Skip to content

chore(deps): update indirect python dependencies #1023

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

renovate[bot]
Copy link
Contributor

@renovate renovate bot commented May 29, 2025

This PR contains the following updates:

Package Change Age Confidence
distlib ==0.3.9 -> ==0.4.0 age confidence
dls-dodal ==1.51.0 -> ==1.53.0 age confidence
epicscorelibs ==7.0.7.99.1.2a1 -> ==7.0.7.99.1.2a2 age confidence
fonttools ==4.58.5 -> ==4.59.0 age confidence
jsonschema (changelog) ==4.24.0 -> ==4.24.1 age confidence
numpy (changelog) ==2.2.6 -> ==2.3.1 age confidence
ophyd-async ==0.11 -> ==0.12 age confidence
orjson (changelog) ==3.10.18 -> ==3.11.0 age confidence
pydantic_core ==2.33.2 -> ==2.35.2 age confidence
pytest-asyncio (changelog) ==1.0.0 -> ==1.1.0 age confidence
pyzmq ==26.3.0 -> ==26.4.0 age confidence
ruff (source, changelog) ==0.12.3 -> ==0.12.4 age confidence
sentry-sdk (changelog) ==2.32.0 -> ==2.33.0 age confidence

Release Notes

pypa/distlib (distlib)

v0.4.0

Compare Source

DiamondLightSource/dodal (dls-dodal)

v1.53.0

Compare Source

What's Changed

Full Changelog: DiamondLightSource/dodal@1.52.0...1.53.0

v1.52.0

Compare Source

What's Changed

New Contributors

Full Changelog: DiamondLightSource/dodal@1.51.0...1.52.0

fonttools/fonttools (fonttools)

v4.59.0

Compare Source

  • Removed hard-dependency on pyfilesystem2 (fs package) from fonttools[ufo] extra. This is replaced by the fontTools.misc.filesystem package, a stdlib-only, drop-in replacement for the subset of the pyfilesystem2's API used by fontTools.ufoLib. The latter should continue to work with the upstream fs (we even test with/without). However, clients who wish to continue using fs can do so by depending on it directly instead of via the fonttools[ufo] extra (#​3885, #​3620).
  • [xmlWriter] Replace illegal XML characters (e.g. control or non-characters) with "?" when dumping to ttx (#​3868, #​71).
  • [varLib.hvar] Fixed vertical metrics fields copy/pasta error (#​3884).
  • Micro optimizations in ttLib and sstruct modules (#​3878, #​3879).
  • [unicodedata] Add Garay script to RTL_SCRIPTS (#​3882).
  • [roundingPen] Remove unreliable kwarg usage. Argument names aren’t consistent among point pens’ .addComponent() implementations, in particular baseGlyphName vs glyphName (#​3880).
python-jsonschema/jsonschema (jsonschema)

v4.24.1

Compare Source

=======

  • Properly escape segments in ValidationError.json_path (#​139).
numpy/numpy (numpy)

v2.3.1: (Jun 21, 2025)

Compare Source

NumPy 2.3.1 Release Notes

The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:

  • Fix bug in matmul for non-contiguous out kwarg parameter
  • Fix for Accelerate runtime warnings on M4 hardware
  • Fix new in NumPy 2.3.0 np.vectorize casting errors
  • Improved support of cpu features for FreeBSD and OpenBSD

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Brad Smith +
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • François Rozet
  • Joren Hammudoglu
  • Matti Picus
  • Mugundan Selvanayagam
  • Nathan Goldbaum
  • Sebastian Berg

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​29140: MAINT: Prepare 2.3.x for further development
  • #​29191: BUG: fix matmul with transposed out arg (#​29179)
  • #​29192: TYP: Backport typing fixes and improvements.
  • #​29205: BUG: Revert np.vectorize casting to legacy behavior (#​29196)
  • #​29222: TYP: Backport typing fixes
  • #​29233: BUG: avoid negating unsigned integers in resize implementation...
  • #​29234: TST: Fix test that uses uninitialized memory (#​29232)
  • #​29235: BUG: Address interaction between SME and FPSR (#​29223)
  • #​29237: BUG: Enforce integer limitation in concatenate (#​29231)
  • #​29238: CI: Add support for building NumPy with LLVM for Win-ARM64
  • #​29241: ENH: Detect CPU features on OpenBSD ARM and PowerPC64
  • #​29242: ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64.

Checksums

MD5
c353ac75ea083594a6cb674b5f943d83  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
fdb5454e372d399cf570868ea7e2b192  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
dc0f17823bb1826519d6974c2b95fa90  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
7e3118fe383af697a8868ba191b9eac0  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
705aafad1250aa3e41502c5710a26ed5  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
003d6268344577b804205098e11cdaa0  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
7d0c0fd11c573c510a25dd7513e4ae0a  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
d99f993ef05966ead99df736df18b521  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
96933cac225fb8b60a9cc2c0efa14d36  numpy-2.3.1-cp311-cp311-win32.whl
f777712419f3dd586ac294ddce84b274  numpy-2.3.1-cp311-cp311-win_amd64.whl
1fe2615669de5c271a48b99356fa3528  numpy-2.3.1-cp311-cp311-win_arm64.whl
fccca48846d41d38966cc75395787f79  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
fa389e78db43f3c2841ce127c1205422  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
2554944d786abd284db4a699d4edfe1e  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
7fec491834803a8ffa3765ef3d03cea5  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
7c2d8b4412f12b9b02e98349fb5cd760  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
94dcc636a2f2478666d820e21fc91682  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
404128939d89d1ea26be105fb03b5028  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
e89d8d460060e8315c3ba68b2b649db0  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
a767bd10267ad6baef9655fb08db3fd3  numpy-2.3.1-cp312-cp312-win32.whl
f753b957fcb7f06f043cf9c6114f294c  numpy-2.3.1-cp312-cp312-win_amd64.whl
58ffa7c69587f9bf8f6025794fec7f63  numpy-2.3.1-cp312-cp312-win_arm64.whl
22a2a9a568dd0866b288ad8bd8bb3e90  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
5e1593fcc8bb3447e995622f2dca017b  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
894d56072db9358e0096538710a1a8ce  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
593cb311f5170cbcfcefb587cdcc70bb  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
22935447e75acda4075c57b332c0236a  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5aa2040f947204e15e95ec87461a7e91  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
6516337f0347974fada21a23a818be64  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
ec956eb37b874b1ec52d6ffccda6ef65  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
0aaed62cb1bae9c1b1a44d1a4eda2db7  numpy-2.3.1-cp313-cp313-win32.whl
57829996fc12f649547f0258443bbb20  numpy-2.3.1-cp313-cp313-win_amd64.whl
a0d0dd68bbf0ab378142b2daff0a8e06  numpy-2.3.1-cp313-cp313-win_arm64.whl
b22dc66970a8017e4d0ce83ef8c938af  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
93c17afb38cf8fd876ca2bd9ea7e9612  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
283064dabb434f3dbc1a5e2514b9cb29  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
5b8c778033c98b4a0ce6e5bfc7625f05  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
2340bd78962f194bcdbee6531d954acc  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
43a92ad37dc68d719bdeeeb65b3f4d2f  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
eb110c4aa0d73558187397ddfba179ad  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
1f7f0076411ed4afa9c4553eb06564cb  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30f30dde6f806070b2164e48a632a350  numpy-2.3.1-cp313-cp313t-win32.whl
2375e2f2a5b75c5f5c908af6bb85d639  numpy-2.3.1-cp313-cp313t-win_amd64.whl
b421530a87bb8e9e3d4dc34c75d5d953  numpy-2.3.1-cp313-cp313t-win_arm64.whl
b1bc3cbf9cd407964b2bb25dfe86ca3d  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
4c2e234eb4f346f362d6e6c620fa7a56  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
98ec3c19a365d0ae926113bb349e323b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
e0c7bcd526cde46489d5a8f12e06cc77  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
41f535aa1f1acaf3d8a32a462a4cd4c8  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
2abf906a6688c98693045cbbc655d5b7  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
886559a4c541298b37245e389ce8bf10  numpy-2.3.1.tar.gz
SHA256
6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369  numpy-2.3.1-cp311-cp311-win32.whl
d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff  numpy-2.3.1-cp311-cp311-win_amd64.whl
ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a  numpy-2.3.1-cp311-cp311-win_arm64.whl
2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab  numpy-2.3.1-cp312-cp312-win32.whl
cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76  numpy-2.3.1-cp312-cp312-win_amd64.whl
7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30  numpy-2.3.1-cp312-cp312-win_arm64.whl
25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8  numpy-2.3.1-cp313-cp313-win32.whl
8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42  numpy-2.3.1-cp313-cp313-win_amd64.whl
0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e  numpy-2.3.1-cp313-cp313-win_arm64.whl
b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e  numpy-2.3.1-cp313-cp313t-win32.whl
2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc  numpy-2.3.1-cp313-cp313t-win_amd64.whl
eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244  numpy-2.3.1-cp313-cp313t-win_arm64.whl
ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b  numpy-2.3.1.tar.gz

v2.3.0: (June 7, 2025)

Compare Source

NumPy 2.3.0 Release Notes

The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations, code
modernizations, and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.

