Skip to content

Update dependency numpy to v2.3.2 #160

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

renovate-bot
Copy link
Contributor

@renovate-bot renovate-bot commented Jul 24, 2025

This PR contains the following updates:

Package Change Age Confidence
numpy (changelog) ==2.3.1 -> ==2.3.2 age confidence

Release Notes

numpy/numpy (numpy)

v2.3.2: (Jul 24, 2025)

Compare Source

NumPy 2.3.2 Release Notes

The NumPy 2.3.2 release is a patch release with a number of bug fixes
and maintenance updates. The highlights are:

  • Wheels for Python 3.14.0rc1
  • PyPy updated to the latest stable release
  • OpenBLAS updated to 0.3.30

This release supports Python versions 3.11-3.14

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !DWesl
  • Charles Harris
  • Joren Hammudoglu
  • Maanas Arora
  • Marco Edward Gorelli
  • Matti Picus
  • Nathan Goldbaum
  • Sebastian Berg
  • kostayScr +

Pull requests merged

A total of 16 pull requests were merged for this release.

  • #​29256: MAINT: Prepare 2.3.x for further development
  • #​29283: TYP: Work around a mypy issue with bool arrays (#​29248)
  • #​29284: BUG: fix fencepost error in StringDType internals
  • #​29287: BUG: handle case in mapiter where descriptors might get replaced...
  • #​29350: BUG: Fix shape error path in array-interface
  • #​29412: BUG: Allow reading non-npy files in npz and add test
  • #​29413: TST: Avoid uninitialized values in test (#​29341)
  • #​29414: BUG: Fix reference leakage for output arrays in reduction functions
  • #​29415: BUG: fix casting issue in center, ljust, rjust, and zfill (#​29369)
  • #​29416: TYP: Fix overloads in np.char.array and np.char.asarray...
  • #​29417: BUG: Any dtype should call square on arr \*\* 2 (#​29392)
  • #​29424: MAINT: use a stable pypy release in CI
  • #​29425: MAINT: Support python 314rc1
  • #​29429: MAINT: Update highway to match main.
  • #​29430: BLD: use github to build macos-arm64 wheels with OpenBLAS and...
  • #​29437: BUG: fix datetime/timedelta hash memory leak (#​29411)

Checksums

MD5
e35c637ea9fba77eabfdf70e26eaa16d  numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl
3dede42d11c843cfacff422f65a80e47  numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl
f5c485a43210eb3541b254c8c9d6ac9e  numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl
658950eb37e19b42920635ee60830a1d  numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl
9a864a280798829cc522521bc5d9c7e2  numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
085e1ff7746d327a1320672ab86966c3  numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
6acefa06c38bc616352b76174d4f19d2  numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl
4dd3469970dbfba60dad41b9923c5a5a  numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl
ad090139b8b872a9157b92c840566c5e  numpy-2.3.2-cp311-cp311-win32.whl
09b023f808432e60633e36a13630dc13  numpy-2.3.2-cp311-cp311-win_amd64.whl
c80f2a1c4c829ccb6745a6d0803b7177  numpy-2.3.2-cp311-cp311-win_arm64.whl
307fc28e0c630dbc5a6ff4051ee9ec6c  numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl
4af1ffb81bdec235aef1b9bdf7c1566d  numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl
8003e8df1badaffee163a603bf05656b  numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl
e703fab1c371fd27389401caa34a5cbd  numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl
5fdc228f15ec5de78b89c7aa4c137019  numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
f3bc10b89911c09777c4c5d9752f35b0  numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
5d0128aa0f6aa3a5122364a727a72eba  numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl
ef392070c44709321d7f87ab15bbd674  numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl
909e05dcd1164cc02d5fccc1cc6c9ca6  numpy-2.3.2-cp312-cp312-win32.whl
3ba0b657682fc54d9433b4d7244c9264  numpy-2.3.2-cp312-cp312-win_amd64.whl
05755e8c591b1ac2fff05a06d76ac414  numpy-2.3.2-cp312-cp312-win_arm64.whl
c1e323fa1986bc99ae96c46126a30f93  numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl
9a89327ef3550581017ea6e2a47c1a8e  numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl
3c7236116911c5c19de0091d7ac81f65  numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl
1809c7adafae6492741864cf4dda7d1e  numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl
ee68f94ec5f9c0c7f9423d7329bc085e  numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
24c4e95f0a615356787e2920378e5c6f  numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
5c53a2c915d177b7c305c0386ba21b43  numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl
c4607ea441320a0078d942ca21ef2411  numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl
09f2fdeb35d952751ba269ca5fa77e7a  numpy-2.3.2-cp313-cp313-win32.whl
47a7326544ce192df844b3e9750c7704  numpy-2.3.2-cp313-cp313-win_amd64.whl
9b5adab8ee4eb97ccf90d73d63671db4  numpy-2.3.2-cp313-cp313-win_arm64.whl
7169baf4160b9a75790650cef23a73e1  numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl
0338f2a78981d84d84e5f693ed6112d5  numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl
b0c1c28add9716f7cee433d53fb43067  numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl
d2d8d43c535184095550420169858b90  numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl
745bb6930958f4d7980cd705621abc25  numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
96412f8c9687d468e260aacdfb9cca02  numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
11ce971fe997bf5c0784516db85891ff  numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl
e71ba272e9db74bc753ca056e76fdf5b  numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl
82feb6822f2cf04a9edf38cf7f7d4806  numpy-2.3.2-cp313-cp313t-win32.whl
c6c8a1a2e94a9fc2dad9d161a6666e54  numpy-2.3.2-cp313-cp313t-win_amd64.whl
29e65f132c4a916214a0e82bca214717  numpy-2.3.2-cp313-cp313t-win_arm64.whl
2b99d343001495b182027843bf2148b2  numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl
40d04ac18cd9db3c380224d3d5607770  numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl
871631874c6839719d1c1b3ad81835cd  numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl
4d4098888f19de85dd18646c2f955cd2  numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl
813e47e3c07cd28bf0458a1e513d6619  numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
1fe080566baca813e6ac4635011a408a  numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
bd44ab38b53a4b5b6130b6f01ffaf5fa  numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl
f2fda217bec39ede344b42fef2cbd9e5  numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl
c02218de0d0666769c91513eafaf251f  numpy-2.3.2-cp314-cp314-win32.whl
d419eb806a6f5debb366d4bcf0f5bde0  numpy-2.3.2-cp314-cp314-win_amd64.whl
851529ffdf2b0d4b66eb1ac99c24da3e  numpy-2.3.2-cp314-cp314-win_arm64.whl
2306e8b73fcd2d46116c6a95034e4d3a  numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl
b4d4ce3339cb9f0b0f2b339db803f39c  numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl
6ae336ac461d5d89811c8a236b442842  numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl
351f35dd00bfb35e6cad2447a14c7cdf  numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl
0e0b26b34024f24a5f59809a1778ace0  numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
bc77a7f5826bb0a38154d31d8444abb7  numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
cd1e335e2a8437339475db12ee30f26d  numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl
5c8093e713bd7e5f8512458d53fefeed  numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl
66125a7e4e311fc2dedfa8c25ee577f2  numpy-2.3.2-cp314-cp314t-win32.whl
97713f41a5d4a08e8ed3d629d07678d3  numpy-2.3.2-cp314-cp314t-win_amd64.whl
848c4c409b643c2b42c431f51b310095  numpy-2.3.2-cp314-cp314t-win_arm64.whl
e240eed2fc098f7a0ae9813abead8a05  numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
7e46ebe46530596019ae6b5db8a7a564  numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl
82077182e608a0d366eba700902463b5  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl
67db17064907cd22a74676b50de1ab6d  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
6d59903ecd732d53dd230ca59cdc2c34  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
baae8d6875e1de409ffef875896c4b4f  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
5d92d6c39f2f0b28149ed15437b13cf7  numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl
f8d3d3b3ecd2b6e98889e88f6bbdc1a3  numpy-2.3.2.tar.gz
SHA256
852ae5bed3478b92f093e30f785c98e0cb62fa0a939ed057c31716e18a7a22b9  numpy-2.3.2-cp311-cp311-macosx_10_9_x86_64.whl
7a0e27186e781a69959d0230dd9909b5e26024f8da10683bd6344baea1885168  numpy-2.3.2-cp311-cp311-macosx_11_0_arm64.whl
f0a1a8476ad77a228e41619af2fa9505cf69df928e9aaa165746584ea17fed2b  numpy-2.3.2-cp311-cp311-macosx_14_0_arm64.whl
cbc95b3813920145032412f7e33d12080f11dc776262df1712e1638207dde9e8  numpy-2.3.2-cp311-cp311-macosx_14_0_x86_64.whl
f75018be4980a7324edc5930fe39aa391d5734531b1926968605416ff58c332d  numpy-2.3.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
20b8200721840f5621b7bd03f8dcd78de33ec522fc40dc2641aa09537df010c3  numpy-2.3.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
1f91e5c028504660d606340a084db4b216567ded1056ea2b4be4f9d10b67197f  numpy-2.3.2-cp311-cp311-musllinux_1_2_aarch64.whl
fb1752a3bb9a3ad2d6b090b88a9a0ae1cd6f004ef95f75825e2f382c183b2097  numpy-2.3.2-cp311-cp311-musllinux_1_2_x86_64.whl
4ae6863868aaee2f57503c7a5052b3a2807cf7a3914475e637a0ecd366ced220  numpy-2.3.2-cp311-cp311-win32.whl
240259d6564f1c65424bcd10f435145a7644a65a6811cfc3201c4a429ba79170  numpy-2.3.2-cp311-cp311-win_amd64.whl
4209f874d45f921bde2cff1ffcd8a3695f545ad2ffbef6d3d3c6768162efab89  numpy-2.3.2-cp311-cp311-win_arm64.whl
bc3186bea41fae9d8e90c2b4fb5f0a1f5a690682da79b92574d63f56b529080b  numpy-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl
2f4f0215edb189048a3c03bd5b19345bdfa7b45a7a6f72ae5945d2a28272727f  numpy-2.3.2-cp312-cp312-macosx_11_0_arm64.whl
8b1224a734cd509f70816455c3cffe13a4f599b1bf7130f913ba0e2c0b2006c0  numpy-2.3.2-cp312-cp312-macosx_14_0_arm64.whl
3dcf02866b977a38ba3ec10215220609ab9667378a9e2150615673f3ffd6c73b  numpy-2.3.2-cp312-cp312-macosx_14_0_x86_64.whl
572d5512df5470f50ada8d1972c5f1082d9a0b7aa5944db8084077570cf98370  numpy-2.3.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
8145dd6d10df13c559d1e4314df29695613575183fa2e2d11fac4c208c8a1f73  numpy-2.3.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
103ea7063fa624af04a791c39f97070bf93b96d7af7eb23530cd087dc8dbe9dc  numpy-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl
fc927d7f289d14f5e037be917539620603294454130b6de200091e23d27dc9be  numpy-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl
d95f59afe7f808c103be692175008bab926b59309ade3e6d25009e9a171f7036  numpy-2.3.2-cp312-cp312-win32.whl
9e196ade2400c0c737d93465327d1ae7c06c7cb8a1756121ebf54b06ca183c7f  numpy-2.3.2-cp312-cp312-win_amd64.whl
ee807923782faaf60d0d7331f5e86da7d5e3079e28b291973c545476c2b00d07  numpy-2.3.2-cp312-cp312-win_arm64.whl
c8d9727f5316a256425892b043736d63e89ed15bbfe6556c5ff4d9d4448ff3b3  numpy-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl
efc81393f25f14d11c9d161e46e6ee348637c0a1e8a54bf9dedc472a3fae993b  numpy-2.3.2-cp313-cp313-macosx_11_0_arm64.whl
dd937f088a2df683cbb79dda9a772b62a3e5a8a7e76690612c2737f38c6ef1b6  numpy-2.3.2-cp313-cp313-macosx_14_0_arm64.whl
11e58218c0c46c80509186e460d79fbdc9ca1eb8d8aee39d8f2dc768eb781089  numpy-2.3.2-cp313-cp313-macosx_14_0_x86_64.whl
5ad4ebcb683a1f99f4f392cc522ee20a18b2bb12a2c1c42c3d48d5a1adc9d3d2  numpy-2.3.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
938065908d1d869c7d75d8ec45f735a034771c6ea07088867f713d1cd3bbbe4f  numpy-2.3.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
66459dccc65d8ec98cc7df61307b64bf9e08101f9598755d42d8ae65d9a7a6ee  numpy-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl
a7af9ed2aa9ec5950daf05bb11abc4076a108bd3c7db9aa7251d5f107079b6a6  numpy-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl
906a30249315f9c8e17b085cc5f87d3f369b35fedd0051d4a84686967bdbbd0b  numpy-2.3.2-cp313-cp313-win32.whl
c63d95dc9d67b676e9108fe0d2182987ccb0f11933c1e8959f42fa0da8d4fa56  numpy-2.3.2-cp313-cp313-win_amd64.whl
b05a89f2fb84d21235f93de47129dd4f11c16f64c87c33f5e284e6a3a54e43f2  numpy-2.3.2-cp313-cp313-win_arm64.whl
4e6ecfeddfa83b02318f4d84acf15fbdbf9ded18e46989a15a8b6995dfbf85ab  numpy-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl
508b0eada3eded10a3b55725b40806a4b855961040180028f52580c4729916a2  numpy-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl
754d6755d9a7588bdc6ac47dc4ee97867271b17cee39cb87aef079574366db0a  numpy-2.3.2-cp313-cp313t-macosx_14_0_arm64.whl
a9f66e7d2b2d7712410d3bc5684149040ef5f19856f20277cd17ea83e5006286  numpy-2.3.2-cp313-cp313t-macosx_14_0_x86_64.whl
de6ea4e5a65d5a90c7d286ddff2b87f3f4ad61faa3db8dabe936b34c2275b6f8  numpy-2.3.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
a3ef07ec8cbc8fc9e369c8dcd52019510c12da4de81367d8b20bc692aa07573a  numpy-2.3.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
27c9f90e7481275c7800dc9c24b7cc40ace3fdb970ae4d21eaff983a32f70c91  numpy-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl
07b62978075b67eee4065b166d000d457c82a1efe726cce608b9db9dd66a73a5  numpy-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl
c771cfac34a4f2c0de8e8c97312d07d64fd8f8ed45bc9f5726a7e947270152b5  numpy-2.3.2-cp313-cp313t-win32.whl
72dbebb2dcc8305c431b2836bcc66af967df91be793d63a24e3d9b741374c450  numpy-2.3.2-cp313-cp313t-win_amd64.whl
72c6df2267e926a6d5286b0a6d556ebe49eae261062059317837fda12ddf0c1a  numpy-2.3.2-cp313-cp313t-win_arm64.whl
