Skip to content

Cinnamon/2022GlobalBootcamp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2022GlobalBootcamp

Lecture material for Global Summer Bootcamp

Installation

Python or Anaconda, if you choose to use pip to install package, we recommend using virtualenv to manage your environment.

Below are the steps to setup the required packages for bootcamp's excercises.

Install by pip

pip install -r requirements.txt

Install by conda

conda create --name <env_name> --file requirements.txt python=3.6
conda activate <env_name>

Install PyTorch

PyTorch requires different command based on your environment. In this course, we will use PyTorch 1.12.0 (which is latest at the moment). You choose the command to install by accessing the following link:

https://pytorch.org/get-started/locally/

Install Docker desktop

Docker desktop already provide the docker engine and docker-compose, you may download all platform's docker-desktop in offcial website

After installation, type below command into your terminal to see if the installation is successfully done.

docker --version
docker-compose --version
'''
You should see output like this:

Docker version 18.09.2, build 6247962
docker-compose version 1.23.2, build 1110ad01
'''

Syllabus

Date Subject
Jun 30
    Bootcamp Opening Day
  • TW&VN Mentor / Lecturer introduction
  • Futurist of Cinnamon - Hajime’s sharing
  • Syllabus Introduction
  • Ice-break
  • Jul 5
      Lean startup
  • Lean Startup(Paul)
  • Jul 7
      MVP project
  • Life Cycle of ML project (Mandy)
  • Jul 12
      Agile Software development
  • SCRUM (Hato)
  • Jul 14
      Agile Software development
  • +Git Workflow (Blake)
  • Jul 19
      Agile Software development
  • Clean code (Vincent)
  • SOLID (Vincent)
  • Jul 21
      Agile Software development
  • Docker Introduction (Jayce)
  • Jul 26
      Data Loader (Dini)
  • Dataset and data loader in PyTorch
  • Efficient Training
  • Jul 28
      Deep Learning Class (Hy)
  • Loss Function
  • CrossEntropy
  • MSE
  • TripletLoss
  • HubertLoss
  • Aug 2
      NLP Technical Class [1] (Dini)
  • Missions & Metrics and Preprocessing
  • Aug 4
      NLP Technical Class [2] (Matt)
  • Language modelling
  • Language models: n-gram, RNN, CNN, Transformer
  • Aug 9
      NLP Technical Class [3] (Matt)
  • Pre-trained models: ELMo, GPT, BERT
  • Aug 11
      NLP Technical Class [4] (Hubert)
  • information extraction
  • explain real-business case and material
  • Aug 16
      CV Technical Class [3] (Tyler)
  • Training Tricks
  • Stochastic Depth
  • Warm up
  • Label Smoothing
  • No Bias Weight Decay
  • Teacher-Student Knowledge Distillation
  • Mixup
  • Group Normalization
  • Weight Standardization
  • Aug 18
      CV Technical Class [1] (Jeff)
  • ClassicCNN
  • Aug 23
      CV Technical Class [2] (Vincent)
  • VisionTransformers
  • Aug 25 Presentation (Paul)
    Aug 30 Rehearsal
    Sep (TBD) Demo Day

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published