Implementation tool used in:
@article{yang2020efficient,
title={Efficient video integrity analysis through container characterization},
author={Yang, Pengpeng and Baracchi, Daniele and Iuliani, Massimo and Shullani, Dasara and Ni, Rongrong and Zhao, Yao and Piva, Alessandro},
journal={IEEE Journal of Selected Topics in Signal Processing},
volume={14},
number={5},
pages={947--954},
year={2020},
doi={10.1109/JSTSP.2020.3008088},
publisher={IEEE}
}
- Daniele Baracchi ([email protected])
- Dasara Shullani ([email protected])
Copyright (C) 2021 Università degli studi di Firenze
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.
- tested with Python 3.8.10 and the following packages:
bokeh==2.3
scikit-learn==0.24
xmltodict==0.12
- uncompress
./code/Containers.tar.gz
- run
./code/run_all.sh
cd code
bash run_all.sh
The table results are accessible at the following paths:
-
Table I: results/tampering-detector/no-os/no-lr/non-SN-acc.txt
-
Table III: results/tampering-classifier/no-os/no-lr/non-SN-cm.html
-
Table IV: results/tampering-classifier/os/no-lr/non-SN-cm.html
-
Table VI: results/blind-classifier/os/no-lr/blind-cm.html
-
Table V: run the
get_global_accuracy.py
script as inpython get_global_accuracy.py results/tampering-detector/no-os/no-lr/Facebook.pkl python get_global_accuracy.py results/tampering-detector/no-os/no-lr/Tiktok.pkl python get_global_accuracy.py results/tampering-detector/no-os/no-lr/Weibo.pkl python get_global_accuracy.py results/tampering-detector/no-os/no-lr/Youtube.pkl
NOTE: Be aware that the overall results will need 4.3 GB of storage.