Skip to content

AstraBert/workflows-acp

Repository files navigation

workflows-acp

Run an agent powered by LlamaIndex Workflows over the ACP wire.

Installation

To install from registry:

# with pip
pip install workflows-acp
# with uv
uv add workflows-acp
# with uv - tool install
uv tool install workflows-acp

To install from source:

git clone https://github.com/AstraBert/workflows-acp
cd workflows-acp
uv tool install .

To verify the installation:

wfacp --help

Usage

To use the CLI and Python API, set your GOOGLE_API_KEY/OPENAI_API_KEY/ANTHROPIC_API_KEY (based on your LLM provider) in the environment:

export GOOGLE_API_KEY="my-api-key"

To reduce logging noise from mcp-use's telemetry, run:

export MCP_USE_ANONYMIZED_TELEMETRY=false

CLI

To use the CLI agent, provide an agent_config.yaml file with the following fields:

  • mode ('ask' or 'bypass'): Permission mode for the agent. Default is ask.
  • tools: List of tools (from the default set) available to the agent.
  • model: The LLM model for the agent (Gemini models only). Default is gemini-3-flash-preview.
  • agent_task: The task for which you need the agent's assistance.

See the example in agent_config.yaml.

If you wish to provide additional instructions to the agent (e.g. context on the current project, best practices, coding style rules...) you can add these instructions to an AGENTS.md file in the directory the agent is working in.

You can add or modify configuration options in your agent_config.yaml using the wfacp CLI:

# Add a tool
wfacp add-tool -t read_file
# Remove a tool
wfacp rm-tool -t read_file
# Add or modify the agent task
wfacp task -t "You should assist the user with python coding"
# Set or change the mode
wfacp mode -m bypass
# Set or change the model
wfacp model -m gemini-3-pro-preview

workflows-acp supports a list of models provided by OpenAI, Anthropic and Google.

To use the agent with MCP servers, create a .mcp.json file with server definitions:

{
  "mcpServers": {
    "with-stdio": {
      "command": "npx",
      "args": [
        "@mcp/server",
        "start"
      ]
    },
    "with-http": {
      "url": "https://example.com/mcp"
    }
  }
}

For servers using stdio, specify a command and optionally a list of args and an env for the MCP process. For servers using http, specify a url and optionally add headers for requests.

See a complete example in .mcp.json.

MCP configuration can also be managed via CLI:

# Add a stdio MCP server
wfacp add-mcp --name test --transport stdio --command 'npx @mcp/server arg1 arg2' --env "PORT=3000" --env "TELEMETRY=false"
# Add an HTTP MCP server
wfacp add-mcp --name search --transport http --url https://www.search.com/mcp --header "Authorization=Bearer $API_KEY" --header "X-Hello-World=Hello world!"
# Remove a server
wfacp rm-mcp --name search

If you wish to disable MCP usage when running the agent, you can do so by running:

wfacp run --no-mcp

You can also use the agent with an AgentFS virtual filesystem instead of your real one. While you can load all the files on-the-fly when running the agent, it is advisable to use the load-agentfs command:

wfacp load-agentfs
# skipping specific files
wfacp load-agentfs --skip-file uv.lock --skip-file go.sum
# skipping specific directories
wfacp load-agentfs --skip-dir .git --skip-dir .venv

When running the agent, enable AgentFS in this way:

wfacp run --agentfs
# skipping specific files
wfactp run --agentfs --agentfs-skip-file uv.lock --agentfs-skip-file go.sum
# skipping specific directories
wfactp run --agentfs --agentfs-skip-dir .git --agentfs-skip-dir .venv

Read more about AgentFS in the dedicated section.

To run the agent, use an ACP-compatible client such as toad or Zed editor.

With toad

# Install toad
curl -fsSL batrachian.ai/install | sh
# Run
toad acp "wfacp run"

A terminal interface will open, allowing you to interact with the agent.

With Zed

Add the following to your settings.json:

{
  "agent_servers": {
    "AgentWorkflow": {
      "command": "wfacp",
      "args": [
        "run"
      ]
    }
  }
}

You can then interact with the agent directly in the IDE.

Available LLM Models

The following LLM models are supported and can be selected in your agent_config.yaml or via CLI/python API:

Google

  • gemini-2.5-flash
  • gemini-2.5-flash-lite
  • gemini-2.5-pro
  • gemini-3-flash-preview
  • gemini-3-pro-preview

Anthropic

  • claude-opus-4-5
  • claude-sonnet-4-5
  • claude-haiku-4-5
  • claude-opus-4-1
  • claude-sonnet-4-0

OpenAI

  • gpt-4.1
  • gpt-5
  • gpt-5.1
  • gpt-5.2

Available tools by default

The following tools are available by default and can be enabled in your agent_config.yaml:

  • describe_dir_content: Describes the contents of a directory, listing files and subfolders. (available with AgentFS integration)
  • read_file: Reads the contents of a file and returns it as a string. (available with AgentFS integration)
  • grep_file_content: Searches for a regex pattern in a file and returns all matches. (available with AgentFS integration)
  • glob_paths: Finds files in a directory matching a glob pattern. (available with AgentFS integration)
  • write_file: Writes content to a file, with an option to overwrite. (available with AgentFS integration)
  • edit_file: Edits a file by replacing occurrences of a string with another string. (available with AgentFS integration)
  • execute_command: Executes a shell command with arguments. Optionally waits for completion.
  • bash_output: Retrieves the stdout and stderr output of a previously started background process by PID.
  • write_memory: Writes a memory with content and relevance score to persistent storage.
  • read_memory: Reads the most recent and relevant memory records from persistent storage.
  • create_todos: Creates a TODO list with specified items and statuses.
  • list_todos: Lists all TODO items and their statuses.
  • update_todo: Updates the status of a TODO item.

AgentFS Integration

wfacp integrates with AgentFS (a virtual filesystem designed for coding agent) with the following steps:

  1. Initialization: An agent.db file is creted
  2. Loading: All the files in the current directory, with the exception of those you explicitly excluded, will be loaded to the agent.db database
  3. Tools: Instead of loading the normal set of tools, the tools related to filesystem operations are loaded from agentfs.py.

Now every filesystem operation performed by the agent is done on the virtual filesystem, and not on your real one, allowing the agent to perform dangerous and potentially damaging operations without affecting your actual files.

Examples

Find more examples of the CLI and Python API usage in the examples folder.

Python API

Define your ACP agent by specifying tools, customizing the agent prompt, or selecting an LLM model:

import asyncio

from workflows_acp.acp_wrapper import start_agent
from workflows_acp.models import Tool

def add(x: int, y: int) -> int:
    return x + y

async def query_database(query: str) -> str:
    result = await db.query(query).fetchall()
    return "\n".join(result)

add_tool = Tool(
    name="add",
    description="Add two integers together",
    fn=add,
)
db_tool = Tool(
    name="query_database",
    description="Query a database with SQL syntax",
    fn=query_database,
)

task = "You are an accountant who needs to help the user with their expenses (`expenses` table in the database), and you can do so by using the `query_database` tool and perform mathematical operations with the `add` tool"
model = "gpt-5.2" # you can use any model among the supported ones

def main() -> None:
    asyncio.run(start_agent(tools=[db_tool, add_tool], agent_task=task, llm_model=model, use_mcp=False))

Or load the agent from an agent_config.yaml file:

import asyncio

from workflows_acp.acp_wrapper import start_agent

def main() -> None:
    asyncio.run(start_agent(from_config_file=True, use_mcp=False))

You can also configure MCP servers:

import asyncio
import os

from workflows_acp.acp_wrapper import start_agent
from workflows_acp.mcp_wrapper import McpServersConfig, HttpMcpServer, StdioMcpServer

stdio_server = StdioMcpServer(command="npx", args=["@test/mcp", "helloworld"], env=None)
http_server = HttpMcpServer(url="https://example.com/mcp", headers={"Authorization": "Bearer " + os.getenv("API_KEY", "")})
servers_config = McpServersConfig(mcpServers={
  "with-stdio": stdio_server,
  "with-http": http_server,
})

def main() -> None:
    asyncio.run(start_agent(from_config_file=True, use_mcp=True, mcp_config=servers_config))

Or load from a .mcp.json file:

import asyncio

from workflows_acp.acp_wrapper import start_agent

def main() -> None:
    # Automatically finds .mcp.json, loads, and validates the config
    asyncio.run(start_agent(from_config_file=True, use_mcp=True))

You can also integrate with AgentFS:

import asyncio

from workflows_acp.acp_wrapper import start_agent

def main() -> None:
    # Automatically loads all the files to AgentFS
    asyncio.run(
      start_agent(
        from_config_file=True, 
        use_agentfs=True, 
        agentfs_skip_files=[".env", "uv.lock"], 
        agentfs_skip_dirs=[".venv", ".git", "__pycache__"]
      )
    )

About

ACP wrapper for LlamaIndex Agent Workflows

Resources

Stars

Watchers

Forks

Packages

No packages published