List of molecules ( small molecules, RNA, peptide, protein, enzymes, antibody, and PPIs) conformations and molecular dynamics (force fields) using generative artificial intelligence and deep learning
Updating ...
-
Recent advances in protein conformation sampling by combining machine learning with molecular simulation [2024]
Tang, Y., Yang, Z., Yao, Y., Zhou, Y., Tan, Y., Wang, Z., Pan, T., Xiong, R., Sun, J. and Wei, G.
Chinese Physics B. (2024) -
Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery [2024]
Qian, Runtong, Jing Xue, You Xu, and Jing Huang.
J. Chem. Inf. Model. (2024) -
The need to implement FAIR principles in biomolecular simulations [2024]
Amaro, Rommie, Johan Åqvist, Ivet Bahar, Federica Battistini, Adam Bellaiche, Daniel Beltran, Philip C. Biggin et al.
arXiv:2407.16584 (2024) -
An overview about neural networks potentials in molecular dynamics simulation [2024]
Martin‐Barrios, Raidel, Edisel Navas‐Conyedo, Xuyi Zhang, Yunwei Chen, and Jorge Gulín‐González.
International Journal of Quantum Chemistry 124.11 (2024) -
Artificial Intelligence Enhanced Molecular Simulations [2023]
Zhang, Jun, Dechin Chen, Yijie Xia, Yu-Peng Huang, Xiaohan Lin, Xu Han, Ningxi Ni et al.
J. Chem. Theory Comput. (2023) -
Machine Learning Generation of Dynamic Protein Conformational Ensembles [2023]
Zheng, Li-E., Shrishti Barethiya, Erik Nordquist, and Jianhan Chen.
Molecules 28.10 (2023)
-
Molecular Quantum Chemical Data Sets and Databases for Machine Learning Potentials [2024]
Antonio Mirarchi, Toni Giorgino, G. D. Fabritiis.
ChemRxiv. (2024) | code -
mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics [2024]
Antonio Mirarchi, Toni Giorgino, G. D. Fabritiis.
arXiv:2407.14794 (2024) | code
MMolearn
a Python package streamlining the design of generative models of biomolecular dynamics
https://github.com/LumosBio/MolData
-
HessFit: A Toolkit to Derive Automated Force Fields from Quantum Mechanical Information [2024]
Falbo, E. and Lavecchia, A.
J. Chem. Inf. Model. (2024) | code -
A Euclidean transformer for fast and stable machine learned force fields [2024]
Frank, J.T., Unke, O.T., Müller, KR. et al.
Nat Commun 15, 6539 (2024) | code -
Differentiable simulation to develop molecular dynamics force fields for disordered proteins [2024]
Greener, Joe G.
Chemical Science 15.13 (2024) | code -
Grappa--A Machine Learned Molecular Mechanics Force Field [2024]
Seute, Leif, Eric Hartmann, Jan Stühmer, and Frauke Gräter.
arXiv:2404.00050 (2024) | code -
An implementation of the Martini coarse-grained force field in OpenMM [2023]
MacCallum, J. L., Hu, S., Lenz, S., Souza, P. C., Corradi, V., & Tieleman, D. P.
Biophysical Journal 122.14 (2023)
- Amber - A suite of biomolecular simulation programs.
- Gromacs - A molecular dynamics package mainly designed for simulations of proteins, lipids and nucleic acids.
- OpenMM - A toolkit for molecular simulation using high performance GPU code.
- CHARMM - A molecular simulation program with broad application to many-particle systems.
- HTMD - Programming Environment for Molecular Discovery.
- ACEMD - The next generation molecular dynamic simulation software.
- NAMD - A parallel molecular dynamics code for large biomolecular systems.
- StreaMD - A tool to perform high-throughput automated molecular dynamics simulations.
- BEMM-GEN - A Toolkit for Generating a Biomolecular Environment-Mimicking Model for Molecular Dynamics Simulation.
- BioSimSpace - An interoperable Python framework for biomolecular simulation.
- OpenMM 8 - Molecular Dynamics Simulation with Machine Learning Potentials.
- DeePMD-kit - A deep learning package for many-body potential energy representation and molecular dynamics.
- TorchMD - End-To-End Molecular Dynamics (MD) Engine using PyTorch.
- TorchMD-NET - TorchMD-NET provides state-of-the-art neural networks potentials (NNPs) and a mechanism to train them.
- OpenMM-Torch - OpenMM plugin to define forces with neural networks.
- AI2BMD - AI-powered ab initio biomolecular dynamics simulation.
-
MDAnalysis - An object-oriented Python library to analyze trajectories from molecular dynamics (MD) simulations in many popular formats.
-
MDTraj - A python library that allows users to manipulate molecular dynamics (MD) trajectories.
-
PyTraj - A Python front-end package of the popular cpptraj program.
-
CppTraj - Biomolecular simulation trajectory/data analysis.
-
WEDAP - A Python Package for Streamlined Plotting of Molecular Simulation Data.
-
Melodia - A Python library for protein structure analysis.
-
MDANCE - A flexible n-ary clustering package that provides a set of tools for clustering Molecular Dynamics trajectories.
-
PENSA - A collection of python methods for exploratory analysis and comparison of biomolecular conformational ensembles.
-
NRIMD, a Web Server for Analyzing Protein Allosteric Interactions Based on Molecular Dynamics Simulation [2024]
He, Yi, Shuang Wang, Shuai Zeng, Jingxuan Zhu, Dong Xu, Weiwei Han, and Juexin Wang.
J. Chem. Inf. Model. (2024) | web
https://github.com/ipudu/awesome-molecular-dynamics
- VMD - A molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3-D graphics and built-in scripting.
- NGLview - IPython widget to interactively view molecular structures and trajectories.
- PyMOL - A user-sponsored molecular visualization system on an open-source foundation, maintained and distributed by Schrödinger.
- Avogadro - An advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas.
-
Accelerating Molecular Dynamics Simulations with Quantum Accuracy by Hierarchical Classification [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N'tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
ChemRxiv. (2024) | code -
Machine learning of force fields towards molecular dynamics simulations of proteins at DFT accuracy [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N'tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design (2024) | code -
Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity [2024]
Jeffrey K Weber, Joseph A Morrone, Seung-gu Kang, Leili Zhang, Lijun Lang, Diego Chowell, Chirag Krishna, Tien Huynh, Prerana Parthasarathy, Binquan Luan, Tyler J Alban, Wendy D Cornell, Timothy A Chan.
Briefings in Bioinformatics (2024) | code -
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments [2024]
Unke, Oliver T., Martin Stöhr, Stefan Ganscha, Thomas Unterthiner, Hartmut Maennel, Sergii Kashubin, Daniel Ahlin et al.
Science Advances 10.14 (2024) | data -
DeePMD-kit v2: A software package for deep potential models [2023]
Zeng, Jinzhe, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Marián Rynik et al.
The Journal of Chemical Physics 159.5 (2023) | code -
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [2018]
Wang, Han, Linfeng Zhang, Jiequn Han, and E. Weinan.
Computer Physics Communications 228 (2018) | code
-
HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler thermoelectrics [2024]
Yang, Yuyan, Yifei Lin, Shengnan Dai, Yifan Zhu, Jinyang Xi, Lili Xi, Xiaokun Gu, David J. Singh, Wenqing Zhang, and Jiong Yang.
Digital Discovery (2024) | data -
Efficient Training of Neural Network Potentials for Chemical and Enzymatic Reactions by Continual Learning [2024]
Lei Y-K, Yagi K, Sugita Y.
ChemRxiv. (2024) -
Learning together: Towards foundation models for machine learning interatomic potentials with meta-learning [2024]
Allen, A.E.A., Lubbers, N., Matin, S. et al.
npj Comput Mater 10, 154 (2024) -
Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning [2024]
Sharma, A., Sanvito, S.
npj Comput Mater 10, 237 (2024) | code -
Molecular Simulations with a Pretrained Neural Network and Universal Pairwise Force Fields [2024]
Kabylda A, Frank JT, Dou SS, Khabibrakhmanov A, Sandonas LM, Unke OT, et al.
ChemRxiv. (2024) | code -
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics [2024]
Mirarchi, Antonio, Raul P. Pelaez, Guillem Simeon, and Gianni De Fabritiis.
arXiv:2409.17852 (2024) | code -
Revisiting Aspirin Polymorphic Stability Using a Machine Learning Potential [2024]
Hattori, Shinnosuke, and Qiang Zhu.
ACS Omega (2024) -
Enhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials [2024]
Sabanés Zariquiey, F., Galvelis, R., Gallicchio, E., Chodera, J.D., Markland, T.E. and De Fabritiis, G.
J. Chem. Inf. Model. (2024) | code -
Universal-neural-network-potential molecular dynamics for lithium metal and garnet-type solid electrolyte interface [2024]
Iwasaki, R., Tanibata, N., Takeda, H. et al.
Commun Mater 5, 148 (2024) -
The Potential of Neural Network Potentials [2024]
Duignan, Timothy T.
ACS Physical Chemistry Au 4.3 (2024) -
AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs [2024]
Anstine, Dylan, Roman Zubatyuk, and Olexandr Isayev.
chemrxiv-2023-296ch-v2 (2024) | code -
NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics [2023]
Galvelis, R., Varela-Rial, A., Doerr, S., Fino, R., Eastman, P., Markland, T.E., Chodera, J.D. and De Fabritiis, G.
J. Chem. Inf. Model. (2023) | code -
Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements [2022]
Takamoto, S., Shinagawa, C., Motoki, D. et al.
Nat Commun 13, 2991 (2022) | data -
Teaching a neural network to attach and detach electrons from molecules [2021]
Zubatyuk, R., Smith, J.S., Nebgen, B.T. et al.
Nat Commun 12, 4870 (2021) | code -
Four Generations of High-Dimensional Neural Network Potentials [2021]
Behler, Jorg.
Chemical Reviews 121.16 (2021) -
DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [2020]
Zhang, Yuzhi, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and E. Weinan.
Computer Physics Communications 253 (2020) | code
-
Comparison of Methodologies for Absolute Binding Free Energy Calculations of Ligands to Intrinsically Disordered Proteins [2024]
Michail Papadourakis, Zoe Cournia, Antonia S. J. S. Mey, and Julien Michel.
J. Chem. Theory Comput. (2024) | code -
FEP-SPell-ABFE: An Open-Source Automated Alchemical Absolute Binding Free Energy Calculation Workflow for Drug Discovery [2024]
Pengfei Li,Tingting Pu ,Ye Mei.
ChemRxiv. (2024) | code -
Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics [2024]
Wei Jiang.
J. Chem. Theory Comput. (2024) -
Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery [2024]
Qian, Runtong, Jing Xue, You Xu, and Jing Huang.
J. Chem. Inf. Model. (2024) -
Automated Adaptive Absolute Binding Free Energy Calculations [2024]
Clark, Finlay, Graeme Robb, Daniel Cole, and Julien Michel.
J. Chem. Theory Comput. (2024) | code -
Machine Learning Guided AQFEP: A Fast and Efficient Absolute Free Energy Perturbation Solution for Virtual Screening [2024]
Crivelli-Decker, J.E., Beckwith, Z., Tom, G., Le, L., Khuttan, S., Salomon-Ferrer, R., Beall, J., Gómez-Bombarelli, R. and Bortolato, A.
J. Chem. Theory Comput. (2024) | code -
The maximal and current accuracy of rigorous protein-ligand binding free energy calculations [2023]
Ross, G.A., Lu, C., Scarabelli, G. et al.
Commun Chem 6, 222 (2023) | code
- Analytical ab initio hessian from a deep learning potential for transition state optimization [2024]
KYuan, E.CY., Kumar, A., Guan, X. et al.
Nat Commun 15, 8865 (2024) | code
-
Molecular Simulations with a Pretrained Neural Network and Universal Pairwise Force Fields [2024]
Kabylda A, Frank JT, Dou SS, Khabibrakhmanov A, Sandonas LM, Unke OT, et al.
ChemRxiv. (2024) | code -
SpaiNN: Equivariant Message Passing for Excited-State Nonadiabatic Molecular Dynamics [2024]
Mausenberger, Sascha, Carolin Müller, Alexandre Tkatchenko, Philipp Marquetand, Leticia González, and Julia Westermayr.
Chemical Science (2024) | code -
GLOW: A Workflow Integrating Gaussian-Accelerated Molecular Dynamics and Deep Learning for Free Energy Profiling [2022]
Do, Hung N., Jinan Wang, Apurba Bhattarai, and Yinglong Miao.
J. Chem. Theory Comput. (2022) | code
-
AlphaFold-Multimer accurately captures interactions and dynamics of intrinsically disordered protein regions [2024]
Alireza Omidi, Mads Harder Møller, Nawar Malhis, and Jörg Gsponer.
bioRxiv. (2024) | code -
Harnessing AlphaFold to reveal hERG channel conformational state secrets [2024]
Khoa Ngo, Pei-Chi Yang, Vladimir Yarov-Yarovoy, Colleen E. Clancy, Igor Vorobyov.
bioRxiv. (2024) -
AlphaFold2's training set powers its predictions of fold-switched conformations [2024]
Joseph W. Schafer, Lauren Porter.
bioRxiv. (2024) | data -
AlphaFold2 Predicts Alternative Conformation Populations in Green Fluorescent Protein Variants [2024]
Núñez-Franco, Reyes, M. Milagros Muriel-Olaya, Gonzalo Jiménez-Osés, and Francesca Peccati.
J. Chem. Inf. Model. (2024) | data -
AlphaFold Ensemble Competition Screens Enable Peptide Binder Design with Single-Residue Sensitivity [2024]
Vosbein, Pernille, Paula Paredes Vergara, Danny T. Huang, and Andrew R. Thomson.
ACS Chemical Biology (2024) -
Assessing AF2’s ability to predict structural ensembles of proteins [2024]
Riccabona, Jakob R., Fabian C. Spoendlin, Anna-Lena M. Fischer, Johannes R. Loeffler, Patrick K. Quoika, Timothy P. Jenkins, James A. Ferguson et al.
Structure (2024) -
AlphaFold with conformational sampling reveals the structural landscape of homorepeats [2024]
Bonet, David Fernandez et al.
Structure (2024) | code -
Structure prediction of alternative protein conformations [2024]
Bryant, P., Noé, F.
Nat Commun 15, 7328 (2024) | code -
AlphaFold predictions of fold-switched conformations are driven by structure memorization [2024]
Chakravarty, D., Schafer, J.W., Chen, E.A. et al.
Nat Commun 15, 7296 (2024) | code -
Predicting protein conformational motions using energetic frustration analysis and AlphaFold2 [2024]
Xingyue Guan and Qian-Yuan Tang and Weitong Ren and Mingchen Chen and Wei Wang and Peter G. Wolynes and Wenfei Li.
Proceedings of the National Academy of Sciences (2024) -
Leveraging Machine Learning and AlphaFold2 Steering to Discover State-Specific Inhibitors Across the Kinome [2024]
Francesco Trozzi, Oanh Tran, Carmen Al Masri, Shu-Hang Lin, Balaguru Ravikumar, Rayees Rahman.
bioRxiv (2024) -
A resource for comparing AF-Cluster and other AlphaFold2 sampling methods [2024]
Hannah K Wayment-Steele, Sergey Ovchinnikov, Lucy Colwell, Dorothee Kern.
bioRxiv (2024) -
Integration of AlphaFold with Molecular Dynamics for Efficient Conformational Sampling of Transporter Protein NarK [2024]
Ohnuki, Jun, and Kei-ichi Okazaki.
