You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
// gear_spin = rotate the driven gear by this number of degrees. Default:0
3487
-
// Example(2D,NoAxes,Anim,Frames=90,FPS=30,VPT=[-0.875705,-0.110537,-66.3877],VPR=[0,0,0],VPD=102,Med): In this example we request a ring/carrier ratio of 1.341 and the system produced has a ratio of 4/3. The sun is fixed, the input is carried by the ring, and the carrier, shown as the blue triangle, is the output, rotating approximately in accordance with the requested ratio.
3487
+
// Example(2D,NoAxes,Anim,Frames=90,FrameMS=30,VPT=[-0.875705,-0.110537,-66.3877],VPR=[0,0,0],VPD=102,Med): In this example we request a ring/carrier ratio of 1.341 and the system produced has a ratio of 4/3. The sun is fixed, the input is carried by the ring, and the carrier, shown as the blue triangle, is the output, rotating approximately in accordance with the requested ratio.
// Example(3D,Med,NoAxes,Anim,Frames=7,FPS=20,VPT=[0.128673,0.24149,0.651451],VPR=[38.5,0,21],VPD=222.648): Here we request a sun/ring ratio of 3 and it is exactly achieved. The carrier, shown in blue, is fixed. This example is shown with helical gears. It is important to remember to flip the sign of the helical angle for the planet gears.
3504
+
// Example(3D,Med,NoAxes,Anim,Frames=7,FrameMS=50,VPT=[0.128673,0.24149,0.651451],VPR=[38.5,0,21],VPD=222.648): Here we request a sun/ring ratio of 3 and it is exactly achieved. The carrier, shown in blue, is fixed. This example is shown with helical gears. It is important to remember to flip the sign of the helical angle for the planet gears.
0 commit comments