Skip to content

IMOP-lab/StableMVS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StableMVS: Diffusion-Propelled Stable Multi-View Stereo via Epistemic and Morphological Priors for Urban Depth Ambiguity

Anonymous Project Page


Abstract

This repository contains the official implementation of StableMVS, a robust multi-view stereo framework tailored for urban environments, introducing epistemic priors, morphology-guided propagation, and diffusion-based depth refinement to address low-texture, occlusion, and geometric ambiguity.


Highlights

  • Epistemic Priors: Integrates knowledge from large vision models into cost volume construction.
  • Morphological Optimization: Uses structural contours to improve depth smoothness and edge preservation.
  • Diffusion-Driven Learning: Enhances illumination-invariant feature learning via perturbation recovery.

Overview

Overview


Installation

git clone https://anonymous.4open.science/r/StableMVS.git
cd StableMVS
conda create -n stablemvs python=3.10
conda activate stablemvs
pip install -r requirements.txt

Dataset Preparation

Supported datasets:


Inference and Evaluation WHU-OMVS

python test.py 

Training WHU-OMVS

python try.py

Pretrained Models

Results

WHU-O MVS Benchmark Results

Method MAE (m) rMAE (%) RMSE (m) EAcc (m) T1 (%) T3 (%) T6 (%) T10 (%)
CasMVSNet 0.164 0.31 0.479 0.379 58.69 91.04 96.57 97.89
AdaMVS 0.171 0.33 0.416 0.362 52.50 89.07 96.61 98.25
MS-REDNet 0.199 0.37 0.518 0.425 52.26 86.38 94.83 97.20
UCSNet 0.149 0.29 0.440 0.335 59.95 92.59 97.39 98.37
ETNet 0.195 0.37 0.474 0.400 44.21 86.04 96.42 98.02
AggrMVS 0.153 -- -- -- -- -- 97.00 97.96
StableMVS 0.128 0.25 0.342 0.273 62.20 94.00 98.20 98.97

BlendedMVS Benchmark Results

Comparison results of different methods on the BlendedMVS dataset. StableMVS ranks first across all metrics.

Method EPE E1 (%) E3 (%)
MVSNet 1.49 21.98 8.32
CasMVSNet 1.43 19.01 9.77
CVP-MVSNet 1.90 19.73 10.24
Vis-MVSNet 1.47 15.14 5.13
EPP-MVSNet 1.17 12.66 6.20
UCS-MVSNet 1.32 14.12 7.33
TransMVSNet 0.73 8.32 3.62
NR-MVSNet 0.85 8.47 4.01
UniMVSNet 0.62 9.35 3.25
ARAI-MVSNet 0.67 7.91 2.95
StableMVS 0.55 7.66 2.93

More quantitative and qualitative results are available in the paper.


Citation

Note: This work is currently under double-blind peer review. Citation will be updated upon publication.


Contact

For questions during the review process, please raise an issue in this repository or reach out through the anonymous communication channel provided in the supplementary.


About

StableMVS for NIPS 2025

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages