Skip to content

如何提取音频特征 #49

@tailangjun

Description

@tailangjun

我刚试了一下实例代码

# fairseq 使用
import torch
import torch.nn.functional as F
import soundfile as sf
from fairseq import checkpoint_utils

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_path=""
wav_path=""

def postprocess(feats, normalize=False):
    if feats.dim() == 2:
        feats = feats.mean(-1)

    assert feats.dim() == 1, feats.dim()

    if normalize:
        with torch.no_grad():
            feats = F.layer_norm(feats, feats.shape)
    return feats

print("loading model(s) from {}".format(model_path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
    [model_path],
    suffix="",
)
print("loaded model(s) from {}".format(model_path))
print(f"normalize: {saved_cfg.task.normalize}")


model = models[0]
model = model.to(device)
model = model.half()
model.eval()

wav, sr = sf.read(wav_path)
feat = torch.from_numpy(wav).float()
feat = postprocess(feat, normalize=saved_cfg.task.normalize)
feats = feat.view(1, -1)
padding_mask = (
    torch.BoolTensor(feats.shape).fill_(False)
)
inputs = {
    "source": feats.half().to(device),
    "padding_mask": padding_mask.to(device),
}

with torch.no_grad():
    logits = model.extract_features(**inputs)
    print(logits)

返回是这样子的
image
不知道是不是把这块的数据提取出来做reshape就可以了

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions