Skip to content

This repository provides a hands-on introduction to essential computer vision techniques using Jupyter Notebooks. Each notebook covers specific topics like edge detection, corner detection, and image enhancement. It's perfect for anyone looking to learn and experiment with image processing fundamentals.

License

Notifications You must be signed in to change notification settings

Chhavimohitkar65/VisionaryBytes-Core-Computer-Vision-Techniques

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

27 Commits
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ“ธ Computer Vision Repository

Welcome to the Computer Vision repository! This collection features several Jupyter Notebook files demonstrating various image processing techniques. Each notebook focuses on a specific topic, providing step-by-step explanations and code examples. ๐Ÿš€

๐Ÿ“‚ Contents

Multi-Language Support

  1. cannyEdgeDetection.ipynb: ๐Ÿ–ผ๏ธ Demonstrates the Canny edge detection algorithm, a popular technique for detecting edges in images.
  2. harrisCornerDetection.ipynb: ๐Ÿ“ Learn about Harris corner detection, a method used to identify important features or corners in an image.
  3. imgFlipping.ipynb: ๐Ÿ”„ Explores image-flipping techniques, including horizontal and vertical flipping, using various image-processing libraries.
  4. img_contrastReduction.ipynb: ๐ŸŒˆ Focuses on reducing the contrast of an image, useful in applications such as medical imaging or enhancing specific image details.
  5. img_enhancement.ipynb: โœจ Techniques to enhance the overall quality of an image by adjusting brightness, contrast, and other parameters.
  6. img_processing.ipynb: ๐Ÿ“š A general introduction to image processing, covering essential concepts, image manipulation, and basic operations.

โš™๏ธ Requirements

To run the notebooks and execute the code examples, you will need the following:

  • ๐Ÿ Python (version 3.x)
  • ๐Ÿ““ Jupyter Notebook
  • ๐Ÿ“ท OpenCV (computer vision library)
  • ๐Ÿงฎ Numpy (numerical computing library)
  • ๐Ÿ“Š Matplotlib (plotting library)
  • ๐Ÿ–ผ๏ธ Scikit-image (image processing library)

Please refer to the individual notebooks for more specific installation instructions and requirements.

๐Ÿš€ Usage

  1. ๐Ÿ“ฅ Clone this repository to your local machine or download the notebook files directly.
  2. โœ… Ensure you have all the necessary dependencies installed. You can use pip or conda to install the required libraries.
  3. ๐Ÿ–ฅ๏ธ Open the desired notebook using Jupyter Notebook or JupyterLab.
  4. ๐Ÿ“ Follow the instructions within each notebook to understand and experiment with the demonstrated image processing techniques.

๐Ÿค Contributing

If you have any improvements or additional examples to contribute, please feel free to submit a pull request. Your contributions are greatly appreciated! ๐Ÿ™Œ

๐Ÿ“„ License

This repository is licensed under the MIT License. Feel free to use the code and examples provided here for educational or commercial purposes. ๐Ÿ†“

Note: The images used in these examples are either publicly available or used for educational purposes only. ๐Ÿ“ธ

About

This repository provides a hands-on introduction to essential computer vision techniques using Jupyter Notebooks. Each notebook covers specific topics like edge detection, corner detection, and image enhancement. It's perfect for anyone looking to learn and experiment with image processing fundamentals.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published