Version | 1.0.0 | 2.0.0 | 2.1.0 | 2.2.0 | 2.3.0 | 2.3.1 |
---|---|---|---|---|---|---|
Stable | Yes | No | No | Yes | Yes | Yes |
readme fix
Quadratic Roots function Availible
HALTED
Readme update
Readme update
Readme update
successful model with c++ integration
Buggy prototype with c++ integration
Faulty prototype with c++ integration
Simple string msg
A mathematical library for various different mathematical functions (prod) backed by c++ (node-gyp/nan)
npm i entitytocode
Versions: 1.0.0 +
Usage (nodeJS):
const package = require('entitytocode')
package.printMsg();
Output:
This is a message from the demo package
Versions: 2.0.0 +
Disclaimer: Not stable in versions 2.0.0 - 2.1.0
Types for parameters: Item1 = Int, Item2 = Int
Example (nodeJS):
const package = require('entitytocode')
const X = package.add(1, 2)
console.log(X)
Output:
3
Versions: 2.0.0 +
Disclaimer: Not stable in versions 2.0.0 - 2.1.0
Types for parameters: Item1 = Int, Item2 = Int
Example (nodeJS):
const package = require('entitytocode')
const X = package.sub(-1, 2)
console.log(X)
output:
-3
Versions: 2.0.0 +
Disclaimer: Not stable in versions 2.0.0 - 2.1.0
Types for parameters: Item1 = Int, Item2 = Int
Example (nodeJS):
const package = require('entitytocode')
const X = package.mul(-3.2, 2.3)
console.log(X)
output:
-7.359999999999999
Versions: 2.0.0 +
Disclaimer: Not stable in versions 2.0.0 - 2.1.0
Types for parameters: Item1 = Int, Item2 = Int
Example (nodeJS):
const package = require('entitytocode')
const X = package.div(-1.5, 2)
console.log(X)
output:
-0.75
Versions: 2.3.1 +
Types for parameters: A = Int, B = Int, C = Int
Output: It returns an array with 3 values,
1: number of roots: If there are No roots then it will return 0, if there are one, then 1, if there are two then 2.
2 & 3: roots: In the calculation, two roots are returned, These are them, if there are only one root, both will be identical, and if there are none, item 1 will be 0 and it will return the imaginary roots
Example (nodeJS):
const moduleQRoots = require('entitytocode')
let NoRealRoots = moduleQRoots.roots(1, 2, 3)
console.info('::::::::::::::::::::::::NO REAL ROOTS::::::::::::::::::::::::')
console.log(NoRealRoots);
console.log('1X^2 + 2X + 3')
let OneRealRoot = moduleQRoots.roots(1, 2, 1)
console.info('::::::::::::::::::::::::ONE REAL ROOTS::::::::::::::::::::::::')
console.log(OneRealRoot);
console.log('1X^2 + 2X + 1')
let TworealRoots = moduleQRoots.roots(1, 3, 1)
console.info('::::::::::::::::::::::::TWO REAL ROOTS::::::::::::::::::::::::')
console.log(TworealRoots);
console.log('1X^2 + 3X + 1')
output:
::::::::::::::::::::::::NO REAL ROOTS::::::::::::::::::::::::
[ 0, 0.41421356237309515, -2.414213562373095 ]
1X^2 + 2X + 3
::::::::::::::::::::::::ONE REAL ROOTS::::::::::::::::::::::::
[ 1, -1, -1 ]
1X^2 + 2X + 1
::::::::::::::::::::::::NO REAL ROOTS::::::::::::::::::::::::
[ 2, -0.3819660112501051, -2.618033988749895 ]
1X^2 + 3X + 1