Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add script for plotting Figure 3 in the paper #10

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 125 additions & 0 deletions plot_fig3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import sys
import argparse
import numpy as np
import torch
from EigenTrajectory import TrajNorm
from CurveModel import *
from utils import *
import matplotlib.pyplot as plt
import os

# Reproducibility
reproducibility_settings(seed=0)

parser = argparse.ArgumentParser()
parser.add_argument('--obs_len', type=int, default=8)
parser.add_argument('--pred_len', type=int, default=12)


def eval_method(args):
data_set = 'datasets/' + args.dataset + '/'
print('Scene: {}'.format(args.dataset))

args.batch_size = 1e8
loader_test = get_dataloader(data_set, 'train', args.obs_len, args.pred_len, args.batch_size)
# loader_test = get_dataloader(data_set, 'val', args.obs_len, args.pred_len, args.batch_size)
# loader_test = get_dataloader(data_set, 'test', args.obs_len, args.pred_len, args.batch_size)

# Preprocessing
obs_traj = loader_test.dataset.obs_traj
pred_traj = loader_test.dataset.pred_traj

n_ped, t_obs, dim = obs_traj.shape
n_ped, t_pred, dim = pred_traj.shape

# Normalization
traj_norm = TrajNorm(ori=True, rot=True, sca=False)
traj_norm.calculate_params(obs_traj)##计算obs_traj最后一帧的位置和最后两帧所形成的方向

obs_traj_norm = traj_norm.normalize(obs_traj)
pred_traj_norm = traj_norm.normalize(pred_traj)

# Singular Value Decomposition
print('===Singular Value Decomposition===')
A = obs_traj_norm.reshape(n_ped, t_obs * dim).T
B = pred_traj_norm.reshape(n_ped, t_pred * dim).T



U_obs, S_obs, Vt_obs = torch.linalg.svd(A, full_matrices=False)
U_pred, S_pred, Vt_pred = torch.linalg.svd(B, full_matrices=False)


for k in range(6, 7):
# Low-rank approximation
U_obs_trunc = U_obs[:, :k]
U_pred_trunc = U_pred[:, :k]

if os.path.exists('Eigen_fig3')==False:##创建文件夹
os.makedirs('Eigen_fig3')

# Define a list of colors to cycle through
colors = ['blue', 'orange','green','red', 'purple', 'brown']

for i in range(k):## code of Figure 3
xy_u_pred =U_pred_trunc[:, i].numpy().reshape(-1,2)##

# Choose a color for this iteration (cycle through the colors list)
color = colors[i % len(colors)]

# X-Y
plt.figure()
plt.plot(xy_u_pred[:,0], xy_u_pred[:,1], label=f'k={i}', color=color)
plt.xlim(-0.5, 0.5)
plt.ylim(-0.5, 0.5)
plt.legend()
plt.savefig(f'Eigen_fig3/xy_u_pred_{i}.png')
plt.close()

# T-X
plt.figure()
plt.plot(xy_u_pred[:,0], label=f'k={i},x', color=color)
plt.xlim(0, 12)
plt.ylim(-0.5, 0.5)
plt.legend()
plt.savefig(f'Eigen_fig3/x_u_pred_{i}.png')
plt.close()

# T-Y
plt.figure()
plt.plot(xy_u_pred[:,1], label=f'k={i},y', color=color)
plt.xlim(0, 12)
plt.ylim(-0.5, 0.5)
plt.legend()
plt.savefig(f'Eigen_fig3/y_u_pred_{i}.png')
plt.close()



C_obs = U_obs_trunc.T @ A
C_pred = U_pred_trunc.T @ B

A_recon = U_obs_trunc @ C_obs
B_recon = U_pred_trunc @ C_pred


# Denormalization
obs_traj_norm_recon = A_recon.T.reshape(n_ped, t_obs, dim)
pred_traj_norm_recon = B_recon.T.reshape(n_ped, t_pred, dim)
obs_traj_recon = traj_norm.denormalize(obs_traj_norm_recon)
pred_traj_recon = traj_norm.denormalize(pred_traj_norm_recon)

print('k: {}'.format(k), end='\t')
print('num params: {}'.format(k), end='\t')
print('obs error: {:.4f}'.format((obs_traj_recon - obs_traj).norm(p=2, dim=-1).mean().item()), end='\t')
print('pred error: {:.4f}'.format((pred_traj_recon - pred_traj).norm(p=2, dim=-1).mean().item()))


if __name__ == '__main__':
args = parser.parse_args()
# dataset_all = ["eth", "hotel", "univ", "zara1", "zara2"]
dataset_all = ["eth"]

for scene in dataset_all:
args.dataset = scene
eval_method(args)