Skip to content

Commit

Permalink
Merge pull request #35 from dcferreira/master
Browse files Browse the repository at this point in the history
Upgraded papers from v2.3.0 to v3.0.0
  • Loading branch information
dcferreira authored Nov 12, 2018
2 parents 9312ead + 8c8ec94 commit 7f45761
Show file tree
Hide file tree
Showing 52 changed files with 541 additions and 487 deletions.
14 changes: 7 additions & 7 deletions v2_papers/2003/mahoney_learning.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"version": "v2.3.0",
"version": "v3.0.0",
"reference": {
"title": "Learning rules for anomaly detection of hostile network traffic",
"authors": [
Expand All @@ -20,8 +20,8 @@
},
"access_open": false,
"curated_by": "vormayr, g.",
"curated_last_revision": "06-06-2018",
"curated_revision_number": 3
"curated_last_revision": "12-11-2018",
"curated_revision_number": 4
},
"data": {
"datasets": [
Expand Down Expand Up @@ -359,11 +359,11 @@
"tools": "missing",
"algorithms": [
{
"name": "LERAD",
"subname": "Learning Rules for Anomaly Detection",
"family": "rule_extraction",
"detail": "LERAD",
"learning": "unsupervised",
"role": "main",
"type": "heuristics",
"type": "classification",
"metric/decision_criteria": "probabilistic",
"source": "own_proposed",
"parameters_provided": false
Expand Down Expand Up @@ -392,7 +392,7 @@
]
},
"result": {
"main_goal": "anomaly_detection",
"main_goal": "detect_attacks",
"subgoals": [
"anomaly_detection"
],
Expand Down
16 changes: 8 additions & 8 deletions v2_papers/2004/wang_anomalous.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"version": "v2.3.0",
"version": "v3.0.0",
"reference": {
"title": "Anomalous Payload-based Network Intrusion Detection",
"authors": [
Expand All @@ -18,8 +18,8 @@
},
"access_open": false,
"curated_by": "bachl, m.",
"curated_last_revision": "06-06-2018",
"curated_revision_number": 3
"curated_last_revision": "12-11-2018",
"curated_revision_number": 4
},
"data": {
"datasets": [
Expand Down Expand Up @@ -189,14 +189,14 @@
"tools": "missing",
"algorithms": [
{
"name": "PAYL",
"family": "signature",
"detail": "payload-based anomaly detection",
"learning": "unsupervised",
"role": "main",
"type": "anomaly_detection",
"type": "specific_detection",
"metric/decision_criteria": "mahalanobis",
"source": "own_proposed",
"parameters_provided": false,
"subname": "payload-based anomaly detection"
"parameters_provided": false
}
]
},
Expand Down Expand Up @@ -247,7 +247,7 @@
]
},
"result": {
"main_goal": "anomaly_detection",
"main_goal": "detect_attacks",
"subgoals": [
"attack_classification"
],
Expand Down
22 changes: 11 additions & 11 deletions v2_papers/2005/lakhina_mining.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"version": "v2.3.0",
"version": "v3.0.0",
"reference": {
"title": "Mining Anomalies Using Traffic Feature Distributions",
"authors": [
Expand All @@ -22,8 +22,8 @@
},
"access_open": false,
"curated_by": "maloku, b.",
"curated_last_revision": "06-06-2018",
"curated_revision_number": 3
"curated_last_revision": "12-11-2018",
"curated_revision_number": 4
},
"data": {
"datasets": [
Expand Down Expand Up @@ -216,18 +216,18 @@
"tools": "missing",
"algorithms": [
{
"name": "multiway subspace method",
"subname": "multiway subspace method",
"family": "_multiway_space_transformation",
"detail": "multiway subspace method",
"learning": "unsupervised",
"role": "main",
"type": "anomaly_detection",
"type": "space_transformation",
"metric/decision_criteria": "euclidean",
