Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support for VisualWebArena evaluation in OpenHands #4773

Draft
wants to merge 16 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -228,3 +228,13 @@ runtime_*.tar
containers/runtime/Dockerfile
containers/runtime/project.tar.gz
containers/runtime/code
evaluation/gaia/temp.txt
evaluation/gaia/temp2.txt
evaluation/gaia/temp.png
evaluation/gaia/b64_pil_image.py
.gitignore
evaluation/visualwebarena/scripts/run_evaluation.sh
openhands/agenthub/browsing_agent/browsing_agent2.py
openhands/agenthub/browsing_agent/som_example1_vwa.png
openhands/agenthub/browsing_agent/som_example2_vwa.png
openhands/agenthub/browsing_agent/som_example3_vwa.png
Empty file.
35 changes: 35 additions & 0 deletions evaluation/visualwebarena/get_success_rate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import argparse
import json

import browsergym.visualwebarena # noqa F401 register visualwebarena tasks as gym environments
import gymnasium as gym

parser = argparse.ArgumentParser(description='Calculate average reward.')
parser.add_argument('output_path', type=str, help='path to output.jsonl')

args = parser.parse_args()

if __name__ == '__main__':
env_ids = [
id
for id in gym.envs.registry.keys()
if id.startswith('browsergym/visualwebarena')
]
total_num = len(env_ids)
print('Total number of tasks: ', total_num)
total_reward = 0
total_cost = 0
actual_num = 0
with open(args.output_path, 'r') as f:
for line in f:
data = json.loads(line)
actual_num += 1
total_cost += data['metrics']['accumulated_cost']
total_reward += data['test_result']['reward']
avg_reward = total_reward / total_num
print('Total reward: ', total_reward)
print('Success Rate: ', avg_reward)

avg_cost = total_cost / actual_num
print('Avg Cost: ', avg_cost)
print('Actual number of tasks finished: ', actual_num)
237 changes: 237 additions & 0 deletions evaluation/visualwebarena/run_infer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,237 @@
import asyncio
import json
import os
from typing import Any

import browsergym.visualwebarena # noqa F401 register webarena tasks as gym environments
import gymnasium as gym
import pandas as pd

from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
BrowseInteractiveAction,
CmdRunAction,
MessageAction,
)
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.browser.browser_env import (
BROWSER_EVAL_GET_GOAL_ACTION,
BROWSER_EVAL_GET_REWARDS_ACTION,
)
from openhands.runtime.runtime import Runtime

SUPPORTED_AGENT_CLS = {'BrowsingAgent'}


def get_config(
metadata: EvalMetadata,
env_id: str,
) -> AppConfig:
base_url = os.environ.get('VISUALWEBARENA_BASE_URL', None)
openai_api_key = os.environ.get('OPENAI_API_KEY', None)
assert base_url is not None, 'VISUALWEBARENA_BASE_URL must be set'
assert openai_api_key is not None, 'OPENAI_API_KEY must be set'

config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='eventstream',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
browsergym_eval_env=env_id,
# TODO: how to initialize these urls?
runtime_startup_env_vars={
'BASE_URL': base_url,
'OPENAI_API_KEY': openai_api_key,
'VWA_CLASSIFIEDS': f'{base_url}:9980',
'VWA_CLASSIFIEDS_RESET_TOKEN': '4b61655535e7ed388f0d40a93600254c',
'VWA_SHOPPING': f'{base_url}:7770/',
'VWA_SHOPPING_ADMIN': f'{base_url}:7780/admin',
'VWA_REDDIT': f'{base_url}:9999',
'VWA_GITLAB': f'{base_url}:8023',
'VWA_WIKIPEDIA': f'{base_url}:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing',
'VWA_HOMEPAGE': f'{base_url}:4399',
},
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
return config


def initialize_runtime(
runtime: Runtime,
) -> tuple[str, list]:
"""Initialize the runtime for the agent.

This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation

# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0

action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
goal = obs.content
goal_image_urls = []
if hasattr(obs, 'goal_image_urls'):
goal_image_urls = obs.goal_image_urls
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
return goal, goal_image_urls


def complete_runtime(
runtime: Runtime,
) -> dict[str, Any]:
"""Complete the runtime for the agent.

This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation

action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})

logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return {
'rewards': json.loads(obs.content),
}


def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
env_id = instance.instance_id

config = get_config(metadata, env_id)

# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, env_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {env_id}.')
runtime_sid = env_id.replace('/', '_')
runtime = create_runtime(config, sid=runtime_sid)
task_str, goal_image_urls = initialize_runtime(runtime)
initial_user_action = MessageAction(content=task_str, images_urls=goal_image_urls)
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=initial_user_action,
runtime=runtime,
)
)
# ======= Attempt to evaluate the agent's environment impact =======

# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.

if state is None:
raise ValueError('State should not be None.')

metrics = state.metrics.get() if state.metrics else None

# Instruction and image_urls obtained from the first message from the USER
instruction = ''
# image_urls = []
for event in state.history.get_events():
if isinstance(event, MessageAction):
instruction = event.content
# image_urls = event.images_urls
break

return_val = complete_runtime(runtime)
logger.info(f'Return value from complete_runtime: {return_val}')
reward = max(return_val['rewards'])

# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()

# Save the output
output = EvalOutput(
instance_id=env_id,
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result={
'reward': reward,
},
)
return output


if __name__ == '__main__':
args = parse_arguments()

dataset = pd.DataFrame(
{
'instance_id': [
id
for id in gym.envs.registry.keys()
if id.startswith('browsergym/visualwebarena')
]
}
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'visualwebarena',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)

run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
)
49 changes: 49 additions & 0 deletions evaluation/visualwebarena/scripts/run_infer.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
#!/bin/bash
set -eo pipefail

source "evaluation/utils/version_control.sh"

# configure browsing agent
export USE_NAV="true"
export USE_CONCISE_ANSWER="true"

MODEL_CONFIG=$1
COMMIT_HASH=$2
AGENT=$3
EVAL_LIMIT=$4
NUM_WORKERS=$5

if [ -z "$NUM_WORKERS" ]; then
NUM_WORKERS=1
echo "Number of workers not specified, use default $NUM_WORKERS"
fi
checkout_eval_branch

if [ -z "$AGENT" ]; then
echo "Agent not specified, use default BrowsingAgent"
AGENT="BrowsingAgent"
fi

get_agent_version

echo "AGENT: $AGENT"
echo "AGENT_VERSION: $AGENT_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"

EVAL_NOTE="$AGENT_VERSION"

COMMAND="poetry run python evaluation/visualwebarena/run_infer.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--max-iterations 15 \
--max-chars 10000000 \
--eval-num-workers $NUM_WORKERS \
--eval-note $EVAL_NOTE"

if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi

# Run the command
eval $COMMAND
Loading