Skip to content

HonzaCuhel/dtu_mlops_code

Repository files navigation

s1_final_exercise

A short description of the project.

Project structure

The directory structure of the project looks like this:

├── Makefile             <- Makefile with convenience commands like `make data` or `make train`
├── README.md            <- The top-level README for developers using this project.
├── data
│   ├── processed        <- The final, canonical data sets for modeling.
│   └── raw              <- The original, immutable data dump.
│
├── docs                 <- Documentation folder
│   │
│   ├── index.md         <- Homepage for your documentation
│   │
│   ├── mkdocs.yml       <- Configuration file for mkdocs
│   │
│   └── source/          <- Source directory for documentation files
│
├── models               <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks            <- Jupyter notebooks.
│
├── pyproject.toml       <- Project configuration file
│
├── reports              <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures          <- Generated graphics and figures to be used in reporting
│
├── requirements.txt     <- The requirements file for reproducing the analysis environment
|
├── requirements_dev.txt <- The requirements file for reproducing the analysis environment
│
├── tests                <- Test files
│
├── s1_final_exercise  <- Source code for use in this project.
│   │
│   ├── __init__.py      <- Makes folder a Python module
│   │
│   ├── data             <- Scripts to download or generate data
│   │   ├── __init__.py
│   │   └── make_dataset.py
│   │
│   ├── models           <- model implementations, training script and prediction script
│   │   ├── __init__.py
│   │   ├── model.py
│   │
│   ├── visualization    <- Scripts to create exploratory and results oriented visualizations
│   │   ├── __init__.py
│   │   └── visualize.py
│   ├── train_model.py   <- script for training the model
│   └── predict_model.py <- script for predicting from a model
│
└── LICENSE              <- Open-source license if one is chosen

Created using mlops_template, a cookiecutter template for getting started with Machine Learning Operations (MLOps).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published