🚀 🚀 告别枯燥,60 秒学会一个 Python 小例子 ,当前库已有 223 个实用的小例子 。下载本库所有例子的 PDF 版本,请关注 《Python小例子》官方公众号后回复 mypy 🍏 🍏
如果转载本库小例子,请附上例子来源,链接:https://github.com/jackzhenguo/python-small-examples
Python基础
主要总结Python常用内置函数;Python独有的语法特性、关键词nonlocal
, global
等;内置数据结构包括:列表(list), 字典(dict), 集合(set), 元组(tuple) 以及相关的高级模块collections
中的Counter
, namedtuple
, defaultdict
,heapq
模块。目前共有90
个小例子。
绝对值或复数的模
>>> abs(-6)
6
接受一个可迭代对象,如果可迭代对象的所有元素都为真,那么返回 True
,否则返回False
有0,所以不是所有元素都为真
>>> all([1,0,3,6])
False
所有元素都为真
>>> all([1,2,3])
True
接受一个可迭代对象,如果可迭代对象里至少有一个元素为真,那么返回True
,否则返回False
没有一个元素为真
>>> any([0,0,0,[]])
False
至少一个元素为真:
>>> any([0,0,1])
True
调用对象的 __repr__
方法,获得该方法的返回值,如下例子返回值为字符串
>>> class Student():
def __init__(self,id,name):
self.id = id
self.name = name
def __repr__(self):
return 'id = '+self.id +', name = '+self.name
调用:
>>> xiaoming = Student(id='1',name='xiaoming')
>>> xiaoming
id = 1, name = xiaoming
>>> ascii(xiaoming)
'id = 1, name = xiaoming'
将十进制转换为二进制:
>>> bin(10)
'0b1010'
十进制转换为八进制:
>>> oct(9)
'0o11'
十进制转换为十六进制:
>>> hex(15)
'0xf'
测试一个对象是True, 还是False.
>>> bool([0,0,0])
True
>>> bool([])
False
>>> bool([1,0,1])
True
字符串转换为字节类型
>>> s = "apple"
>>> bytes(s,encoding='utf-8')
b'apple'
数值型等转换为字符串类型
>>> i = 100
>>> str(i)
'100'
判断对象是否可被调用
In [1]: callable(str)
Out[1]: True
In [2]: callable(int)
Out[2]: True
In [3]: xiaoming
Out[3]: id = 001, name = xiaoming
In [4]: callable(xiaoming)
Out[4]: False
如果想让xiaoming
能被调用 xiaoming(), 需要重写Student
类的__call__
方法:
In [1]: class Student():
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
...: def __call__(self):
...: print('I can be called')
...: print(f'my name is {self.name}')
...:
...:
In [2]: t = Student('001','xiaoming')
In [3]: t()
I can be called
my name is xiaoming
查看十进制整数对应的ASCII字符
In [1]: chr(65)
Out[1]: 'A'
查看某个ASCII字符
对应的十进制数
In [1]: ord('A')
Out[1]: 65
classmethod
装饰器对应的函数不需要实例化,不需要 self
参数,但第一个参数需要是表示自身类的 cls 参数,可以来调用类的属性,类的方法,实例化对象等。
In [1]: class Student():
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
...: @classmethod
...: def f(cls):
...: print(cls)
将字符串编译成python能识别或可执行的代码,也可以将文字读成字符串再编译。
In [1]: s = "print('helloworld')"
In [2]: r = compile(s,"<string>", "exec")
In [3]: r
Out[3]: <code object <module> at 0x0000000005DE75D0, file "<string>", line 1>
In [4]: exec(r)
helloworld
创建一个复数
In [1]: complex(1,2)
Out[1]: (1+2j)
删除对象的属性
In [1]: delattr(xiaoming,'id')
In [2]: hasattr(xiaoming,'id')
Out[2]: False
创建数据字典
In [1]: dict()
Out[1]: {}
In [2]: dict(a='a',b='b')
Out[2]: {'a': 'a', 'b': 'b'}
In [3]: dict(zip(['a','b'],[1,2]))
Out[3]: {'a': 1, 'b': 2}
In [4]: dict([('a',1),('b',2)])
Out[4]: {'a': 1, 'b': 2}
不带参数时返回当前范围
内的变量、方法和定义的类型列表;带参数时返回参数
的属性,方法列表。
In [96]: dir(xiaoming)
Out[96]:
['__class__',
'__delattr__',
'__dict__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__gt__',
'__hash__',
'__init__',
'__init_subclass__',
'__le__',
'__lt__',
'__module__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__setattr__',
'__sizeof__',
'__str__',
'__subclasshook__',
'__weakref__',
'name']
分别取商和余数
In [1]: divmod(10,3)
Out[1]: (3, 1)
返回一个可以枚举的对象,该对象的next()方法将返回一个元组。
In [1]: s = ["a","b","c"]
...: for i ,v in enumerate(s,1):
...: print(i,v)
...:
1 a
2 b
3 c
将字符串str 当成有效的表达式来求值并返回计算结果取出字符串中内容
In [1]: s = "1 + 3 +5"
...: eval(s)
...:
Out[1]: 9
In [1]: import sys
In [2]: a = {'a':1,'b':2.0}
In [3]: sys.getsizeof(a) # 占用240个字节
Out[3]: 240
在函数中设定过滤条件,迭代元素,保留返回值为True
的元素:
In [1]: fil = filter(lambda x: x>10,[1,11,2,45,7,6,13])
In [2]: list(fil)
Out[2]: [11, 45, 13]
将一个整数或数值型字符串转换为浮点数
In [1]: float(3)
Out[1]: 3.0
如果不能转化为浮点数,则会报ValueError
:
In [2]: float('a')
# ValueError: could not convert string to float: 'a'
格式化输出字符串,format(value, format_spec)实质上是调用了value的__format__(format_spec)方法。
In [104]: print("i am {0},age{1}".format("tom",18))
i am tom,age18
3.1415926 | {:.2f} | 3.14 | 保留小数点后两位 |
---|---|---|---|
3.1415926 | {:+.2f} | +3.14 | 带符号保留小数点后两位 |
-1 | {:+.2f} | -1.00 | 带符号保留小数点后两位 |
2.71828 | {:.0f} | 3 | 不带小数 |
5 | {:0>2d} | 05 | 数字补零 (填充左边, 宽度为2) |
5 | {:x<4d} | 5xxx | 数字补x (填充右边, 宽度为4) |
10 | {:x<4d} | 10xx | 数字补x (填充右边, 宽度为4) |
1000000 | {:,} | 1,000,000 | 以逗号分隔的数字格式 |
0.25 | {:.2%} | 25.00% | 百分比格式 |
1000000000 | {:.2e} | 1.00e+09 | 指数记法 |
18 | {:>10d} | ' 18' | 右对齐 (默认, 宽度为10) |
18 | {:<10d} | '18 ' | 左对齐 (宽度为10) |
18 | {:^10d} | ' 18 ' | 中间对齐 (宽度为10) |
创建一个不可修改的集合。
In [1]: frozenset([1,1,3,2,3])
Out[1]: frozenset({1, 2, 3})
因为不可修改,所以没有像set
那样的add
和pop
方法
获取对象的属性
In [1]: class Student():
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: getattr(xiaoming,'name') # 获取xiaoming这个实例的name属性值
Out[3]: 'xiaoming'
In [1]: class Student():
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: hasattr(xiaoming,'name')
Out[3]: True
In [4]: hasattr(xiaoming,'address')
Out[4]: False
返回对象的哈希值,值得注意的是自定义的实例都是可哈希的,list
, dict
, set
等可变对象都是不可哈希的(unhashable)
In [1]: hash(xiaoming)
Out[1]: 6139638
In [2]: hash([1,2,3])
# TypeError: unhashable type: 'list'
返回对象的帮助文档
In [1]: help(xiaoming)
Help on Student in module __main__ object:
class Student(builtins.object)
| Methods defined here:
|
| __init__(self, id, name)
|
| __repr__(self)
|
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
返回对象的内存地址
In [1]: id(xiaoming)
Out[1]: 98234208
获取用户输入内容
In [1]: input()
aa
Out[1]: 'aa'
int(x, base =10) , x可能为字符串或数值,将x 转换为一个普通整数。如果参数是字符串,那么它可能包含符号和小数点。如果超出了普通整数的表示范围,一个长整数被返回。
In [1]: int('12',16)
Out[1]: 18
判断object是否为类classinfo的实例,是返回true
In [1]: class Student():
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: isinstance(xiaoming,Student)
Out[3]: True
In [1]: class undergraduate(Student):
...: def studyClass(self):
...: pass
...: def attendActivity(self):
...: pass
In [2]: issubclass(undergraduate,Student)
Out[2]: True
In [3]: issubclass(object,Student)
Out[3]: False
In [4]: issubclass(Student,object)
Out[4]: True
如果class是classinfo元组中某个元素的子类,也会返回True
In [1]: issubclass(int,(int,float))
Out[1]: True
使用iter(obj, sentinel)
, 返回一个可迭代对象, sentinel可省略(一旦迭代到此元素,立即终止)
In [1]: lst = [1,3,5]
In [2]: for i in iter(lst):
...: print(i)
...:
1
3
5
In [1]: class TestIter(object):
...: def __init__(self):
...: self.l=[1,3,2,3,4,5]
...: self.i=iter(self.l)
...: def __call__(self): #定义了__call__方法的类的实例是可调用的
...: item = next(self.i)
...: print ("__call__ is called,fowhich would return",item)
...: return item
...: def __iter__(self): #支持迭代协议(即定义有__iter__()函数)
...: print ("__iter__ is called!!")
...: return iter(self.l)
In [2]: t = TestIter()
In [3]: t() # 因为实现了__call__,所以t实例能被调用
__call__ is called,which would return 1
Out[3]: 1
In [4]: for e in TestIter(): # 因为实现了__iter__方法,所以t能被迭代
...: print(e)
...:
__iter__ is called!!
1
3
2
3
4
5
object 是所有类的基类
In [1]: o = object()
In [2]: type(o)
Out[2]: object
返回文件对象
In [1]: fo = open('D:/a.txt',mode='r', encoding='utf-8')
In [2]: fo.read()
Out[2]: '\ufefflife is not so long,\nI use Python to play.'
mode取值表:
字符 | 意义 |
---|---|
'r' |
读取(默认) |
'w' |
写入,并先截断文件 |
'x' |
排它性创建,如果文件已存在则失败 |
'a' |
写入,如果文件存在则在末尾追加 |
'b' |
二进制模式 |
't' |
文本模式(默认) |
'+' |
打开用于更新(读取与写入) |
base为底的exp次幂,如果mod给出,取余
In [1]: pow(3, 2, 4)
Out[1]: 1
In [5]: lst = [1,3,5]
In [6]: print(lst)
[1, 3, 5]
In [7]: print(f'lst: {lst}')
lst: [1, 3, 5]
In [8]: print('lst:{}'.format(lst))
lst:[1, 3, 5]
In [9]: print('lst:',lst)
lst: [1, 3, 5]
返回 property 属性,典型的用法:
class C:
def __init__(self):
self._x = None
def getx(self):
return self._x
def setx(self, value):
self._x = value
def delx(self):
del self._x
# 使用property类创建 property 属性
x = property(getx, setx, delx, "I'm the 'x' property.")
使用python装饰器,实现与上完全一样的效果代码:
class C:
def __init__(self):
self._x = None
@property
def x(self):
return self._x
@x.setter
def x(self, value):
self._x = value
@x.deleter
def x(self):
del self._x
- range(stop)
- range(start, stop[,step])
生成一个不可变序列:
In [1]: range(11)
Out[1]: range(0, 11)
In [2]: range(0,11,1)
Out[2]: range(0, 11)
In [1]: rev = reversed([1,4,2,3,1])
In [2]: for i in rev:
...: print(i)
...:
1
3
2
4
1
四舍五入,ndigits
代表小数点后保留几位:
In [11]: round(10.0222222, 3)
Out[11]: 10.022
In [12]: round(10.05,1)
Out[12]: 10.1
返回一个set对象,集合内不允许有重复元素:
In [159]: a = [1,4,2,3,1]
In [160]: set(a)
Out[160]: {1, 2, 3, 4}
class slice(start, stop[, step])
返回一个表示由 range(start, stop, step) 所指定索引集的 slice对象,它让代码可读性、可维护性变好。
In [1]: a = [1,4,2,3,1]
In [2]: my_slice_meaning = slice(0,5,2)
In [3]: a[my_slice_meaning]
Out[3]: [1, 2, 1]
排序:
In [1]: a = [1,4,2,3,1]
In [2]: sorted(a,reverse=True)
Out[2]: [4, 3, 2, 1, 1]
In [3]: a = [{'name':'xiaoming','age':18,'gender':'male'},{'name':'
...: xiaohong','age':20,'gender':'female'}]
In [4]: sorted(a,key=lambda x: x['age'],reverse=False)
Out[4]:
[{'name': 'xiaoming', 'age': 18, 'gender': 'male'},
{'name': 'xiaohong', 'age': 20, 'gender': 'female'}]
####49 求和函数
求和:
In [181]: a = [1,4,2,3,1]
In [182]: sum(a)
Out[182]: 11
In [185]: sum(a,10) #求和的初始值为10
Out[185]: 21
tuple()
将对象转为一个不可变的序列类型
In [16]: i_am_list = [1,3,5]
In [17]: i_am_tuple = tuple(i_am_list)
In [18]: i_am_tuple
Out[18]: (1, 3, 5)
class type
(name, bases, dict)
传入一个参数时,返回 object 的类型:
In [1]: class Student():
...: def __init__(self,id,name):
...: self.id = id
...: self.name = name
...: def __repr__(self):
...: return 'id = '+self.id +', name = '+self.name
...:
...:
In [2]: xiaoming = Student(id='001',name='xiaoming')
In [3]: type(xiaoming)
Out[3]: __main__.Student
In [4]: type(tuple())
Out[4]: tuple
创建一个聚合了来自每个可迭代对象中的元素的迭代器:
In [1]: x = [3,2,1]
In [2]: y = [4,5,6]
In [3]: list(zip(y,x))
Out[3]: [(4, 3), (5, 2), (6, 1)]
In [4]: a = range(5)
In [5]: b = list('abcde')
In [6]: b
Out[6]: ['a', 'b', 'c', 'd', 'e']
In [7]: [str(y) + str(x) for x,y in zip(a,b)]
Out[7]: ['a0', 'b1', 'c2', 'd3', 'e4']
关键词nonlocal
常用于函数嵌套中,声明变量i
为非局部变量;
如果不声明,i+=1
表明i
为函数wrapper
内的局部变量,因为在i+=1
引用(reference)时,i未被声明,所以会报unreferenced variable
的错误。
def excepter(f):
i = 0
t1 = time.time()
def wrapper():
try:
f()
except Exception as e:
nonlocal i
i += 1
print(f'{e.args[0]}: {i}')
t2 = time.time()
if i == n:
print(f'spending time:{round(t2-t1,2)}')
return wrapper
先回答为什么要有global
,一个变量被多个函数引用,想让全局变量被所有函数共享。有的伙伴可能会想这还不简单,这样写:
i = 5
def f():
print(i)
def g():
print(i)
pass
f()
g()
f和g两个函数都能共享变量i
,程序没有报错,所以他们依然不明白为什么要用global
.
但是,如果我想要有个函数对i
递增,这样:
def h():
i += 1
h()
此时执行程序,bang, 出错了! 抛出异常:UnboundLocalError
,原来编译器在解释i+=1
时会把i
解析为函数h()
内的局部变量,很显然在此函数内,编译器找不到对变量i
的定义,所以会报错。
global
就是为解决此问题而被提出,在函数h内,显示地告诉编译器i
为全局变量,然后编译器会在函数外面寻找i
的定义,执行完i+=1
后,i
还为全局变量,值加1:
i = 0
def h():
global i
i += 1
h()
print(i)
i = 3
print(1 < i < 3) # False
print(1 < i <= 3) # True
from operator import *
def calculator(a, b, k):
return {
'+': add,
'-': sub,
'*': mul,
'/': truediv,
'**': pow
}[k](a, b)
calculator(1, 2, '+') # 3
calculator(3, 4, '**') # 81
from operator import (add, sub)
def add_or_sub(a, b, oper):
return (add if oper == '+' else sub)(a, b)
add_or_sub(1, 2, '-') # -1
def swap(a, b):
return b, a
print(swap(1, 0)) # (0,1)
def score_mean(lst):
lst.sort()
lst2=lst[1:(len(lst)-1)]
return round((sum(lst2)/len(lst2)),1)
lst=[9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]
score_mean(lst) # 9.1
打印出如下格式的乘法表
1*1=1
1*2=2 2*2=4
1*3=3 2*3=6 3*3=9
1*4=4 2*4=8 3*4=12 4*4=16
1*5=5 2*5=10 3*5=15 4*5=20 5*5=25
1*6=6 2*6=12 3*6=18 4*6=24 5*6=30 6*6=36
1*7=7 2*7=14 3*7=21 4*7=28 5*7=35 6*7=42 7*7=49
1*8=8 2*8=16 3*8=24 4*8=32 5*8=40 6*8=48 7*8=56 8*8=64
1*9=9 2*9=18 3*9=27 4*9=36 5*9=45 6*9=54 7*9=63 8*9=72 9*9=81
一共有10 行,第i
行的第j
列等于:j*i
,
其中,
i
取值范围:1<=i<=9
j
取值范围:1<=j<=i
根据例子分析
的语言描述,转化为如下代码:
for i in range(1,10):
...: for j in range(1,i+1):
...: print('%d*%d=%d'%(j,i,j*i),end="\t")
...: print()
对于如下数组:
[[[1,2,3],[4,5]]]
如何完全展开成一维的。这个小例子实现的flatten
是递归版,两个参数分别表示带展开的数组,输出数组。
from collections.abc import *
def flatten(lst, out_lst=None):
if out_lst is None:
out_lst = []
for i in lst:
if isinstance(i, Iterable): # 判断i是否可迭代
flatten(i, out_lst) # 尾数递归
else:
out_lst.append(i) # 产生结果
return out_lst
调用flatten
:
print(flatten([[1,2,3],[4,5]]))
print(flatten([[1,2,3],[4,5]], [6,7]))
print(flatten([[[1,2,3],[4,5,6]]]))
# 结果:
[1, 2, 3, 4, 5]
[6, 7, 1, 2, 3, 4, 5]
[1, 2, 3, 4, 5, 6]
numpy里的flatten
与上面的函数实现有些微妙的不同:
import numpy
b = numpy.array([[1,2,3],[4,5]])
b.flatten()
array([list([1, 2, 3]), list([4, 5])], dtype=object)
from math import ceil
def divide(lst, size):
if size <= 0:
return [lst]
return [lst[i * size:(i+1)*size] for i in range(0, ceil(len(lst) / size))]
r = divide([1, 3, 5, 7, 9], 2)
print(r) # [[1, 3], [5, 7], [9]]
r = divide([1, 3, 5, 7, 9], 0)
print(r) # [[1, 3, 5, 7, 9]]
r = divide([1, 3, 5, 7, 9], -3)
print(r) # [[1, 3, 5, 7, 9]]
def filter_false(lst):
return list(filter(bool, lst))
r = filter_false([None, 0, False, '', [], 'ok', [1, 2]])
print(r) # ['ok', [1, 2]]
def max_length(*lst):
return max(*lst, key=lambda v: len(v))
r = max_length([1, 2, 3], [4, 5, 6, 7], [8])
print(f'更长的列表是{r}') # [4, 5, 6, 7]
r = max_length([1, 2, 3], [4, 5, 6, 7], [8, 9])
print(f'更长的列表是{r}') # [4, 5, 6, 7]
def top1(lst):
return max(lst, default='列表为空', key=lambda v: lst.count(v))
lst = [1, 3, 3, 2, 1, 1, 2]
r = top1(lst)
print(f'{lst}中出现次数最多的元素为:{r}') # [1, 3, 3, 2, 1, 1, 2]中出现次数最多的元素为:1
def max_lists(*lst):
return max(max(*lst, key=lambda v: max(v)))
r = max_lists([1, 2, 3], [6, 7, 8], [4, 5])
print(r) # 8
def has_duplicates(lst):
return len(lst) == len(set(lst))
x = [1, 1, 2, 2, 3, 2, 3, 4, 5, 6]
y = [1, 2, 3, 4, 5]
has_duplicates(x) # False
has_duplicates(y) # True
def reverse(lst):
return lst[::-1]
r = reverse([1, -2, 3, 4, 1, 2])
print(r) # [2, 1, 4, 3, -2, 1]
def rang(start, stop, n):
start,stop,n = float('%.2f' % start), float('%.2f' % stop),int('%.d' % n)
step = (stop-start)/n
lst = [start]
while n > 0:
start,n = start+step,n-1
lst.append(round((start), 2))
return lst
rang(1, 8, 10) # [1.0, 1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0]
def bif_by(lst, f):
return [ [x for x in lst if f(x)],[x for x in lst if not f(x)]]
records = [25,89,31,34]
bif_by(records, lambda x: x<80) # [[25, 31, 34], [89]]
#多序列运算函数—map(function,iterabel,iterable2)
lst1=[1,2,3,4,5,6]
lst2=[3,4,5,6,3,2]
list(map(lambda x,y:x*y+1,lst1,lst2))
### [4, 9, 16, 25, 16, 13]
def max_pairs(dic):
if len(dic) == 0:
return dic
max_val = max(map(lambda v: v[1], dic.items()))
return [item for item in dic.items() if item[1] == max_val]
r = max_pairs({'a': -10, 'b': 5, 'c': 3, 'd': 5})
print(r) # [('b', 5), ('d', 5)]
def merge_dict(dic1, dic2):
return {**dic1, **dic2} # python3.5后支持的一行代码实现合并字典
merge_dict({'a': 1, 'b': 2}, {'c': 3}) # {'a': 1, 'b': 2, 'c': 3}
from heapq import nlargest
# 返回字典d前n个最大值对应的键
def topn_dict(d, n):
return nlargest(n, d, key=lambda k: d[k])
topn_dict({'a': 10, 'b': 8, 'c': 9, 'd': 10}, 3) # ['a', 'd', 'c']
from collections import Counter
# 检查两个字符串是否 相同字母异序词,简称:互为变位词
def anagram(str1, str2):
return Counter(str1) == Counter(str2)
anagram('eleven+two', 'twelve+one') # True 这是一对神器的变位词
anagram('eleven', 'twelve') # False
(1) 两种合并字典方法 这是一般的字典合并写法
dic1 = {'x': 1, 'y': 2 }
dic2 = {'y': 3, 'z': 4 }
merged1 = {**dic1, **dic2} # {'x': 1, 'y': 3, 'z': 4}
修改merged['x']=10,dic1中的x值不变
,merged
是重新生成的一个新字典
。
但是,ChainMap
却不同,它在内部创建了一个容纳这些字典的列表。因此使用ChainMap合并字典,修改merged['x']=10后,dic1中的x值改变
,如下所示:
from collections import ChainMap
merged2 = ChainMap(dic1,dic2)
print(merged2) # ChainMap({'x': 1, 'y': 2}, {'y': 3, 'z': 4})
from collections import namedtuple
Point = namedtuple('Point', ['x', 'y', 'z']) # 定义名字为Point的元祖,字段属性有x,y,z
lst = [Point(1.5, 2, 3.0), Point(-0.3, -1.0, 2.1), Point(1.3, 2.8, -2.5)]
print(lst[0].y - lst[1].y)
使用命名元组写出来的代码可读性更好,尤其处理上百上千个属性时作用更加凸显。
使用sample
抽样,如下例子从100个样本中随机抽样10个。
from random import randint,sample
lst = [randint(0,50) for _ in range(100)]
print(lst[:5])# [38, 19, 11, 3, 6]
lst_sample = sample(lst,10)
print(lst_sample) # [33, 40, 35, 49, 24, 15, 48, 29, 37, 24]
使用shuffle
用来重洗数据集,值得注意shuffle
是对lst就地(in place)洗牌,节省存储空间
from random import shuffle
lst = [randint(0,50) for _ in range(100)]
shuffle(lst)
print(lst[:5]) # [50, 3, 48, 1, 26]
random模块中的uniform(a,b)
生成[a,b)内的一个随机数,如下生成10个均匀分布的二维坐标点
from random import uniform
In [1]: [(uniform(0,10),uniform(0,10)) for _ in range(10)]
Out[1]:
[(9.244361194237328, 7.684326645514235),
(8.129267671737324, 9.988395854203773),
(9.505278771040661, 2.8650440524834107),
(3.84320100484284, 1.7687190176304601),
(6.095385729409376, 2.377133802224657),
(8.522913365698605, 3.2395995841267844),
(8.827829601859406, 3.9298809217233766),
(1.4749644859469302, 8.038753079253127),
(9.005430657826324, 7.58011186920019),
(8.700789540392917, 1.2217577293254112)]
random模块中的gauss(u,sigma)
生成均值为u, 标准差为sigma的满足高斯分布的值,如下生成10个二维坐标点,样本误差(y-2*x-1)满足均值为0,标准差为1的高斯分布:
from random import gauss
x = range(10)
y = [2*xi+1+gauss(0,1) for xi in x]
points = list(zip(x,y))
### 10个二维点:
[(0, -0.86789025305992),
(1, 4.738439437453464),
(2, 5.190278040856102),
(3, 8.05270893133576),
(4, 9.979481700775292),
(5, 11.960781766216384),
(6, 13.025427054303737),
(7, 14.02384035204836),
(8, 15.33755823101161),
(9, 17.565074449028497)]
chain
函数串联a和b,兼顾内存效率同时写法更加优雅。
from itertools import chain
a = [1,3,5,0]
b = (2,4,6)
for i in chain(a,b):
print(i)
### 结果
1
3
5
0
2
4
6
In [31]: def f():
...: print('i\'m f')
...:
In [32]: def g():
...: print('i\'m g')
...:
In [33]: [f,g][1]()
i'm g
创建函数对象的list,根据想要调用的index,方便统一调用。
list(range(10,-1,-1)) # [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
第三个参数为负时,表示从第一个参数开始递减,终止到第二个参数(不包括此边界)
python五类参数:位置参数,关键字参数,默认参数,可变位置或关键字参数的使用。
def f(a,*b,c=10,**d):
print(f'a:{a},b:{b},c:{c},d:{d}')
默认参数c
不能位于可变关键字参数d
后.
调用f:
In [10]: f(1,2,5,width=10,height=20)
a:1,b:(2, 5),c:10,d:{'width': 10, 'height': 20}
可变位置参数b
实参后被解析为元组(2,5)
;而c取得默认值10; d被解析为字典.
再次调用f:
In [11]: f(a=1,c=12)
a:1,b:(),c:12,d:{}
a=1传入时a就是关键字参数,b,d都未传值,c被传入12,而非默认值。
注意观察参数a
, 既可以f(1)
,也可以f(a=1)
其可读性比第一种更好,建议使用f(a=1)。如果要强制使用f(a=1)
,需要在前面添加一个星号:
def f(*,a,**b):
print(f'a:{a},b:{b}')
此时f(1)调用,将会报错:TypeError: f() takes 0 positional arguments but 1 was given
只能f(a=1)
才能OK.
说明前面的*
发挥作用,它变为只能传入关键字参数,那么如何查看这个参数的类型呢?借助python的inspect
模块:
In [22]: for name,val in signature(f).parameters.items():
...: print(name,val.kind)
...:
a KEYWORD_ONLY
b VAR_KEYWORD
可看到参数a
的类型为KEYWORD_ONLY
,也就是仅仅为关键字参数。
但是,如果f定义为:
def f(a,*b):
print(f'a:{a},b:{b}')
查看参数类型:
In [24]: for name,val in signature(f).parameters.items():
...: print(name,val.kind)
...:
a POSITIONAL_OR_KEYWORD
b VAR_POSITIONAL
可以看到参数a
既可以是位置参数也可是关键字参数。
生成关于蛋糕的序列cake1:
In [1]: cake1 = list(range(5,0,-1))
In [2]: b = cake1[1:10:2]
In [3]: b
Out[3]: [4, 2]
In [4]: cake1
Out[4]: [5, 4, 3, 2, 1]
再生成一个序列:
In [5]: from random import randint
...: cake2 = [randint(1,100) for _ in range(100)]
...: # 同样以间隔为2切前10个元素,得到切片d
...: d = cake2[1:10:2]
In [6]: d
Out[6]: [75, 33, 63, 93, 15]
你看,我们使用同一种切法,分别切开两个蛋糕cake1,cake2. 后来发现这种切法极为经典
,又拿它去切更多的容器对象。
那么,为什么不把这种切法封装为一个对象呢?于是就有了slice对象。
定义slice对象极为简单,如把上面的切法定义成slice对象:
perfect_cake_slice_way = slice(1,10,2)
#去切cake1
cake1_slice = cake1[perfect_cake_slice_way]
cake2_slice = cake2[perfect_cake_slice_way]
In [11]: cake1_slice
Out[11]: [4, 2]
In [12]: cake2_slice
Out[12]: [75, 33, 63, 93, 15]
与上面的结果一致。
对于逆向序列切片,slice
对象一样可行:
a = [1,3,5,7,9,0,3,5,7]
a_ = a[5:1:-1]
named_slice = slice(5,1,-1)
a_slice = a[named_slice]
In [14]: a_
Out[14]: [0, 9, 7, 5]
In [15]: a_slice
Out[15]: [0, 9, 7, 5]
频繁使用同一切片的操作可使用slice对象抽出来,复用的同时还能提高代码可读性。
有些读者反映,lambda
函数不太会用,问我能不能解释一下。
比如,下面求这个 lambda
函数:
def max_len(*lists):
return max(*lists, key=lambda v: len(v))
有两点疑惑:
- 参数
v
的取值? lambda
函数有返回值吗?如果有,返回值是多少?
调用上面函数,求出以下三个最长的列表:
r = max_len([1, 2, 3], [4, 5, 6, 7], [8])
print(f'更长的列表是{r}')
程序完整运行过程,动画演示如下:
结论:
-
参数v的可能取值为
*lists
,也就是tuple
的一个元素。 -
lambda
函数返回值,等于lambda v
冒号后表达式的返回值。
7 行代码够烧脑,不信试试~~
def product(*args, repeat=1):
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
调用函数:
rtn = product('xyz', '12', repeat=3)
print(list(rtn))
快去手动敲敲,看看输出啥吧~~
xiaoming
, xiaohong
, xiaozhang
都是学生,这类群体叫做 Student
.
Python 定义类的常见方法,使用关键字 class
In [36]: class Student(object):
...: pass
xiaoming
, xiaohong
, xiaozhang
是类的实例,则:
xiaoming = Student()
xiaohong = Student()
xiaozhang = Student()
创建后,xiaoming 的 __class__
属性,返回的便是 Student
类
In [38]: xiaoming.__class__
Out[38]: __main__.Student
问题在于,Student
类有 __class__
属性,如果有,返回的又是什么?
In [39]: xiaoming.__class__.__class__
Out[39]: type
哇,程序没报错,返回 type
那么,我们不妨猜测:Student
类,类型就是 type
换句话说,Student
类就是一个对象,它的类型就是 type
所以,Python 中一切皆对象,类也是对象
Python 中,将描述 Student
类的类被称为:元类。
按照此逻辑延伸,描述元类的类被称为:元元类,开玩笑了~ 描述元类的类也被称为元类。
聪明的朋友会问了,既然 Student
类可创建实例,那么 type
类可创建实例吗? 如果能,它创建的实例就叫:类 了。 你们真聪明!
说对了,type
类一定能创建实例,比如 Student
类了。
In [40]: Student = type('Student',(),{})
In [41]: Student
Out[41]: __main__.Student
它与使用 class
关键字创建的 Student
类一模一样。
Python 的类,因为又是对象,所以和 xiaoming
,xiaohong
对象操作相似。支持:
- 赋值
- 拷贝
- 添加属性
- 作为函数参数
In [43]: StudentMirror = Student # 类直接赋值 # 类直接赋值
In [44]: Student.class_property = 'class_property' # 添加类属性
In [46]: hasattr(Student, 'class_property')
Out[46]: True
元类,确实使用不是那么多,也许先了解这些,就能应付一些场合。就连 Python 界的领袖 Tim Peters
都说:
“元类就是深度的魔法,99%的用户应该根本不必为此操心。”
对象序列化,是指将内存中的对象转化为可存储或传输的过程。很多场景,直接一个类对象,传输不方便。
但是,当对象序列化后,就会更加方便,因为约定俗成的,接口间的调用或者发起的 web 请求,一般使用 json 串传输。
实际使用中,一般对类对象序列化。先创建一个 Student 类型,并创建两个实例。
class Student():
def __init__(self,**args):
self.ids = args['ids']
self.name = args['name']
self.address = args['address']
xiaoming = Student(ids = 1,name = 'xiaoming',address = '北京')
xiaohong = Student(ids = 2,name = 'xiaohong',address = '南京')
导入 json 模块,调用 dump 方法,就会将列表对象 [xiaoming,xiaohong],序列化到文件 json.txt 中。
import json
with open('json.txt', 'w') as f:
json.dump([xiaoming,xiaohong], f, default=lambda obj: obj.__dict__, ensure_ascii=False, indent=2, sort_keys=True)
生成的文件内容,如下:
[
{
"address": "北京",
"ids": 1,
"name": "xiaoming"
},
{
"address": "南京",
"ids": 2,
"name": "xiaohong"
}
]
字符串无所不在,字符串的处理也是最常见的操作。本章节将总结和字符串处理相关的一切操作。主要包括基本的字符串操作;高级字符串操作之正则。目前共有25
个小例子
st="python"
#方法1
''.join(reversed(st))
#方法2
st[::-1]
字符串切片操作——查找替换3或5的倍数
In [1]:[str("java"[i%3*4:]+"python"[i%5*6:] or i) for i in range(1,15)]
OUT[1]:['1',
'2',
'java',
'4',
'python',
'java',
'7',
'8',
'java',
'python',
'11',
'java',
'13',
'14']
In [4]: mystr = ['1',
...: '2',
...: 'java',
...: '4',
...: 'python',
...: 'java',
...: '7',
...: '8',
...: 'java',
...: 'python',
...: '11',
...: 'java',
...: '13',
...: '14']
In [5]: ','.join(mystr) #用逗号连接字符串
Out[5]: '1,2,java,4,python,java,7,8,java,python,11,java,13,14'
def str_byte_len(mystr):
return (len(mystr.encode('utf-8')))
str_byte_len('i love python') # 13(个字节)
str_byte_len('字符') # 6(个字节)
以下是正则部分
import re
s = 'i love python very much'
pat = 'python'
r = re.search(pat,s)
print(r.span()) #(7,13)
s = '山东省潍坊市青州第1中学高三1班'
pat = '1'
r = re.finditer(pat,s)
for i in r:
print(i)
# <re.Match object; span=(9, 10), match='1'>
# <re.Match object; span=(14, 15), match='1'>
findall找出全部位置的所有匹配
s = '一共20行代码运行时间13.59s'
pat = r'\d+' # +表示匹配数字(\d表示数字的通用字符)1次或多次
r = re.findall(pat,s)
print(r)
# ['20', '13', '59']
?表示前一个字符匹配0或1次
s = '一共20行代码运行时间13.59s'
pat = r'\d+\.?\d+' # ?表示匹配小数点(\.)0次或1次,这种写法有个小bug,不能匹配到个位数的整数
r = re.findall(pat,s)
print(r)
# ['20', '13.59']
# 更好的写法:
pat = r'\d+\.\d+|\d+' # A|B,匹配A失败才匹配B
s = 'This module provides regular expression matching operations similar to those found in Perl'
pat = r'^[emrt]' # 查找以字符e,m,r或t开始的字符串
r = re.findall(pat,s)
print(r)
# [],因为字符串的开头是字符`T`,不在emrt匹配范围内,所以返回为空
IN [11]: s2 = 'email for me is [email protected]'
re.findall('^[emrt].*',s2)# 匹配以e,m,r,t开始的字符串,后面是多个任意字符
Out[11]: ['email for me is [email protected]']
s = 'That'
pat = r't'
r = re.findall(pat,s,re.I)
In [22]: r
Out[22]: ['T', 't']
如果要做很多次匹配,可以先编译匹配串:
import re
pat = re.compile('\W+') # \W 匹配不是数字和字母的字符
has_special_chars = pat.search('ed#2@edc')
if has_special_chars:
print(f'str contains special characters:{has_special_chars.group(0)}')
###输出结果:
# str contains special characters:#
### 再次使用pat正则编译对象 做匹配
again_pattern = pat.findall('[email protected]')
if '@' in again_pattern:
print('possibly it is an email')
使用()
捕获
s = 'This module provides regular expression matching operations similar to those found in Perl'
pat = r'\s([a-zA-Z]+)'
r = re.findall(pat,s)
print(r) #['module', 'provides', 'regular', 'expression', 'matching', 'operations', 'similar', 'to', 'those', 'found', 'in', 'Perl']
看到提取单词中未包括第一个单词,使用?
