Note: We welcome your contributions for model implementations.
BrainPy-Models
is a repository accompany with BrainPy, which is a framework for spiking neural network simulation. With BrainPy, we implements the most canonical and effective neuron models and synapse models, and show them in BrainPy-Models
.
Here, users can directly import our models into your network, and also can learn examples of how to use BrainPy from Documentations.
We provide the following models:
Install from source code:
python setup.py install
Install BrainPy-Models
using conda
:
conda install -c brainpy bpmodels
Install BrainPy-Models
using pip
:
pip install bpmodels
The following packages need to be installed to use BrainPy-Models
:
- Python >= 3.7
- Matplotlib >= 2.0
- BrainPy >= 0.3.0
The use of bpmodels
is very convenient, let's take an example of the implementation of the E-I balanced network.
We start by importing the brainpy
and bpmodels
packages and set profile.
import brainpy as bp
import bpmodels
import numpy as np
import matplotlib.pyplot as plt
# set profile
bp.profile.set(jit=True, device='cpu',
numerical_method='exponential')
The E-I balanced network is based on leaky Integrate-and-Fire (LIF) neurons connecting with single exponential decay synapses. As showed in the table above, bpmodels
provides pre-defined LIF neuron model and exponential synapse model, so we can use bpmodels.neurons.get_LIF
and bpmodels.synapses.get_exponential
to get the pre-defined models.
V_rest = -52.
V_reset = -60.
V_th = -50.
neu = bpmodels.neurons.get_LIF(V_rest=V_rest, V_reset = V_reset, V_th=V_th, noise=0., mode='scalar')
syn = bpmodels.synapses.get_exponential(tau_decay = 2., mode='scalar')
# build network
num_exc = 500
num_inh = 500
prob = 0.1
JE = 1 / np.sqrt(prob * num_exc)
JI = 1 / np.sqrt(prob * num_inh)
group = bp.NeuGroup(neu, geometry=num_exc + num_inh, monitors=['spike'])
group.ST['V'] = np.random.random(num_exc + num_inh) * (V_th - V_rest) + V_rest
exc_conn = bp.SynConn(syn,
pre_group=group[:num_exc],
post_group=group,
conn=bp.connect.FixedProb(prob=prob))
exc_conn.ST['w'] = JE
inh_conn = bp.SynConn(syn,
pre_group=group[num_exc:],
post_group=group,
conn=bp.connect.FixedProb(prob=prob))
exc_conn.ST['w'] = -JI
net = bp.Network(group, exc_conn, inh_conn)
net.run(duration=500., inputs=(group, 'ST.input', 3.))
# visualization
fig, gs = bp.visualize.get_figure(4, 1, 2, 10)
fig.add_subplot(gs[:3, 0])
bp.visualize.raster_plot(net.ts, group.mon.spike, xlim=(50, 450))
fig.add_subplot(gs[3, 0])
rates = bp.measure.firing_rate(group.mon.spike, 5.)
plt.plot(net.ts, rates)
plt.xlim(50, 450)
plt.show()
Then you would expect to see the following output: