Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove usage of GradedUnitRanges #93

Merged
merged 5 commits into from
Apr 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 2 additions & 7 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "BlockSparseArrays"
uuid = "2c9a651f-6452-4ace-a6ac-809f4280fbb4"
authors = ["ITensor developers <[email protected]> and contributors"]
version = "0.3.9"
version = "0.4.0"

[deps]
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
Expand All @@ -12,7 +12,6 @@ DiagonalArrays = "74fd4be6-21e2-4f6f-823a-4360d37c7a77"
Dictionaries = "85a47980-9c8c-11e8-2b9f-f7ca1fa99fb4"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
GPUArraysCore = "46192b85-c4d5-4398-a991-12ede77f4527"
GradedUnitRanges = "e2de450a-8a67-46c7-b59c-01d5a3d041c5"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
MapBroadcast = "ebd9b9da-f48d-417c-9660-449667d60261"
Expand All @@ -22,11 +21,9 @@ TypeParameterAccessors = "7e5a90cf-f82e-492e-a09b-e3e26432c138"

[weakdeps]
TensorAlgebra = "68bd88dc-f39d-4e12-b2ca-f046b68fcc6a"
TensorProducts = "decf83d6-1968-43f4-96dc-fdb3fe15fc6d"

[extensions]
BlockSparseArraysGradedUnitRangesExt = "GradedUnitRanges"
BlockSparseArraysTensorAlgebraExt = ["TensorProducts", "TensorAlgebra"]
BlockSparseArraysTensorAlgebraExt = "TensorAlgebra"

[compat]
Adapt = "4.1.1"
Expand All @@ -38,14 +35,12 @@ DiagonalArrays = "0.3"
Dictionaries = "0.4.3"
FillArrays = "1.13.0"
GPUArraysCore = "0.1.0, 0.2"
GradedUnitRanges = "0.2.2"
LinearAlgebra = "1.10"
MacroTools = "0.5.13"
MapBroadcast = "0.1.5"
SparseArraysBase = "0.5"
SplitApplyCombine = "1.2.3"
TensorAlgebra = "0.2.4"
TensorProducts = "0.1.2"
Test = "1.10"
TypeParameterAccessors = "0.2.0, 0.3"
julia = "1.10"
Expand Down
2 changes: 1 addition & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,6 @@ Literate = "98b081ad-f1c9-55d3-8b20-4c87d4299306"

[compat]
BlockArrays = "1"
BlockSparseArrays = "0.3"
BlockSparseArrays = "0.4"
Documenter = "1"
Literate = "2"
2 changes: 1 addition & 1 deletion examples/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,5 +5,5 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[compat]
BlockArrays = "1"
BlockSparseArrays = "0.3"
BlockSparseArrays = "0.4"
Test = "1"

This file was deleted.

Original file line number Diff line number Diff line change
@@ -1,10 +1,8 @@
module BlockSparseArraysTensorAlgebraExt
using BlockArrays: AbstractBlockedUnitRange

using TensorAlgebra: TensorAlgebra, FusionStyle, BlockReshapeFusion
using TensorProducts: OneToOne

using BlockArrays: AbstractBlockedUnitRange
using BlockSparseArrays: AbstractBlockSparseArray, blockreshape
using TensorAlgebra: TensorAlgebra, FusionStyle, BlockReshapeFusion

TensorAlgebra.FusionStyle(::AbstractBlockedUnitRange) = BlockReshapeFusion()

Expand All @@ -20,99 +18,4 @@ function TensorAlgebra.splitdims(
return blockreshape(a, axes)
end

using BlockArrays:
AbstractBlockVector,
AbstractBlockedUnitRange,
Block,
BlockIndexRange,
blockedrange,
blocks
using BlockSparseArrays:
BlockSparseArrays,
AbstractBlockSparseArray,
AbstractBlockSparseArrayInterface,
AbstractBlockSparseMatrix,
BlockSparseArray,
BlockSparseArrayInterface,
BlockSparseMatrix,
BlockSparseVector,
block_merge
using DerivableInterfaces: @interface
using GradedUnitRanges:
GradedUnitRanges,
AbstractGradedUnitRange,
blockmergesortperm,
blocksortperm,
dual,
invblockperm,
nondual,
unmerged_tensor_product
using LinearAlgebra: Adjoint, Transpose
using TensorAlgebra:
TensorAlgebra, FusionStyle, BlockReshapeFusion, SectorFusion, fusedims, splitdims

# TODO: Make a `ReduceWhile` library.
include("reducewhile.jl")

TensorAlgebra.FusionStyle(::AbstractGradedUnitRange) = SectorFusion()

# TODO: Need to implement this! Will require implementing
# `block_merge(a::AbstractUnitRange, blockmerger::BlockedUnitRange)`.
function BlockSparseArrays.block_merge(
a::AbstractGradedUnitRange, blockmerger::AbstractBlockedUnitRange
)
return a
end

# Sort the blocks by sector and then merge the common sectors.
function block_mergesort(a::AbstractArray)
I = blockmergesortperm.(axes(a))
return a[I...]
end

function TensorAlgebra.fusedims(
::SectorFusion, a::AbstractArray, merged_axes::AbstractUnitRange...
)
# First perform a fusion using a block reshape.
# TODO avoid groupreducewhile. Require refactor of fusedims.
unmerged_axes = groupreducewhile(
unmerged_tensor_product, axes(a), length(merged_axes); init=OneToOne()
) do i, axis
return length(axis) ≤ length(merged_axes[i])
end

a_reshaped = fusedims(BlockReshapeFusion(), a, unmerged_axes...)
# Sort the blocks by sector and merge the equivalent sectors.
return block_mergesort(a_reshaped)
end

function TensorAlgebra.splitdims(
::SectorFusion, a::AbstractArray, split_axes::AbstractUnitRange...
)
# First, fuse axes to get `blockmergesortperm`.
# Then unpermute the blocks.
axes_prod = groupreducewhile(
unmerged_tensor_product, split_axes, ndims(a); init=OneToOne()
) do i, axis
return length(axis) ≤ length(axes(a, i))
end
blockperms = blocksortperm.(axes_prod)
sorted_axes = map((r, I) -> only(axes(r[I])), axes_prod, blockperms)

# TODO: This is doing extra copies of the blocks,
# use `@view a[axes_prod...]` instead.
# That will require implementing some reindexing logic
# for this combination of slicing.
a_unblocked = a[sorted_axes...]
a_blockpermed = a_unblocked[invblockperm.(blockperms)...]
return splitdims(BlockReshapeFusion(), a_blockpermed, split_axes...)
end

# TODO: Handle this through some kind of trait dispatch, maybe
# a `SymmetryStyle`-like trait to check if the block sparse
# matrix has graded axes.
function Base.axes(a::Adjoint{<:Any,<:AbstractBlockSparseMatrix})
return dual.(reverse(axes(a')))
end

end
34 changes: 0 additions & 34 deletions ext/BlockSparseArraysTensorAlgebraExt/reducewhile.jl

This file was deleted.

1 change: 0 additions & 1 deletion src/BlockArraysExtensions/BlockArraysExtensions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@ using BlockArrays:
findblock,
findblockindex
using Dictionaries: Dictionary, Indices
using GradedUnitRanges: blockedunitrange_getindices, to_blockindices
using SparseArraysBase:
SparseArraysBase,
eachstoredindex,
Expand Down
Loading
Loading