-
Notifications
You must be signed in to change notification settings - Fork 17
HyTruongSon/Neural-Network-MNIST-CPP
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Software: Artificial Neural Network for MNIST database (C++) Author: Hy Truong Son Major: BSc. Computer Science Class: 2013 - 2016 Institution: Eotvos Lorand University Email: [email protected] Website: http://people.inf.elte.hu/hytruongson/ Copyright 2015 (c). All rights reserved. Overall ------- Neural Network implementation in C++ running for MNIST database. Structure --------- File training_nn.cpp: the code for training a neural network File testing_nn.cpp: the code for testing a trained neural network File model-neural-network.dat: contains the weights of the neural network File training-report.dat, testing-report.dat: report files, saving results of training and testing Folder ~/mnist/: MNIST database Note: model-neural-network.dat is the input for teting process (testing_nn.cpp) Usage ----- * Compile: $ g++ training_nn.cpp -o training_nn $ g++ testing_nn.cpp -o testing_nn * Training: $ ./training_nn ************************************************** *** Training Neural Network for MNIST database *** ************************************************** No. input neurons: 784 No. hidden neurons: 128 No. output neurons: 10 No. iterations: 512 Learning rate: 0.001 Momentum: 0.9 Epsilon: 0.001 Training image data: mnist/train-images.idx3-ubyte Training label data: mnist/train-labels.idx1-ubyte No. training sample: 60000 Sample 1 Image: 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000001111111111110000 0000000011111111111111110000 0000000111111111111111100000 0000000111111111110000000000 0000000011111110110000000000 0000000001111100000000000000 0000000000011110000000000000 0000000000011110000000000000 0000000000001111110000000000 0000000000000111111000000000 0000000000000011111100000000 0000000000000001111100000000 0000000000000000011110000000 0000000000000011111110000000 0000000000001111111100000000 0000000000111111111000000000 0000000011111111110000000000 0000001111111111000000000000 0000111111111100000000000000 0000111111110000000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 Label: 5 No. iterations: 512 Error: 0.009284 Sample 2 Image: 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000000001111100000000 0000000000000011111100000000 0000000000000111111111000000 0000000000011111111111000000 0000000000011111111111000000 0000000000111111111111000000 0000000001111111110011100000 0000000011111100000011100000 0000000111111100000011100000 0000000111100000000011100000 0000000111000000000011100000 0000001111000000000011100000 0000001111000000001111100000 0000001110000000011111000000 0000001110000000111100000000 0000001110000001111000000000 0000001111111111111000000000 0000001111111111100000000000 0000001111111110000000000000 0000000111111100000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 0000000000000000000000000000 Label: 0 No. iterations: 512 Error: 0.007427 ... * Testing: $ ./testing_nn ************************************************* *** Testing Neural Network for MNIST database *** ************************************************* No. input neurons: 784 No. hidden neurons: 128 No. output neurons: 10 Testing image data: mnist/t10k-images.idx3-ubyte Testing label data: mnist/t10k-labels.idx1-ubyte No. testing sample: 10000 Sample 1 Error: 0.000000 Classification: YES. Label = 7. Predict = 7 ... Sample 9999 Error: 0.000001 Classification: YES. Label = 5. Predict = 5 Sample 10000 Error: 0.000002 Classification: YES. Label = 6. Predict = 6 Number of correct samples: 9440 / 10000 Accuracy: 94.40
About
Neural Network implementation in C++ running for MNIST database.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published