-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathaiagent.py
744 lines (632 loc) · 30.3 KB
/
aiagent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
import streamlit as st
import openai
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
import os, datetime, pickle, time
import google.generativeai as genai
import anthropic
from google.generativeai.types import HarmCategory, HarmBlockThreshold
try:
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
except:
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
genai.configure(api_key=GOOGLE_API_KEY)
class Document:
"""Document class for storing text and metadata together. This is used for storing long-term memory."""
def __init__(self, content, metadata, id):
self.page_content = content
self.metadata = metadata
self.id = id
class AIAgent:
"""AIAgent class, which acts as the character to converse with
Intialize with a character description, Defaults to: 'an attractive friend with a hidden crush'
"""
def __init__(
self,
model="open-mistral-7b",
embedding_model="gpt",
summary_model="gemini-1.5-flash",
):
# Initialize the AI agent
self.set_model(model)
# initialize the summary model
self.set_summary_model(summary_model)
# Initialize the embeddings model
self.embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# Set the character for the AI to role-play as
self.character = (
"A old emu with a tale to tell. You desperately want someone to listen."
)
self.location = "The Australian Outback"
self.user_name = "User"
self.character_name = "Bill"
self.prefix = ""
# token and usage statistics
self.total_cost = 0
self.average_cost = 0
self.total_tokens = 0
self.average_tokens = 0
self.current_memory_tokens = 0
# string and instruction tokens (not currently used)
self.bos = ""
self.eos = ""
self.start_ins = ""
self.end_ins = ""
# initialize the memory
self.short_term_memory = []
self.chat_history = []
self.mid_term_memory = "nothing yet."
self.long_term_memories = "nothing yet."
self.current_memory_id = 0
self.messages = []
self.message_style_sample = None
self.response = "I'm thinking of my response"
# Set the system prompt to instruct the AI on how to role-play
self.system_message = self.set_system_message()
# Set the short term memory length and overlap
## How many messages are summarized:
## must be even!
self.mid_term_memory_length = 8
## How long short-term memory can grow:
## must be greater than mid_term_memory_length
## must be even
self.max_short_term_memory_length = 16
## How much overlap between each summarized mid-term memory:
## must be less than mid_term_memory_length
## must be Even
self.mid_term_memory_overlap = 2
## Checks to enforce length rules
if self.mid_term_memory_length > self.max_short_term_memory_length:
self.max_short_term_memory_length = self.mid_term_memory_length + 2
if self.mid_term_memory_overlap > self.mid_term_memory_length:
self.mid_term_memory_overlap = self.mid_term_memory_length - 2
## Checks to enforce length rules
if self.mid_term_memory_length % 2 != 0:
self.mid_term_memory_length += 1
if self.max_short_term_memory_length % 2 != 0:
self.max_short_term_memory_length += 1
if self.mid_term_memory_overlap % 2 != 0:
self.mid_term_memory_overlap += 1
# NSFW filter
self.nsfw = False
def set_system_message(self) -> None:
"""Include dynamic elements in the system prompt. Returns the system message."""
# Set the system prompt to instruct the AI on how to role-play
self.system_prompt = f"""
Roleplay as {self.character}, named {self.character_name}.
{self.message_style_sample}
Fully embody this character's personality, voice, mannerisms, knowledge, beliefs, and traits. The current situation is: {self.location}.
Respond in informal, conversational language using dialogue, body language (asterisks) and actions to show the character's desires, opinions, goals and emotions.
Do not respond with emotions directly, but show them through the character's actions, expression, body language, and dialogue.
Proactively make decisions and advance the plot. Ask questions to learn more, when relevant.
Maintain consistent speech patterns, worldview and only include details the character would know. Begin responses with '[{self.character_name}]:'.
Keep responses 50-120 words. Use markdown formatting (italics for actions, bold for emphasis) as suitable.
Carefully examine the following notes for relevant information. These are summarized memories for your character.
If any information is especially relevant to the conversation, feel free to mention it or use it as implicit context for your responses as would be appropriate.
Recent notes: {self.mid_term_memory}
Notes from longer ago: {self.long_term_memories}
Only answer questions with information your character would know.
If you are asked about previous events relating to your history specifically with the user, check your notes for the answer.
If the information is not in your notes, ask the user to tell you some details to help you remember.
If you have already asked the user to help you remember, and the information is still not in your notes, then say you don't remember.
The goal is an immersive, consistent roleplaying experience where the user feels a sense of narrative progress and connection to the dynamic, engaging character.
"""
self.system_message = {
"role": "system",
"content": self.bos
+ self.start_ins
+ self.system_prompt
+ self.end_ins
+ " ",
}
def set_model(self, model="gpt-3.5-turbo-0125") -> None:
"""Change the model the AI uses to generate responses. Defaults to: 'open-mistral-7b'"""
self.model = model
if "gpt" in self.model:
try:
api_key = os.getenv("OPENAI_API_KEY")
except:
api_key = st.secrets["OPENAI_API_KEY"]
self.agent = openai.OpenAI(
api_key=api_key, base_url="https://api.openai.com/v1"
)
elif "gemini" in self.model:
self.agent = genai.GenerativeModel(model_name=self.model)
elif "claude" in self.model:
try:
api_key = os.getenv("ANTHROPIC_API_KEY")
except:
try:
api_key = st.secrets["ANTHROPIC_API_KEY"]
except Exception as e:
print(e)
self.agent = anthropic.Anthropic(api_key=api_key)
elif "hermes" in self.model:
try:
api_key = os.getenv("LAMBDA_API_KEY")
except:
try:
api_key = st.secrets("LAMBDA_API_KEY")
except Exception as e:
print(e)
self.agent = openai.OpenAI(
api_key=api_key, base_url="https://api.lambdalabs.com/v1"
)
else:
try:
api_key = os.getenv("TOGETHER_API_KEY")
except:
api_key = st.secrets["TOGETHER_API_KEY"]
self.agent = openai.OpenAI(
api_key=api_key, base_url="https://api.together.xyz/v1"
)
def set_summary_model(self, summary_model="gpt-3.5-turbo-0125") -> None:
"""Change the model the AI uses to summarize conversations. Defaults to: 'open-mistral-7b'"""
self.summary_model = summary_model
if "gpt" in self.summary_model:
try:
api_key = os.getenv("OPENAI_API_KEY")
except:
api_key = st.secrets["OPENAI_API_KEY"]
self.summary_agent = openai.OpenAI(
api_key=api_key, base_url="https://api.openai.com/v1"
)
elif "gemini" in self.summary_model:
self.summary_agent = genai.GenerativeModel(model_name=self.summary_model)
elif "claude" in self.summary_model:
try:
api_key = os.getenv("ANTHROPIC_API_KEY")
except:
try:
api_key = st.secrets["ANTHROPIC_API_KEY"]
except Exception as e:
print(e)
self.summary_agent = anthropic.Anthropic(api_key=api_key)
else:
try:
api_key = os.getenv("TOGETHER_API_KEY")
except:
api_key = st.secrets["TOGETHER_API_KEY"]
self.summary_agent = openai.OpenAI(
api_key=api_key, base_url="https://api.together.xyz/v1"
)
def set_character(self, character="a friendly old man.") -> None:
"""Change the character the AI is role-playing as. Defaults to: 'A friendly old man.'"""
# Set the character for the AI to role-play as
self.character = character
def set_location(self, location="The Australian outback") -> None:
"""Change the location the AI is role-playing in. Defaults to: 'The Australian outback'"""
# Set the location for the AI to role-play in
self.location = location
def set_user_name(self, user_name="User") -> None:
"""Change the name the user is role-playing as. Defaults to: 'User'"""
# Set the user name for the AI to role-play as
self.user_name = user_name
def set_character_name(self, character_name="Character") -> None:
"""Change the name of the AI's character. Defaults to: 'Character'"""
# Set the character name for the AI to role-play as
self.character_name = character_name
def add_message(self, text, role) -> None:
"""Adds a message to the AI's short term memory.
The message is a string of text and the role is either 'user' or 'assistant'."""
self.chat_history.append({"role": role, "content": text})
# add a message to the AI's short term memory
if role == "user":
self.short_term_memory.append(
{
"role": role,
"content": self.start_ins
+ f"<Location>: {self.location}, <Message>: "
+ text
+ self.end_ins,
}
)
if role == "assistant":
self.short_term_memory.append({"role": role, "content": text + self.eos})
# if the short-term memory is too long, summarize it, replace mid-term memory, and add it to the long term memory
self.prefix = f""" Do not repeat phrases from your most recent response: """
def summarize_memories(self, max_tokens=150, temperature=0, top_p=0.05) -> None:
"""Summarize the short-term memory and add it to the mid-term memory.
Also add the mid-term memory to the long-term memory. Returns nothing."""
# Summary system message
summary_prompt = {
"role": "user",
"content": f"""You are {self.character_name}'s memory creator. You will create a summary to help them remember the conversation up to this point.
It's your job to help {self.character_name} remember their current situation and any important events that have occurred for later reference.
Your summary will serve as both a short-term and long-term memory for {self.character_name}.
Anything you do not include in your summary will be forgotten by {self.character_name}.
Describe the current situation and the context of the discussion, including location, date and time if possible, and any notable events.
Also record {self.character_name}'s and {self.user_name}'s opinions or feelings about topics discussed, changes in their relationship, and any important decisions made.
Be sure to keep track of any important details or information that could important later, for example names and information about other characters.
Your most recent memory is here in backticks:`{self.mid_term_memory}`
Some other past memories that recently came to mind are here in double backticks:``{self.long_term_memories}``
Use these memories to create context for the new memory you are creating.
Do not put anything in your response that is not already in the provided conversation.
Your response should be no more than 125 words.""",
}
# Add the short-term memory to the summary, ensures a 'user' role message is first.
offset = 0
for memory in self.short_term_memory:
if memory["role"] == "user":
break
else:
offset += 1
# add the most recent conversation to the summary
summary_messages = self.short_term_memory[
offset : self.mid_term_memory_length + offset
]
summary_messages.append(summary_prompt)
# Save original summary model name in case we need to use a backup model (Because Gemini models are not always available)
original_summary_model = self.summary_model
# Choose the model to use for summarization and summarize the conversation
if "gemini" in self.summary_model:
try:
config = genai.GenerationConfig(
max_output_tokens=max_tokens,
top_p=top_p,
temperature=temperature,
)
if self.nsfw:
safety_settings = {
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
}
else:
safety_settings = None
# format the messages for the Gemini model
gemini_summary_messages = self.format_messages_for_gemini(
summary_messages
)
response = self.summary_agent.generate_content(
generation_config=config,
contents=gemini_summary_messages,
safety_settings=safety_settings,
)
summary = response.text
except:
print(
"Gemini model failed to load. Using GPT-3.5-turbo-0125 model for summary"
)
self.set_summary_model("gpt-4o-mini")
response = self.summary_agent.chat.completions.create(
model=self.summary_model,
messages=summary_messages, # this is the conversation history
temperature=temperature, # this is the degree of randomness of the model's output
max_tokens=max_tokens,
top_p=top_p,
)
summary = response.choices[0].message.content
elif "claude" in self.summary_model:
# format the messages for the Claude model (He doesn't like trailing spaces)
summary_messages[-1]["content"] = summary_messages[-1]["content"].strip()
# Query Claude for a Summary
response = self.summary_agent.messages.create(
model=self.summary_model,
messages=summary_messages, # this is the conversation history
temperature=temperature, # this is the degree of randomness of the model's output
max_tokens=max_tokens,
top_p=top_p,
)
summary = response.content[0].text
else:
# Try to use the OpenAI API for summary
response = self.summary_agent.chat.completions.create(
model=self.summary_model,
messages=summary_messages, # this is the conversation history
temperature=temperature, # this is the degree of randomness of the model's output
max_tokens=max_tokens,
top_p=top_p,
)
summary = response.choices[0].message.content
print(f"LATEST SUMMARY: {summary}")
# add cost of message to total cost
self.count_cost(response, self.summary_model, summary=True)
# add the current mid-term memory to the long-term memory
if self.mid_term_memory != "nothing yet.":
self.add_long_term_memory(self.mid_term_memory)
# Store the summary as the new mid-term memory
self.mid_term_memory = (
f"At {datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')}: {summary}"
)
# remove the oldest messages from the short-term memory
self.short_term_memory = self.short_term_memory[
(offset + self.mid_term_memory_length) - self.mid_term_memory_overlap :
]
if not self.summary_model == original_summary_model:
self.set_summary_model(original_summary_model)
def add_long_term_memory(self, memory) -> None:
"""add a memory to the long-term memory vector store. Returns nothing."""
metadata = {}
memory_document = Document(memory, metadata, self.current_memory_id)
self.current_memory_id += 1
# Use the OpenAIEmbeddings object for generating the embedding
if not hasattr(self, "long_term_memory_index"):
self.long_term_memory_index = FAISS.from_documents(
[memory_document], self.embeddings
)
else:
self.long_term_memory_index.add_documents(
[memory_document], encoder=self.embeddings
)
def query_long_term_memory(self, query, k=3) -> list:
"""Query the long-term memory for similar documents. Returns a list of Document objects."""
try:
memories = self.long_term_memory_index.max_marginal_relevance_search(
query, k=k
)
return memories
except Exception as e:
print("no memories found")
print(e)
return []
def count_cost(self, result, model, summary=False) -> float:
"""Count the cost of the messages.
The cost is calculated as the number of tokens in the input and output times the cost per token.
Returns the cost."""
# cost is calculated as the number of tokens in the input and output times the cost per token
if model.startswith("gpt-3"):
input_cost = 0.0005 / 1000
output_cost = 0.0015 / 1000
elif model.startswith("gpt-4o-mini"):
input_cost = 0.00015 / 1000
output_cost = 0.0006 / 1000
elif model.startswith("gpt-4"):
input_cost = 0.01 / 1000
output_cost = 0.03 / 1000
elif "7b" or "8b" in model.lower() and "8x7b" not in model:
input_cost = 0.0002 / 1000
output_cost = 0.0002 / 1000
elif "openchat/openchat-3.5-1210" in model.lower():
input_cost = 0.0002 / 1000
output_cost = 0.0002 / 1000
elif "llama-2-13b" in model.lower():
input_cost = 0.000225 / 1000
output_cost = 0.000225 / 1000
elif "13b" in model.lower():
input_cost = 0.0003 / 1000
output_cost = 0.0003 / 1000
elif "gemini" in model:
input_cost = 0
output_cost = 0
elif "claude" in model:
input_cost = 0.00025 / 1000
output_cost = 0.00125 / 1000
else:
print("Model not recognized")
input_cost = 0
output_cost = 0
if "gemini" in model:
messages = self.format_messages_for_gemini(self.messages)
agent = genai.GenerativeModel(model_name=model)
input_tokens = agent.count_tokens(messages[:-1]).total_tokens
output_tokens = agent.count_tokens([messages[-1]]).total_tokens
elif "claude" in model:
input_tokens = result.usage.input_tokens
output_tokens = result.usage.output_tokens
else:
input_tokens = result.usage.prompt_tokens
output_tokens = result.usage.completion_tokens
total_tokens = input_tokens + output_tokens
lastest_cost = input_cost * input_tokens + output_cost * output_tokens
self.total_cost += lastest_cost
# determine the length of inputs and outputs
self.average_cost = self.total_cost / (len(self.chat_history) / 2)
self.total_tokens += total_tokens
self.average_tokens = self.total_tokens / (len(self.chat_history) / 2)
if not summary:
self.current_memory_tokens = total_tokens
# calculate the cost
return lastest_cost
def format_messages_for_gemini(self, messages) -> list:
"""Format the messages for the Gemini model. Returns a list of messages."""
messages = [
{"role": message["role"], "parts": message["content"]}
for message in messages
]
for message in messages:
if message["role"] == "assistant":
message["role"] = "model"
return messages
def query(
self,
prompt,
temperature=0.3,
top_p=None,
frequency_penalty=0,
presence_penalty=0,
max_tokens=200,
) -> str:
"""Query the model for a response to a prompt. The prompt is a string of text that the AI will respond to.
The temperature is the degree of randomness of the model's output. The lower the temperature, the more deterministic the output.
The higher the temperature, the more random the output. The default temperature is .3. The response is a string of text.
"""
prompt = f"[{self.user_name}]: {prompt} "
self.messages = []
# build the full model prompt
# Query the long-term memory for similar documents
if hasattr(self, "long_term_memory_index"):
returned_memories = self.query_long_term_memory(prompt)
if len(returned_memories) > 0:
# convert the memories to a string
retrieved_memories = {
doc.page_content for doc in returned_memories
} # Remove duplicate memories
self.long_term_memories = " : ".join(retrieved_memories)
else:
print("no memories retrieved")
else:
print("no memories yet")
self.set_system_message()
self.messages.append(self.system_message)
self.messages.extend(self.short_term_memory)
self.messages.append(
{
"role": "user",
"content": self.start_ins + self.prefix + prompt + self.end_ins,
}
)
# Query the model through the API
if "gemini" in self.model:
# attempt to query the Gemini model
# configure the model with system instruction
self.agent = genai.GenerativeModel(
model_name=self.model,
system_instruction=self.messages[0]["content"],
)
# configuration
config = genai.GenerationConfig(
temperature=temperature,
max_output_tokens=max_tokens,
top_p=top_p,
)
if self.nsfw:
safety_settings = {
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
}
else:
safety_settings = None
# format the messages for the Gemini model
gemini_messages = self.format_messages_for_gemini(self.messages[1:])
## attempt to query the model
query_successful = False
tries = 0
while not query_successful and tries <= 5:
try:
result = self.agent.generate_content(
contents=gemini_messages,
generation_config=config,
safety_settings=safety_settings,
)
content = result.text
query_successful = True
except:
tries += 1
print("Gemini model query failed, trying again")
print(f"response = {result}")
if len(result.candidates) > 0:
content = f"[Gemini]: I did not respond {result.candidates[0].finish_reason}. Please adjust your prompt and try again"
else:
content = "[Gemini]: I did not respond. Please adjust your prompt or change models and try again"
elif "claude" in self.model:
result = self.agent.messages.create(
model=self.model,
system=self.messages[0]["content"],
messages=self.messages[1:], # this is the conversation history
temperature=temperature, # this is the degree of randomness of the model's output
max_tokens=max_tokens,
top_p=top_p,
)
content = result.content[0].text
else:
result = self.agent.chat.completions.create(
model=self.model,
messages=self.messages, # this is the conversation history
temperature=temperature, # this is the degree of randomness of the model's output
frequency_penalty=frequency_penalty, # This is the penalty for using a token based on frequency in the text.
presence_penalty=presence_penalty, # This is penalty for using a token based on its presence in the text.
max_tokens=max_tokens,
top_p=top_p,
)
content = result.choices[0].message.content
# Check For NSFW Content
if not self.nsfw:
moderation = openai.OpenAI().moderations.create(input=content)
flagged = moderation.results[0].flagged
if flagged:
return "[System]: I'm sorry, this response has been flagged as NSFW and cannot be shown."
else:
self.response = content
else:
# Store the response
self.response = content
if self.message_style_sample == None:
self.message_style_sample = f"An example of how your character speaks is here inside triple backticks ```{self.response}```"
# add response to current message history
self.messages.append({"role": "assistant", "content": self.response})
# Add user prompt to message history
self.add_message(prompt, role="user")
# Add reply to message history
self.add_message(self.response, role="assistant")
self.count_cost(result, self.model)
if len(self.short_term_memory) >= self.max_short_term_memory_length:
self.summarize_memories()
return self.response
def clear_history(self):
"""Clear the AI's memory. Returns nothing."""
self.short_term_memory = []
self.chat_history = []
self.mid_term_memory = "nothing yet."
self.long_term_memories = "nothing yet."
self.current_memory_id = 0
self.message_style_sample = None
self.prefix = ""
self.response = "I'm thinking of my response"
self.messages = []
self.total_cost = 0
self.total_tokens = 0
self.current_memory_tokens = 0
self.average_tokens = 0
if hasattr(self, "long_term_memory_index"):
del self.long_term_memory_index
self.set_system_message()
def get_memory(self):
"""Return the AI's current memory. Returns a list of messages."""
return self.messages
def get_history(self):
"""Return the AI's full chat history. Returns a list of messages."""
return self.chat_history
def save_agent(self):
"""Save agent to path"""
saved_attrs = self.__dict__.copy()
del saved_attrs["system_prompt"]
del saved_attrs["summary_agent"]
del saved_attrs["agent"]
del saved_attrs["embeddings"]
if "long_term_memory_index" in saved_attrs.keys():
saved_attrs["long_term_memory_index"] = saved_attrs[
"long_term_memory_index"
].serialize_to_bytes()
return pickle.dumps(saved_attrs)
def load_agent(self, file):
"""Load saved agent from path"""
loaded_attrs = pickle.loads(file)
# Replace agent attributes with loaded attribute's
attrs_to_set = [
"system_message",
"character",
"location",
"user_name",
"character_name",
"short_term_memory",
"chat_history",
"mid_term_memory",
"current_memory_id",
"message_style_sample",
"prefix",
"messages",
"total_cost",
"total_tokens",
"current_memory_tokens",
"average_tokens",
]
for attr in attrs_to_set:
if attr in self.__dict__.keys():
setattr(self, attr, loaded_attrs[attr])
# for key, value in loaded_attrs.items():
# if key in self.__dict__.keys():
# setattr(self, key, value)
self.set_summary_model(self.summary_model)
self.set_model(self.model)
self.embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# De-serialize the vector db
if "long_term_memory_index" in loaded_attrs:
self.long_term_memory_index = FAISS.deserialize_from_bytes(
loaded_attrs["long_term_memory_index"],
self.embeddings,
allow_dangerous_deserialization=True,
)