Skip to content

This library contains a Tensorflow implementation of multi-antenna version of UWMMSE

Notifications You must be signed in to change notification settings

ArCho48/UWMMSE_MIMO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UWMMSE-MIMO

Tensorflow implementation of UWMMSE-MIMO

Overview

This library contains a Tensorflow implementation of multi-antenna version of UWMMSE[1].

Dependencies

Structure

  • main: Main code for running the experiments in the paper. Run as python3 main.py --datasetID {dataset ID} --tx_antennas {T} --rx_antennas {R} --expID {exp ID} --mode {mode}. For ex. to train UWMMSE on dataset with ID set3 having 5 tx and 3 rx antennas, run python3 main.py --datasetID set3 --tx_antennas 5 --rx_antennas 3 --expID uwmmse --mode train.
  • model: Defines the UWMMSE model.
  • data: should contain your dataset in folder {dataset ID}.
  • models: Stores trained models in a folder with same name as {datset ID}.
  • results: Stores results in a folder with same name as {datset ID}.

Usage

Please cite [1] in your work when using this library in your experiments.

Feedback

For questions and comments, feel free to contact Arindam Chowdhury.

Citation

[1] Chowdhury A, Verma G, Rao C, Swami A, Segarra S. ML-aided power allocation for Tactical MIMO. 
arXiv preprint arXiv:2109.06992 2021 Sep 14.

BibTeX format:

@article{chowdhury2021ml,
  title={ML-aided power allocation for Tactical MIMO},
  author={Chowdhury, Arindam and Verma, Gunjan and Rao, Chirag and Swami, Ananthram and Segarra, Santiago},
  journal={arXiv e-prints},
  pages={arXiv--2109},
  year={2021}
}


About

This library contains a Tensorflow implementation of multi-antenna version of UWMMSE

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages