🚀 🚀 告别枯燥,60 秒学会一个 Python 小例子 🔥🔥
是的,60 秒学会一个 Python 小例子 🔥🔥
当前库已有🍎🍎 223 🍎🍎个实用的小例子
下载本库所有例子 PDF 版本,请关注 《Python小例子》官方公众号后回复 mypy 🍏 🍏
如果转载本库小例子,请附上例子来源,链接:https://github.com/jackzhenguo/python-small-examples
Python中的三大利器包括:迭代器
,生成器
,装饰器
,利用好它们才能开发出最高性能的Python程序,涉及到的内置模块 itertools
提供迭代器相关的操作。此部分收录有意思的例子共计15
例。
def search_n(s, c, n):
size = 0
for i, x in enumerate(s):
if x == c:
size += 1
if size == n:
return i
return -1
print(search_n("fdasadfadf", "a", 3))# 结果为7,正确
print(search_n("fdasadfadf", "a", 30))# 结果为-1,正确
def fibonacci(n):
a, b = 1, 1
for _ in range(n):
yield a
a, b = b, a + b
list(fibonacci(5)) # [1, 1, 2, 3, 5]
from collections import Counter
def find_all_duplicates(lst):
c = Counter(lst)
return list(filter(lambda k: c[k] > 1, c))
find_all_duplicates([1, 2, 2, 3, 3, 3]) # [2,3]
Counter对象间可以做数学运算
from collections import Counter
a = ['apple', 'orange', 'computer', 'orange']
b = ['computer', 'orange']
ca = Counter(a)
cb = Counter(b)
#Counter对象间可以做数学运算
ca + cb # Counter({'orange': 3, 'computer': 2, 'apple': 1})
# 进一步抽象,实现多个列表内元素的个数统计
def sumc(*c):
if (len(c) < 1):
return
mapc = map(Counter, c)
s = Counter([])
for ic in mapc: # ic 是一个Counter对象
s += ic
return s
#Counter({'orange': 3, 'computer': 3, 'apple': 1, 'abc': 1, 'face': 1})
sumc(a, b, ['abc'], ['face', 'computer'])
天气记录:
a = [{'date': '2019-12-15', 'weather': 'cloud'},
{'date': '2019-12-13', 'weather': 'sunny'},
{'date': '2019-12-14', 'weather': 'cloud'}]
按照天气字段weather
分组汇总:
from itertools import groupby
for k, items in groupby(a,key=lambda x:x['weather']):
print(k)
输出结果看出,分组失败!原因:分组前必须按照分组字段排序
,这个很坑~
cloud
sunny
cloud
修改代码:
a.sort(key=lambda x: x['weather'])
for k, items in groupby(a,key=lambda x:x['weather']):
print(k)
for i in items:
print(i)
输出结果:
cloud
{'date': '2019-12-15', 'weather': 'cloud'}
{'date': '2019-12-14', 'weather': 'cloud'}
sunny
{'date': '2019-12-13', 'weather': 'sunny'}
注意到sort
和groupby
所用的key
函数,除了lambda
写法外,还有一种简写,就是使用itemgetter
:
a = [{'date': '2019-12-15', 'weather': 'cloud'},
{'date': '2019-12-13', 'weather': 'sunny'},
{'date': '2019-12-14', 'weather': 'cloud'}]
from operator import itemgetter
from itertools import groupby
a.sort(key=itemgetter('weather'))
for k, items in groupby(a, key=itemgetter('weather')):
print(k)
for i in items:
print(i)
结果:
cloud
{'date': '2019-12-15', 'weather': 'cloud'}
{'date': '2019-12-14', 'weather': 'cloud'}
sunny
{'date': '2019-12-13', 'weather': 'sunny'}
itemgetter
是一个类,itemgetter('weather')
返回一个可调用的对象,它的参数可有多个:
from operator import itemgetter
from itertools import groupby
a.sort(key=itemgetter('weather', 'date'))
for k, items in groupby(a, key=itemgetter('weather')):
print(k)
for i in items:
print(i)
结果如下,使用weather
和date
两个字段排序a
,
cloud
{'date': '2019-12-14', 'weather': 'cloud'}
{'date': '2019-12-15', 'weather': 'cloud'}
sunny
{'date': '2019-12-13', 'weather': 'sunny'}
注意这个结果与上面结果有些微妙不同,这个更多是我们想看到和使用更多的。
Python中的聚合类函数sum
,min
,max
第一个参数是iterable
类型,一般使用方法如下:
a = [4,2,5,1]
sum([i+1 for i in a]) # 16
使用列表生成式[i+1 for i in a]
创建一个长度与a
一行的临时列表,这步完成后,再做sum
聚合。
试想如果你的数组a
长度十百万级,再创建一个这样的临时列表就很不划算,最好是一边算一边聚合,稍改动为如下:
a = [4,2,5,1]
sum(i+1 for i in a) # 16
此时i+1 for i in a
是(i+1 for i in a)
的简写,得到一个生成器(generator
)对象,如下所示:
In [8]:(i+1 for i in a)
OUT [8]:<generator object <genexpr> at 0x000002AC7FFA8CF0>
生成器每迭代一步吐出(yield
)一个元素并计算和聚合后,进入下一次迭代,直到终点。
from math import ceil
def divide_iter(lst, n):
if n <= 0:
yield lst
return
i, div = 0, ceil(len(lst) / n)
while i < n:
yield lst[i * div: (i + 1) * div]
i += 1
list(divide_iter([1, 2, 3, 4, 5], 0)) # [[1, 2, 3, 4, 5]]
list(divide_iter([1, 2, 3, 4, 5], 2)) # [[1, 2, 3], [4, 5]]
#多层列表展开成单层列表
a=[1,2,[3,4,[5,6],7],8,["python",6],9]
def function(lst):
for i in lst:
if type(i)==list:
yield from function(i)
else:
yield i
print(list(function(a))) # [1, 2, 3, 4, 5, 6, 7, 8, 'python', 6, 9]
#测试函数执行时间的装饰器示例
import time
def timing_func(fn):
def wrapper():
start=time.time()
fn() #执行传入的fn参数
stop=time.time()
return (stop-start)
return wrapper
@timing_func
def test_list_append():
lst=[]
for i in range(0,100000):
lst.append(i)
@timing_func
def test_list_compre():
[i for i in range(0,100000)] #列表生成式
a=test_list_append()
c=test_list_compre()
print("test list append time:",a)
print("test list comprehension time:",c)
print("append/compre:",round(a/c,3))
test list append time: 0.0219423770904541
test list comprehension time: 0.007980823516845703
append/compre: 2.749
写一个装饰器,统计某个异常重复出现指定次数时,经历的时长。
import time
import math
def excepter(f):
i = 0
t1 = time.time()
def wrapper():
try:
f()
except Exception as e:
nonlocal i
i += 1
print(f'{e.args[0]}: {i}')
t2 = time.time()
if i == n:
print(f'spending time:{round(t2-t1,2)}')
return wrapper
关键词nonlocal
常用于函数嵌套中,声明变量i为非局部变量;
如果不声明,i+=1
表明i
为函数wrapper
内的局部变量,因为在i+=1
引用(reference)时,i
未被声明,所以会报unreferenced variable
的错误。
使用创建的装饰函数excepter
, n
是异常出现的次数。
共测试了两类常见的异常:被零除
和数组越界
。
n = 10 # except count
@excepter
def divide_zero_except():
time.sleep(0.1)
j = 1/(40-20*2)
# test zero divived except
for _ in range(n):
divide_zero_except()
@excepter
def outof_range_except():
a = [1,3,5]
time.sleep(0.1)
print(a[3])
# test out of range except
for _ in range(n):
outof_range_except()
打印出来的结果如下:
division by zero: 1
division by zero: 2
division by zero: 3
division by zero: 4
division by zero: 5
division by zero: 6
division by zero: 7
division by zero: 8
division by zero: 9
division by zero: 10
spending time:1.01
list index out of range: 1
list index out of range: 2
list index out of range: 3
list index out of range: 4
list index out of range: 5
list index out of range: 6
list index out of range: 7
list index out of range: 8
list index out of range: 9
list index out of range: 10
spending time:1.01
#测试函数执行时间的装饰器示例
import time
def timing(fn):
def wrapper():
start=time.time()
fn() #执行传入的fn参数
stop=time.time()
return (stop-start)
return wrapper
@timing
def test_list_append():
lst=[]
for i in range(0,100000):
lst.append(i)
@timing
def test_list_compre():
[i for i in range(0,100000)] #列表生成式
a=test_list_append()
c=test_list_compre()
print("test list append time:",a)
print("test list comprehension time:",c)
print("append/compre:",round(a/c,3))
# test list append time: 0.0219
# test list comprehension time: 0.00798
# append/compre: 2.749
再看一个装饰器:
def call_print(f):
def g():
print('you\'re calling %s function'%(f.__name__,))
return g
使用call_print
装饰器:
@call_print
def myfun():
pass
@call_print
def myfun2():
pass
myfun()后返回:
In [27]: myfun()
you're calling myfun function
In [28]: myfun2()
you're calling myfun2 function
使用call_print
你看,@call_print
放置在任何一个新定义的函数上面,都会默认输出一行,你正在调用这个函数的名。
这是为什么呢?注意观察新定义的call_print
函数(加上@后便是装饰器):
def call_print(f):
def g():
print('you\'re calling %s function'%(f.__name__,))
return g
它必须接受一个函数f
,然后返回另外一个函数g
.
装饰器本质
本质上,它与下面的调用方式效果是等效的:
def myfun():
pass
def myfun2():
pass
def call_print(f):
def g():
print('you\'re calling %s function'%(f.__name__,))
return g
下面是最重要的代码:
myfun = call_print(myfun)
myfun2 = call_print(myfun2)
大家看明白吗?也就是call_print(myfun)后不是返回一个函数吗,然后再赋值给myfun.
再次调用myfun, myfun2时,效果是这样的:
In [32]: myfun()
you're calling myfun function
In [33]: myfun2()
you're calling myfun2 function
你看,这与装饰器的实现效果是一模一样的。装饰器的写法可能更加直观些,所以不用显示的这样赋值:myfun = call_print(myfun)
,myfun2 = call_print(myfun2)
,但是装饰器的这种封装,猛一看,有些不好理解。
#编写一个迭代器,通过循环语句,实现对某个正整数的依次递减1,直到0.
class Descend(Iterator):
def __init__(self,N):
self.N=N
self.a=0
def __iter__(self):
return self
def __next__(self):
while self.a<self.N:
self.N-=1
return self.N
raise StopIteration
descend_iter=Descend(10)
print(list(descend_iter))
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
核心要点:
1 __nex__
名字不能变,实现定制的迭代逻辑
2 raise StopIteration
:通过 raise 中断程序,必须这样写