We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
For the below IR,
module { func.func @fcos_resnet50(%arg0: !torch.vtensor<[],i1>, %arg1: !torch.vtensor<[?,3],si64>) -> !torch.vtensor<[?],si64> attributes {torch.onnx_meta.ir_version = 8 : si64, torch.onnx_meta.opset_version = 21 : si64, torch.onnx_meta.opset_versions = {ai.onnx.ml = 5 : si64, ai.onnx.preview.training = 1 : si64, ai.onnx.training = 1 : si64, com.microsoft = 1 : si64, com.microsoft.experimental = 1 : si64, com.microsoft.nchwc = 1 : si64, org.pytorch.aten = 1 : si64}, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.1.0"} { %1254 = torch.operator "onnx.If"(%arg0) : (!torch.vtensor<[],i1>) -> !torch.vtensor<[?],si64> { %1274 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_3819> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %1277 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_3817> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %1292 = torch.operator "onnx.Gather"(%arg1, %1277) {torch.onnx.axis = 1 : si64} : (!torch.vtensor<[?,3],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?,1],si64> %1293 = torch.operator "onnx.Squeeze"(%1292, %1274) : (!torch.vtensor<[?,1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[?],si64> torch.operator_terminator %1293 : !torch.vtensor<[?],si64> }, { %1273 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_3790> : tensor<0xsi64>} : () -> !torch.vtensor<[0],si64> torch.operator_terminator %1273 : !torch.vtensor<[0],si64> } return %1254 : !torch.vtensor<[?],si64> } } {-# dialect_resources: { builtin: { _3819: "0x080000000100000000000000", _3817: "0x080000000200000000000000", _3790: "0x08000000" } } #-}
Getting error as
iree-compile: ~/iree/third_party/llvm-project/mlir/lib/Dialect/Arith/IR/InferIntRangeInterfaceImpls.cpp:57: void mlir::arith::ConstantOp::inferResultRanges(ArrayRef<ConstantIntRanges>, SetIntRangeFn): Assertion `result && "Zero-sized vectors are not allowed"' failed.
Command:
iree-compile --iree-hal-target-backends=llvm-cpu --iree-llvmcpu-target-cpu=host -o test.vmfb model_torch_onnx.mlir
Models Impacted:
fcos_resnet50_fpn_Opset16_torchvision fcos_resnet50_fpn_Opset17_torchvision retinanet_resnet50_fpn_v2_Opset17_torchvision retinanet_resnet50_fpn_v2_Opset18_torchvision retinanet_resnet50_fpn_v2_Opset16_torchvision
The text was updated successfully, but these errors were encountered:
The constant in the imported IR doesn't seem to be a valid number
%1273 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_3790> : tensor<0xsi64>} : () -> !torch.vtensor<[0],si64> {-# dialect_resources: { builtin: { _3790: "0x08000000" } } #-}
Sorry, something went wrong.
No branches or pull requests
For the below IR,
Getting error as
Command:
Models Impacted:
fcos_resnet50_fpn_Opset16_torchvision
fcos_resnet50_fpn_Opset17_torchvision
retinanet_resnet50_fpn_v2_Opset17_torchvision
retinanet_resnet50_fpn_v2_Opset18_torchvision
retinanet_resnet50_fpn_v2_Opset16_torchvision
The text was updated successfully, but these errors were encountered: