Skip to content

update test to pass with numpy-2.3 #2477

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jun 14, 2025
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/conda-package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ env:
test-env-name: 'test'
rerun-tests-on-failure: 'true'
rerun-tests-max-attempts: 2
rerun-tests-timeout: 35
rerun-tests-timeout: 40

jobs:
build:
Expand Down
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Fixed

* Fixed a bug for calculating the norm (`dpnp.linalg.norm`) of empty arrays when `keepdims=True` is passed [#2477](https://github.com/IntelPython/dpnp/pull/2477)

## [0.18.0] - 06/04/2025

Expand Down
13 changes: 11 additions & 2 deletions dpnp/linalg/dpnp_utils_linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -1187,7 +1187,11 @@ def _norm_int_axis(x, ord, axis, keepdims):
if ord == dpnp.inf:
if x.shape[axis] == 0:
x = dpnp.moveaxis(x, axis, -1)
return dpnp.zeros_like(x, shape=x.shape[:-1])
res_shape = x.shape[:-1]
result = dpnp.zeros_like(x, shape=res_shape)
if keepdims:
result = result.reshape(res_shape + (1,))
return result
return dpnp.abs(x).max(axis=axis, keepdims=keepdims)
if ord == -dpnp.inf:
return dpnp.abs(x).min(axis=axis, keepdims=keepdims)
Expand Down Expand Up @@ -1222,11 +1226,16 @@ def _norm_tuple_axis(x, ord, row_axis, col_axis, keepdims):

"""

# pylint: disable=too-many-branches
axis = (row_axis, col_axis)
flag = x.shape[row_axis] == 0 or x.shape[col_axis] == 0
if flag and ord in [1, 2, dpnp.inf]:
x = dpnp.moveaxis(x, axis, (-2, -1))
return dpnp.zeros_like(x, shape=x.shape[:-2])
res_shape = x.shape[:-2]
result = dpnp.zeros_like(x, shape=res_shape)
if keepdims:
result = result.reshape(res_shape + (1, 1))
return result
if row_axis == col_axis:
raise ValueError("Duplicate axes given.")
if ord == 2:
Expand Down
14 changes: 8 additions & 6 deletions dpnp/tests/test_linalg.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@
get_integer_float_dtypes,
has_support_aspect64,
is_cpu_device,
is_cuda_device,
numpy_version,
requires_intel_mkl_version,
)
Expand Down Expand Up @@ -2104,11 +2103,14 @@ def test_empty(self, shape, ord, axis, keepdims):
assert_raises(ValueError, dpnp.linalg.norm, ia, **kwarg)
assert_raises(ValueError, numpy.linalg.norm, a, **kwarg)
else:
# TODO: when similar changes in numpy are available, instead
# of assert_equal with zero, we should compare with numpy
# ord in [None, 1, 2]
assert_equal(dpnp.linalg.norm(ia, **kwarg), 0.0)
assert_raises(ValueError, numpy.linalg.norm, a, **kwarg)
if numpy_version() >= "2.3.0":
result = dpnp.linalg.norm(ia, **kwarg)
expected = numpy.linalg.norm(a, **kwarg)
assert_dtype_allclose(result, expected)
else:
assert_equal(
dpnp.linalg.norm(ia, **kwarg), 0.0, strict=False
)
else:
result = dpnp.linalg.norm(ia, **kwarg)
expected = numpy.linalg.norm(a, **kwarg)
Expand Down
6 changes: 4 additions & 2 deletions dpnp/tests/test_product.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,6 @@
assert_dtype_allclose,
generate_random_numpy_array,
get_all_dtypes,
get_complex_dtypes,
is_win_platform,
numpy_version,
)
from .third_party.cupy import testing
Expand Down Expand Up @@ -845,6 +843,8 @@ def test_dtype_matrix(self, dt_in1, dt_in2, dt_out, shape1, shape2):
assert_raises(TypeError, dpnp.matmul, ia, ib, out=iout)
assert_raises(TypeError, numpy.matmul, a, b, out=out)

# TODO: include numpy-2.3 when numpy-issue-29164 is resolved
@testing.with_requires("numpy<2.3")
@pytest.mark.parametrize("dtype", _selected_dtypes)
@pytest.mark.parametrize("order1", ["C", "F", "A"])
@pytest.mark.parametrize("order2", ["C", "F", "A"])
Expand Down Expand Up @@ -882,6 +882,8 @@ def test_order(self, dtype, order1, order2, order, shape1, shape2):
assert result.flags.f_contiguous == expected.flags.f_contiguous
assert_dtype_allclose(result, expected)

# TODO: include numpy-2.3 when numpy-issue-29164 is resolved
@testing.with_requires("numpy<2.3")
@pytest.mark.parametrize("dtype", _selected_dtypes)
@pytest.mark.parametrize(
"stride",
Expand Down
5 changes: 4 additions & 1 deletion dpnp/tests/testing/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,10 @@ def _assert(assert_func, result, expected, *args, **kwargs):
]
# For numpy < 2.0, some tests will fail for dtype mismatch
dev = dpctl.select_default_device()
if numpy.__version__ >= "2.0.0" and dev.has_aspect_fp64:
if (
numpy.lib.NumpyVersion(numpy.__version__) >= "2.0.0"
and dev.has_aspect_fp64
):
strict = kwargs.setdefault("strict", True)
if flag:
if strict:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -340,7 +340,8 @@ def test_unique_inverse(self, xp, dtype, attr):
a = testing.shaped_random((100, 100), xp, dtype)
return getattr(xp.unique_inverse(a), attr)

@testing.with_requires("numpy>=2.0")
# TODO: include numpy-2.3 when dpnp-issue-2476 is addressed
@testing.with_requires("numpy>=2.0", "numpy<2.3")
@testing.for_all_dtypes(no_float16=True, no_bool=True, no_complex=True)
@testing.numpy_cupy_array_equal()
def test_unique_values(self, xp, dtype):
Expand Down
2 changes: 2 additions & 0 deletions dpnp/tests/third_party/cupy/math_tests/test_matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,8 @@ def test_cupy_matmul(self, xp, dtype1, dtype2):
)
class TestMatmulOut(unittest.TestCase):

# TODO: include numpy-2.3 when numpy-issue-29164 is resolved
@testing.with_requires("numpy<2.3")
# no_int8=True is added to avoid overflow
@testing.for_all_dtypes(name="dtype1", no_int8=True)
@testing.for_all_dtypes(name="dtype2", no_int8=True)
Expand Down
Loading