Skip to content

InterDigitalInc/WrappingNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WrappingNet

Implementation of the WrappingNet architecture.
The entire framework is illustrated below.

drawing

Data Preparation

The dataset for WrappingNet should be prepared as follows:

For training

  1. mkdir -p datasets/Manifold40; cd datasets/Manifold40
  2. Download processed.zip from https://aspera.pub/3O5IeFo then move into datasets/Manifold40/
  3. unzip processed.zip, then check the data under datasets/Manifold40/processed/

For evaluation

  1. wget https://cg.cs.tsinghua.edu.cn/dataset/subdivnet/datasets/Manifold40.zip
  2. unzip Manifold40.zip
  3. mv Manifold40 raw then check the data under datasets/Manifold40/raw/

Dependencies

   pytorch
   pytorch-geometric
   pytorch-lightning
   pytorch-scatter
   botorch
   open3d
   numpy

To Run

To use our generalized face convolutions, follow these steps:

  1. Create a python environment with the above dependencies installed
  2. Go to ./nndistance/ and run python build.py install. This will build the faster chamfer distance module.
  3. Run CUDA_VISIBLE_DEVICES={GPU}, bash scripts/LC.sh or CUDA_VISIBLE_DEVICES={GPU}, bash scripts/basesup3.sh to launch a training script.

Citation

Eric Lei, Muhammad Asad Lodhi, Jiahao Pang, Junghyun Ahn, Dong Tian,
"WrappingNet: Mesh Autoencoder via Deep Sphere Deformation",
To Appear in 2024 IEEE International Conference on Image Processing (ICIP).

About

Implementation of the WrappingNet

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published