The Journal of Physical Chemistry B (2024) -
AFsample2: Predicting multiple conformations and ensembles with AlphaFold2 [2024]
Yogesh Kalakoti, Björn Wallner.
bioRxiv (2024) | code -
Prediction of Conformational Ensembles and Structural Effects of State-Switching Allosteric Mutants in the Protein Kinases Using Comparative Analysis of AlphaFold2 Adaptations with Sequence Masking and Shallow Subsampling [2024]
Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Hao Tian, Sian Xiao, Peng Tao, Gennady Verkhivker.
bioRxiv (2024) | code -
Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE [2024]
Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary.
arXiv:2404.07102 (2024) -
High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 [2024]
Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C. et al.
Nat Commun 15, 2464 (2024) | code -
AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | code -
Predicting multiple conformations via sequence clustering and AlphaFold2 [2024]
Wayment-Steele, H.K., Ojoawo, A., Otten, R. et al.
Nature 625, 832–839 (2024) | code -
AlphaFold2-RAVE: From Sequence to Boltzmann Ranking [2023]
Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, and Pratyush Tiwary.
J. Chem. Theory Comput. (2023)) | code -
Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures [2023]
Carmen Al-Masri, Francesco Trozzi, Shu-Hang Lin, Oanh Tran, Navriti Sahni, Marcel Patek, Anna Cichonska, Balaguru Ravikumar, Rayees Rahman.
Bioinformatics Advances. (2023)) | code -
Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures [2023]
Herrington, Noah B., David Stein, Yan Chak Li, Gaurav Pandey, and Avner Schlessinger.
bioRxiv (2023) | code -
Sampling alternative conformational states of transporters and receptors with AlphaFold2 [2022]
Del Alamo, Diego, Davide Sala, Hassane S. Mchaourab, and Jens Meiler.
Elife 11 (2022) | code
-
AbFlex: Predicting the conformational flexibility of antibody CDRs [2024]
Spoendlin, Fabian C., Wing Ki Wong, Guy Georges, Alexander Bujotzek, and Charlotte Deane.
ICML'24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024) | code -
RevGraphVAMP: A protein molecular simulation analysis model combining graph convolutional neural networks and physical constraints [2024]
Huang, Ying, Huiling Zhang, Zhenli Lin, Yanjie Wei, and Wenhui Xi.
bioRxiv (2024) | code
- Learning molecular dynamics with simple language model built upon long short-term memory neural network [2020]
Tsai, ST., Kuo, EJ. & Tiwary, P.
Nat Commun 11, 5115 (2020) | code
-
Exploring the conformational ensembles of protein-protein complex with transformer-based generative model [2024]
Wang, Jianmin, Xun Wang, Yanyi Chu, Chunyan Li, Xue Li, Xiangyu Meng, Yitian Fang, Kyoung Tai No, Jiashun Mao, and Xiangxiang Zeng.
J. Chem. Theory Comput. (2024) | bioRxiv (2024) | code -
Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers [2024]
Chennakesavalu, Shriram, and Grant M. Rotskoff.
The Journal of Physical Chemistry B (2024) | code -
Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | code
-
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning [2024]
Talant Ruzmetov, Ta I Hung, Saisri Padmaja Jonnalagedda, Si-han Chen, Parisa Fasihianifard, Zhefeng Guo, Bir Bhanu, Chia-en A. Chang.
bioRxiv. (2024) | data -
Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy [2024]
Hu, Yao, Hao Yang, Mingwei Li, Zhicheng Zhong, Yongqi Zhou, Fang Bai, and Qian Wang.
Advanced Science (2024) | code -
Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
J. Chem. Inf. Model. (2024) | data -
Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling [2024]
Sanaa Mansoor, Minkyung Baek, Hahnbeom Park, Gyu Rie Lee, and David Baker.
J. Chem. Theory Comput. (2024) -
Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling [2024]
Junjie Zhu, Zhengxin Li, Haowei Tong, Zhouyu Lu, Ningjie Zhang, Ting Wei and Hai-Feng Chen.
Briefings in Bioinformatics. (2024) | code -
Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Auotencoder [2023]
JunJie Zhu, NingJie Zhang, Ting Wei and Hai-Feng Chen.
International Journal of Molecular Sciences. (2023) | code -
Encoding the Space of Protein-protein Binding Interfaces by Artificial Intelligence [2023]
Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu.
bioRxiv (2023) -
Artificial intelligence guided conformational mining of intrinsically disordered proteins [2022]
Gupta, A., Dey, S., Hicks, A. et al.
Commun Biol 5, 610 (2022) | code -
LAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories [2022]
Tian, Hao, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, and Peng Tao
J. Chem. Inf. Model. (2022) | code -
Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | code -
ProGAE: A Geometric Autoencoder-based Generative Model for Disentangling Protein Conformational Space [2021]
Tatro, Norman Joseph, Payel Das, Pin-Yu Chen, Vijil Chenthamarakshan, and Rongjie Lai.
ICLR (2022) -
Explore protein conformational space with variational autoencoder [2021]
Tian, Hao, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, and Peng Tao.
Frontiers in molecular biosciences 8 (2021) | code
-
Direct generation of protein conformational ensembles via machine learning [2023]
Janson, G., Valdes-Garcia, G., Heo, L. et al.
Nat Commun 14, 774 (2023) | code -
Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | code
-
Generative Modeling of Molecular Dynamics Trajectories [2024]
Jing, Bowen, Hannes Stark, Tommi Jaakkola, and Bonnie Berger.
ICML'24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024) | code -
Frame-to-Frame Coarse-grained Molecular Dynamics with SE (3) Guided Flow Matching [2024]
Li, Shaoning, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang
arXiv:2405.00751 (2024) -
AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | code
-
Deep learning of protein energy landscape and conformational dynamics from experimental structures in PDB [2024]
Yike Tang, Mendi Yu, Ganggang Bai, Xinjun Li, Yanyan Xu, Buyong Ma.
bioRxiv (2024) -
4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment [2024]
Cheng, Kaihui, Ce Liu, Qingkun Su, Jun Wang, Liwei Zhang, Yining Tang, Yao Yao, Siyu Zhu, and Yuan Qi.
arXiv:2408.12419 (2024) -
Generating Multi-state Conformations of P-type ATPases with a Diffusion Model [2024]
Jingtian Xu, Yong Wang.
bioRxiv (2024) | code -
Transferable deep generative modeling of intrinsically disordered protein conformations [2024]
Abdin, O., Kim, P.M.
PLOS Computational Biology 20.5 (2024) | code -
Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion [2024]
Janson, Giacomo, and Michael Feig.
Nat Mach Intell 6, 775–786 (2024) | code -
Accurate Conformation Sampling via Protein Structural Diffusion [2024]
Fan, Jiahao, Ziyao Li, Eric Alcaide, Guolin Ke, Huaqing Huang, and Weinan E.
J. Chem. Inf. Model. (2024) | bioRxiv (2024) | code -
Accurate and Efficient Structural Ensemble Generation of Macrocyclic Peptides using Internal Coordinate Diffusion [2023]
Grambow, Colin A., Hayley Weir, Nathaniel Diamant, Alex Tseng, Tommaso Biancalani, Gabriele Scalia and Kangway V Chuang.
arXiv:2305.19800 (2023) | code
-
Str2str: A score-based framework for zero-shot protein conformation sampling [2024]
Lu, Jiarui, Bozitao Zhong, Zuobai Zhang, and Jian Tang.
ICLR (2024) | code -
Score-based enhanced sampling for protein molecular dynamics [2023]
Lu, Jiarui, Bozitao Zhong, and Jian Tang.
arXiv:2306.03117 (2023) | code
- Energy-based models for atomic-resolution protein conformations [2020]
Du, Yilun, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander Rives.
ICLR (2020) | code
-
Enabling Population Protein Dynamics Through Bayesian Modeling [2024]
Sylvain Lehmann, Jérôme Vialaret, Audrey Gabelle, Luc Bauchet, Jean-Philippe Villemin, Christophe Hirtz, Jacques Colinge.
Bioinformatics (2024) -
Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network [2023]
Do, Hung N., and Yinglong Miao.
bioRxiv(2023) | code -
Deep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space [2023]
Draizen, Eli J., Stella Veretnik, Cameron Mura, and Philip E. Bourne.
bioRxiv(2023) | code
- Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets [2023]
Kleiman, Diego E., and Diwakar Shukla.
J. Chem. Theory Comput. (2023) | code
-
Structure Language Models for Protein Conformation Generation [2024]
Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Chence Shi, Hongyu Guo, Yoshua Bengio, Jian Tang.
arXiv:2410.18403 (2024) | code -
SeaMoon: Prediction of molecular motions based on language models [2024]
Valentin Lombard, Dan Timsit, Sergei Grudinin, Elodie Laine.
bioRxiv. (2024) | code -
Molecular simulation with an LLM-agent [2024]
MD-Agent is a LLM-agent based toolset for Molecular Dynamics.
code
-
Diffusion-based generative AI for exploring transition states from 2D molecular graphs [2024]
Kim, S., Woo, J. & Kim, W.Y.
Nat Commun 15, 341 (2024) | code -
Physics-informed generative model for drug-like molecule conformers [2024]
David C. Williams, Neil Imana.
arXiv:2403.07925. (2024) | code -
COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework [2024]
Kuznetsov, Maksim, Fedor Ryabov, Roman Schutski, Rim Shayakhmetov, Yen-Chu Lin, Alex Aliper, and Daniil Polykovskiy.
J. Chem. Inf. Model. (2024) | code -
Leveraging 2D Molecular Graph Pretraining for Improved 3D Conformer Generation with Graph Neural Networks [2024]
Jiang, Runxuan, Tarun Gogineni, Joshua Kammeraad, Yifei He, Ambuj Tewari, and Paul M. Zimmerman.
Computers & Chemical Engineering (2024) | code -
DynamicsDiffusion: Generating and Rare Event Sampling of Molecular Dynamic Trajectories Using Diffusion Models [2023]
Petersen, Magnus, Gemma Roig, and Roberto Covino.
NeurIPS 2023 AI4Science (2023) -
Generating Molecular Conformer Fields [2023]
Yuyang Wang, Ahmed Elhag, Navdeep Jaitly, Joshua Susskind, Miguel Bautista.
[NeurIPS 2023 Generative AI and Biology (GenBio) Workshop (2023)]https://openreview.net/forum?id=Od1KtMeAYo) -
On Accelerating Diffusion-based Molecular Conformation Generation in SE(3)-invariant Space [2023]
Zhou, Z., Liu, R. and Yu, T.
arXiv:2310.04915 (2023)) -
Molecular Conformation Generation via Shifting Scores [2023]
Zhou, Zihan, Ruiying Liu, Chaolong Ying, Ruimao Zhang, and Tianshu Yu.
arXiv:2309.09985 (2023) -
EC-Conf: An Ultra-fast Diffusion Model for Molecular Conformation Generation with Equivariant Consistency [2023]
Fan, Zhiguang, Yuedong Yang, Mingyuan Xu, and Hongming Chen.
arXiv:2308.00237 (2023) -
Prediction of Molecular Conformation Using Deep Generative Neural Networks [2023]
Xu, Congsheng, Yi Lu, Xiaomei Deng, and Peiyuan Yu.
Chinese Journal of Chemistry(2023) -
Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [2023]
Zhu, Yanqiao, Jeehyun Hwang, Keir Adams, Zhen Liu, Bozhao Nan, Brock Stenfors, Yuanqi Du et al.
NeurIPS 2023 AI for Science Workshop. 2023 (2023) | code -
Deep-Learning-Assisted Enhanced Sampling for Exploring Molecular Conformational Changes [2023]
Haohao Fu, Han Liu, Jingya Xing, Tong Zhao, Xueguang Shao, and Wensheng Cai.
J. Phys. Chem. B (2023) -
Torsional diffusion for molecular conformer generation [2022]
Jing, Bowen, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola.
NeurIPS. (2022) | code -
GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation [2022]
Xu, Minkai, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang.
International Conference on Learning Representations. (2022) | code -
Conformer-RL: A deep reinforcement learning library for conformer generation [2022]
Jiang, Runxuan, Tarun Gogineni, Joshua Kammeraad, Yifei He, Ambuj Tewari, and Paul M. Zimmerman.
Journal of Computational Chemistry 43.27 (2022) | code -
Energy-inspired molecular conformation optimization [2022]
Guan, Jiaqi, Wesley Wei Qian, Wei-Ying Ma, Jianzhu Ma, and Jian Peng.
International Conference on Learning Representations. (2022) | code -
An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming [2021]
Xu, Minkai, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli, and Jian Tang.
International Conference on Machine Learning. PMLR (2021) | code
-
On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules [2024]
Muscat, Stefano, Gianfranco Martino, Jacopo Manigrasso, Marco Marcia, and Marco De Vivo.
J. Chem. Theory Comput. (2024) -
Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations [2018]
Bottaro, S., Bussi, G., Kennedy, S.D., Turner, D.H. and Lindorff-Larsen, K.
Science advances 4.5 (2018) | code | data
-
CREMP: Conformer-rotamer ensembles of macrocyclic peptides for machine learning [2024]
Grambow, C.A., Weir, H., Cunningham, C.N. et al.
Sci Data 11, 859 (2024) | code -
Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion [2024]
Abdin, O., Kim, P.M.
Nat Mach Intell 6, 775–786 (2024) | code -
Accurate and Efficient Structural Ensemble Generation of Macrocyclic Peptides using Internal Coordinate Diffusion [2023]
Grambow, Colin A., Hayley Weir, Nathaniel Diamant, Alex Tseng, Tommaso Biancalani, Gabriele Scalia and Kangway V Chuang.
arXiv:2305.19800 (2023) | code
-
Fast Sampling of Protein Conformational Dynamics [2024]
Michael A. Sauer, Souvik Mondal, Brandon Neff, Sthitadhi Maiti, Matthias Heyden.
arXiv:2411.08154 (2024) -
Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning [2024]
Talant Ruzmetov, Ta I Hung, Saisri Padmaja Jonnalagedda, Si-han Chen, Parisa Fasihianifard, Zhefeng Guo, Bir Bhanu, Chia-en A. Chang.
bioRxiv. (2024) | data -
AlphaFold2's training set powers its predictions of fold-switched conformations [2024]
Joseph W. Schafer, Lauren Porter.
bioRxiv. (2024) | data -
Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy [2024]
Hu, Yao, Hao Yang, Mingwei Li, Zhicheng Zhong, Yongqi Zhou, Fang Bai, and Qian Wang.
Advanced Science (2024) | code -
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics [2024]
Mirarchi, Antonio, Raul P. Pelaez, Guillem Simeon, and Gianni De Fabritiis.
arXiv:2409.17852 (2024) | code -
Conformations of KRAS4B Affected by Its Partner Binding and G12C Mutation: Insights from GaMD Trajectory-Image Transformation-Based Deep Learning [2024]
Chen, Jianzhong, Jian Wang, Wanchun Yang, Lu Zhao, and Guodong Hu.
J. Chem. Inf. Model. (2024) | code -
Assessing AF2’s ability to predict structural ensembles of proteins [2024]
Riccabona, Jakob R., Fabian C. Spoendlin, Anna-Lena M. Fischer, Johannes R. Loeffler, Patrick K. Quoika, Timothy P. Jenkins, James A. Ferguson et al.
Structure (2024) -
Identifying protein conformational states in the Protein Data Bank: Toward unlocking the potential of integrative dynamics studies [2024]
Ellaway, J. I., Anyango, S., Nair, S., Zaki, H. A., Nadzirin, N., Powell, H. R., ... & Velankar, S.
Structural Dynamics (2024) -
AlphaFold with conformational sampling reveals the structural landscape of homorepeats [2024]
Bonet, David Fernandez et al.
Structure (2024) | code -
Structure prediction of alternative protein conformations [2024]
Bryant, P., Noé, F.
Nat Commun 15, 7328 (2024) | code -
Deep learning guided design of dynamic proteins [2024]
Amy B. Guo, Deniz Akpinaroglu, Mark J.S. Kelly, Tanja Kortemme.
bioRxiv. (2024) -
AlphaFold predictions of fold-switched conformations are driven by structure memorization [2024]
Chakravarty, D., Schafer, J.W., Chen, E.A. et al.
Nat Commun 15, 7296 (2024) | code -
4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment [2024]
Cheng, Kaihui, Ce Liu, Qingkun Su, Jun Wang, Liwei Zhang, Yining Tang, Yao Yao, Siyu Zhu, and Yuan Qi.
arXiv:2408.12419 (2024) -
Predicting protein conformational motions using energetic frustration analysis and AlphaFold2 [2024]
Xingyue Guan and Qian-Yuan Tang and Weitong Ren and Mingchen Chen and Wei Wang and Peter G. Wolynes and Wenfei Li.
Proceedings of the National Academy of Sciences (2024) -
A resource for comparing AF-Cluster and other AlphaFold2 sampling methods [2024]
Hannah K Wayment-Steele, Sergey Ovchinnikov, Lucy Colwell, Dorothee Kern.
bioRxiv (2024) -
Integration of AlphaFold with Molecular Dynamics for Efficient Conformational Sampling of Transporter Protein NarK [2024]
Ohnuki, Jun, and Kei-ichi Okazaki.
The Journal of Physical Chemistry B (2024) -
Transferable deep generative modeling of intrinsically disordered protein conformations [2024]
Abdin, O., Kim, P.M.
PLOS Computational Biology 20.5 (2024) | code -
AFsample2: Predicting multiple conformations and ensembles with AlphaFold2 [2024]
Yogesh Kalakoti, Björn Wallner.
bioRxiv (2024) | code -
Prediction of Conformational Ensembles and Structural Effects of State-Switching Allosteric Mutants in the Protein Kinases Using Comparative Analysis of AlphaFold2 Adaptations with Sequence Masking and Shallow Subsampling [2024]
Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Hao Tian, Sian Xiao, Peng Tao, Gennady Verkhivker.
bioRxiv (2024) | code -
Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE [2024]
Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary.
arXiv:2404.07102 (2024) -
High-throughput prediction of protein conformational distributions with subsampled AlphaFold2 [2024]
Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C. et al.
Nat Commun 15, 2464 (2024) | code -
AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | code -
Predicting multiple conformations via sequence clustering and AlphaFold2 [2024]
Wayment-Steele, H.K., Ojoawo, A., Otten, R. et al.
Nature 625, 832–839 (2024) | code -
Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers [2024]
Chennakesavalu, Shriram, and Grant M. Rotskoff.
The Journal of Physical Chemistry B (2024) | code -
Frame-to-Frame Coarse-grained Molecular Dynamics with SE (3) Guided Flow Matching [2024]
Li, Shaoning, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang
arXiv:2405.00751 (2024) -
AlphaFold Meets Flow Matching for Generating Protein Ensembles [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
arXiv:2402.04845 (2024) | code -
Machine learning of force fields towards molecular dynamics simulations of proteins at DFT accuracy [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N'tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design (2024) | code -
Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
J. Chem. Inf. Model. (2024) | data -
Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling [2024]
Sanaa Mansoor, Minkyung Baek, Hahnbeom Park, Gyu Rie Lee, and David Baker.
J. Chem. Theory Comput. (2024) -
Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling [2024]
Junjie Zhu, Zhengxin Li, Haowei Tong, Zhouyu Lu, Ningjie Zhang, Ting Wei and Hai-Feng Chen.
Briefings in Bioinformatics. (2024) | code -
Str2str: A score-based framework for zero-shot protein conformation sampling [2024]
Lu, Jiarui, Bozitao Zhong, Zuobai Zhang, and Jian Tang.
ICLR (2024) | code -
Enabling Population Protein Dynamics Through Bayesian Modeling [2024]
Sylvain Lehmann, Jérôme Vialaret, Audrey Gabelle, Luc Bauchet, Jean-Philippe Villemin, Christophe Hirtz, Jacques Colinge.
Bioinformatics (2024) -
Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network [2023]
Do, Hung N., and Yinglong Miao.
bioRxiv(2023) | code -
Deep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space [2023]
Draizen, Eli J., Stella Veretnik, Cameron Mura, and Philip E. Bourne.
bioRxiv(2023) | code -
Score-based enhanced sampling for protein molecular dynamics [2023]
Lu, Jiarui, Bozitao Zhong, and Jian Tang.
arXiv:2306.03117 (2023) | code -
AlphaFold2-RAVE: From Sequence to Boltzmann Ranking [2023]
Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, and Pratyush Tiwary.
J. Chem. Theory Comput. (2023)) | code -
Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures [2023]
Carmen Al-Masri, Francesco Trozzi, Shu-Hang Lin, Oanh Tran, Navriti Sahni, Marcel Patek, Anna Cichonska, Balaguru Ravikumar, Rayees Rahman.
Bioinformatics Advances. (2023)) | code -
Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures [2023]
Herrington, Noah B., David Stein, Yan Chak Li, Gaurav Pandey, and Avner Schlessinger.
bioRxiv (2023) | code -
Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets [2023]
Kleiman, Diego E., and Diwakar Shukla.
J. Chem. Theory Comput. (2023) | code -
Direct generation of protein conformational ensembles via machine learning [2023]
Janson, G., Valdes-Garcia, G., Heo, L. et al.
Nat Commun 14, 774 (2023) | code -
Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Auotencoder [2023]
JunJie Zhu, NingJie Zhang, Ting Wei and Hai-Feng Chen.
International Journal of Molecular Sciences. (2023) | code -
Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | code -
Sampling alternative conformational states of transporters and receptors with AlphaFold2 [2022]
Del Alamo, Diego, Davide Sala, Hassane S. Mchaourab, and Jens Meiler.
Elife 11 (2022) | code -
Artificial intelligence guided conformational mining of intrinsically disordered proteins [2022]
Gupta, A., Dey, S., Hicks, A. et al.
Commun Biol 5, 610 (2022) | code -
LAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories [2022]
Tian, Hao, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, and Peng Tao
J. Chem. Inf. Model. (2022) | code -
Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
arXiv:2206.04683 (2022) | code -
ProGAE: A Geometric Autoencoder-based Generative Model for Disentangling Protein Conformational Space [2021]
Tatro, Norman Joseph, Payel Das, Pin-Yu Chen, Vijil Chenthamarakshan, and Rongjie Lai.
ICLR (2022) -
Explore protein conformational space with variational autoencoder [2021]
Tian, Hao, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, and Peng Tao.
Frontiers in molecular biosciences 8 (2021) | code -
Energy-based models for atomic-resolution protein conformations [2020]
Du, Yilun, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander Rives.
ICLR (2020) | code
-
Generating Multi-state Conformations of P-type ATPases with a Diffusion Model [2024]
Jingtian Xu, Yong Wang.
bioRxiv (2024) | code -
Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
J. Chem. Inf. Model. (2024) | data
- AbFlex: Predicting the conformational flexibility of antibody CDRs [2024]
Spoendlin, Fabian C., Wing Ki Wong, Guy Georges, Alexander Bujotzek, and Charlotte Deane.
ICML'24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024) | code
-
Modeling protein-small molecule conformational ensembles with ChemNet [2024]
Ivan Anishchenko, Yakov Kipnis, Indrek Kalvet, Guangfeng Zhou, Rohith Krishna, Samuel J. Pellock, Anna Lauko, Gyu Rie Lee, Linna An, Justas Dauparas, Frank DiMaio, David Baker.
bioRxiv (2024) -
MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery [2024]
Siebenmorgen, T., Menezes, F., Benassou, S. et al.
Nat Comput Sci 4, 367–378 (2024) | code -
Enhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials [2024]
Sabanés Zariquiey, F., Galvelis, R., Gallicchio, E., Chodera, J.D., Markland, T.E. and De Fabritiis, G.
J. Chem. Inf. Model. (2024) | code -
Assessment of molecular dynamics time series descriptors in protein-ligand affinity prediction [2024]
Poziemski, Jakub, Artur Yurkevych, and Pawel Siedlecki.
chemrxiv-2024-dxv36 (2024) | code -
Pre-Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding [2022]
Wu, Fang, Shuting Jin, Yinghui Jiang, Xurui Jin, Bowen Tang, Zhangming Niu, Xiangrong Liu, Qiang Zhang, Xiangxiang Zeng, and Stan Z. Li.
Advanced Science 9.33 (2022) | code
-
Computational screening of the effects of mutations on protein-protein off-rates and dissociation mechanisms by τRAMD [2024]
D’Arrigo, G., Kokh, D.B., Nunes-Alves, A. et al.
Commun Biol 7, 1159 (2024) | code -
Quantifying conformational changes in the TCR:pMHC-I binding interface [2024]
Benjamin McMaster, Christopher Thorpe, Jamie Rossjohn, Charlotte M. Deane, Hashem Koohy.
bioRxiv (2024) | code -
Exploring the conformational ensembles of protein-protein complex with transformer-based generative model [2024]
Wang, Jianmin, Xun Wang, Yanyi Chu, Chunyan Li, Xue Li, Xiangyu Meng, Yitian Fang, Kyoung Tai No, Jiashun Mao, and Xiangxiang Zeng.
J. Chem. Theory Comput. (2024) | bioRxiv (2024) | code -
Encoding the Space of Protein-protein Binding Interfaces by Artificial Intelligence [2023]
Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu.
bioRxiv (2023) -
Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity [2024]
Jeffrey K Weber, Joseph A Morrone, Seung-gu Kang, Leili Zhang, Lijun Lang, Diego Chowell, Chirag Krishna, Tien Huynh, Prerana Parthasarathy, Binquan Luan, Tyler J Alban, Wendy D Cornell, Timothy A Chan.
Briefings in Bioinformatics (2024) | code
- Enhanced Sampling Simulations of RNA-peptide Binding using Deep Learning Collective Variables [2024]
Nisha Kumari, Sonam Dhull, Tarak Karmakar.
bioRxiv (2024)
-
Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning [2024]
Sharma, A., Sanvito, S.
npj Comput Mater 10, 237 (2024) | code -
Generative AI model trained by molecular dynamics for rapid mechanical design of architected graphene [2024]
Milad Masrouri, Kamalendu Paul, Zhao Qin.
Extreme Mechanics Letters (2024) -
Neural-network-based molecular dynamics simulations reveal that proton transport in water is doubly gated by sequential hydrogen-bond exchange [2024]
Gomez, A., Thompson, W.H. & Laage, D.
Nat. Chem. (2024) | data -
Universal-neural-network-potential molecular dynamics for lithium metal and garnet-type solid electrolyte interface [2024]
Iwasaki, R., Tanibata, N., Takeda, H. et al.
Commun Mater 5, 148 (2024)