448a66d052d0cf14ce9865d159bfc403282c9bc7bb2a31b03cc18b651eca8b1a  numpy-2.3.2-cp314-cp314-macosx_10_13_x86_64.whl
546aaf78e81b4081b2eba1d105c3b34064783027a06b3ab20b6eba21fb64132b  numpy-2.3.2-cp314-cp314-macosx_11_0_arm64.whl
87c930d52f45df092f7578889711a0768094debf73cfcde105e2d66954358125  numpy-2.3.2-cp314-cp314-macosx_14_0_arm64.whl
8dc082ea901a62edb8f59713c6a7e28a85daddcb67454c839de57656478f5b19  numpy-2.3.2-cp314-cp314-macosx_14_0_x86_64.whl
af58de8745f7fa9ca1c0c7c943616c6fe28e75d0c81f5c295810e3c83b5be92f  numpy-2.3.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
fed5527c4cf10f16c6d0b6bee1f89958bccb0ad2522c8cadc2efd318bcd545f5  numpy-2.3.2-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
095737ed986e00393ec18ec0b21b47c22889ae4b0cd2d5e88342e08b01141f58  numpy-2.3.2-cp314-cp314-musllinux_1_2_aarch64.whl
b5e40e80299607f597e1a8a247ff8d71d79c5b52baa11cc1cce30aa92d2da6e0  numpy-2.3.2-cp314-cp314-musllinux_1_2_x86_64.whl
7d6e390423cc1f76e1b8108c9b6889d20a7a1f59d9a60cac4a050fa734d6c1e2  numpy-2.3.2-cp314-cp314-win32.whl
b9d0878b21e3918d76d2209c924ebb272340da1fb51abc00f986c258cd5e957b  numpy-2.3.2-cp314-cp314-win_amd64.whl
2738534837c6a1d0c39340a190177d7d66fdf432894f469728da901f8f6dc910  numpy-2.3.2-cp314-cp314-win_arm64.whl
4d002ecf7c9b53240be3bb69d80f86ddbd34078bae04d87be81c1f58466f264e  numpy-2.3.2-cp314-cp314t-macosx_10_13_x86_64.whl
293b2192c6bcce487dbc6326de5853787f870aeb6c43f8f9c6496db5b1781e45  numpy-2.3.2-cp314-cp314t-macosx_11_0_arm64.whl
0a4f2021a6da53a0d580d6ef5db29947025ae8b35b3250141805ea9a32bbe86b  numpy-2.3.2-cp314-cp314t-macosx_14_0_arm64.whl
9c144440db4bf3bb6372d2c3e49834cc0ff7bb4c24975ab33e01199e645416f2  numpy-2.3.2-cp314-cp314t-macosx_14_0_x86_64.whl
f92d6c2a8535dc4fe4419562294ff957f83a16ebdec66df0805e473ffaad8bd0  numpy-2.3.2-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
cefc2219baa48e468e3db7e706305fcd0c095534a192a08f31e98d83a7d45fb0  numpy-2.3.2-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
76c3e9501ceb50b2ff3824c3589d5d1ab4ac857b0ee3f8f49629d0de55ecf7c2  numpy-2.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl
122bf5ed9a0221b3419672493878ba4967121514b1d7d4656a7580cd11dddcbf  numpy-2.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl
6f1ae3dcb840edccc45af496f312528c15b1f79ac318169d094e85e4bb35fdf1  numpy-2.3.2-cp314-cp314t-win32.whl
087ffc25890d89a43536f75c5fe8770922008758e8eeeef61733957041ed2f9b  numpy-2.3.2-cp314-cp314t-win_amd64.whl
092aeb3449833ea9c0bf0089d70c29ae480685dd2377ec9cdbbb620257f84631  numpy-2.3.2-cp314-cp314t-win_arm64.whl
14a91ebac98813a49bc6aa1a0dfc09513dcec1d97eaf31ca21a87221a1cdcb15  numpy-2.3.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
71669b5daae692189540cffc4c439468d35a3f84f0c88b078ecd94337f6cb0ec  numpy-2.3.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl
69779198d9caee6e547adb933941ed7520f896fd9656834c300bdf4dd8642712  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_arm64.whl
2c3271cc4097beb5a60f010bcc1cc204b300bb3eafb4399376418a83a1c6373c  numpy-2.3.2-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
8446acd11fe3dc1830568c941d44449fd5cb83068e5c70bd5a470d323d448296  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
aa098a5ab53fa407fded5870865c6275a5cd4101cfdef8d6fafc48286a96e981  numpy-2.3.2-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
6936aff90dda378c09bea075af0d9c675fe3a977a9d2402f95a87f440f59f619  numpy-2.3.2-pp311-pypy311_pp73-win_amd64.whl
e0486a11ec30cdecb53f184d496d1c6a20786c81e55e41640270130056f8ee48  numpy-2.3.2.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate-bot renovate-bot force-pushed the renovate/numpy-2.x branch 15 times, most recently from 0688a88 to 82c2204 Compare August 1, 2025 08:35
@renovate-bot renovate-bot force-pushed the renovate/numpy-2.x branch 4 times, most recently from addca33 to 7c011c7 Compare August 3, 2025 14:30
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant