Skip to content

Dragon-cat/LDMnet-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LDMnet implementation in pytorch

This repo implements LDMNet presented in the following work:

LDMNet: Low Dimensional Manifold Regularized Neural Networks Wei Zhu, Qiang Qiu, Jiaji Huang, Robert Calderbank, Guillermo Sapiro, Ingrid Daubechies

This implementation uses:

To run

To run use:

python main.py with mnist
python main.py with cifar10
python main.py with svhn

You can change parameters as follows:

python main.py with mnist train_size=1000 device=cuda dropout=0.5 alphaupdate.lambda_bar=0.01

Call python main.py print_config to see all parameters available.

Results, arguments, run info and network weights for each run will be stored in ldmnet_runs, under a directory corresponding to the run's id number.

To be implemented

  • test command to load previous run and evaluate on test set

About

Implementation of LDMnet in pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%