"source": "referenced",
"parameters_provided": false
},
{
"name": "Hierarchical Agglomerative Clustering",
"subname": "hierarchical agglomerative",
"family": "hierarchical_clustering",
"detail": "agglomerative",
"learning": "unsupervised",
"role": "main",
"type": "clustering",
Expand All @@ -236,8 +236,8 @@
"parameters_provided": false
},
{
"name": "K-means",
"subname": "k-means",
"family": "kmeans_clustering",
"detail": "none",
"learning": "unsupervised",
"role": "competitor",
"type": "clustering",
Expand Down Expand Up @@ -285,7 +285,7 @@
]
},
"result": {
"main_goal": "anomaly_detection",
"main_goal": "detect_anomalies",
"subgoals": [
"anomaly_detection",
"attack_classification"
Expand Down
31 changes: 15 additions & 16 deletions v2_papers/2005/moore_internet.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"version": "v2.3.0",
"version": "v3.0.0",
"reference": {
"title": "Internet Traffic Classification Using Bayesian Analysis Techniques",
"authors": [
Expand All @@ -21,8 +21,8 @@
},
"access_open": false,
"curated_by": "maloku, b.",
"curated_last_revision": "06-06-2018",
"curated_revision_number": 3
"curated_last_revision": "12-11-2018",
"curated_revision_number": 5
},
"data": {
"datasets": [
Expand Down Expand Up @@ -96,8 +96,7 @@
"feature_selections": [
{
"name": "Fast Correlation-Based Filter (FCBF)",
"type": "wrapper",
"classifier": "Naive Bayes",
"type": "filter",
"role": "main"
}
],
Expand Down Expand Up @@ -320,8 +319,8 @@
"tools": "missing",
"algorithms": [
{
"name": "Naive Bayes",
"subname": "Naïve Bayes",
"family": "bayesian",
"detail": "naive bayes",
"learning": "supervised",
"role": "competitor",
"type": "classification",
Expand All @@ -337,11 +336,11 @@
"parameters_provided": false
},
{
"name": "Naı̈ve Bayes with kernel density estimation",
"subname": "Naı̈ve Bayes with kernel density estimation",
"family": "bayesian",
"detail": "Naive Bayes with Kernel Estimation Method",
"learning": "supervised",
"role": "competitor",
"type": "statistics",
"type": "classification",
"metric/decision_criteria": "euclidean",
"tools": [
{
Expand All @@ -354,8 +353,8 @@
"parameters_provided": false
},
{
"name": "Naive Bayes",
"subname": "Naïve Bayes with FCBF prefiltering",
"family": "bayesian",
"detail": "Naive Bayes with FCBF prefiltering",
"learning": "supervised",
"role": "competitor",
"type": "classification",
Expand All @@ -371,11 +370,11 @@
"parameters_provided": false
},
{
"name": "Naı̈ve Bayes with kernel density estimation and FCBF prefiltering",
"subname": "Naı̈ve Bayes with kernel density estimation and FCBF prefiltering",
"family": "bayesian",
"detail": "Naive Bayes with Kernel Estimation Method and FCBF prefiltering",
"learning": "supervised",
"role": "main",
"type": "statistics",
"type": "classification",
"metric/decision_criteria": "euclidean",
"tools": [
{
Expand Down Expand Up @@ -427,7 +426,7 @@
]
},
"result": {
"main_goal": "traffic_classification",
"main_goal": "classify_traffic",
"subgoals": [
"traffic_classification"
],
Expand Down
29 changes: 15 additions & 14 deletions v2_papers/2006/williams_apreliminary.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"version": "v2.3.0",
"version": "v3.0.0",
"reference": {
"title": "a preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification",
"authors": [
Expand All @@ -22,8 +22,8 @@
},
"access_open": false,
"curated_by": "ferreira, d.",
"curated_last_revision": "06-06-2018",
"curated_revision_number": 4
"curated_last_revision": "12-11-2018",
"curated_revision_number": 5
},
"data": {
"datasets": [
Expand Down Expand Up @@ -606,8 +606,8 @@
],
"algorithms": [
{
"name": "Naive Bayes",
"subname": "naive bayes with discretization",
"family": "bayesian",
"detail": "naive bayes with discretization",
"learning": "supervised",
"role": "main",
"type": "classification",
Expand All @@ -623,8 +623,8 @@
"parameters_provided": false
},
{
"name": "Naive Bayes",
"subname": "naive bayes with kernel density estimation",
"family": "bayesian",
"detail": "Naive Bayes with Kernel Estimation Method",
"learning": "supervised",
"role": "main",
"type": "classification",
Expand All @@ -640,8 +640,8 @@
"parameters_provided": false
},
{
"name": "Decision Tree",
"subname": "c4.5 decision tree",
"family": "decision_tree",
"detail": "C4.5",
"learning": "supervised",
"role": "main",
"type": "classification",
Expand All @@ -657,10 +657,11 @@
"parameters_provided": false
},
{
"name": "Bayesian Network",
"family": "bayesian",
"detail": "bayesian network",
"learning": "supervised",
"role": "main",
"type": "classification",
"type": "modeling",
"metric/decision_criteria": "probabilistic",
"tools": [
{
Expand All @@ -673,8 +674,8 @@
"parameters_provided": false
},
{
"name": "Decision Tree",
"subname": "naive bayes decision tree",
"family": "decision_tree",
"detail": "naive bayes decision tree",
"learning": "supervised",
"role": "main",
"type": "classification",
Expand Down Expand Up @@ -721,7 +722,7 @@
]
},
"result": {
"main_goal": "traffic_classification",
"main_goal": "classify_traffic",
"subgoals": [
"traffic_classification"
],
Expand Down
26 changes: 15 additions & 11 deletions v2_papers/2006/wright_oninferring.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
{
"version": "v2.3.0",
"version": "v3.0.0",
"reference": {
"title": "on inferring application protocol behaviors in encrypted network traffic",
"authors": [
Expand All @@ -19,8 +19,8 @@
},
"access_open": true,
"curated_by": "vormayr, g.",
"curated_last_revision": "06-06-2018",
"curated_revision_number": 7
"curated_last_revision": "12-11-2018",
"curated_revision_number": 8
},
"data": {
"datasets": [
Expand Down Expand Up @@ -128,34 +128,38 @@
"tools": "missing",
"algorithms": [
{
"name": "Hidden Markov Model (HMM)",
"family": "markov_process",
"detail": "Hidden Markov Model (HMM)",
"learning": "supervised",
"role": "main",
"type": "classification",
"type": "modeling",
"metric/decision_criteria": "probabilistic",
"source": "referenced",
"parameters_provided": false
},
{
"name": "viterbi",
"family": "markov_process",
"detail": "viterbi",
"learning": "supervised",
"role": "main",
"type": "classification",
"type": "modeling",
"metric/decision_criteria": "probabilistic",
"source": "referenced",
"parameters_provided": false
},
{
"name": "K-nearest Neighbors (KNN)",
"family": "knn",
"detail": "none",
"learning": "semisupervised",
"role": "main",
"type": "clustering",
"type": "classification",
"metric/decision_criteria": "mutual_information",
"source": "referenced",
"parameters_provided": false
},
{
"name": "vector quantization",
"family": "_vector_quantization",
"detail": "vector quantization",
"learning": "semisupervised",
"role": "main",
"type": "clustering",
Expand Down Expand Up @@ -189,7 +193,7 @@
]
},
"result": {
"main_goal": "traffic_classification",
"main_goal": "classify_traffic",
"subgoals": [
"application_classification",
"classification_of_encrypted_traffic",
Expand Down
Loading

0 comments on commit 7f45761

Please sign in to comment.