forked from thalitadru/LDMnet-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLDMnet.py
265 lines (224 loc) · 8.63 KB
/
LDMnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 30 16:07:41 2018
@author: thalita
ldmnet with skorch callback
"""
import numpy as np
from scipy import sparse
from skorch_utils import NNClassifier, StopperNet
from skorch.utils import to_tensor
from skorch.callbacks import Callback
import torch
from laplacian_utils import compute_W, compute_L
class LDMnetBase(StopperNet, NNClassifier):
def __init__(self,
module,
layer_name,
mu=0.1,
epochs_update=2,
lambda_bar=0.01,
criterion=torch.nn.CrossEntropyLoss,
**kwargs):
super().__init__(module, criterion=criterion, **kwargs)
self.layer_name = layer_name
self.epochs_update = epochs_update
self.mu = mu
self.lambda_bar = lambda_bar
def initialize(self):
super().initialize()
self.ksi = None
self.Z = None
self.alpha = None
self.train_ = None
def _init_ksi_Z_alpha(self, X):
self.ksi = self.transform(X)
self.Z = np.zeros_like(self.ksi)
self.alpha = np.zeros_like(self.ksi)
def transform(self, X):
return super().transform(X, name=self.layer_name)
def fit(self, X, y, X_imgs=None, **fit_args):
if not self.warm_start or not self.initialized_:
self.initialize()
self._init_ksi_Z_alpha(X)
input_dict = dict(X=X,
ksi=self.ksi,
Z=self.Z,
alpha=self.alpha)
if X_imgs:
input_dict.update(X_imgs=X_imgs)
while len(self.history) < self.max_epochs and not self.stop:
super().partial_fit(input_dict,
y, epochs=self.epochs_update,
**fit_args)
return self
class LDMnet(LDMnetBase):
def initialize_callbacks(self):
self.callbacks += [AlphaUpdate(layer_name=self.layer_name,
lambda_bar=self.lambda_bar,
epochs_update=self.epochs_update,
mu=self.mu)]
super().initialize_callbacks()
def get_loss(self, y_pred, y_true, X=None, training=False):
if isinstance(X, dict):
X_X = X['X']
else:
X_X = X
loss = super().get_loss(y_pred, y_true, X_X, training)
if not training:
return loss
if X is not None and self.alpha is not None and self.lambda_bar != 0:
ksi = self.infer(X, name=self.layer_name)
alpha = to_tensor(X['alpha'], device=self.device).to(X_X.dtype)
Z = to_tensor(X['Z'], device=self.device).to(X_X.dtype)
reg_loss = self.mu * 0.5 * torch.norm(alpha - ksi + Z)
reg_loss = reg_loss.mean(dim=0)
loss += reg_loss
return loss
class AlphaUpdateBase(object):
def _solve_lin_sys(self, W, L, ksij, Zj):
"""solve linear system for alpha_j
(L + c W) alpha_j = c W (ksi_j - Z_j) (eq 19)
where c = mu/lambda_bar
"""
c = self.mu/self.lambda_bar
v = (ksij-Zj)
# Solve Ax = b
cW = c*W
A = (L + cW).tocsc()
b = cW * v
# start alpha_j as ksi_j
x0 = ksij
# preconditioning matrix M should approximate inv A
# spilu returns SuperLU object with solve(b) that approx solves Ax=b
# To improve the better approximation to the inverse, you may need to
# increase `fill_factor` AND decrease `drop_tol`.
if self.preconditionner:
M_approx = sparse.linalg.spilu(A, drop_tol=1e-4, fill_factor=10)
M = sparse.linalg.LinearOperator(
shape=A.shape, matvec=M_approx.solve)
else:
M = None
x, info = sparse.linalg.cg(A, b, x0, M=M,
tol=self.tol, maxiter=self.max_iter)
self.solver_info_.append(info)
return x
def _cat_ksi(self, ksi, X, X_imgs=None):
'''
X : samples (images or features)
X_imgs : input images (in case X contains pre-extracted features)
'''
if self.concatenate_input:
input = X if X_imgs is None else X_imgs
return np.concatenate([ksi, input.view(input.shape[0],-1)],
axis=-1)
else:
return ksi
def _update_W_L(self, ksi, X, X_imgs=None):
cat_ksi = self._cat_ksi(ksi, X, X_imgs=X_imgs)
self.W_ = compute_W(cat_ksi, self.n_neighbors,
nn_radius=10)
self.L_ = compute_L(self.W_)
def _update_alpha(self, net):
n_features = net.ksi.shape[1]
for j in range(n_features):
alphaj = self._solve_lin_sys(self.W_, self.L_,
net.ksi[net.train_, j],
net.Z[net.train_, j])
net.alpha[net.train_, j] = alphaj
class AlphaUpdate(Callback, AlphaUpdateBase):
def __init__(self, mu=0.01, lambda_bar=0.01, n_neighbors=20,
tol=1e-5, max_iter=50, n_jobs=1,
epochs_update=2,
preconditionner=False,
concatenate_input=True,
*args, **kwargs):
'''
- mu: multiplier for the alternating direction method of multipliers (ADMM)
- l or lambda_: regularization + temperature
$\hat{\lambda} = t/2\lambda = (8 \lambda\gamma)^{-1}$
- lambda: regularization strenth
- t or gamma: heat kernel param, $\gamma=\frac{1}{4t}$
- n_neighbors: for kNN graph
- max_iter: max iterations for lin sys solver
- tol: tolerance for lin sys solver
- n_jobs: num of jobs for nn graph construction
'''
self.concatenate_input = concatenate_input
self.epochs_update = epochs_update
self.mu = mu
self.lambda_bar = lambda_bar
self.n_neighbors = n_neighbors
self.n_jobs = n_jobs
self.tol = tol
self.max_iter = max_iter
self.preconditionner = preconditionner
def initialize(self):
super().initialize()
self.solver_info_ = []
self.W_ = None # W and L have size of training set
self.L_ = None
def on_train_begin(self, net, X, y=None, **kargs):
if len(net.history) == 1:
net._init_ksi_Z_alpha(X)
# if 'X_imgs' in X:
# X_imgs = X['X_imgs']
# else:
# X_imgs = None
# X = X['X']
# if self.lambda_bar != 0:
# # compute W, L and solve linsys to update alpha
# self._update_W_L(net.ksi, X, X_imgs)
# self._update_alpha(net)
def on_epoch_begin(self, net,
dataset_train, dataset_valid=None, **kwargs):
epochs = len(net.history)
if not (epochs-1) % self.epochs_update:
net.train_ = dataset_train.indices
X, y = dataset_train[:]
if 'X_imgs' in X:
X_imgs = X['X_imgs']
else:
X_imgs = None
X = X['X']
if self.lambda_bar != 0:
# compute W, L and solve linsys to update alpha
self._update_W_L(net.ksi[net.train_], X, X_imgs)
self._update_alpha(net)
def on_epoch_end(self, net,
dataset_train, dataset_valid=None, **kwargs):
epochs = len(net.history)
if not (epochs-1) % self.epochs_update:
X, y = dataset_train[:]
net.ksi[net.train_] = net.transform(X['X'])
# dual variable update
dZ = net.alpha[net.train_] - net.ksi[net.train_]
net.Z[net.train_] = net.Z[net.train_] + dZ
def on_train_end(self, net, X, y=None, **kwargs):
pass
# net.ksi[...] = net.transform(X)
# # dual variable update
# dZ = net.alpha - net.ksi
# net.Z[...] = net.Z + dZ
class SaveVars(Callback):
""" Callback to save ksi, alpha and Z"""
def __init__(self, every_n_epochs=100):
self.every_n_epochs = every_n_epochs
def initialize(self):
self.ksi = []
self.Z = []
self.alpha = []
self.epochs = []
return self
def on_train_end(self, net, **kwargs):
"""
Method notified after partial fit, when it is interesting to save
ldmnet vars.
"""
epochs = len(net.history)
if not (epochs-1) % self.every_n_epochs:
self.ksi.append(net.ksi.copy())
self.Z.append(net.Z.copy())
self.alpha.append(net.alpha.copy())
self.epochs.append(epochs - 1)