-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
LuPaoPao
committed
Oct 30, 2023
1 parent
4b7a9e6
commit d4526e4
Showing
1,085 changed files
with
132,773 additions
and
0 deletions.
There are no files selected for viewing
Binary file added
BIN
+3.9 MB
...-x86_64-cpython-38/mmdet3d/ops/bev_pool_v2/bev_pool_v2_ext.cpython-38-x86_64-linux-gnu.so
Binary file not shown.
Binary file added
BIN
+6.32 MB
build/temp.linux-x86_64-cpython-38/mmdet3d/ops/bev_pool_v2/src/bev_pool.o
Binary file not shown.
Binary file added
BIN
+26.6 KB
build/temp.linux-x86_64-cpython-38/mmdet3d/ops/bev_pool_v2/src/bev_pool_cuda.o
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,296 @@ | ||
# Copyright (c) Phigent Robotics. All rights reserved. | ||
|
||
_base_ = ['../_base_/datasets/nus-3d.py', '../_base_/default_runtime.py'] | ||
# Global | ||
# If point cloud range is changed, the models should also change their point | ||
# cloud range accordingly | ||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
# For nuScenes we usually do 10-class detection | ||
class_names_train = [ | ||
'car', 'truck', 'van', | ||
'motorcycle', 'cyclist', 'pedestrian' | ||
] | ||
|
||
class_names_test = [ | ||
'car', 'truck', 'van', | ||
'motorcycle', 'cyclist', 'pedestrian' | ||
] | ||
class_names = class_names_train | ||
|
||
|
||
data_config = { | ||
'cams': ['Camera_FrontLeft', 'Camera_Front', 'Camera_FrontRight', | ||
'Camera_BackLeft', 'Camera_Back', 'Camera_BackRight'], | ||
'Ncams': 6, | ||
'input_size': (384, 704), # 2.2727 | ||
'src_size': (900, 1600), | ||
# Augmentation | ||
'resize': (-0.06, 0.11), | ||
'rot': (-5.4, 5.4), | ||
'flip': True, | ||
'crop_h': (0.0, 0.1), | ||
'resize_test': 0.00, | ||
're_ratio': False, | ||
'pitch_aug': (-0.04, 0.04), | ||
'yaw_aug': (-0.4, 0.4), | ||
'roll_aug': (-0.04, 0.04), | ||
'extri_x_aug': (-2.0, 2.0), | ||
'extri_y_aug': (-2.0, 2.0), | ||
'extri_z_aug': (-2.0, 2.0), | ||
# # Intri Augmentation | ||
# 'fc_w_ratio': 0.2, # 改变x光心 | ||
# 'fc_h_ratio': 0.2, # 改变y光心 | ||
# 'resize_intri': (0.5, 1.5), # 改变视角 | ||
} | ||
|
||
# Model | ||
grid_config = { | ||
'x': [-51.2, 51.2, 0.8], | ||
'y': [-51.2, 51.2, 0.8], | ||
'z': [-5, 3, 8], | ||
'depth': [1.0, 100.0, 1.0], | ||
} | ||
|
||
voxel_size = [0.1, 0.1, 0.2] | ||
|
||
numC_Trans = 80 | ||
|
||
model = dict( | ||
type='PCBEV_DG', | ||
img_backbone=dict( | ||
pretrained='/mnt/cfs/algorithm/yunpeng.zhang/pretrained/resnet50-0676ba61.pth', | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(2, 3), | ||
frozen_stages=-1, | ||
norm_cfg=dict(type='BN', requires_grad=True), | ||
norm_eval=False, | ||
with_cp=True, | ||
style='pytorch'), | ||
img_aug=dict( | ||
type='Img_Aux', | ||
numC_input=512, | ||
class_name=class_names_train, | ||
upsample=[1, 2, 1], | ||
num_channels=[256, 128, len(class_names_train) + len(class_names_train) * 6]), | ||
bev_img_aux=dict( | ||
type='Img_Aux_Dy', | ||
numC_input=80, | ||
class_name=class_names_train, | ||
num_layer=[2, 1, 1], | ||
upsample=[2, 1, 1], | ||
num_channels=[256, 128, len(class_names_train) + len(class_names_train) * 6]), | ||