表示前面字符出现0次或1次,但是此字符还有表示贪心或非贪心匹配含义,使用时要谨慎。
s = 'This module provides regular expression matching operations similar to those found in Perl'
pat = r'\s?([a-zA-Z]+)'
r = re.findall(pat,s)
print(r) #['This', 'module', 'provides', 'regular', 'expression', 'matching', 'operations', 'similar', 'to', 'those', 'found', 'in', 'Perl']
使用以上方法分割单词不是简洁的,仅仅是为了演示。分割单词最简单还是使用split
函数。
s = 'This module provides regular expression matching operations similar to those found in Perl'
pat = r'\s+'
r = re.split(pat,s)
print(r) # ['This', 'module', 'provides', 'regular', 'expression', 'matching', 'operations', 'similar', 'to', 'those', 'found', 'in', 'Perl']
### 上面这句话也可直接使用str自带的split函数:
s.split(' ') #使用空格分隔
### 但是,对于风格符更加复杂的情况,split无能为力,只能使用正则
s = 'This,,, module ; \t provides|| regular ; '
words = re.split('[,\s;|]+',s) #这样分隔出来,最后会有一个空字符串
words = [i for i in words if len(i)>0]
注意match
,search
等的不同:
- match函数
import re
### match
mystr = 'This'
pat = re.compile('hi')
pat.match(mystr) # None
pat.match(mystr,1) # 从位置1处开始匹配
Out[90]: <re.Match object; span=(1, 3), match='hi'>
- search函数 search是从字符串的任意位置开始匹配
In [91]: mystr = 'This'
...: pat = re.compile('hi')
...: pat.search(mystr)
Out[91]: <re.Match object; span=(1, 3), match='hi'>
sub
函数实现对匹配子串的替换
content="hello 12345, hello 456321"
pat=re.compile(r'\d+') #要替换的部分
m=pat.sub("666",content)
print(m) # hello 666, hello 666
(.*)表示捕获任意多个字符,尽可能多的匹配字符
content='<h>ddedadsad</h><div>graph</div>bb<div>math</div>cc'
pat=re.compile(r"<div>(.*)</div>") #贪婪模式
m=pat.findall(content)
print(m) #匹配结果为: ['graph</div>bb<div>math']
仅添加一个问号(?
),得到结果完全不同,这是非贪心匹配,通过这个例子体会贪心和非贪心的匹配的不同。
content='<h>ddedadsad</h><div>graph</div>bb<div>math</div>cc'
pat=re.compile(r"<div>(.*?)</div>")
m=pat.findall(content)
print(m) # ['graph', 'math']
非贪心捕获,见好就收。
. 匹配任意字符
^ 匹配字符串开始位置
$ 匹配字符串中结束的位置
* 前面的原子重复0次、1次、多次
? 前面的原子重复0次或者1次
+ 前面的原子重复1次或多次
{n} 前面的原子出现了 n 次
{n,} 前面的原子至少出现 n 次
{n,m} 前面的原子出现次数介于 n-m 之间
( ) 分组,需要输出的部分
\s 匹配空白字符
\w 匹配任意字母/数字/下划线
\W 和小写 w 相反,匹配任意字母/数字/下划线以外的字符
\d 匹配十进制数字
\D 匹配除了十进制数以外的值
[0-9] 匹配一个0-9之间的数字
[a-z] 匹配小写英文字母
[A-Z] 匹配大写英文字母
密码安全要求:1)要求密码为6到20位; 2)密码只包含英文字母和数字
pat = re.compile(r'\w{6,20}') # 这是错误的,因为\w通配符匹配的是字母,数字和下划线,题目要求不能含有下划线
# 使用最稳的方法:\da-zA-Z满足`密码只包含英文字母和数字`
pat = re.compile(r'[\da-zA-Z]{6,20}')
选用最保险的fullmatch
方法,查看是否整个字符串都匹配:
pat.fullmatch('qaz12') # 返回 None, 长度小于6
pat.fullmatch('qaz12wsxedcrfvtgb67890942234343434') # None 长度大于22
pat.fullmatch('qaz_231') # None 含有下划线
pat.fullmatch('n0passw0Rd')
Out[4]: <re.Match object; span=(0, 10), match='n0passw0Rd'>
import re
from urllib import request
#爬虫爬取百度首页内容
data=request.urlopen("http://www.baidu.com/").read().decode()
#分析网页,确定正则表达式
pat=r'<title>(.*?)</title>'
result=re.search(pat,data)
print(result) <re.Match object; span=(1358, 1382), match='<title>百度一下,你就知道</title>'>
result.group() # 百度一下,你就知道
数据库字段名批量转化为驼峰格式
分析过程
# 用到的正则串讲解
# \s 指匹配: [ \t\n\r\f\v]
# A|B:表示匹配A串或B串
# re.sub(pattern, newchar, string):
# substitue代替,用newchar字符替代与pattern匹配的字符所有.
# title(): 转化为大写,例子:
# 'Hello world'.title() # 'Hello World'
# print(re.sub(r"\s|_|", "", "He llo_worl\td"))
s = re.sub(r"(\s|_|-)+", " ",
'some_database_field_name').title().replace(" ", "")
#结果: SomeDatabaseFieldName
# 可以看到此时的第一个字符为大写,需要转化为小写
s = s[0].lower()+s[1:] # 最终结果
整理以上分析得到如下代码:
import re
def camel(s):
s = re.sub(r"(\s|_|-)+", " ", s).title().replace(" ", "")
return s[0].lower() + s[1:]
# 批量转化
def batch_camel(slist):
return [camel(s) for s in slist]
测试结果:
s = batch_camel(['student_id', 'student\tname', 'student-add'])
print(s)
# 结果
['studentId', 'studentName', 'studentAdd']
排序词(permutation):两个字符串含有相同字符,但字符顺序不同。
from collections import defaultdict
def is_permutation(str1, str2):
if str1 is None or str2 is None:
return False
if len(str1) != len(str2):
return False
unq_s1 = defaultdict(int)
unq_s2 = defaultdict(int)
for c1 in str1:
unq_s1[c1] += 1
for c2 in str2:
unq_s2[c2] += 1
return unq_s1 == unq_s2
这个小例子,使用python内置的defaultdict
,默认类型初始化为int
,计数默次数都为0. 这个解法本质是 hash map lookup
统计出的两个defaultdict:unq_s1,unq_s2,如果相等,就表明str1、 str2互为排序词。
下面测试:
r = is_permutation('nice', 'cine')
print(r) # True
r = is_permutation('', '')
print(r) # True
r = is_permutation('', None)
print(r) # False
r = is_permutation('work', 'woo')
print(r) # False
以上就是使用defaultdict的小例子,希望对读者朋友理解此类型有帮助。
stringbook
旋转后得到bookstring
,写一段代码验证str1
是否为str2
旋转得到。
思路
转化为判断:str1
是否为str2+str2
的子串
def is_rotation(s1: str, s2: str) -> bool:
if s1 is None or s2 is None:
return False
if len(s1) != len(s2):
return False
def is_substring(s1: str, s2: str) -> bool:
return s1 in s2
return is_substring(s1, s2 + s2)
测试
r = is_rotation('stringbook', 'bookstring')
print(r) # True
r = is_rotation('greatman', 'maneatgr')
print(r) # False
从一系列字符串中,挑选出所有正浮点数。
该怎么办?
玩玩正则表达式,用正则搞它!
关键是,正则表达式该怎么写呢?
有了!
^[1-9]\d*\.\d*$
^
表示字符串开始
[1-9]
表示数字1,2,3,4,5,6,7,8,9
^[1-9]
连起来表示以数字 1-9
作为开头
\d
表示一位 0-9
的数字
*
表示前一位字符出现 0 次,1 次或多次
\d*
表示数字出现 0 次,1 次或多次
\.
表示小数点
\$
表示字符串以前一位的字符结束
^[1-9]\d*\.\d*$
连起来就求出所有大于 1.0 的正浮点数。
那 0.0 到 1.0 之间的正浮点数,怎么求,干嘛不直接汇总到上面的正则表达式中呢?
这样写不行吗:^[0-9]\d*\.\d*$
OK!
那我们立即测试下呗
In [85]: import re
In [87]: recom = re.compile(r'^[0-9]\d*\.\d*$')
In [88]: recom.match('000.2')
Out[88]: <re.Match object; span=(0, 5), match='000.2'>
结果显示,正则表达式 ^[0-9]\d*\.\d*$
竟然匹配到 000.2
,认为它是一个正浮点数~~~!!!!
晕!!!!!!
所以知道为啥要先匹配大于 1.0 的浮点数了吧!
如果能写出这个正则表达式,再写另一部分就不困难了!
0.0 到 1.0 间的浮点数:^0\.\d*[1-9]\d*$
两个式子连接起来就是最终的结果:
^[1-9]\d*\.\d*|0\.\d*[1-9]\d*$
如果还是看不懂,看看下面的正则分布剖析图吧:
Python文件IO操作涉及文件读写操作,获取文件后缀名
,修改后缀名,获取文件修改时间,压缩
文件,加密
文件等操作。
Python日期章节,由表示大日期的calendar
, date
模块,逐渐过渡到表示时间刻度更小的模块:datetime
, time
模块,按照此逻辑展开。
Python多线程
希望透过5个小例子,帮助你对多线程模型编程本质有些更清晰的认识。
一共总结最常用的26
个关于文件和时间处理模块的例子。
import os
file_ext = os.path.splitext('./data/py/test.py')
front,ext = file_ext
In [5]: front
Out[5]: './data/py/test'
In [6]: ext
Out[6]: '.py'
import os
# 创建文件夹
def mkdir(path):
isexists = os.path.exists(path)
if not isexists:
os.mkdir(path)
# 读取文件信息
def openfile(filename):
f = open(filename)
fllist = f.read()
f.close()
return fllist # 返回读取内容
# 写入文件信息
# example1
# w写入,如果文件存在,则清空内容后写入,不存在则创建
f = open(r"./data/test.txt", "w", encoding="utf-8")
print(f.write("测试文件写入"))
f.close
# example2
# a写入,文件存在,则在文件内容后追加写入,不存在则创建
f = open(r"./data/test.txt", "a", encoding="utf-8")
print(f.write("测试文件写入"))
f.close
# example3
# with关键字系统会自动关闭文件和处理异常
with open(r"./data/test.txt", "w") as f:
f.write("hello world!")
In [11]: import os
...: file_ext = os.path.split('./data/py/test.py')
...: ipath,ifile = file_ext
...:
In [12]: ipath
Out[12]: './data/py'
In [13]: ifile
Out[13]: 'test.py'
批量修改文件后缀
本例子使用Python的os
模块和 argparse
模块,将工作目录work_dir
下所有后缀名为old_ext
的文件修改为后缀名为new_ext
通过本例子,大家将会大概清楚argparse
模块的主要用法。
导入模块
import argparse
import os
定义脚本参数
def get_parser():
parser = argparse.ArgumentParser(
description='工作目录中文件后缀名修改')
parser.add_argument('work_dir', metavar='WORK_DIR', type=str, nargs=1,
help='修改后缀名的文件目录')
parser.add_argument('old_ext', metavar='OLD_EXT',
type=str, nargs=1, help='原来的后缀')
parser.add_argument('new_ext', metavar='NEW_EXT',
type=str, nargs=1, help='新的后缀')
return parser
后缀名批量修改
def batch_rename(work_dir, old_ext, new_ext):
"""
传递当前目录,原来后缀名,新的后缀名后,批量重命名后缀
"""
for filename in os.listdir(work_dir):
# 获取得到文件后缀
split_file = os.path.splitext(filename)
file_ext = split_file[1]
# 定位后缀名为old_ext 的文件
if old_ext == file_ext:
# 修改后文件的完整名称
newfile = split_file[0] + new_ext
# 实现重命名操作
os.rename(
os.path.join(work_dir, filename),
os.path.join(work_dir, newfile)
)
print("完成重命名")
print(os.listdir(work_dir))
实现Main
def main():
"""
main函数
"""
# 命令行参数
parser = get_parser()
args = vars(parser.parse_args())
# 从命令行参数中依次解析出参数
work_dir = args['work_dir'][0]
old_ext = args['old_ext'][0]
if old_ext[0] != '.':
old_ext = '.' + old_ext
new_ext = args['new_ext'][0]
if new_ext[0] != '.':
new_ext = '.' + new_ext
batch_rename(work_dir, old_ext, new_ext)
import os
def xls_to_xlsx(work_dir):
"""
传递当前目录,原来后缀名,新的后缀名后,批量重命名后缀
"""
old_ext, new_ext = '.xls', '.xlsx'
for filename in os.listdir(work_dir):
# 获取得到文件后缀
split_file = os.path.splitext(filename)
file_ext = split_file[1]
# 定位后缀名为old_ext 的文件
if old_ext == file_ext:
# 修改后文件的完整名称
newfile = split_file[0] + new_ext
# 实现重命名操作
os.rename(
os.path.join(work_dir, filename),
os.path.join(work_dir, newfile)
)
print("完成重命名")
print(os.listdir(work_dir))
xls_to_xlsx('./data')
# 输出结果:
# ['cut_words.csv', 'email_list.xlsx', 'email_test.docx', 'email_test.jpg', 'email_test.xlsx', 'geo_data.png', 'geo_data.xlsx',
'iotest.txt', 'pyside2.md', 'PySimpleGUI-4.7.1-py3-none-any.whl', 'test.txt', 'test_excel.xlsx', 'ziptest', 'ziptest.zip']
比较两个文件在哪些行内容不同,返回这些行的编号,行号编号从1开始。
定义统计文件行数的函数
# 统计文件个数
def statLineCnt(statfile):
print('文件名:'+statfile)
cnt = 0
with open(statfile, encoding='utf-8') as f:
while f.readline():
cnt += 1
return cnt
统计文件不同之处的子函数:
# more表示含有更多行数的文件
def diff(more, cnt, less):
difflist = []
with open(less, encoding='utf-8') as l:
with open(more, encoding='utf-8') as m:
lines = l.readlines()
for i, line in enumerate(lines):
if line.strip() != m.readline().strip():
difflist.append(i)
if cnt - i > 1:
difflist.extend(range(i + 1, cnt))
return [no+1 for no in difflist]
主函数:
# 返回的结果行号从1开始
# list表示fileA和fileB不同的行的编号
def file_diff_line_nos(fileA, fileB):
try:
cntA = statLineCnt(fileA)
cntB = statLineCnt(fileB)
if cntA > cntB:
return diff(fileA, cntA, fileB)
return diff(fileB, cntB, fileA)
except Exception as e:
print(e)
比较两个文件A和B,拿相对较短的文件去比较,过滤行后的换行符\n
和空格。
暂未考虑某个文件最后可能有的多行空行等特殊情况
使用file_diff_line_nos
函数:
if __name__ == '__main__':
import os
print(os.getcwd())
'''
例子:
fileA = "'hello world!!!!''\
'nice to meet you'\
'yes'\
'no1'\
'jack'"
fileB = "'hello world!!!!''\
'nice to meet you'\
'yes' "
'''
diff = file_diff_line_nos('./testdir/a.txt', './testdir/b.txt')
print(diff) # [4, 5]
关于文件比较的,实际上,在Python中有对应模块difflib
, 提供更多其他格式的文件更详细的比较,大家可参考:
https://docs.python.org/3/library/difflib.html?highlight=difflib#module-difflib
import os
def find_file(work_dir,extension='jpg'):
lst = []
for filename in os.listdir(work_dir):
print(filename)
splits = os.path.splitext(filename)
ext = splits[1] # 拿到扩展名
if ext == '.'+extension:
lst.append(filename)
return lst
r = find_file('.','md')
print(r) # 返回所有目录下的md文件
# 获取目录下文件的修改时间
import os
from datetime import datetime
print(f"当前时间:{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
def get_modify_time(indir):
for root, _, files in os.walk(indir): # 循环D:\works目录和子目录
for file in files:
absfile = os.path.join(root, file)
modtime = datetime.fromtimestamp(os.path.getmtime(absfile))
now = datetime.now()
difftime = now-modtime
if difftime.days < 20: # 条件筛选超过指定时间的文件
print(f"""{absfile}
修改时间[{modtime.strftime('%Y-%m-%d %H:%M:%S')}]
距今[{difftime.days:3d}天{difftime.seconds//3600:2d}时{difftime.seconds%3600//60:2d}]"""
) # 打印相关信息
get_modify_time('./data')
打印效果:
当前时间:2019-12-22 16:38:53
./data\cut_words.csv
修改时间[2019-12-21 10:34:15]
距今[ 1天 6时 4]
当前时间:2019-12-22 16:38:53
./data\cut_words.csv
修改时间[2019-12-21 10:34:15]
距今[ 1天 6时 4]
./data\email_test.docx
修改时间[2019-12-03 07:46:29]
距今[ 19天 8时52]
./data\email_test.jpg
修改时间[2019-12-03 07:46:29]
距今[ 19天 8时52]
./data\email_test.xlsx
修改时间[2019-12-03 07:46:29]
距今[ 19天 8时52]
./data\iotest.txt
修改时间[2019-12-13 08:23:18]
距今[ 9天 8时15]
./data\pyside2.md
修改时间[2019-12-05 08:17:22]
距今[ 17天 8时21]
./data\PySimpleGUI-4.7.1-py3-none-any.whl
修改时间[2019-12-05 00:25:47]
距今[ 17天16时13]
import zipfile # 导入zipfile,这个是用来做压缩和解压的Python模块;
import os
import time
def batch_zip(start_dir):
start_dir = start_dir # 要压缩的文件夹路径
file_news = start_dir + '.zip' # 压缩后文件夹的名字
z = zipfile.ZipFile(file_news, 'w', zipfile.ZIP_DEFLATED)
for dir_path, dir_names, file_names in os.walk(start_dir):
# 这一句很重要,不replace的话,就从根目录开始复制
f_path = dir_path.replace(start_dir, '')
f_path = f_path and f_path + os.sep # 实现当前文件夹以及包含的所有文件的压缩
for filename in file_names:
z.write(os.path.join(dir_path, filename), f_path + filename)
z.close()
return file_news
batch_zip('./data/ziptest')
import hashlib
# 对字符串s实现32位加密
def hash_cry32(s):
m = hashlib.md5()
m.update((str(s).encode('utf-8')))
return m.hexdigest()
print(hash_cry32(1)) # c4ca4238a0b923820dcc509a6f75849b
print(hash_cry32('hello')) # 5d41402abc4b2a76b9719d911017c592
import calendar
from datetime import date
mydate = date.today()
year_calendar_str = calendar.calendar(2019)
print(f"{mydate.year}年的日历图:{year_calendar_str}\n")
打印结果:
2019
January February March
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 1 2 3 1 2 3
7 8 9 10 11 12 13 4 5 6 7 8 9 10 4 5 6 7 8 9 10
14 15 16 17 18 19 20 11 12 13 14 15 16 17 11 12 13 14 15 16 17
21 22 23 24 25 26 27 18 19 20 21 22 23 24 18 19 20 21 22 23 24
28 29 30 31 25 26 27 28 25 26 27 28 29 30 31
April May June
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 7 1 2 3 4 5 1 2
8 9 10 11 12 13 14 6 7 8 9 10 11 12 3 4 5 6 7 8 9
15 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16
22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23
29 30 27 28 29 30 31 24 25 26 27 28 29 30
July August September
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 7 1 2 3 4 1
8 9 10 11 12 13 14 5 6 7 8 9 10 11 2 3 4 5 6 7 8
15 16 17 18 19 20 21 12 13 14 15 16 17 18 9 10 11 12 13 14 15
22 23 24 25 26 27 28 19 20 21 22 23 24 25 16 17 18 19 20 21 22
29 30 31 26 27 28 29 30 31 23 24 25 26 27 28 29
30
October November December
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 2 3 4 5 6 1 2 3 1
7 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8
14 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15
21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22
28 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29
30 31
import calendar
from datetime import date
mydate = date.today()
is_leap = calendar.isleap(mydate.year)
print_leap_str = "%s年是闰年" if is_leap else "%s年不是闰年\n"
print(print_leap_str % mydate.year)
打印结果:
2019年不是闰年
import calendar
from datetime import date
mydate = date.today()
month_calendar_str = calendar.month(mydate.year, mydate.month)
print(f"{mydate.year}年-{mydate.month}月的日历图:{month_calendar_str}\n")
打印结果:
December 2019
Mo Tu We Th Fr Sa Su
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
import calendar
from datetime import date
mydate = date.today()
weekday, days = calendar.monthrange(mydate.year, mydate.month)
print(f'{mydate.year}年-{mydate.month}月的第一天是那一周的第{weekday}天\n')
print(f'{mydate.year}年-{mydate.month}月共有{days}天\n')
打印结果:
2019年-12月的第一天是那一周的第6天
2019年-12月共有31天
from datetime import date
mydate = date.today()
month_first_day = date(mydate.year, mydate.month, 1)
print(f"当月第一天:{month_first_day}\n")
打印结果:
# 当月第一天:2019-12-01
from datetime import date
import calendar
mydate = date.today()
_, days = calendar.monthrange(mydate.year, mydate.month)
month_last_day = date(mydate.year, mydate.month, days)
print(f"当月最后一天:{month_last_day}\n")
打印结果:
当月最后一天:2019-12-31
from datetime import date, datetime
from time import localtime
today_date = date.today()
print(today_date) # 2019-12-22
today_time = datetime.today()
print(today_time) # 2019-12-22 18:02:33.398894
local_time = localtime()
print(strftime("%Y-%m-%d %H:%M:%S", local_time)) # 转化为定制的格式 2019-12-22 18:13:41
from time import strptime
# parse str time to struct time
struct_time = strptime('2019-12-22 10:10:08', "%Y-%m-%d %H:%M:%S")
print(struct_time) # struct_time类型就是time中的一个类
# time.struct_time(tm_year=2019, tm_mon=12, tm_mday=22, tm_hour=10, tm_min=10, tm_sec=8, tm_wday=6, tm_yday=356, tm_isdst=-1)
from time import strftime, strptime, localtime
In [2]: print(localtime()) #这是输入的时间
Out[2]: time.struct_time(tm_year=2019, tm_mon=12, tm_mday=22, tm_hour=18, tm_min=24, tm_sec=56, tm_wday=6, tm_yday=356, tm_isdst=0)
print(strftime("%m-%d-%Y %H:%M:%S", localtime())) # 转化为定制的格式
# 这是字符串表示的时间: 12-22-2019 18:26:21
一般的,程序默认执行只在一个线程,这个线程称为主线程,例子演示如下:
导入线程相关的模块 threading
:
import threading
threading的类方法 current_thread()
返回当前线程:
t = threading.current_thread()
print(t) # <_MainThread(MainThread, started 139908235814720)>
所以,验证了程序默认是在MainThead
中执行。
t.getName()
获得这个线程的名字,其他常用方法,getName()
获得线程id
,isAlive()
判断线程是否存活等。
print(t.getName()) # MainThread
print(t.ident) # 139908235814720
print(t.isAlive()) # True
以上这些仅是介绍多线程的背景知识
,因为到目前为止,我们有且仅有一个"干活"的主线程
创建一个线程:
my_thread = threading.Thread()
创建一个名称为my_thread
的线程:
my_thread = threading.Thread(name='my_thread')
创建线程的目的是告诉它帮助我们做些什么,做些什么通过参数target
传入,参数类型为callable
,函数就是可调用的:
def print_i(i):
print('打印i:%d'%(i,))
my_thread = threading.Thread(target=print_i,args=(1,))
my_thread
线程已经全副武装,但是我们得按下发射按钮,启动start(),它才开始真正起飞。
my_thread().start()
打印结果如下,其中args
指定函数print_i
需要的参数i,类型为元祖。
打印i:1
至此,多线程相关的核心知识点,已经总结完毕。但是,仅仅知道这些,还不够!光纸上谈兵,当然远远不够。
接下来,聊聊应用多线程编程,最本质的一些东西。
3 交替获得CPU时间片
为了更好解释,假定计算机是单核的,尽管对于cpython
,这个假定有些多余。
开辟3个线程,装到threads
中:
import time
from datetime import datetime
import threading
def print_time():
for _ in range(5): # 在每个线程中打印5次
time.sleep(0.1) # 模拟打印前的相关处理逻辑
print('当前线程%s,打印结束时间为:%s'%(threading.current_thread().getName(),datetime.today()))
threads = [threading.Thread(name='t%d'%(i,),target=print_time) for i in range(3)]
启动3个线程:
[t.start() for t in threads]
打印结果如下,t0
,t1
,t2
三个线程,根据操作系统的调度算法,轮询获得CPU时间片,注意观察,t2
线程可能被连续调度,从而获得时间片。
当前线程t0,打印结束时间为:2020-01-12 02:27:15.705235
当前线程t1,打印结束时间为:2020-01-12 02:27:15.705402
当前线程t2,打印结束时间为:2020-01-12 02:27:15.705687
当前线程t0,打印结束时间为:2020-01-12 02:27:15.805767
当前线程t1,打印结束时间为:2020-01-12 02:27:15.805886
当前线程t2,打印结束时间为:2020-01-12 02:27:15.806044
当前线程t0,打印结束时间为:2020-01-12 02:27:15.906200
当前线程t2,打印结束时间为:2020-01-12 02:27:15.906320
当前线程t1,打印结束时间为:2020-01-12 02:27:15.906433
当前线程t0,打印结束时间为:2020-01-12 02:27:16.006581
当前线程t1,打印结束时间为:2020-01-12 02:27:16.006766
当前线程t2,打印结束时间为:2020-01-12 02:27:16.007006
当前线程t2,打印结束时间为:2020-01-12 02:27:16.107564
当前线程t0,打印结束时间为:2020-01-12 02:27:16.107290
当前线程t1,打印结束时间为:2020-01-12 02:27:16.107741
多线程编程,存在抢夺同一个变量的问题。
比如下面例子,创建的10个线程同时竞争全局变量a
:
import threading
a = 0
def add1():
global a
a += 1
print('%s adds a to 1: %d'%(threading.current_thread().getName(),a))
threads = [threading.Thread(name='t%d'%(i,),target=add1) for i in range(10)]
[t.start() for t in threads]
执行结果:
t0 adds a to 1: 1
t1 adds a to 1: 2
t2 adds a to 1: 3
t3 adds a to 1: 4
t4 adds a to 1: 5
t5 adds a to 1: 6
t6 adds a to 1: 7
t7 adds a to 1: 8
t8 adds a to 1: 9
t9 adds a to 1: 10
结果一切正常,每个线程执行一次,把a
的值加1,最后a
变为10,一切正常。
运行上面代码十几遍,一切也都正常。
所以,我们能下结论:这段代码是线程安全的吗?
NO!