Users running on a Mac having an M4 cpu might see various warnings about
invalid values and such. The warnings are a known problem with
Accelerate. They are annoying, but otherwise harmless. Apple promises to
fix them.

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Highlights

  • Interactive examples in the NumPy documentation.
  • Building NumPy with OpenMP Parallelization.
  • Preliminary support for Windows on ARM.
  • Improved support for free threaded Python.
  • Improved annotations.

New functions

New function numpy.strings.slice

The new function numpy.strings.slice was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.

(gh-27789)

Deprecations

  • The numpy.typing.mypy_plugin has been deprecated in favor of
    platform-agnostic static type inference. Please remove
    numpy.typing.mypy_plugin from the plugins section of your mypy
    configuration. If this change results in new errors being reported,
    kindly open an issue.

    (gh-28129)

  • The numpy.typing.NBitBase type has been deprecated and will be
    removed in a future version.

    This type was previously intended to be used as a generic upper
    bound for type-parameters, for example:

    import numpy as np
    import numpy.typing as npt
    
    def f[NT: npt.NBitBase](x: np.complexfloating[NT]) -> np.floating[NT]: ...

    But in NumPy 2.2.0, float64 and complex128 were changed to
    concrete subtypes, causing static type-checkers to reject
    x: np.float64 = f(np.complex128(42j)).

    So instead, the better approach is to use typing.overload:

    import numpy as np
    from typing import overload
    
    @​overload
    def f(x: np.complex64) -> np.float32: ...
    @​overload
    def f(x: np.complex128) -> np.float64: ...
    @​overload
    def f(x: np.clongdouble) -> np.longdouble: ...

    (gh-28884)

Expired deprecations

  • Remove deprecated macros like NPY_OWNDATA from Cython interfaces
    in favor of NPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove numpy/npy_1_7_deprecated_api.h and C macros like
    NPY_OWNDATA in favor of NPY_ARRAY_OWNDATA (deprecated since 1.7)

    (gh-28254)

  • Remove alias generate_divbyzero_error to
    npy_set_floatstatus_divbyzero and generate_overflow_error to
    npy_set_floatstatus_overflow (deprecated since 1.10)

    (gh-28254)

  • Remove np.tostring (deprecated since 1.19)

    (gh-28254)

  • Raise on np.conjugate of non-numeric types (deprecated since 1.13)

    (gh-28254)

  • Raise when using np.bincount(...minlength=None), use 0 instead
    (deprecated since 1.14)

    (gh-28254)

  • Passing shape=None to functions with a non-optional shape argument
    errors, use () instead (deprecated since 1.20)

    (gh-28254)

  • Inexact matches for mode and searchside raise (deprecated since
    1.20)

    (gh-28254)

  • Setting __array_finalize__ = None errors (deprecated since 1.23)

    (gh-28254)

  • np.fromfile and np.fromstring error on bad data, previously they
    would guess (deprecated since 1.18)

    (gh-28254)

  • datetime64 and timedelta64 construction with a tuple no longer
    accepts an event value, either use a two-tuple of (unit, num) or a
    4-tuple of (unit, num, den, 1) (deprecated since 1.14)

    (gh-28254)

  • When constructing a dtype from a class with a dtype attribute,
    that attribute must be a dtype-instance rather than a thing that can
    be parsed as a dtype instance (deprecated in 1.19). At some point
    the whole construct of using a dtype attribute will be deprecated
    (see #​25306)

    (gh-28254)

  • Passing booleans as partition index errors (deprecated since 1.23)

    (gh-28254)

  • Out-of-bounds indexes error even on empty arrays (deprecated since
    1.20)

    (gh-28254)

  • np.tostring has been removed, use tobytes instead (deprecated
    since 1.19)

    (gh-28254)

  • Disallow make a non-writeable array writeable for arrays with a base
    that do not own their data (deprecated since 1.17)

    (gh-28254)

  • concatenate() with axis=None uses same-kind casting by
    default, not unsafe (deprecated since 1.20)

    (gh-28254)

  • Unpickling a scalar with object dtype errors (deprecated since 1.20)

    (gh-28254)

  • The binary mode of fromstring now errors, use frombuffer instead
    (deprecated since 1.14)

    (gh-28254)

  • Converting np.inexact or np.floating to a dtype errors
    (deprecated since 1.19)

    (gh-28254)

  • Converting np.complex, np.integer, np.signedinteger,
    np.unsignedinteger, np.generic to a dtype errors (deprecated
    since 1.19)

    (gh-28254)

  • The Python built-in round errors for complex scalars. Use
    np.round or scalar.round instead (deprecated since 1.19)

    (gh-28254)

  • 'np.bool' scalars can no longer be interpreted as an index
    (deprecated since 1.19)

    (gh-28254)

  • Parsing an integer via a float string is no longer supported.
    (deprecated since 1.23) To avoid this error you can

    • make sure the original data is stored as integers.
    • use the converters=float keyword argument.
    • Use np.loadtxt(...).astype(np.int64)

    (gh-28254)

  • The use of a length 1 tuple for the ufunc signature errors. Use
    dtype or fill the tuple with None (deprecated since 1.19)

    (gh-28254)

  • Special handling of matrix is in np.outer is removed. Convert to a
    ndarray via matrix.A (deprecated since 1.20)

    (gh-28254)

  • Removed the np.compat package source code (removed in 2.0)

    (gh-28961)

C API changes

  • NpyIter_GetTransferFlags is now available to check if the iterator
    needs the Python API or if casts may cause floating point errors
    (FPE). FPEs can for example be set when casting float64(1e300) to
    float32 (overflow to infinity) or a NaN to an integer (invalid
    value).

    (gh-27883)

  • NpyIter now has no limit on the number of operands it supports.

    (gh-28080)

New NpyIter_GetTransferFlags and NpyIter_IterationNeedsAPI change

NumPy now has the new NpyIter_GetTransferFlags function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.

The NpyIter_IterationNeedsAPI function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.

(gh-27998)

New Features

  • The type parameter of np.dtype now defaults to typing.Any. This
    way, static type-checkers will infer dtype: np.dtype as
    dtype: np.dtype[Any], without reporting an error.

    (gh-28669)

  • Static type-checkers now interpret:

    • _: np.ndarray as _: npt.NDArray[typing.Any].
    • _: np.flatiter as _: np.flatiter[np.ndarray].

    This is because their type parameters now have default values.

    (gh-28940)

NumPy now registers its pkg-config paths with the pkgconf PyPI package

The pkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when using pkgconf
from PyPI, NumPy will be discoverable without needing for any custom
environment configuration.

[!NOTE]
This only applies when using the pkgconf package from PyPI,
or put another way, this only applies when installing pkgconf via a
Python package manager.

If you are using pkg-config or pkgconf provided by your system,
or any other source that does not use the pkgconf-pypi
project, the NumPy pkg-config directory will not be automatically added
to the search path. In these situations, you might want to use numpy-config.

(gh-28214)

Allow out=... in ufuncs to ensure array result

NumPy has the sometimes difficult behavior that it currently usually
returns scalars rather than 0-D arrays (even if the inputs were 0-D
arrays). This is especially problematic for non-numerical dtypes (e.g.
object).

For ufuncs (i.e. most simple math functions) it is now possible to use
out=... (literally `...`, e.g. out=Ellipsis) which is identical
in behavior to out not being passed, but will ensure a non-scalar
return. This spelling is borrowed from arr1d[0, ...] where the ...
also ensures a non-scalar return.

Other functions with an out= kwarg should gain support eventually.
Downstream libraries that interoperate via __array_ufunc__ or
__array_function__ may need to adapt to support this.

(gh-28576)

Building NumPy with OpenMP Parallelization

NumPy now supports OpenMP parallel processing capabilities when built
with the -Denable_openmp=true Meson build flag. This feature is
disabled by default. When enabled, np.sort and np.argsort functions
can utilize OpenMP for parallel thread execution, improving performance
for these operations.

(gh-28619)

Interactive examples in the NumPy documentation

The NumPy documentation includes a number of examples that can now be
run interactively in your browser using WebAssembly and Pyodide.

Please note that the examples are currently experimental in nature and
may not work as expected for all methods in the public API.

(gh-26745)

Improvements

  • Scalar comparisons between non-comparable dtypes such as
    np.array(1) == np.array('s') now return a NumPy bool instead of a
    Python bool.

    (gh-27288)

  • np.nditer now has no limit on the number of supported operands
    (C-integer).

    (gh-28080)

  • No-copy pickling is now supported for any array that can be
    transposed to a C-contiguous array.

    (gh-28105)

  • The __repr__ for user-defined dtypes now prefers the __name__ of
    the custom dtype over a more generic name constructed from its
    kind and itemsize.

    (gh-28250)

  • np.dot now reports floating point exceptions.

    (gh-28442)

  • np.dtypes.StringDType is now a generic
    type
    which
    accepts a type argument for na_object that defaults to
    typing.Never. For example, StringDType(na_object=None) returns a
    StringDType[None], and StringDType() returns a
    StringDType[typing.Never].

    (gh-28856)

Added warnings to np.isclose

Added warning messages if at least one of atol or rtol are either
np.nan or np.inf within np.isclose.

  • Warnings follow the user's np.seterr settings

(gh-28205)

Performance improvements and changes

Performance improvements to np.unique

np.unique now tries to use a hash table to find unique values instead
of sorting values before finding unique values. This is limited to
certain dtypes for now, and the function is now faster for those dtypes.
The function now also exposes a sorted parameter to allow returning
unique values as they were found, instead of sorting them afterwards.

(gh-26018)

Performance improvements to np.sort and np.argsort

np.sort and np.argsort functions now can leverage OpenMP for
parallel thread execution, resulting in up to 3.5x speedups on x86
architectures with AVX2 or AVX-512 instructions. This opt-in feature
requires NumPy to be built with the -Denable_openmp Meson flag. Users
can control the number of threads used by setting the OMP_NUM_THREADS
environment variable.

(gh-28619)

Performance improvements for np.float16 casts

Earlier, floating point casts to and from np.float16 types were
emulated in software on all platforms.

Now, on ARM devices that support Neon float16 intrinsics (such as recent
Apple Silicon), the native float16 path is used to achieve the best
performance.

(gh-28769)

Changes

  • The vector norm ord=inf and the matrix norms
    ord={1, 2, inf, 'nuc'} now always returns zero for empty arrays.
    Empty arrays have at least one axis of size zero. This affects
    np.linalg.norm, np.linalg.vector_norm, and
    np.linalg.matrix_norm. Previously, NumPy would raises errors or
    return zero depending on the shape of the array.

    (gh-28343)

  • A spelling error in the error message returned when converting a
    string to a float with the method np.format_float_positional has
    been fixed.

    (gh-28569)

  • NumPy's __array_api_version__ was upgraded from 2023.12 to
    2024.12.

  • numpy.count_nonzero for axis=None (default) now returns a NumPy
    scalar instead of a Python integer.

  • The parameter axis in numpy.take_along_axis function has now a
    default value of -1.

    (gh-28615)

  • Printing of np.float16 and np.float32 scalars and arrays have
    been improved by adjusting the transition to scientific notation
    based on the floating point precision. A new legacy
    np.printoptions mode '2.2' has been added for backwards
    compatibility.

    (gh-28703)

  • Multiplication between a string and integer now raises OverflowError
    instead of MemoryError if the result of the multiplication would
    create a string that is too large to be represented. This follows
    Python's behavior.

    (gh-29060)

unique_values may return unsorted data

The relatively new function (added in NumPy 2.0) unique_values may now
return unsorted results. Just as unique_counts and unique_all these
never guaranteed a sorted result, however, the result was sorted until
now. In cases where these do return a sorted result, this may change in
future releases to improve performance.

(gh-26018)

Changes to the main iterator and potential numerical changes

The main iterator, used in math functions and via np.nditer from
Python and NpyIter in C, now behaves differently for some buffered
iterations. This means that:

  • The buffer size used will often be smaller than the maximum buffer
    sized allowed by the buffersize parameter.
  • The "growinner" flag is now honored with buffered reductions when
    no operand requires buffering.

For np.sum() such changes in buffersize may slightly change numerical
results of floating point operations. Users who use "growinner" for
custom reductions could notice changes in precision (for example, in
NumPy we removed it from einsum to avoid most precision changes and
improve precision for some 64bit floating point inputs).

(gh-27883)

The minimum supported GCC version is now 9.3.0

The minimum supported version was updated from 8.4.0 to 9.3.0, primarily
in order to reduce the chance of platform-specific bugs in old GCC
versions from causing issues.

(gh-28102)

Changes to automatic bin selection in numpy.histogram

The automatic bin selection algorithm in numpy.histogram has been
modified to avoid out-of-memory errors for samples with low variation.
For full control over the selected bins the user can use set the bin
or range parameters of numpy.histogram.

(gh-28426)

Build manylinux_2_28 wheels

Wheels for linux systems will use the manylinux_2_28 tag (instead of
the manylinux2014 tag), which means dropping support for
redhat7/centos7, amazonlinux2, debian9, ubuntu18.04, and other
pre-glibc2.28 operating system versions, as per the PEP 600 support
table
.

(gh-28436)

Remove use of -Wl,-ld_classic on macOS

Remove use of -Wl,-ld_classic on macOS. This hack is no longer needed by
Spack, and results in libraries that cannot link to other libraries
built with ld (new).

(gh-28713)

Re-enable overriding functions in the numpy.strings

Re-enable overriding functions in the numpy.strings module.

(gh-28741)

Checksums

MD5
cf552b6b6390343c24bf60365950c91c  numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
d3c377f49f84b36297cfc2fc30c6a288  numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
4e12cd2aea876c09fdc3aaac2d0f4bac  numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl
a33af1d4e1f0ee5ed82d7933c5df9f84  numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl
cd5cf04cb8b40e65aac8264c7bf3d7c9  numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
6a45424beb8f4f23e7b2b853bc18aefa  numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
2dc1c1d1b9deb8c0626af68c0c00660a  numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl
9ff8ea227afce090dea3b4dac4653fa6  numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
a1e9e40a20187e1f5ae2f8ba165e291b  numpy-2.3.0-cp311-cp311-win32.whl
819e4ac62a3449c79818ff5aa0e6b276  numpy-2.3.0-cp311-cp311-win_amd64.whl
347260edfd35535b15b8133280793080  numpy-2.3.0-cp311-cp311-win_arm64.whl
9c1ad46e637b876a0535de60f5b604bc  numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl
5b656fbed339bcac1af6de73b15e5dba  numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
5b86d6d0cab79d0cd381bb2e912e7e23  numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl
ea83ef5cd00d5e42bb745eee1ee0ad3f  numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl
15a5f57cb51d3d957c1b387c4bc54830  numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl
b5fa92d1093dab4c3ca0622c29c4a241  numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
666cad26086ee212047e5ea0e8906480  numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl
6263705622ca89ccadc6f458effde281  numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
bf1bf83eca701ff70351c2d7b308e181  numpy-2.3.0-cp312-cp312-win32.whl
0707b427c1102bb904994289e1555c3d  numpy-2.3.0-cp312-cp312-win_amd64.whl
097bd498f8333d383db61105044906dc  numpy-2.3.0-cp312-cp312-win_arm64.whl
54eb5fa0444ff5dd078bb1aa30d9533f  numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl
004b4c3650562bd851e31fb925863acb  numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl
cd4e31304e51cc5dacd355730be25e4e  numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl
0ed70aa071f35060ee68d6ab407159e5  numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl
a89b304bbb52268b233ab9652fee8142  numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl
4b55cf791be482e8d8e5aaba0c10b6f2  numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl
d3a1b81da2f2cba4743d1ee5385cb4d6  numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl
fcaacdedcd8cfec7a6cb430fba7a5553  numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
7d0deec2ad395fda48b80be59612db22  numpy-2.3.0-cp313-cp313-win32.whl
7386a22b0ef219ba043f6e085933dbd6  numpy-2.3.0-cp313-cp313-win_amd64.whl
f4559038276d0e2bfb19601484d4cdff  numpy-2.3.0-cp313-cp313-win_arm64.whl
6c586985db2e888876aa96ceaf99ee66  numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl
9726de30cce2b36940225a7ea086c824  numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl
ea021092cbb7b1e7d0984dc774bb288d  numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl
6f8261bc789eed1d3f6f7ea9ff3c2a2c  numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl
ab624ddc1425d44412541aad1f012fd9  numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl
af55bc7a8f46ec8d413eb1fbe2c200e9  numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl
830eecf7c372aa0d7d746ad031ff0ba1  numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl
28870039fde4fec369185e185bf0077e  numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl
4510373c08383787c263a4b5a21a24ef  numpy-2.3.0-cp313-cp313t-win32.whl
de883c4313f4dc984045a51b8edb4084  numpy-2.3.0-cp313-cp313t-win_amd64.whl
334f5c275a6aad46e5f46436572d3dc1  numpy-2.3.0-cp313-cp313t-win_arm64.whl
05b86d4a21a832e20e4ebdc6febf298d  numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
4589038edf55f085252f194e880d7454  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl
7d8f0554035717dc396de7d77c696377  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
c0cb89f0dca94446e6aa472ec6874c22  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
14e43315dea5eddffe888986e47d8584  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e3688182f8551c3c99b559c1696d41dc  numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl
19a5470a37d066bd3e9385918d7760e7  numpy-2.3.0.tar.gz
SHA256
c3c9fdde0fa18afa1099d6257eb82890ea4f3102847e692193b54e00312a9ae9  numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
46d16f72c2192da7b83984aa5455baee640e33a9f1e61e656f29adf55e406c2b  numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
a0be278be9307c4ab06b788f2a077f05e180aea817b3e41cebbd5aaf7bd85ed3  numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl
99224862d1412d2562248d4710126355d3a8db7672170a39d6909ac47687a8a4  numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl
2393a914db64b0ead0ab80c962e42d09d5f385802006a6c87835acb1f58adb96  numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
7729c8008d55e80784bd113787ce876ca117185c579c0d626f59b87d433ea779  numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
06d4fb37a8d383b769281714897420c5cc3545c79dc427df57fc9b852ee0bf58  numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl
c39ec392b5db5088259c68250e342612db82dc80ce044cf16496cf14cf6bc6f8  numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
ee9d3ee70d62827bc91f3ea5eee33153212c41f639918550ac0475e3588da59f  numpy-2.3.0-cp311-cp311-win32.whl
43c55b6a860b0eb44d42341438b03513cf3879cb3617afb749ad49307e164edd  numpy-2.3.0-cp311-cp311-win_amd64.whl
2e6a1409eee0cb0316cb64640a49a49ca44deb1a537e6b1121dc7c458a1299a8  numpy-2.3.0-cp311-cp311-win_arm64.whl
389b85335838155a9076e9ad7f8fdba0827496ec2d2dc32ce69ce7898bde03ba  numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl
9498f60cd6bb8238d8eaf468a3d5bb031d34cd12556af53510f05fcf581c1b7e  numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
622a65d40d8eb427d8e722fd410ac3ad4958002f109230bc714fa551044ebae2  numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl
b9446d9d8505aadadb686d51d838f2b6688c9e85636a0c3abaeb55ed54756459  numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl
50080245365d75137a2bf46151e975de63146ae6d79f7e6bd5c0e85c9931d06a  numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl
c24bb4113c66936eeaa0dc1e47c74770453d34f46ee07ae4efd853a2ed1ad10a  numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
4d8d294287fdf685281e671886c6dcdf0291a7c19db3e5cb4178d07ccf6ecc67  numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl
6295f81f093b7f5769d1728a6bd8bf7466de2adfa771ede944ce6711382b89dc  numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
e6648078bdd974ef5d15cecc31b0c410e2e24178a6e10bf511e0557eed0f2570  numpy-2.3.0-cp312-cp312-win32.whl
0898c67a58cdaaf29994bc0e2c65230fd4de0ac40afaf1584ed0b02cd74c6fdd  numpy-2.3.0-cp312-cp312-win_amd64.whl
bd8df082b6c4695753ad6193018c05aac465d634834dca47a3ae06d4bb22d9ea  numpy-2.3.0-cp312-cp312-win_arm64.whl
5754ab5595bfa2c2387d241296e0381c21f44a4b90a776c3c1d39eede13a746a  numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl
d11fa02f77752d8099573d64e5fe33de3229b6632036ec08f7080f46b6649959  numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl
aba48d17e87688a765ab1cd557882052f238e2f36545dfa8e29e6a91aef77afe  numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl
4dc58865623023b63b10d52f18abaac3729346a7a46a778381e0e3af4b7f3beb  numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl
df470d376f54e052c76517393fa443758fefcdd634645bc9c1f84eafc67087f0  numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl
87717eb24d4a8a64683b7a4e91ace04e2f5c7c77872f823f02a94feee186168f  numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl
d8fa264d56882b59dcb5ea4d6ab6f31d0c58a57b41aec605848b6eb2ef4a43e8  numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl
e651756066a0eaf900916497e20e02fe1ae544187cb0fe88de981671ee7f6270  numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
e43c3cce3b6ae5f94696669ff2a6eafd9a6b9332008bafa4117af70f4b88be6f  numpy-2.3.0-cp313-cp313-win32.whl
81ae0bf2564cf475f94be4a27ef7bcf8af0c3e28da46770fc904da9abd5279b5  numpy-2.3.0-cp313-cp313-win_amd64.whl
c8738baa52505fa6e82778580b23f945e3578412554d937093eac9205e845e6e  numpy-2.3.0-cp313-cp313-win_arm64.whl
39b27d8b38942a647f048b675f134dd5a567f95bfff481f9109ec308515c51d8  numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl
0eba4a1ea88f9a6f30f56fdafdeb8da3774349eacddab9581a21234b8535d3d3  numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl
b0f1f11d0a1da54927436505a5a7670b154eac27f5672afc389661013dfe3d4f  numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl
690d0a5b60a47e1f9dcec7b77750a4854c0d690e9058b7bef3106e3ae9117808  numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl
8b51ead2b258284458e570942137155978583e407babc22e3d0ed7af33ce06f8  numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl
aaf81c7b82c73bd9b45e79cfb9476cb9c29e937494bfe9092c26aece812818ad  numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl
f420033a20b4f6a2a11f585f93c843ac40686a7c3fa514060a97d9de93e5e72b  numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl
d344ca32ab482bcf8735d8f95091ad081f97120546f3d250240868430ce52555  numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl
48a2e8eaf76364c32a1feaa60d6925eaf32ed7a040183b807e02674305beef61  numpy-2.3.0-cp313-cp313t-win32.whl
ba17f93a94e503551f154de210e4d50c5e3ee20f7e7a1b5f6ce3f22d419b93bb  numpy-2.3.0-cp313-cp313t-win_amd64.whl
f14e016d9409680959691c109be98c436c6249eaf7f118b424679793607b5944  numpy-2.3.0-cp313-cp313t-win_arm64.whl
80b46117c7359de8167cc00a2c7d823bdd505e8c7727ae0871025a86d668283b  numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
5814a0f43e70c061f47abd5857d120179609ddc32a613138cbb6c4e9e2dbdda5  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl
ef6c1e88fd6b81ac6d215ed71dc8cd027e54d4bf1d2682d362449097156267a2  numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
33a5a12a45bb82d9997e2c0b12adae97507ad7c347546190a18ff14c28bbca12  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
54dfc8681c1906d239e95ab1508d0a533c4a9505e52ee2d71a5472b04437ef97  numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e017a8a251ff4d18d71f139e28bdc7c31edba7a507f72b1414ed902cbe48c74d  numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl
581f87f9e9e9db2cba2141400e160e9dd644ee248788d6f90636eeb8fd9260a6  numpy-2.3.0.tar.gz
bluesky/ophyd-async (ophyd-async)

v0.12

Compare Source

Breaking changes

Flyscanning plan stubs have been deleted

In preparation for flyscanning development, the following have been deleted from ophyd_async.plan_stubs:

  • fly_and_collect. Plans should now use bps.collect_while_completing
  • The prepare_* plan stubs will eventually make their way back here, but only when we've defined a bunch of specific ones to make a generic plan stub out of
  • The convenience *_fly_and_collect_* plan stubs that wrap together the preparing and the flying should be wrapped into a generic plan at a later date

What's Changed

New Contributors

Full Changelog: bluesky/ophyd-async@v0.11...v0.12

ijl/orjson (orjson)

v3.11.0

Compare Source

Changed
  • Use a deserialization buffer allocated per request instead of a shared
    buffer allocated on import.
  • ABI compatibility with CPython 3.14 beta 4.
pydantic/pydantic-core (pydantic_core)

v2.35.2: 2025-06-26

Compare Source

What's Changed


Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

👻 Immortal: This PR will be recreated if closed unmerged. Get config help if that's undesired.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

Copy link

codecov bot commented May 29, 2025

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 94.48%. Comparing base (6567eab) to head (677928e).

Additional details and impacted files
@@           Coverage Diff           @@
##             main    #1023   +/-   ##
=======================================
  Coverage   94.48%   94.48%           
=======================================
  Files          41       41           
  Lines        2557     2557           
=======================================
  Hits         2416     2416           
  Misses        141      141           

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.

@renovate renovate bot force-pushed the renovate/indirect-python-dependencies branch 20 times, most recently from bf7a11c to ac0db92 Compare June 4, 2025 10:34
@renovate renovate bot force-pushed the renovate/indirect-python-dependencies branch 8 times, most recently from 5200ead to c14763d Compare June 5, 2025 08:31
@renovate renovate bot force-pushed the renovate/indirect-python-dependencies branch 20 times, most recently from 88e8436 to 8080301 Compare July 14, 2025 15:22
@renovate renovate bot force-pushed the renovate/indirect-python-dependencies branch 8 times, most recently from b6cb0c1 to 8def1cd Compare July 17, 2025 16:34
@renovate renovate bot force-pushed the renovate/indirect-python-dependencies branch from 8def1cd to 677928e Compare July 17, 2025 22:49
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants