Skip to content

Added multi-turn VQA script for ShareGPT4V #120

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 124 additions & 0 deletions projects/ShareGPT4V/inference-multi-turn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
import argparse
from io import BytesIO

import requests
import torch
from PIL import Image
from transformers import TextStreamer

from share4v.constants import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
from share4v.conversation import SeparatorStyle, conv_templates
from share4v.mm_utils import (KeywordsStoppingCriteria,
get_model_name_from_path, tokenizer_image_token)
from share4v.model.builder import load_pretrained_model
from share4v.utils import disable_torch_init


def load_image(image_file):
if image_file.startswith('http') or image_file.startswith('https'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image

def eval_model(args):
# Model
disable_torch_init()

model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
args.model_path, args.model_base, model_name)

if 'llama-2' in model_name.lower():
conv_mode = "share4v_llama_2"
elif "v1" in model_name.lower():
conv_mode = "share4v_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "share4v_v0"

if args.conv_mode is not None and conv_mode != args.conv_mode:
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(
conv_mode, args.conv_mode, args.conv_mode))
else:
args.conv_mode = conv_mode

conv = conv_templates[args.conv_mode].copy()

image = load_image(args.image_file)
image_tensor = image_processor.preprocess(image, return_tensors='pt')[
'pixel_values'].half().cuda()

while True:
try:
inp = input(f"{conv.roles[0]}: ")
except EOFError:
inp = ""
if not inp:
print("exit...")
break

print(f"{conv.roles[1]}: ", end="")

if image is not None:
# first message
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
conv.append_message(conv.roles[0], inp)
image = None
else:
# later messages
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

input_ids = tokenizer_image_token(
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(
keywords, tokenizer, input_ids)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
temperature=0.2,
max_new_tokens=1024,
streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria])

input_token_len = input_ids.shape[1]
n_diff_input_output = (
input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(
f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')


outputs = tokenizer.batch_decode(
output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
conv.messages[-1][-1] = outputs
print()


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="Lin-Chen/ShareGPT4V-7B")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-file", type=str, default="https://llava-vl.github.io/static/images/view.jpg")
parser.add_argument("--conv-mode", type=str, default=None)
args = parser.parse_args()
eval_model(args)