Here, we use RNN to deal with the network intrusion problem. The UNSW-NB15 dataset is used.
Totally, we divide the process into two parts.
The first part is regarded as pre-training. The stacked sparse autoencoder is used for feature extraction and dimension reduction. The structure of SSAE is as follow:
After that, the data can be in low-dimension.
Then, we organize the 2D traffic into 3D data, that is, put a few samples together as a time-seires sample.
Finally, different variant RNNs are adopted to classify the current data into normal or anomaly. The structure of LSTM is:
The final result of classification can be shown in this way:
If the method does help for you in your paper, please cite:
Lin Y, Wang J, Tu Y, et al. Time-Related Network Intrusion Detection Model: A Deep Learning Method[C]//2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2019: 1-6.
Likewise, if there is any question, contact me [email protected]. Thanks.
本实验主要完成以下内容: 1.构建一个稀疏自编码器,完成降维任务 2.构建LSTM(GRU、双向LSTM、双向GRU),完成数据特征挖掘 3.最后以一个sigmoid神经元完成二分类任务,以binary_crossentropy作为衡量指标
预期: 1.不同DAE结构,对于分类的影响。 这个过程实际为pre-training过程,以DAE+单步LSTM(GRU及双向)结构完成任务 最终确定所需参数,包括DAE神经元个数以及稀疏系数rho的确定,需要给出一个表table 2.不同LSTM、GRU及双向,共4个的对比 这个过程实际为fine-tuning过程,以不同步数+结构完成任务 最终确定最优的结构,包括选用的cell是什么以及步数的确定,需要给出一个图figure(4条曲线,在不同步数的准确率和虚警率对比) 3.选出最优结构,然后进行test一维图的显示,figure