Skip to content

Commit

Permalink
init
Browse files Browse the repository at this point in the history
  • Loading branch information
ChenglongChen committed Jun 10, 2018
1 parent 654ccea commit 1a04249
Show file tree
Hide file tree
Showing 12 changed files with 1,714 additions and 0 deletions.
111 changes: 111 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
# Byte-compiled / optimized / DLL files
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/

# Translations
*.mo
*.pot

# Django stuff:
*.log
.static_storage/
.media/
local_settings.py

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/

#
.idea
__pycache__
analysis.ipynb
dp.pkl
tmp.py
weights/*
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2018 Chenglong Chen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Empty file added __init__.py
Empty file.
5 changes: 5 additions & 0 deletions config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@


DATA_DIR = "../data"

TRAIN_FILE = DATA_DIR + "/atec_nlp_sim_train_all.csv"
154 changes: 154 additions & 0 deletions main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@

import config
import sys
import numpy as np
import pandas as pd
import pickle as pkl

from keras.preprocessing.sequence import pad_sequences

import utils
from preprocessor import DataProcessor
from model import SemanticMatchingModel


def get_model_data(dataset, params):

X = {}
X['id'] = dataset['id'].values
X["label"] = dataset['label'].values

# word level
X['seq_word_left'] = pad_sequences(dataset.seq_word_left, maxlen=params["max_sequence_length_word"],
padding=params["pad_sequences_padding"],
truncating=params["pad_sequences_truncating"])
X["sequence_length_word"] = params["max_sequence_length_word"] * np.ones(dataset.shape[0])

X['seq_word_right'] = pad_sequences(dataset.seq_word_right, maxlen=params["max_sequence_length_word"],
padding=params["pad_sequences_padding"],
truncating=params["pad_sequences_truncating"])
X["sequence_length_word"] = params["max_sequence_length_word"] * np.ones(dataset.shape[0])

# char level
X['seq_char_left'] = pad_sequences(dataset.seq_char_left, maxlen=params["max_sequence_length_char"],
padding=params["pad_sequences_padding"],
truncating=params["pad_sequences_truncating"])
X["sequence_length_char"] = params["max_sequence_length_char"] * np.ones(dataset.shape[0])

X['seq_char_right'] = pad_sequences(dataset.seq_char_right, maxlen=params["max_sequence_length_char"],
padding=params["pad_sequences_padding"],
truncating=params["pad_sequences_truncating"])
X["sequence_length_char"] = params["max_sequence_length_char"] * np.ones(dataset.shape[0])

return X

params = {
"offline_model_dir": "./weights/semantic_matching",
"batch_size": 32,
"epoch": 5,
"l2_lambda": 0.0001,

"embedding_dropout": 0.2,
"embedding_word_dim": 128,
"embedding_char_dim": 128,
"embedding_dim": 128,

"max_num_words": 10000,
"max_num_chars": 10000,

"threshold": 0.217277,

"max_sequence_length_word": 20,
"max_sequence_length_char": 30,
"pad_sequences_padding": "post",
"pad_sequences_truncating": "post",

"optimizer_type": "nadam",
"init_lr": 0.001,
"beta1": 0.975,
"beta2": 0.999,
"decay_steps": 500,
"decay_rate": 0.95,
"schedule_decay": 0.004,
"random_seed": 2018,
"eval_every_num_update": 100,

"encode_method": "fasttext",
"attend_method": "attention",

"cnn_num_filters": 32,
"cnn_filter_sizes": [1, 2, 3],
"cnn_timedistributed": False,

"rnn_num_units": 20,
"rnn_cell_type": "gru",

# fc block
"fc_type": "fc",
"fc_dim": 64,
"fc_dropout": 0,
}

model_name = "semantic_matching"

def train():

utils._makedirs("../logs")
utils._makedirs("../output")
logger = utils._get_logger("../logs", "tf-%s.log" % utils._timestamp())


dfTrain = pd.read_csv(config.TRAIN_FILE, header=None, sep="\t")
dfTrain.columns = ["id", "left", "right", "label"]

dfTrain.dropna(inplace=True)

# shuffle training data
dfTrain = dfTrain.sample(frac=1.0)

dp = DataProcessor(max_num_words=params["max_num_words"], max_num_chars=params["max_num_chars"])
dfTrain = dp.fit_transform(dfTrain)

N = dfTrain.shape[0]
train_ratio = 0.6
train_num = int(N*train_ratio)
X_train = get_model_data(dfTrain[:train_num], params)
X_valid = get_model_data(dfTrain[train_num:], params)

model = SemanticMatchingModel(model_name, params, logger=logger, threshold=0.2)
model.fit(X_train, validation_data=X_valid, shuffle=False)

# save model
model.save_session()
with open("dp.pkl", "wb") as f:
pkl.dump((dp, model.threshold), f, protocol=2)


def submit(input_file, output_file):

print("read %s"%input_file)
print("write %s"%output_file)

# load model
with open("dp.pkl", "rb") as f:
dp, threshold = pkl.load(f)
model = SemanticMatchingModel(model_name, params, logger=None, threshold=threshold, training=False)
model.restore_session()

dfTest = pd.read_csv(input_file, header=None, sep="\t")
dfTest.columns = ["id", "left", "right"]
dfTest["label"] = np.zeros(dfTest.shape[0])

dfTest = dp.transform(dfTest)
X_test = get_model_data(dfTest, params)

dfTest["label"] = model.predict(X_test)

dfTest[["id", "label"]].to_csv(output_file, header=False, index=False, sep="\t")


if __name__ == "__main__":
if len(sys.argv) > 2:
submit(sys.argv[1], sys.argv[2])
else:
train()
Loading

0 comments on commit 1a04249

Please sign in to comment.