Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions theories/Algebra/AbGroups/AbHom.v
Original file line number Diff line number Diff line change
Expand Up @@ -92,13 +92,13 @@ Defined.
Global Instance is0bifunctor_ab_hom `{Funext}
: Is0Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
Proof.
rapply Build_Is0Bifunctor.
rapply Build_Is0Bifunctor''.
Defined.

Global Instance is1bifunctor_ab_hom `{Funext}
: Is1Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
Proof.
nrapply Build_Is1Bifunctor.
nrapply Build_Is1Bifunctor''.
1,2: exact _.
intros A A' f B B' g phi; cbn.
by apply equiv_path_grouphomomorphism.
Expand Down
8 changes: 4 additions & 4 deletions theories/Algebra/AbSES/BaerSum.v
Original file line number Diff line number Diff line change
Expand Up @@ -54,13 +54,13 @@ Defined.
Global Instance is0bifunctor_abses' `{Univalence}
: Is0Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type).
Proof.
rapply Build_Is0Bifunctor.
rapply Build_Is0Bifunctor''.
Defined.

Global Instance is1bifunctor_abses' `{Univalence}
: Is1Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type).
Proof.
snrapply Build_Is1Bifunctor.
snrapply Build_Is1Bifunctor''.
1,2: exact _.
intros ? ? g ? ? f E; cbn.
exact (abses_pushout_pullback_reorder E f g).
Expand Down Expand Up @@ -232,13 +232,13 @@ Defined.
Global Instance is0bifunctor_abses `{Univalence}
: Is0Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType).
Proof.
rapply Build_Is0Bifunctor.
rapply Build_Is0Bifunctor''.
Defined.

Global Instance is1bifunctor_abses `{Univalence}
: Is1Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType).
Proof.
snrapply Build_Is1Bifunctor.
snrapply Build_Is1Bifunctor''.
1,2: exact _.
intros ? ? f ? ? g.
rapply hspace_phomotopy_from_homotopy.
Expand Down
20 changes: 12 additions & 8 deletions theories/Algebra/AbSES/Ext.v
Original file line number Diff line number Diff line change
Expand Up @@ -63,9 +63,9 @@ Defined.

(** ** The bifunctor [ab_ext] *)

Definition ab_ext `{Univalence} (B A : AbGroup@{u}) : AbGroup.
Definition ab_ext@{u v|u < v} `{Univalence} (B : AbGroup@{u}^op) (A : AbGroup@{u}) : AbGroup@{v}.
Proof.
snrapply (Build_AbGroup (grp_ext B A)).
snrapply (Build_AbGroup (grp_ext@{u v} B A)).
intros E F.
strip_truncations; cbn.
apply ap.
Expand Down Expand Up @@ -121,16 +121,20 @@ Defined.
Global Instance is0bifunctor_abext `{Univalence}
: Is0Bifunctor (A:=AbGroup^op) ab_ext.
Proof.
rapply Build_Is0Bifunctor.
rapply Build_Is0Bifunctor''.
Defined.

Global Instance is1bifunctor_abext `{Univalence}
: Is1Bifunctor (A:=AbGroup^op) ab_ext.
Proof.
snrapply Build_Is1Bifunctor.
snrapply Build_Is1Bifunctor''.
1,2: exact _.
intros A B.
exact (bifunctor_isbifunctor (Ext : AbGroup^op -> AbGroup -> pType)).
intros A B f C D g.
intros x.
strip_truncations; cbn.
pose proof (bifunctor_coh (Ext : AbGroup^op -> AbGroup -> pType) f g (tr x)) as X.
cbn in X.
exact X.
Defined.

(** We can push out a fixed extension while letting the map vary, and this defines a group homomorphism. *)
Expand All @@ -139,10 +143,10 @@ Definition abses_pushout_ext `{Univalence}
: GroupHomomorphism (ab_hom A G) (ab_ext B G).
Proof.
snrapply Build_GroupHomomorphism.
1: exact (fun f => fmap01 (A:=AbGroup^op) Ext' _ f (tr E)).
1: exact (fun f => fmap (Ext' (_ : AbGroup^op)) f (tr E)).
intros f g; cbn.
nrapply (ap tr).
exact (baer_sum_distributive_pushouts f g).
exact (baer_sum_distributive_pushouts (E:=E) f g).
Defined.

(** ** Extensions ending in a projective are trivial *)
Expand Down
3 changes: 2 additions & 1 deletion theories/Algebra/AbSES/SixTerm.v
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,8 @@ Proof.
destruct g as [g k].
exists g.
apply path_sigma_hprop; cbn.
exact k^.
elim k^.
by apply equiv_path_grouphomomorphism.
Defined.

(** *** Exactness of [ab_hom A G -> Ext1 B G -> Ext1 E G]. *)
Expand Down
5 changes: 3 additions & 2 deletions theories/Homotopy/Join/Core.v
Original file line number Diff line number Diff line change
Expand Up @@ -562,7 +562,8 @@ Section FunctorJoin.

Global Instance is0bifunctor_join : Is0Bifunctor Join.
Proof.
rapply Build_Is0Bifunctor'.
snrapply Build_Is0Bifunctor'.
1,2: exact _.
apply Build_Is0Functor.
intros A B [f g].
exact (functor_join f g).
Expand All @@ -571,7 +572,7 @@ Section FunctorJoin.
Global Instance is1bifunctor_join : Is1Bifunctor Join.
Proof.
snrapply Build_Is1Bifunctor'.
nrapply Build_Is1Functor.
snrapply Build_Is1Functor.
- intros A B f g [p q].
exact (functor2_join p q).
- intros A; exact functor_join_idmap.
Expand Down
15 changes: 1 addition & 14 deletions theories/Homotopy/Join/JoinAssoc.v
Original file line number Diff line number Diff line change
Expand Up @@ -266,20 +266,7 @@ Proof.
- intros A B C.
apply join_assoc.
- intros [[A B] C] [[A' B'] C'] [[f g] h]; cbn.
(* This is awkward because Monoidal.v works with a tensor that is separately a functor in each variable. *)
intro x.
rhs_V nrapply functor_join_compose.
rhs_V nrapply functor2_join.
2: reflexivity.
2: nrapply functor_join_compose.
cbn.
rhs_V nrapply join_assoc_nat; cbn.
apply ap.
lhs_V nrapply functor_join_compose.
lhs_V nrapply functor_join_compose.
apply functor2_join.
1: reflexivity.
symmetry; nrapply functor_join_compose.
apply join_assoc_nat.
Defined.

(** ** The Triangle Law *)
Expand Down
3 changes: 2 additions & 1 deletion theories/Homotopy/Smash.v
Original file line number Diff line number Diff line change
Expand Up @@ -353,7 +353,8 @@ Defined.

Global Instance is0bifunctor_smash : Is0Bifunctor Smash.
Proof.
rapply Build_Is0Bifunctor'.
snrapply Build_Is0Bifunctor'.
1,2: exact _.
nrapply Build_Is0Functor.
intros [X Y] [A B] [f g].
exact (functor_smash f g).
Expand Down
Loading