-
Notifications
You must be signed in to change notification settings - Fork 646
Open
Labels
module: mediatekDelegate to MediaTek backendDelegate to MediaTek backendpartner: mediatekIssues related to the Mediatek delegateIssues related to the Mediatek delegate
Description
🐛 Describe the bug
Traceback (most recent call last):
File "/workspace/executorch/examples/mediatek/model_export_scripts/vocoder.py", line 53, in <module>
edge_prog = to_edge_transform_and_lower(
File "/workspace/executorch/exir/program/_program.py", line 113, in wrapper
return func(self, *args, **kwargs)
File "/workspace/executorch/exir/program/_program.py", line 1297, in to_edge_transform_and_lower
edge_manager = edge_manager.to_backend(method_to_partitioner)
File "/workspace/executorch/exir/program/_program.py", line 113, in wrapper
return func(self, *args, **kwargs)
File "/workspace/executorch/exir/program/_program.py", line 1559, in to_backend
new_edge_programs = to_backend(method_to_programs_and_partitioners)
File "/root/anaconda3/envs/executorch/lib/python3.10/functools.py", line 878, in wrapper
return dispatch(args[0].__class__)(*args, **kw)
File "/workspace/executorch/exir/backend/backend_api.py", line 753, in _
lower_all_submodules_to_backend(
File "/workspace/executorch/exir/backend/backend_api.py", line 587, in lower_all_submodules_to_backend
backend_name_to_subclass[backend_id].preprocess_multimethod(
File "/workspace/executorch/exir/backend/backend_details.py", line 124, in preprocess_multimethod
preprocess_result = cls.preprocess(program, compile_spec_for_program)
File "/workspace/executorch/backends/mediatek/preprocess.py", line 111, in preprocess
model_bytes = mtk_neuron.compile(mlir_str, " ".join(compile_options))
File "/root/anaconda3/envs/executorch/lib/python3.10/site-packages/mtk_neuron/mtk_neuron.py", line 139, in compile
raise RuntimeError(f'Compile error:\n{status["log"]}')
RuntimeError: Compile error:
NIR[5]: TransposeConv2DLayer
├ MDLA: cannot fit on internal buffers
├ EDPA: unsupported operation
My model is as follows

Versions
Collecting environment information...
PyTorch version: 2.9.0.dev20250725+cpu
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.31.6
Libc version: glibc-2.35
Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-6.6.47-12.tl4.x86_64-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Vendor ID: GenuineIntel
BIOS Vendor ID: Smdbmds
Model name: Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz
BIOS Model name: 3.0
CPU family: 6
Model: 94
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 1
Stepping: 3
BogoMIPS: 4988.28
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch pti fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap clflushopt xsaveopt xsavec xgetbv1 arat
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 512 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 64 MiB (16 instances)
L3 cache: 27.5 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-15
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds: Unknown: Dependent on hypervisor status
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Versions of relevant libraries:
[pip3] executorch==0.8.0a0+2c84f70
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnx==1.18.0
[pip3] onnxruntime==1.22.0
[pip3] pytorch_tokenizers==0.1.0
[pip3] torch==2.9.0.dev20250725+cpu
[pip3] torchao==0.13.0+git2eb4f9762
[pip3] torchaudio==2.8.0.dev20250725+cpu
[pip3] torchdata==0.11.0
[pip3] torchsr==1.0.4
[pip3] torchtune==0.6.1
[pip3] torchvision==0.24.0.dev20250725+cpu
[pip3] triton==3.3.1
[conda] executorch 0.8.0a0+2c84f70 pypi_0 pypi
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pytorch-tokenizers 0.1.0 pypi_0 pypi
[conda] torch 2.9.0.dev20250725+cpu pypi_0 pypi
[conda] torchao 0.13.0+git2eb4f9762 pypi_0 pypi
[conda] torchaudio 2.8.0.dev20250725+cpu pypi_0 pypi
[conda] torchdata 0.11.0 pypi_0 pypi
[conda] torchsr 1.0.4 pypi_0 pypi
[conda] torchtune 0.6.1 pypi_0 pypi
[conda] torchvision 0.24.0.dev20250725+cpu pypi_0 pypi
[conda] triton 3.3.1 pypi_0 pypi
Metadata
Metadata
Assignees
Labels
module: mediatekDelegate to MediaTek backendDelegate to MediaTek backendpartner: mediatekIssues related to the Mediatek delegateIssues related to the Mediatek delegate