Skip to content

feature: safe embedding model in safe tensor format #1440

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions FlagEmbedding/abc/finetune/embedder/AbsTrainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@
from typing import Optional
from abc import ABC, abstractmethod
from transformers.trainer import Trainer
from sentence_transformers import SentenceTransformer, models
# from transformers.trainer import *

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -35,3 +37,14 @@ def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
loss = outputs.loss

return (loss, outputs) if return_outputs else loss

@staticmethod
def save_ckpt_for_sentence_transformers(ckpt_dir, pooling_mode: str = 'cls', normalized: bool = True):
word_embedding_model = models.Transformer(ckpt_dir)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode=pooling_mode)
if normalized:
normalize_layer = models.Normalize()
model = SentenceTransformer(modules=[word_embedding_model, pooling_model, normalize_layer], device='cpu')
else:
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device='cpu')
model.save(ckpt_dir)
16 changes: 5 additions & 11 deletions FlagEmbedding/finetune/embedder/encoder_only/base/trainer.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import os
import torch
import logging
from typing import Optional

Expand Down Expand Up @@ -32,13 +31,8 @@ def _save(self, output_dir: Optional[str] = None, state_dict=None):
f'does not support save interface')
else:
self.model.save(output_dir)
if self.tokenizer is not None and self.is_world_process_zero():
self.tokenizer.save_pretrained(output_dir)

torch.save(self.args, os.path.join(output_dir, "training_args.bin"))

# save the checkpoint for sentence-transformers library
# if self.is_world_process_zero():
# save_ckpt_for_sentence_transformers(output_dir,
# pooling_mode=self.args.sentence_pooling_method,
# normlized=self.args.normlized)
if self.is_world_process_zero():
self.save_ckpt_for_sentence_transformers(output_dir,
pooling_mode=self.args.sentence_pooling_method)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
Loading