Skip to content

MediaTek backend failed to generate .pte #13361

@MrJungle1

Description

@MrJungle1

🐛 Describe the bug

Traceback (most recent call last):
  File "/workspace/executorch/examples/mediatek/model_export_scripts/vocoder.py", line 53, in <module>
    edge_prog = to_edge_transform_and_lower(
  File "/workspace/executorch/exir/program/_program.py", line 113, in wrapper
    return func(self, *args, **kwargs)
  File "/workspace/executorch/exir/program/_program.py", line 1297, in to_edge_transform_and_lower
    edge_manager = edge_manager.to_backend(method_to_partitioner)
  File "/workspace/executorch/exir/program/_program.py", line 113, in wrapper
    return func(self, *args, **kwargs)
  File "/workspace/executorch/exir/program/_program.py", line 1559, in to_backend
    new_edge_programs = to_backend(method_to_programs_and_partitioners)
  File "/root/anaconda3/envs/executorch/lib/python3.10/functools.py", line 878, in wrapper
    return dispatch(args[0].__class__)(*args, **kw)
  File "/workspace/executorch/exir/backend/backend_api.py", line 753, in _
    lower_all_submodules_to_backend(
  File "/workspace/executorch/exir/backend/backend_api.py", line 587, in lower_all_submodules_to_backend
    backend_name_to_subclass[backend_id].preprocess_multimethod(
  File "/workspace/executorch/exir/backend/backend_details.py", line 124, in preprocess_multimethod
    preprocess_result = cls.preprocess(program, compile_spec_for_program)
  File "/workspace/executorch/backends/mediatek/preprocess.py", line 111, in preprocess
    model_bytes = mtk_neuron.compile(mlir_str, " ".join(compile_options))
  File "/root/anaconda3/envs/executorch/lib/python3.10/site-packages/mtk_neuron/mtk_neuron.py", line 139, in compile
    raise RuntimeError(f'Compile error:\n{status["log"]}')
RuntimeError: Compile error:
NIR[5]: TransposeConv2DLayer
 ├ MDLA: cannot fit on internal buffers
 ├ EDPA: unsupported operation

My model is as follows

Image

Versions

Collecting environment information...
PyTorch version: 2.9.0.dev20250725+cpu
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.31.6
Libc version: glibc-2.35

Python version: 3.10.0 (default, Mar  3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime)
Python platform: Linux-6.6.47-12.tl4.x86_64-x86_64-with-glibc2.35
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               16
On-line CPU(s) list:                  0-15
Vendor ID:                            GenuineIntel
BIOS Vendor ID:                       Smdbmds
Model name:                           Intel(R) Xeon(R) Gold 6133 CPU @ 2.50GHz
BIOS Model name:                      3.0
CPU family:                           6
Model:                                94
Thread(s) per core:                   1
Core(s) per socket:                   16
Socket(s):                            1
Stepping:                             3
BogoMIPS:                             4988.28
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch pti fsgsbase bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx rdseed adx smap clflushopt xsaveopt xsavec xgetbv1 arat
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            512 KiB (16 instances)
L1i cache:                            512 KiB (16 instances)
L2 cache:                             64 MiB (16 instances)
L3 cache:                             27.5 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-15
Vulnerability Gather data sampling:   Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:          KVM: Mitigation: VMX unsupported
Vulnerability L1tf:                   Mitigation; PTE Inversion
Vulnerability Mds:                    Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown:               Mitigation; PTI
Vulnerability Mmio stale data:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Vulnerable
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds:                  Unknown: Dependent on hypervisor status
Vulnerability Tsx async abort:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown

Versions of relevant libraries:
[pip3] executorch==0.8.0a0+2c84f70
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnx==1.18.0
[pip3] onnxruntime==1.22.0
[pip3] pytorch_tokenizers==0.1.0
[pip3] torch==2.9.0.dev20250725+cpu
[pip3] torchao==0.13.0+git2eb4f9762
[pip3] torchaudio==2.8.0.dev20250725+cpu
[pip3] torchdata==0.11.0
[pip3] torchsr==1.0.4
[pip3] torchtune==0.6.1
[pip3] torchvision==0.24.0.dev20250725+cpu
[pip3] triton==3.3.1
[conda] executorch                0.8.0a0+2c84f70          pypi_0    pypi
[conda] numpy                     2.2.6                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] pytorch-tokenizers        0.1.0                    pypi_0    pypi
[conda] torch                     2.9.0.dev20250725+cpu          pypi_0    pypi
[conda] torchao                   0.13.0+git2eb4f9762          pypi_0    pypi
[conda] torchaudio                2.8.0.dev20250725+cpu          pypi_0    pypi
[conda] torchdata                 0.11.0                   pypi_0    pypi
[conda] torchsr                   1.0.4                    pypi_0    pypi
[conda] torchtune                 0.6.1                    pypi_0    pypi
[conda] torchvision               0.24.0.dev20250725+cpu          pypi_0    pypi
[conda] triton                    3.3.1                    pypi_0    pypi

cc @cccclai @neuropilot-captain @cbilgin

Metadata

Metadata

Labels

module: mediatekDelegate to MediaTek backendpartner: mediatekIssues related to the Mediatek delegate

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions