Skip to content

An InformationGain based Question Answering over knowledge Graph system.

Notifications You must be signed in to change notification settings

AskNowQA/KrantikariQA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KrantikariQA

An Information Gain based Question Answering system over knowledge graph systems.

  1. chmod +x parallel_data_creation.sh
  2. download glove42B and save it in resource folder
  3. mkdir logs
  4. ./parallel_data_creation.sh
  5. python data_creation_step1.py
  6. python reduce_data_creation_step2.py
  7. CUDA_VISIBLE_DEVICES=3 python corechain.py -model slotptr -device cuda -dataset lcquad -pointwise False

Download glove

wget http://nlp.stanford.edu/data/glove.42B.300d.zip save it to resource folder unzip it

Use Anaconda installation (still need to test it)

conda env create -f environment.yml

Setup redis server (this setup is not necessary. Its used for caching)

For installation https://redis.io/topics/quickstart

Setup dbpedia and add the url in utils/dbpedia_interface.py

Setup SPARQL parsing server

@TODO: add code here 
Install nodejs (node, nodejs)
> nodejs app.js

Setup embedding server

 python ei_server.py (Keep this always on)
 This will need bottle installed (pip install bottle)

Check for running verison of DBPedia, Redis (if caching), SPARQL Parsing server, Embedding interface

Setup Qelos-utils

https://github.com/lukovnikov/qelos-util.git change into qelos-util dir and python setup.py build/develop/ cp qelos ../

Install few more things

A potential bug is that he glove file datatype would be <U32

A rdftype_lookup.json can be created using the keys of relation.pickle (data/data/common)

import numpy as np
mat = np.load('resources/vectors_gl.npy')
mat = mat.astype(np.float64)
np.save('resources/vectors_gl.npy',mat)

#### TODO
change embedding in configs to 300d

Once the dataset is prepared

To check if all the files are in correct palce run the following command

python file_location_check.py

Once the data is at appropriate place run the following command.

CUDA_VISIBLE_DEVICES=3 python corechain.py -model slotptr -device cuda -dataset lcquad -pointwise False

About

An InformationGain based Question Answering over knowledge Graph system.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published