Seoul Tourism Recommendation System using MF & NCF(GMF, MLP, NeuMF without pretraining, NeuMF with pretraining)
This repository contains a demo based on pretrained models.
Train Dataset is private.
├── README.md
├── dataset
│ ├── congestion.pkl
│ ├── destination_id_name_genre_coordinate.pkl
│ └── seoul_gu_dong_coordinate.pkl
├── demo.py
├── main.py
├── data_utils.py
├── evaluate.py
├── parser.py
├── model_visitor
│ ├── Create_userId.py
│ ├── GMF.py
│ ├── MLP.py
│ └── NeuMF.py
├── model_congestion
│ ├── GMF.py
│ └── MF.py
├── pretrain_model
│ ├── GMF.z01 ... GMF.zip
│ ├── MLP.z01 ... MLP.zip
│ └── NeuMF0.z01 ... NeuMF0.zip
├── create_congestion.py
└── csv_to_pickle.py
Python >= 3.7
tokenizers >= 0.9.4
torch >= 1.10.2
konlpy >= 0.6.0
pandas >= 1.3.5
numpy >= 1.21.5
- OS: ubuntu
- IDE: vim
- GPU: NVIDIA RTX A6000
cd pretrain_model
cat GMF.* > pretrain_GMF.zip
unzip pretrain_GMF.zip
cat MLP.* > pretrain_MLP.zip
unzip pretrain_MLP.zip
cat NeuMF0.* > pretrain_NeuMF0.zip
unzip pretrain_NeuMF0.zip
def define_args():
use_pretrain = False
model_name = 'NeuMF' # Choice GMF, MLP, NeuMF
epochs = 10 # Choice 20, 10, 10
num_factors = 36 # Choice 36, 24, 36
return use_pretrain, model_name, epochs, num_factors
python demo.py