|
| 1 | +(** Maagilise ruudu ülesanded. |
| 2 | +
|
| 3 | + Failides/moodulites Sat ja Smt olid võrdlemisi lihtsad SAT ja SMT ülesanded. |
| 4 | + Siin on näide veidi keerulisemast ülesandest, mida saab SMT solveri abil lahendada. |
| 5 | + Praktikas võib olla mõistlikum spetsifiseerida ülesanne SMT-na ja lahendada see efektiivse SMT solveriga |
| 6 | + selle asemel, et ise üritada konkreetse ülesande jaoks välja mõelda efektiivne algoritm. |
| 7 | +
|
| 8 | + Olgu n naturaalarv, siis n×n maagiliseks ruuduks nimetatakse ruudukujulist tabelit, |
| 9 | + mille kõikide ridade, veergude ja diagonaalide summa on sama (nimetatakse maagiliseks konstandiks) |
| 10 | + ning elementideks on paarikaupa erinevad naturaalarvud 1, 2, 3, ..., n². |
| 11 | +
|
| 12 | + Vt. https://en.wikipedia.org/wiki/Magic_square. *) |
| 13 | + |
| 14 | +open Z3 |
| 15 | + |
| 16 | +let ctx = mk_context [ |
| 17 | + ("model", "true"); |
| 18 | + ] |
| 19 | +let solver = Solver.mk_simple_solver ctx |
| 20 | + |
| 21 | +(** Koostada 3×3 maagiline ruut. *) |
| 22 | +module Magic3Example = |
| 23 | +struct |
| 24 | + let ((x11, x12, x13), (x21, x22, x23), (x31, x32, x33)) = |
| 25 | + (* Loome Z3 muutujad ruudu kõigi lahtrite jaoks. |
| 26 | + Neist koosnev ruut näeks välja selline: |
| 27 | + x11 x12 x13 |
| 28 | + x21 x22 x23 |
| 29 | + x31 x32 x33 *) |
| 30 | + let x11 = Arithmetic.Integer.mk_const_s ctx "x11" in |
| 31 | + let x12 = Arithmetic.Integer.mk_const_s ctx "x12" in |
| 32 | + let x13 = Arithmetic.Integer.mk_const_s ctx "x13" in |
| 33 | + let x21 = Arithmetic.Integer.mk_const_s ctx "x21" in |
| 34 | + let x22 = Arithmetic.Integer.mk_const_s ctx "x22" in |
| 35 | + let x23 = Arithmetic.Integer.mk_const_s ctx "x23" in |
| 36 | + let x31 = Arithmetic.Integer.mk_const_s ctx "x31" in |
| 37 | + let x32 = Arithmetic.Integer.mk_const_s ctx "x32" in |
| 38 | + let x33 = Arithmetic.Integer.mk_const_s ctx "x33" in |
| 39 | + (* Loome Z3 muutuja maagilise konstandi jaoks. |
| 40 | + See abimuutuja võimaldab lihtsamini vajalikke võrdusi kirja panna. *) |
| 41 | + let magic = Arithmetic.Integer.mk_const_s ctx "magic" in |
| 42 | + |
| 43 | + (* Loome maagilise konstandiga võrdused ridade, veergude ja diagonaalide jaoks. *) |
| 44 | + let c_rows = [ |
| 45 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x11; x12; x13]) magic; |
| 46 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x21; x22; x23]) magic; |
| 47 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x31; x32; x33]) magic; |
| 48 | + ] |
| 49 | + in |
| 50 | + let c_cols = [ |
| 51 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x11; x21; x31]) magic; |
| 52 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x12; x22; x32]) magic; |
| 53 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x13; x23; x33]) magic; |
| 54 | + ] |
| 55 | + in |
| 56 | + let c_diags = [ |
| 57 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x11; x22; x33]) magic; |
| 58 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x13; x22; x31]) magic; |
| 59 | + ] |
| 60 | + in |
| 61 | + |
| 62 | + (* List kõigist ruudu muutujatest. *) |
| 63 | + let xs = [x11; x12; x13; x21; x22; x23; x31; x32; x33] in |
| 64 | + (* Loome Z3 avaldise, mis väljendab, et kõik ruudu muutujad on paarikaupa erinevad. *) |
| 65 | + let c_distinct = Boolean.mk_distinct ctx xs in |
| 66 | + |
| 67 | + (* Abidefinitsioonid konstantide 1 ja 9 jaoks. *) |
| 68 | + let one = Arithmetic.Integer.mk_numeral_i ctx 1 in |
| 69 | + let nine = Arithmetic.Integer.mk_numeral_i ctx 9 in |
| 70 | + (* Loome Z3 avaldised, mis väljendavad, et iga lahtri väärtus on intervallis [1, 9]. *) |
| 71 | + let c_ranges = List.map (fun x -> |
| 72 | + Boolean.mk_and ctx [ |
| 73 | + Arithmetic.mk_ge ctx x one; |
| 74 | + Arithmetic.mk_le ctx x nine; |
| 75 | + ] |
| 76 | + ) xs |
| 77 | + in |
| 78 | + |
| 79 | + (* Tingimused c_distinct ja c_ranges koos tähendavad, et lahtrite väärtused on mingi permutatsioon arvudest 1, 2, 3, ..., 9. *) |
| 80 | + |
| 81 | + (* Käivitame Z3 solveri kõigi vajalike tingimustega. *) |
| 82 | + let cs = c_distinct :: c_ranges @ c_rows @ c_cols @ c_diags in |
| 83 | + let status = Solver.check solver cs in |
| 84 | + assert (status = SATISFIABLE); (* Siin näites peaks olema kehtestatav. *) |
| 85 | + |
| 86 | + let model = Option.get (Solver.get_model solver) in |
| 87 | + (* Õngitseme mudelist välja meie lahtrite Z3 muutujate väärtused OCaml-i täisarvudena. *) |
| 88 | + let int_of_model x = Smt.int_of_expr (Option.get (Model.get_const_interp_e model x)) in |
| 89 | + let x11' = int_of_model x11 in |
| 90 | + let x12' = int_of_model x12 in |
| 91 | + let x13' = int_of_model x13 in |
| 92 | + let x21' = int_of_model x21 in |
| 93 | + let x22' = int_of_model x22 in |
| 94 | + let x23' = int_of_model x23 in |
| 95 | + let x31' = int_of_model x31 in |
| 96 | + let x32' = int_of_model x32 in |
| 97 | + let x33' = int_of_model x33 in |
| 98 | + (* Tagastame maagilise ruudu testi jaoks. *) |
| 99 | + ((x11', x12', x13'), (x21', x22', x23'), (x31', x32', x33')) |
| 100 | +end |
| 101 | + |
| 102 | +(** Tõestada, et 2×2 maagilist ruutu pole võimalik koostada. *) |
| 103 | +module Magic2Example = |
| 104 | +struct |
| 105 | + let status = |
| 106 | + (* Loome Z3 muutujad ruudu kõigi lahtrite jaoks. |
| 107 | + Neist koosnev ruut näeks välja selline: |
| 108 | + x11 x12 |
| 109 | + x21 x22 *) |
| 110 | + let x11 = Arithmetic.Integer.mk_const_s ctx "x11" in |
| 111 | + let x12 = Arithmetic.Integer.mk_const_s ctx "x12" in |
| 112 | + let x21 = Arithmetic.Integer.mk_const_s ctx "x21" in |
| 113 | + let x22 = Arithmetic.Integer.mk_const_s ctx "x22" in |
| 114 | + (* Loome Z3 muutuja maagilise konstandi jaoks. *) |
| 115 | + let magic = Arithmetic.Integer.mk_const_s ctx "magic" in |
| 116 | + |
| 117 | + (* Loome maagilise konstandiga võrdused ridade, veergude ja diagonaalide jaoks. *) |
| 118 | + let c_rows = [ |
| 119 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x11; x12]) magic; |
| 120 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x21; x22]) magic; |
| 121 | + ] |
| 122 | + in |
| 123 | + let c_cols = [ |
| 124 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x11; x21]) magic; |
| 125 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x12; x22]) magic; |
| 126 | + ] |
| 127 | + in |
| 128 | + let c_diags = [ |
| 129 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x11; x22]) magic; |
| 130 | + Boolean.mk_eq ctx (Arithmetic.mk_add ctx [x12; x21]) magic; |
| 131 | + ] |
| 132 | + in |
| 133 | + |
| 134 | + (* List kõigist ruudu muutujatest. *) |
| 135 | + let xs = [x11; x12; x21; x22] in |
| 136 | + (* Loome Z3 avaldise, mis väljendab, et kõik ruudu muutujad on paarikaupa erinevad. *) |
| 137 | + let c_distinct = Boolean.mk_distinct ctx xs in |
| 138 | + |
| 139 | + (* Abidefinitsioonid konstantide 1 ja 4 jaoks. *) |
| 140 | + let one = Arithmetic.Integer.mk_numeral_i ctx 1 in |
| 141 | + let four = Arithmetic.Integer.mk_numeral_i ctx 4 in |
| 142 | + (* Loome Z3 avaldised, mis väljendavad, et iga lahtri väärtus on intervallis [1, 4]. *) |
| 143 | + let c_ranges = List.map (fun x -> |
| 144 | + Boolean.mk_and ctx [ |
| 145 | + Arithmetic.mk_ge ctx x one; |
| 146 | + Arithmetic.mk_le ctx x four; |
| 147 | + ] |
| 148 | + ) xs |
| 149 | + in |
| 150 | + |
| 151 | + (* Käivitame Z3 solveri kõigi vajalike tingimustega. *) |
| 152 | + let cs = c_distinct :: c_ranges @ c_rows @ c_cols @ c_diags in |
| 153 | + let status = Solver.check solver cs in |
| 154 | + (* Siin näites peaks tulemus olema UNSATISFIABLE, |
| 155 | + mis tähendab, et maagilist ruutu pole võimalik koostada. *) |
| 156 | + (* Tagastame solveri tulemuse testi jaoks. |
| 157 | + Kui tulemus on mitte-kehtestatav, siis Z3 mingit mudelit anda ei saa. *) |
| 158 | + status |
| 159 | +end |
0 commit comments