEabtzhilACq7Y1mO7CkGF017NESrc+yA4cuUWOXgnF1TkO2F8G+YMt4G/a7nWCKcKrkfuJ7UOVt2yx3SrrulZbd/en87bp2TUk+nXricAb/1MV2rHFGfvsMHJo9sU63mYHgBHV5JsPg4txkhzo8nAnfCG2fK96Py2N3M26cHo31yek4vvnoWFkXE1QxOOZtr5WmPO1Ak9Nrynl040B65LFl2ZWqA3osTPdfg6kuvwP2WLBBSAQpdj/iOyfWuQFRMFYNqJPDKABaVlpOkfeOAZSIDmZlr2slS8Y6e8HRBrn7wOEyDEL479L39IbriLwPeWomKA8ZfHM6K72BlswjAeIs0+Vk/aDOy9JekUv6uVRP8szOmfU9xPMhoDfTZdoO3O3k3/HE9fRypA6d57MB01wlcvs5rRc5DLQZ+POnBuuse5G3Y5C/53nrpGPFUo/usLf8TnlenOqIMhkj0CMdeHo24XmLRfKPR396REPs/DJgS78m/k6VUWOEF4oqPyY9vIZxKvDY08UO6uoJ76Q18Ot60f656suzjMfUi5eGXCzPdzSPcYzVHPLmdsuY67mibKDW8xrzC+M4Lz4sKNRfdnskoA4fj+Od3lPpE01Lqj5p0qRJh2gCvJMmTbp6lEYGRv9VpTRqbdjZ8Enj2m/BgLy8WPvADZ438Nl5Cdo7g99dgFkDQwaI7I1o43LJILIRaE80yrUXiPPlY2CXcuwpZEBnX+86LGu9rhirt2/7d9bYMrDMDlKcdjp7EofCsp0qHF/li7du5Y93rePXQhazbXMcchKfIR3ie+Mbz3e5Y3fZ1ja2XoCmsUU7NeVuY8rsHJiMmxm07VQWNbFKp3pwPWP65lqFd+qnWlom7irG6cxTfSeaAWWUzK8/ox7cFXa82YzNvsLb/NML1xkWs45XW5nh5ZUxrKkMSoOu26s2G92ggIECgFJ7TfE83qxWNIOWBn/y0J4SjutqgKuUDEF7uzL1qzLreTzO4KFi+NY1hI73Gask8O4DjgA+8BxL8JIOTScFVAJM9tjSgbUpa4NL+UyCTumlaeDFSsiz2clNtIXHr+wkmXcClnxPQMhzRt7LOnUy6oAudzrLMHk7RJZdznNO0/HbAYAdKNfR0rzm9rRueQDP9ofHbDfrdA5qDL6pZ/np5GRi4nEb0P9ywSfDILgensc7AD3n08va2wO8ZXnojAUP3vBS5MnGE0iGlXDfYLXS+dAeHicZu5joSWeZ5TtTLqK7ni4vgU+TFwqdD+/DyDrfq+DD+fDek7Lgt72LrdOeAzzPIDuAYD/DS4bBercfwDoLkZMmTZp0xWgCvJMmTbp65JfuekHkgIirCuj6Whp2vHR3oAZ/eQEH5HUsStLYMy692PhgJALyYugBQoEQ0m6Aq95TD588a2MDw5h0RuowPIsMGttr2Ghkep5gnLM10fXZf1/dvDk2x9fGZrN7prPri4yhsesdIBDHn/ogRmycwqxojsTfwf06uw/RGNfrPuTD7tYix9TlfhE4GE49jn6C6G2zUn8f8s3vVEn4tfjJp1NRZGlHK8s565mYPvk6PKzV2eXZ1jZ/BpjdtdgRXddKRoTc2Mqx0t68OVbH18bp5vjcYGVbcBrHKUj+egsxBVlR0sMKAdmLjUoZQCJ/XLzrd8Xh7UCv8nqtskpJU2D2nIfY+l3XSyDlIWwACKEZeCAecMmJLcEoo8FgCx6gID2J09vNSg5vVmbAHgM5dE6AX8vXoEWCp7n1PoEs58Fvj3sdON9RAqMG4xyawZ0FnjzAdMBrV1ZXJ6fP68nn0v0OIO74cTl+bomfogQuM2126I7n5MXgndsRmXrxhWdYaWM+TCCYucx9yvFbPbelfpjflGvKyXOmZdK9L+CNn6dowsdlsYPzmSUQH/K8m32K3QvZv1xP6shCTs71PM8EkfGQyCs9pL0AXL85ZZT3BcLRsBqb70POg/5tUNML5d1CdNYTGaNPnkRdn3whgf88VJL2PgTOIw+IvO1dDeUheT7sDd0gJBhpkRMryyVP6+qkSZMmXSGaAO+kSZOuHvGCzDbfJcPwXqTOiLMh1xmfXLcxzPf0CAKNNNDkco3WpaFiQ87GLC/y8AaowvZLg7wGXm2YOH+XZxTRgAZgMvwvGQqJMtp4TLfRrUF0Oo6ONvufu8PWzJrBQe9WByt65jN3LL3udWO84Q3nNrx3nHaiNjZH01lU/LZ9zPXc0Y+t5rzKBrOdiUrU77LF6lO8lqcvvJnnDnsxIJrh9BJLMQZp1XYo2sRSrMpbr1md+ZWYKdikncLs3Jj5GiujfUyZBj7PwOvKb3M6NteujdVqPY5XBXTeN1YFYhYjiVR7+zGKVIQHL5lXQ6SnXmeYFzleRnp62murGpbtxnjfG8GnAfEMs7HuhqfPGgwgrqh3BHjh5eGHz+v4mteM8S7vslNGQB0DHQDRAE6AtFb8VIz62HvPqwTcM8Bh+XgVANAolTaVOgFH2iS9Ov2MgZ3M79A1gzbucIyr5jFBrKW87bXH3w4o7OTsZ7p0LqcDkRIwPTSvX5bO+SaA6XoU5ZzZAajI13MXeXi1KoFby9UDYn1Y6LHMc5XOfYV7DpHiuvhaysjPO++UVRFzMrIxOG2PzJQ714nbYy/PbI9sdzxjWQyib3ssy1XMfPeBWAkFIMzYx10oFvc/3ieoByEFAIzpW4Qf8OqndxC4HRK0zncMdmnkCmn2Ez6AqpaBJ3rz0K1k5m8WHx3n2OSFMJ4hIL/fIxl7vNjP5JxjAfMKz7KYyRanjDF8h4Tongz0ZOFj0qRJTy2aAO+kSZOuHmHo+9Tge5k6I6ZLk0jfkgFkwCcNNV7ciwCT/JyNVX/nhd6GFd8xigxEFHHNJzcn0GseMRgTFOmMKTx4iuAFI6PIHkb2ODI6ylZBUNg9yHR8bcdzh4XwaJF3d1fRT3/6jqUS69u//S7UQeFbZc96V2k2FdfdBCaXWyzbtvK5VM63yiyeiAXskAXkgZ1mJ66yvQibCvmMGwOkibclz1YP4/lWX8SPmuRhbsil6oIzqtW7/pZ9DmZoENbgdzozGgD2czzrXdbGfhiW1oUNrFbj9Oja7nC109PtQWvrfYVW9tYz4kzhbhQqbd1MxNvAlQWRCzsQzwPu4rlenrpUuLx5ydseXvxOUNQAXQHZhI4wiGEQq+hVr9qtdCQwVJ2kngX4qDzrWjWktzxbblZC+vq+z1443C0b1AADSl/PVfkex4pyFcTlFm+MZT6wyOCO05tfyy+/k64bq7v8XEe3X4JELpv6uE0TlMt2zvoneLWUxxJAmJRgUAfOmrpB0nU1D1758VxAPt2BrQlyZf1y9Yh7HghzcDdY63YyMOfrBD93+fylHwMydjIykNmNHwYJ62P95z5jVx7et1Se3w+6Mag+HDJmWaZ8LdeOvFBWfZEtMwZdUy/8ruB3kXqueMLbdEmXvALp+LV+H/Kk5jYDfPbiNzynTmbZfg9Kj12D8/ZWzn5jnaxyHeIn+xD5+Xk7AXhcp1ze56xjLtdy4HkvJmR5kyZNmnRFaAK8kyZNunrES/m9Du76BbwzqLu/6b65ZBh1L/A2vAnXQNwAXuYTibTHoUEnPG7S8DOI6+3PNgS7ILMJUmHcGM0zaJagiY1HfpOfvUvsgosnkLbUr1arsdlsLrBi+9UixPbCtiu8jGpi0wL8Fq5WBJbsZkrPVkKT2g6rNJWf8XPyM3aD7cdZMaQ1X9hrhdHhtUuT2jGzyM5RHfYCPz4vBTllmAn4sEpiP6YHrR20USM7WfFs3SPiiLEs+DJeaRvTmCry6HijnW/D4yrtajXWYwcW7Tx5V2PzwINjdXO/6yBBJQNkABMYy/aKTfAuAzCnUBHs0kGUPF9AK/ElKj0evQZ3iXNhXi1EDtFJANXer14dePGLL45ZjgdqUMJ1NEiXwKKVi/ucLk9dSrEdr8PjG7w53nECNSnrSlPjpIFi2gwvt/pLSAmA4w7A7EBS2tlj4GUAaQJ3/p4gmvPMcTfnnqXvLjOB/6yH65PPZhruJSh8KI3zWwIdkb8PxDLgVJQAJmm8CEmf8nZy5+XB22GE3D+td65jgrFZBwYsnnUohU7mlOU+lHU2DzmQ8zzzofs/eXQA6FId/Ezm5cmkPuwE8D2TgU6HtzE4nYvVnvPhmUD01V/r8+CD/c4e+GUhAJ3KtuvGp5QxE7EXmZNPePB1xlbLxX8dosJ6le2KTniM7ABm5Oz3y7N4RHqJ8DteUidDfhO3Ct4nuDtp0qQrShPgnTRp0tUjHyBxr1K+XNuATQOtM3aLch9+5u3nOkMe1017qfC8UTIMKJ5zOrtB8tdgj8M0eBsm/Bg57H53xjD5YoTYiMPozA95kAbj0IZi0b78CsObuIDBVeNuRWBiPsCM9IWJYVvZgdBNAeaH/USzcC8xcexaYxJgTnZ+pNpgDMbX7AhK+fWdkHqkKeIsLZo8vZttM9L8jodrANVxe21H+hp5YsParrR6ct9AcDoVGZdIIBmVs4ez0yc2VuD/GfazDc2wa7TVo28Zm/ueNjZHdVDf6Tbd1pM3PdW6g5Y4oQ8hJdhHZbzg1QG9NsxtQFtJ6Y/Es8Dwt3eiG5Tt6jQS4GmCOxmvxHl4UcVjUnpL0vB26/b19Mb11moa1yASQFVunzbgzDX4zEXFugcQb55RNoebqE7yf/7PGC960e56Aj4J8udYbz3xilLK0dvGSZNeftafDgBMcvvnMzm/LFHO10vg16FnU/f9XALL3ftBypNB1e3MX0BFg445p7AAat2ibegfHmATaPMqUa5OeU7LhQjuGeD19n4De8iCunDNIY3wmGdA9FYI8kPmDtPSgZYu03Fp8x3Bg3kRp40iK8+/S/pj+RjkTSDR8vJ7gAd8Joq6R5zu2mJTRF82MOx3prrPjgPH/vFEhJwtO09mtBH1cb07/U/w3LrtSTTfC5F75suuC1aKk5AveTIeej5xO+T8YrmZZ88j5Ov4R4+RrAZPND1Z+Jg0adJTiybAO2nSpKtHafjfy2SjJl/YfT0NXz+fL/hL+fp3UcmYmKFpUKRh5GdpG3vO8MEgNVABqGQPvvRo6kCFQ3UEiTTqt+QFaGAFwx6+EzTbGsDHZ1nY/sdmoijCMWAfs3M7d0Ca5RSN7a8i7Cl2jTpN2lF49Zr14oVd78YtTDiPFiZFiFbsfodUoP5p82KX2hvZuIWb1nIzdpKq7OcgN6vtd2NdlMOQkc7j3E+QG7VxWQZ2rVbge0XbsBf37RLdrNC569VYHR2Pdf3YVOzmndBPj6+P1clmrG6+eZt2s0f9VwYIaIjcAmuwrRNW16gZ0oH+m6sQeLYSTgHFpe8mAOXQBfQXL/ogHOpBCIgEdQ3ooKgoIY3k2I7Ip66zYuLy3W89VwAy0xE81nlMcP7u5HQCK0KOUeSN5zCrNxUXJUFC89i1n0GibowmDXzmoZI834GdpEsgMMFW2jZXs7pxOUFj18N/817qa17rwEPLrgOznLYDw0njxRPk0cXJTUAS3fRuFQaR+u7nEtzNBUnXj8HG4HPqmbfDd21p8NZ9owP4/bzHE8LEkJ9XCXMlLNsk+enqai92dLfeNxxsnncCYvJall2e9uJNfcj2sy5QL8aY+s546HcH15MxynpTxO4nyjXfOVmZd4/v3Hd7eMLtFgLyHTDHC+t28kb52W/yr8cv889WF+rXvY96vPSiAXGNPJfkeDdp0qRJV4gmwDtp0qRJ9xIlWOtrGEvdi6+BgO7F2rTkpeW0Bj7KuPJefLuSGpAx8GGDwcZVAiEYd7zUYwQlUmejgPrayHNoh7rOvvzOCySRPxvQrr8BE3sGCrPusB4DgMUGGHb9LsCV57pqGFMDLCUiCWyBh9umpLy07xLIreceeeSi5yvewHjUesdo5VNlE5YZLK1TO8owTlb3fcAaTUyTZf2pO9czfCJ163Y0G7s0DmBsjmcSrLWNzm/sbXgwAJwgL89vccGTHSPr9WacbtZjvdfl1Y1Hx9E+81WBvVu34nMgZ7OpECCK92wwiMKz4fmOt6H7l8cSVxDB2j3bXvhuAGLJ4nnm/uMQCpU/3no8D8BpxJxYJKSrDmElogz6HUqJ4tvTHzk5hrC9FN0BUGTXIRebrLQoEEA3YwFxuYt8EJQBcbeP26PqWiEpEnxymg4YMuiT43OXh8dudwA/1wHKLrvjw+VxrZtvlhZfU87Jk8kAVqbp5rXkPXkySGaALOellEsObvaqTG/hBEztyen5LPN2GnTUH4P25idlk3NkyjwJHfcqoSc1+pgHufQ4dfmd7JzO5aZ3qscgT2o+1C3l67JzsLe8KMdepoxdLCJlfZyvPXtd1+rzXjH0QjVjlOXKRJuyysUT+M2/Kc+cHxh/EmD1S0CRF9AhxzHKxYecR3K89mKJ+1lSjrXwxNiKznme6hYSJk2aNOkepwnwTpo0adK9RjbYbETbePf3otyamIZQGrpZVn73c/XyDYiCp126T3Z8YdTauE0PM4w6p/VeehsPvPgbbHY4CLtRWmaWY+6vBxDC6CQcA9vifTCbjMOj46NzQG9v0xUhHttVS/Y4RJXTlrOd4yasfH0GEM1RNpptMDtckmdV75nPvOhJbJsQEdEkfMAdCt8qYtc+eXaYiPGSxCNTRa1CxvqTf3cH37NKpd2cmBtEHayK5Ef+dkoyvuE6IP/t98JG9t+Pxum4drQZJ5v12IzVWJf3bh28tj7ahmnYxundo8jluXshXEMxVEIvEIGT8NJ4Tu9AdNiegyilAQL6Dd5nCTYkcMfWbR/81oVJsMchDUK5Bo2KAEzycB8rOYrn/OgopcAoKn0YMJnGpuEBnklbaZCpATH4N+CCfOs3h6jhAl8dLmOq0KGQedUPULt2QrjDpvJa+RJYzfEMBe3mhw6odMeworvjwFsHNJk6kDcpFxFzLDZ14HEC/h1gmzwtgX/dXJmDnRdOPKcwHwA25mFV5skHWlX60hcD/y6fZxlgDZzZQza9Gj042rvd/Qw+qI8HPvf3LLf4ZgcB+sk2DB/cxioXz3n1MduiA3CdT66UMigDyOY4s9S+DM4Zq8j6gT5Zjsgk7zvf7KuWpYPcF9Hv8fx2myP7PLcA+S0BtNkfc2zwu5En5JxPukmQfBwepKun9RKZwKef87xhnpEL+k5+Bp+90gr/S4tFB+hxPvY2oScLH5MmTXpq0QR4J02aNOleJL8k29i1pwb3OiP8sjy7e0U2KJwWbxUjlx2S55d5GzOOaevybJhiQNgTxi/8WQ8DJaThVC0bup1h3xmWgD/2QGzKLu/L1Wqzt09WF2zvbBoX0ZExBB8iXWS7yTaoz4wyPu3QxjRD2tN1vQ51M65Vf2tnLM0E7+Ds3oVqfMEOpcYvjHlRfu42tjMPOHp60poMrtpR23YpfFNf84stnXiY28pgNzwY3y8qJ0zjhdmd1kercbw+2ee7GpvTzTha7YzizX3X92BfPbQZK0DCAiutIAiHWKo2hGGYfpLotMPXGKwysOMT8qzvKA3lAGY5BrUVknwog3SAwdyrtIBRxPalniykoDQ+KMrgCdcMomVjo3A0doGrgHfEwqVRGWuorwGRauA6WdAnERIzl06XYzP15IA5rhUPPrCt8q3rz3nOaCnH06pvKV3lYT1JAMV/s61Mni86wDTBYvg2aG55dSDyofnIIFq36mOeEiRO5GYJaM3yXG4+S5txoCAxdT14ok/UP8GzrEMRukxc69RV+oz7Ah7jBkIp33qPjAkxYoAX0NF8uA0NUHscQLddFrpb16osYrMiG2Jc504dy9jfCc9SVH2L/ODFup/ez9TBE1MH4Ocgbn21nOov8YvYnkIZkPUv60La9HaFB8uc8ZLTUdEzH1Zn2eXKLH+7dyED1ebJdTaYnuCw5eeyst9ZHvVhPM975J2rq6RxH6YfZLggt1PGPJ80adKkK0AT4J00adKke4k6EHbJCL9T94AlD5C8R97p8VPkUA02ehJEsvcJxpnRSfKy5xLPOgZdZwzYi8QggcEHewUawLGxiCHt7d42ist4wRvQ3koCOlanJ+P46PhCGMa0tRBRYjLGpQ0sIg7jKAlS2mYzPoctRN4Wj/Oy7WkeSmQGcikDzNs75RPjS6zDWIJ5cBNbDRxysbMtLVfboXy3w53rmHZr2o8uw9fBV1E1q7yjBNDuhRPs6rDZYYel0lvPtlKKXcNtjq+NVXnwrndg7elYj/XpzbFCsImIZ38EuLFO86EfGuh0g6T+FwGsAh7a2yzLAPxxA7lvZv+2gW7A1s+ziOOxwI0Iry6DPlm8G1gxYOadBZ13pA+M47o7jkHnepb2sbcs9efZBPlQGoAyZFCfBx+8vcMcGosrr1p9YTGAjp4DS8Y7yTayXiUY1g1S1qMEnJbA1KWO5XbNumanT8C4u9bJqeOrS1fkAYXVGtrZC4bk0W3/95zneuSgnZ7r1j2eJw2DCnMO5ZCPF3fwDMa7PtvNnsPotUE/vNgZqAFrWdFyv+sG1tLJ+ji8AZMSZTBmwHfqwFI7Wy/tUWxw1oO25c896pxlWOae85e8V91mfF+qi3XQq5yeKJEzC3cOYp/9p2tX9IN7Hsfsmc97ELpkr9usJ+Xmu5vfeTzx0SalP4yxOSe5r+Xigsti7O0W46nfpEmTJl0xmgDvpEmTJt1rlADNZYb14y2jM/rTK8uoXb3Il4Hi06S7F3AbWjznOAY8562dBnoS6HVZ6R3SoY5l2DzwwEXwwKdqUYYP0KGOgL0YTBisCe7cujXW14/OPHiNFdhhkWzqMVfXWfLdcXB9rpaby9g+IsWWBezFrgQHSPzL4VSxzThHDxWgLERW4jSIbbzDwC1YxiH1MM6QO2rh3yEPjTF0ZBuYv5YVNmaqi+vHNUfmwJ7FFi1y9BA7wW3l4NCeW5Bhx3iFZ6jD1samvOOO9kCvYkFmrAh7iNKInWfWkvGLwhnIMnhQf+t0+FIE4uLm6e523zbhpZsN4pAq9C0UBLCDxu88whyTE94BNBNcrsaxy7kBDsAde9/XtfKcfcMbzutEeAUHVE7ZsvKBV6fBHZfnMdNt4tiSpMlOn22TSp1Ad/Ff4y9AS8rU84SBMu5l3gm6Jq/d3wzxkKBRgoEJ4uZ16mB9NdhkYPUyILcD3fI7QCZ/iwArKdvgLHI3eMfgYaCRwwnNC7LxapfnP+TpQdzP23OYwd6gJ3OrB10PnsRWRadr+wYyZPzhg84jK/ozIK77Uy7upOyzres3HrPWmQQ3s729MwEZ5IFc5ONJkHKRWfYvj2uWl3XSC0NJlg9Ev/FiHfrAYjEHt9VzeOR7rMr6ujzLK99LuEebGtS3fODTeXItF3usu9SV0125590l9I2c2JF/rlqjR9ZdnkEmBunvkJaa7Imgu/W6PmnSpKtFE+CdNGnSpKtABjffmrdGGwM2zpYMdMr2y75f0m2U2DDxfdLYMAaEwiDDEOtAXr/kp+eOwSzucxIY8kojBEOE9OSF0Y8rq/NsPF/qUCyqZgc6bDmKtV2cOIfvkz22UGdzOo1xauN56aAEb4gO44c0VW2fsbLEJ/nakcxiNd7gchMQJp3twLQ1zW8CxWkLpsqmvGy7cj/DKmIL25a1Mxq4psO9Uu5ZmRWSYVvhsQ3NUKDu9lqlu3ljrBDuyclYnbzlfPs2DLFNPJF7dBpQoL5nEGbrKGSvWPfReq4CMdPggJ5eiEml5jkLie3bgC4Fkhn0IG97fhW5fgYqiG/Ld0DiAqO5jgwAuAqANSBX30mLclUeBWJzWnvxWSBpySBXAep7lVv3OhAWMKzygceUNWVakSE6JQqY3pwGhSjXHdNeyYSiwVvTz7hTZQez4neUncltz/308LQn85I3ZPLlgWPJU9LAkPPrgGvyT/DQ4z71Kn5LJ+raM57RD7RuRwPP6KVXvPDYLn1kwCiibvRXL3ryvfqztwmQnufNN3rNGEA/SvIqHrJ0jHn02Aup9C0Djh1A6hiyjh/rsaFbxPAijtuL79Yx+pqBULcR/d3luE9ZXtknrbtua/76vcaTsNO5nLrneN4GN7nOQh4y6Ca0fLfpZISuoUMdP+ThWMxLk6Pr5JcUXipyYSJPimUc3h4Yum97L0j42a4cp/M4nnKfNGnSpCtEE+CdNGnSpKtA6a3xeF98baikZxTXIaNrLrcMLrzrEoWz0VVkT1tcM40SGgSx0WAvFCNtaSQYRMYAsftrAs02JA2S2ZXTwJcNIlxr9/fdHMYRjFNwH3wJ8Nd4kHc3uqmLjOvZkRHsDSzabCLuwrHABr3zlmrgWOm8cqckebmM/G57LENP2Ana8jEgbHwiHY+WbFHjOLZ7KRMVgzfb3qmWdnDjeauf8Y20wcFJis5ltxPEZqWYze4XKRwfXkZGRsp5psAjEH0asFM6GIUQkPsqXqAAhWwdhh97zGXF3Q+4VyBjeqLV93L9LiqQ1sAO39Oz1/JAJo7fbc89jyvklWMVQJHjilqBkJNlk6fdGyCr+z70KXky0Oz2cZu4E9CeXGf8SkDTICXPoz8cGJcnNXpMT9AqOxPfraf+GADPzulyLJcsxwMX8k0XfudjENftkN60Li9XjDzQZF0MkGf93fG7dvCAT5gEyiMvgHfqbT0qYpuAV8wMrBpQNyCMXgEOW77Eak7ve2Rl3UwPdHYKWP6dDOCJMYj0Dsng2N6Or2t9sI57Dndfz36QeuE+34GY+b7jVcdcUMg8vJ3E5btN4NETkGVedS+5siDEC4DHZ8ht7smte/ejPb0459NOO4C7o05W3lGCbPKdyG3DuEM7e7uQy2ee8DySYLz5sgf9pEmTJl0hmgDvpEmTJl0F4oX3bpFf4E0GiTrQtwjDxkZSB7g6TaJ7BnXzAyDja+nN4WsGOjAu4Rmj00aVPY/Ypg5oZs8rG5IJXpQX5rXTsd7Ka3XB/rbTFXiNMTvHtPWBXbCIXdRhKlSJs5w6+48mIo+qIrZ4OsnYeYZqp+2VQHbawPbutT2OCKmD7bx0siOdy6eOlW85VBrDMe7Q4RFp8yNb0vu+IwvgoFfk3fUlc6sK+dnhdmvfbgVTjI6xWe0qvhrqL+5XBTaisxzqhWAcjxNXazxcDSLx12h1CavyM6Dhfo2CpPFs4fvkP3jmvkE5Go7TAREqPNbKBvwbfHOHscGfBHDgccPkRgY8AXAzAPfsZ5/zgWzZ6p4eYy4rY2TS/91RUdQcY8xf586eQJXbnWfdeZBzpS3gHOCINgHoNZiZ49YSAGydSv1yZ3Ee9tDL5xLE8njPMx6wDPSgy3azdxvwwZPVoGeueKHDBlENdiZ4xzOur0+SdHvBI3pF2ziMCXzYc9P9MdvGOuI+Y5khnxycrZ9FyMa6V4QHPOUbSIYv+nWu5nVAuPXcXsHUodIaiLZeJMhHWTznvpnP59jh39w3AJwAqnWb6+iFQXTravZj3jcsf/cr8vK419HSu1am8QIT8mEF12Brl/fSd8uLdyNPyBDyXOLXes5veHa4Gvff7Ad8X3o/vQPyWtATTU8WPiZNmvTUognwTpo0adKkx0edt0eCNDYCbEzhJVRkY5y0HeDrD+lswHUgr90xbTB06KANRYMOuZXRRj9GmuMfOn957Br8qe32tQ2/9t+7WMj2qO2kwh8y/F82CbZaOina2xbRsmPfDpXcx6EGgJddvcanCicyJga/1MGYhvESYy/pCGZxp3cs343z2G40KFz3iA2cuFcR1xJzME7heliNk1x3AFzawo6k3oGauOlWPnVt67lb5dR/m7E63YzNtevbUA3rW3vj2WEOCpirggrwre2vPvTLXmI+eR3QwOFIED7euO7fCV4RZgDAwOlQCMCO+k3MWismZCDFFi2nxiMwBAvw6z7KXwRMnak/CupxgEZhPLLnPuVk36fDvelNFw95M7JvwIuAzAliJiiKPPPALmJuGhw1yJKgqQF5g6VFyA8vOOoHz+gUZXaIhzt3xwfyNYDXgcJO54U8g9HOn3sMht2AmatZ5O0OluM4vNhjNMt1Ga5n9gtvNafdOxARXuDRfTXBRA96EPWyjnpuzMEzQXMPouYlwd6cK4scv9ayJq0XYdApeHH75Dzu51n5Qg6MSehl/SaEBPXPsA6AlZSdAGDqTgceF2WYAr+nJDjJNhnK7Dz5DUymbD2WuN1ZGTRQnXySr/XB6Q0Wpz4V3zVvWA5JCfrmNcuc/uTJNHlKuaOProf11OMG/YLFGC825mrw4wR5J02aNOmpTBPgnTRp0qRJd4dsKPI9vfggA682KtNry0AxBgov9WnUGz30bxuARQl+OAaBjaE0qGzM2ig3sGxAI401/gIE7PPGVrGjIUQV8eK1c2HayXYGwskKsUF1v87JKXuusLPCySotZVF17FTjFYiq8rT9bSwG+6vuUyfXJ3GDdDzD9nX97LhnNTLWmA6m9bvAZ5eTqmT5pqOqMRxjOQ7L6vpaFmBQqF7Z50RHSByBv0dHm72sV2OzXu/KKv7Wmy2wu/uvdEpAIMw67mx9d5iR7E/oJYJLIxjA1mCUBcfzVY4PV7LbeT1bFTbQA2hpN20b9AkM1V/q4vITCCIkg/lDHnZxL6WnnvaY80FF5Fm8e2HG/bfKIvYqoLp5sywckNn8AfrgVe2xJMGJPADLYTdSLr7uzuKVDK7jGZ0dE90AnDJImsCny0feOdYZzLEu4knOOGh96/hF33NxwGCuV7sSUHM7WkYMVgaWDdyTnj6FTNBBD3zmx3Mggyrp4MfzB7KgfMsv9ccDrmPaGxQrYpHFbZsgdv1lYYLnrJ9uc8DVHMBNOe+nXnLd7eo8PKEkqMq4hDxzESDbHrKOeSJBtnznWfedrp7Ju/XUY1lOZOjPofy9+lnkXRm5yJJ9n/Er62V98xjM/czD/DEe02ZZJvx4Iu7q5/nBZH3lvmOIQ9ZjwPPkHV67dp00adKkK0QT4J00adKkSW8dJSJpY7MIACMPUClwhBd/tpP6xdz5AAAkaIvhCkpnIyZdQ52vEdGMaWAPG/6mcWhUkPQGlkE4bXxYRnvDpLw011uXzYts2hPVLINxFz7jrf5pc4FFIc7Eq8AWzA6gbZ6DB2+dM5N3eaa3Ls1RjqPsbEcV6nkcsuxUlI56CdwiG8j5max+uQsYG9x52KbEMYhmNiBs3MFeuDitgv3xYee1PZYdwqHiHBfYjpf0NjzD6Wacjsq8hFENUcycjrUNXP7SAI4TW9dxt8boBjDNg8gMFruSKQCExkFuGVuihGjXck5LR3E69+jikTJQZJS6BGPQAP4MDneu3x5LIIN6KILjPpY8cGN3aAtCJyDXyrc8d72ykAA69WXMcGwTnkPuFVeY0A+Wn4E/lNHgDl7YeEh6taAbb2hDd0Irc8qGutb36rz2pM78O4AqgReTx/Uix122x2eCTOhNhhxwX/AhTUWOLUo7IIeuzrlSQ33QLQabrC/ps72cn+O10M8y5qnnMl/zYOY2ret429NWPGc5eFGAv/bc9mCWsjfgaHC3dg3U9+qnPEc/8YGG5t1Ac/LjcpnXGXfgk/a2vCHrHXoOEOx2c1m+Zvla5l4EsV53E5NXaFklTYDVsjXf7g+WNUCmebN3vd+xqi3cn/hLei/I5f0KycO8kS8fBsxTF2krZNx50HoFNhdnmJc8L6SsXU/mIS/su01zYf5xUK4PPJH0ZOFj0qRJTy2aAO+kSZMmTbp71BmjaUT6xd0v/51nTQK7NphtOBltTC9efwwQOF97v6Qx4+3eTudt8pSPgeXt5BgiCd7UJHz9vnFyvB43b64uAKApJtuHeN4CntohCnapXu76BVe3rWc7zmWBp7hJjCnahndetsmwOXPXN3ik7VmI/O2QZ7zO+As2dGI1qXaui/FE1xdnKexTy5VmTFzBqmvnJcu7c7wiXcmlAN6jo11chh3Wf7IF/lenJ9vD1TZ7UHBz69Y2tMcFw9kNjx7SZ0hHgRYIumyj2n0uPdkMaHGNZxw3BDSbBq/vpaxveMMYDz54LtgiwrTAZ/1+xjN26RyLM4EY8+eDnQDxAJ9wn0bhSMPCTm41rzSPPLLz9iUmt4EjFJEDIjtFseJ1ICfPGFR2KBmvvFCeO57b357YHluNUHiFws8a5DVf/lsfQmEk0GhQ1B0/x1mn9UKa5dl5Yubqkweqkhvxaj1gIgsDjgZC3SfQTce7TfAN/tLz0QCqx3d7anoO81zketB3XE/LywNG8uW+7ee7mD2JEhmQ88CFXlifDeqaD55BX5ElE0v1nQRn7dGb7Zb1SRASOVJ2gsa58ON+ZNA85YDsOiTNA7XLsrw91qaOeMGra8fUNwDWmqABzomBBBBrPrMvdUQZLMoBmtP29sqmDOTmsTnj6nqMSL1mvPEChnn0Io5jFVvWHl8M9nt11uBuyiPHt0mTJk26QjQB3kmTJk2a9NZRAgNpxGD85Mt4EV6FaeTZEExD2oaFyQYehoo/CWZVnsTyw7gxIIJRYSPYf9ky6vIhg8UYwuGZs5PAbmu+bey0c8GjYBexOW0CljyLjeXYueywpxq2wyCfN4XNalCVHfjY8Thom68iH7YOT1zj4DHKQ2ydOhg3srOQowwYR6IsmgXbmZ3hPlOJcnGWMhZU6bqwGLYjuV82udXH7WaM1TLGYWqz9ebe87s62sXf3RdWoO7pWI3V0dHY1OF8iTYbtPL2bseABBCkURFEfcd4t+I4fiV9FKO9QD8DpgZ4qfxrX7vL96GHzkE55w8/9sylf5Qg7WHrfmNy/6JsPvS5DmCw3MwzyuP79hpOLz3qb8VLgJV6mFeAZ5S/ZEP9csXA412G5jAPdEx3GI+9CWJ247br2YFQOaZb3gb9XA/KxsXfMZWhXLxzuS4PPuypbjDSXpte3eIAP+fFoMdKUweOW5dyhcj5Ox2f9PQ12JftnO3R6Wi2l69xwKfln56NpgTKPKelnrgdrRuWOwNd59GcEwB1N3Du+TZllVsn+E692HqRq5lcO+Q17EnXK3fuX373cL2YUFPv4T95RYbZB0njfpggMvxbhl3/cP+x/JgXnCd9kgVqxnZiMCXQ736cYL55IK3rzH33LeairPMSIXu3r+WQq9QT4J00adIVpgnwTpo0adKkx04dmJsgSvdMPo8BaCMFsMqxMv3xSzygRxqgGJcglDY80/C1oUG5ue/fHk8AApaBgRjzkMC2vSb3Ri02emLXdmLig51anrveRZ7YOfazsRfCppp1O5thH1GG7WOqWNSFcCgqvKrsv8LnnAeAcpEd1sAR4SOd/jqwO9XIILTFbuDatil2LI6m4PuFWVrVcHYyrtPZmqiMHbO9u952JuC3ndaN+29Dspa9fbIeR+vNODoq/T93e96sj8eqwOSTW2Nl5BkmAUYtfMfh9CqAPd6KKeLBAibQr0DuqQCCLS9XG++g4vBSgi0lZQt5Cb+uObSDtwMzBtR9nkHZErihw9jAdxiIbjzyb3utedWiPhw2hAIAfrgj5IKR+zSdCFDcoEYHUNERyJ/wDQZLcty0pyj5eyxMkMbPGrAEQMfbmnjClpdllHXgXoJT7kAeNw3i8bvkhKe0vXZTTkXVSXP8zsWIIoBz2gp5AoIm73i+00HJK4Fll8tKVLfw4EHWH7eBdTQB8m4BIstwvu7L5sF9jAUdy41yDLgjp/SgTtCO3+hgtlf1YdolwXXH80mvV+pjnUvQm2uWqQdS52WgPYFVnvVfyunmcSYby7wDwz0x2vs2KcHIfGdC9gZ3nc5jkHXFsvX4lfqcfSk9e0nH3MFvXgD47kUA67Dbzt/zBcf5emyCL+trvhR0/QgZocuPkazeTzQ9WfiYNGnSU4smwDtp0qRJ9zJ1niSJCD4eOvR8GsMGFvws1739z8hhghN2j7TrJkaijc00BCwLPFAMIBfZq8tGSnpDZX3IA77SEPFWR9dlz/f62vEFADftf8gYhLNM26YInA22Kh0ALOcrGdTlO6FbuW8nJeNadnz2bv/6W9hflcEuavAyO5Pa3i5cqUKbFs5DmARwG4vSdYUX284GXhNbr7RVhoHZuk+4i7SjUSWclEouhVn4PCLaAI9mY5wOb8tfq3Xl53Cdm81qnFbsXbrIyWZsjuuwNQm+rh8djdWNR3eFEeIARUkDnoYF2S8CoLDRDxDQ6TTMowQGOjidzxaxG5p+Sb6O14lCe3GHZ7wV2R6yRvETDDHoYIVO79D0aIM3dxZ/p1z49ipMBzTaIreXn8c1+DOIhjIlEJUd20CuPTEB80iDl3Z6GaYnZXU4r7q4TGSTbdQNTikLh0+wl7iBeNrGCweWVRHysucv9XM86QQF0QkO92N7gcd0+gKDXgK/lkkH9uK9zqJFtrP1y/UF4DQQbKDOCzHIwG2SgGvqB22d2x2sbwbOHOrF4KHLd70ZiOGLRSDz6omsG8Apg/6I3Bg7um0l8O5xyqEYGIyz7bp8kGHey37tdPkekItOXR+hfk6T5blc2jUB1ay/vyeYmqCteUUPXRfrrMcM6xJlOc61F8a9YOaJPutp8D0XR5ba27pq/lMmrl/KatKkSZOuEE2Ad9KkSZPuZepA1d+Kl18MAL6nYQJP9b2MCtwdbQj7hd7Gc77EQ503h581ONMBwBirWb6fB3Cq+wU6EI8zDY4E2hIYFthTwF4BfJ2NaMeVKhoQ0eAmOF+GA3AeVB1sqMBUMA9EAGYCbpJYhZssz0YCv+EZA7DYmekUB84DxsMzBRC76TobEHHnDl57LSewCp5CKAWD5Lt6b8aDTz8Zv/H60tsCXM95ypAYJXN4qXvl+Fl8V5mAt6ipHRjB4AhTC9aD3CsG73q9GetHHt55wJ6W8XxrrI6Pxur0dGyqvo5PYX2msg4VgKsyIEzFwq04tzCEIHILbwcyogiAOAbLDBAR5Ble4AeUnDJQGrtuky+n0yXIa0DKCmZgFkVLT2THW/VzgNUG1paAnw7gtcJlnI76C5Lvvk+Hc77UwQqe44kXtgCqCcVBDJIiZNvxiQwc72UJRDKg5zbIXRcGBN32rNgYeDMA6fatNjAwDJ/Uq/oDHQYwD548H2T9aP8OULJO+5A9j9lZXy9msPXAgJnDHyBvL0DU4Ot4MORl72v3B/NsniDLqfoe8XPwWPazCSSbxxxcs73QOU9KpOs8VOmP7nvoWuddmmOZeeiuwZvHQQPNHfjajXN+50CvLJdqL+t4TtTmq5v7rUuH2pTxivJLfx0svyYY+POY676abVdpPP54oiQPZILukYZ2zrp4vM583T/wHrcM3L7dgrzJv1N+Hbm9c4yeNGnSpCtEE+CdNGnSpHuZOo+wu0EJjua9vO+X7/yLYZYGhZ+395YNMiONNkIM6OY1xw/tgOPO8DWIW/cBsbwPHz5cBwCs3EqJYbvn3zazQVnbkthqdrjCpu9CSfrMLTsuWhQGaY2j4ZQGftFhfSny171uhx1ymLsdecC7KMcisN1mDMb4WGLkiBz73riY8RdE72au8n1OFnIrbO5Nbzoap6ers+fwVCYtPIFZkOY5z9mlqdCz1I9d7+CpYEjZVex5vNqC/WP70Gr75XRsjvaocIXzONkDdxYKGeVCinW4Cq4K1odwCVQKARodR5j2kDMZ8UZZAfEqP4O3BZCQvpSDe3hU2vvRoLGBUoOxdtF230chKn+8UgEBrTA0OuEB+A6w4j6NbA1O+K9dwjtQ2B2bDmCvSjpn1sflGmRMoLnIruWsINgjG0Aowb6MUQzgYiCLcrxC44ORuG9Ajfy6+Mnmw/FVPDAZqCs9rXS1guIQC47h6RgpEC70Bl+tB64bvNlr1MBUt0AHf/aedj09iDtOrAew+k54CvqC625+c0HT+s6c5hBCbgfa1vzZ+zJj/dBvkTNytbyoE2V4NZD+6vv2kGalC57YAlF51PWSSb63WAYJKMI3gLHlhMz9bpHkvu5xhzy41o0DpryG7BJMTvIY5jjq7s+0q8cRU3rx8t16Xt8dOoZJk3A7biOPT9a1jvzulPWH6B+sjFrGxGf3ex3jh9+bctx0exA/uIgYUX5ReAzkd4gnmp4sfEyaNOmpRRPgnTRp0qR7nX4rvRgMeHSGUYK+NvrsddGBJR3KZ3DE2wdtnC7FSTQQlIZRuq2Sh72NbfwbScQz0ieHpTEqI+doFFB9NE5OdkCvq2tRYafiOEZx7DBOLMDfc+cq4jIegUOyd5UiKmw+eOAZA7wVAqE+ZS8Wjue0iARcwBg6apP2HF6txsfhwfkUf+/yLmP8xm+cO8RhB/tZ51vkw9x2fKwueDg77ATyK/lYZS2jco7N6CGFS1E+WBZtZpU4k9FqNSoqQ4Xe3bG02h3GZ3ADgJSGhwHrIIAX/aMEhgeY+2XquwEIgyQ0tEFgAx1dvzVogYFPvysBlyGOu7YBasqmXFMu3kB0iFQUXNXxCAacQ+HoHKSFD4MJ2XfNIx972VH3BMcM0uW45fq6XdxBDb5axkWl+City8t2cYdFj1A+QBWfrOgyLHODoV1b0ZntuZqgm13bvfrC+GqvWgDQBMDhy/fSo9btlQNreufaq9BAEnpsr1S+l+w7b1nk5ADr1l/rtOeUBKLdfo6dQ1s5NIcHOM9b9A3mPHtw8t0hLDw+OJyJ9TIXCaxvgLf0I/TSAx/lMKYl+Ol5MmWGHKzrbAOxDloOBhPtRdzpiBcgsk393frkiZG6w38HCFvHsi+hAwbrDZx7vETeGQMpzzdAJu57OdYkcJ7tjj64LNLlji3Ge78Tpow8ZlMXvz95vvLOldShnDdSRyZNmjTpCtEEeCdNmjRp0t0DjdMY4LsNmDQc0jhMzzx71WRa7htscpk2qA38FlXwVdw50wAzmFX32E6N4eSt7wYAcLEFeUzwg/z2hl15aW60NdtVTJsFm4ezqigWJzccZOwkl1iFbV2AS3AjhyZ1U2FjEbaBnZeJkUDgB266FEPaaIjF5+/YDk2iLth8BSzbVk/csQjbnvLsAG4VolxjXOCEqcY8jy2N/Zz2OmU5HTwYM9p57VbmJdgCSXQgmAE33KtdOAW6T+AxVdfrO7ruxZBUFAs8VxkAifht4IprRu/hFfAQ4KfyKddmG+948RkUMeDVASUJwKV3MkC4D2uz4Fl16IJAw6vjuLq+BnK8XZ96O36I2y7l1QG6S+T7ln96aHIty3BHBOyjvhkT1otU7lDUyyAPwKjrkOO4PW4ZkNA5xy5htYh6MNg5ngxgvAcoQFKHHAF8ZfxPHeIvukk57vwuJz1EuY4Ou22QpdvGiyXU3W2SYQ0YNBjYDeAaWCMdsqJ82hG+7QXKsyxMPPLI7aEozDOyylVIyykXRtEvZJNzIf3WoBzlOlRBLmx4ksBbG16zjcwP+peThdstF6U7ysnFi7j2cIe6XTwZaqf0ruqKbmcdWNVE7oxntKf11CumGVoCOWR9XH/rchKyyxXS1A/yYx7invlmXIVf2jB3Zi21p+crvzTlPDZp0qRJV4gmwDtp0qRJk942ZG8Mv2x3BobBk0TR7G2SAElRArgJ/Po3gI3BC8oiLxsfJowRo5EYV3jDGTU02GYQx6DMvpw6XMs4NnafKXEnOz3b2QyMw3Y6VTdWSDW9I9j4APfSLgTkte1IHsVbYQVUDczOTW/MgHItMtvKieFwr/ItB9DyFK7yKjSCcQjkAQaP7HJncoKxBmRxoErb3WnBWWutIEMYmmeHyrAde5sdv17vQN690FZukAsJJXQyhVF7vOGNifBZhEAYjl9pcDIXTZwvZRssc18HmLKyOcboM5958YA2eMsQEVbiFD7CJA351/UCSAw24ErNln33bYCRApvT3bsDcu2Ra7mS1jFcXX/L0+NJBwom+GgZZCgN6p4hAww0dcAssVDRgwxLQX0NQHrVA0DGemnZeQWG/Px819EByEs3HEu4G/fpbLQx1z2Q2NPdCx3Oz22C7lQeBTDTSSkj56b0dnVfyfnOg/CqGexp2877GzkaWGXeoW8Z2LL3vq91cxplV1sWuMgOlRwYPSemzLyY4DHDsXjsxWk5lg7W4JlbMzx+EduaxSl/kA3gvz3QM8Y3izzm3/nYm9Q8ui9Clo913m3m1c581n/d5sVj6eBSGZ6ECbfAApT7k9s3x5QO+MQjP71p3eesx/mulnVbkpv5dywj94kM2ZAT9RLgC0/cyzHpDilfL59IWlpfmDRp0qRDNAHeSZMmTbrXqTMU3tZl2dAzpYHhF/IukKyBkiwjvYf8gs81/mK8lZGYLqiUYUOG9AAFBkQAAfCc6oyc9HLCILdX8AXE72K1jEcXmR2yZ8e5RQhL4EA+PwUWjCWUOHCASswrMb4isDv4KB7ABKiKwVuLI/Ewq4D5TvzFPFgGbnqrkvGs4qeaC3m53M72hc/EiMAjE/OptGAPnepY9cDbcgf1DvDdxd5dbQMz7Lx461C1C5VFEHjrLbk5G/gyIGjg1wAZDeC4o0afDVphjFNhe2kCTBiAooH4zjZw8icf+hWnCAL0gIajrDTK2al0agwalL5qYLo+BdoVmPTc554ruhsNhQKozXFmCbS1whm05X52VPPmv4Bd8AVQTZt34KGRCANeHnfwaM6dBdkJOgAzyzPP3RjnMRSirYp8gFXKIoFrk1ew0KMcBFi8QC4MKm6L5N16VWkcbiE91b3A4PASOSh53vHiRoLmlq37HZ/My7I2KGwvTi+6uEyHnjAhp0rPvIhsPNCTl3Ukxx3zC6/21vbAbiCRMgnjUqt3tLnbP2Xmez4ZNL3JrU+eRFLXO8DS7diBv540kQ9jqQ8EzInMQDPAbv1G//we5DKzL1K2+6UXu5bq4nExKce0Dux1PXK1FmC+0936ePHPz+XkaZ6Xxijrkq+njCZNmjTpCtEEeCdNmjTpXqffSjeABBwOeVDki78BWhtQHf8GXewmiVFJ2WzHxBgt49FulN5mDCCWIAXAC95BGSPSRga8AVbbwDNgh3FUtF6P9WozVhVvNXYC257KD3YV3223wT6OduRhXCoPRC/RGHvu7GhjTUVlj4K3lSetQ/wZNHa1bVvXfbxf89ywIuzLzlnUqsFz3tlppzU3JU2XkQ0sO84cQiVKNumEZgexVF076GHLsouYv+Aa2MhbXtb7OMzbh0/Har0em20BdcCaYh+ml27o021xMxEmzFeF2JZeaV//+t1JcXWNyrpPITz3yQTxDIrCQzYAFQeMq+eqPJTIh02RFiUzyGywww0AoAqaTyOywsGBbykby9SdwItLXlAyJehlIAKAz0A1ZaTnpw858njhsq2w7mBcowOgyMiNsYrO6ZAIlAHor5AxbXvnKox5SA9PBhoTelV/AfOKCI9BXay35GVgGs/OyotwH25T6mA5GSir+jp+LTpbzwH6elXIgwSDILroBYKMLdrpF+3pActhFCxTr47Bt9vAss6D7RJQdF9hbqxtEAaXu7bORVbyTsDfZcKPQf0OpKxPyZvwRoQoMOBXHvieR7Od82A518P9yAslqZOuU3evW7ywrL3Y5DhF/mR/5rp3UnTxiygzy3A+5tW8u2245smRvxlax+2c72UG5q3DpOlWhzNfZOfJPevtNiVfXlx41nqUYG+21aRJkyZdAZoA76RJkyZNurtkA8+/bdzkizjXSe+8oM4A84t/BwYnMkg6gCS8cZ1vghMFQmBEOmYlBg6GM1ud0xPKaJ+NYZXTgZhFdsZLkWIXA1pic9ke5Xni86bDHCIHoLUTIbs/weNyd7FtfvhBtN79n01tnNs7tkln8NbetImXFC5h71rwGNuW9bswIGRnHAF+AJftdAQuZmfZusZO/8q3vju8pw+jI1/4oo2KjL0CHtcBe1vVur735N2CTUKGj/fATW67B/Szp2Ii11w3gEA+1ehVFnEuAbSqTIBJAzlpdPu7BY8y1/PpwUo6ysLTjXSOp2kwlC3JCf6xkIKADXLZc9CgGoplr8oOxDCQ7t8md1Zc2Q2mUz+nTdDTIA/lJEiF7BJocixPr0RYyZAhSp3KmGBz3Wfrd467KLgHJ3TOruzoGXkDtAOwG3RjMKrOWoTXMQty1N1xp30qo8uhfPcPg1zIuRuXfViVx3fKsHclwLFBcv/1QJdAvPtnAqS0B78BwVmkyBi8tK1lg1zZnuGBu/Kj7xmMzJWw+u4FTI8xSyCvx4SqI/F6nLf7b+VbAzl9lnk13xkSdKU+6F7VifHGY4aBbtKnh2i+p5gSnLXM+W0vatqMBZ0ESiHCaGQ7MlZ0C0mML5XOIUcom2fy91Kbcd3jcupWB3abOAAgQVxeIix39xMDtObHLwGHAGLyzRXgbMfHAfAureM9EfRk4WPSpElPLZoA76RJkyZNuvvkl+3OOEuDB6O3MwI7z4/OGMu0/DbgYRTVRit5JtABcIvxaJDEMUIBgA1KdbxRxt4o3PDsanXBPrvNszOcjI0FFUZd9pQPQcee8nlBjkKRu8hdLTAA76x2KE2aCsc5dtVb/PDsJuM7Nja2OAAr13D6qg9exUU4fNbngQfOVQSsAjzojW+86LRlW/fZz97ZpNjHdf1Zzzp3GnPI2sq3roN94AgOFkG0D6uusStUx5EFipAx6lP3d21Qwhvj5HS1PWPteH20Dd2wu9m4NaMshCRIYMrAmI14A3OAuCXQ173u/DS517xmlw7wBa93o+1eSTA45YZGIBDK7S3JlS9AM568Cc6ipNSzUzDzkXEvi4/yUq7GTpDULul5kp5B1CIa0fftuUij0/ESAEIGyQNANcrmlRnnnd7ZBl2rTMA78ijlqpjHHtfI0/rhsA0Au7io04G8koQuJGia4z5jrHWSOqILLIrVIOaDAOt7xjQFBCPuMHk6TowBM4e68McrSPCQYJzbh3pQbwZU6pBzWS6I0H5e3OwWTRIsdegU8sg+DT+0QwJ9BmsNbjMQWSa5eOA2RQdcR/MNkU99MvZxlzdjTq70JeW7AXWDZ3ulA4obaEWmboPk3zx2ixsQOl16aJ0jb09A3dibwHi+U5isL/RLdK9bbPK4mWM1+uo8eW5JL5msPBY6n65dvYCQOu4yXLZfHlioylVS5oV8WfJ4b32eNGnSpCtIE+CdNGnSpEl3l2y0LIG7pFvycnVePJeGRH5PcMEGXQLKVVa5YKb3TT5r48NgrwEMG042wDGibXz4ub1Rtykgr05ZE6WtbQdMsrFtxRk52H7e8ennYRGnKtLZ2aac6OwoCsgL/uZzeMA9umay06GbR/j29ho7w+uvz5fBTrdqdDiKw0EAvoJ12Hmx/lbdjCHZWQwsyd7OXAPcRcaEi33DG3bffc4NKp2OpVUGALbVFjmgXrdubbZReE/GeqyPr4/VaTVGgD6dYd8tkAAcYCDzrLdOQwXm4u1XQKgXRbJyBg4oy4slBgHccEbrDTY+/PD5Fn2DhQZPEnA1cGKP2VQ4g1+g9u7jBsOzTl5NMQ8GmAHZE5D2x+1k4MQrLzl25LZ4nnc7uJPSiaoda5UDMNWLWig4ABGdx6AlvBlILvC1Ok+lATC116y9XRMUAzzGo9dxO3PM57sHqVytcfm0j8OBoBtejSFfh1ywhyf6iMdwyRC5Ih+HDnAfcJvn4JfAJwNOAvhOa2DOK2HU2fOSddC6k3llu3h1ijZKUKwDk7s5mraFX/OAVz4TRQcGZp+wzFL/fT3fM7yCRp09MXRz9hLwmHyhTwlsehzx80u8O4a325y2cNshD48Tjk1unrvv/PY1v794JTnLhX+D7n7PSbCZXRfJO/l4HmL8YqHO72nW7669rVv5vpe63uUzadKkSVeAJsA7adKkSZPuPqVh0b1oJyp42Yu587ShYUPPBpiRRMfPBTwwUEMe6SmFEWJjB+AgvWG8hTdBFfi3obLfjrlRxIh0UElbELZwJoNtnC2Nj5FP2kaAplzzTsl6FnCznCqNJdob1QeSO4yCy6k02K22p10P17UIG91OR4l38JxVwSpRfBdemCrGgWvFEzvJ81y/clzFlgeDAdytvAs3M06V9bE68gy82gGQOoC17ZgtQ//cU+tocx6q4HRVYO/eA+/0dOvhe1Y5n9pmMI1ruShhUAEhFHhX7tglACPUBk4MMoFouy9TUYAsyk3w1aAkIB7u2gCUdSCa+UXACTC5c5iHDK5c9LznnXcaGt3ef/ZiddkoMyBGHhBk4PSRR84BQ7ZbdwCmV1Ss4AAmdBiPGdTJHsyOrQrfhJ0xgJ/AH6EzDOjyvGMtJ6CdAKbBWNLZMzjBQXvOIvf6jas+HZMg2JRX1xl8GM/hp65TF88fPl0Rz3DAJQZbyql7xKKt3477ktvWIcBxd2q3NbzaqxOdQ5fog5a3YyAnmJVt0N2nLZFxxmqtMj1mMMi5jXLVDiKUC565uYLltGy5wBOb9AZgrR95zauS+S7hwxo9GBfRhzw+5eGQBh8TGMy+z3jhdjb5eeft9si6+r3A6Q2G51kC/DYwb9l48jFflEs/9eIU47Tjf/OsF9c8TqS3LS8N1pVu4cMhPhjT0Ut480EAHYBuWXtsRk9yUexxePHmO8kTSU8WPiZNmvTUognwTpo0adKku0s2MKAlwNYoGWCSjXcHgvUW5gR1QR87sjGH8WwDxQaWPat41tsmMfZcB3i0MZqAtVFEA8A6WM2Aq8UGJmWvWtJw/hT2mfGuBBcBdx2nNtmrZ6hK5ufqEccW5yj4w0EOT1ywIjtcEl7TYUgNbpOe74jXAHGGOQXzARcpINZy8O5ozhIDyE6nJnAAbGE7EuYBaWnDWv0rLZgUz/jMq8QEznboltzKo7tiM5cOnJ6O9cAI3i8s+OCiLhhyxjBMt2GDJ75WMSzY/m7A1Iy6/ASXOiCzA4CsxN7uzKFZBbYZcLWQXC974bmfUx/Lhn5nhfbqBkqc4Rhy23sXP5dOZoDDHTBXbAy0UC5jk2PfuiOSN2Ohw1+gqIRpwB2eDm8eABWtIwAr3saPDIsIXn3uZn7Olz2uE2hPIMhglw/ac1gJ2odODSBpb1zroLcYWP9rkcB51zUDqvDCYOITGK3bBrkMriY43oF3yC+RmvztZ5ETPEDuhwnspvwNKNL2LCo6TcYyNoCHLCgDOSZAi0663gaRvXOgC4nk58mzPjUW0P5dH0/Qz+MeOsLg7sXYfC/J8SsH8m5l0TJMfXG/54NedxOi6+4Yz+RpvXSYKMYc2jH1xXplWec43KGI1h3rHnrvXUmVL5O6x2a3s7fKeMI0WEz9u/i7SfTbSkNsdr+4ZNtMmjRp0hWiCfBOmjRp0qS7S0sv5/a8SJTLHk6ktUHmZ9JQq5d7vLVsfDl9URrNAAo2frytme8JMuH2aR7SGLZhzW/+2lNr+9x5cYm38dfOk8ZW6i9AJXhY2lCuet7LpsKWLA/YEulDD13EQRA3tiU2P82XuHiHD2LjE7vXu01db3BJyFidMbEiA7L1fEXfqF3l8EBTFuYD/gUvdrKjfpVfObTS1Laf4YOd4iUDbEx4s/ev2wHnSwPjtPujN1ZjfbQZRysafjM2FXu36rxej9Wjj27B3gtGMR51GLsgyHz26Tf7RZKVwTW8UovxCslALF8MdjzhUn/dF+xVioAMTrpP+kAvK1SuGuBxWY1ogKPKwFPMIIDBPnhxP7ShD/+cBAgoAG8AKKUkDkEAfyl/y4ITD9myTCdwSASv0ODZWHlXrA88owtkN685pqRHI7+pd3kRF6+EajBQ6h0JgJ3FE4GrAXBzPAaItUyta+bPHZRObtDKcUi5RiBqP8/f4gMPXQYEwEpWrRiXLRtA724gcodEFgYvKZv+wSCQuzlyJSsBpQS6/NcySyAX3SGN55olOVEftxF9nHsJ2Dl/913Po8jb7WpymV1YEdo++yWy7eqR9aR8+hJ5Ota1+faqHe3SgbIGV33fvPMsdfNibZabE2/KwPX0b/dh6wGriow/1m++e3XU/FiGzsvydf3NWy68I3vSuQ8jx/RUtkwyrBBxjixbr0ZTVi6u0d8IvZFzXerqpEmTJl1BmgDvpEmTJk26O5SGa363sZBArD1UHLfWHnB87MWHYYHxzf57PM4M7tpIIm/zbaDZoIiRS9BVe+AA3ix5XUHUKWMa7C/l+TVUy3ZO2p+2jXyQfeJAhd/UpwOAbdeBldAEiAtbGqzFYCgHmGNzYbclbuBm8C5uroMFOb1l4d3fND0yq7Jp+nq2wFlk6noW7+UYVngmu4cNUBcmBuZg/IsmBii2cygqiAzh+Qy/105i74R2HfzM1kberMbptetjXeju6cnYFMBbHwo2mGug0Don1HpzdG2srq/GePNvnjMAQm+loHGNfDtciYMaG/w1gNOBkNZ/C9zbdBMsKTQeXlBwhGTDnjqnktlrzqCIAZ70ZDbwzG8vMnksgG86goEmAHRWASwng9jw7pghrEwkKOJOYBCL8q3o1SkBmeEFgNpySICWNkFp0TEAOa5TfgI+CaD6IDRWNCptyYW8i3L7O+1SaavD2nXeQKQPuSKutBffvBgH+fA4nrMOUDdiszAHoLO0W8WC4cRGQEcDs92qFIQnbXq+IguHLjH/BteRnwcqfwwALgGB5iu9gnO3DDrqPtLx73EBz8ocCy4D43Llz3qIXtk73V7vgIQ5HqLfkL1KO6DQsvBih1dirT9ZnyzX8vbY0cmFdA7lYb0qypXRrIfB7HzHybo6D4/HXf1pc675Hnl0OutxlZcVFk48HifQTb8v8vscdfE7nfnrFhvugJaa5omgJwsfkyZNemrRBHgnTZo0adLdpaWX6m57YxoGdld1XnnPIBRxCgiyiiGOl1d9MJoN9Nio8J57fnMqO8YEW6MdMsJGvQ0mykrQwun2BtqSjeRryTZ2H/cKAylcyFEqyKOqUA6C2Pi2a3kedivtM595/qzDceaZXJVXOVmCIYG95y5LY36VpnjleeroMHoOteCm5HfyQB5l7wPYgsvY2Yz6loNjOUlynhLyBNQGDyyZORICKmcMz+Ct8U0D6LanwYzMv/+uKmTH0dFY7w9V26zWY7U53X7OdMYAZ6LLRp3J+M1v3sXsdZxUAjETr9VxFCtNKRPbrAFT6nsh5wZFDPQCIvIdkMnXE2A0WGrg2Mpbn0LeCUlAWrtWG7C0YZ8e+JYDyl8fQNB0gyc0AKsYNHiCwgYkUVgQ/RxrAKSsGACgKHGBh/CXBw9ZRgae6cg1CNBedALk7+dcB3sqGuDxohTtxfVsS/jNhbPO+5TyABwB6nJxgLSVhs5dOoveV71KVhyeh4cf6T2wGLBMIM2Db+XhQ7lyEDGPDBDMMeiOBy1+s+jofOov9YLQc2SAjPC+zpizXuXKgcc6hlw83yUI2AGtlpnbyPri/gZPBpo78vUEAzu98iSSW0W8mufg9Pn+YDn4e7fgQbmps16JNX8uM8cKe1HzzpKga+blxeQEPEnvVV/3mQRy853LZec4bv3lHQr99HzjOO+MYdTZXt3ImJVT9/lc0e3I44310/rT6S7lTpo0adIVownwTpo0adKku09LL9zcszegDa0ljxcbdDbYjQDiuorBZtAWwkjLjw1IEMY04GxYwr9BtjRSO7DCCOseJC4sL6ts0VBs4gaZfeESBbjW/cLn2L2KPV/kM5wQYz0DNlE4Gk1hW9tAL7gXwDL8GhuCZ3B1mrDAVYdUgK/Kh/rSjJRnPMteu8iAdJQHLz4bCdsTALrAW+NblGmHLDvw4Z1c+OYeM71NtVABq5iBYeITG0wHQ017fFN/aYCTky3oe1ZJe78BClr/KFgHiq3wGDUSDyjimKsIGiCKPFA++LD3JWWSj8OcoBz0C/ju+obBQ69gAILZe9gABdfsVUf+zttjCWUZdEjw0h2wA4CSf57LcQB5G4xyeAN3NMeydF1SfpZDPUPZeA2zQMVfgzsJHtVfwmHAm3TvQtkMItkBDUZaL8gDXa17xDOhY6CDBhMNjCFPeKHTUI4HI1ac6CvWU/Td+pAgI7JJYNSDr1d1GMigHDitA/byTeAevmiP5IG6kD99jL5hgNBzGm3s/uZyrdP27rVuuq0NYOZ95M7Y4fg0Cfp3/dQenl5kYOD0Yk19r8kKEJ8BnoXXfKdw/7Q+OOyCY/+bPI657vn+4j7rOnpSpwwOqXP/6eRpD23aHX4t307nOvKkR360G/Ly6mwR44jjk8Of+yrt7HbK/oDcGasIlcO4aJlRz1xkcl1cf8scXrItJ02aNOkK0AR4J02aNGnS3SMbD5ANH3uy+QX97ISpxtPIeSTwASJXhGetQdcikLr6jeecwbAO7LXRYhDJ200xJuGrM3wNAtlgP/PKWZ3ZmdhaVYSdIrlX1QC0NZZWYipcA5sRfIBnEwQ1wIvjmdkFvwGHqXsFGHPfTmhuFtu88OBd4RmGgp2VdrJJ0DTt58SWbLMbWPV9ZFC4Vzn72S4tjMDOgOA3xlHAXipteTfX78KSEkNMHMNYyJItb1wGL+Jrx5td2vLgLX5sqNIfrEeFOlOwT5e3kcwhWgYrIYM6v/RLO0be7d3OlaGer2DMpWCASeRhMCDDBAAEW2HMO4IGPLASFgHUMBZU2QWoAezQGcibPmXwFBDECzPmwR0svb2oowE0A3z27jcglR2h28ZOh/B2b/L0YUHuaOTvDsV1A4O5sGVg2ItozjNBNg8ubis/D6BmfgAx6dwMZgZc6ne1nWPJwJ87voFPd1rATfLEGxI9cnBrg7LMDwDu6A9jOM+773j8tzzg1em5bkDXgBf1NthKu8EbizAZIxoZ0g45RyXIhTytQ+gaer/0nK9bv6iv+2gSOuG+7rne2xw6AM7hS+o+K47UOxdtHATeMWrdftYpj02dDPK9petHrqPfDeDLBI9F7H7oAPQOVK7+Qf3cx4q8epme0uaLNNledc/heSCPY0XINOuceeW4krJ0n0KHDNh6ciR9vqy4PbwA102u6e37GMjifqLpycLHpEmTnlo0Ad5JkyZNmnR3CEPC3mT5kn/IePRLe24BBrwxkIFHmMHhJW9aDEB4JM/ky8a3DXsQydwSn6AR+RVhoNgwok5HR2Oz34J/erp7jiKxadg1TzhNY1jgB9jDdi6GJYp1mMiiAjrZjW+P3SLjYfDDeVO2QdM2N85ge9J2pbFI8gYfse2b6uB6OX/O1qt02KqInbScQVbArs9DYje38TfnQTMnhve6152rHGWlHGyUGU+4zCmQfFc+hP1kD3RkWAEby44rwXZajOgSAO7RCfSZWQp//vN3eVSjoyiVpvJ58MFzD2CDvW4svtsDPrcXW+ESpKK/EIqCZ7hOY3OffHCzpjyvghTRYAa3yd/u4VDF/3VHq+8AkrRF3SvZcsoejVbKRh0MElsuhE6w/FFqAx9298Zr1OAYbWFAxAc6OX/rjEET4rqgzO5IyAWd8QoNf70Yl6tFNcDwDB2N1SqP2wZl3QlpS+5zGJvb0MAPsrI+4mnrPJEtK2HVZgZRIXs2euDiGgOpPQ0N8OZhnNZ3eCNfBkPPJ9TVgJ7byMHZka/7lgenlAs80pcS0KSd8Jj24pCBNi+eGMBzP8yFWsvX8qr+BGBvz9n6XquMePKXXmVdLfsEURPsLaIP5iDuPpOUYGJXJ+fjfg9vCb52+blfJT+eULLPdOBuN+mgC7nNxZMn4xFkMNV1sQxclqkDmN02Ha+A+va2Txm5TuaR9EsLEZMmTZp0D9MEeCdNmjRp0t2hNGCWXsYNoILoGbkzSOtr3nuPx5Nf5g0o2cPL25UNFnVeKeYH4wLvrzIqKQdP4EMGuAFig8mqW5Wau4XBHApj8iH02GQ4eeFxWlmXXcxzNAHgrXGkegav1SLv/oTAySjbjk72mHU1Tba5s26IHGAaENa7MCHbm9QTnD4di9jFC75AE9WncMqqc+EDbjrq47CrbkKrlLEA2iNxyQ6kh187wLl72AH2/PdqbDVj22d2ulWHrBUTK3vQ7Q3gzb4Rt/cKmIWRKthbgdOoThCw0tfpc3iRuhG8rRbP9fQqc1+EDE6m4Z/jg/srxr3HDCszsUFA6TvvT8YByeos9rB5tJcpyp/luQ4GIFh9IR+PXzS6Qx50gawtZx/4ZUAugXTkT3vioU0ay4G6ERPYHqD2PPQ26dwOzX06GyA73paMybmwZmDU3qcOy+CBxGCon/OglUBQgrI8zyCRIKPjuKBzxFi2Xiagm23mehr0wmMT0Nfzi/MyeOV4pr5vL3auISN7+Dq/9HYlXw96bAehHfC6ht+6T1+x3AGsHTojyQsFCbhaXl7d8pyLLlXfrmuA6NTLu3C8aAulx7zHEn4DavuUTfJJ3Ue22Q89fuUqZNcXvSBlucATberV1TyszM87dEUu7OU4xTMJALue9lDnnvto1o3tMCkj52/iesaR96RtGbrdEjj2Qkm2bbfDatKkSZOuEM2Rb9KkSZMm3R3KF3sbA753yEMG4MLADC/yjimJ8VyGDQhhGgEYi/aCKzJ4g9FqfmywF1X+9QHZcywA8k6gAn4MoGCMCEE0hgH+An7ibAxg1jU8V3FCS0Ayd7cTlhPbvdL6PCIAXTsxUkWfsZIRKfikDYoI00nKIrbIfcaVnSZ92PySqhkj43difgXuolIOPYHMUSdj9kWOHpCq3K0v2JnOvBrbsHoaB4Sf4+PNWIPHngEOe+HvK7k5a4y9clQlAHPtcWkD2OCFgbQitqsDmHgbPMw//PBFT3orhNNVoOVanai4IQBr6eVuYQL4uTHrWoF6HBaGYIs/OsmrX30eSgKwysL0iXiuN8ABPBidhz/Hi6VzZR2sGBW7A4DFuwvsoZigR4KDdEIDvYSi8OISbZvP5/iFklF3hyzoFNJkwNkrHrQBdUXvivDytizNU/IIqEoID/jlkzFRrQfmPYGhBGq9JcB9wDpOnd3Gnnu6tku5c93642vJgweoBKpS/jzrdgPMTfLCpfXOfT49cQ2m5QSEDrHwUzx5JRH+/T0nJO75gDjy96DL4YLw6HcAr/B5IvOA73cHy95gp8cAT2xdeyF3tzOLNPneAHkMSiAy3xXc1pajdyOkDBO49ZiJHKzX1rHuHQ1e7dXLoldOvJDzSN46ffNYiFzwqieEVvc+yLPdAmHOYZfxeYeU7w5PJD0O9idNmjRpAryTJk2aNOkuURoQaZDYyLMBym+DAjY8bRykd2AicpRjoMYGIACtPV3w9DBIZYQPENgGlY1XG1jcx5hLz799vluPzPXRYAc+ofqw6wyk1jU7TCEO24Vlj2GTe7ezQwyAVRGi1J6r4DR2enMaY9VFdr6ys5ixAnB4+M1zpYyT8RwYpps1bVDb9uzMt6MRqkI4WnAJnKMqfdmWODPSzLRBPfPsZ1/cydrhRskbWAiqZlnYwcvdw85aZ3hMyXa1GbdOVuPaWeJidDVOj3aLHKtCgG9UmIS37A5jAwmvD0CvAQz00swZZCmy9ya6S/8AbSdNCer1rx/jgQfOvf8MwhYgWSsIdZqdjXcaBAEk2GBQj/INaFLHasDf9tvG+PVf3+X/vOft/lJ3eyDbq5lxxw3qxkAhDYobCINnwF1WCuxRi0KiPCUrwMz0yET+8GRPToPSJUfq4DAFOf5YKRkAkLFlkmMXndoKyuqGQTS+58qTASy3mdueMpGV29X6kB7h5I+e4r3tdrG3qwcsOrZBRdrPsZUdzgOA0PL0oOg2ywGBQdwBxj3IslpGvga5rJfoSvZhy8Vtlt6hubWe6/YEpgwTMmTFi0Etw4nQ3xlQ6xr65TIZMzwwer5NIJbJy0CwdRWvcXvue8GW1Tq3n4HhmIfPFoi9yABRfwBd65RPBXV+yA35cnihKccW6uvFhWwn5IfckKHllLL3X8bTJMaryqviJNGWBtJpH9ezC/lBftmfLTv6Ac+7b/slx8/le5TLsqz8XMpi0qRJk64QTYB30qRJkybdXeoMnwROcy8+10HYjLzZiyTRRCNpXLOB4u2cCWbYmwtD0HxiUKSXosEE54XxWkRZNmy5vjcCTzd1wNrqDBOgurabqErZoHaaSidoi6+ex/4tMrZEnnWtPg6PgI1rEBVQmHi3iCftOpwWwT2M+XnXKXaanayoB4Bt/S3spWxoe/66ruBAqEvyBcBsRy07dwFm4xDuPCtdyQaAutJ3Nn7av8bLUJEibGauc8+qfEGdC7w93Ywb9dy16+P42unYnG52XrurzVhvquInY3Xz5tiM1bhx/zPH9dM9wwCcAEcGALyokYBVLlpwjf4FAAbzblD6aAUoLsC3PgXwVsXLs9WgXVKCnQkuuvHcd1GqAiXwGq68rPgFisJjXSu+HB/EuwU6LzqDWg4b4boUgIOMHJqh2uG1r73YmeDBMXytGEXwhLwBReo6AIhXDjwYID97fRYZGGEhgDLIPzuaO7cHFYccAGQCIIIHBhHqVQsBRdVWBhDhx7JGDxOQ9YKg4x2z8IBOcngbHQuZASAZsK6PDyWE3267AUBmyYBFQrb3k4641JW2tgyUN6p1Gi9sBhN3frcr+taBUwbazJ8BNPTNedDexRuDWgYwr/Slz7S5QWfy8KoY9Uog34uhlIeXt+PjWGcBxa17ubBTVH9rdwB520PWY5f7iNvX7eE2SSCzm3DcNhzSZ579fkB+zpuJ1gHxqZP1DDIA6vjMBsfpO16tTS90t1/Kkr9M2NTLvFnHLV+HOoHfIo+bfo8yEO8xvXu/yzZIucIv+XUAd7b1pEmTJl0RmgDvpEmTJk26u9R5WRjIyftFNupsqHWGUpLTYKgueXc4riAgAwYN4CsGKieZp9daevIarLFBZdCMuq7XY3Pt2tgcXRuP3jiPnQurxmwsAtv1to1sf5Wtil3OGTSI1Jg5GEbdL3sbHMzYNAerkb4LX8A9KHd02t7j3BxwhiLsSco0hkb6xDiM25AfmJ3tbABY275uFsBrsEk7ZIL3KSLCBTVFfmBOxg7Sk9mqa3UxURfK2+7MLrmwXnDr1lidnlYwhl3et/YxRU9Oxq3rb7f19L1e8K9BBgNkVhxXxgAIaRFoKUCCTAaGAVkAhRDkG9+4A44MFgBc2COU7wYxUJoEfSnH9eFeXa/QEVXWK185xu/+3bvv8GcQzf3X8iCdPcwABO1BZ+Ain/OYRaPaGxe5GkwFIKEcdzJWJwARHc+1W93JNkWW3OvAZINTKVfLob4XYIkHqj2OAeyI9wJ/1SYGaw0uZV1oE3ckX0u5Mz7jwWiw1gMpMvBBZ9ZzFgRcZ+TTgYa5qpUhA/Aure8AzR5UHbc6QXQDYebF/c9p6D+HKEF+ZMW9kg3e0LSlwTtPFMiC+ZOYyPUp4B6dJy/zlt6zOeeXrPCmtlwSiGSA9sKrxw2HeTFonHpl/fD44O0anScpaWh7T9apK5Zxtm2OeaRN4N5jFbx4AcIrvi6DTwfuUufSTQD7rt97p0HOIz4AwJTvbl0bZnsyF+QiVXozp5eyKfWpK/MxUK4nPpH0ZOFj0qRJTy2aAO+kSZMmTfqtoSWQFsOgjA5OxvIW0aJEOw38pOFoI82ALd8h8vGJXWkg2UvFIJCNXhtm6UniPAvc3dbvvnHjZD1u3FjdBroaC7Et6GtkbacsOwBim5WdVnhb3Qfwre9lSwNoYvPbqDHQjIjBaRILtC0FrmFcL71YsQu9E5TnCUWBrQ4mQB4Ga1En6kP5dY0wkWBjNHVhOWD5YDHUDXmggjjh2fmIv+nUmusKtsftjJg2N21ocPsMY9qsx1EBvqebcbxajdX+QD6j7pvj4/GWzX3beL1nHoZeiDDIS4E0ol3GczUBdNyejPYYrU8plAE+PCEpBzDI/cZgKXwgID9HGhoesBnlpMFQrOKhQOYXvGCn8ABrde///J8x3uVdzmN50ECg+F5dQTFwl6fvUy8vBNkbGr5QesYNYhCXIlnWBarVc8gwgZgiDwbcy1APDmeROwoYGFBEgzV0escoNvBMx6VTGtwy8A+IX/Wgc1bdqhwOfUuA0vx4zM40ed1eooSogAw82ZvP+km7USbb+a3bBvso0zKljyELOj1gK9scMu60yfoNmGbQ1wNZygwd6rxRl+ZVEyEUKL/aCp2mbStvDs9yWRnqI+dRFjS6Qc6AXbaZZZrzt/MnLYsJDrOELJE5vPGbtkp5Wvetqx6v7G1tGSeP1mWDufDovuW6Or3rm+Omx1+3rUFb/3YaywjyghmTuWOKp/d0BxTni0JSytVAtAH2Lo/s/ykjv3M5P5dV4y4LOJNuowceeGD8sT/2x8b7vd/7jfd93/cdL3jBC8bbv/3bj/vvv3+8/vWvHz/90z89vu3bvm181Vd91Xht7Ua5hD7gAz5gfPqnf/r4g3/wD453eId32ObxEz/xE+NrvuZrxjd8wzfcMV8f//EfPz71Uz91vPd7v/d41rOeNX7t135t/MAP/MD48i//8vFDP/RDb2WtJ026GjQB3kmTJk2adPfIL9g2WG2IdCAoz2BoYITaS8bAbQJXRuDs5UOZ9sRNw7AowQ7yMoCcRog9d1IGCe6ylfhpTxubo4q9uzrDYAzQ2hHJVbRI7ciTNpp3jwKWerc0ICr4FbtnK/1DD13cze9mcdhkh7S0iG2H441qz9oih750yAiDy+BLaYsTJ5gd2NTXu6zrOe4DOIOr5bk1DsdgcLYwwrpu/AxVMK5hGfl3Osl1KpP4gusPz4WbnZ5W4buEW1HTCBXi4/5njHFjPa6tSzACrHwIoIEK9z2Dt+5nFqzTwjANS3+qg85Kr8uLrwQPCEOFHMPSiH8qESARggOYKRCqGsTKmV6+5MmWeECzCodQsXk9JrlxAP8MwtBnASoNevM3XbwMUDN+AUSVJ7EDa+M5x+qDBwFTKkYpqYNK42JPJ/b2e49BHqNo/wsrCaoj+QPG0QZ4o1IPexAiD8I4kI8Hpq5OPGc+nc56Z6J9AKN43ith1r0OCKYOxGkBaKdeyMcDFzKhrbyl3WnRKXjx6k/ykHOY24m65nZ3vJSdv8vzoIy3rQ8hpUza0sRgzSqdt1S477NK5wUDD6xua7en51HLllARrlN6g9JmnuBY2cuwIZ63fehhAt4dMAn/XiChzzkmcgKrqeP+7kmOhSvalcW0bqGjm1Cs39bNrq8tkfmrMjjIkhhMftfyJ/ss42USfZG2sE44EH8ubJG3+63H7FxBdV3Mp+vmcBOTLtDv/b2/dxF4fd7znrf9fPAHf/D4zM/8zPFJn/RJ49u//dsX8/rcz/3c8bf+1t8aR1rIef7zn7/9fNiHfdj4xE/8xPGn/tSfGo8SqqWhpz3taeNf/at/NT7iIz7iwvUXvehF288nfMInjL/9t//29jNp0qTDNAHeSZMmTZr0tiEDpWnsQTb6yhDFKOtOtmbLJcCCwabMK8Ffe+GSZz2L8WvPQMCfPLTH2y0xRjPPIsrzFl4dwlRb6nEgyzCjth8TazZYaluVa8aZChMz27xXE/4PT9eiYq9svDqvCozONj1iTqdPN7EdLCGu2TGI+mLTgiGRVwfAslMcsdtRFdsP1QH/qI9j5BIqFPm4qZCvPXm7dYqSXZ7R57N5jC8hI/AQ1K1z1rITq9chtmUX1jGOxvpoD/DqUKv16c1x7Wg11oBObgSEh/5ZcRAyadNTy4a7+631HarYt8XTc587xrOetUuDt6wViYY/i0GhrdMJyNkLE6/VEr69AFEW+imGvDtN5VPAcNbBYxAN5Y6Y4I231lthc5XFykXdaS93iFJWxhbqZ5CHdjPQmTGQAcEM1JM2wUMDll27Q+4wyAsgrcBzPJsTBLYSo1sG1HCdd1xXp0H2dGJ0jPpZrhmWwABx5QtYaA9Bewl6cM1O7rSp68UvAJgXOCzLpRUw8oIfDwA5Z7kve+5BZvWXQZytCmxH8HYOh1iAN3ixTpI3CwMA1+bbdUH/7fnvfpnjia/XNQ+GCTKjV55cEiyFKq4QMZHpL4QPsZ4nALgE8sJr6pPr4AWHBNnhz30q30s6T9PUB+sjus94YX7I0zsJlvjuwF7kT99jcqx+3nn3OlD9IV0uypVUj0/8dTiQbBPnib4xxiSg7D6c5HIfA+X63RNJb2s+fumXfml8z/d8z/ixH/ux8cpXvnL86q/+6liv1+OFL3zhFpB9yUtesvXq/dZv/dYtIPyTP/mTt+Xx0pe+dHze533e9vvP//zPjy/4gi8YP/VTPzXe6Z3eaXzGZ3zG+JAP+ZDxkR/5keOrv/qrt0DvEtV9wN3v/u7vHl/6pV86fuVXfmW813u91/jsz/7s8eIXv3h8/ud//pbHr/zKr3wbSmXSpKc+1cg3I5BPmjTpnqfafvTLv/zLux8vfOEYr3rVE83SvUn5Ip8v2WmwYQSVAVHGGm6YALiArQZb2EZdnlf1DH8J71AfrnEfQ9gADV61GIeUW8TJ2gZ5MebgzWgcBhzluB573jf33z82b/f08Zabx9vdgzjx2Q7HrkvbF1vMGICxCu9OZlc4oC5ixqEFgNQOSQDCtavcIRw4VwmxGXOBHBbCTmtFaT9isJQdiR1uxyCcrQxi216veoFx2dYktEKVQ9OBOTmKAPawcQDvrAcYTg9jmt0q4QPT7eyGvGknzjujXqi0cQnnnzwcrTfjeHNjG4f3wgFTq9U4Pb42To6uj+M3vn6sjE6jKDCDMBNUs7u4nzMizn3nYW9OwDtWDABcaUynL17YCp59q7xmMfxJw6Fx5F2UnmMGZ1F0nnE4AvitPH/+53cHwNV1lNHxRehwdtk28IXsfDgY9wC3K58CwFkZ4EA2j5V0KBrfSkRd6ch0YJTVIKpBV8sEmdsLkEHCvwGKOTgKkIeBASCNzsOz7ujFJ8Gtya/GXg7Cq7i83i6fB5Wx2OZxGN4YZw2yUb9qZ0DPKg8C9LfcGcSQJSBplY++o4Pkb2CJfHxYHYM2umLvbB92yP1cRGBlyTtLHAaBVS3akXp5EREPb89v9GEOG2WyYEEB3TI4atAyF3y8AMGKF7JAtq4fA6d1mXYtHmow9yT34IPn8XHcT9zeRVWnOriP8qou9GGD1V7xo/28QEB6vtvj1BOqQXbrPXLiGXSFXQsZxN2ysFe/Zev+SbsD8HbvTSmnDgT2fS8WVN7EYC6qvmO99gIWwLz1xYfpUV4ReXqBnvLJ17sJHL6CiTUXrfideeaLhuVcY1ctOv5//982SYGWr1p477d98CmfMsZrXjOeFFTrk1/zNeNS/h8PFZB7egmC/FEf9VHjFa94xfb7v/7X/3p8zMd8zIX7z372s8cv/uIvbkMp/N//+3/H+7zP+4zXSHhVxjd/8zePP/En/sT2d3kEf9/3fd9t5fzhP/yHt6BuUYHJf/JP/skLvD300ENbELo8eV/3uteNd33Xd92GgJg0aVJPzd6KSZMmTZo06a2gQ14TS/cMktrYwoj1llgf0oMhZkAjjTXyhzBmDYrY8FjySDKIY3TVZMPdW6+L5+vXx8nm6ML5S9jPDo1gZy3wEnA97+jGsY8d6bY/sdPAFfgQrhRgs56tXeSkw14Fb0IU4Epct70OIE0aA8nwaSwrHbPhHbvegLebwc2Y4if0BA5unAkFhlG2Hr/zzKWya7lmdQDXwvY0Zgrv6YHtKAKES0V1aBs7ctlpLZ0vz3Sj0pYrb+pfHbx2ejLW43ScPv2B3eF9PGQvWLtQIygbzCiG+4hBVHtQoVTZtwpgoX8S3uB1r9splxUTdN5b+6uxKk+UFgChvhdAylbzbkXDfQx+cqs4oK+BwgKTvGJgZTWP9uB0/0YuBpYBaJFV5VFhIp797N1fnvcYwdiWqzRWfIMd9qw2+OhVCAN1+RdF8wBikJ/QD/BQ4BJhJcprskDakpk7qEEnL76xopH6aBDLeVRHBQy3niOHlIVXfmgDDxq0RXqsGqyjbPL2d/+lDngzeq5h8Cjeras8R5pctUKHGDCZM7Kd2EbPYkfJlqDqhDAxCMsiZ/VJDkCzzjGokaYmBPh3XF4PRF3/y3w9sHEPeXsnAR781QerX9SHuL/pPpngrhegkB99N7073S8ZmwxcWwesV91AT/08Ablu9L2c2LxY7cG9222BrlYbEFt8F6fnYp1SNib3jaU09Au/M7Eqmn3Lq7dFXoSqcaB0r8b4+lvjA/GNsjzzxPP+7TZJnpGt26D7pFwOvYdOuhTcLfqWb/mW8T//5//cfq/Yukl//s//+S24W/RZn/VZF8Bdyqi4vLf240WFe+job/yNv7H9e/PmzW365K3yrfwBlavcSZMmLdMM0TBp0qRJk+4+pQGV95wGl0UbSwYtDNp2H7/c21gwMGwjw9uDbQjZc8RbUJ1nGiv+60Pccs/93tC7Fd653sleZBwk8Tnb/onZYBcZBKYKOEbay7RrIjx7DbjatkoHrrqGoxLhRrFRaVLb+A7NmbF5KRcszqKmXsYZLR/LyDiDowEYCyJ0o+vj5rcTIfUASAeHKbvbsrQHNnmm3Z+OWpDjDY+TW2N97WhsNqszHGAbEuJkPY7H6fawtbMMKy7vZjPWt4qpo7F55rPGuHljjNe9dqxyGzkCsxeXhUZFrfcAfm5wABoqiGDwqKuYtyWc+v78598eo5TK069RMsBn92PKKAOSxrfip3eYlRfe4LeuFSBB/3zOc87L9y4C6ov3f/2G5wRajMgbHDSvyJWGNohR9wFIchwqGTr8gYGP9HKjzQw6JWCSwGK3QFX3WP0hPzoxoTjwwE6PQudloKhkUfWjQ6G7jvfCWOkOnKEYGFjs5g7P3h5gvbCee8CyLBLQMvhlj154oDzaiTpyLRcoc+A0X/5eZbCSh64YTHT4B+u9t8G7HXmeLRisELoPec71IOiFCupM/Wkr2ohwSRxmZeCX/gvh0epFkG4x1Xrl714JRR7cJ9Y1ixGes93G2Y99nXToiN9P7EWaC2E1rnjBmEUR85f9zXF+vHDngxy9MIDc2RWRYGi2Uwdu5n10g0m8eybl7Dkg24kyEminvc2Dx+UsN/M79E7ZTaikS/26Q8o1hieSngx8vKGA+32M3KSP/uiP3v59+OGHtx6+HZXX8Xd+53eOD//wDx8f+qEfOp7xjGeMN9a8t6f6XdeLKt2Sl3LlX+U8+OCDWw/fL/7iL74r9Zs06V6k6cE7adKkSZPuLtkwKloCeiEbRwaS8rqNGhtbAlAv8IDXEIY4+SaaVy+ujj+ZMeiSEvBlu6LTUjbll/fu6njcuLGLv1sEGIuI0vErDQ07FfGMMSU7INrZDKfKeqcG3LSdWZgOu0ANGFvkxgpxOGNXNF7A5Oc4teAkANmVV/FSNgOOgI5HnCC287DjaNrL7LTmd93HGZEwCbY94T09hY3v4FCYqpyOXKkq2OnGQq3qtpOLDHyfbNZbj92LuNlqnPK6ZrBjX9jq0UfH6g2PjNWb3jA218t78u1u3+baIeYGnhyP0SBOglVWOoAQttr/2q+dK4JjenSAivsQPFAWYG89//Zvf964rFKQRwJbBlqzIX1wlMcnvCYNysJ3jQvlAVkdhM5BzNx0eSckgzu0x6qUH50CBfOAkN6u5E+bAHLmNmnHUiEtY6Pzd2yY9KLNuON1D/mhd6x0ICu776dyu8MyHgJcFf/VMUvO9bfkTFgND0TW0fRg5FP5eSu7O7R3eyDTuuaYrQmgu5wMw2HP2s4TOqnz+nQfQOZ41gOw8hzgMWkoi2c9P7q9K60HQQ+syJN+Vs/Sz5KvXFzJOqBHBr2RZxczmb6SXrL8ZfuDD8hCzvYETuA0dyeQX26D8ZiW7xXmxbqADK0jPIec8X7OcY2/5tVjncm/LVPrXdY9+0P3npQyoQ7e0sM96pp66vyyTZ3WCyXm0/qT8u7GoxwD4M0vE5TfOQZUvcozfNLjpt/xO37H+D2/5/dsv+PJC127dm0bl7foB3/wB7fet0tEWIYCid/3fd/3wr33e7/3G/ftQ9l04Rugyv+HfuiHzp45zrF+0qRJZzR7x6RJkyZNunvUeVQcSlfkmHnpeeMXdowHA8E2KEz29DHZSLEHsA1Io3DJj5/FuMaLiUCwlAuIcP362BTAe2t1m51tsNKeswYHbRNRhaLOkzcBWlghDKpt/RRV7ox2SE7wjXwOpzjKAXdA7DQVIVW5DgYF2dkShzXvvAdf6xx+uG9HIX93SFY3LXyQn21Gmr5sdvLn/Jki2zIOP+toCNQDMv/IDlmfYTm31uM0QhOeOUsdF0B2ujtszaAKmd66NVa3bo7Tpz9jHG3CWD7ULw3mWGgINT0eO8CxjOlSlIpraw9Hg3AAgvZK830HJragrCx1D+848oMvvtvYTyABD9T6Xl6y9iQlZip5oJQ0Lt69loWVBcWiHoCegJt0FtzAURADHiw4ZRyTIjqiZWTF4iA6OqAHB3uAuoO4MxjU5TdgG8CawZcEg5yHgUF3sL2eXmgXLyCQN2QQx3UwsAVgSGgCe3+7PgZYkQFt3QG8HkTtBdx5BaJH6Qlpb2M/ZxCccghTkF70liH6mcBgLt6k3lsm9uilPcynJwMGYnub4vWOnjMW4QlKOyXQiAw5FK5WHFmB9LxMAHnmWID9qjt9yDL2nFxlvPa15wAfq3SA/ywEoDfeFuJ2z/5g/c6F4ion5ZMAd05cGTaHfgtv7qu8SzifQ5NhV17nCpogsGWS4DfPezHJXsom0nqHiMca8+W5wfVm10PWI19Q8j1xqd0m3THdf//925jEf/yP//HxN//m39wCuUUvf/nLbwN/AVkT/E3y/d/5O3/n+N7v/d6z3+/xHu/RplvK58M+7MO2PP323/7bx8/8zM88xtpNmnQ1aAK8kyZNmjTpzigBh+6e79/JyzXAQQK5+bvzEDHIms9gmGCM8ttgjNFGDp3JOsAj9cGwteFjXhqvx83x8ThdHY2bcs6zvdWBtHkd2xhMy+kBRe29m84ziABb3ZgF7PIdW9/3IYPEdqY0LggmYDHQxOygJVQfZ7Zk01B/dgzTTFw3dpDNbLsYrLGA2gr1aCc+y4Fy024sB06H0bDKUB5ysZpZddIW55rrYMcy45bnea3G6WYzjnJBQwBChWsYt26OzX33j83R8e7QNYNtncdXgrZGmwEwAK/cAOWCbUCNmLYI3RXlGVfScbNJWzF7q5Fcvhu8lKW2b77zO5/LAMHbmCemhgEM51X3OUnQyo03Kt6NhwCSBI3pnAmW8mFscDzY+ps7B4oHYqQaKDLonZ2T617k8sCRAw68uP54OHsFysAkHcnX6XjEdmEMND+Uj3wyTIW9GLPzJEjDAJEAMPJB7xwnNMFty8KHbqKXuUWfMjpgl+0Q7jv1l36R4JgHU7cXg4l3gRiY5uA4BqqOLLsc/JGdF0cTKPeABE/13aEdvChBng4rQb8hfg1lACCThkEXUJgJgvbAi5st4axQMrcmKIvsuEe7+HRLYkN7gkFWKT9WE+HZsaTdjug17c09t4nLcP81AI9MAKE74DX7HnLxS4EXp60HJUt2VhB6xmOTy/O7kWMmM85abnkSbPJF3bxokWN7p78ur3uvNFmGKf8u/R1QDpdPJLkK7/iO73hp+sd7CNsnf/Inj6/hNLeGvvALv3B8/dd//YVrdegbdHaA9QK98pWvPPv+237bb7tr+UyAd9KknibAO2nSpEmT7owue2FeAnQPAb0YdQZ2O7DX3ro+aC1PBvM9G5neetx5kwDCGAg2Ksd9QJCiRDgTHdzzUWDb7tCxVQvQ5nfbfoCLiJ80BnON4XS7cXk2HXGwYyHbr3baQizsQDeuTVk+H8v2Jc5/PEP4Tpx/7PhmJyWazPau1YnmhR/wuM44A6dwOFnbxImrpENfE3ruQt4px9zlbozRamLbFDzBzk+5nlGhGi6AmejvflvwZqtYu3i9R097+tiK8+TWDvglTkWeyOeGRDFS2G5AwLDy1C2U3veII4rhD8BiQQCadCAfIAk8OYgzgq64vniZGRSyYroTuf+6z7IFnH5Kma5/NuBSOQZhlsA1OpiBZwOWgG8JrrqTeEzDtd7efV59yXbMPA3YeUAC8EzvwSqrVkloQwONBvzMo7e1azw88yC1/BK84pqBJ3c66xArRX6GnRTuzB4MkZcHRIPzBiTtGQ4BJHIYlrdIsJJluSfw1K3w5aBhkNH6tAR00TYM4A5xQD8rXjkEMfUVOXiQok2ZaAAH4anywtsf+ZOOPB2fGA92g/bUmfRVHocSWr88KNdfHyBnPbOek4b+m7JHLia3gcFJ2j2f55kOwMxFCz/nsSnTsbJJX/RiBc9kOVl314cxLicn2sA7IYro4w5PYt49bqTs7MGduu9+nrru/B1qw/0y626QeQm0vkfoR37kRy5Ns43Rfxfpx3/8x8dLX/rS8aM/+qO33XtAfdQxdTt6EwsM+5i7b4t8Jk2adE4T4J00adKkSW89+SXbfw8RBidGfwK9fmHHcDCwa4CDD4AvvxNwwRjE6CGtgSeMDQMSjmsILwbZLAMBO5tr18bJ5mgL7vrQatggua8lFmNQErsKsJRnjDslwGu2OiDZWB/VA8up5innzKpmOW16RzY2vw8cy79ZLuUgPnAYcAGaABstvYwT7MW50E6EVkWauMoxtoBNa1zHYC2yKAzH4V/TQRMM0hiNHdYSa8zdr0WWp8FmsDZ2n2/5O1qPzXo9VvaqQzmOjsbptevj+OQtY316a2zuf7uxOTndJaltxKSrStU2aOtvos126a40xG0tolEKxKFypRwF+hbBrAE29xk6gj206lopHcIopXIeeeAVvOIFSGMT/BnALQEZo+mOTYLgqx6APlbEjB3ilZZuxSbHHFZH3CEtE4PYCbAm0I1Co4Aos71RuQbwmV51+/HprP0PHdxER7WHMWm6+KAGiRNkoQy297szGzDKZyDzR14E1E7PdtfPMWsN7DoOCvcNOFk25qPKqj5Vg3B9WECx52Pym4NXDqQOv+C+Q5sdkgPtCRhpz2nScL/KWQLYXW8PqPR3L5rSH0tmhB1J73DkBzDp7R95+mUOlgCSHbk9kBmypM3ZXZBjm7/bC9iTjvUxvaazPa1fbvd8B8qx1tetc14UQJaOd35IB5Z+01a0l3crdRN2Lv6QznnnIjj3PBZkO3lrCjLHS9yTa4btuKx+3bvYkrf7pNvoFa94xXjP93zPsxAN7/Zu7zY+9mM/drzkJS8Z//yf//Pxspe9bPy7f/fvLjzjQ9dueDGpoUdrjN5T5f+2yGfSpEnnNAHeSZMmTZr0+KgzOJcM844wiP0Sv+TBm0Du0senfBnUMIpoQMUAig0EG6s8awAao9BoHWkBPbZ8H58Bi95xbSDWOJHFVo/XOyxnt9iZp67pXfcCvrSENxmnShsVUVSTFF5RBD/FPwdu48xlINo2K89gx3WOT2AG2JCJPy1hIm4e7nG9vhvPA2C1Mzfys6M28jLQbDsU8LzkD/4CvmUQ3XgEjnzUyw6PdnAsQq1sYxsMtnfw6elqnFQ7JVDAIWdbpjbj6MbeVfnkZKzWJVgdUIP+Ep/ScSrShRum7DVcn4cf3l2rmKGPPLL7i0dveeNk45KvAynb+OYaQJGFbPAmgRB4pV7E+zDKDzgMoJsgRf02+AqfRTRid4AWz7vBUSa7nxucSYCJe8Ur28cNqCCjVPyqH50/FdEgCUAavxnTqp24Zw9g0jlGssEVH1jpMBzwYY/kBM2KPABSVgKnOQ67jh24i8yRqRc8XDYe4Qmye/EBHj24GQyHDIoXMTjXwOn5JMlzZIKvlGW+0OME7XORwAMKYJnLo92TX89fDPqez1jZctvVfVYWi1g4qnGAgdf8GCD2mIKeJeBpufM3xwq875mUclGYQ/vsWe5YuOmRjW5w3yE6DJZ7d4Jl6wmNNsmJj3T2KDfhBc7KKh/qSt/r8k1Qs3vvYgEhdcyEnOp68bE0KXvs9LOkcxnuj37eq7XZt3LVtRsTs58gE/cpj7ePgR7nY28TMh91sNiv/uqvvk3Kefjhh7cfqDx2v/Ebv3F80id90vjar/3a8S3f8i3j0z7t07bfobcwZmzVVwuvDXGIWtGbS7dEdyufSZMmndMEeCdNmjRp0t0jG7CHQF4AEL/QJ1iaYG+CuB2oy7Ztx8M1iAD4kuBJAh4Y034+wWiDA/ZE3l+rg9VujaMLoQ34awc32+y2j7AzjR0ZAKQ6GUM2gV7bQnnPTWTnzbKRwQxf//qLwG7iZMZSbDN6166vk9b2GOUnaJs2KHU3rsE1Y1xgGq5fhnwAJ6vvBm0NsJtXh5NAfQgVaJwBL13Lk/ALxtIoz8CuHZxoe3a07/6uxtPuq0qc7LZjwkgd5HdcOrhnog5cy8UNe2XBJF50ZTjV9kcUtGuQeqaUAU9dhFzMFdBTrt6g3HZPJy2NYTCF58tztvJ+7nPPPUAtxA4UTHAOnu29mJ78Bos9RgD05oqCwb5ue7Y7rAFy19fgnIE1QCOe84nv6bFphWQsBFQ0D6QxSJXAU9bRndcDjIFy6wOdx4fpeYw1OFmUbWmwEF1AHgZ73LEtb9+3Z7WBIQ+QXgEyYGiArnSGeDLIA91x+1qXkBGDpcHmlF3OQ27fvJYAmtvGWwBS16yDlhVyL0Ck+njVs/o7nnOArSz4sNiQ4KUBV/fJeqb6v8t3vd2mePOyGsc9823Am/vUwSCr3xP82zGsDVJCAPHegQCvOeGkLLPv2KOfCceLYkzeS3GAvLiV3spsTan7xDSqxRkfxOZ2SZ4pizGXtmQycX38PuSXA+fl/kX7eRzOxRrIYzi6xsJYXXNsog4Mzkk+AW3SeQdB90LyFKcCdx9vjN3HS1/3dV83PvIjP3J83Md93PiyL/uy8a3f+q3jdRUrf9SU/YY7DpfwdM1tGYbhbuUzadKkc5oA76RJk64e2eCYdHfAXBuZRiD9HcIIS3C3+/DCbkDXYK9BXsBdtiE6D3hJNM4GFkhcxrEkfwwzGzI2nhxP+L77xub42ri5BXd3sXeNEzgUqoHb9I4FE+IaH3Yl+wM79uC1jeM8DP4iYu5RJWzB3PlqHMOgpOPogjGlA5AdurDfExegDjznpks7ku/dTtIsE1sS2TlsA6E07WBZhCOYZUfYBmNtqBI7lfltXo0dpbNhdivjrLbjt/lWnc5+nDfyarXZPUMBGbfCsS9RGrZE0oDlMg4w4bimCLkMzEpXhhierZVHgbsV9oEy0zBPg92Cqfweemg3JlA+9UL4ObZUGfamo9Fy5YK+TTmkM1DgeI9LqxGHgAt/yMdb/Q3Q+T5jJoAb5aEsPJvxPkhX90vmhKRI4K2rB3JAtr6fHdJtCP+Zr0HvyhfA2QBxet25wxqQwcvSoJ31M8HPKstgmeVk3j24AOy7DgTnhgygWVe7WMh1vXS2nmGrBQBpxurFszQHRQPUOZhlm3pO86QBuc4GHjloq4tlw1zn8Edcp46UkUBd5oUHsccZtzGgKmNRyiBBVuucdxwkcNuB5Jm/CeAVOXo7DG1hcn09NhU5DiyygL+cwD02Ju++zuINuwgKzKp77EbgfcfAqOWdsnH4D9ctQWqPr8imW3jIMdyU46UXdDzOkhYeE8DluldKszyPiVlGx9ukx0zlvVsAb4GvH/7hH74N2ZAHovmgtI58sJoPSuvy+bEf+7HHlc+kSZPOaQK8kyZNuno0Ad67SzZMlgAdp00AtvsYhDWImwCtgVkMH3v4Zpxe54chbMOAPHwAk5FFxw3EgLAX8T5Nxd69dboejz56Hns3AVnsTn77wDQDgU5j2904gG3xDndyGoO7tucSCKZq7BDFzucDKFy0dxq9zb4mX0TsMpec3YrADS16yiHflAFkcNV1SucysA8cpRxBwGEVWDMwCFy7GetvOa6VU4nxA8BjHFkdGcEOnN2OYXhITDOxgc3+ga2Xbh2wdv36OD26Pta/+caxXVWwgiFgo8YWPpk6wHJVuoArV6Aq9bt/97nACtAqhp/97HPwBdDBSmyQx15b8IVHXXkGW2ndz+GBMSQPKzMYbMCX6wjf4w78kz9gSj1TwCkNacSexnEHNYhoQMwgXAJM5EEAa5SedqAsFC6BHC9MOQ6vgReDtpTJ+AdwmqCxlZE6u/06D2939Fxdccd15+Q7z/kgLuftshhfnT+7J9Bly9aexR7jybNAr/qU/Ghv9wenZ97KeQ6q51j0MJ8ZEx7+vIiR9YZn5hXk5S0dUA6MtDkDqPmj/agjusHvlI/HDMBhz6uer1m1JB+e5y/AcratFzw8KWX9GJPow51XPnJ1f9D27wtt6UGVNiFNAon0G4P6+ZsPEwX55KoozyV5LGFxzgsuDiFDe1u+lqsnGU+e8Ioc0QvkhawMFndArn+7f1nG8MjYyj3Lu1sw8vecyN03sv918nR5j4E83D7R9GTg49WvfvXZ9xe96EVn33/2Z3923Lp1axwfH493f/d3P5iH7//Mz/zMhXs//dM/fSFdAcqX5XPz5s3xcz/3c4+xJpMmXR2aAO+kSZOuHnVeFJMeH3WArg2KpDKoOSDIAI6ROxsmCfAC5IK61adAkvqUd1B97ElrxMxeNzYyDfpQh/Ta7cBnPJ0qD4zpAnePjsbJ+tp4yz5OLrgZf9ndiC3m2LHG5LgG9sR9h/Q0CJzYigHkTN/hOs4rcZnCwkrUdkRKuxfsoAgbPPGtQ444SXboMThMWeRndalywWxwuLMTHXgQdi1Oq9TN2ATfCe1qHBRPXTvsGTsFzzAuZ3WxE6FlguoZA0P9694u39VYV9p9xpvNZtxa3zeOb7x5rE4iXkd6jxmopAACL3uFAGO/vrOVG9CyqLZVVrxdG9CFdneeYD49LgEpr24AoAGqQh3wRANZcUljxbNyV0PWh/5e9UIWyAbFMYCU4wWyyJUXK6yBUT9fZK9Un1ZfMqfu9lx2/FDzgCIBZKHAyN1AF/lwjTZ1ntkJDcK4LTyGGkQBXEsAj3IMQBmoyTp5gHE+7kwuw/x0lANbfUrnOaSH7e8eJKmr68Y182gArwgvYvg0qOYYN/BlHos8SMALMke2jr+ccoMP5j0fauYBxvOr+4/JAx5bHUo/0V/k5gWJrq3cz+nrBgitJ15g8ETBIOkD7DzhUcbSAXceP7zlIsHP/J6rot0ky7jFQZEeBxynyHx7QiuqNnVsYxPvGsgDj+xalLDOpG5at5B79Xt7aDNmeAy7sJLYLIwUARJzD53wYnqtfFaais/svuLFOZfp/uu26OqVvLquqcOT3ip6wQte0IZFKJD1h3/4h8fv//2/f3zAB3zAuHbt2vZaRx/0QR90Fm+34vuafuRHfmR7eFrF1610f+/v/b02j8r//d///c+eKXB50qRJPU03tkmTJl09sjfNpLeebER192yIe297B55i2AHmlkFSwFF9AHIBc0HyHE/OoAtGjb1Q8mNDK4GvTEs55hFXzeJl/3dz/b5x4+ZqGy/V4GqCrf4NKOjznlwd7PSyA50mgeEEkykHGz3L5znuFdmByOBjOXERMtSOfBYx93jeYDY2MDtPDdLa5jbGYpsccJv6Uy7pUS/K8T3wRa6jQuyudvNW/mU7o87kCz92fkJ9AIjtBGq1wxEzHZ6MHxIVwQfyoaLGac/ks1qNk9XROD2+vsNFXAAV8tZ/Z1pUQikhIFQLCMbs7VWVKACjfld/LMYAN/Dwc+Xt6m0EnjEAYdp7jn6XW4oNQljBPcZ0Aa59z4CVOwiov2OSAqrYOzHBBBrOXsMGtNzIWU+DGvZ+ZHwxAJ6rPB48AIbsNu5FKOpP2aw4GWzikDh0A4A8gRh0AN6IddqBNegWqyn2NGZlxQCe/5K/F9kMNnkhrgN5PBd4ADXojhdzfVjM4KArt5vD9cCvV1wS9FtaSTPYl56VyMRel1AOZAZoXdck369nCR9h/fKkwYoVi6bZPgbWTHjz52KGT5osQlfRU9J0A731N+uJfPNZwL9ONvl+4p09ft7bUzw+WNc6+dJf6uMJ0hNFp+umbGOvGPpdyX3Chzu6D3rs43n6H8A/c0PlU/pP27h9KTP57OTR3XPMJvQi28P6kYsE3mllwJc6oa+WVdIEeN9q+tN/+k+fff+pn/qpC/de8YpXbP8++OCD4yUveckiQPxH/sgf2X7/ru/6rtti59bvul5U6Qwomyr/Kqfom7/5m9+qOk2adK/TBHgnTZp09cjb9ecL4N2hTo4Gm3CV7A5Eq5d0tstiYPI7DYw0ZgwoLB2s5jyWQAEDGt0CQBqeBhkwZOqgq/ueNm6eHo+3vGUH7qbdZZwGIDRDGxgPAsw0AEyYww4oNpBrOzUBX8To++RtTIF72JW2qWmitGWxuex4mE3iOqX4OwdA254GO8k/5ZtgttWA62XXlnORdzLXc3W9AN76GFQujKRCMxCDF9U1VlfpucfahL2aDbijatQ/+fW6Q35fVV1W6/GmG9fGjZPjcd9mf0AUumugBgDJgJQ9E2Gk86rlt/sBOg+j3l5P3gk0W3HcH608BhS82JMLMu6P5Mkz5q/+wmN6YCa4AEDFPQNuHVBoEMLlpodZAn5eSXB5XWMvead5HCIv//ZCmgF2e5vmikF6XlNep3zmvT64x1ufIINaDCKM/fx2m7uuBkbzECo6WB7YZTDstk6j2M3V8asz14cg3NXhO+/YHDjdntTN5aeek97gtnXQQKPL9SCcK2eW79L85lit7HSpAYlFG/otK0vZr0yWbQ36xQNATYKNhIIg7AWDd5VbXp3ewYN8rHPum5ZHEbyi125ng9YJzFq2bif3K/56MvZ4kWS+sh8nJcjb5WWdqXQsjrge2c7Ji69n3wPQZUuKAdSOuhXjpGyrjh8vZGU/ysnebbMEsLs9vLiQYSke57t9x+IT+Xlb0Sd/8idvvWYP0cte9rLxER/xEdvvv/iLvzh+4Ad+4ML9f/bP/tl4fR2OOsb4oi/6ovGc5zznwv31ej2+4iu+YhvGoejv//2/35bzxV/8xWdeul/+5V++fc700EMPnXn21iFvVe6kSZOWaYZomDRp0tUjDJ+ipRfXSY+N0jhJT6UMnZAggj2AOhCkyEYJ3rMZe9cGXxoOuTXVHlXcA9TCiAWlxFvNdTSYsAV37xsn6+Pxlt+83ZEnMRXbTbCZnrAJ5nYgbWIzRcYfchebjQaedROy+9N2sHEy0gFeOjRg/cXTFRvZ+IodMRPshS/Uw2nSjkcVnJ/rv9RExVuBt2UT6uDmMzyv0hQGAt5TdnDVsfKu79QB/IxPXScmr9UVvuyc6d20lqfvux60j7E89Ob4eLXl91adhVahGRwrgi3+eOZy3fEQs+/ZGDfQS0xq+oxBYpgH1edZmLexDlEZUHnyRRhOV+S0XCcgspH17Ex1Dw9lN0qC3AZ4qCdKgWwsPwOKBna4loCHAWTLmvIMgmcedKhE/+s+g4wDRpsvezybnw6Q4XcHulBv6why96FdmVeWyzV79i0BbgbInbd5QreJDVshQxLoovPWfTpzAZMGcp/1rPPwB24b8jFQi+zoN8xpgHFe1XNaLxr4ngdbyrPXcgeEWe8cJoEVKeZC2oyFHupbK1VVf4M7CeZ78YOB3TtYDDoDInPgX7UD8qw2svco8iC0SAKjLjsBb3sBM2bASwLjXdvR5z3xdXGdnQdpl0BQeDdYSv/tFqEynzwo0hMjk5FXT7N/uE9Yb7nuZ7wtp3SAdzLAfi+Qm5ccN9ABdnG4bl584gUEvUKXEoTOdzD3M9LwLO1FX2Ny9UJRBzRPuo0+7/M+b3zJl3zJ+KZv+qbxn/7Tfxq/8Au/sPWmfeCBB8Z7vdd7jU/8xE8cH/iBH7hNWyEUXvrSl47TQJwLbP2sz/qs8U/+yT8Z7/zO7zz+63/9r+Pv/t2/u/X0fad3eqctQPwhH/Ih27Rf//VfP77v+76v5eV7vud7toe3fcInfML4qI/6qPEd3/Ed4+Uvf/n4lV/5lS0vn/M5n3MW/7fKA1SeNGlSTxPgnTRp0tWj3J43Ad7HRp13xJJxBMjiNJ1XjfO2kWDg1r/tncQnQWXy8bZwGxIuL73lMGoN3vgZ/677W36ubcMy3Lq1us0mT8cvg7+5yxLbxViS7TNjVF05S6Ax1TLYbPHjDGdMkPOLwMuw28o+dFhJxIIjX9qG2Pk4fhqcxe63qO3chUOY1asDU40H2SnQTo7kDy5h/IqdtvCCs5hxCcrDCS1xUTAvOxvCn1Xf7WZnNMsm6+VutdnsYu8Wrnu00vZkKuE4Hv8/e+8BZllW1uvvU1Vd3RMZclSCiAQBE3IVkaBcUYJcFcyKmDNg/pvwKmZEFBOY0KsSLoqKAcNVFCUZQJQgoMhIhoFhmGFmOpz/8+3qt/rt36zT0z10U91d3+95dp1TZ++99sp7r3d969trh82pyYAcAJvgG1CwASENbvkff7WGP44sCaQA65MXi1FYuFsx8EjTJQi9Sbv7E1P+hEKj/oW4ZcXzDAfxwC+vQR1hu2B9HzGMNcSigdAQ8GvqWZK6vq/hhmyXAYbpxJs89Eut0u1GAhnK242D/6k7Be/oIEaWfwlSXI+8DyjqvpR0J7DKe4XT6rync+I6Ll9efsY1PNvmY10/sl5QNp7tIl6UhTss3koJgKpZJaAn6SANxDPLIuuPj7OoB3znfNJJu3G8nXe0Qepbdew1+1VtNF1REAenn7pS1wE2V13h5sG1HUZCvgTLo+cD0mjrZz65YWY5uZ1kveAmkxNVrpNZn/2dNPPdZesyzvrvcnR9Jx6kxy8IzJsGbY/8TijLhI+fcdlHfHiDaa5AcDtA9B88DJA2nqO9+qG+sxKrxAy1b4iUt/tirpf1jf32W15aBd0THufEU+salrEFbmtbpYsvvnh61KMete1GIfWUpzxlhrnf+73fO93+9reffu3Xfu0ax/zRH/3RHMaxVPsvvPDC2WK4oDBgGB08eHD6wR/8wempT33qcaev1dqtasDbarV2nwz8ePhMU8fWNeUByfFYRgB3PRiwi4N0e8A1bKXrJab1WYMHO0+tT2CvwZSv4wEM4TqOCbQYGNovp+NpmITf3T2b04Hl+nQgjJIMcL05Gxlvo/qtOJYNX+zawecZ2JoDGd76eF+PeHh8bINOj+VtAFWq78UBcD1s5meDI+LLOMtuWv0ishELojpwDtUP5mSDrBznZhjkQRWpV/jixhkWQ5jwGM7lvFF6yA9EXmGoaKaUVdTswmNaV39XZ8Lf6q4W03JaTusLORlOC0LaoE2tTbLJIFt9ckxlDokGLKSfDsMphzeCu4TLkv7K4Gq/ZIKBogEIYZIRfnueKw0zAaQnIWiCpYQsLkji5AZhYOC012+ADFc2x5tGQtzt9zbzlgZKWVBxspISvl+chD9Nd0JAPioX59KwDFxIG50O5Y+8BIF0OS99TU8cGLq4wbvBoITRANySV4GkyH/uH6TPkx4uD08M5kzKCBg7nfi0ITwfA8T2+Vyf9JAXtugl79zR57VJJ3WCWUDuRS4/2oTTYrjNsUyw1PVpm3YP4HS53iPDwgqj/i9XDOk/2e2ZPKljeLlYujHwTcl5aWhLmhw+HSjhc6Nxm8TC2PDXVqDIbd6A3GE5bzwb6HY6urElXCYs+mu/uMw3YcqPMnP/WvKEuPOH61ImfpEmeeI8d92iTmV8RzewLGeXtWdCE/CSRlv6eiLE9ZE0u87nA4Dz9ASU3dFO6lTG49M+7dNmmHqve91rBrM3velNZ+D7/ve/f3r7298+vexlL5ue+9znTs985jPn367NGvh5z3ve9PVf//XTve997zmssrJ9+ctfPgPfpz/96dcan3oB24Mf/ODZiveRj3zkdPe733266KKLpre97W2za4gnP/nJ04te9KKTmAOt1tmrBrytVmv3CTDIoBw15D22jgfqonrYxgqIB29/GryaZtk61z4asQpJ+pVwNuExAzJMSBmU2F2DCVoONErExWahDC7W1qblnj3TwcXG4ZWv9XK1I0Z09u8KLzEfRowPYVRY7tqXrMdeVNsRtB1tPsZjRYPikVERINTnkUU0nxonkkUYGHrcmQzQ3jdyLGejQ45NAyfDbNKBMZM5kiG7414yFGcMa5hrF65mOuQhkBjwi6Vvjc3rHP43ayD+GG/adQNVEA6X3kTMdOA6W+cuZrcg64f09j3qrNsCgMkzAG4vlYFUOEyz7dqAzKsEA7bS/YOBBpWzKscIgNF+XIHZ58qTfUVa2VJZnVlJ0n0sMNWV3H2brSr9SWMgjfa14d8NnBP+uPATaNoylkbn/CAvR9CoOp7qaw0qnTZXegPTzBv3fe546JgMyVyWniBwY/FMB/k1gmWr4K7LiGNsOo8SIpJH1HuDMa7LzJTjMnIF4WuMZpI8McIxuEohXtUpJNhNWGro5bQkbKYeemKBMA3fPLuWwDzrhdPhuu30Og+B4q7L5EF9kn6vGDDw51qedPUSEcfR+e/6M3opGHF2ORpm570/3SO4XDPPDBnzxjKCvPRDPmZ0cyJM+pFqy1i/XtuzV/arvo7Ddz1wP0ocD09Sb0+K8MLMzDvi4ecjt3v3R/T7vulyzMiqlnyl3/C9CUBvaF3ySgDSmXndWql///d/n7cnPvGJJyW8F77whfP2gapcNdTWarWuuxrwtlqt3SdeOJKDoFJD3g9cAKMReDV8BWiw2VLX8NY+dk3NeNhnEIUoU/vYTculEksZDXANoiF5BtUCHsv6/ZxzpoMb+6ar5nH21ovVMM7DfR4srMY8jF9sjJfGVcBhQ1nGvGYu/s1zFXlcQmCPt5KvMC6k2My7zAXIjkpTMpv6DWMgjjc/yLGhwyTONUbEiNSrjT2m9ap5uxAkjV5FTtypZlyHcWgCat7fRLo9Nq1rsAobRgnwNRiulcoVDu6bE57bxUUajpF3Zj6G+kfyYTnt26yCGjhM9kCfZf+GfBxDxnlZP6CXiBB2JQoKbStFD9oNANLNiUFFglGf73Og5WlBb9iSbT7N1PnNFmUJWeyXdfT5utdt9U83ucmRRpLgIcEPceJ3+sb6rOthRZeAgzwnn+pcKqRBGNfAhUL6b3Ulth8S4meIDzg3mHMa+T1nGoBzBudMELiOESbWwdQTW20yEZH1wh0SDT8BIuVXLhncKXmJOQ2efPVMCnF3vmZ7cqOs8Ny52moUiGZAa2hMHfQ1LXcI2dlTpwzd3WlnG3L8s72SP5Rz/Y6vYvLH7SwBmtOQEyeebHA+kj5biVP3nC+uO74WbSjLxeXmDtT5yPF09m7jCSoz/2xtmmVDn+gyJt8qfW6bKGdO2WppTN00sl+0Mp4ZP9dxA2xPkpO39EfM1trvbynfb0C4+TyF/DDi/tCTB7mKxBMFWUfzf/oeTxj44cHKiYJWq9XaBWrA22q1dp9qAFhrsIsi8bDP0sRcr946MdUDPCaQtsD1AMdQhH35xm8GFfW9lnui+h8rLoMaHvRz+WkCD8Mn4juC0B5cAccEVeqFahWv/RvnTPv3r00HDpZP1KOhqceGjJMZ+3ils8GruRTfDVlznG/e4TA8XjTc5bc0VrKhjSFqukKAq5id0WxgGZzH+J20M77jd1vsMt4ukV54JPzB3Iwxvg1E4UquVsnxaO4Yn8El6tMvki+5C0j+U4L720CRvGBcXWN1OCdpIRx7IiB8V99VZeJ6tm0ouLEx1aFLZdAiJz7s2sCA0DMEQF0yqOQL1/EFH6rv9IDfcIUZjtp/vettfa8XWxn2UFmoGFSwUaYAliH+VCTPaCQk89JeW4VxXk7k1G/kT6aLcG5726Phcs6QEOe0BPUsgwEtswg0Fu83oKKxU9l8LYdv0E2jRXUsfRgzSHZV49mcOsZvS8wKmJZybmDso5OgvtG4CN9l63IDnOZsEtcBAJd4gZ7jn4AvYWNafxNWPRMYlLrjdhm7LRio0VkA6d1x21Tf5Y9Ffb4gyvUzy5dz3YERB47JPB19N7TFpUeBXV+34u8XsTn9XNvl7xk1Q/iMz2hJC5A04Tpxcb0mH7xKwRNWxM+q/0lnddwlXEOkr9zs09yHOs/dh9K+3GnTv5E+uwxhwsNlzTW5iVhprZpAOiE8z1LkMS43DPOZpaz/Ky+Au04Deeqy9e+ZXj+kcDztp+pSTjS6vbnP8uSNJw98v3A5u664/tI/nID83LbTGjWbVqvVujY14G21WrtPhop2bprWXqXT5UnvdBcDnJG1rQfpabVLOeS5+NvFotckjWO57jblimW1nMNgwXQwB40AqbQQZiCE9Uv9PkPn86er1s+d3ve+taPgnC1wDUeTUcCTbKFbYrzrd2R5zGQozHdD3ATAeZ7hIFlUgu0lqMUFJ65Sia/5GUzDFqw2sPFYzezDRj6MuSmGYvoAcXMqF2kJ/mDDU8JJBmY+ZiNE4kAZYHwIZ8txLGmyOwqzkQyv2GY2B9IO01gFc83LONdpOlgTC3XO2vp0cH1tWts4NB1c35zWDx72EwJYM3gkcLtIMFhxBXAhVYIZpPNbRjgnQwBqdlZ8tAny0Ymqz4SPI9cF7quBXa7UuT+BH5Zsth60D0pXBKwzbR3slR40LM53Pjpv3dhzdsNAxBXWfVpCEV+nvtNpcA3SCDSi4rr/c2NAWZE9m+Tr2lTe9YRt1VJ1g0rXI4OzrBPu432c6zCNDJhH2kh7iZUlQOf63bC0fmdW5oY3HAO+hNMuI6eFDtEzV9S92ogX9zNDqZH1pvPdgNCdiuNnOmSASV0uqF1hMdGNnCZbdHvClnNsucp1DPSrY8flgI/xzBs3HvoNT0z5BpbpyRvrqjIiTtmJewLIqxE4z9+zfnsFUQLNEjcpw0/yPlc78InbkJzI4Hz7m+UzXz7GcX7usfuFzJuq61VWvtaqOuA+Io/J3z0hgi936u0R/0JHjvf9xv0hz12IPKWe+B6C/MyecW61Wq1doAa8rVZr94k3K5UgUx58J3FpHVu2wPUgkMGVf7M1r+Eugxv+B+zyojP2GbQY2CJbs6CEuqZ7HixgOWNKSVjsO/fcaXnuudOBvedNl79vbdsoyBaaXMJzBoyvalzM70Bejw1hSrg3LSXU9Xlm1N5sCZpWwmYZjNGd3Prfxu00FccV5kWWE0/YHGOz0biQa2Wx0eS4no0azXS4FvlqQM6+NOwh3Wno5Xkc++K1URfnUgVz3OtmQFpcnmY9VDWPWZMFOn7JaxL+zhC8vClsbExX7J+mczYPThtXvf/oTPGJnIT4jeNoG54NgLqzLNrtyGFxHJlRx1x66db/Hti7so2A4yjOdX4VEP4/fE1PxngWIQEYcQLaGrJ6toLGCjQknjR2w3AalmdHgCWG2eQb/YkbquFvWvK6oQDNqJzkKWk0kLalseGP4U7ODAGEDd8oS2BowkMae1Z8QzHqSEKd1KqGlY0jz/f9wA3ZfqTJT+ed85+6UvW10ur0c73qFMkr6glbPiu4g3baXdfJT+eVf3Mdor2QjtF9zx2wOy/nIWlPoO86yGQMwJU4UT+8xAJra+ob8bQLhZxtQ5RxQeC0Vibtozxz+Tt9dtzO7+4buNFxP7cFrsPMZ4isq25D1AfH3+A/IWiWmZ9j/NzBi+v8DJXhpjsX6iL1uGZJyRMgbt7sE8yTV+4PuW7OThrMjvLOm/t2t4nRzS2hsdunAXCC/ZH6Gb7Vau1CNeBttVq7T/Xgy6DCAzY/XKMED60jYlCCVVRa5jKgNuBln10wQM74P901QP1s4WJ6aFo3Glx4QMZ5JQ+QuIaXgXsg7UHxxp7pyqu3XqYGS8LS1EwEQz8MxWuVOfMJNvphDGa/vWZHfLclrv/3d8Z+CUdX/V/ye7UYo3uMyTFpdetmQ/Z7DObxYBoEupgMPkt1fL3nhX3kAwzLFsWE6bxkDEtRkrdcG35Un1W9CMdG4Vk1zC0xYk2mAeugKgHpySe8GsCWbHxEvMgzewuwQRv7yZetd0UuprW15XRudWmHDk2LZWVGLPNGaRno2QVTdlt8GSDmrIMnSDyzYBhRoh0bAKRFLten8qQllqEX1vRkqiul4W5WDofB/6M4UKj13RbJvOiM6xGGZ3joowxF04KVaxhAJ/AxSAM6UrmpMAaD5BsgmvQQf5eL84vvlCXlnNAtJz0T7rhOIVdczrdVscvW/bTLMWdODMM9UWtYZXN9TwIYlPFmRvtINsh0edHJUyakIaEnfnkpN+dBlm9CWrfB+t3LQCjDBFYOm/w1PE4LR9JXcaylBeQZeYGjeIBolod9r1LXnR+l+g3H49U+eSljyVbp9r+bK20cf8q/4kbdrme4uklQP9z34IOZOjyy4jw8Wbudb7bwp4N12vNG5/JKcF2ibtv3NPUyJ5UyLM7LSQ7k/pY4UnfruvWgwU2WvKEMfCxlTB+R/S35lP2T69oIyPObJ/S9Wi5BvvtfJvOIp9ur83XUdjKO11GeR9hpnS7xaLVaZ5Ya8LZard2nerAv35AsxfTD4GjGnwHAB/DQeNYJGJsWuWmZl8DX1r6GuwBc76tBYhGs+q2+p1sGW+fkYDbhr+UBqgcjDKyBzLb8q//Leve886ZD63umA1cttgcCuK1jbAK7qPGo3e75xWmGs46O2YWhpI3y/N3jJYeZfCvhbjI9wiLZBpZe4ZznjcaFVYw1rqcobFBGGg0uGcPV9eo8mBnXJ02MUdOIx3Mwyaw8NjUsN2s0y/KY0UzOaTYn9Epp4ucyZx95aJbkyYDsguCIyTjclEq4Dj90aDGde+5yWt+oAzev+aIbZ4xNlV3xaMMUEC4HfC7k35MxnA+QcnuyhZmt3bDIZXYhB+XOdLd5W3gR5y3KffQshIFlWpzxm/OFRmXY4BkIwzM+DfL4rSowAMozAFzHEMudgS3qCIsKxbm2VAXCJcgt2YKYSjrKU8oFZT2ZzcP1wjO7ERgBFv/vxukGmce7fEfHuONYVV7u4xOmEm93BC4T4mq/vhxHnSK82pdpcRkSVkJKwqN8uLb9s9BuPBlBfaHcnT67SRltnsjgvNxczhzr+7jP96yk059LIpynpHfk49YdZD2H1bH1XgTyze2B/KBTZLKIGVby0rOG2f8YBLvOuYN1GrIeeqWBj8lycTq5UTDT58mDYz1Luo4SpvvhnH1M6147iKdukk6OH0FRZj0dbrZpT/LQD/km6TzNPiKPyWPJZ0No8sPPZ26/me/+veloq9XapWrA22q1dp/q4bcAL2LQb0uS+uTtxwymTeN2q2x9a8BqyOvfvY88Tp+7+CTEYre2ooQGvGmZS9gM3j0ghADaajjpJxTWg1ys1wBVuIY4/KK3grvTvnOmg8v1o8ZTBpd4cmDMTnCMK82g0pLXK2TNqQx406rXVq92D1Ei7AS+Hlsa8OIaAstW/OIaFHNO8ijzlGpaXulL3Ax1cwVoGjpyXgmO43wrjka1IBznhRkc1c5uEcjjNFIzP0uOxfVZBY2hGpAb/gAvqipMnGxQBQB23nulu9nfaCyeZeuyW1tbmzbWq40tpwUX4iIMpF2xPEjmIi50JjzqO9Zz7i9L9JXpm9fhpYWfARaFa+jDObbY4jwKFeFPJC2Jy0KxdNFFR9Jt9w0+p/635SYzLCUalmE16eBY76vvzo9MP8dgAUlhGmCV3G/lTANlYNBLmdIwXIaGeulWYTTrQKVFCU8MuHx9AxvXK3cizgfOdbk6TwmX+stGnSQPDOA4nvq0avbH5eI8dgdijaxh3TE6z3wM+eu2Rf2q+k29o15Qnwt40gGkxWZ2kt6X8WW/Z4qcvgR/2S4NbQ3SMnznb3VGXo5Ch5n5YP/HCYfJp2oXZa2LD3BAe5az3UCRjnJVUJ91nl+kZxDvsnR953cDSNKS56+aKEkwnj6Zsq44HgmP3X9xTVs+I3zu+mGhwvDL2zLtBsqZr1lmCf9d/pmOUZ6W7GuYc/z8lvVxdMP0TXsE5RMwt1qt1i5RA95Wq7X7VIOHolc8KNvK1BYd9cnSWA8uecg8lhXG2SZgavrStWVuQl3vx1qXLd0w8EK1GrwZ8totQwJewvJ1GYCx3wMFBjwMCAyP7CMBWlafFZ+CuzU4POec6eC0Ph08UEvit6KI4ZfhLEwBTsx42dCXjUsb7MJabDxl616qnzdb/CZLcXW1AU7J3IprIc9vUAWcXZznFbJ1ziWXbBnJl2GWQWvOjRCeDT/NLuA95F/lN64E65y6ho3bnCazvlLyA3NAXzehuNPpc5KbAYU5x2zVVZWxKeFxbb/nJ7sWxrBpZMZxR+aitqzKzzt3bVr38vQEXZhG21p3ZFLsjCI8Lo4VL4mw320DDo4nXK5FQ6lE1/cCOFWgTqSBkituhYEv3koL7bbaqq/3znduzTZQQNXnA0Q98+Il5L6W42pQkmmruHi2gAowsvozIPN3rJGzspJvBvPk9wjWun9MoEKnNJrpyWu4TiRkJqxKt/tdN0DiA+imkqIKh76eMuXc+o4pP7+RVtznGKB5ssEW0b5Wzh554sN1zfUggZvjmaI9+bzRxAnf6eSzU/R5jovDzU4tQVfG2dccQTfizrMNv/tmkEDS4NrHGMw7/JInafl95E/byzXc2bKRL35eK1G/cN/CMaM8Od7nN7fVnJxIEOt8chni1J78cf1dVZ+cTtps3jA4jt+4UdZ34Lqhbf3OTZ088POsXTr45jeasLEvJG527s8o37TwRZRb+mcmjUx6uLycN6PyyzbsPDwB5TPRTup0iUer1Tqz1IC31WrtPgEjWI5pOJHuBvwgymDSxGpkOXA2yVYix3K7MAK7bIAYvhvuslVZ1AboxV0DAxYP1EzMkvB5cG1QU2JJOOGk5RX/lw+7OqbicYMbHIa7504Hp7Vp//7FUcHU5VnFDDPCPQFsiP1eRY5RINHw+4Ac/gjwMg7yGMrjPzhOyZxuNF51FTZYhd0YUOdxzkZD5jKaAtp6nOuxKMzQRoqIZma3reTfKN8MdBlPEzfSTb7X9YollrBQJi2j9FEeVDneUwNXLNnI3+kwUzHPo4xszezxKuXstBkWj4wSqRMz5/KY1sCPgXj+ToRGVLkCrMpAZSfStEmbZtuXR1q4cU0i77ZN2Bzj6/tcwAEF6Ypd/+MTpQq4+pKb3/yIpWcuPbfVL+mi4Zbc95PBrnhunC6EEVRNizTyENDuvAFWVzhMbjmdCCfPIyBJvFxWHEMjcjqJq607856WMJGKmADFcNhbWvka/LmvRlV+mQbfm0te6mBolQ3Zv3M9g0PygTg5rqvu7e580CqQleEbgtFhEY9KR60U8bkJ9TM9qyjQKP6j9BiEuewT9rksbI3r6yRgp1yxKvXNyuCdztNL9LkGzwU5OVEWzuRjtXnatJdIuF/xCoPMW5cJ6Rj1n7U/Xcr4Zko9tX8jbkhMBI3yn+tnWfqFkMSLtgeEt+uPnNjItLL8hH7RFsGOCzd9A2L2Zxpy1QXPZM5v+my3uWyD+bzm61qjNjYC66vOb7VarbNcDXhbrdbuE9akaV5Xvxfc8wu1THZMmExabCLpB80z9eHS4CMtc1dZ7o4AsPMVwMtvAFzKAsBruOvBlUkY/9uyt8TgyGTSAzisWhhwYj3mAY0HtduD2T3TweXatP/A4ijrW8abJAtjNcZMjO8YVxmCJtzjkgbCjJHMMfjM1eMjuFsyEGa/Vz76+hSv4bENrLKK22DGRjVAXq4Dv/CY3sebAZEm4u7V48SZKophYLpSNjshLbzPh6rhauRq7/PIK0Bz/V9hEFdzLAz9qT5UYeJMHBlX25gcJmEuYp5Itcz0+7PE2H0G0ptHrBoXCf+c4NzIRFsk1oZ1XFqlkmn4nnAk+W64acBAOPiLNOTLjED1O31xLiOvOAJRCvb4BVh+2REzLWQ4lr9VaLwYzXCIePDmP/c3NH7HL/M6LVwTyjqPKi45m2FIzHVtrj+CyFR0l6dnc9yvu1HbitidA/HEyjL7SdLtmS8qY9YJg/KE0OQPE3+ekEvwY/hoKGnYS3iGUu4sOM5lRP7wPa9BOtOiEvhnqOaZmAzDLxHN37Oh28K2zrGT7qxHPo/v7PcKluzIEwjnDJ9vNKP+xB0qeYHFNcBzNMHgG2mJmcF8DrO1qetwgkH3Ge7bEp6O8i3rAd/tQiTLMuuTJ4e4Nh2/l6vU/wXznZfZodN3Gaw7vzyr6XP9lk/qD22J2VtP6FDO5LPrpe8f5Lf7Dq7nvtWTAF4dkjddQ2lfn3o56qNcfjkx6X2E0Wq1WrtMDXhbrdbuE4PHHKTjBzYH3eznodlLdj3ABj6UAAu2aDvd5YEJgNcQ14B31aetdtPPbh2TfnYhYQwGC3D4eh4oMUAqedDBYMTLjBkE2eqHMqAsCywxYGFQaQtiLI7ef8W0dv7GdOjQ+nRAkNcuE5xtQFwscQ1dR8Z/HD9iOvmurPTPa0vfnGfwcTkOyizhXBtEm/P5OsSlRLpzTJ35U9nJuBb3ih6/uhoRBhyP4uI3sy7GhF7N7TKBR+TcAPnvVdslxsy4b/Uqchii0+rr8lnXsBG4x7g2fPQkAMzIY27mRDjeMN/G64yrMXLb2FgcHl+vb4V3QGbj7rdIMIXoZb1+uzoZbGBIeBQmkGHLEfDRmUKisWaDlNPGuF6Bh/odyGio4zbvTAJi1PbWt07Tu9+9BU1udrNrglUaIXCMilH/p09gi8KB7nt1B+l2xXUjSXjnZfns90xCxaNcVXCsK1h2MnnvMYyl/864cC9j9QplAXg3yEuYXTIoZ+LT6SbMagAVFmbyVH4DJ2ZGqAdu1FiGG3Cyj+t4Jse/Zd76enxP8OpzaFwltxm7JaFD9DIFWzJmuKTfqnQTx5wwcT5Qvp6tSgjpdux7o8M1sEsoNsoPZhvrN0CtodsonYacBtVpKerySmhax9nCv+qSz3X79CSD8x+5DTiebifOk5FVuuF95YP7Ned39gGEyfF2Gm+3Bnk8dSLzZhQ+6ec5q0Tbpa7SX3k2lIkalwXyjCa/jyaxXJ9pB1mXqbeUlcst2+uorDw7TNocZ9drP4C4DZyg6EZPB50u8Wi1WmeWGvC2Wq3dJx6GGfTZKqnEg35ZgTEghsD5rfFADz+YAzBspWSaczo9sfEAbOtbDyJWQd0R8E2rXfI4XTEAd1l2mfs8GGEg4YGbCR7CqomBO8DChJTzoWJ1vQIpONKFrtWyT8fr4MFpUeHtu3ra3HPOUUZIGOMAKhlXeN/ItUJa48KXvcrdq5upXj7GY39nC+NBn2vom/CVJpCGNZw3gqUjZuBzCMdcJA3HvHq9BDuAH6WxmA1HGUvaPXYyFKoCecV4mWvZGImxNlWovl944dH5zvlUX8KoONb/9QkLoRup7gNW4aYFu+I40lyc0SuKzdLID7OIBN3Uja3mUjuW01rBXmYCcnagTgb0UWBUDtofF/Hg2xZoTkACVe8vVUbYBHoEoSgg+3c93A6PWgKd8Lh+L5cM17/+lqVtwkTPehgKkzZgMXlAgXMuUDihjvOS8BMy8t3QgfQYkqd/YFcYzksQ54rgxuH+mfKnkjNjUccC1elD3ShHoMvWsf6e+YXq/3Jx407A1q/IHZA7C5T/04kY9ifczDpAWRk40WD5jcbqPDBcpf44TOooPqSpPxnf0cxUptF1xWEkxM9ODWVn7k53FeDN6zpM0kMZcT93nhEX55ktwZ2f5BVxzBd/JeglbNqfIanbmic0RpMsqYR/HGeI7mNoOwk22e8JCY6xE/6E3/S7XDPjws2GPsLt3ysX6A+d567Xjj9v/eSml25r8kHBoNSijJxXpN9lzc3Pz2ruN0cA1v+vmrBwHUmtCrfVarV2kRrwtlqt3ad6qMUihQEbgzYsSLHkrO81uMB6h4EHwJeHYgblDFoMHvxQbj+VH0wZntjixZsHA6ZquaXlrv3hJtzluLLkwgImLXc5NuPjPMRKxYNKiBZlYeszBr8eEDBgyIEN8SrLv3opk99ij6X3gQPTxuahaXNzfbvKGPBi4GfW4vG8DSTNkFyd+H+VS4b838d4vO+xsUGvs83xc5a4GtiQz1Uo2QXp8/guwaM5oeNq3kjYbh4ew5oj2JiM8Srjf6odXA6jK7MRjxVx9WDgipEjcSiXE6WqIt5HF+A5IPKD/GPewzyHuHMtMwWP0xOWp1EX5UJTMuif2WEduyiL3shEt3MXMIkhUoAER4ZPwvP/aXHmCJPIEYAqVaYaMHCcARO/09YBKIRXkA2QYUBB/G0S7zDJRCoA7h4MVKlc2RCy0hqUGDplI3QD9NJtZpAMUgyNPdPha7lMHTdDKXcyzECQRwb3vjZ5Y7hJfgAAfS1XRuLCb8Tf1rTON0+Ocv0RPHOnQX7QERD2yP2BGw3p4JN7P7N4zrcRiMLq2vdKTxb4uu64XH/82wj++l6ddc7lTV1L6/CEzGy2DudZiHjahQLl6ecF1z/Cos+gvjjfPDFCXeY7Zes48txFWjj+yOzV0TB2BAWzk3SeZBshXxMoUv9wKWVA6+s5PP/uyZaEorb6H82wEl/y3jdtlpGkqxuOwY0DNyQvganj7avYz3j2J2Xra7c3t81Re3B7cj7m/+7Ls//ieE+sZBlyDs/cpCHvUQ16W63WLlQD3lartfvkJap+uPagHIvSOq4eqMsqzG/Iqu+1z7DXD5ppcsf/aQY5skL4QJQDRcNaD/hsIettBHJXQd6Eud4YDNr1AtZjdoGQlroJXx1XfvdSaR7yc4BEPA0a+N+uOGqruBUYKrPNiy462iLRaRXD4nLMDTCeojr5BdO2umX8nO4ZgMReCW52lMDWUNgsyMVud4eMu70SneTbOwnnc12fX989nvQ1c3WluRPf3TT8mQZ7FKvHlRgPmglgBezxr5sYrIV9rNBnnGvDJ8bbnsMpvkd1KcPu9773CLcx4MWrgFmgeUiO9Z1H1BHOY4Obua55DJ3GW+QzebSVB4tpz561aXNz71RZO0NeD5BzWS+Zb98PFIrNxV1I7s+wYnS/50Ks7zXR4wruNusKRaKBRmmZ5Qpj60CH44ZA/BK82R3EqPDy/4p/WvlSwDmx5IKx1Wguj85GQnzqnpMNLYEUx+ZxlBENwFCxAI99jRiYOZ/pvLhXMkvl61Q/7nzzdzsmN0Q07KVuce3MEwPlrJPuZOio6EzZb9+khEmdXDWLle3E+ckxozJ2WG7MI3hF23Fnl+I82qlnbpiVQr7/ZbtlwtLptUW824uh56h+GcC7I3J8c5YPuYxdz1yezkODe5/r55XsNF0v+O5w3KH6OJ77fLPlWp44zpVe/sw84WbiY/KG5YkXypp888QWZY7FPc+mWR890V2uLUijJ69oe/QP7nN4lso00d95BnjUXyeUXzURmOA7+2z3V8h9seuF64OPvY4i6NNBJ3t40Gq1doca8LZard2nejD28jkGT1AfnvDqf4BFPVTXwLg2LLvwUcdgC5jgAUUJwmdLD5sTrhoM8nDtwV8ubfVglP+9BLLEfj90e6Bja5tVQPdYrhjs8sL7DXMrz/1StYS2plX87nyo34DCJZvLVthOi8P1oBDgjNUVgyH88da2uTkty0xzbW06NFV8pmmt8Ni2Qc+Myo4aI9odg0EvRWeWk+OltAa2i+dSjjc9Li8ZKhuEYi3sMTtsyeMq5NCBCwAA44hJREFUkl7VnOzCyNF+gRFuBLzy0qwvx9OumrayrWOrOLPqJ9NL9uA02PiL/IK92ZiJPCRvzAVgjmaEDosxPVXc+ev8Zlzsqu2xJ/EhLDdP/Oeau9jw000POV881q3v1RyoR7Mv4HMW0+aeLX+fC1ubVqEz8K8TaK+2ik2IxYXTWbP7GS8fZj9tFafEbpcOg0ZFJfGA3/2nZyeAgBW2fW47A2mcHrlTSJ4gctyqUCp8JvdoJA6bxjrqu6ggzjvS40YOCMr7A43K+UOnYJjmSuD+NPOf4wzYXaFGoA54ze9OpwGOGxCdQJVLdRgcgwsIgxjui76v5QSpZ9UMaOkk3Olk2fiNkyWDZfuXJl98z03QCbCm3tkNgePre7Hz0/k8gr6Wl/bTweazgcPLDtOw0WGPfp9dEB2G+BmP0bOJr0u5jNq0y7PkMnZ4/k7nmb9nmA4v4bghqJ9zMl0oLW8NJKlbhrwJIR1XOvB6hvCKLfelWb+d74bUlCu/8bzpa8YE9FGznga5uBdzetyHc1zt9wRfziC7n3be+TnS8SO8Ud31jdh56X4r67llSJzlPKrLrVartUvUgLfVau0+jV6m5oESg1pgRG0sdcP6F9M9Bojsg4iZ5PnlLLm23oML/wYJYtDmh3xbjvnhFhnKmjB5nXhCk1Vwd+SGwYDXVreGvrbWBfIaBBuGMKDI6+aDPvEH7kL4bB1myEx+5bVsvet81IDpwLQFvvbLiAYDF8ZPjrphKFHL4iwZ+tlNMJa7XnUNV7EBoK09gcpcL6sRVdOg13MRTjLxqf3Ew3DX4zK7JeB6VoJZ5k6o/h6XcTxh1zE1h+J4cQ556DkY8wpYDxyJMvO7w4iT5168AtzNCSteWw+TtwVOKQ/PRZAnnEN1A2a7yrmciK9drxJmGsuPfPnasM5lcPXVizn95Qb13L17puXmoWkBJLA1HxUR37dpHWaYZRgzouwuLPuYdcXwW9dtsc+59X9VBBLl2QIDJ/oJfEqOQAJxrTSVlX4B2ypAKod9YxiA029SyFirEn9mdyrPar8h2QikES7pZpaACut41+9uqOSJYWvCwRGId3l5ef0InCV8NbRy/ts03RU1w+PYDDOtXN0ZOJ8oE1s1Jtx0vAmTPj/T4UbOCzbrO3Wx9rESx/XA5UADzEkNpzehVQJ2n2txXe5vXJeO2xPFlPNoWTw3Be7H2cHSpg1cvVx/BNWybvh6vr6tij3hMHJNRb2mDyJfsgNEdHbEy26xbNFabZtnLk8+EE+uF/f8o54JHEf/Tp+ZcJT4ebaXuuub8Ahse0KNlw4aUOYbTu1KxL6FHFcmyfycStvLPB71p6N9qyCs+4asI+RVpWmVexzileWez2a+ru9Ljl/2QxmfVqvV2gVqwNtqtXaf8kUzPOQbPnqwz0MpD83AEF7mUwN80yEvn+RhH5AAQTORKvGQCjSo8PINwmnFZHPEtJ4wCTIRSlNANAK7I4jr3xnQAswhUMBc8tlr4IkzYZHvfqB3HDxQtQmlj01g7DQaOnGtssSjfOwLDy3W5iLaMsZebBuhYexoozFnBeM4Nor7yJL5I2OZ3HysjffMV2zU5WMZz8OjzMvM1cwYfDzj5Hx5nFdso+QkVE/POXhOgvPhfIzxDKUZnzO+TThsvmWDMcZ0NBlzIa5N08zVzOQB8SnuR1rslsIGiMnKzDHJDwxhXf1tNOg0Gv7DBw3Ni0HxG2PXZGbJDJj/cBq36+betWl9795pubY+LQ5pxsAVi4SPlm8n8MGa0f5GgByuKK4chAvJtpl0Wq/R19Hu0+es27Qzh/gaDhjS8CJFW2zaCtQFSqUCCNoyuQq3fHZXAZPmhBycYwjuRug+yo22vqf/TRoC5Ua4bhA25zdsdhka9NL/AUbdiFy5DBTdAVp0TC5zOk3HJQGi85TfDa48o0P+eKYrG8IIsBKeoR51Kl/c5bqVv2U8SzbbJ24Gcq7L+T3zzxOXHOuyrntXTXyQL74G5e9ZSLc710mXS7aBBG2jPoAtAVvOvhEfr2DyDcTwOsE3YXuyO8FddoBOD5NHjhPHZT0nz1YBTued63+Gy7UA5jz/0M9Rb4G0zKYSLhNsTPr42l7BxHU9s+f6Sfqo+6yIMAB2H8H/7jscRrZRi3LmZulwnBcJz11e/t+ffPdEhjX67QOEun4s32mdLvFotVpnlhrwtlqt3SfDz3rQhuh4kAfgNaywtSgvDWMAAUli4MRDMSCD5YJ1nP355gCaAQ2DXAY5POmlT9mEuI6rBzslzChNiQy3DVZHlrn87+NMsRjMGOx6+SDX9fUcF4Nb8tYDRwNfLz9MMG1Y5IFFlV2ZMhbNM2SKQe1yzuv16YorFkeNFV1tbHztrPI4jnErnxWWrXxLI9cOBrzeDEZzzM3vjMs8DiyNxnMIXoBBYRo88T3H/xgzJR+gqCke8oMmZSNEqnSJdxk6bRS3mSPhUx42gKoNg0oXvc+zMSRxqTygWdY1i6NQrekCDKxz4GVPIVR/js8mZytmx63izbwT3YXzufbTXKv7saGXm795BucePLiYlsvltFwU3Cl4cOCIuwYy2JDAMAZw58mSrGjQcl6U5n7UGZbAhP+xnKS/S8tXD/LZKByOBVzZ/YHhMZNrNDYseuua+FSveGBCXtcsGMzkVcnXK1HgFKobgzuIBM7e577Y4MrghmtxXuZT5qkrZkIQl8kIOBqWucE7zZkWQ50EhAlcXLGpW+QB9dHl7lkrzwoZbvn4rL/cKzwr5/Q4/uSFy8vp4H/Hmd/pUBIyu/wyb9wGXI5uL65vAMJMg+/3nnXi5sK90dc1IM6bwijNXNOrYgzdHVfyp74zo0VYfvkdE0XEx+XmuFE+3pcwkOcG91nOV+Lj/sIQmmeu6lxL3Ly5cXENru8bMfI1mGlDeV2Os+o6vATN9Ybv9NWkh/xxeAmcbYHuvMo6Rx1x3+BznG4vH3G7cT1wfjntTqvrrCee2J83bz8cjOrqaF+r1WrtMjXgbbV2uf7qr/5quu997zv99V//9XS/+91v2hXCJ6xfYuEHVDa/lckPyqZLDBgZ5ANK6hMLEmgP18KXX66fP5rIXPPh3AMr4jUa7HgQYUsTBkB+YLf10QiWGuw6Pmmi6C0toX09wrGbBK7rh3xDWg9WGOTb72bC6RzE1/9V3uUXr4ANL0oyTJYp7uLA/mnvno1pc3MxXXbZkSKyO0czL8ZaALcSINOWuSX7t/WSf1vyGuTal27JrhiosrYANpPz+B2+5apmIO0xma2SGZuzv9Lo+DMm5ngbEMJqGPPa1QIr5DFKYwyYBnRp1OlqZL4D70sDsmRZtqT22PV97zt6LEl6PX+CEZRZCnGoqsWcD+lP+E05ED7XMhCu33ELUXL3QP0zgyKcnBsin72yez7/cLNbTzhiGOU+gmPs0obKyLJoqDg+cPlM2kzkE765EJkJcAG7UtU+ZgHcgPgNKzeDE46lMZFZ1bjpp6rw3OcU7U/LTme6G6uXt3OdfEFZVjgaDWG7n3O/RMMBSmdBWwYj7ldtFToC7Ql0qbgJ2VDtx31R7jNYczm7URJHbwnw/DsdiaG2zd8Ndyqf/PJA4mSY5M6cuBFvT0amdaTzzO3DZv/O/0yzl4AkPHW4afVsMJbQ2OXGRiftzpTjmMwwVOV61F3qCJPZXD/zyhMu1C8vwcgX8rn9kJbq7Gg/tAPPpDnezjfqhG8WvpFxDd6XwKodX5vnBFvQ+xjygX6jVO3ZN3rOI/8cf+oj1/Nzh5/JErRy7Xz+cV9N32QInf2I0+GwvWrJv7ufty/zhLO+Oebkheud6x7h+7fRjLBFO80bMy5M8JHO73nNvH6r1WrtEjXgbZ3xuuCCC6bP+IzPmO5xj3tMH/dxHzfd8pa3nG584xtP55xzzvSe97xneuUrXzn98R//8fQrv/Ir0yWXXHLc4VZ4j3zkI2foWWGura1Nb3vb26ZXv/rV01/+5V9Ov/mbvzm9853vXHn++vr69BVf8RXTF37hF053vOMdp/PPP39685vfPP3FX/zF9DM/8zNzvI5HN7zhDadv+qZvmh72sIdNt7nNbebf3vCGN0zPec5zpic96UknlKbWYRlOQn2SgOUS0BIPk34oxe+bBwZYbwA8eRhmUAoQBgIYZHjQW2KQXjLFI24eFOeg0dYQ7LeFq8Eu6WEwZVCabhpwwZCbATEwxvEzuLXlGgPFkXUvcSeOODStAVumI8NnwMJbxA6/RG37jVY+pn47DIsXBw9OG+v7p/PO25wOHFjMBjW4MPC4x2NbjzcNURl/MUZkXM0xx7LYZQ6AKuXxIMaR9t1LdSFMipOqXukAWLPqvVTHYh1qvkH14p01FFV92vUB6cf61GB0ZHCWnMUuM3Msaitcf3c18zkj8GljIqqT+RrjzPr02DfhN3MKjg/Vz6zCeUga+GT8jJcWMxlXY1y02mrcZeK6YEMn4uuXpnN8+ePdKsPltF5hOgPdTqnUZE5WeMNaXipJRtgpsRuCC8XU3OCAxkGBuR80YXeBkWG2HDYAMw1PMAb4rPgCYmmw9AueIKPhGGIaUvAiTjdW70/Aa9CYjcOQlkL0LBD5aTcOnkkylON/W79ahohYQDuPDJ/cz6YrAneGzAbxu8MjDOLt+xediAEf4bpjcZnmJEKCPNJsq27fY7INuJ6zZN4NyfmKKDO+O850NgnXRxAvQZrDI91p2Wiw6E4iZcDm/MvrZp3ls/LCddsWrD7XSmiaNwDXd1vL5rONb1i0BTpRJtftW5xrpYWs88XPPY6/85MJpXQxkWkxbOXGmGnk+qSLOs5vTJqMACVh8SDhOkY6KX/nkdPsftX9Ivlgv8GUw6q+c5U8QeN+xenxREHWNU/YkK8Ou45n4sDPxm5/VkLj45BvOzut0yUerVbrzFID3tYZr4//+I+fnv70pw/33eQmN5m3slD9tm/7tumLvuiLpj/7sz87Znibm5vTk5/85OnLv/zLZ6hrFaT9sA/7sOlBD3rQ9B//8R/T7//+76+EsgWVK25WnVvbl37pl07f8A3fMEPna0tbgdyb3/zmR/1+t7vdbd4KIBf4felLX3rMcFohHmAZHGNxkQ/CDCh56PSDP2LghyUrD7ZY0TAIrs8a/Ne5DEyw6LDZpk32PCgyQcxBfEJdD8INU4i7vwNmk36ZXnkbuV8weTPVSjpnKpa/efCU0Jl4cT3y1oDW53EMIFrwdhvw2qqN4/ftm5Z7yyKxBorL+dTiPjbkqiK027zRmDghpJmZqxaGKAbB6dbB+1w967tdO8MRqKb27MF4ywZXVB+vLHe2AxjxRcx4ymPJHNN7lb3j63Gex5MleFixg5FhUY4Pc+zO/84Dsyo+Ga+az1FNnQ8YBsHScvzosbfjbE7kcaxhLONylz3zDm6CMC5cZ5hx4AbCXAgwX7/hXaDCZ7Wx30G41b0sprU9a9P68sC0cBt1BaVgDc2AGHakTGFTKRLgMTOQUMn3VjKO47mWMx7AYvBJ5gJ+DX95uZEri1cfkElADWYxACMUbEK5UfxpKHmsV3w4f0iPwWTOrNDnGVx4Yor7iCGSG47jkTI0srge5Uw6DXKJq60znReGM25wozjlZNyqWR7KwVDLEI3j3VGvyg/yPiHvqE6WvPqGuNMxpCsJdwKjl4r5f9en0W++t7scEpzVPmYfcdjtejoC8AbHTqvrtmfkcpIm2zHPUgBWxPOFX7LoPKhz3flx77ZFvi13ua4nV+zvaGTxmnWdG6pXFhnel2wBTDxtse4bAfJEQ7Y5t08/NNjqm/pM/2P4S5hezkP/4WdG8iDBsm+gLOdwnDifya7RhInjOUpb1jXSmkpo7T6T/sKTFE4/v3GD9E1zBKBHcWq1Wq1doAa8rbNCb3zjG2dXA//4j/84XXzxxdNb3vKWGc7e6la3mj7ncz5n+qzP+qzZqvcP/uAPZmj6L//yL8Nw9uzZM/3e7/3ebBFcKkvd3/qt35qtdq+88srpFre4xfSJn/iJc5irVNetMIC7z372s6enPvWps6XtPe95z+l7vud7ppve9KbTL/3SL01vetObpj/90z8dhlNx/8M//MMZUO/fv3/6qZ/6qem5z33uvO/BD37w9NjHPnaOTx3zsR/7sXNYreNU+V30wIAH3yME5GiAkOTOtAsKyCCUcL3MuY6rNek1QMcPZKmOq+8AXw+evCwOyghI4CHZ1l2ExyALquWHXtMvBgdpfeswvfY+wa4hsWkWGsFdn0uYCRZ8Dg/naVHs5YGGypQRvnZZlsmgxZbbHkAZOq+tTQf2lA++xfZ4AyPtOvy9792CaLWZK9gak3EF1YSiAHr6Rdt2dcDYy4DXRt4JEe0OlPGNuYKrUH1i+IwVr98rY8PLiitg12DYRkFUN0NQjvH1fSzhmxEZfJKONDRM3udxm8ejhJPWsBgSGgIblmPIT9kZrrvKO07JJLIZkl7ygzLA4tpWy5zjpum8gunVfngI6SF8Nwnyj5X91BO45VaaFtPaerXteqeg+jlXIjLaEC5Nru0XhMIaFZQBiDPJmVqij8NvB+CDvhUQQT/Ab+4P2AAZ9MXVeCsO1TeUmGAjLp5oo49IeOjjDfwS/tZ1bNI+Iv98d0NxfhmKMePia/k+RNyc7y4nrp3Q0XlPvhpSJVxxw6Ys7BvFk6KuB5xnSE99odJ6+QFpK7mPd7qoG46rP51WH8uEQOUnK0ESXuY5rsMGjJ454t6elqYZL0PwVfCL+DtfXS9y2QhpdUfiuul84Gbga2bn47LkRmWQ7YkWymQ0MeF24c7eM19VBs6fCrPiRx3wUgr3Gb7x+AbiiQM/xwHeXT/dBojzyFrXZeZyyj7A5ZrHZRiWAXTOJPKZ7Q4lMM52Y3jt6zrf6PPyBug+y202oa/TnZNzJbsXy/bl9u+8yLzh3Oq3R31ZKicUWq1Wa5eoAW/rjFeB3Vvf+tYr9z/rWc+aPvMzP3O2hN27d+/0/d///dNnf/ZnD48t+Fpw99ChQ9PXfd3XzRDW+ud//ufpj/7oj6bv/u7vnjb8gCOVde69733v+fvP/dzPzZa6qCxt/+RP/mQG0de73vVmVw13utOdpoO5jGyapsc//vEz3C19wRd8wfR//+//3d73ghe8YA7jmc985gyLf+iHfmj6si/7smvNq9Zh3exmRx78GegxQPGaeL9hCauwkcUCb0SqcLBWgfyUIDwenBMu5otQH5bHmnLh842BjpcCenBSqsGSyZ5hLA/mBtiAVi/NS6tcD/zSasL7c6CY+x2OgS5hkWfOY1sIETfTVM4hHfXwj0NUysXHERb554HPYjEtp8V0YH4h1RbgTdZRpxWrZ7UqwA53y8BFj5uSQcH17cKT/6kSBsCMUfyCtjSyq/NwN2jjPqol42UbL1IlXHRAQc6v4/E2Yq5l61nSDPuw+1WP453lHuuTt7h9SA7C9WiSyf1pgoa6rnI2ejTLoUxsTEn50Nw9/vQ1zQ6ouuYN5mFp8GU+Uq5eia+bXokyJi5mebBWzqNsbDRqwGxeuNXlLaZFlduaMhcabqJPpaOCp7UpCQYEub9b1Ue54NNas9otfSEZmATe4KR+w2kxVnZeVUEGMKNQx1YfydJ7+wInjvQxtgo2JTc4IO3OO8MeO90mvm4InFf/Y85OoVblIO6uTIaLfoFYzox49iWtIF0Z2U8YzgtXZE/gjQAgFY5ycAfqjpTzkePJ/+5E3XnSOToc8t/3DepgprNkv8/ke/1vU3fCG4E4x41Om0laZl0MI0fAPOsP+512d/5c22F72UHGld+Y8NUE5jXK0XHjeq6jjgd1lfrifCL/fQ+nA/ZzS4k+pP6n3WSdy7z3zY9jHR9+48blG677Itp81hnyjRsm5cANkb4EP88JPjO+/Ob2mDN/OaGQbanENbgZj55JCSNnDj0DSB7QL3rFg2cVDX79v8vGbdPX4caTQNnncx/ht3yQcT3w/5bbOddJC+5VZTKdOVz4dIlHq9U6s9SAt3XGq2DstalcKZQVbvnCBb6mbnvb207f+Z3fOX//+Z//+WvA3dQBDzKkb/3Wb50/3/Wud81uIVKvf/3rpx/5kR+ZfvRHf3T68A//8Ol//a//dRS8LRW0Ld+9pbLwzf2A69r3wAc+cPriL/7iOe7lI7h17VpecMGW1VoN9C+9dJre854jBAXA6kGBCZjp1GgwbTDJYL9kS1leRESY17/+1oN7venJlM8PuHb54OWxfPLAnLDVNMymhglmgQUGs3zmANFwJY9PwBvWsUfF0TQqqZwHUQzWOAcrXPK1gG6+9A23DMST9G1uTsvDeb+wxcvGxrTc2JgOHlrMfncZ6zIugr1jYFhFxUCg+AAvDStr3xy/GFDaKA9LXnP9EQ+husGYRmMfW+Ta80TOWdgFsVkOVZUxJJzB0NOMKF1GwONWDY48rvU4lnym6GyoZVZGnDCMpPlQPXJlJ3mZhlXkG3H2S9EcJuk0HCYesETPl5hrjIC2gTfnYYyPVwLqSI7tAfN+FxLlnmDX/Kc+qVcYrVJGRzpDvQ2Q9pTLlz3jYOBoC0NHiAz0cnAiZetDMtj9WIUH5CV8CLyhEI2sPvED7L4pG1rpRjc6ur8ig9jqWMz17Us2Gy4ViP0VHqsssgJmYRiQJKx24zH4MXhLoDeahRpBGiYycTlAXNwHM1OQ8NX3GOoHE5Pkbx1T/TDlQj3IDi1BjiFbNthRw82wtuvxIK8S0vp4wJ0/PaOSHbivZ6DHNWjMlL0bvzt70udVMxb1BAtb+0Pm2lyHMnDcDPo80+Y8GUHZLHNuAM4b7qEjkOfnD65l4JYTE1yTm5qBauYx/2d+VZvDNYTzwc843CD8LgRPeriDJ07VWboNc21PplBGtnZ2eZPXAFQmy7jJVh9HfaAsiRM3bSZLDDL5JAzqr+uPV1UkAOU5ivi5z6Zs6lgm9hL8rgKmpKX6AGaTuWnnZEa6iOD3bAu+Ublvt7Wvy2gUtwTDrVartQs0cJDTap2duqzWJc/PhIcHcKGv+qqvmv3vljVtAdjrogK2d77znefvZV37fpwohn791399+3sB3tRDH/rQ+SVtpV/7tV9beT3CqWPrnFOl8l189dVXT8vlcrYeLutjW1DX7/VZKh/Dv/ALvzCD7CuuuGL6z//8z+mXf/mXpw/90A89Ksy73OUu06/+6q/Ox1U+lZuNAuvlSuNUa3nOudOy3DTUtW5xi2m65S233DbwhuT6hNQxiGBwA0i0RSlmd/zOZnjJG+cJh/AZOFSe3vSmWxDiBjeYposu2gK/fC8YfcMbbh1XW+1jf33WvtrqfH8va+Xa6pgLLtgavNRnhVGf9UCOxatNMevTL1NzWg1Zib+tY/nf+eH97OM6zgcGTPwOrIXEcW6VV1m4V/lV+iq9lZ5KB+Xosjz8/xLwu+cw6eT3Ar/re6ar5Hf26sF3xr2lmhd417u2DO1qfFlzBe94xzS9+c3TVHMt9Q7GOqZgMC/gSj+7ttwdsfMcZwJzbf1bGxbF5uxcq/ZV91dpwEhwsGhg+zy7WPV7a8y3bAlb1y/AXWHb2MssqgTMJt2kwzyBpkExV7WvIqoqWkVe/48Yvnmb42pI71WnAF67ucjxK4yS8qcOmNPU/5X2+qx8djlXflTZcw32Vbi896/S5XxM1xgYqPkFb8Q/6ydxNdPLsa/r3MGyVF+sTcv19WkJ9CGTCNDg1ZUPSzIqK5uB6AjweEvQ4lkMQEDtI5N52yEJcp9QGUrfQpgJCMlEw0CDsJw5GVV8RNyBPxzrBp5Wv+SDl5xv35QEYEz33Sk47hRmVSqvQDE053j/niA04ac/qQ/AK8o/y9HnjSb8DL4S7ACXDKlsXWgQzDm+rzqd2bE5fMNjW5OyVKHuHZSjJzPcmWX+A7pteW0g5s7NSzZGQN7pof25A3OcXR8cnl2YGMJ6cx76+2jy1vHlfMeJ/DUMzzi5DvI/q2y8xAMr/JzYHnXMWecAusTB6fXzhS3h6aC5rq+VK4s8yQxMBuiTXt9k3H5yIsc3RU9qEyffvJ0H9Mc8f1Yecn46gh/VLT9MuB0a+FPHuFYp25O/e8sb4uiBx+00+6qKCzAbpRGCN1+b9Lnf8dZqtVq7TG3B29oVusMd7jB91Ed91Py9LHlHevjDHz5//tM//dP05iI0h3Wzm91sOuecc2br2AKWx9InfdInbX9//vOfv/K4Cus1r3nN9BEf8RHTve51r+scjvdVOOXr92Trm77pm6YnPvGJs2/hshguf8arwPWnfMqnTL/7u787XVgk5rBuc5vbzC+sK7/B97nPfeZ0f97nfd4Mp8tlBvqQD/mQ6Wu/9munT//0T5/9HJcf5VOlK/dvTHs316a1jXow3qIoC952VJSOB+EahGBWiHWD6ZwtJGwKaGsWD5wYIHvQWeJ60Cos1mzpBDABxtqSJweh/o5FSymtS9LkMB+Oc6BjS5e08E3g4XTbcoTfvOy65AFkCWseWwJDAGswfu65W5a4a2vTAtLpQTYUkGscttAtsLv/0Nq0WF9MG+dU2irstenQ2sa8bP3971/MYxOyHCgJvGP8V1EosFsAl2zFnTJjMzNwksv4yYaDyXo8DkxQmXzFq5ttkENxuzj5veJX1YhV6oRLkTHOtCEQ/nL5zcZ+5AmMye4d+SRuZhWM7YCSWNTaWDONxUiTmYKbk8fPaUjmOKWlrJmFuQXx8TXsr5g8YwVv7ffKeceHcMgL2IPfJ+RrkB9Y+9ron7FzGhuSXndFcE3qIuU5p3HfYtrcszmt712blgcObLUl2hOFb8jrjKSyJATwyoW0TBuBGhJvqFvXZjKWSkqm0E/SWLxM2RDaqxJy9qNEJpLJzFSgESwwVEwIwycNMwEqfZkbKPlYIg9GncEILqdV3wh65mYIh0m/G4+vaeW5BlSYlmc8+S3N6EmDGx3HlXyfqA628rkmJDnWFdm+b0f56jxxHlC/vKplNDtS8mQtaa9zmHBgtslxt6/8+r+eL6gX5MEqEM8Np/4nb90GE3BSJtR5TxLQHrMs+czOg8no8lftPoA25zx0Hru8E4bT6dk6lfO5kST4JAzamOPq38mTKkv8DtG5Zlty+3f5Vjp9wyHuvrFm3SK+6RbF7dv5kDcxv3ySm5Fn9fxsx83Sbwt1nnOulwGlnG4/vzl93Cx8PjelvKbrktNVM8k8KxM35yfXdllzHcqYc3y9UZoyHqP+59rOG8jzOjut0yUerVbrzFID3tZZq4Kyt7zlLaeHPOQh07d/+7fPL1Ar/fRP//Q1jr3RjW40W56WXvGKV8zHftd3fdf0NV/zNdPNb37z+fey7H3xi188/eRP/uT8ErWRsN49Fkj2/gK8BTbPPffco+Ax4bznPe85ptuFt771rdOll146W9SWL9+Trcc97nGzz+LSM57xjNkVRL3wbaR64VtZLVec/7//7/+bXvKSl8wW0eXv+Ju/+ZtntxNlyfuYxzxm+o3f+I3pta997fSEJzxhfuHdeeedNz3qUY+avuRLvmQGwvVCuc///M+fTpVm14bnLOZyXtu3MW1sXj1bsC3qIRO3DWV+WQ+MNr/j4RTIYDhQSoBhQMpgoM7nTUks0yvlS31KOVBCHkSM9iND1xz4+/eEuIbThq524WDg4YGsQa4Br4kWeeP84X9MORlQAnAweTxs9rgsQlmA/kCYPR6+3tJW1HNc1qeD0/phFrCYNmbqur41pih2NFtgLraNTzwWxbIyV+GWYXVZaL797UcbIFJlaNI2QqYa2NLUfms9Jk4L1xyXu7p41SLVlupp4Ecc4SFmY3Wc5y8oBsJKlmXDPkAlRQiXID4eqwGLXQVx8WDQPDJKIk42zMrxs6s/6fZxHl96ZW3liecTEgAj8ij5igE5+91ciAvlN2o2Huvj9oO8LOZSEwvkk/PX8RyNi22ISTxoC6V9ezemxbogHhMkFAyZiC9bVzT3WRXJmuADmqyCflbCG2c2FmvpuobjqTAGQVzPFYCM5Bz6I78Mk2Xc9v+bgJb9BtkUflogum809HHl5xpu1JlfjkvC2CzoVfnr7/l/fnf+Gh4ZppNflJcBGHJ6spL6fkQafRyzKLaE9sQp+XCs6zpc6oLjk/mY9YcwgLguW+43jr+Pd32kTLxlXS6lFajvjwlSU46761WmN8vCbqiIk2e2aF+esCEv7eMm40lYuYzAQNNuYfL6bgdATVwc5GwhrhLoJ5hFdT4AqQ2IPQuG3x3XT57rfPPlxmALWoNkWz17csPH+lnQ+eH64bpc/+PXOtsv5VJhMcmQ7Yz+hzR5xQGfLqfs+/juuktZ+RmTzwTr/A689ayk26fjk/lwPMr7x3WAu61Wq3U2qAFv66xSveDM7g9S5Xrht3/7t48JZgu0lmXsJ3zCJxx1TLlBKMvSslAtVwJf//Vff41wbnWrW21//+///u9jxvXiiy+eP8syts7793//92uEc21hEE4B3gLFJ1P1Arhv/MZvnL8/5SlPmWF3uWI4lpV0paEsid9ZcPSw/u7v/m72V1z+iMsyuV5SV/D3AQ94wFGWwJXn5T7jEY94xAyFC7o7nGtTwfxjCVAPgyg/q7xNft/ezWlzrwaQAMU6sAhexbPSzkM29KtIoEGIH7bzYZaBFADTD92Gm/nQnAPXHLxxnD+RByUJFlaBFwZ7hrMJTEZLGL0E1G/u8vEJf21p5OsxGPNa/AK6rM8/DGYK2C72rE1rZYW9DR62rrPc2DND+3pZ2sEav8xj7sX2cva1tcVRLj2BnlXUwE/GPUBbVqWzSpP3NVWUcZ9sgxuqBKDVPJ95AYNXjGeoJrZEzY1wXQW835CRsWsBQ4/P7AKw0uD3yMB0GHs7PINixoys6rRfXfYRBlUSZpRMygzHm3lQGjOZz3F8jlU9fmYs6artVc9pQMTxxBk3pmZIbrIOHxE+hk05VuZY0l/1iuZU9RGuSv3EHTf1CENXdwnOa6cxAfh2faq4VTsaLTF2IbEs3f2LwQOknEjRN46gUwIwMs/HUSFcSI6boZ0zwKDJ8XdFoX+xOblfUmnfxFR6L3/nOlzXvonTgtmZ7fBGMMUaAdgEYKsmBZ0v7PP1RzMBI2jqToN4rwrDkKYai4FSgqlRB0AjqM6q+nzHO9PvBu7ZplVpGd3zfJzvkXmtjCf1kbgB7Erp8oPOdGRB6gkDRKdGA3b+jdqe85wOzHnBhHSm3Z2V64rTxv5018B3ZvXSf24u0wDAeibL9X/0LENasu7VJ6uY3DcYsrovIa3ZX7HshBtd1vd83qrvuNYaAXvOHcFJ3yz8vDd6nrLc9lzeWdfSjZX3obqOZ15ZtZCTT6N+IeGp95Vy1tFyP7Fqcsf99rEALXmRENw3+NG9q9VqtXaRGvC2doX++Z//efax+w//8A/D/TcoP6aHVe4Eyvq3rHXrxWUvetGLZlcC5TqgrHcLJH7d133dbIH7sz/7s0eFc0GZVx3W+4r4HEOXlxnpYZ3PG3AinGsLw+FkGNdVBbILkpff3dKP/diPbb987njcOYygbAFxXjhX4LZcNYzcPJTv3gK8ZVlbgP0P//APjzvexwPDUXFbVqduGYcsprVz900b525RnwW+WWtZKM5Vy9kq/trq4bEe9CsNftMy+wwqS5hX1jn2lUg4dRwDJR+DcpDOb6NBUQ5QDYtHgJcB3CqgY1PKNK0knbbUq09b9SQsTgthL+UjzMr7GsBVO2BAtWfPYavczdlvKEncf2AxHTy4Z1oe2nMU4zk0f99KC5zGPmC5PGN1+1rFP6wNqhgHVpHjYgGDoopq8QjAL0ULEAbaVVNlrF7JorsAkMJEzA1cxI4v6XAxGAgDiw1lPZ9A1QD6Mr7FDbNZFUb7ZlrmXGYCsA7Gz8TbY2+zGvhZcjLKMqtfiWu4mlq+hj19EA7Vkz6g9gFVMYIyJIdpOg5mE2YbTkeyATMdv6CN8BJqU04VNwxZ6SacN54kMKshvtQNXwMjPcqyJro29qjSUckSrDmA0YC6KnUtqy9QaqhpSONZEIdPQtw/8gK1ajAUbFqIGUpTIAl7ib//53ttNAADXa5lmOgKbdjmjCbeCTyyD6YQ0irRMKfkGRY3ck+QjcAuaSbdq8zJnQ7na5aNw3cHxW9egTGCic6rLI+8d1SnWr9VPfL9KWEs59Fh0ZmOXuRE+da+qk9+q6Prg8HiqC747ZXZcQEBuWmM8jUhmpdHsN/57fMp8+q46eAMvTyBTJmn72nnfcJ3txviAhwm37GUtXU/k95M5uRkhssd/7d0zBzjyZCsc/W9gH/dRClvu89yu832TT2xH50EnCOY6LZMuqiPznPizrVd/z0DSZ9gH06eEPIsqjtyyildF5DuhMM5WXGsSSXinGVE/oxgb04Cun932rPe85sfWNyfJyx3XnC9zHun23HiWn5QOE5lE9hJjaplq9VqXZsa8LbOKj3nOc+ZPvIjP3L+XpC23C4UMCy/sb/zO78zPfrRj54tSFPlIgDVeeWm4X73u982hLzyyiunpz/96TMgLlhcMLVcF5TLAYNKv8CtXkp2LF2Fv7DD17QI59rCcDgZxnVRXbfcLJRbi1K5tviJn/iJ4zr33e9+9/S85z1vuO8Nb3jD9N73vnf2zVsuGVa5r3j5y1++/f12t7vddKqEtSVjvAKBZUl9zr5zpo3zasB9eOehQ9MCq4dadlxlXQMMXs5h6MCgIx9ua0DAg339z4De4NfLfD0A8cOsH2htDcJxCXJHD78Gsz7PA4K0tPCgggdzkyMG5JwD2fMgzXHzPr77BWyVp9UeebldvfzssBXYcrE+HZoW87Jysw7GaGYNBmwGvGxpXA3AvTbAC7T18SWiW9WDl675/U2MM+q4ihfN354oPF4yT0jmlQMQ/0++cF2yv6oshtEOv8Q7Y2AaxBFewNjdbM7VkbEvINQsYARGCQO53BJQjhiimYrD97V9fgJuQ3PKl7TDZDwXYQ5hXkS+ZLVPJuNz+J/ruMtwU8TgzcwGFx82OMPyG1ekThfNijwmntR/59tcHhXmlg380b4eDaByME3mOrNyObsTZjN3uzpI8EmG2AqQxGQ/6H7LFsYJNdKq1ybj9uFBRcj+lf7bE30GMAm/s/K5UhK3UeUg7a4YCWBG/bs7h7SCS2tGW/Kxz5OuLocER26ABmSUF2kcOeNOGD8Km3tLNiqO4xr+3z5VgJojP6x1bMFRZnYSImUH4a3yjA6f9oGYVaOjoLG6TBKs8RAyugcn5KQ9kUYs44kL3ykP3s7ozojN7Y24e39CPiZxHQ/XEVtpk76RfxvPcAEDXYZsXM9hEpeaQKLdUM+dtxznMs1rcLMin0d1kfJkxrZEfXHdcHmOoGo+czk++Z4BL+GhH3NeedJhVfsnbAAqGvUThuKUV6bP/SXH2k96QmBfz3EdPdxknLMvzO++aTkdfM9rkv+tVqu1y9SAt3VWqfzR1oYKyJbv2LJGfdrTnjb9/u///myhW9+tArjW933f9w0tTF/3utfNVqZljXrDG95w+tRP/dSjrEwdTvmfNcRN+QVjea0Kp6BzhXFtIpxVLz47XpXVcL1Eraxry99wuWQogH28Kp+6x1L55i3Aa1cUo2McnxOR3WOsctHw0pe+dP5exVRjPN6rtjXOX0xXzlaVG9P6ej20LqeNteW0Vha9kLqKEzSsAihSXJ+ACluv8KDsty+bYLE8EH8ADCANAkpJi0oeUJt6efB/LBDggY335+DE8DYHTjxs53JFyJJdMRi+sJSQ+OO7oAa6tY9l0/VStMOUazmtTcvF4jBQ3XKzUGKcYcbgMR+XtZUuG1FkDLUK8Npilv35cui6TkW/5gAK7paxdxmyA02xDK74VfLKdy9ZyYvOGCvlqkmnx+NIG5G5SpAW4uUxc33C3sy1GGviSsGcgjR4/sGuRln9S9VlbJ5WpU5LQmqqti2rXf1zrsAw2ONqsxobPKHkS8n83MzMjbgeYRLPjH/yMKcpX9ZmwzfHv7ZajFHHVd7TVOoTMEtXQlkQLt0P746ieyHvzDFzHL81z7KY9pRf60MHtyBvmgSzuR8wTCRxVcFtCenG6QktZ5hJecmZRUa6MDKzXRlyNsF9alqfueB8ToI+MtGAOs8jbiwHsJ9NVzYm/IiPG4SX+o+AhSv8CN65cH1/cCMYydcxkM7zfWzud3llubgSJuDJ2apVcXNn6LwgnZWvfuGb45jgclU9yvsv+/Dz6v0JfLlZEL47q8wfwsEKNju3hPUGwPYRnfGlo7BTduqyQaXPTxA4qnfkMzNKfl7wDcXhuP7Z0pbfsM4nH/yCr5rk5WVjeTPL+rfK4fuoTIGZiFlPW9KSR+6POBbgW9+B8+57sqwTPDpvsn66PeUsNGHymbCXvPXDgcN3nR/dvHyDOFbcfU72Ra5ro3Ncv0eA1/VlVT/geuU8dzpH94JWq9XaRWrA29oV+j//5/9MD37wg6fP/dzPnZ785CdPf/AHfzBbnKLL6s2vh3Xo0KHpL/7iL1aGVVaquBu4xz3ucRTgdThl5XsswGur4XTFUOHU/uNxu0A4x+PO4Vj62I/92O3vv/iLv3hCcLfkl8SNVPl6bcfZx2+5ijgRvelNbzruY21daWOvLevMxeFxRfnmXU579pw77T334LRYbg3eFrhQKPcNNSAB8tb3ont+0GSQ74dOHjhZYugXygBLR28l9wNvDoo5Nrfcd6zj/D+DPlv6eCDk87z2nWMMNGz6iIUuvnRxpMpA6TAJmy12NzamQ9PadGi5BXarXBjfAUzTWjXHw0Qr4a4NvjiW8eUqwGs3DoRh4+1Kyk1usrUfa95LLtmqHoahVUUKBLOCHRCHkaENbxizEUczJYqJ9OUYhzkFeBznedxPdZzfV7dx9Pjb43jGkrb8rPkkirD2VTrrfHwSJ/sbWdeSJo/Dq23CUkiLPYAQhzTScjWkbTPWdfV0kzC0dtNys6v4eYWyWYp5Gvnk8Sfl4KbKPo+Dzb1qow7RTzFezzQSL7tt4D2RdUy5osFy28aKftcQ5bzFLhbToc090+bGxrR25eXTwo3Mg3Ymatw4KIQcgJNAZ7IBkwGBK7epvhuz7ws+3pX/WEuBOYc4GTyRse6zHT4WfbaW5M2LrlQm64ZApNuWep6Z8TVTCWkzvY6nK6jP8XeXJ2WQ5eZreWbC4WGF6fRnA7HyfuZOwNfPtJZsze3859qOmys4/9PROsxVy+OdFibaaYRu9J7NoqE5z0ruxJ1PhlTE1R2J25YbMXWZ47i5EIbvuyW7osj65bJNCOlj6VAdR/KBWS/y0JPDtRmO09Z8fZbF+Nr5XORO1HlJ3o+sW/mefZFvOH7uKvFuBfIKYO666PzKdpJw0TOxVQ4YdlAHqoM2vE/QS2fNde0agzRQLsS/xg38v6otuy64vbpsXUZuE1yXuu0wcjIiYbCP9Tmub1lPfZwfGDL8Ud9xHZRzHjup0yUerVbrzFID3tauUVnvFuAtaPrABz5wdtmQLzzDivRYsNTH3vjGN17pB7YsSt9VpnwrxEvRCnym/9j6/2Y3u9m1WqU6HMfruuhf//Vfp42NjemOd7zj9NVf/dXT3/zN38zuGs5GFWSzsU2pvtezfBV9Aa+tF2JtvYjryj3r075969PGns1pbfOcaa1g7/6rp0U9fZVVLz7lCvQyWKnfCvjja46HfT8gA3kLFjMAM4HLB/4cgI0GFaseohOyEAfi5s9SDv4xLzWcgSgZWhsAQ+JIZ5EnLHUPu8BYehBTvnXX16dDi/XpwGyJWu4Yjoaw8BVgK2MbZ1GOXxLSJuC1le4I8Pp8rCf53ewIy0uvFKZuwRaq7r3tbUeO99jNY3DG8rzfb1QVDICJC/vsoxcrXMbhsAPmWriWx+eMbTkWjsW4nXEp18ZPLGNDv7MmjRSTQZE23BLQDDjGFrPkaRqkAUapbhVfj0epqgavbgK5AtpNLI2dHHdD4lETJExfyyyLuug8B+ridgFmkwzJxmwwV17uXuFUt1KLIqi3vJeozvPKWurLVtNdzL/v3bN59NsGE0jRF6SPQ4NL91X53fDDmUOBJvQi0wz4nNGuWLY0zEbFsbaudUVFmNHbPDpnj7iGKybh50QY13eDcIXINIzk/j9H/glOM48SvBoAOa4jazhX8IQ6bkiUK+Hmb/zuPKcjwsVUWk47XZ5Rs5V2ibrkSXVbrhqWJvSi83P9MXh3Gbpz4Lp271Gqh4j6vx4kSAudkuuj/bN6toelFnWPxNeuywPwSSeREzDUVzrT7HjzeSKfFdKnPqKzz9k134z4DhDmBal0MvU/kxxAXMqwnqW8XIT6kW/SJC5ZB1w+VtZF/icMvzMg6737s9znPBhd0zeE0TNWGgBkG/Q5vACA+Lp8spyOBTadb+4HbAXtfCIejiPhuC913N0fOg/83X29+ybHM8vA7TktpysdI4Oaugm2Wq3WLlMD3tau0Tve8Y7t77e+9a2v4V6g/N2WS4Rrsxz1/gMxuH3lK1+5/b1AqX3Kpmo/YDatWiucj/u4j5suuuii6aY3ven0tiJCAxUEvt7hB5hXvepV0weiejnaF3zBF0x//dd/Pd3hDneYrZ7LVcOzn/3s6WxTZXc9D9b4iXFjjUF4xq3/AVZbbmAX2//XMub6f8+ejWl9bTkt9y6ntUMHtuDlhRduLW2GRJYJZ0Fe1vWbxPGJWwLIYvrOKyXcTfqUAxMf4wF6Dk4Je3S8gYQfzFnLjzzg8Dp/BqiVNlvrrq1Ny21L37VpOS1moFsZN4+z5zHPYnvcUFkCIMXgJaFmGqvkWHZkiWtr2ZEbBsNdA12A2+j6JQySqz7hqtmuEivsqhI1H3PDGx6x1MRoyNlKXTSczHG0NwNa4ptMx4yJPIURwB4w1C4LUKqFDZESLNuIsdIGbLQRt8vB4zWDcI/ZcpX5iJkZ/NoKFoM1jw9zDMx1ON9NzsZxAO4cTxoUZ/McNbkc23pMC9A1xMVC2mn1rQn4a+6G15fKe4+zGX/bJUnto6lmO5nbz56NrZdNMniuNBxOzDyxBVE3oLELBUcqB/D0D5kRHvQbypYMaFyx3Vg8M5Bw1RntBFN53KgMwKjoxAFiPwKgiAZSciFm3rjScK38TuHbqXae57jl776uIbTznhkEzxhkGGlF6c7ExwMn8/6Vec49hHi7MudMDnF0nue9iutQPrawxY2CJwuAkAk9OY4yreMAR57QoA5knL20I8Ej+eL6xH7OrRtBfdbzRG24gRgBMLcRjvNNwp2K64nLK8soyz7j680TFXke162OrOJXy1bsJ8g3LW5waa1KWPYDZDcEflFbgl/KLi22uZ47eaczj/fEfB1rB/V5Y8lnNLdj4pVlYQt43xi5hjto3+SoN55g8EzgqO1xjuu5n0u5aWdaMo2Oc6bXabCybmUeUmajZ9+8ia/qP0f1MMuk1Wq1doEa8LZ2jW55y1tuf08L3QK1L3zhC2f/swVMy7/uKuvbenHbKrcAL3jBC7a/V1jl/3ekgrYf8REfMX//u7/7u2vsr3C+5Eu+ZDucVZa0tQ+NwjlRveUtb5nuf//7z5D39re//Wzl/PCHP3y2fj6bhEcFYAiGNfaT6TfX14axzNZqwwK8tb9ezracNtY3p8Vic9o4p/z2HvZfWQ/2558/LWoQAumrC9UnlhumhSUenP1wOtpyQOHBCEqalYDXD9UMtmyBW/KacA+KOA9oC6SuT5ZjEtZh09HlbCWzPh1cVngV3GK20t1K0uIaRnKAXbi3QSz7kmmQFYTB/4Bbshs2QdL53ZbBo7Esx9hy11CsvL5gnISrvroOLhsqa8qCt34vEMp7+uBLjNN5/w/ZZ0PE5E42rvMKZo5PAzQsNc2SMLYiLAzSYT4eT6Y1rs91XsPSbNXrFdWeB6DqJjMywyANhulOP/EzeM8mQVU253Hz4RgztATINAPzHMrKnAfOlAzKaSBuhJNj2DTCs7tOuguPk+FDdU7ls90zkL/uGmwgRry26uFiOrCxNu3Zu3daeMC+Wf6zDy9h5gJp6VoVnAZaFb6s8jyLwIWJvMGeM8mWWq7cQKDcn51BHWPfmu4U3CDchyY4NvDh+jZhBzhxHOFxw/A1sl81HKPSe4YRE3nH340j7weGIuy3VeroGNLohpP77HKAcA2gEt77txHUSZBc//OyUm66hOG487+v57SQVs/aVT1kFtf+XansdjbueCV4ouw9A8MxxJk6YmiIT2AaLW+49A0koZVvctkR0V5y9gvQ5xsA18nZs1WdnuuA24fbmSdc+O7ZI0A6E0Okh87LL2qrfBm513Ddtsh/4puTAE6fn6MMNqk7fq7h/BIvT6Q86EN4pslJkXxOczvj93onCPFj5RLx0Xs4jqqP6eaKPOVc30jrePsqRnb6j3yj9iSU66D71Gy/hqjOI+JowJo3W0PazLecIHP94zjHc1W/4+OzLE5AvlXstE6XeLRarTNLDXhbu0YFKtErXvGKa+wvS1WA6cMe9rDpV37lV4bhfNZnfdb297/927+9hiVwWd/e+c53nh7xiEdM3/It3zJ8+dkjH/nI7e+/93u/d4395SO4XuZW1sJf9mVfthLwEk5Z2tY5J0MFrYG8t7vd7eZrf87nfM5RvobPdJVlYj3Ll4EM7/KoZ2a8B3hFJc/PPHf75dxbHHPLjcPW2HIx7du32BoLTBvTueeXFes503R+0eSywrp664Vt0GU7fbWVloGEH4pHT3ujB28/7Jrm8LDrQbvpFMcDaFnXb/CLVS7EG8Dr48tK1y9NWt+YDpbbhRmeLrbHe1zejMSwNX3iJvhlLFKre23oQrYwZqryrnFWzevApcugqM7zWMCgyzzB1rwGvAl6/+Efjj42x9CM28o1Q80fveUtW3GDARQLK4P8619/K0vf/vYtEGyIbObk8Q31kXxNEOsxlq2RSW+eY9DJeJqqU/9X+/FYmTkLytOGbDaEw3UC41XGalQljk1+ldXYPG3EAqgPAGjiSjhp/epxL6yE3w1p4QoeSyb0zSZmrulxbo6lbUENy4GTlgDqaexkdyO1v+oUcaJJM54318j64XyZm/3ejWkh67XFoWoA6jfo+AwI/u3fto4v90KAHjIMS0RflAxPODkasJNAAxr3k2Q8mUVjJ0EIs/qEUKMNc2gy1ODUs0hUyvqNWZqEyhRI7WPpPTKQIL7ZkWTBjRqJOwY3EPLbIMiVj2smeHTlADqOAJAbKHnq/905Y8HJ74Byw1Jbaro8SSedu2ctaHRUYmZvubnXPpYbOO+zAeQNwXmX92Pygnu6Z22ygygddk20fSNL0GjfKXSyo1U9tKlKf7700GXnjpt7NNdi43z7hh7dXMgf0pX5B2j07zxAUSdo6wDfuhGPnnMS4HmywRMI9EV50/K5Pt+zm8wwunwdtm9wrsfUjbwRj4Ai/+ezW7bphJkjQJlA2qKtEB98/bhvNkR1fJ0+31wzrsj+k6zRzYxzHWbeM3yzHN3QM77UF2ZAyY982V7OrLZardYuUQPe1hmvL/3SL52e/vSnH/OFZo9+9KOnBz3oQfP3//iP/7gGmC396q/+6vTd3/3ds3XtD/zAD0x//Md/PFu0Wp/8yZ88ffEXf/E2JB5Zzf7kT/7kHFZZAf/4j//49I3f+I1H7S9o+l3f9V3bQHgEeMslw2/91m/NVrzlL/izP/uzr+EqoaBr7Sv95m/+5ko3DtdF5Tbifve73/T85z9/us1tbjM961nPmsF25cnZoDIyYyzDc2I9GzJmrI0xSS73xsclz9MGQFvGSOXC4fAS6oPr054969P65t5p/2Kazj1v/7R24OqtlxdBXPg0dQP2ppWvB2yGC0kTPUDxAN6D8BywQIns24//WR7JQM8WLRWFOSO2BkKHpsW2Ve5BxmqHk1BwF0BqQGfA6GRjuQsYZGyGUXR99/vZ0jiFMArsFuBlrkXeIo4aM7kIEvDaB28WB8fAjdIaE7hLVtZn1aOKTzXbAnIAPVu11vnpttksaxXjocokM6tzXe9JR7pR5VrmBLSF+p+JDs53mjFCwoUAVcyGns5Xj2FtrOj0mbUYGrvqch3Ow3Wj4aqhLkakXMOrcM11qPKOI+d7vMlxq8bJ5OOIR+WYlnrAC/jIe1udlxLIEy7uLc1IONYus80o0RHGt5hqVwHehZcZ0zeVmFnhxGoAtTKlLlozZ1zUVoSOFAAWJeTgmu7HXPiuKJxrVwJc28uYyQRbHtZvlcFY8BE3zqUx2FdMwgZkwOnZQBdyglfiagCT/fWq/EHZ2PNcN7gE576mb3arANLomqO4jGYOskJSZqMJSN9cqSd0xn4Znhu073t0TLb6xnUQ53nJPjd7u9egg6tj8BPst2ImpGLigLLl4cKw0OlL2bKdfE/rYS+LcCeZkxsJSn1jyI6N/Mj/ubESL3wJGR7WTDl1w1bE5AMPVNwIiBv5N+oIvR9xk61PXtTqDsw3wcyb0fOP6xfl7dk79uUzlvsjt6GEttQL91u53xNdniygnFf1M1l2zgPy39bwvvm4bdGuyV/nh8vCN+9RnUmQ6rbM+VmeWV4ud9KxCtLW/qoL5O9oUsJ53Wq1WrtIDXhbZ7we97jHTU94whNmAFquDV7/+tfPLhguuOCC6a53vev0hV/4hdMnfdInzccWBP6qr/qq+cVmqcsvv3z6pm/6ptktQblzeOlLXzr9yI/8yPTiF7942rt37wxTH/vYx84vItu/f//0NV/zNcP4PO1pT5se9ahHzdf8hm/4htlP7lOf+tTp3e9+9/TxH//x0/d+7/fObiDK6rauV58jFWyua97kJjeZ41RpfO5znzvve/CDHzxbB5fe/va3T9/zPd8znWy98Y1v3Ia8H/qhHzrnb1k2P+95z5vOdGEd6v9rvMCYH+tCXhRvY6RcUcz4BKiLUcEWBCsXDkd8yp5zzuZ0/nl7pvPO2zuV99n6cbaK4+Hb5CspooFAkkebnHqwa6BiiMtDvK2FSmmxwjGljY0tNwuHBy3LtfXZf24l4+BhFwvlP3crGVuQ19Ezw7aVKePrki15WYUIJ/F4GdDqVbkelxnU1higAC9W2xi3wKg9xna4ztIEvAl34V52SZrjbhk3b/Py291uKx6vfe1W/Ar4MsYiH8yYvPo2x3slx20Ve0mwvqL7mZVjOQywXE4YZZpJuCwZF1LmwHVXOeJgeDu6djIBMw3aZ4LYnETgeI9lkxO62STQTfDtpuWxNJDWrMBpTs5GPnnCgTE+4TFe9280UVxu5pjZvMoTF2YLjh/pxFB23+aWn40FBVBiMhUgWJ8U8EUXbe2ryPDSSd7uZvhqwOCGYgjFBtCjT6JCjaxDnXkUtq1pTd1tsWjwRbrSNJrOwRZjwC7Hz50HJth0DFlIVAAqJZ0fED338z0/R7KVYUKqhKqu8J5lcYX0/xl3d3iGnllGTosrIDIIdkU1nLIlav1eM7ZuvFzPcMhxyXrm+lh1xdbDzDDaUbYbkRuz3yzpPCNdXv5Pu7FYOpBg1p22XziGCIs6bziMnPd8p/7bOteA0JMc1FuWNnEcnQXPEiMrcOo1gHBU9qtAYariVDfyumHWQ5vzMB8AcmaUupUzvAk6E+T6xpZt1795H+njQQN3Hb75GYQ7ba7L9K30C5SJ25n7VPqqVX0j8fU5iHZGf8kM+qj/SLDtNBhmZxshTZSJLfSz/bpcs37UZ5U/52Z/djx1aYXc/e20Tpd4tFqtM0sNeFtnhcpatsBtbceySi3w+pd/+Zcrjyl3BDe60Y2mn/qpn5oh75Of/ORrHHPZZZdNX/RFXzT9/d///TCMgscFQsvatYBuWdrWZl155ZUz/P3TP/3TlXH57//+7+khD3nI9JznPGe6+c1vPn3nd37nvFllYVzXSl/AJ0tveMMbtiHvrW51q9na+KEPfej0F3/xF9OZLI+feXb3s3PxiPq/+IQNVms/fi1LPJ8CdIEtvJzNq+S2IPBifqv9BRfsmW5wg8PPtvM1C5Uup8VyC/jOFnOmTpbpHebGDBxNwaCIXs6cg3KbPpZbhe1B8GJaHn6oXsz7yppvC+gegrvM1rGLo/iB/dwmQGR8y2Y4SrRtUWpjQb8jJ99XxxjTrNphYP2Ly9D6jfIq2aKRsRGWwwlwic8qC17qVVrPMv4wI6GulTuGW9xiC0LXdeu9fBgSmcXnqnSDcYo0LWJHctxOZPBguOvqSfnmuNVjXtoA12TMav5iQGwWY0bFdZIfpRGX50FY6e588fgb5uAwPZb0nInrSU7yEG7yFa6dY/lR/cgxMNC2fqMN2BgwGQN5CmfyuJpJKIu2Rb91zTq6NUG1d09ZQKohmjC7kGwSfSSQIxe01Zyp9uhYA96EwHksjYXKmfCTAjM4q8ygMweskemEZbjHftwJEH8DIzpAx73Oo9A8o2WLT8Ngg2XiM4JfCUBH1qAcB4QzNHbFNcimLO2qIMMzvElo6Ebi/226bwBf16pysKUz13Enk/XBDcZ1sYAU+7i+gRZ5znmu8PaXy82FG7o7ezor4uH7K9e2r5O0QvRNhHQ7n4gH8bK1pvPHbYUOxkuObAFKmQBj3TGTTrdP5wvtIDsUOigchXtfic4r2zx1g/afN6ysd+5g8avE0hw/4xhw+obIua4HeZ28QbB5BtTHULfSKp585phRhz/SCBj7ppjtP/vGVe0/YTX5z/Mhx1Af+Y2+3jda98MZdmlkme78oz243Y0Avf/3zdpQm+tku8p+5NryvdVqtc5CNeBtnfH6tE/7tNn9wr3uda/5xWDlYqGAb/m+LevWl73sZbPla8HbkT/c1M///M/P/me//uu/fnrAAx4wg96ysi3XDgVkf/qnf3p661vfesww6gVtn/iJnzh95Vd+5fQFX/AF053udKfpvPPOm9785jfPgPlJT3rS7Kv32vSSl7xktkL+5m/+5hnklruE0n/+53/OLz6ruFxSROgUqtJdkLfypPKirlsWxH/1V381namqsUEZ/eAyjmdMDFVYCchYBZeKNpLxGIYVoIwF7cEASzjAcUGTuna9kKvcz229gOvwy9o21qbNzY1pz74iMcttS9jSDIDnZ9kCwcsty19bHfHgbDNIE2cPPHlg5mEYeFFWuusbR5hCXbee/efx0uIay/sBrnP8FkfcChrYMjY3GLQFqKFuifFZydC0wrA/XvaTJI+JPV6BuRgY2+gQEM+5ttJlPGSLYL/wbAR4V7lH8D7z+NKNb7wFdt/xjq3jatxadYWxLPnrInU+Wx7znUyrEMbONkLjeiWzI5+TY2pDf97RBXw0DM1xmsvabivIF67j8a4tVt1EDIVtSJbjyYS8nEM4jqfrgeNFekZcxtcdGT55vIzRarItg3VPUnEu+VXySlzDXfgVPIg4b+fxOWvTno0902JecXDYzwfLHNLps2dqKiCWZlN5RgWboNJuEfjEhw6FRhjOqKyYwNLqNKDeANrqhAnTy/QpCBe8w3Wn5kZGwaSVomEN59gk352gG4orVUJzKo4bQVYuxys7g+ycPFNmmML+BDqOU86uGPA6vi4XwxrPlJRz8myMdDjOC59vmMbsX5Ur1n2EZyhvgM5NjbriCQIaiG/4mZeGvs7/BG6ZTz7PyxCcdtoWDyaEk/Dax5O+tJLlerS/qv+kGWfopJU4JiRNYF3nlSuWhPh0Kpw3stj1kocR2CPObtvEEQjpBwPeBUB+pj9hzvPSLc/8ZXt3WWW58+BDX0LZ5ES6y8SznnkMqvhTb7kmN8j63WWyqj/w7DnpdvxHlr1ux6QlXR8Y8Pr8fJiwFbRndj3p4tnXhMYj0D1q8277hMd3HshLI/9TrVardZaresCe3mq1Wme9Ck6XVXTpy798yzoXmFvPmTVOsatZP9dixevxjV+0VsdhxMX7xoDCJcYWAGWP22pMWxvn1nP8vn1bMLdcOxztEnK5NR4rgLzQG7/K9+36nq2x1cH90+LA/q0l1SUIdVpQlcJsryx4D80vQ9u6rg3L8C9rgzLzCbMdu2PwvvRfa0tfQ1j/bkhr/72ER9mk+zySWOcVMC2gXqs6GfcZxm9B9qMhpuGtWczIupetxsy5wtxF4Do157c4wsUXbwHeCr/qYln2MnY2QMZgm9XvHtsQZgLmkyHPDxxL5m5AWxvxpMgP3GLSvnJ1N2Nx70veYKAK16sygWFUfnqsyKSNr2vX06Qnx+O+HudwHt/pD8ySfEz+bo7Efl8rmQ191YgXcD55Rtuoul6TBm471E1f06yyXvw3v4hycznt2X/FtHjfZVuVgE6LCgnhp7HTaE2vSzkoN7QzZHQHYEDMNfw5mp0hvEpczSTQB9LflVNu4kHcbb3qsHImKmdsEliUbJnrztIzFA4HUFXH4O+njmHZQQJRp3/03flIfIBvOZNAA3CnleDT4NvA12XixmjTfvKV5edVoRwG8bXpe4JJp4V8Jy/sD9YVmNk7h0387DO2zucG7zIHYo5m7Gz9mLDNdd75wrFARuqCfaUSd+of6fJNhPKpMA2zqMscDyC1JTiTGnVTJGxugnRCvpm7PnnygjozcmTu+lnxrHKv36vcbcGZ5Txq29RZWxezzCbzHuttbtQJjt0+fXPJusjvOblBfWemmfzABY3rHmHUjdpLXkY3EqBk3fRdbyrf6KgBv77Bp/Vr/c5DSP1f+c0yMteFtLClfXCzcF13fKm3Tp/7uJwI8Wy6+xdP/rmsXTYOOx/Ife/IeJT8EF/3qac+df65ViGuWu3o8cG97z1N12LD80HTzW5WL/OerjX+rVarZbUFb6vV2nWqMXM9n9ezdz0H1rMzK3FLwA6//wd3DR6P2YqXY+v5eAvSHv3C93o2ZkWwV7+V5WadWyCl3FduPYvju/fIGG8LBC22rTfr5W1ri/VpuVjOQPb9l8EGNqZz9u6b9uw5NM2vPFtbTIt1WV+slWXwbJs7B1quGNbXDwPeGmcdrP1b8at4EAfyDPZhKGv+wTM8z/cJQRP+JuyFFXFuydazjNMZlzPeM6QlbwnXvmkpZ8YSNQaqMHlflONtHk58nSbvz7TnONfjxGQXVbfMKGAhcB6PO+3qkCIdGRSebB0L0qYYix2P8UyO+Ubv4IEPleAkcAJzNc4hP2zFWvkJTDUzsFGQ39FEOnxNyofzyW8bgq0y4PNxniQxYCY/cpzr/9Po1HDY59gC1wyR8Mhzs1fqOIZw5hkzE1tb27LgJcJego1fXicszb598SOdzNHQ15ntyjQqGBpu+gAhHF+fSpHWdi5UF4gbc4mMB3Q4LvmdMEmLO0sy2oACE2p3ony35Z/j5uuSHkM5jkMGJJnHPobzvNSARpNWfgn90rLO+eprGahnmAl7uOG5fDP9LlPKxh02MznEjWuSDwa6daxN4Q03PdFgn8tZp4ln1nnqLI0sb/KUD9eyT16XBQ06LWVdR7yUwGVIuoHItONjlRdLFYiP6wvppLNwPbHPauqIrZV9g8ybZgLZTIsnZgjDLleyo/P5xK2+8+K8hMEpTybYqtzpyGuQBso564TPoW7QJjJ9eR3+H/U/JSY3fGzC80wf8UxXC55M4TPjvypu+aDifMmHBKeDGxt5XSJfZJRw1ASTb35+eGi1Wq1dpga8rVZr16lYRBlw1fMfUJDxGgwgLdrqeZKxlMGLLeDYyjimYK2t83hm9XOrx7lcv/bzgjfDReJQYW89v2499M5vu4/VvTVG3bt3fd6w3tsaNxxx+YDq9wvOO7KYAxZcMjyzARoWgFj18uye3MIgijGqPxP0cqwhMmMAwCpwtvbVeK6OLzhuwxTH13ykxHia+DH2r/y2a1FDtTQ6HI1lAISG1Izn/F4lrmu4W9bFpIXr4F7Z4xNbt9oAzWW/0zI7Od54Yahoq1zGca5/BrvJAs2vaCu0ZSYMKq/dHkqEbwMjj2Fd1gnnR2N0c5VVzCSvRdikmfA5jpXAwGvXKVYnk+f2EmCgTZuqDR/UjhPtgpUH5qbb3GVjz9YOIsPOLAxvdLCu9HmMobEhTwJT++YwNCIDaXR2U1PXxwrT55rUHwsqu/BdYUegy50d8SMuhk8ucOcDBcisVM7cGG4m3MmbwKrKN4JqlsN1Q3GlHgGzkYUeFdRhVD6UlWH95uX9gCXPftD5GySihOYl+0shTrb+NFAnHXUTK3FToAOx1a2twhPcE/+cGOB4ruu88zlbb2M9uoy5yfla5IeXRPB91aREySCauPg3lg0Zzvt6tph0HXBd8ndPBlQe4jKDjjfDIJ3Zcfq7oTBxweUKgM8PWj4uYb4f8shD92XulB0Xw1zOt2uLjDP1g7gSX88M0jf6wYf2T7w4D4tl55eBt+NKubp8nDdZloTrOkD7pQy95IP8cJvgd0/0+AEyj/UyFt9YfdP3g7Hj7eUsnpEkT4kHZdRqtVq7TA14W63WrlON6Xg/B1aptoJj1aPH/mnZ6+dVW9EBDAEvtdX4KZmBfZnynF/jXsYd9cwKkPFYC6g6GkdwTPn0rfOBlskUrCOrahcKb7HNSnihsuER4+6KL6sv0xDPsNcA2M/lXuHM8RjIlBjD8FvyEwA5eU1ZjOJQ8piBtJkhOV4e59pi2ZbFBvC2QGYFpyGdx4DOE48p8307hO0y83fXzdNN1wU65/iSMT/srOQxso2dbCjkfKHeuIwxnkPJ97zSHLHPYcOjHFezEY9xk4UQjjmSuUKyGvczJcb/tM9qh2nBjlV7nYuBLfW49tW5rJqHbwF+bay61efVixbXpsW5504LGr1nQuiwaJQGD3bUTSQML2mMWAh6RsuZapBc16l4sBTbS9XJQC9Lr/225KViGa7SsblCpgXYKtCVcMwNPEGt02MY4vOPBWydzlSC6Kx4DtNx9dshfXOr7375GHnI9Q1OfRMl3KOXoBwN3oC/pAk3AS6fulEDq9yYbMVHXOxeAJccwHIvB/fMDX5ZKafsgEd56rwByvGbZxBJL/5RCCvrlK+bZWqQ7Fk9Hlqy7mQ9cF7SUdW5+DWiTF2OmV7i6KUK3IA925huPgCb9AOeGHEZuMPLOs5+8tYPOrR5P6C4/jpvE3Y6XI71rJ87/ISZRx60jj4/y416RTh5HPnvds+5pCmvTZrscsT1gLZSaagZTdJfD6GUg/MiASv5wr46t9olM862GHfZZfyY1DPg9YO0H3Y437OX2a/4gZeypl37gd0Aun6j3Z2ARl3vTul0iUer1Tqz1IC31WrtOgHgeEZmnMmkP7zAYxM/jzNu5xm0nn95Pvc7TOrZsqxLbcRk13A2ogEOEx+PxfxMzKpHP097LMI4EAtbv59lBHi39i+uAYyx3sNvaa78rfBr7O1VmAlVbcjGWNhwE/jGb7bwLfncUfjkA3lK+XnMZE5E3mAdjb/kEumDURnYGe6uArxOl7mJoTHKPHDcPOZ1nvlcl8PpCnivq5yXMBwb8vC/x/MlA9+EtzYMzTLiGI9pc8InDbuIG/vS5YInFDh+xFtc1ga3xIN9Hi+bRTqNrGRHjG/t4sMcCeZZxxUHgA2Y0Tiu8yTLocW0vmdjWm5ubrlqcANl1olZMAO+HLjTedlKzZQ8LfZSbvxu8PU/Fm82m7cLB5N3BAh0oh1nW02OOlGDHy9D5zh37ln4hjkOOyGgr5PAyjMhrny5vHkEojJsL/+nrAw9iTMdlAG1j/FMmWdgHEZZ85JX9mlLGnhpmiGRr7eq8/Mymaz8ORvjWUHKjpuRYRLHu6H7dz59o/RERjUuvlMXMi15Q3djJ/11TSzSDdhzMsSwlGPdqRi6ukyy8ecNievhW7biQv45Te4DnK4RECU+dGAuI0+6uKP0eX5AQL55ZDzyk7J0eTlP/P1YID4hsm8wOSHh/Mr40aE7jW5f7r+2lmsd3c79MEpZ4IPK6eb7CLYTD37DdYlnS9nncN3v0He6X67NPs58U/XNm2v4nuH2woOtLfxzhtNxa7VarV2kBrytVmvXqeAr/ncTsmAMwHO+rU6BgwDdOh6frn6O5Fm+ji/IivEEz542gsLCl2fxCg+gBTwlXvWMzjNyrj718zLGDVjcjsanpJn9fi4G8PI/z9TECZ+8vLTMlriGQrkq2+P93D86xuPTdN9gYzB+98uiSF8aBdoCm7Eq1o3APaxvR4AXg7QReHa9yfy0BWoCXo+nRtzGY+289tko1wND0+Rg/G+wb9aXENQsxYZ3R1yYHKmTNhRcxUpGLMAW5JR5guhkYcRv1D5dn4gP+4hTsk1cUdSnDa6IP8exGiDbA3EmHbVtTYqVv+61ab1cNVx91bTwTJMH1I6UMyKBGr8ZgLhRJ2Ry5tHYbQHGMubqKGlcdUx1VnSIBn503J5RMBCm00vwZthV8oyfZxlIp52uO30Oy3TeFYtzOJbKW9+5EdnM3wCxjrHvl4Qdow4lK7sr9Kiych0fQ1nUVuUEXKrfr3e9o8/JTp7w6YipqK6cAC3XGaenzgPW0uGnU3c614qbX5pF3vttnDlDusoClBuh67OXdlDfKAeO8Q0621IJcDXK8/wt4ajrLWnycgdbdSaMN6wmzyuMeoDiurZ+xrdUwsqcgOB6Tnd20K5rriN+6PHDUE6qcP1RR503TsrHeejvLheAqsPyjZr6Rvn5BpNvxbSPXGRrcMc7oTT7fD23X+oNm29onpBJUE06HE+OZekLL360JS5xG1nberLEcaCd8LshMOlzup03/GY/1b45HmuirNVqtc5yNeBttVq7TjU+KetTnv0xUPB4wc+sjDMZ49iIAU5gQxueVwG19TzMC6QZ9/r5NpdD1/8FZ4DH9Qxb49AKg2dqWxgzvvE7j3IrJTPJMYjHYDyT26ipvhN/VmmTPq/wHTGDZDf5PhbDXv73O0ZshOd8ZwUuPKU2xsPkE+nxM3/9z0uqKz24s4AnJOCFP3jVZQLeHINzfhrsOT8yzzimtMp61yDybJbrQuad85q8NKikHZgpsBkOu5w9lkUj+G7mZTbiONKmM5zR54hr+Lx08VDyGJq2C6yFseAPnAkkvCCUmMSg/yDNtIcKCxeptNVqF+XKZXNzfdrce868c44Gg2vPWAAoaIgemJM5tsoycE0LMfuNcIMamRsnFHHB0GG5g3YlSEtAx8OwwWG7EgCDDaWg46VcrnxtnWR2GknqqcS2DnR+u5N1WlwBHT7nZ/pzy7CywhrikB+Ex03RM5wJacm/uukBqN048SuSyy9K9mHEzCh1guMrTNwUOO9L9sfjfDaMzPx0veZcICAW7HVtbjQ8UBgs5uyey8TWz47rSAnbkWcuaav202roShm5bTKDynn1yWy4XbZk+yXO2VHyu+M9crGQnT3Hshm+J2A0CCbMBJCj8Gz9b3/e+UDlCRcDT/dttR/XI1lOBv0oZ/A8w+c2RTn5OB4WERYBPFyyRGMEeN3X+Pdsl/ZPNrLK9++O9yjdLg9bKtR5PGgZIFOmJWYq7arEgDutnk9A7o52WqdLPFqt1pmlBrytVmvXCXjKcz9grwQoZVxQz8wY92C8UL9hJFay8RXPs4Yudb3LLjvi85d9HovXtQrGABELQhtM1bnnn781VqitoI197ObYIoFzKbmBYXSOH502j5GwYmWMze+A3wRd3gw6vXo2Aa+tptnHGNPjYI5hLIqRCfnC2J5w4QrEt/IYI7/KT8ZhCWR9fRv3mcl4HOrfcrCQ59m38Ijr5NjWANFcY7fI+eexI23I4zrXFzNHnz96GZmBp7kA1yEeJdp68i7KyOd4n1fgcs3SqjJNXmJjKHMZzq+67Akl+oP6jTpstmbWWdsWzN3q5+gfmUwpyDtzV4APs2AEZPP/ERSrc4BCTowLhcwx9KShu1ElzMzr2ql3yR2eO2lgguPkhgukRTlr5E6JAnFHMirI0cxPQq+UAVOGSR77Mzt8X8tx8FKOBLI+zjcLbjBulE6/LXedTpeVYZGBNMv/gTiegeSmDMjBsjBnvUazs8R/NKtCB2Fr4pJ952QZjhq3b8B+GRgNy36jV4XnCREaq9tJLrsZ1RWr9gN0KaO6AXIdvwStHnKY2TW8NoTj5VWkjZkhgzlbrjoeo7i6jrjOZb0j/n44yjxMsEh9LKW17wigcg75bD9dbqd+2HNb4TgmprgRGVYaovqlfy5/P8Q5rdku+XQHbjBN/UnLBdcnuzrwtX3jzOVeznff8MhnfI0ZRtviNuGuwyRP8wVy3p8P224HtgputVqtXaYGvK1Wa9cJNwN8B9zxfFzjUp4/azwGBOSZtZ4ZcUFnsOrnfi+NhnnYZRhjJAxgAH0YIPlZ2S9hKxBZoLeOqe+My/w8zljCz+K2FEU8e/MicZ7RvdL0oouOdm1myFvCYtb+gRMSr3LZwDWJn+FuAl/GSYTF/1gVwwAqbzwWY1Wqw65jq/wuueSIG8jrX3+aLrzwiJES55snUU/SAI/vo9WuzofkXcTHYbE///fvLs/drOSD1AEMlfyyeDMCl+eojZTSCIky9Fje5UQbSWtjs8fROJT/U8krbASV7djhcRyrAUrA2uov0vgs+YAnichTu8g94m1hMW2cuz6tTQe3/PEaHPHGN8MQQ9n05egLOoH8T4eTwJTw6lyotWGIoVBCEs6jwBL0GEgjSHk2agqIdNolg5d+O97ZiYxgMHJlM6zNjiWv6U7UQMniup7lHHU4hmsGSQ4nLelWzSwSnmG+O0VAqCun4ZdBPI7xmTGpGwAuOWzdl2XvG2amHwtX53NC1qxHnEe6yQ9bn5MWx8GzQwZsLkf7pyXdOXPr5TtZjn4gQJ7tdLyYsLGPXneQHOfOjLyr9sFDDf6TgfwuP+T6MJrZ8o08v2ddWqWcqHE/VQ9UWHtX55j+bAx8Xf+d3wnps07V8TVzTzlSDxO2+mHBs5a2UHZavbyJm0zC4DqH2W7XW8rKdYm88o3L8NXl7jxyv+IXbCYM9sw59d51NWfISXvCX9dJz8xmvXFf0Wq1WrtM3fO1Wq1dJ57TWT2J+zieGXk5WT1HFgjE+AVjIECHDVlKHvNWGBh/2PihBAA2mALu1gagyhWPta/GrrgWqM0vkmbMhvEUAJhzzRD8fIylKy8RI/wK5yY32VqqDUhm7AtPYXxt4x7SVHmHpS/5M4KapNWQN2Ev42w+KT/ymjEF6eHFz6zwNUPBgLDGXVWmdbzfC0K9cBwpc9w7ms8wHjIIB/Z5rJ3jUvIkfyNMj6dHfKR1JJ8SrDPpwDE57jVTGBlFui17jE95mWfZ8NFhmg05vvQJWaapVcf4N6clrwNjoE7zbibzsOQq5CVsipXl9CklXKLsr5Xo64dNpclcQ1xbYdnalc4VaJX+Wshc/Ecyi2Ow4MLHxySdF+e58WLl6UKkoPLlPJh/Jxx255SVguPdOSA6Yb/Z0+kw4Elwx6etNhMyuiNyZTYocUfluCX8cmdN/ozynHgbNjr9vhkQj7TG9DIEO912x58zG75hu7wox/ofX0bpd5k4O4+pV0BIGggPBBWvuomUgIAGWU4P+UUDdxlYac1JWORDibS40/INyWFzw01rduCjrXE5xxMPbgtZD1z/nH8l/DPV/uocaqNtU1ep+6NwCSfzyG1rNDHhOKTlZwLD0aQOZW3AWCKPPJtHWJ5pdpyJI/XSYfI9rWYz37MNOd7UeaczJwZ8U0kQS3p4cOEmkBCXNKVP3Wzj7ntyYiPzzfCbOuFJEN88fWN13LNcuXE5HLe/UV05QeXc1U7qdIlHq9U6s9SAt9Vq7TrVQxNjthLA0uMN3BDAD+o5ss7hxWmM0fL9LWlokn5xgS71HaM0DJZw/1C/Mya3IRzHshISGMwzPFC1nqsvuGDrOKDMCPACROuZH8hMuIDZio/hLtCnwqrvAGb2YTTF2A/rZPLEz/E2QCP+BrGGvKzURazS5VzGs5yHta1dcTgPMTBiFSFGhSO3CZxD/hi8mV8k0M3Vvq5fTpuNs/hMwJsP+ozDRoZPu1Eep5vBMVZNK3eYCBM65UIF1yeulznWNaPypAYMJV9OmPFzmKvS4WPTBYWP8X6UY3ZPipTBGisO/L6lkpmCOQMTOPBLwtyaDFpMezY2prWNQ9PCbyoEynpQb8vXhDJuFGz2YeEMMKDhPDqrXE5NwqpQ3QkkKCNMg6usLBadLml2w/Z1HIf6rQqATpsXpBmIk1+knXwyUOQ3Oi5kaOOKUnLHyO/ZiSW04XrpS8cWcbYA5Jj0Qer8peIwO5fwmPMSuLv8uYbjSMNz3ar8pfISjvPFEwyegMgGYWU+eWYTgGaI6rKnTtMeDIodtmd/WF6+6mbguHjL8qcOecm888/11vns/PB+6l91mo5niU6VB4NRe8g6M6p/5G9CVteTETjPiaBVbjAoA2aH3Q/ZktcPDJlHVSaXXnrkYdBAlfCd32mxm4DZddVtK61U80Euy576w8y5J2sMV33NOsZuTDyJ488S9Zy+iuvYStx1hf7UFr12mVHybGxOEmUZu52PJkmcF3mDbLVarV2gBrytVqslqzS+5wuu8J8LSwCc1vM97hd4oZefp3nO93M0FqS4GATaFhDlGRWrObuQ5Jm3fitWwIpIntsr3u95z5EXgwMkCc9jBgNqg0agKONlW8CWKmxW/ZVLA6x7nV6ewQHOdu/mMerImteGT/zOcfmiNfIN+QVwtR8Qbkjrsb2BOWkmD9IvLhbGXtmaY1OMFokfeXAswOtrIQPeZEut4xPljwWr6z11gDbJRA7H2Wo8ja+SHXo/FvfU4QTFdgmRgNaMweFb5gRmH6uYB2yJ68EWq8263vp4cwP6KYxfzUDsm3zf5p450EUlsDqmhFOGv2kBm8R7lBDDHwM+NxxDFkMYzh9lsuGWlZljJ9/Ahcx8A8QM15XOjZ+MzLRnXJBnrBJcOs5OtzfAU4LohNiu+GnO5msYwvia/t+VD8hoyAQQo7L62iXnNxa5hlOUCbOlCQUBT/xf4qbLDSXLyvluS03HxzeUhGZ215Fg2ktyOJbwuFF41pa4uBxGsDQnNnyzOVad8uyk8zRnFEdth3gCyOko8jrO4+zU3GYcp1xab/BHnMnPfKgxCF71Wcd62ZYnjQjPy5rSHxf1jpu++wO78iiRTyPL3FE/5TK1VfYq63jDUk8Kue7lOUyk0Fd5BhRIn+XPte0iBdnqlutxjMN2uTo/HI7dmiS0rTCZPHDcfXP37OaxZlNbrVbrLFUD3lar1TqsBIYI0AG3qOdLICvwssAnEMcQ0z5BDVHrN2ApDMSWqrbM5DnVq1gZD5alLoD1Xe/aArJ+Sbd9DXsMa3cGI+Bo/7aMnUtltDNDnX1H4oKbPc5lLF75g5FPyYYhCVzNIEa/M24AVDP+yvzguIoTLhUcFp9Op4E0ri/SghfoN3LfgOz3lH0GuGZaxDffATXiLavqasPfY4s89libcaEZjcfetlRN46vRONznpwEW37mWJz9G5ey643HqyABuVfkznjY38xi62mS6lCB+uDZx3wH3gFGYEWztX8zn792zZ1oul9MC6AKccEYAHcgMw6eEAz4/Z3boKN1JepbNjZ6wV4GqkdWcOyITfM8AlOpadAgjoJszNK5o2bFxjvMhC5hlEbW/fM06bbby80yZYXPGiZuKr3WsDigBFdfKfHUY2WFnWTtc57UhLTeUkiu3fQ27g+V/Wz5nPXP4WT5268DNLuGk4+qO3ZMM/Ea86VzsDgLonj5LiZvrxGjiwzciwicN5HGeS/viJs8xXI8bYy6VT3jrN1pmmTrtpCU7LXfCXr7vtHDcyEKdeJKndZyX+ozKyOWcvmnJg3zhGMA23WpgMezz6VgNyV0n8qHGZZSWteQHs8o+z3nlfopy8Rs0c1KBdLHkynV0BMez/nBuPiCNRL45jb4Z+2bk8qGv4gHZ5UP865PJmowfN/7rAHhzTmsndbrEo9VqnVlqwNtqtVrXIoNAjz94NsY/L8YePG/bqIxnzhqf136sBhmDwjB4qRGr2jyutP/XCreAboVzvett/VYvDfO4hHMIt8Q4ijHAKteHjCcYWxkaA6tr3Mt3VpbyHqKy3K2N9HosmgzBbMWsxOMs4kP4+Qxvn7/FAop/JL8w5LUlLgYhAF7K0nFbBXg95iJuyJbHpRHgTUvx41W7Zjh+JevL8XG1X9osL5BndTdGTh6TUq/MpQgXXkOd8Nh2BHGz7F2nzAI5n3ja8tf9iyEy+23IVHWxJl2qfbgtcA48y8cz6VGeDuz68ch7z+olRdO0ubE5Teevbb10jRkxTqbTMkQAgmRlJlJ1QUiyM8qwB9BHg8pMOlZGu0CzgnAdfnPn4UIZ+bc19Qei0WFWZXPYAAqDFnfipAOoPbIcJs3OE5TuDGxBTUOg8pCv5IXhoyukIYshE+enlbY7Pj5HIBsISqfOecy42Src6eZa5CUdNXXMcMiAlXMMV3O2LaGlQSHHpIW3IR35YUBfdYBZWfKZvLY1qdPpdLgc7L8auOdjE2wSZ4fvvE665Xy0pSR1hiUSnhDJCQJ/T6tV2lCCcj+YsAwqXxRn/08sqSqNXjjnsLP+Ob3ez3n8n24I6rdaDlEyDB+BeC8LyeNdxtQhl4MfilwH/JCUdZN67rrDdewOwTckz0SirHfUkcwfPxz6IQgLgow7YftFag6L+NuCv47FYtpWxMSF3/KcVqvV2mXqnq/VarWOU17ObwH9Sn6u5PkTPsE4kDEZDMTjbsIzJLIvW4BUCaDKMzNWujYqKejJ+AJgVc/cOS5LY4yRUYpXjFZc8F3KMzdpLAFa/Y4aj+89rjqW9a6NOcwR6negeF0bKAugq+vaDWACXjiCX8ZF+bCamLj5uvab7PSQ5jQItKEZyvi0Tp2oK7mSl98A+nAa2hDj3ZLHiIw52Y/luse35lVuMzneJAxPGKTxoMfpHG/DNHNNcwiv/IYFMD6uNNYLBqsfwQULkzXmIbQxJikqLN6jRP3FheXa2mJanFOQd2Narq1NC0NRV3Z3lF52bDBQ51aEGLhjlWcI68zD14wzAQhh8/mEPRyfMMoFwXm+vmeH3Dm4k0d25o5vm+zkDLkNZz37YCheotC5idSGVZ0BkzurhGhcz5XOlZUKAOQr4D6CZnRy5AFlMspfX7/CovEYCgEO3SgJ0zcAh+Vl4KSbcxzfhJtYfbujzzri2RsaVF6HG2DmZYZDHXEHkpMKtQ+H/H45YDbO7NhcP4ibr+1ySL9BtM28htsAm9uUb3oGgHlzXJUfrpcJDQkzgTUbs9S+doJc35C939fmf+qwrUqp7+lKBdkS3GlIq2a7FnGeUp8yzz0rlw8KXkHgTptzDEg9w+iHGsePMHw+abD1r60WMgzqNjCe/0mXQa7Tmm51uKHyPSe06Oe9msLhkKdeSdJqtVq7TN3ztVqt1gconmN5TmZMz3OmXxrPMzDWuHaV5ud2wkv4WzJLKFX4NfaurcaFdZ0CODb0YYxRYdswreRxjnlMHXujGx0Z0zHWxlK1rACBRnW9Wv6N2wpcWGBV67D5nhDXvMTjM/KGjfO9EtO/E0f2ZbrMU8gfQFcdD7T2mNYGUow7KBPCtAWvuY0NXlCD3Q+eaGdwQjMYfF/bsIx2w8vIzBvwBAA8dR3xVvJ1zEaoOx5L+5g0guPTHNQswS4YzSvSkJTxbqUZH97U10pn5U+1V7+XjAkkwrbBJH0a55a7hvViAr5oBVI7WWprPyZAvOzg3KgrQgV7qxMhMgZuhjyjDCMzUjRQZ1YWIJXHlcLnGxqxHMJOzX1jcIczWpJs4AT4NL3PQrDbCvKyNr89j7Bc+QjHHSbpdIXx97SctSViLkNIC8CEUwkg3bECcHIyIJdMEI4hKfsyfQZeADzDIN/cXC7ZANOq2DelBKHOV9cZn++bPz6cyMOq8+xLIJag1vuyLnFNz0qN5N/9MMAsqG9kThPgsz6ZvHD98HGk2csesvNzmSUAHN1AMy+cB65n2VaJi69RolOs/8syFxcO2TY9M515kvUkgXQ++Nh3svtMwvdDYKYfq353yhl+TgC4PEYPYZmPvim5T8njSl4a5vBtme62V7KPYVu1s49wRhbkJWYYmaTxEhZ+P0G5WHda/ZzYarWuixrwtlqt1gcoj/VSuG2w7DrQAImHOb/jItkA0AmjJhs1+JwKq8aJdhPJMcVLyncvvnMZB1g89xO2DTLsrgCYXS+bKxcR9ZI3rxpl7J9pTJCbMNXjDo/3PQZJjsPvIxiVYWMVDcSCH2HViNFayha/HgiMrHptEOYxVj+0f3AFh6jxO/WZuuk65foEC2PsWZ+wM1iGx875ojx+S5bgSYnkKmmkmfyDOm33s6vqksfhTpct94lbjte98tk8knbP8Z5ogtvOEyCARoPcCqgaFiALKlwkGZN5W8EZbNTskWepTK8Bx+6c3OhJRDZAzybhjyOhHsdRgIZGWXDuMJ1ZnGdLP6cll0sgrmWQO+pk3PkbrJfSRYX9kvDdsw2jTtovjHI+pkU1naJvglk5gcWjDj+BGBUtZ8eAPa7oNFjymeUcnM+sHLN+hmqGl3ZH4QZAup2vCRABxwa12SEYEFI/6hggVNZbw2uH53ps8DiagKgweeuqO41sTw7Xcamt8rIeJjim4KeX/9Mx8jDjhxJfzxaxnghIQO4wcjbLcn6MjuFcP0AZXrseGGDX9+qT7HuXc6hP7oMMaF02OWHgB5W0juW6WabE2/UgLWdHFt7OI7tY8cxi9jujT6fNbTdXXGR8OIfzONd55/+5oeaECWFgGcz1mASrupgvbiPM+mS5W6vVau0iNeBttVqtHZTH06jGSR5T8zzM2NEwuY7D+rQEcOGF6/abybNyga4avwCqzB8cL16shDsGXrgGc+DdM7Wvxn8Vrl9MTjjEy+ObhLsGpc4Tj0USiK3Kz4R3HqMzFk8gh7EgBmmr5LFiXsvjoVG5Ntjdechri/ljCYtsj/8xmDInoU2loWLJPI3jDHiJR/rppc7bNUPykFH6RjzJzBEXp4x9OYexcrVfXp7otpruIjnfK/KPAN7FtLlnz7SeFnrZQAAELJEHJKV1HC8ColAMFROIrjKXT5GA7Ch8roGTO7GEjqTNs1DuECr+uJBgv/2AEIYrFIVvX6ykEb83Pp402bTaBN/wxYSeckg/rk6XoRX55bdppvX0qrzPPAQIejaT/VwX4JMzeFm3sn5gmu40eDbGVoTcPBM8OR2GsZ588I3J//va5LH/N7TPSQNeSucydR4e6wbjcnLn4ocI8hMYzTGESZ67nqQPGH8nXCxfXc/SX63j7bxyeRouZjlk3cJfUv1u9yEJGjOf6xxm+1jSRL5TV5iVz5cv5OwWYefEE9+zv7LlOZ1oTrykDGlHEJ84+Ubjfir7EKfHdSjLwfCYvMp66/TQ1xG3upn4xXTus93ne0mM25YnIXAMbygPvK19Dgdhid1qtVq7TA14W61W6zTUyAhoBB8ZmzDewEiJ88vdQHKQeu4tozie2dMgqcQzfVnk1jiq4CdWrR7XAIDTWtWglvGex0cjIJbpJX0nKtxjmCUljxmFW/vSv3IqLZIz3Q1xT3+dSBlxLP56zdywiB0Zdpa82pxxO7yNcT3fDVBtrJVM7Fhx9Ng8rYb93iG3C/MHT9zkpJAnM6qNePU216j8mT0VbO6Z1s45d5ouf980XyotukgkJ3qGx5FB6Uc1M9Xgwy/pMolPwII1GAlaNRNEJpjMG4rmeflCOOKcheW0ZBwTZBn+GOo4rj4PPxx02BS0O61VHZghVVoAH3mr3jWhvTtYh2UgxP82m7dlM3mSYBE4ntDOAJg6g8Ug4lrpL8V5nzOPdtfgdPE/MClBogFjTmgY+hJffBw5b+honKaEqnxPKOrf7BjfM8ZuExybZvw07FGdzRu385LZI8LDMhkLzgSNtgK2gPYcO/KjOgKUxD/br63qXd/J54qHX9JGOm1N6nrtCR3HxXUh26TDdZvh4csTA54QcP0hfW5XBuK2cM1P181sS3kDSsjLZJMth92OiDvH0V5HLhlIv62jmTUlPFZ8GNqmT133g1XPCuT6Jkl8s1yPQznBuZM6XeLRarXOLDXgbbVarTNcGEIdDzRNuDkaxyYL8WrjNKzJ8QtheMzjOHwwHlgT1BpsOW7XRafTw3/r1AtmwQrS5D/Zdjy+NFtKi2CPefk/WVLJRmWWj7UPXjhGGmDRN8C/4KtegU9bh61ybP3OWNsMEz+9HAsAv2JjMU3nnDttbh7235KA09ap6SfDECEBKJ+cR1h1Tllz2XeMC2wViEyQMSqMLCwqgMOwZaQz2vDasCYLMjvtBGhsXNeuBAzpOD4tciH3gBPS4fMTWNHJp49dKlVasVJWI4CVaTOIJp40KgNfL1MZ+fU1GHNdIY61MftJQzaAM8Dn/LSgxSrR9RF4jr/RUbnm7InzhrppaFaqcOu3uqb9BNmvaVrUUvaePHEZc23K3nnp2eL0b5r57TwnTa7//iQO6e6CNHiml3JwPhA38g847LLNuJB+8sN5nu2AOkWcWcrvYxOE0rd46YNheKaZeDkvXdcM0XMiyuXhPLUl+sg6OYEsx3Fe9oPOC9cnx4WbhOuqLY4dHi+DcNyzTZPfxBFoS9z4v8qqZhpdb70Sgnyr/+s41yuuUee1i4ZWq7UL1YC31Wq1znDZMOdUAssRPD4V55xO+dPa3WJcD1uzcSNjZuRxvbkGnAmvAGlkZI5lxsG1vcrZ7DEZnY8x6OUYcx3+HxlpVVqLy8JAbISFMaC5BnGBrZabho2N5bRnz+a0gPom3DCUGUUyYaOBpsFtCZPjCqcAw4ieryocA9Rcdg3MsTUhUBBgiA9g/Nj4RWuGV4ZSNgN3XDjHMM+Vj3glBHVe4T6B/710woDTclxcoMB3z1TYGphr5Gyf97ui2OSb42z5aAu8LD/nh38D7mdcSrms3ctV+N2m7Z7Z4HzDL84BBibIG82SGjbW77YozAaPa4Cqz+Q9+QLowgk/ZT+yFHaZpsUz8TXMzHbktLoMPPniaxnG0vFkvaDdGZYCTB1X9wWZt752fdaLBEZ5aThLmvOlhAliR+C3lEsf3ME6b5y/tDccnueSDOfPCN6OVgpYzqdRO7RFOcdRlzIPsu0m7HVaPatpqMyqietdb6uN1bKx+uQlD+7T3Y9gWZ19gC2qmQzxPsKpdmAIbNBOWm3N32q1WrtEDXhbrVar1Wq1jqGcIGDc7XGuGQfHwI041i9v86r7ZJAOD5l9cS7/w00MdglrJLMKh1UqfkU4WMIXNyXNrC43EyROuGi96qrFdM75e6e1vYf96hpeGNjaVYIzDwBlUEpkavBfAAGTaFtRkhkJqJyJaYFHATshxAUAZUfJhp4GtnkNwnCafAwWmoSb1oOOZwLvBN8jS+cEWBw3gkOc77TjnxQ/PwazrkQc7/0GeVaCx7QYJX/ZZ2tPysnXxeLVeWKwhZsAX6N+c510vlMnDKLzmijTnrAtYamtnjPf6xo1QUAcC1w57+zbxelJC2kDuoTpTh8wmbpNe8O3Mmmq61V+4ZDfdZl2ZlAIcE8ISJy4Zk7yWG7DfGY5ub5wToLQPM5lRHqQYT5W2rT/Oo5VAW7XpZHPLPokXt5I+I5TTtokNM5rZac+qnM5STI6fnS+rVyPBYpJAxbPdex737u1/6KLtm4K5dOLugx8rU+3K8KtMCqPyAuDWfsnrptPibfg2re1Jw/po3Ni5wxepXW6xKPVap1ZasDbarVarVardZxi/OyxPYykhOEVK6PNYAx4a8NVpg0dPf5PIy4b3/E/4Y6M7kbx9j6ua+YC0ynV2LzG1byLqozm6rgav2M4ZXcPsNjZkHS5Pq3v2TMtSCQJ8kEerCfkMKCyf08G/vjPrd/LB6NJekXQifVybX5LXzXOGOJo61bDT8y3/VZJrNKoGAarXoZN2kp2xnxtZCEhVlpoGjgDeyp/Ki8MMFdBbt6WWb9d//rXBDKGk6NZgoRyloFSWiCmX00sO20N6vLwC9FGZTfKK18fkGnoab8rzhcfYwhox/eUvfPW1yXu7ggSto9e5uWXWjlOpCFhsfPA1uj1iasUrErrO6Db9cJ+axNOkz90NsDgBO5sOSngtkwH47rk7yy7d57aV7bBvetw1k9PhGSdTeDptokFrtt91v/shEkjQHxkDe0O0y9jNER1GZMPhvF2mUAdZXLAdWNkae9ZQR9nq3Tqx8gNS+0rkEt66zx+o4+uONckXFn0Eh5t3OVVx9X57rfplwG8BtdZXkBd97e20F/lv7nVarXOcnXP12q1Wq1Wq3UdBJcpMT6221LGx8UKcG9gIAor8Tg0eRBjYrtWSM7HZ3KSPI/jOIe42PAMcMs4mrG2V1WzuhZOYMNC4rD/wDTt3bd5dKLIEAAWJr+4NeDYtOpLq7OyKi0YWef6jfdY+RbwABLaQbktXR0n+/kcWeOO4IFhoX8DPpcMJlxY+RuWjxWerfv8ki1kKGwg6ZcS+bqGpIbVhANIxe+rfY9QeV3ACS0BVbaoG8mQ2XnjeHlmg3TYepv/+W4rRzeEdBORx2UZuxFk/qUlYwkw5YYO4PI5mdcu+2yICesTLLqBJ7B3uHbf4IZP3hlguk4RDzowg/O0QjdU8yfH0A6yLtTvWPjan633Owz/7rpOnA05nRfpQiN9JWcHSvkTpjtB2mf60TYczwkL8jbhvzvW+t0+nwG3HFttEWDseNiymNlAT0Lw6fC4JvlCm3b8HK/ML+pnlV1tWDTf5CZb4VUcC/IWtK0wa8INFw3UJa6DGxJckZRsReyJCJcxZcXNkvZY4dBeqFOckxburVartQvUgLfVarVarVbrOsqWvDXGZNWpOSXMjHF/GuQxRrdbSvhhGmKZXVgjozRzEW+OE9fBhy5Wx7Ahw9xKW22XX34knsnCGNMXL9y7uTHtWT80La6WOwUSmRDIwMODdDIAi9+6uM2d6/ull25BhfofMFKRACJgAUfmONO89NuZ58Q444mTfW6uKhzSCMwmkwA4I4vPdGPgcwym07LWAI+8MtBNNw5Avcpzw0qgNcfkeaTZQIx8TEfTlKvzx8DNEI40JLC0ZS0iXiyDd9nZMjuhHputBYmjG4zP57p+ERwQynGjnmD56fxPjcBsfhpK87/9txqGjgB+KV9wxnd3RBWm66YtT4GJHEs7wirfHYzjnOlOOE2c7Xc6LTdLOdtE/jj9hG1r82pblFeFASR1/XFee1KFNsCkT042Ef+0HE8Q6XL25JTLGStt1yvSU/0ZZch5npThk5uHfUxTP/2/42H3JLhQqAkz1yU6f7/ojHzk5YP2MVzH1RIP8o52Tl9Bu6BMgNM5YeZ8dL3Ne4XdNeQkyAfgpqFdNLRarTNdDXhbrVar1Wq1rqMYv2IsakNKxqswx2SJHssmD+J8G5baSCtlNuAxfboazbCT/aWRGquNK13FVlnxn0Z45APhXX75Yj7mehduThubW3BoYZ+Jtvw0yWZjCW8ByLqwXxRk6GHQ4QxAwNUEu4ZR+dK1hEcJD7g2sAvXBpzDNQDBaclbIr724UtG8rI2+/4gHgYmfvsfb8fDApO0G/zhGxQoVBXTFs5sdj3h9HMtQzUDx4SZgGYDrlUVmDqBafuoDFx+QHyHnXTGcPBY5c9vttIeAVjX2axnnOfzPYtyLGXdcZj87visym83dDdSdw6eRcLVBNfybFL6pWVjKQKAm2N9/ZykSAhsIH4sy2X/npA09/t/d6wJVbO8DZtdB1wedhliAD1yzeE24c+MP+3RafUnYVffV3lVwBe/2HUNXihZ4VZfCeB1/0S8nQe2jnd8yo+u4X2VLy4YALnUZ9JVcQDmloDidqFhgG2LYfowu+sgvrQdBBwmvdnv2FVD5l+r1WrtMjXgbbVarVar1foAZHet8DVWuiZvKdV4HEM6jNZgasVP/N4jwk6ehNKIzjzNzMRGsyXCTuZgQ0TON4fkfDwrwGD9kjdUvPG88xbT2p6901pdoMx6vXTWYDNfyEUG1b4CqLbKAuYB3YC4pti23Esw44Sn74qRvwn+dxwM17x8nEKq+BSc4WVCAMzKrCrkTK8riSEG13Z+EecKrzKZFxslxbdVrvMFiGzw5N8N+qrMsPJz2McCu5TPyGWEQaOPdb6mhS9wyflEujzjYLcD5NcquDeytnb8nG8JE3NZPNaN6Q90BCt9vYSeCbZcJ2l89kFsqOjr2OR+NIFQ7cmgjo5oNMFh/yzUDep05h3nOB+zbbsu2xUAdYTfcgnCCKaOYG/m78ging6OsqSeVJr8gjOXR0LbvPZoEifhclr9uj3lOaSbuBXgrbx55zuPWLBSdr4G5VhyWvJlZvSNrr91rvto6gWzfF7aQR7SvnlppF8uV6r+DjDMigjimJMPblP4M3c75HqkN/134+qB641umK1Wq3WWqwFvq9VqtVqt1gcosxbYhff5HVGwS3MVr4aH7+VvXi3LuD9XmdvVLWNos4IR2E1OwTF2aeh41O81ni8W4BfJ2c0oTGh2n1qsac+eaW3fvmlRP/jFO9DwfDEUL1BLC0gvIbcLBay4Rv5HbSUM0DFoNtDjfL4XDMONQVrEVQbY/QOFYbjwvvdtwZn6v1xJrAKHhloOG8BiazXAVB1jgGXwSt4aiJGnae1Wwv8GS6ztz9OWeFQCg1YXvi3nyOcEkiyfTzhG3P32QcNdwnNl5uVb7Pe13RASNLvc3QAMBZ0/CfD5jWs5322R7jDyPJvv53H5nf/tHznjZCBeor46jj4XYOzznd7KWzoVpzGtfQ2oM1/86fTYLQHtlXqZ0DLPteW2+wPXRe+nPFiKgC8azgFw2l+xZ+bI/5FLAKfHcl3LduQyddnSP3Et4s7Ngr6JF7llR+4yod8gb6sf4yZi/7z4ys23ZrrtMSPpukQf50kvbnDOG0Ng5wtwl2t5RQLX4DjqVLpecPmOQPp18MHrarTTynmzVqvVOh414G21Wq1Wq9U6SQLWMs5kszEUxlJmcnAqfoNFMAbGwNKsza4WSnanmUZr/OaxeRqRmmH4WK5P2mAhxS6LlVz/+lsMs96zQzo4f4sxLorxTufYEpSBOZZffplXCeiLfwtbmwFkWA7MvhKZURfGdQL7DYtdSCQ+M8MZTFwoPB+Dkgzwdj0sd7F+dKEZTLjSsBw7LSANtDgPQJM+cw2MsRz2i9sMuU02DN2oiKV8cZMha4EilwPhA6UMfrFAxPIvl1yTFlxVOL4JbIH6CToNzlym3u+8Mk3J/6kvduGQZZeWq1i4GqY7nynjUlkh+7oZT28GoZku/28w5nxz2hLuZrpzGb9nmDgnr+trpZx3JZYrcK7rIj6qPdngvoNreIYrr+v84tiKQ3VWnonzhFNCWLuwMNhelT7C8jEGnHmubxLVX9WkjdsJEBbn5yWAK+XHJBPlQ1317B7LLTiXOlr/G7p60oH88QQTaXD+AaAz710u7hfqHPvfdT0nPT6XeNk6mWOq7yFtvum0i4ZWq7VL1YC31Wq1Wq1W6yTJxm41JsWVbBo61TgeAzmMyswhR6vAS3AWXDBWGLgstSGkVzjb8GrEhsww+IRjMI5nzOzV38VJik1VXIlPQV7Hq/bjCnbvhRvT2sbBaeGXeNUBRNQmw4ADAyXTac4H3hhy2pKWRAInc2k+IDPdG5Tq+Eoky4WBiX4xmWEEhWd/nnW+wVSJDOQ7abOloJcyA7s8I2DARdgGe7ZuBsSM3EJQwOkmYbTkHDBpkW5XNOcvafAy6xKuNWy9mBB/5EbB8LOOYVl2Ql2boifIz3AddoLuUboT3vlYfsvGZOtXOgMmNzhmNFlg2JiWsW4XmXaU5zvcqrvAO5e9ITrh0R7dXpxWp995POqEKH8gtzs64mBA7QkFh5lll2XhDnE0oZI+a50G4uClFDkxkqCfWTyu64418wfZUp12zPEFdkv0Qcyu8UJJ94WEwWxi3Xjsu5bv7l8Bx+SD82LkcmGUv4DmrFuUdZrEki+kMWctycecLMh2T/q8goL6RN1uwNtqtXahGvC2Wq1Wq9VqnSSxyhZjT7vPtBvYNBLLl6Wb55VsiMXY1+NnOIQNt8xB87pWGkUlC0sXmrBHjL/qPDwv2FqZcIrh7t27mPYfmKa96xtHIlqAoQ4ypbYfUyAMrgrqvAJSttokA4CbWMjaYs+ZQyEBM7AgNSTDXNqZzzXr+LKkM8EmM4h3CSibS9lN/zmXwqUiUGkMhgAZfmOf4w0IsRsDoLQLkbBtHZuVbVRZiAcm2obmRfcBcmlBXMI/rWcXSCfXMCi2Errl/wneSI+tmYmXQaGhJvtHsDbrQVp4Op9WAaUEkJnHCRhXWaLaKjKhmcP1bEzGg7qRkwU+/3jSMwKsTpfruTsiw70RrM38GG0jOO9PT1AkPPSxXNv1J0G3f+MYW/E7zZ4Bu7Y8dFkRN0/OVNu83vWOhIHFKwATy1VPiuBDGLcKpKP+r5k3LPgvuOCaVsD43UmXFUzIuA912dIHUL70t3YPY1c4rpdMnBnu00d4oofrGkBjheyJOx+PVfEJyosrdlqnSzxardaZpQa8rVar1Wq1WidRNYYudmc/u4zRSwlm+c44lTEvRlfwRa9yZbxtfmcWke4tR0aI1siIbWR4xjUrLfDZCr/cNVSaL7xwiyXUbxiaEb/ioovz1qfN9Y1pYQs6L4/GbyQAkEG64ZChAhmObMVrqFfH5Nvd0xLRv9mSMbe6PgAEcAp8tXUo39PKzAVeptxYyQFgOM6FnSbgq6BubobC9X8tA09Am4DQeZvwDnBteARQdQXxcmrCyZci8d3hA7xWzUgkFCQ/EmgaZI6W74++5zHp/9np9PHOD8fJxxhoZqMapTHzxkCW/02AnEbyEf+nq4Ao5U+ep+uQEfh1vqay3TgcA33ngcsyAT5hppVn5h+fmVe5LycCLENn57+vbejoMFddy/t8beexoScdpq14aXPcEAC8xIebCzcbzseynboBDK5PLILTetnuGlzP3Hbdv9EHUt/dNp1Pzkf7OcYS1+3XM5meIMAFA5Nv9C+etCCex6qjrVardZarAW+r1Wq1Wq3WSVaNycvICqMqjJMMdu1NwKt67e4zjdDM7YoFmh2akxKWmU1yu1Xfc+N3v9PH43Rfq94jVszyoouOdjuxdcxiurren7V3c1qfDkwLW4H5QBJmGAJYZEl5UWQ7HCZDnKFEsj7xhUtYfPdSYVxG1Cc+ZWvjTfBkcu3zS4Jw2WCY4UxLtw3sA9akb8qEXiW/9Y7rAOgS7gGFmGngWIMaZh58jfxO/rgC2VIZazniRhlU3mIhyLFpyewKB8QZLem2nH+Ek1aXDt+WhWlRaZhnGOQ4kq6EVCPLV8tw10AsYVSCUGTo7vglCCWO7Ld/mBKW765zTofzlXRWvcFHzPyGRF2v6j3tz2k9VnlVvKpDcF7m+aSX9Nkakxkvy/mTndSqDsz7R9a8zKIZIrtOOh8cZ8JgVg7f0g7H16Vfsu9gJnhGcNdwFut5t3vOw7+u89JtntUNnJv9RfUTZYlvi91R/tRxxNl5WSIu+BF2H+z8SPcWtkgn3uS9ywLAyw3SEzgO1+lvtVqtXabu+VqtVqvVarVOsmy0xtjf1rQ2UjV/87i6GIvHx/A9+IvfmZXGd3ARNlxoInMPc4gRk+B4IDXeEmocDwe1u8c65r3vPWJdjPFV8Yd9+7ZeuDYtIuBSBWyfugURKpHADMyiK1JYoJVFKkt9TcxJmGEf372EGEjCEmhbogGVDRwSvgJQ7AbBlp4GoV7a7HPtK5h0loCpuUzc1/CycNJU8gvqXOhYMfM5sti0/0pbCyYwI7+8vJoCJ09WWdIZXI6gaVqAOp+JNxbdCez4bjcNjrvB7yheNCDy3nnjcGyNatDnMnPDTStcp43fKEPCs49hA+WctfH+tP7muBEg5xjihzsNJgns4zmtyLO9ZP0gbE8kEI9RZ5TgGgvVzJOE4s7bBOc+Lju4tAClvgBc6Reynoza4cjthz8N4gGuBpjkiSe5OB8/5Ux6pdVszaZVnGuz5S79jv321HdAsWEwk1ucz7XdvrnxAJSBxZQvs41ZzwDaOQOZbSJvNvRtnhjwZITrnftoimZtbTpRL7ztoqHVap3pasDbarVarVardYpkV6l2yWDAy1g9fe8m92NMC4vEcDTH+7C+2mCUI8NMwk4u5u92jVvhw1fNM3mPGAyoVMeXS4ZilHAiwtriG4dBAJaklRgTa8ORChS/keULAotcW8UZohqskilABgCkrU+BOC4AQF19FsVOfxhJ6BOGluyTg+unBaXjWGkqYG13BxRUWqMlnCNM4mfrSyt93RJXXDl4BoL9hlAG0ragA+RhRZjAOS2SXckMQ0eAzvDM1rF8cm2fi/WygRN1LUG9rTQJ0/FKK9wEjP4tXXE4HPLSLjWcR053uocYaQRUc2aGuNvXq6GwZ5+cTizVaQd295D5ZZiXMmCkw7IlK/F1/SvhroBrO09HdcidpOuv97u8VgFpn0M+uE9JIOwJhlVlUGLSpvzqApDd19HJ0s498VHlwHIQoCpLQyq88otjC2ADV08o4Ge3wsWXuR2nO92+QdgSuK4HoCZ+njCxv1zyx5bG2XYMfX3dnAgDvPuYjGfC77bgbbVau1Dd87VarVar1WqdZNmYzJwuQay5nK1x4UCMU82G8GBgHmL2wTHJS5NxpFEozNN8woZWMAgzSdioV9niwaCYhg3R6pN3ky33rE+LQzrZcA6zYOi1TZmw6AXgGBCnI+KSI+lMxjIQUFuyj1CuU/8bMCHCNzjmfMMyg78Egc5kMt5LkdMydQQCCcu/kV7DFK5nH5UufOLvOCagNIS1qLC2tMsKPgK9aXHpdBrsJCB35eVYAz1gud18cK0RXHd5sM/nuMHwu/Nnlald+jd2GbpcLV/PcC7PzfMdV9eFESjPMmZflu3IvcOoDuTEhiE1cfO5tDe7+3DcaQ+ci7PvEi5HnEdZZplPvobdpdhdARMXtiwmvr5GlpHD9tst0zqXPo3JI47lN+Al/Y796RbsrvCqj/N1atLrhjc8AozJc69IyI6cuNj1A+3LaUlwWtfGPQcwPcuZ8AGrtiYmjm4rzl/np+Pr85wGQ+NDh7aisr4+HV4fMi3nvGvM0Wq1dp+652u1Wq1Wq9U6yarxaBljMi6uMXoZWtmS16zBfIQV3YxlbZzGC85giIz1S3AuuCjHjjgT8pjari6TmeCCodKCYWp9h4dgCMiYHz5hIF37y83j2tpiOjStTYvNzWlBJgEI6wA0Wk6+KhEGcLZWTAAIKCSCnG9KbUvF+g4stG+NtGQEVJiA+/oJ1QwHfS18C48sJZ0PgJwEgpl29uEzk/xJUGnLU8efY0aQy9DWYI14A828BBswZFib5UiYLjegleNE3Jk5cDxZRk7aEtwlJHY+ZGMZzYa4HDxJ4bqYeZTfE3aNLBpHoDbz37+hDJv2lcc6z1eFn/sz/0eA25A5X7BGuVa7ypfx+dy0nM34GZLmcginOycdSli6Eq6XF1DnvITCnbEnd8hrt0fSZN/itp52m6JNYFFb/WG11YK3ta9+t3sMrNILjt/4xkfeaOl6bpcbBsikmbDcQXtSye0UlzHcyC67bOu3suQlHfQnpMnW9KV0n+DrkK85E0lcV7myAEqvrc0wdzk7Y6j7ymL+u1ysz9Haq2Z/PGoXDa1W60xXA95Wq9VqtVqtUyRcG2LRCh8stoEFLuNsxtj4y/VnyVAYnuCVsjZ4TCNFrwS3kZaPK5lBcR4eDTiv4g0vROwHBGN8BYyu37fg7hHge+H5a9M6CQReIEOLEpBjlSUdloFpGQq85eVAJS9HzkhzLeBDJbZ8TQCAeEGb4QYgyNaghp3IVpIUVhJ8jqvrpGVuvhwpKbzj4muTB5k3I9+hlIWtqo81O+A4cDww3BaCaf2c8N7HZXyYrXCe2uoPv6Il0m9XESUqreGq892QMUGs9xlCOX85Ps+xFaXz8lhg1Of5N8chj/c5o+OJW8aJ/asga/52PEA488ph+beS62x2SsizYqNJB5djpsvHOO9Gb6R0mSLCymunBf7I6nnkWoK+hc7b8cYHblnlMtHDTcDLJur7DW5w9Mse7WLG7j0MdzMf6DOdDuAubTetiqtd4U+Xya+84dhFAzcC17na7L7B9dzHOH8Ox3k599WHv6+tT4u1w2B3WWB3mgHvcrk+7b96MUdt72Ej8Var1dotasDbarVarVardQpV498auzOuxcq2xtZ+51BtvCsHF4v5Di0bYPrFZmZGjKu9maEgj/XTejfH/MTP1+Oc5Ft+cVzxANJfDK4MwND6+tp0/r6CIFtgZbHYGqQfRakrA2y5CZioN7yZcANnnGBDRQCoAZCtKoESgER/Gqw4DgAKv1grX7SW/jlIn6m+AZjhMFDHPnmRASHxBKxyLUCT4ZAhE9dLaJeg0L5GDeocd5fXyCpzlN+WIbnzi8pJ2E4fccCikdmTkUVx+iVNqI7cmAyeR9c02KrKXXFwnXPZGM47bs4nW3M7P9OFSZaVrZzTct3lnbNJjpfTn2XsjsKb45xlbIfctN9MM+0GUDlyE1HC7zaAPuNAmI5LdnQuV8+KIedLgmnnK+fREVPXWc4wsnQ3hDZo5XjaTOVDgd0CvJ7YAtBWn1fn1HKQOrZ+r09uLhVmUU2ni5tJxsVwt8LA2r3EpBvHlbUuS0FYYUE4dZ7bhyxrt+sW+WGraUNf+jfHkzi4T93uA5bTocXGDHWn5WI6VPNUh4u/DKDrs7Kqgr/+9Y+uSq1Wq3W2qwFvq9VqtVqt1ilWjY8Lbo4M9xjD11iZjffpILt55fzkaLAeVrv62DQsTGOukVFeckDAbY29zZRYbQ3MhRvZ3S0ub+Fv6+uL6YorltO+zbVpz9qh6eD6xrRecIMXjRl2mUAX3CAhftGaE0mEOd/kmSXJ/AZ9Bvw4k7D8xWq34AaUGziSdBsL1rQYRAavtnKjAF1gNtkeAUEvES/A6GOcPv43BHdabZFs679RZUmASIHXeWkpOAKjxMVgmUpbqk8aAP8Dgkb+QOxDhLJxxa/jcAFS9St9E3s2I/OYONo62VDXS/Cpo2kKb6DocnA9c37ab4snFDIPXbfSutRtwsAy24nrWwLPTEPKcfB5adXM9alvzj/qHr5lM13E264UDLvTZ3TW2/xOXSEudquQ5WtQm2nNDhMrWdd/rmeLXWbsqMvsq+/48WFmz5Mq7i+qk+WtlqVaXeC+whMJzLCNrOdZ0YB/Y9LFRFHCc0PbbDPkaW20Vyx+LSYuiA9WwsBe5edsqVs+dA8dnCf9Zp+6ZbU7rU3L6dB01f616cCBLStd3K/zbklWyOQc0vGoXTS0Wq0zXQ14W61Wq9VqtU6xbGhnMdZPsGujOwavRwPSI+eX4Gx8T9eKhrVpiJe8wmzJxmpmVcgGk4Bd/17CpSTuHo4yUqz1tlddNa3Po3gt7yciBjH5IjIDB1vKAjiwOstjgSFcoyJY9L0iWN+BELaQNfixJSkwkXP98jbDXMJxeLayNBA1FHN+ULiIGQD7wHQBO3xDX1cESDzXYb9f3DQKk3ga6Njk2+k1KDPgJE8BvDQEwA/n+xzD4wR5q0CorQ4Jj7x03hBOQu7R7EdaalJWRZhsjep8OZaAnWmFykY9cvxGDdffM+4jOOy8GLkY4TyOTdcWjoPbldua61G+kAsoj+Wp/bWm+5CEyU5LWt/mfsNiX9/tmra7ynWG61a+lMwvWDOM5n93wgVVAa+VH/XdUBefNuQzkxdMaBGOrYjdN1JWwGLX7zqGto7v3xJh272KXaYQdh2Hda0tdPnOOfSR9CP2xe18q9/e/e6tG8Thm8Oh9Ur74aDXKq3r08HlYrp6/xbQ3b9/fXr/+xfbRcXLPO2hovbxDr9Wq9XaTWrA22q1Wq1Wq7VDYuztl6anQRxGVVgqYciVxoA2XPR7tMxDRwZyI/aUXKWU72hi3I5LRoNlWAH8jrTVcTCF/fsX0+VXrk8XbO6Z1q88bIkG6LCVrS1m62QSmpaFtkz0C76AN2Q49NnwrDK0loI74zCtzsQCcImHLWkNkykIQ1zLQIy4Gf6WKpyy2PM5tWFVXFv6LjaFd+EnfLVFouNt35c+znEknoAtw6xR5RlZRtrytPLf4MyNwyAWKOdz/WZB8szgkuNc+Ud5npXf3xMcjhrNCLgnZPd1Mx6+vi0/jwVy+T8huK+dZe5rGhZnXNypuHPKtI3iM0qjy4Rr4tfV9ZX8c3lmncmwU6M6n7NTefwo32m/mf9pWW3Aa7Cf5edZvPqs/GXWC5BL++N77ecanjjiHENdPu1mAbn86ntZtNsKvW4w5dugALTrvF1LGDh78oy8Aijb5Q1xod0eqpeg6cWPN7jBtFD7WGysT/sPLqb9h7u4+rmideWVW4CX7q/kbpgJThYz2O3Q8Sq7gp3UtVXxVqvVGqkBb6vVarVardYOK9+NBWfD/YGNLM3WvPo7LZjgbhh5leCk+d0MgrE6LM0D5WSlZp4YeDG2t0sJ85oSBmo1aJ+mzen8c9em9fe/b1pwYC7lJtG27vWLkQxyOA+fEYYQnA+8JQH8b0vCSlTBjtoq83kzHhDHVoMFYeyUmAJyWjjWUG0VsDJ0BZhwDMvagTJOk9PpvKIw/BIog/SEP64Mjp/NuW2BOYLAHG+gZ3jIflsVO+15jvfnsQ4zLYhtWeiygwQZVo2uQZjHAqU+x9egAYzAesJ9zs28z7S4TPkOGDVsWxU/frO7ilEepKU7Mvz3PupGLhfgODoKrmcA6zBGQN0dCvlkgJlULsHqKgidyjiRl4ar2S/Zly6fto4lPcBaw/L6v3zc0rfkEg7nZU5aGM6mRS/uEchPvzQNyGw4zCRXQV/8/NpdCNch70hPhY2fBG5IvjFxHvnHrF+9/Wxjz7RcLqfF5vq0XB6algeX8/vTrr5qMb3/ysW23/aCu3UJv2CUbCU4T2zinj09RLRardZuUAPeVqvVarVarR0SK+Tf8Y6jDaTwyVu/eflprn7FCAr2gVGnjSHtbhXulAwomRlbrqotEQfYDUzBfDNXvHNtDLps1VvLbffs2ZjO2XfutHjfe4+M5r1MOC0syTwSkoCQT0CDE2toYXcATsDInwaJwYzM5l65ZN2Wp+l6IZfhs7+IBoDMPjr8kqq6dvndNF339R1P0uU4AHAN0YgrsHdkwjaypCWfDI8TZCYQsysNAzr7Q02Q5vIgbwwjbaXsOOA+gmuTPv5PU/njhYAGz2kl67LAzBCLb4Nfw+Y0GySfcyZl5AIBGcYZkhqwk2++htPjfDZUdFpdXvndIDHhvF84yLL9EdR3maYFrIF01nfXlwSRWWbO6wS6BtPkmc/1NdJdhS3gHX86YOCt/Xjf6EZbvxdcLd/jtv6nnIhnTlYRpidZEk5ne2ViIX38EG4BXt+I8IFgK9x8+yfgFlcTnHs47LnENg6/THM7r7ba76Hl2nTgYFnmrk/7DxwBtAV2eREpE5w0I+43dMN0BexLF8KtVqu1m9SAt9VqtVqtVmuHBFerAW2uUGY8bk7lMbvfv2VXDqsYWhrBEt6Ia/k3G3phnGUj0AoXQ1LYgJmfeWMJK1+Ywpbl72LaPG9zWuzZMy146ZJdERCwAReZQ4IrojZzdqTzjTuGWWRoEfWCpwmOiAdw9dJLj357POEhoI5Bmz+RgRb7C6bYLQS/Uwl4IRyZbwI/qly2HjVUJL5Y1hkWGYQxk5AWn85Dg760Vh1BRO8zhKR8KRcA56p89oyDgWXmB/8zEcDLsDiPcEyLnEerws28zoaToNFwMQE8xxnI0jlw7TSFJw1e/k7YGd+sh1yPdpKTEJnvWaYJtRPoO+/skxr4mfWA+NvalfL3tW0N73zjWLcxx8PlDLgcTUJwXrpYIR65sa/aJS4PSB+w07/ZVw1lWPWxqKb92o46X3ewBsGUhZdweL/bPOlOP85uS0wk0R+4LHgpm+tS/Qa8Vj2fX4w2x332tD67XlhOi+nQoUW9O2266rDhb7nqKbZN1829jGpDNaxj6R5JakWTKsYnURjN0V2b8v64kzpd4tFqtc4sNeBttVqtVqvV2iGZH5RYOc44Hv5WSj6IxZKNqOCddqXqsAknB8GjsT6/M073WN+MxQaJDLANes0cvJLYq7RroH7lxjSde85509rVV0+LSojpMKP5dD3AqJ4l0fikMPnm2JFFJAKSYA0H8MTy01aVBXLqpWwk3LSdQiGRBle5JWAmDQYxji9OmMlEZ6qhm5fpUwi2rEywzIvIfF3SbSfLhO80GPQYHBJ2giNbiPpa/G+LRVdCgDcgi3NHbgUcJwPTjFvmwbGgbsJFQ0fiSzydBjcSpyHTZuhoZ9cJMtNyNxutG57rUFpXZ/xc9gaCIwjuPHH58ek6Rpsd1T1PDjjeVtYlw05MNensRvXO185rJcgfdWoZF4A616E8eDmgrXYNeF2mgFOWMuAqxJbp7hP4rSxk7QIjfRA4Pz054/rifCTuaeHtiQIANGHaoll9y/Jw2rd96R5O93Jamw5WVtbc1NWL6WDdrw7z8CuuWBzlW96LDLifeWVKMXCKHC813G+YB7Rv3uqmW61Wa7epAW+r1Wq1Wq3WDgk+maqBrI0pSzlOZxBMGADeUhrKMYCGcwJrGY/bO4F5B4ZZ5hVmCJxn1xH2u8sA3PwOBgvXwvXtbMW7Z2ParDeq1wvPAAyAjRrhQwGcaVwYC00SZrMugw1gmq1FgS0khkzHereIhF9whH/fUpEGfPMW+K1jC/gYoNmKMTMGaFmfFS7rkRPWcDyEw+mHghh4Qj6oEIZZFBLEhIoBGKdi2ULUy9JdSQzCnHcG2fbp4YrstCW4JAwDKPYZJpJ/pMvpIX+4LrAqzfsSRjstxHFk5Zpp8kv1+N3WoJnOBOWGaHYXkOn2/76OIb+v4Xz1/85j0kx9MuzLNLm8TedcLqvMIatOltWnQXTmeUJZxznBa8rtxJtBticNMm98TMmWsIaguCKoz0oPnaoBr33Sug0DeSnrka/dqi+1WqD6QwAyZYUVumfQSIPT7wmDrOOUs/Oc/icnbTjHdUuAeLnJi/KOWEYvl4vpqsNzRJWU972vrHePgFiaCu7NyZ6cz2PiMLtkfO0aAntFSavVau1GNeBttVqtVqvVOs1kXmd5vA3jY9AMF0zDQRuSwibzvTdmglwDRgFb8Kp2rm9OCS+FG9jAbmRsal6ED9+rrl5MG+dsTmvlqsHOhA08kQNhlG/ru4o0pl5kFPtMwIloAhbCqvXD0APTbkzMOJaCw/p4BCzTAtLxymNzeT7iumktGUukj1qqbagFkCZvgdsZL4BoVRgcYRpY2gI3y8bp8su/HJe0JLVVLvEwiCXNI/+hCVozDwC7wHEfl/nr+rUKMibk9e+2UjVgzFkXpz3z0FDayg4h8zuva4tQ8mMV6CU+Ps9hu67ZUnMVTF6VX4RnFxwOG7lMc5/dNxwLZkMMDfwNod3uXQdy0sIAnHMrvGobwF3ygpkr+gm+J2gegWjHGyfrwFz6srK2d54a6rtNuR/ztej/PKtX4Ve46bPc5as6tdxejnGk7u4/uJgWi41pfX05Z3l1m+VfHfc99T/NH8DreSZ3Ab6f1f3Hlr5+6SjH0q1xD2LRwolq1ZzETuh0iUer1Tqz1IC31Wq1Wq1W6zRUGq2ZBZRgNQyQGTTb0ItxusPy+5r87iOzL7t4sPElHBDLK9idrXcT+o6OgbvYgI10HNi7Nm0yqq9EcQCmvoaqfoFVRbhG+bVhQYubBX4HEibMBTLZRQIgtcKo65R1br1dHnKQMIXMr+MhFSYGdv9gv6kGc46Lzdk4BrLhCmEL3bQydeHVd15ND4TyEnygniGs10on7HT6RzA7rScNXH2uK7PL1WFwTEJXKlrSkBE09UxGxmFkoUqcR5CX2RKnd2RN7rJwmGk5Sjxcd1ZB2JFGZU88kWd5yLO0lqWR2yo6JyISuKZ7itFEQW5+E5Z9NzuvbUWb4diadATbE/578oOwXW8zfoTrl4nRxkgznSPheQIkrXT94jXOz7L1PuJhH7y2FHb6CMsTPs4jp8sdOmFX/tNvleUtfenBg9OC4/PNnWtr06FpbVpWF3Go/iy3Ie7a2mK2ruVlaWR1ZU+djmsFW+56Lsv3p/qsbrdU7s8NgMk+3k1pP/Z0+a1Wq7Xb1IC31Wq1Wq1W6zSUDRrNIhj81gDWbmrNEs0nSx6b16Aaayo4jTlCKXkPg2ngLda7WEoZ5NpQzGCXzYwPyFuqtACNNzcPW8c5AgTm0b331UUxTzZtRgVvAZa2ULS1bVmxAY39MqTaX5lmazkDLVsHGxA7Qw1pDcEMcL3cHQhHuByXFrR2ZpxOnbk2xKNoCMDLFaBkGEzcDNBcQRIOOi0Ow5aTpCktAp1WAz2OcXrtgiGX6o+AI8exLpyGQF4D6w3m+D/l3wzTuLb/T+i9Chxn3G3VmnUkLVVH4fm4tKDNNIxgPeEmTE8g73ykPWWYq+B7LlFIv8JZ7xLCWk4jbSzhNulxmdCXOEw7PPdEjF23GJQmsIUokheeJbOFb8kzaS63hLH+jfpqC3fS6Gt6f7YVl2X1lYRLx1vhVx9YYdBeCvoejsucU2XBOy1mlzokpb7jRQeAC7ytIPFyw7sq3T1yaXtZ8QQkx1fYJIl5v/p09Cn2UVVptVqt3aAGvK1Wq9VqtVqnoWrwiuGqwa15gt0nsBrY7+5hbO+V3azQhz3YbWR9EoYhbAmYXOeyHNacA45mrmOomy9ay//hs1u+eNenjcViWuAeAP+7AAqgJz4jDe1Y/g28AFyQaKzWDJ7stzdham2V0Te60ZEXItknsNcYA2octiEuJm1bFPtoOEwmQTFs6ck5AE6siskTjrMlr3/nfPwPlxL88AnYKiUsoqKklTHHOq0jq8q0zvT/tpY0UHQaDJFHgBRlumo/+e1jRkA6r7EKdOaxrpfkm2dHOM+NOQHfKqvmvJbTPIKeCVqdp+l/OMNKiJ5A3m+38kaacFFCZ8JskCGr2wz1qWSYvyqNnO845f70p22Y7Bko+xnO8Jxv9pcLtcRdC+HS59CBci0DXtLmNmE4nhCfPKFPG9UL+xH3ZI8to9mqH3PfQP2o3+dL0n6rPq5Py+WhLai7sRX/+r+OP3RoC+gWtOXlZ1Ut6jvZXvsqyoa7Jb8YDYDrqlP7DH355J7jqswkJmF5XiTnf45HniTdaZ0u8Wi1WmeWGvC2Wq1Wq9VqnaYySymZ/9W+WrFbBld+x09tNaBOl6mIFf4oGZ25RSn5owfyvKQ9DSY51i99N9CFQdiQ1rD5wMHFtFHQAYvU+l6J4kAsCCHgdr5IotJ6DWfAFQ5ADeBpR8V2m4D5mC2IKRRfE2hiC1uTCP4HflWcDZpHoDAhqF9+hD/ghFEZV+AW65jruuVmgoI18Pb5ac1rn6cuA0NKKqiPM9Aj/0nrCEQCQLmuLYVXyRaf/m303fnppe15HMcaMLqypgU3spWoG0OCSsJLy2+XQUJn8iOv4fwZwU7HhTBojJkvme8+l4ZMm3FD5hzyxL5isLp33STv7W7EMz2jPE2wzbG2EE/gm2XqcxKa5wv6qMu4WiBtHGP3C84TjueTDtXpyjqRNDLrF8eMQDdtvJTuG1z+uK1Ji+nDv82xWaxN+6fN6dAcvfVpfbGc9qwdmA4tKn6LaTmtT1fP/f9idpmAxxe6Q0AvUalj3AXB+6n2gNlSnVfn1zvl6v7C/cObu6nssjne83StVqu129SAt9VqtVqtVus01bEsimoQzLgeZghLYJDrcbzDMfSFucA3DFrZ7zefMxBPhmqDuHzhGuGbaXmgboNbuMXMS66+eloYqmDxZ/NiAxLe7sNy5rLwJUIQBcgAoIOMs2myM8dWt2SEHUk6cznOmUo4JVtEpskZGVKy82RM24BhBoEuIMNtfjfgAu4Cr2wxa0gH+E1zuIRCCbOpiLbCNUwlbiNgmxaxnsnIGQCgoYE+vzkNtoAGzjoehmfkCdf38n0DaVuKO49HsHoEpfM4l701ApSG9qmE1M630UQDn4a+Ltc8PtsE8NYULa1Pmd3hOOqxAWMC/ITxjr/rSB7jvLXfF/uNQUzy1KyY84vNnSN1wxMIlfY6F4ALzGU5Re2rfod+JScKOCbL3u06Iaz/dz6YZNK/0cm6fNLdw+E0zlee6/VhJLD/6ml9Wps2KvjFYjq42JgOLPYc7uoWc/HVfae62NrsZgFY6yhxr/Ax3Jfo0uguiT5Wwfye82z2cOOXsXEN5hOuy0vWWq1W60xXA95Wq9VqtVqtM1Q1oK2BdrEFXNaaM5pRpWGpLXdtjDoyemOQDt9kIG3LXMNd+JtBL/sSCBMP86t9ZWxWVmNcEJcE+ZKuUvp4LXhSb+aprTLGL77Cr6QhK2HikxILX6xkixRgAWtLRJZD2zExFnQGYoaVWCWzttgwlPXK9o/LccAyWzgSJvFxPnBdCol8sE/hEWjkd0N1p8fuKxJiGmxmJeK6xwKi/A5sBDJDdBx/jmWmwRXR8XGcbDVLWrmeIdkqOOrruL5Rh/ifT9dTEynqS5WJYbIhq8O271aXUYJbpzu/52+2/vbkQALeLN/RJIJneUb1hfy1GwZDetJv1xZO6yhduY+2mhMNI/cLpoZc0+5F+B24W30PZceKAeAt37HUre/V/1TZ2jreHZwnFHL2zjNsgF63WfI085p8o/9xHWLWj/gfJp/LjY3pYFnpTkVHK5wD0+LAgWn98IzbcnPvVLG74orF3P1hrQvYrf/r0oe9Oxx1Se5LdHU01TrebhwMfOHVvg8x38Yxnquz1S6/UZ0rbtWdn6jaRUOr1TrT1YC31WrtCq1r0HDzm+9oVFqtVuukqgbKF144TRdddMSwrDZ8G8IZ7IKSMb+/l3FnLY89//wjBmgwTK8Y5nhbDSfjyN9sQGaeUzrKYhfIS+LOP39avv/9W1a8rO8F5NTonwQwuvfFOQeYhGkZwNVLwoEw9mMJnaiwikrUJ2uQoel1PqQDKpGWpQZo7DcoNqyssIE6HAcZSbCdVq9ksskAfmcBoZi1AeCc+aWRewDDu7Q2NBgF9gHLbKVpMDz6pKLk/6Y7XibPucwYjGAu8fTMwQiMjqxtR5Da8DuPM2EirLRu5jsAETcdBpMuh5HFJsdlXXD4HG+r3nSNYWhsq0+70SB9TnvC5lV5iUmlJzB4MxZ+YDkeC1jA5yjPXQeROxTyjM6KumK3JobS7gxpE66n5DduDQxeq6NMNwx8N/D1hIDhNpNJTN44Tzmnrlt9gX35ko90qNn2yUPqFe3DbhsO50O9NO3qgwX5yyvD+rS2PDgtCGttbVou1qYDhxbTZVdM0/vet9XF1UaQTPjZVRDdqC9L0yMpJbpms31EN+1FBobEMGqKi2rlpoOb9IrTkXBj4mCFTqfxwekUl1ardeaoAW+r1doVuslNbrL9/aUv3dGotFqtVutaVaP+AiqHX3DWarVarZPWux7pVQt+HgbE5dD98P7isTfYN003uMF0VowB3vjGN17rcT0+aLVaZ7ra/Xir1dp1gLfVarVarVar1Wq1Wq1W62xRW/C2Wq1doVe96lXb3+95z3tOb3rTm3Y0Pq3TVze/+c2nlx4247jHPe4xveUtb9npKLVOY3V9aR2vuq60TkRdX1rHq64r11S5ZcC441/+5V9WHvfWt751utWtbjWdzqo4tlqt1vGoAW+r1doVuhonXdM0w90GvK3jUQ2Suq60jlddX1rHq64rrRNR15fW8arryhEdj1uGgwcPdn61Wq2zRu2iodVqtVqtVqvVarVarVar1Wq1zlA14G21Wq1Wq9VqtVqtVqvVarVarTNUDXhbrVar1Wq1Wq1Wq9VqtVqtVusMVQPeVqvVarVarVar1Wq1Wq1Wq9U6Q9WAt9VqtVqtVqvVarVarVar1Wq1zlA14G21Wq1Wq9VqtVqtVqvVarVarTNUDXhbrVar1Wq1Wq1Wq9VqtVqtVusM1WKapuVOR6LVarVarVar1Wq1Wq1Wq9VqtVonrrbgbbVarVar1Wq1Wq1Wq9VqtVqtM1QNeFutVqvVarVarVar1Wq1Wq1W6wxVA95Wq9VqtVqtVqvVarVarVar1TpD1YC31Wq1Wq1Wq9VqtVqtVqvVarXOUDXgbbVarVar1Wq1Wq1Wq9VqtVqtM1QNeFutVqvVarVarVar1Wq1Wq1W6wxVA95Wq9VqtVqtVqvVarVarVar1TpD1YC31Wq1Wq1Wq9VqtVqtVqvVarXOUDXgbbVarVar1Wq1Wq1Wq9VqtVqtM1QNeFutVqvVarVarVar1Wq1Wq1W6wxVA95Wq9VqtVqtVqvVarVarVar1TpDtbHTEWi1Wq0Ptvbs2TNdcMEF0759+6bLL798uvTSS3c6Sq3TVF1XWieiri+t41XXldaJqOtLq9VqtVqta1MD3larddbrIz/yI6fP/uzPnj75kz95ustd7jLd+MY3Pmr/oUOHple/+tXTi170oulZz3rW9Gd/9mc7FtfWzqrrSutE1PWldbzqutI6EXV9aZ1qfeiHfuj067/+69NisZjud7/77XR0Wq1Wq3WStOytt956Oxu329/+9svnPve5y4MHDx61HThw4Bqb97/mNa9Z3v/+99/x+PfWdaW303Pr+tJb15Xeur70diZvd7rTnbbr0U7Hpbfeeuutt+lkbTsegd566623k759wid8wvJd73rXyoERD7WXX3758oUvfOHyta997XL//v1H7fvu7/7uHU9Hb11Xeju9tq4vvXVd6a3rS29n+taAt7feeuttOhu3HY9Ab7311ttJ3S666