img_neck=dict( | ||
type='CustomFPN', | ||
in_channels=[1024, 2048], | ||
out_channels=512, | ||
num_outs=1, | ||
start_level=0, | ||
out_ids=[0]), | ||
img_view_transformer=dict( | ||
type='LSSViewTransformer_pc', | ||
BEV_Aux=dict( | ||
type='BEV_Aux', | ||
class_name=class_names_train, | ||
numC_input=256, | ||
num_layer=[2, 2, 2], | ||
height_num=4, | ||
num_channels=[numC_Trans, numC_Trans, numC_Trans + 4]), | ||
downsample_from_ann=2, | ||
grid_config=grid_config, | ||
input_size=data_config['input_size'], | ||
in_channels=512, | ||
depthnet_cfg=dict(use_dcn=False), | ||
out_channels=numC_Trans, | ||
loss_depth_weight=3.0, | ||
downsample=16, | ||
), | ||
img_bev_encoder_backbone=dict( | ||
type='CustomResNet', | ||
numC_input=numC_Trans, | ||
num_channels=[numC_Trans * 2, numC_Trans * 4, numC_Trans * 8]), | ||
img_bev_encoder_neck=dict( | ||
type='FPN_LSS', | ||
in_channels=numC_Trans * 8 + numC_Trans * 2, | ||
out_channels=256), | ||
pts_bbox_head=dict( | ||
type='CenterHead', | ||
in_channels=256, | ||
tasks=[ | ||
dict(num_class=1, class_names=['car']), | ||
dict(num_class=2, class_names=['truck', 'van']), | ||
dict(num_class=1, class_names=['bus']), | ||
dict(num_class=2, class_names=['motorcycle', 'cyclist']), | ||
dict(num_class=1, class_names=['pedestrian']), | ||
], | ||
common_heads=dict( | ||
reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), vel=(2, 2)), | ||
share_conv_channel=64, | ||
bbox_coder=dict( | ||
type='CenterPointBBoxCoder', | ||
pc_range=point_cloud_range[:2], | ||
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
max_num=500, | ||
score_threshold=0.1, | ||
out_size_factor=8, | ||
voxel_size=voxel_size[:2], | ||
code_size=9), | ||
separate_head=dict( | ||
type='SeparateHead', init_bias=-2.19, final_kernel=3), | ||
loss_cls=dict(type='GaussianFocalLoss', reduction='mean'), | ||
loss_bbox=dict(type='L1Loss', reduction='mean', loss_weight=0.25), | ||
norm_bbox=True), | ||
# model training and testing settings | ||
train_cfg=dict( | ||
pts=dict( | ||
point_cloud_range=point_cloud_range, | ||
grid_size=[1024, 1024, 40], | ||
voxel_size=voxel_size, | ||
out_size_factor=8, | ||
dense_reg=1, | ||
gaussian_overlap=0.1, | ||
max_objs=500, | ||
min_radius=2, | ||
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2])), | ||
test_cfg=dict( | ||
pts=dict( | ||
pc_range=point_cloud_range[:2], | ||
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
max_per_img=500, | ||
max_pool_nms=False, | ||
min_radius=[4, 12, 10, 1, 0.85, 0.175], | ||
score_threshold=0.1, | ||
out_size_factor=8, | ||
voxel_size=voxel_size[:2], | ||
pre_max_size=1000, | ||
post_max_size=83, | ||
|
||
# Scale-NMS | ||
nms_type=[ | ||
'rotate', 'rotate', 'rotate', 'circle', 'rotate', 'rotate' | ||
], | ||
nms_thr=[0.2, 0.2, 0.2, 0.2, 0.2, 0.5], | ||
nms_rescale_factor=[ | ||
1.0, [0.7, 0.7], [0.4, 0.55], 1.1, [1.0, 1.0], [4.5, 9.0] | ||
]))) | ||
|
||
|
||
# Data | ||
dataset_type = 'DeepAccidentDataset' | ||
data_root = 'data/DeepAccident_data/' | ||
file_client_args = dict(backend='disk') | ||
|
||
bda_aug_conf = dict( | ||
rot_lim=(-22.5, 22.5), | ||
scale_lim=(0.95, 1.05), | ||
flip_dx_ratio=0.5, | ||
flip_dy_ratio=0.5) | ||
|
||
train_pipeline = [ | ||
dict( | ||
type='PrepareImageInputs_UDA', | ||
is_train=True, | ||
data_config=data_config), | ||
dict( | ||
type='LoadAnnotationsBEVDepth', | ||
bda_aug_conf=bda_aug_conf, | ||
classes=class_names), | ||
dict( | ||
type='LoadPointsFromFile_UDA', | ||
coord_type='LIDAR', | ||
load_dim=5, | ||
use_dim=3, | ||
file_client_args=file_client_args), | ||
dict(type='PointToMultiViewDepth_UDA', downsample=1, grid_config=grid_config), | ||
dict(type='Load3DBoxesHeatmap', classes=class_names_train, downsample_feature=8), # CustomCenterNet_Single提高则downsample_feature降低 | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectNameFilter', classes=class_names), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict( | ||
type='Collect3D', keys=['img_inputs', 'gt_bboxes_3d', 'gt_labels_3d', 'gt_depth', 'gt_depth_real', | ||
'heatmaps_2d', 'ann_maps_2d', 'heatmap_masks_2d', 'heatmaps_2d_aug', 'ann_maps_2d_aug', 'heatmap_masks_2d_aug', | ||
'bev_aug']) | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type='PrepareImageInputs_UDA', data_config=data_config), | ||
dict( | ||
type='LoadAnnotationsBEVDepth', | ||
bda_aug_conf=bda_aug_conf, | ||
classes=class_names_test, | ||
is_train=False), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1600, 900), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names_test, | ||
with_label=False), | ||
dict(type='Collect3D', keys=['img_inputs', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
]) | ||
] | ||
|
||
input_modality = dict( | ||
use_lidar=False, | ||
use_camera=True, | ||
use_radar=False, | ||
use_map=False, | ||
use_external=False) | ||
|
||
share_data_config = dict( | ||
type=dataset_type, | ||
classes=class_names_train, | ||
modality=input_modality, | ||
# img_info_prototype='bevdet', | ||
) | ||
|
||
test_data_config = dict( | ||
pipeline=test_pipeline, | ||
ann_file=data_root + 'bevdetv4-DeepAccident_infos_val.pkl') | ||
|
||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='CBGSDataset', | ||
dataset=dict( | ||
data_root=data_root, | ||
ann_file=data_root + 'bevdetv4-DeepAccident_infos_train.pkl', | ||
pipeline=train_pipeline, | ||
classes=class_names_train, | ||
test_mode=False, | ||
# use_valid_flag=True, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR')), | ||
val=test_data_config, | ||
test=test_data_config) | ||
|
||
for key in ['val', 'test']: | ||
data[key].update(share_data_config) | ||
data['train']['dataset'].update(share_data_config) | ||
|
||
# Optimizer | ||
optimizer = dict(type='AdamW', lr=2e-4, weight_decay=1e-2) | ||
optimizer_config = dict(grad_clip=dict(max_norm=5, norm_type=2)) | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=20, | ||
warmup_ratio=0.001, | ||
step=[24]) | ||
runner = dict(type='EpochBasedRunner', max_epochs=4) | ||
|
||
custom_hooks = [ | ||
dict( | ||
type='MEGVIIEMAHook', | ||
init_updates=10560, | ||
priority='NORMAL', | ||
), | ||
] | ||
|
||
|
Oops, something went wrong.