|
| 1 | +// RUN: triton-shared-opt --triton-to-structured --canonicalize %s | FileCheck %s |
| 2 | + |
| 3 | +module attributes {} { |
| 4 | + tt.func public @gather_kernel(%arg0: !tt.ptr<i64> { tt.divisibility = 16 : i32}, %arg1: !tt.ptr<i64> { tt.divisibility = 16 : i32}, %arg2: !tt.ptr<i64> { tt.divisibility = 16 : i32}, %arg3: i32 {tt.divisibility = 16 : i32}, %arg4: i32 {tt.divisibility = 16 : i32}, %arg5: i32 {tt.divisibility = 16 : i32}, %arg6: i32 {tt.divisibility = 16 : i32}) attributes {noinline = false} { |
| 5 | + %c0_i32 = arith.constant 0 : i32 |
| 6 | + %0 = tt.get_program_id x : i32 |
| 7 | + %1 = tt.make_range {end = 512 : i32, start = 0 : i32} : tensor<512xi32> |
| 8 | + %2 = arith.muli %0, %arg6 : i32 |
| 9 | + %3 = tt.addptr %arg1, %2 : !tt.ptr<i64>, i32 |
| 10 | + %4 = tt.splat %3 : !tt.ptr<i64> -> tensor<512x!tt.ptr<i64>> |
| 11 | + %5 = tt.addptr %4, %1 : tensor<512x!tt.ptr<i64>>, tensor<512xi32> |
| 12 | + %6 = tt.splat %arg3 : i32 -> tensor<512xi32> |
| 13 | + %7 = arith.cmpi slt, %1, %6 : tensor<512xi32> |
| 14 | + %8 = tt.load %5, %7 : tensor<512x!tt.ptr<i64>> |
| 15 | + %9 = arith.cmpi eq, %arg4, %c0_i32 : i32 |
| 16 | + %10 = scf.if %9 -> (tensor<512x!tt.ptr<i64>>) { |
| 17 | + %15 = arith.extsi %arg5 : i32 to i64 |
| 18 | + %16 = tt.splat %15 : i64 -> tensor<512xi64> |
| 19 | + %17 = arith.muli %8, %16 : tensor<512xi64> |
| 20 | + %18 = tt.splat %arg0 : !tt.ptr<i64> -> tensor<512x!tt.ptr<i64>> |
| 21 | + %19 = tt.addptr %18, %17 : tensor<512x!tt.ptr<i64>>, tensor<512xi64> |
| 22 | + %20 = tt.addptr %19, %1 : tensor<512x!tt.ptr<i64>>, tensor<512xi32> |
| 23 | + scf.yield %20 : tensor<512x!tt.ptr<i64>> |
| 24 | + } else { |
| 25 | + %15 = arith.muli %0, %arg5 : i32 |
| 26 | + %16 = tt.addptr %arg0, %15 : !tt.ptr<i64>, i32 |
| 27 | + %17 = tt.splat %16 : !tt.ptr<i64> -> tensor<512x!tt.ptr<i64>> |
| 28 | + %18 = tt.addptr %17, %8 : tensor<512x!tt.ptr<i64>>, tensor<512xi64> |
| 29 | + scf.yield %18 : tensor<512x!tt.ptr<i64>> |
| 30 | + } |
| 31 | + %11 = tt.load %10, %7 : tensor<512x!tt.ptr<i64>> |
| 32 | + %12 = tt.addptr %arg2, %2 : !tt.ptr<i64>, i32 |
| 33 | + %13 = tt.splat %12 : !tt.ptr<i64> -> tensor<512x!tt.ptr<i64>> |
| 34 | + %14 = tt.addptr %13, %1 : tensor<512x!tt.ptr<i64>>, tensor<512xi32> |
| 35 | + tt.store %14, %11, %7 : tensor<512x!tt.ptr<i64>> |
| 36 | + tt.return |
| 37 | + } |
| 38 | +} |
| 39 | + |
| 40 | +// CHECK-LABEL: tt.func public @gather_kernel( |
| 41 | +// CHECK-SAME: %[[VAL_0:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !tt.ptr<i64> {tt.divisibility = 16 : i32}, |
| 42 | +// CHECK-SAME: %[[VAL_1:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !tt.ptr<i64> {tt.divisibility = 16 : i32}, |
| 43 | +// CHECK-SAME: %[[VAL_2:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: !tt.ptr<i64> {tt.divisibility = 16 : i32}, |
| 44 | +// CHECK-SAME: %[[VAL_3:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: i32 {tt.divisibility = 16 : i32}, |
| 45 | +// CHECK-SAME: %[[VAL_4:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: i32 {tt.divisibility = 16 : i32}, |
| 46 | +// CHECK-SAME: %[[VAL_5:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: i32 {tt.divisibility = 16 : i32}, |
| 47 | +// CHECK-SAME: %[[VAL_6:[0-9]+|[a-zA-Z$._-][a-zA-Z0-9$._-]*]]: i32 {tt.divisibility = 16 : i32}) attributes {noinline = false} { |
| 48 | +// CHECK: %[[VAL_7:.*]] = arith.constant 0 : index |
| 49 | +// CHECK: %[[VAL_8:.*]] = arith.constant 512 : index |
| 50 | +// CHECK: %[[VAL_9:.*]] = arith.constant 0 : i32 |
| 51 | +// CHECK: %[[VAL_10:.*]] = tt.get_program_id x : i32 |
| 52 | +// CHECK: %[[VAL_11:.*]] = tt.make_range {end = 512 : i32, start = 0 : i32} : tensor<512xi32> |
| 53 | +// CHECK: %[[VAL_12:.*]] = arith.muli %[[VAL_10]], %[[VAL_6]] : i32 |
| 54 | +// CHECK: %[[VAL_13:.*]] = arith.index_cast %[[VAL_12]] : i32 to index |
| 55 | +// CHECK: %[[VAL_14:.*]] = arith.index_cast %[[VAL_12]] : i32 to index |
| 56 | +// CHECK: %[[VAL_15:.*]] = tts.make_tptr %[[VAL_1]] to sizes: [512], strides: [1], offsets: {{\[}}%[[VAL_14]]], shape: [0], order: [] : <i64> to tensor<512x!tt.ptr<i64>> |
| 57 | +// CHECK: %[[VAL_16:.*]] = tt.splat %[[VAL_3]] : i32 -> tensor<512xi32> |
| 58 | +// CHECK: %[[VAL_17:.*]] = arith.cmpi slt, %[[VAL_11]], %[[VAL_16]] : tensor<512xi32> |
| 59 | +// CHECK: %[[VAL_18:.*]] = arith.index_cast %[[VAL_3]] : i32 to index |
| 60 | +// CHECK: %[[VAL_19:.*]] = arith.minsi %[[VAL_18]], %[[VAL_8]] : index |
| 61 | +// CHECK: %[[VAL_20:.*]] = arith.maxsi %[[VAL_19]], %[[VAL_7]] : index |
| 62 | +// CHECK: %[[VAL_21:.*]] = "tts.load"(%[[VAL_15]], %[[VAL_20]]) <{operandSegmentSizes = array<i32: 1, 1, 0>, static_mask_dims = array<i64: -9223372036854775808>}> : (tensor<512x!tt.ptr<i64>>, index) -> tensor<512xi64> |
| 63 | +// CHECK: %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_4]], %[[VAL_9]] : i32 |
| 64 | +// CHECK: %[[VAL_23:.*]] = scf.if %[[VAL_22]] -> (tensor<512x!tt.ptr<i64>>) { |
| 65 | +// CHECK: %[[VAL_24:.*]] = arith.extsi %[[VAL_5]] : i32 to i64 |
| 66 | +// CHECK: %[[VAL_25:.*]] = tt.splat %[[VAL_24]] : i64 -> tensor<512xi64> |
| 67 | +// CHECK: %[[VAL_26:.*]] = arith.muli %[[VAL_21]], %[[VAL_25]] : tensor<512xi64> |
| 68 | +// CHECK: %[[VAL_27:.*]] = tt.splat %[[VAL_0]] : !tt.ptr<i64> -> tensor<512x!tt.ptr<i64>> |
| 69 | +// CHECK: %[[VAL_28:.*]] = tt.addptr %[[VAL_27]], %[[VAL_26]] : tensor<512x!tt.ptr<i64>>, tensor<512xi64> |
| 70 | +// CHECK: %[[VAL_29:.*]] = tt.addptr %[[VAL_28]], %[[VAL_11]] : tensor<512x!tt.ptr<i64>>, tensor<512xi32> |
| 71 | +// CHECK: %[[VAL_30:.*]], %[[VAL_31:.*]], %[[VAL_32:.*]] = "tts.get_structured_state"(%[[VAL_29]]) <{resultSegmentSizes = array<i32: 1, 1, 1>}> : (tensor<512x!tt.ptr<i64>>) -> (tensor<512x!tt.ptr<i64>>, index, index) |
| 72 | +// CHECK: scf.yield %[[VAL_30]] : tensor<512x!tt.ptr<i64>> |
| 73 | +// CHECK: } else { |
| 74 | +// CHECK: %[[VAL_33:.*]] = arith.muli %[[VAL_10]], %[[VAL_5]] : i32 |
| 75 | +// CHECK: %[[VAL_34:.*]] = tt.addptr %[[VAL_0]], %[[VAL_33]] : !tt.ptr<i64>, i32 |
| 76 | +// CHECK: %[[VAL_35:.*]] = tt.splat %[[VAL_34]] : !tt.ptr<i64> -> tensor<512x!tt.ptr<i64>> |
| 77 | +// CHECK: %[[VAL_36:.*]] = tt.addptr %[[VAL_35]], %[[VAL_21]] : tensor<512x!tt.ptr<i64>>, tensor<512xi64> |
| 78 | +// CHECK: %[[VAL_37:.*]], %[[VAL_38:.*]], %[[VAL_39:.*]] = "tts.get_structured_state"(%[[VAL_36]]) <{resultSegmentSizes = array<i32: 1, 1, 1>}> : (tensor<512x!tt.ptr<i64>>) -> (tensor<512x!tt.ptr<i64>>, index, index) |
| 79 | +// CHECK: scf.yield %[[VAL_37]] : tensor<512x!tt.ptr<i64>> |
| 80 | +// CHECK: } |
| 81 | +// CHECK: %[[VAL_40:.*]] = tt.load %[[VAL_23]], %[[VAL_17]] : tensor<512x!tt.ptr<i64>> |
| 82 | +// CHECK: %[[VAL_41:.*]] = tts.make_tptr %[[VAL_2]] to sizes: [512], strides: [1], offsets: {{\[}}%[[VAL_13]]], shape: [0], order: [] : <i64> to tensor<512x!tt.ptr<i64>> |
| 83 | +// CHECK: %[[VAL_42:.*]] = arith.index_cast %[[VAL_3]] : i32 to index |
| 84 | +// CHECK: %[[VAL_43:.*]] = arith.minsi %[[VAL_42]], %[[VAL_8]] : index |
| 85 | +// CHECK: %[[VAL_44:.*]] = arith.maxsi %[[VAL_43]], %[[VAL_7]] : index |
| 86 | +// CHECK: "tts.store"(%[[VAL_41]], %[[VAL_40]], %[[VAL_44]]) <{static_mask_dims = array<i64: -9223372036854775808>}> : (tensor<512x!tt.ptr<i64>>, tensor<512xi64>, index) -> () |
| 87 | +// CHECK: tt.return |
| 88 | +// CHECK: } |
0 commit comments