Skip to content

FraunhoferIOSB/goose_dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GOOSE Dataset 🦆 Repository

logo

Static Badge Static Badge Static Badge Static Badge

⚠️ Check out our ICRA25 Challenge!

Field Robotics Workshop Challenge Information

This branch currently contains the scripts and tools to work with the GOOSE Dataset and run baseline experiments for the Field Robotics workshop challenge at ICRA 2025.

More information on how to participate can be found in the Codabench Challenge website (2D, 3D) and the image_processing and pointcloud_processing subfolders.

Category Labels for the ICRA25 Challenge

For the challenge, we use the simplified label set listed below. This version of the labels can be downloaded from here and used to replace the original ones.

name label_key hex
other 0 #A9A9A9
artificial_structures 1 #DE88DE
artificial_ground 2 #EBFF3B
natural_ground 3 #A1887F
obstacle 4 #FFC107
vehicle 5 #F44336
vegetation 6 #4CAF50
human 7 #8FB0FF
sky 8 #2196F3

Download

The data structure and more in-depth information about the format can be found int the documentation. The data is divided into 3 splits: train, test and validation. Labeled data is available for train and validation splits.

It can be downloaded from our webpage.

In scripts you can find some sample scripts to directly download and unpack the 2D data.

Utilities

Under the folder common some general configuration files and utils such as color maps can be found.

For more specific tools regarding training and data handling, have a look at the image_processing and pointcloud_processing subfolders.

Citation

Please cite us if this data is useful for you work:

@article{goose-dataset,
    author = {Peter Mortimer and Raphael Hagmanns and Miguel Granero
              and Thorsten Luettel and Janko Petereit and Hans-Joachim Wuensche},
    title = {The GOOSE Dataset for Perception in Unstructured Environments},
    url={https://arxiv.org/abs/2310.16788},
    conference={2024 IEEE International Conference on Robotics and Automation (ICRA)}
    year = 2024
}

@article{goose-ex-dataset,
    author = {Raphael Hagmanns and Peter Mortimer and Miguel Granero
              and Thorsten Luettel and Janko Petereit},
    title = {Excavating in the Wild: The GOOSE-Ex Dataset for Semantic Segmentation},
    url={},
    conference={TBA}
    year = 2024
} 

License

  • This repository is licensed under the MIT License.
  • The data is published under the CC BY-SA 4.0 License.

Maintainers

GOOSE is a project of Fraunhofer IOSB, UniBW Munich and University of Koblenz.