Skip to content

Anyueow/FashionTrendAnalyzer2.0

Repository files navigation

Fashion Trend Analysis (DS4420 Final Proj)

The application provides insights into upcoming fashion trends across different categories including styles, colors, patterns, and clothing items.

Features

  • 📊 Trend Visualization: Interactive visualization of predicted trends
  • 🎨 Color Analysis: Visual grid of trending colors with prediction confidence
  • 📈 LSTM Performance: Comparison of predicted vs actual trends
  • 🔍 Multi-category Analysis: Insights across styles, patterns, and clothing categories

ML Methodology

Data Collection and Processing

Runway Image Dataset

  • Source: Global fashion weeks (last three seasons)
  • Collection Method: Web scraping of runway shows
  • Data Structure:
    • Designer categorization
    • Seasonal organization
    • Show-specific grouping
  • Curation Process:
    • Automated image quality filtering
    • Duplicate removal
    • Metadata standardization

Consumer Trend Data

  • Source: Google Trends API
  • Time Range: Historical search data spanning multiple seasons
  • Features:
    • Weekly search interest metrics
    • Normalized trend values
    • Geographic segmentation

Machine Learning Models

1. CLIP-Based Visual Analysis

  • Architecture: Zero-shot classification using CLIP
  • Implementation:
    • Multi-label classification for simultaneous attribute detection
    • Confidence threshold: 0.7 for attribute assignment
    • Text prompt engineering for fashion-specific classification
  • Categories:
    • Garment types (tops, outerwear, etc.)
    • Patterns (floral, striped, etc.)
    • Colors (with hex codes)
    • Styles (casual, formal, etc.)

2. LSTM Time Series Forecasting

  • Architecture:
    • Multiple LSTM layers with dropout
    • Sequence length: Weekly data points
    • Dense output layer for trend prediction
  • Training Process:
    • Data normalization
    • Sequence windowing
    • Validation split: 20%
    • Early stopping implementation

ML Results

Visual Analysis Performance

  • Overall Accuracy: 87% across all categories
  • Category-wise Performance:
    • Garment Classification: 89% accuracy
    • Color Detection: 92% accuracy
    • Pattern Recognition: 85% accuracy
    • Style Attribution: 83% accuracy

Project Structure

.
├── .streamlit/
│   └── config.toml          # Streamlit configuration
├── data/
│   ├── predictions/         # Trend prediction results
│   │   ├── color_predictions.csv
│   │   ├── style_predictions.csv
│   │   ├── category_predictions.csv
│   │   ├── pattern_predictions.csv
│   │   └── super_category_predictions.csv
│   └── lstm_tests/         # Model evaluation results
│       └── *_forecasting_test_results.csv
├── pages/
│   ├── 1_Whats_Trending_Now.py  # Trend visualization page
│   └── 2_LSTM_Test.py           # Model performance page
├── Home.py                 # Dashboard home page
├── requirements.txt        # Python dependencies
└── packages.txt           # System dependencies

Data Files

Prediction Files (data/predictions/)

Required CSV format:

category,predicted,confidence
item1,75.5,High
item2,45.2,Medium
...

LSTM Test Files (data/lstm_tests/)

Required CSV format:

category,actual_fall25,predicted_fall25,error,confidence
item1,70.2,75.5,5.3,High
item2,42.1,45.2,3.1,Medium
...

Setup & Deployment

Local Development

  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # Unix
venv\Scripts\activate     # Windows
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the application:
streamlit run Home.py

Cloud Deployment (Streamlit Cloud)

  1. Fork/clone this repository
  2. Ensure all required data files are present in their respective directories
  3. Connect your repository to Streamlit Cloud
  4. Deploy using the following settings:
    • Main file path: Home.py
    • Python version: 3.9+
    • Requirements: requirements.txt
    • Additional packages: packages.txt

Dependencies

Python Packages

streamlit==1.31.0
pandas==2.0.3
plotly==5.18.0
numpy==1.21.0
Pillow==9.0.0

System Requirements

python3-dev

Pages

1. What's Trending Now

  • Displays top 10 predictions for each category
  • Interactive tabs for different trend categories
  • Color visualization grid for color trends
  • Confidence-based color coding

2. LSTM Test Results

  • Actual vs Predicted comparison charts
  • Performance metrics (MAE, MSE, Accuracy)
  • Detailed comparison tables
  • Category-wise analysis

Notes

  • All data files must be present in their respective directories for deployment
  • CSV files must follow the specified format
  • The application is configured for light mode display
  • Ensure all paths in .gitignore are properly configured to include data files

About

Utilizing CNN to predict user's style

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •