This is a bunch of Python modules I wrote for my astronomy work with the HAT
surveys, mostly focused on handling light curves and characterizing variable
stars. Module functions that deal with light curves (e.g. in the modules
astrobase.lcmath
, astrobase.periodbase
, astrobase.varbase
,
astrobase.plotbase
, and astrobase.checkplot
) usually just require three
numpy ndarrays as input: times
, mags
, and errs
, so they should work with
any time-series data that can be represented in this form. If you have flux time
series measurements, most functions take a magsarefluxes
keyword argument that
makes them handle flux light curves correctly.
Full documentation is still a work in progress (as soon as I figure out how Sphinx works), but the docstrings are fairly good and an overview is provided below, along with Jupyter notebooks that demonstrate some of the functionality in a companion repository.
To install astrobase from the Python Package Index (PyPI):
$ pip install numpy # needed to set up Fortran wrappers
$ pip install astrobase
The package should work with Python >= 3.4 and Python 2.7. Using the newest Python 3 version available is recommended. See the installation instructions below for details.
These are now located over at astrobase-notebooks.
Most of the modules with useful external functions live in here. The
astrobase.conf
file contains module-wide settings that may need to be tweaked
for your purposes.
-
astrokep: contains functions for dealing with Kepler and K2 Mission light curves from STScI MAST (reading the FITS files, consolidating light curves for objects over quarters), and some basic operations (converting fluxes to mags, decorrelation of light curves, filtering light curves, and fitting object centroids for eclipse analysis, etc.)
-
checkplot: contains functions to make checkplots: a grid of plots used to quickly decide if a period search for a possibly variable object was successful. Checkplots come in two forms:
Python pickles: If you want to interactively browse through large numbers of checkplots (e.g., as part of a large variable star classification project), you can use the
checkplotserver
webapp that works on checkplot pickle files. This interface (see below for an example) allows you to set and save variability tags, object type tags, best periods and epochs, and comments for each object using a browser-based UI (see below). The information entered can then be exported as CSV or JSON for the next stage of work. The lightcurves-and-checkplots Jupyter notebook details how to do this and goes through a full example.PNG images: Alternatively, if you want to simply glance through lots of checkplots (e.g. for an initial look at a collection of light curves), there's a tiny
checkplot-viewer
webapp available (see below for an example) that operates on checkplot PNG images. The lightcurve-work Jupyter notebook goes through an example of generating these checkplot PNGs for light curves. See the checkplot-viewer.js file for more instructions and checkplot-viewer.png for a screenshot. -
coordutils: functions for dealing with coordinates (conversions, distances, proper motion)
-
emailutils: contains a simple emailer function suitable for use in long-running scripts and the like; this uses the provided credentials and server to send messages
-
fortney2k7: giant planet models from Fortney et al. 2007, ApJ, 2659, 1661 made importable as Python dicts
-
hatsurveys: modules to read, filter, and normalize light curves from various HAT surveys
-
lcdb: a lightweight wrapper around the
psycopg2
library to talk to PostgreSQL database servers -
lcmath: functions for light curve operations such as phasing, normalization, binning (in time and phase), sigma-clipping, external parameter decorrelation (EPD), etc.
-
lcproc: driver functions for running an end-to-end pipeline including: (i) object selection from a collection of light curves by position, cross-matching to external catalogs, or light curve objectinfo keys, (ii) running variability feature calculation and detection, (iii) running period-finding, and (iv) object review using the checkplotserver webapp for variability classification.
-
periodbase: parallelized functions (using
multiprocessing.map
) to run fast period searches on light curves, including: the generalized Lomb-Scargle algorithm from Zechmeister & Kurster (2008; periodbase.zgls), the phase dispersion minimization algorithm from Stellingwerf (1978, 2011; periodbase.spdm), the AoV and AoV-multiharmonic algorithms from Schwarzenberg-Czerny (1989, 1996; periodbase.saov, periodbase.smav), the BLS algorithm from Kovacs et al. (2002; periodbase.kbls), and the ACF period-finding algorithm from McQuillan et al. (2013a, 2014; periodbase.macf). -
plotbase: functions to plot light curves, phased light curves, periodograms, and download Digitized Sky Survey cutouts from the NASA SkyView service.
-
services: modules and functions to query various astronomical catalogs and data services, including GAIA, TRILEGAL, NASA SkyView, and 2MASS DUST.
-
timeutils: functions for converting from Julian dates to Baryocentric Julian dates, and precessing coordinates between equinoxes and due to proper motion; this will automatically download and save the JPL ephemerides de430.bsp from JPL upon first import
-
varbase: functions for calculating variability indices for light curves, fitting and obtaining Fourier coefficients for use in classifications, and other variability features
This package requires the following other packages:
- numpy
- scipy
- astropy
- matplotlib
- Pillow
- jplephem
- requests
- tornado
- pyeebls
- tqdm
- scikit-learn
For some extra functionality:
- for
astrobase.lcdb
to work, you'll also need psycopg2
If you're using:
- 64-bit Linux and Python 2.7, 3.4, 3.5, 3.6
- 64-bit Mac OSX 10.12+ with Python 2.7 or 3.6
- 64-bit Windows with Python 2.7 and 3.6
You can simply install astrobase with:
(venv)$ pip install astrobase
Otherwise, you'll need to make sure that a Fortran compiler and numpy are installed beforehand to compile the pyeebls package that astrobase depends on:
## you'll need a Fortran compiler. ##
## on Linux: dnf/yum/apt install gcc gfortran ##
## on OSX (using homebrew): brew install gcc && brew link gcc ##
## make sure numpy is installed as well! ##
## this is required for the pyeebls module installation ##
(venv)$ pip install numpy # in a virtualenv
# or use dnf/yum/apt install numpy to install systemwide
Once that's done, install astrobase.
(venv)$ pip install astrobase
Or if you want to install optional dependencies as well:
(venv)$ pip install astrobase[all]
Finally, if you want the latest version:
$ git clone https://github.com/waqasbhatti/astrobase
$ cd astrobase
$ python setup.py install
$ # or use pip install . to install requirements automatically
$ # or use pip install -e . to install in develop mode along with requirements
astrobase
is provided under the MIT License. See the LICENSE file for the full
text.