Skip to content

A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks"

License

Notifications You must be signed in to change notification settings

Hukongtao/DCGAN-tensorflow

This branch is 1 commit ahead of, 38 commits behind carpedm20/DCGAN-tensorflow:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

69e3835 · Nov 16, 2017
Aug 13, 2017
Feb 9, 2016
Nov 16, 2017
Jan 13, 2017
Jan 2, 2016
Feb 5, 2016
Apr 26, 2017
Feb 7, 2016
Apr 6, 2017
Sep 6, 2017
Aug 11, 2017
Feb 8, 2017
Nov 14, 2017

Repository files navigation

DCGAN in Tensorflow

Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networks. The referenced torch code can be found here.

alt tag

  • Brandon Amos wrote an excellent blog post and image completion code based on this repo.
  • To avoid the fast convergence of D (discriminator) network, G (generator) network is updated twice for each D network update, which differs from original paper.

Online Demo

link

Prerequisites

Usage

First, download dataset with:

$ python download.py mnist celebA

To train a model with downloaded dataset:

$ python main.py --dataset mnist --input_height=28 --output_height=28 --train
$ python main.py --dataset celebA --input_height=108 --train --crop

To test with an existing model:

$ python main.py --dataset mnist --input_height=28 --output_height=28
$ python main.py --dataset celebA --input_height=108 --crop

Or, you can use your own dataset (without central crop) by:

$ mkdir data/DATASET_NAME
... add images to data/DATASET_NAME ...
$ python main.py --dataset DATASET_NAME --train
$ python main.py --dataset DATASET_NAME
$ # example
$ python main.py --dataset=eyes --input_fname_pattern="*_cropped.png" --train

Results

result

celebA

After 6th epoch:

result3

After 10th epoch:

result4

Asian face dataset

custom_result1

custom_result1

custom_result2

MNIST

MNIST codes are written by @PhoenixDai.

mnist_result1

mnist_result2

mnist_result3

More results can be found here and here.

Training details

Details of the loss of Discriminator and Generator (with custom dataset not celebA).

d_loss

g_loss

Details of the histogram of true and fake result of discriminator (with custom dataset not celebA).

d_hist

d__hist

Related works

Author

Taehoon Kim / @carpedm20

About

A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 51.0%
  • Python 22.9%
  • HTML 15.5%
  • CSS 10.6%