Tensorflow implementation of UWMMSE-MIMO
This library contains a Tensorflow implementation of multi-antenna version of UWMMSE[1].
- python>=3.6
- tensorflow>=1.14.0: https://tensorflow.org
- numpy
- matplotlib
- main: Main code for running the experiments in the paper. Run as python3 main.py --datasetID {dataset ID} --tx_antennas {T} --rx_antennas {R} --expID {exp ID} --mode {mode}. For ex. to train UWMMSE on dataset with ID set3 having 5 tx and 3 rx antennas, run python3 main.py --datasetID set3 --tx_antennas 5 --rx_antennas 3 --expID uwmmse --mode train.
- model: Defines the UWMMSE model.
- data: should contain your dataset in folder {dataset ID}.
- models: Stores trained models in a folder with same name as {datset ID}.
- results: Stores results in a folder with same name as {datset ID}.
Please cite [1] in your work when using this library in your experiments.
For questions and comments, feel free to contact Arindam Chowdhury.
[1] Chowdhury A, Verma G, Rao C, Swami A, Segarra S. ML-aided power allocation for Tactical MIMO.
arXiv preprint arXiv:2109.06992 2021 Sep 14.
BibTeX format:
@article{chowdhury2021ml,
title={ML-aided power allocation for Tactical MIMO},
author={Chowdhury, Arindam and Verma, Gunjan and Rao, Chirag and Swami, Ananthram and Segarra, Santiago},
journal={arXiv e-prints},
pages={arXiv--2109},
year={2021}
}