KLlm970pvmh9eqrr14+7WlPWz7sYQ9b3u1ud1ve5S53WT7wgQ9cPuEJT1i+973vnY954hOfOJ937rnnLh/+8Icv//Ef/3H7ofcbvuEbdjw9vXVd6e302Lq+9NZ1pbeuL73t5Pa3f/u3y6/+6q9eXu961/uAwmnA21tvvfU2nY3bjkegt9566+2kbt/7vd87P7SWlct973vflcd92Id92PLiiy+eH24///M/f/v3xWKx/JVf+ZU5jBpM3epWt9rxNPXWdaW3nd+6vvTWdaW3ri+97eQGlL3iiiuWz3zmM5cPfvCDl+vr6yccTgPe3nrrrbfpbNx2PAK99dZbbyd1K0uWemB9/OMff63Hfu7nfu78gPsv//IvR/2+tra2fOUrXzmH87jHPW7H09Rb15Xedn7r+tLb8W5dV3o7ka3rS2/Hu1155ZXX8MP81re+dfmkJz1p+TEf8zHHHU4D3t5666236WzcdjwCvfXWW28ndbvkkkvmB9Z73ete13rshRdeuP2AW0skve8xj3nMvO8lL3nJjqept64rve381vWlt+Pduq70diJb15fejne76U1vOpfzy172suEL917xilcsv+M7vmN5i1vc4pjhNODtrbfeepvOum2tCG+r1WqdTdrc3Jw/3//+91/rsVdeeeX29xve8IZH7XvpS186f9761rc+6XFsnR7qutI6EXV9aR2vuq60TkRdX1rHq7e97W3TE5/4xOmjPuqjpo/92I+dfvqnf3p6+9vfPi2Xy3m7853vPP3wD//w9F//9V/Tn//5n09f/MVfPJ177rk7He1Wq9VqfRDUgLfVap11estb3jJ/3vOe97zWY+9xj3tsf3/Xu9511L5LL710/rzgggtOehxbp4e6rrRORF1fWserriutE1HXl9Z10ctf/vLpW7/1W6db3OIW00Mf+tDp2c9+9jwBUKB3sVhM97///adf//Vfn9761rdOT3va06ZP+ZRP2ekot1qtVusUa8fNiHvrrbfeTub2lKc8ZV529l//9V/zUrZVx+3du3f5ghe8YD72Va961TX214tOCGen09Rb15Xedn7r+tJb15XeTsXW9aW3k7WVC4+v+Iqv2K4n6cbhjW984/JHf/RHl5/zOZ/TLhp666233qazbtvxCPTWW2+9ndTtbne723L//v3zQ2sNcr7kS75kef7552/v39zcXH76p3/68p/+6Z+2H24f+9jHXiMcfNk9//nP3/E09dZ1pbed37q+9NZ1pbeuL72dKduHfdiHzS/ce/3rXz/019uAt7feeuttOtu2HY9Ab7311ttJ377/+7//qAfZ+l5vGX7Tm960vOqqq476/W//9m+Xe/bsuUYYf/M3f9Nvo94FW9eV3rq+9NZ1pbed3rq+9HYqt0/+5E9ePvWpT12+5z3vuQbs3em49dZbb731Np2sbccj0FtvvfV2SraybrniiiuOWqKW27Oe9azlBRdccI1z19fXlz/xEz+xfMITnrC8853vvONp6a3rSm+nz9b1pbeuK711fentTNzKzcfnfd7nLf/kT/5kefXVVzfg7a233nqbzp5tcfhLq9VqnZW62c1uNn3Zl33ZdO9733u65S1vOW1sbEzveMc75jdNP+MZz5j+4R/+Yaej2DpN1HWldSLq+tI6XnVdaZ2Iur60Pph17cM//MOnv/3bv93pqLRarVbrJKgBb6vVarVarVar1Wq1Wq1Wq9VqnaFa2+kItFqtVqvVarVarVar1Wq1Wq1W67qpAW+r1Wq1Wq1Wq9VqtVqtVqvVap2h2tjpCLRardYHS7e5zW2mO9/5ztOtbnWr6YILLpj27ds3XXnlldNll102/fd///f0yle+cnrDG96w09FsfRD1JV/yJfNn+Z/7z//8z+sUxv/4H/9jWltbm9773vdO//qv/3qSY9g63XXgwIFpsVhMV1999fTjP/7j0w/90A9N+/fv3+lotU5TfciHfMh0l7vcZf7kPnT55ZdPl1xyyXwPevnLXz7Xqdbu1YUXXjh9yqd8ynTb29529r/7qle9avrTP/3T7ldax1Q/47ZarVZrOh3e9NZbb731dqq229/+9ssnP/nJy4svvnh+U/C1bXXcz/3cz83n7XTcezv1W72RvMr9LW95y/Lud7/7dQrjt3/7t+cw3vve9y737du342nqbWfqEJ+vetWrlve+9713PF69nT7brW51q+VP/uRPLv/zP//zWu9Bl19++fJ3fud3lp/4iZ+44/Hu7YO/ffd3f/fysssuGz6bfNInfdL2cYvFYvnlX/7ly5e+9KXzveed73zn8g/+4A+63uyyrZ9xe+utt956m47edjwCvfXWW2+nZHv84x+/vPrqq7fhy/FudfxVV121/OEf/uEdT0NvHzw49653vWv5CZ/wCSccxh3ucIftcB72sIfteJp6++BulP1Tn/rUGeDRj9T/17ve9XY8fr3t7PYt3/ItM7QFsPg+s+rexL6nPe1pywsuuGDH09DbB2erSYBj1YtLLrlkecc73nE+9ld/9VePOpbv+/fvX37RF33Rjqelt1O/9TNub7311ltvU2yLw19arVbrrNJTnvKU6cu//Mun5XKri3v1q189Pf/5z58/a6na+973vnlJ9ebm5nT++efPS9rueMc7Tve5z33mz1Itu/7VX/3V6Su/8it3ODWtU728nnpyxRVXTA972MOm//f//t8JhVN165M+6ZOmX/zFX5y+/uu//hTFtnU616HP//zPn/7gD/5getzjHjc9+tGPnvbs2TO97W1vmx7zmMdMz3jGM3Y6mq0dULnr+K7v+q7t/qXcuNQS6YMHD873nBvf+Mbz71ddddX0Yz/2Y/Pvd73rXacHPOAB0/Wud725Xv3TP/3T9Kmf+qnTpZdeusOpaZ1KfdRHfdT00pe+dNvdzy/8wi/MroOqf/mYj/mY6Ru/8Runm9/85tMf/uEfTr/xG78xPfOZz5zPe9e73jW7Fyp3Dje84Q3n32pZfi3Vf+Mb37jDqWqdKvUzbqvVarVWaccpc2+99dbbydw+7dM+bdtK4UUvetHyHve4xwmd/3Ef93HLF77whdthPPCBD9zxNPV2ajbK+Bu/8RuXl1566fz9iiuuWD7kIQ85oXC+7du+bQ7rxS9+8Y6nqbedqUOPeMQjtn+7853vvPybv/mb7X3Pfe5zlx/yIR+y43Ht7YO3ffzHf/xsTVnl/8///M/L+93vftc45q53vevyj//4j+d68upXv3p5/vnnz7/v2bNn+ehHP3rb8vf3fu/3djw9vZ3arZbZVz2o+9Bd7nKXa+y/0Y1utHz9618/W17+wz/8w2y5+VVf9VVHHVP/Y9H5Iz/yIzuept5OzdbPuL311ltvvU2rtx2PQG+99dbbSd2e/exnzw+uNQjau3fvdQpjc3Nz+ZKXvGR++K3wdjpNvZ2ajQFOAbl73vOes5sGli9+3ud93nGHU/AGNw87nabedh7wsj3qUY9avuMd75iPKT+Zj3nMY2bfmTsd595O/fZrv/Zrc7m/8pWv3Aa3q7Y//MM/nOvQE5/4xKN+/4zP+Izt+nX/+99/x9PU26nbXvayl83l/EM/9EMrj6l7EvXhl37pl4bHPOUpT5mPKd+8O52m3k7N1s+4vfXWW2+9Tau3HY9Ab7311ttJ3d74xjfOD60Pf/jDP6Bw6vx6iK7wdjpNvZ16wFv/14vW3va2t82/l/VdWkit2u52t7vN5xQY3uk09Xb6AN7abnCDG8z+MjmuwMtHfdRH7Xi8ezu12+te97q5vL/0S7/0Wo/96I/+6O0JopwAeOYznzmHU3Vop9PU26nb3v3ud8/lfJ/73GflMWXFSz/yoAc9aHjMgx/84G1/vTudpt5OzdbPuL311ltvvU0rtrWVjhtarVbrDNWNbnSj+fP1r3/9BxQO5+MnsXX26+Uvf/n0yZ/8ydOb3/zm2T9d+UH8zu/8zms9jzpSvhNbLeuSSy6ZHvWoR033ve99p1e96lXTR3/0R08veclLpp/4iZ+Y9u3bt9PRa50ilb/U0r/8y79c67GveMUr5s+LLrpousUtbnHUvmc/+9mzn83y8d06e3XuuefOn+9+97uP2Zegt7zlLcNj6t5VOu+88056HFunh/oZt9VqtVqr1IC31WqddXrnO985f37Yh33YBxQO57/jHe84KfFqnRl6zWteM9373veeX4ZUYOXxj3/8/EKTemnWKn3WZ33W/Pnv//7vH8SYts4kveAFL5jufve7T9/3fd83v/zmsY997PRv//ZvOx2t1ilSveiqdOGFF17rsT5mfX19CGEAxq2zU/VSrNJNb3rTlcd434d+6IcOj+H3yy677KTHsXV6qJ9xW61Wq7VKDXhbrdZZp3oTdYG57/iO75j27t17ncIoy7pv//Zvn604K7zW7tJ//dd/zRZzZXFZdaneVv13f/d3093udrdrHPuQhzxkfgt11ZXnPe95OxLf1gdH//Ef/3GNDf3sz/7scL+31772tdNXfMVXTPv375/r1W1uc5sdTU/r1InJns/+7M++1mM5psD/W9/61qP2HTx4cP48cODAKYln6/TQ6173uvnzYQ972MpjHvrQh25//+Iv/uLhMV/6pV86f7761a8+6XFsnR7qZ9xWq9VqHUs77ieit9566+1kbg94wAO2/dS9+MUvnl+edaJvP6/zCKPeWLzTaertg+ODN7frX//6y7//+7/fPq7eUF5vtK833H/t137t7B+TfeVD8SY3ucmOp6m3U19fTsZGWDudpt5Ozfad3/mdcxlXn/GFX/iFK4/7xE/8xO2XOz7vec+7xv6HPvShczivfvWrdzxNvZ267cd//Me3/bg/8IEPvMb+O93pTsu3v/3ty8svv3z553/+53N9qXN4gd8FF1yw/Imf+IntfuV7vud7djxNvZ2arZ9xe+utt956m1Zsi8NfWq1W66zSL/7iL86WcmWdgDXL3/zN38yfF1988XT55ZdPV1111Wz9UL7qPuRDPmS64x3vON3nPveZPuIjPmI+pywkfvmXf3n6mq/5mh1OTetUqaziqo7c9a53nV75yleutHR58pOfPD3ykY+c/6dOoaonZWX3RV/0RdOznvWsD0q8WztnZZflf+tb33r+rZa5Vr9yovpAl9m2Tk+df/75s7uXm93sZvP/f/3Xfz397u/+7uxyofqLuud82qd92uzeZW1tbe5H7n//+8/3KesJT3jC9OhHP3r2xfuIRzxih1LTOtWqfuBf//Vfp83NzenQoUPT7/3e703Pf/7zZ2v/j/3Yj53vL3UvevrTnz4/l/z5n//5dl9US/bxy4qv3jvd6U7bS/lbZ5/6GbfVarVaq7TjlLm33nrr7VRs//t//+/llVdeecJWd3V8nfeDP/iDO56G3nbWgtfbp3/6py//6Z/+aT7H22te85rl//yf/3PH09LbztahRzziETsel95Or+0e97jH8pJLLjnmPYh+5Nu+7duGYbzhDW+Y93/1V3/1jqent1O71cqQVXWlfr/44ouXN7/5zedjH/e4x13jXlTbZZddtvyUT/mUHU9Lb6d+62fc3nrrrbfepmtuOx6B3nrrrbdTtt3udrdbPulJT1r+13/913AwlFsd9zM/8zPL2972tjse995O/fa93/u983ajG93ouM+5wx3usPzMz/zM5Wd91mct7373u+94Gnrb2a0Bb2/Xdg96znOes/Ke84pXvGL54Ac/eHjuYrFY3vWud523c845Z8fT0tup3z7v8z5v+LxSS+rveMc7HnXsfe973+UznvGM5cte9rLlS17ykvlZ59a3vvWOp6G3D97Wz7i99dZbb715axcNrVZr16jeLl3LFmupWi2fPeecc6b3v//989ura0lbvVDrjW98405Hs9VqnUH6i7/4i3mZ7A/+4A/Oy/BbrZFucYtbzC9uvOUtbzltbGzMLj3q5Ub/9m//ttNRa52Guvvd7z7d9ra3netKLbsv9w2t1rHUz7itVqvVasDbarVarVar1Wq1Wq1Wq9VqtVpnqNZ2OgKtVqvVarVarVar1Wq1Wq1Wq9W6bmrA22q1Wq1Wq9VqtVqtVqvVarVaZ6g2djoCrVar9cHQ7W9/+9n/4Z3vfOfpVre61XTBBRdM+/btm6688srpsssum/77v/97euUrXzm94AUvmF73utftdHRbO6Tyd3jf+973uOvKX/3VX00HDx7c6Wi3dkhdX1rHq64rrRNR15fWiaifcVutVquFdvxNb7311ltvp2KrN5A/8pGPXP7rv/7r/Jb7493q+C/7si+bz9/pNPT2wdnOO++85eMe97jlJZdcckJ1pY7/gR/4gfn8nU5Db11fejv9tq4rvXV96e1UbP2M21tvvfXW2xRbv2St1WqdlbrBDW4wPec5z5nuda97zf8vl8ff1S0W1TVO09/93d9ND3vYw6ZLLrnklMWztfO63e1uN/3RH/3RdIc73OEa9eTyyy+f30B99dVXT5ubm/Obqc8777xr1JfXvva104Me9KDp9a9//Qc59q0Ptrq+tI5XXVdaJ6KuL63jVT/jtlqtVmuVdpwy99Zbb72dzK2sEl74whfOlgoHDhxYvv3tb18++clPXj784Q9f3vWud11e//rXX+7Zs2c+tj7r//q99tdxdXydV+e/+MUvXq6tre14mno7Ndu+ffuWr3rVq7bryite8Yrlt37rty7vcY97LC+44ILhOfV77a/j6njqymte85o5vJ1OU29dX3rb+a3rSm9dX3o7FVs/4/bWW2+99Tat3nY8Ar311ltvJ3X7qq/6qu2H1yc96UnLvXv3ntD5dXydRxhf/dVfveNp6u3UbN/yLd+yXc6Pfexjr1MYj3nMY7bD+LZv+7YdT1Nvp27r+tLb8W5dV3o7ka3rS2/Hu/Uzbm+99dZbb9Pqbccj0FtvvfV2Ure//uu/nh9an/nMZ35A4TzjGc+YH4Cf//zn73iaejs124te9KK5rvzCL/zCBxTOz//8z891paxhdjpNvZ26retLb8e7dV3p7US2ri+9He/Wz7i99dZbb71Nq7cdj0BvvfXW20nd3va2t80Pvw94wAM+oHDq/Hr4rfB2Ok29nZrtne9851xX7nOf+3xA4dT5VVcqvJ1OU2+nbuv60tvxbl1XejuRretLb8e79TNub7311ltv04ptbaVn3lar1TpDxYtH3v3ud39A4fDiiXqZSevsVL2spvT+97//AwqH8/fu3XtS4tU6PdX1pXW86rrSOhF1fWkdr/oZt9VqtVqr1IC31WqddXrzm988f97znvf8gMLhfMJrnX26+OKL58/73//+/397dwIdZXX+cfxOEpIQdmUTCLEIFgQEAhI2BSpLwKUqtlLEEyA5yHLQUgUULDl4UKhAEWyVRSOelsoi4OEcUGgAWQKGsFsMBctWlrAGJAlZvf9zb533n5CZyTuTSd55yfdzzu/MMO8ydyYP+ubhzh1RHn379i1xPtydqBeYRa3AG9QLzOIaFwDgieXTiAkhxJ9xrkF38eJF2aJFC5/OoY67cOGCX9bEI4Gb9957T9fKzZs3Zbdu3Xw6hzruxo0bulbmzJlj+WsiFRfqhZgNtUK8CfVCzIZrXEIIIcJ9LB8AIYT4Na1bt5bZ2dn6wjUzM1NOmTJFNmzY0NSxar/Jkyfr49TxOTk5sk2bNpa/JlIxadasmbx+/br+Wefl5elfdLp27SqDgoI8Hqe2q/3UL1rqOGetRUZGWv6aCPVCrA+1QqgXUhHhGpcQQohwE8fPdwDgrjJixAixZMkSERwcbDx2/PhxcezYMf3RxezsbJGXl6fXqVPrmUVGRorWrVuLBx98UO8rpRQ//fSTGDNmjEhKSrLwlaCixcbGitWrV4vq1asLh0P9b1Ho+vjPf/7jtlZatmwpIiIijFrJyckRQ4cOFRs3brT41aCiUS8wi1qBN6gXmMU1LgDAHcu7zIQQUhFR3xCcnp6uP8qmomYrlBXnvseOHZMDBgyw/DWQykm7du1kcnKy8fMvq16K77dlyxbZvn17y18DoV5I4IVaIdQLqYhwjUsIIUTcEWbwArirqVkwzz77rE7Pnj31LAbnzJji1GwGNeshJSVFrFu3Tkc9hqolOjraqJU2bdqIBg0alNrnypUrIj093aiVAwcOWDJWWI96gVnUCrxBvcAMrnEBAMXR4AVQpYSHh4tmzZqJmjVr6o9B3r59W2RlZYlz586J3Nxcq4eHABMSElKqVgoLC60eFgIU9QKzqBV4g3qBGVzjAkDVRoMXAAAAAAAAAGwqyOoBAAAAAAAAAAB8Q4MXAAAAAAAAAGyKBi8AAAAAAAAA2BQNXgAAAAAAAACwKRq8AAAAAAAAAGBTNHgBAAAAAAAAwKZo8AIAAAAAAACATdHgBQAAAAAAAACbosELAAAAAAAAADZFgxcAAAAAAAAAbIoGLwAAAAAAAADYVIjVAwAAf5s+fXqFnPftt9+ukPPCOklJSRVy3lGjRlXIeWEt6gVmUSvwBvUCs7jGBQC44xBCSLdbAcCGCgsLhcOh/vPmX8HBwX4/J6xFrcAb1AvMolbgDeoFZlErAAB3mMEL4K4jJf9uBXNOnz7t9hel8PBw0ahRI3H+/Hn9CxVAvcAsagXeoF5gFte4AABP1P8lCCHkrk9QUJBcuXKlLCoqkvPmzbN8PCRwExERIbdv365r5fPPP7d8PCSwQ70Qs6FWiDehXojZcI1LCCGCBMAACCGkwhMSEiLXrFmjL3wLCwv17bRp0ywfFwm81KpVS6akpJSolcWLF1s+LhKYoV6I2VArxJtQL8RsuMYlhBDy83vAG0EIufsvfL/88kvjwvfQoUPGBfDYsWMtHx8JnNSuXVvu2bPHqJX169cbtTJr1izLx0cCK9QLMRtqhXgT6oWYDde4hBBCxP/H8gEQQkiFpVq1avoXI+eF74IFC/TjS5Ys0X9W+d3vfmf5OIn1qVOnjkxNTTVqZeLEifrxxMRE45elSZMmWT5OEhihXojZUCvEm1AvxGy4xiWEECJKxvIBEEJIhSQ0NFRu2LDBuPCdO3duie2rVq3Sj+fl5cnBgwdbPl5iXerVqyfT0tKMWpkwYUKJ7fPnzzd+sY6Pj7d8vMTaUC/EbKgV4k2oF2I2XOMSQggRpWP5AAghxO8JCwuTX331lXHhO3v2bJcfa/v666/19qysLNmrVy/Lx00qP/fcc4/cv3+/USvuPtK4bNkyvb2goEAOGTLE8nETa0K9ELOhVog3oV6I2XCNSwghRLiO5QMghBC/Jjw8XG7evNm48H3nnXfc7lu9enX9JSZqv+vXr8sOHTpYPn5Sebn33nvlwYMHda2oX5ZHjx7tdl+HwyHXrVuna+X27duyX79+lo+fUC8kMEOtEG9CvRCz4RqXEEKIcB/LB0AIIX7Nli1bjAvfGTNmmFrvzvmlFBkZGZaPn1ReDh8+bPxCbebjruojkaq+VK3cunXL8vGTyg31QsyGWiHehHohZsM1LiGEEOE+lg+AEEL8Guf6dNOnTzd9TMOGDeWJEyf0cVaPn1RenB9zjYuLM31MjRo1jC/AsXr8pHJDvRCzoVaIN6FeiNlwjUsIIUS4j+UDIIQQv1/8Tp061evjoqKi5Llz5ywfP6m85Ofny+HDh/v0RThHjx61fPykckO9ELOhVog3oV6I2XCNSwghRLiP5QMghBC/ZvLkyT4f27ZtW8vHTyovQ4cO9fnYJk2aWD5+UrmhXojZUCvEm1AvxGy4xiWEECLcxPHzHQAAAAAAAACAzQRZPQAAAAAAAAAAgG9CfDwOAALW9OnTy3X822+/7bexILAlJSWV6/hRo0b5bSwIfNQLzKJW4A3qBWZxjQsAcIclGgDcdQoLC4XDof7z5pvg4GC/jgeBi1qBN6gXmEWtwBvUC8yiVgAA7jCDF8BdR0rv/t1KXSh7ewzuDqdPny7zF6WIiAhRv359vZ/K5cuXRU5OTqWNEYGDeoFZ1Aq8Qb3ALK5xAQCeWP5Nb4QQUtkJCwuT7du3lzNnzpTZ2dly9+7dsmnTppaPiwRm6tSpIxMSEmRGRob84YcfdO1YPSYSuKFeiNlQK8SbUC/ETLjGJYQQUSXDEg0AqrzOnTuLbdu2iQsXLoguXbqIrKwsq4eEABUVFSXS0tL0RyQ7duyoZ1AB7lAvMItagTeoF5jFNS4AVB1BVg8AAKy2f/9+8f7774tWrVqJ1157zerhIICdOXNGzJkzRzRs2FBMmjTJ6uEgwFEvMItagTeoF5jFNS4AVB00eAFACLFp0ya9Rtlzzz1n9VAQ4Hbs2KFvn3rqKauHAhugXmAWtQJvUC8wi2tcAKgaaPACgBDGF5X84he/sHooCHBFRUX6tlmzZlYPBTZAvcAsagXeoF5gFte4AFA10OAFACFEr1699C3fSI2yxMbG6tvMzEyrhwIboF5gFrUCb1AvMItrXACoGkKsHgAAWG3QoEFixowZwuFwiH379lk9HASosLAwMWrUKDF16lRdKykpKVYPCQGMeoFZ1Aq8Qb3AG1zjAkDV4RBCSKsHAQD+lJSUVOY+QUFBom7duuLhhx/W30bt/LjjY489Jr799ttKGCUCwdatW03XivqCkvDwcL2OnZoFExMTI9LT0ytlnAgM1AvMolbgDeoFZnGNCwBwhwYvgLtOYWGhnqlglvol6datWyI+Pl6sXbu2QseGwKwVVQNmakbtd/r0afHSSy+JPXv2VMoYETioF5hFrcAb1AvM4hoXAOAODV4Ad50ffvihzIvfiIgIUb9+fb3f1atX9QyYM2fOVNoYERiSk5NN1UrLli1FvXr1dK306NFDnDx5stLGiMBBvcAsagXeoF5gFte4AABPVIOXEEKqXGrXri0TEhJkRkaGPHPmjGzfvr3lYyKBm379+sn09HR58+ZN2bdvX8vHQwI71AsxG2qFeBPqhZgJ17iEECKqXJjBC6DKU+uTpaWliby8PNGpUyc92wFwRc2cOnDggF7brkOHDuLs2bNWDwkBjHqBWdQKvEG9wCyucQGg6giyegAAYDX1sbW5c+eK++67T7z66qtWDwcBLDMzU8yZM0fUqlVLvPbaa1YPBwGOeoFZ1Aq8Qb3ALK5xAaDqoMELAEKIHTt26NtnnnnG6qEgwO3du1ffDhw40OqhwAaoF5hFrcAb1AvM4hoXAKoGGrwAIIQoKCjQt/fff7/VQ0GACwkJ0beRkZFWDwU2QL3ALGoF3qBeYBbXuABQNdDgBQAhRGxsrL7Nzc21eigIcEOGDNG3P/74o9VDgQ1QLzCLWoE3qBeYxTUuAFQN//unXwCoosLCwsTIkSPFtGnThMPhELt27bJ6SAjgLyoZO3as+P3vf69rJTk52eohIYBRLzCLWoE3qBeYxTUuAFQtDiGEtHoQAOBPW7duLXOfoKAg/e3TrVq1EuHh4UJKKfLz80X37t3F4cOHK2WcsN7JkydN14r6MhtF1cqNGzfEI488Ik6dOlUJo0SgoF5gFrUCb1AvMItrXACAOzR4Adx1CgsL9UwFdUGrbt1R253Onj0rRowYYXwRBaperZiVmpoq4uPjxbFjxyp0bAg81AvMolbgDeoFZnGNCwBwhyUaANx1vvnmG48XvUpRUZG4deuWnjWzc+dOsWHDBv0YqpZly5Z5XStHjhyptPEhsFAvMItagTeoF5jFNS4AwB1m8AIAAAAAAACATQVZPQAAAAAAAAAAgG9o8AIAAAAAAACATdHgBQAAAAAAAACbosELAAAAAAAAADZFgxcAAAAAAAAAbIoGLwAAAAAAAADYFA1eAAAAAAAAALApGrwAAAAAAAAAYFM0eAEAAAAAAADApmjwAgAAAAAAAIBN0eAFAAAAAAAAAJuiwQsAAAC4EBcXJ6SUOlFRUaW2b9u2TW9TtwAAAIBVaPACAABYqEaNGuL06dO6UXjlyhVRv379Mo/585//bDQeR4wYUe4xREREiFGjRomVK1eK48ePi8zMTJGXlycuXbokdu/eLebNmydiYmLK/TwAAAAAKoYkhBBCCCHWZdCgQdJp+fLlHvft2rWrLCws1Ptu2rSp3M89evRomZGRIc1ITU2V3bt3t/z9qqzExcUZrz0qKqrU9m3btult6tbOr4MQQgghhAhbhxm8AAAAFvvqq6/E8uXL9f1hw4aJwYMHu9yvWrVq4uOPPxbBwcEiOztbvPzyyz4/p8PhEIsWLRKLFy8WjRo1EkVFRWLt2rUiISFB9OnTR0RHR4uBAweK119/XezcuVMf07VrVzF58mSfn/Nu07dvX/0+qlsAAADAKiGWPTMAAAAMr776qhgwYIBo0KCB+Oijj0Tbtm1FVlZWiX3efPNN0b59e33/rbfe0ks7+CoxMdFoEKtlGZ5//nnx3Xffldpv8+bNeomGHj16iIULF/r8fAAAAAAqBjN4AQAAAsC1a9fExIkT9f3mzZuL2bNnl9jepk0bMXXqVH0/NTVVLFiwwOfnUrNzVYNYOX/+vOjVq5fL5m5xai1e1eT9xz/+4fPzAgAAAKgYlq8TQQghhBBC/peNGzfqtVKLiopkz5499WMOh0Pu3r1bP56XlyfbtWtXrudYvXq1sSbrs88+67exP/nkk/rc//3vf2Vubq68evWqHveUKVNkjRo1yjxevc4XX3xRbtiwQV68eFG/1suXL8utW7fKsWPHymrVqrk9NjEx0XhN6s+1a9eWb731ljxw4IDMzMzUj6u1aIsfU7duXTlr1iyZnp4uc3Jy5KVLl+Q///lP+fzzz5d7DV61v5Pzefv16yfXr1+vX5t6f06ePCk//PBD2bRpU4/vS9u2beW0adPk119/bby3t27dksePH5fLli2TMTExLo/r3bu3qbWV1X6ujv/1r38tV61aJc+cOSNv376t38e0tDQ5ffp0/d5Z/XeFEEIIIYQIZywfACGEEEII+TnNmzeXP/74o268ff/99zI0NFS+8sorRjNuxowZ5Tp/nTp1ZEFBgT6XajCqpmp5xxwWFibXrFnjsYl47tw52aFDB7fnqFevnty5c6fHcxw9elS/P2U1eFu2bKlf252KN3hbt26tx+TOJ5984tcG77vvvuv2uVRjWY2nPE1adX5/NXhV8zY5OdnjMeqL+dw1lgkhhBBCiKjsWD4AQgghhBBSLBMmTCjRaFSzNZ0NTtXwLc+5n3jiCePcavaoP8a7YsUK45wHDx6Uw4cPl507d5b9+/fX41ezkRU1o7dJkyaljg8KCpIpKSnGOVTDdMiQITI6OlrPCl67dq2x7cSJEy5nAxdv8B46dEjP/l2wYIF8/PHH9XleeOEF2a1bN71vrVq19KxUp88//1zGxsbq/YYOHSr37t2rH09NTfVLg3fXrl3Gfur86nl+9atf6dm3Tmqms6v3Vo1f/fzVezx69Gj52GOPyY4dO8oBAwbIiRMnylOnThnnGDFiRIljIyIi9OzfqVOnGvuon4l6rHjUfs5jVH3t27dP76v+IeCzzz7T713Xrl31jPI333xTXrlyRW+/du2a24Y7IYQQQggRlRnLB0AIIYQQQoql+JIMToWFhbJ79+7lPnfxZl98fHy5zzd48GDjfGp5A1fLKCQkJBj7qEblndvHjRtnbFdNT1fPM3PmTGOf2bNne2zwqvdKNTLdjfm9994z9n3jjTdKbQ8JCdHLIRRXngavsnjxYpdjWbJkibGPatzeuf3ee+/Vs67dvRb1fm/atEkfr5q9qll+5z5lzUR29T5fv35dN6Jd7aOauufPn9f7/f3vf7fs7wkhhBBCCBHOWD4AQgghhBByR9Q6u8UtXLjQL+edN2+ecc6nnnqq3OdT6+UqasZss2bN3O63efNmvV9+fr5s3LhxiW1qZrJzqYKaNWu6PD44OFgvWeGcOXrnTObiDd6PP/7YY0NUHe+c6etuP7UurnpN/mjwqmaou5nXDz74oLGfmrnty8/g4YcfNs7hqilrtsGrZkY71yseP368x+ccM2aM8XMvPgOYEEIIIYSISk9QBX1xGwAAAMqhZ8+eJf584cIFv5y3Vq1axv3s7OxynSs4OFj07t1b39+8ebM4d+6c232XLl2qb6tVqyb69OljPH7fffeJhx56SN9ftWqVyMrKcnl8UVGR+PTTT/X9e+65R0RHR7t9ruXLl7vd1rlzZ3288tlnn7nd7/z58/o1+cMXX3wh8vPzXW47fvy4uHXrlr7fokWLMs8VGhoqIiMjRZs2bUTbtm11HA6Hsb1Dhw4+j1P9LOvWrWuM2ZMdO3YY41HvKQAAAKxDgxcAACDANGnSRPzpT38q8dgf//hHUw3AsjibiUqNGjXKdS41Huc5UlNTPe5bfHu7du1c3vf1HHc6cuSI223t27c37qelpXl8vr179wp/OHbsmMftmZmZpZrvxUVERIg33nhDHDp0SDflz549K77//nvxr3/9S0c97lS/fn2fx9mlSxfjfkZGhpBSus3Ro0eNfRs3buzzcwIAAKD8aPACAAAEmI8++kjUqVNH/PTTT+L111/Xs1dVk2/x4sXlPve1a9eM+40aNSrXuZwzYZXLly973Fc1DF0d549zuGuYlnfMly5dEv6Qk5Pjcbv6OTtnRN8pKipKfPfdd2LWrFl6dm5ISIjHc1WvXt3ncTZs2NCn41RtAgAAwDqerxABAABQqX7729+Kp59+Wt9XDd158+aJ5s2bi1deeUX069dPxMXFeVxaoCyHDx827nta5sBbalZnIJyjeMO0sp6vIv3tb3/TM6XVa1JLVKxYsUKkp6eLK1euGMs+qCUanK+5+HIN3ireYO7UqZMoKCgwdZynpTkAAABQ8WjwAgAABIh69eqJhQsXGk2zKVOm6PvTpk0TzzzzjG70zp07V2zYsEFcvXrVp+fYtWuXKCws1DNBBw0apBuCvjY6r1+/bno2cPGP8Rc/zh/n8Ebx2b3q+U6cOOF23/LOcC6vX/7yl+LRRx/V99999129TIcrnmYz+zq7WzWQ1TrEAAAACHws0QAAABAg5s+fbzQVx48fb6yXq754bNy4ccYaq++//77Pz3Hz5k3x5Zdf6vv333+/bhz76uTJk8YXtcXExHjct2vXrsZ9tW6sq/u+nsMbarkDp0ceecTjvmVtr2jqC9ScVq5caWrtXFfMNvAPHjzo9kv+AAAAELho8AIAAASA/v376+UXlNWrV4v169eX2K5m7TqbfC+++KIYMGCAz8+l1nNV6/oqH3zwgWjQoIGp40JDQ8VvfvMb48/qHNu3bzfG37RpU7fHJiQk6Fv1sf9vvvnGePzixYv6C8Ocy1O4++K3oKAgMWLECGP27oEDB4Qv9u/fb8z+femllzx+0V153mN/KL7erqcvxBszZozH8+Tm5hr3w8LC3O6XnJxsNOzVkiAAAACwBxq8AAAAFiv+BWqq+ThhwgSX+6mmm7M5uWjRIp+/3Eo1R2fOnKnvq6asWrahXbt2Ho/p1q2bSElJEcOGDSvx+F//+lejcfjJJ5+4/BKwkSNHioEDB+r7a9euLfFlacXPob7ky7lExZ0SExONGa1Lly411p/1ljpOrWXrXGd20qRJLteiVc/hqRlaGYovH+Fsbrtq7pY1C1s10Z0eeOABj7O7//KXvxgzeNWMck9r+qqfV3x8vMfnBgAAQOVQn9kihBBCCCEWZf78+dJp5MiRHvcdNWqUse/cuXN9fk6HwyEXLVpknKuwsFB+8cUX+vkfffRR2bFjR9m/f385ceJEuW3bNmO/devWlTrXypUrje379u2Tw4YNk9HR0fLxxx+XS5culUVFRXrb1atXZZMmTUodHxQUJFNSUoxzJCcny+eee0526tRJDh48WI/L6cSJE7JGjRqlzpGYmGjsU9Zrr127tjx79qyx//Lly+XAgQP1873wwgsyNTVVP753715jn6ioqFLncb4v6vbObWp/p7i4OI/jOXXqlN7v008/LbXtyJEjxnlWrFghn3jiCf3ePv3003LVqlX68Z07dxr7qPfhznPUrFlT5uTkGD+ffv36yVatWskHHnhAJzw83Ng3NDRU7tmzxzjfwYMH5bhx42SPHj1khw4dZJ8+feT48eN1HeTm5sq0tDTL//4QQgghhAhi+QAIIYQQQqpsYmJidHPV2dg0c8zWrVv1/gUFBbopWZ7nf/nll+WlS5ekGbt27ZJdunQpdY6wsDC5Zs0aj8eeO3dONwjdjaNevXolGpWuHD16VDZv3tzl8d40eFUeeugheeHCBbfPlZSUpBuzVjd41Xt27do1t+M8fPiwbNy4sccGr8rs2bPdnqN3796lGsLFm+qebNmyxfK/Q4QQQgghglg+AEIIIYSQKpmQkBBjhmZ2drZs0aKFqeNatmxpzMjcv3+/ngFbnnGoGbHx8fF6RqiaIXvjxg2Zl5enG7+7d+/WM4VdNXbvzJNPPqkbg6qZq2Z3qsakmg06ZcoUl7NuXc0qHj58uNy4caO8ePGiHsOVK1d0Q1vNIq1WrZrbY71t8Dqbyqrx+e9//1vevn1bXr58WTcshw4dqrcHQoNXJTIyUn744Yd6P/WeqJnQ3377rfzDH/6gm+tqn7IavCrqZ7x9+3Z9vPrHAXcNXmd69uwplyxZItPT0+XNmzdlfn6+PlbNcP7ggw9kbGxsuWuPEEIIIYSIcsfx8x0AAAAAAAAAgM3wJWsAAAAAAAAAYFM0eAEAAAAAAADApmjwAgAAAAAAAIBN0eAFAAAAAAAAAJuiwQsAAAAAAAAANkWDFwAAAAAAAABsigYvAAAAAAAAANgUDV4AAAAAAAAAsCkavAAAAAAAAABgUzR4AQAAAAAAAMCmaPACAAAAAAAAgE3R4AUAAAAAAAAAm6LBCwAAAAAAAAA2RYMXAAAAAAAAAGyKBi8AAAAAAAAA2BQNXgAAAAAAAACwKRq8AAAAAAAAAGBTNHgBAAAAAAAAwKZo8AIAAAAAAACATdHgBQAAAAAAAACbosELAAAAAAAAADZFgxcAAAAAAAAAbIoGLwAAAAAAAADYFA1eAAAAAAAAALApGrwAAAAAAAAAYFM0eAEAAAAAAADApmjwAgAAAAAAAIBN0eAFAAAAAAAAAJuiwQsAAAAAAAAANkWDFwAAAAAAAABsigYvAAAAAAAAANgUDV4AAAAAAAAAsCkavAAAAAAAAABgUzR4AQAAAAAAAMCmaPACAAAAAAAAgLCn/wPM88IC99zDSAAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "Rg = FLiES_results[\"Rg\"]\n", "Rg.cmap = \"bwr\"\n", diff --git a/pyproject.toml b/pyproject.toml index dbc559c..78f65cf 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,7 +3,7 @@ requires = ["setuptools>=60", "setuptools-scm>=8.0", "wheel"] [project] name = "FLiESANN" -version = "1.4.1" +version = "1.4.2" description = "Forest Light Environmental Simulator (FLiES) Radiative Transfer Model Artificial Neural Network (ANN) Implementation in Python" readme = "README.md" authors = [