多线程中,只要存在同时读取和修改一个全局变量的情况,如果不采取其他措施,就一定不是线程安全的。
尽管,有时,某些情况的资源竞争,暴露出问题的概率极低极低
:
本例中,如果线程0 在修改a后,其他某些线程还是get到的是没有修改前的值,就会暴露问题。
但是在本例中,a = a + 1
这种修改操作,花费的时间太短了,短到我们无法想象。所以,线程间轮询执行时,都能get到最新的a值。所以,暴露问题的概率就变得微乎其微。
只要弄明白问题暴露的原因,叫问题出现还是不困难的。
想象数据库的写入操作,一般需要耗费我们可以感知的时间。
为了模拟这个写入动作,简化期间,我们只需要延长修改变量a
的时间,问题很容易就会还原出来。
import threading
import time
a = 0
def add1():
global a
tmp = a + 1
time.sleep(0.2) # 延时0.2秒,模拟写入所需时间
a = tmp
print('%s adds a to 1: %d'%(threading.current_thread().getName(),a))
threads = [threading.Thread(name='t%d'%(i,),target=add1) for i in range(10)]
[t.start() for t in threads]
重新运行代码,只需一次,问题立马完全暴露,结果如下:
t0 adds a to 1: 1
t1 adds a to 1: 1
t2 adds a to 1: 1
t3 adds a to 1: 1
t4 adds a to 1: 1
t5 adds a to 1: 1
t7 adds a to 1: 1
t6 adds a to 1: 1
t8 adds a to 1: 1
t9 adds a to 1: 1
看到,10个线程全部运行后,a
的值只相当于一个线程执行的结果。
下面分析,为什么会出现上面的结果:
这是一个很有说服力的例子,因为在修改a前,有0.2秒的休眠时间,某个线程延时后,CPU立即分配计算资源给其他线程。直到分配给所有线程后,根据结果反映出,0.2秒的休眠时长还没耗尽,这样每个线程get到的a值都是0,所以才出现上面的结果。
以上最核心的三行代码:
tmp = a + 1
time.sleep(0.2) # 延时0.2秒,模拟写入所需时间
a = tmp
知道问题出现的原因后,要想修复问题,也没那么复杂。
通过python中提供的锁机制,某段代码只能单线程执行时,上锁,其他线程等待,直到释放锁后,其他线程再争锁,执行代码,释放锁,重复以上。
创建一把锁locka
:
import threading
import time
locka = threading.Lock()
通过 locka.acquire()
获得锁,通过locka.release()
释放锁,它们之间的这些代码,只能单线程执行。
a = 0
def add1():
global a
try:
locka.acquire() # 获得锁
tmp = a + 1
time.sleep(0.2) # 延时0.2秒,模拟写入所需时间
a = tmp
finally:
locka.release() # 释放锁
print('%s adds a to 1: %d'%(threading.current_thread().getName(),a))
threads = [threading.Thread(name='t%d'%(i,),target=add1) for i in range(10)]
[t.start() for t in threads]
执行结果如下:
t0 adds a to 1: 1
t1 adds a to 1: 2
t2 adds a to 1: 3
t3 adds a to 1: 4
t4 adds a to 1: 5
t5 adds a to 1: 6
t6 adds a to 1: 7
t7 adds a to 1: 8
t8 adds a to 1: 9
t9 adds a to 1: 10
一起正常,其实这已经是单线程顺序执行了,就本例子而言,已经失去多线程的价值,并且还带来了因为线程创建开销,浪费时间的副作用。
程序中只有一把锁,通过 try...finally
还能确保不发生死锁。但是,当程序中启用多把锁,还是很容易发生死锁。
注意使用场合,避免死锁,是我们在使用多线程开发时需要注意的一些问题。
time 模块提供时间相关的类和函数
记住一个类:struct_time
,9 个整数组成的元组
记住下面 5 个最常用函数
首先导入time
模块
import time
1 此时此刻时间浮点数
In [58]: seconds = time.time()
In [60]: seconds
Out[60]: 1582341559.0950701
2 时间数组
In [61]: local_time = time.localtime(seconds)
In [62]: local_time
Out[62]: time.struct_time(tm_year=2020, tm_mon=2, tm_mday=22, tm_hour=11, tm_min=19, tm_sec=19, tm_wday=5, tm_yday=53, tm_isdst=0)
3 时间字符串
time.asctime
语义: as convert time
In [63]: str_time = time.asctime(local_time)
In [64]: str_time
Out[64]: 'Sat Feb 22 11:19:19 2020'
4 格式化时间字符串
time.strftime
语义: string format time
In [65]: format_time = time.strftime('%Y-%m-%d %H:%M:%S',local_time)
In [66]: format_time
Out[66]: '2020-02-22 11:19:19'
5 字符时间转时间数组
In [68]: str_to_struct = time.strptime(format_time,'%Y-%m-%d %H:%M:%S')
In [69]: str_to_struct
Out[69]: time.struct_time(tm_year=2020, tm_mon=2, tm_mday=22, tm_hour=11, tm_min=19, tm_sec=19, tm_wday=5, tm_yday=53, tm_isdst=-1)
最后再记住常用字符串格式
常用字符串格式
%m:月
%M: 分钟
%Y Year with century as a decimal number.
%m Month as a decimal number [01,12].
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%M Minute as a decimal number [00,59].
%S Second as a decimal number [00,61].
%z Time zone offset from UTC.
%a Locale's abbreviated weekday name.
%A Locale's full weekday name.
%b Locale's abbreviated month name.
4G 内存处理 10G 大小的文件,单机怎么做?
下面的讨论基于的假定:可以单独处理一行数据,行间数据相关性为零。
方法一:
仅使用 Python 内置模板,逐行读取到内存。
使用 yield,好处是解耦读取操作和处理操作:
def python_read(filename):
with open(filename,'r',encoding='utf-8') as f:
while True:
line = f.readline()
if not line:
return
yield line
以上每次读取一行,逐行迭代,逐行处理数据
if __name__ == '__main__':
g = python_read('./data/movies.dat')
for c in g:
print(c)
# process c
方法二:
方法一有缺点,逐行读入,频繁的 IO 操作拖累处理效率。是否有一次 IO ,读取多行的方法?
pandas
包 read_csv
函数,参数有 38 个之多,功能非常强大。
关于单机处理大文件,read_csv
的 chunksize
参数能做到,设置为 5
, 意味着一次读取 5 行。
def pandas_read(filename,sep=',',chunksize=5):
reader = pd.read_csv(filename,sep,chunksize=chunksize)
while True:
try:
yield reader.get_chunk()
except StopIteration:
print('---Done---')
break
使用如同方法一:
if __name__ == '__main__':
g = pandas_read('./data/movies.dat',sep="::")
for c in g:
print(c)
# process c
以上就是单机处理大文件的两个方法,推荐使用方法二,更加灵活。除了工作中会用到,面试中也有时被问到。
Python中的三大利器包括:迭代器
,生成器
,装饰器
,利用好它们才能开发出最高性能的Python程序,涉及到的内置模块 itertools
提供迭代器相关的操作。此部分收录有意思的例子共计15
例。
def search_n(s, c, n):
size = 0
for i, x in enumerate(s):
if x == c:
size += 1
if size == n:
return i
return -1
print(search_n("fdasadfadf", "a", 3))# 结果为7,正确
print(search_n("fdasadfadf", "a", 30))# 结果为-1,正确
def fibonacci(n):
a, b = 1, 1
for _ in range(n):
yield a
a, b = b, a + b
list(fibonacci(5)) # [1, 1, 2, 3, 5]
from collections import Counter
def find_all_duplicates(lst):
c = Counter(lst)
return list(filter(lambda k: c[k] > 1, c))
find_all_duplicates([1, 2, 2, 3, 3, 3]) # [2,3]
Counter对象间可以做数学运算
from collections import Counter
a = ['apple', 'orange', 'computer', 'orange']
b = ['computer', 'orange']
ca = Counter(a)
cb = Counter(b)
#Counter对象间可以做数学运算
ca + cb # Counter({'orange': 3, 'computer': 2, 'apple': 1})
# 进一步抽象,实现多个列表内元素的个数统计
def sumc(*c):
if (len(c) < 1):
return
mapc = map(Counter, c)
s = Counter([])
for ic in mapc: # ic 是一个Counter对象
s += ic
return s
#Counter({'orange': 3, 'computer': 3, 'apple': 1, 'abc': 1, 'face': 1})
sumc(a, b, ['abc'], ['face', 'computer'])
天气记录:
a = [{'date': '2019-12-15', 'weather': 'cloud'},
{'date': '2019-12-13', 'weather': 'sunny'},
{'date': '2019-12-14', 'weather': 'cloud'}]
按照天气字段weather
分组汇总:
from itertools import groupby
for k, items in groupby(a,key=lambda x:x['weather']):
print(k)
输出结果看出,分组失败!原因:分组前必须按照分组字段排序
,这个很坑~
cloud
sunny
cloud
修改代码:
a.sort(key=lambda x: x['weather'])
for k, items in groupby(a,key=lambda x:x['weather']):
print(k)
for i in items:
print(i)
输出结果:
cloud
{'date': '2019-12-15', 'weather': 'cloud'}
{'date': '2019-12-14', 'weather': 'cloud'}
sunny
{'date': '2019-12-13', 'weather': 'sunny'}
注意到sort
和groupby
所用的key
函数,除了lambda
写法外,还有一种简写,就是使用itemgetter
:
a = [{'date': '2019-12-15', 'weather': 'cloud'},
{'date': '2019-12-13', 'weather': 'sunny'},
{'date': '2019-12-14', 'weather': 'cloud'}]
from operator import itemgetter
from itertools import groupby
a.sort(key=itemgetter('weather'))
for k, items in groupby(a, key=itemgetter('weather')):
print(k)
for i in items:
print(i)
结果:
cloud
{'date': '2019-12-15', 'weather': 'cloud'}
{'date': '2019-12-14', 'weather': 'cloud'}
sunny
{'date': '2019-12-13', 'weather': 'sunny'}
itemgetter
是一个类,itemgetter('weather')
返回一个可调用的对象,它的参数可有多个:
from operator import itemgetter
from itertools import groupby
a.sort(key=itemgetter('weather', 'date'))
for k, items in groupby(a, key=itemgetter('weather')):
print(k)
for i in items:
print(i)
结果如下,使用weather
和date
两个字段排序a
,
cloud
{'date': '2019-12-14', 'weather': 'cloud'}
{'date': '2019-12-15', 'weather': 'cloud'}
sunny
{'date': '2019-12-13', 'weather': 'sunny'}
注意这个结果与上面结果有些微妙不同,这个更多是我们想看到和使用更多的。
Python中的聚合类函数sum
,min
,max
第一个参数是iterable
类型,一般使用方法如下:
a = [4,2,5,1]
sum([i+1 for i in a]) # 16
使用列表生成式[i+1 for i in a]
创建一个长度与a
一行的临时列表,这步完成后,再做sum
聚合。
试想如果你的数组a
长度十百万级,再创建一个这样的临时列表就很不划算,最好是一边算一边聚合,稍改动为如下:
a = [4,2,5,1]
sum(i+1 for i in a) # 16
此时i+1 for i in a
是(i+1 for i in a)
的简写,得到一个生成器(generator
)对象,如下所示:
In [8]:(i+1 for i in a)
OUT [8]:<generator object <genexpr> at 0x000002AC7FFA8CF0>
生成器每迭代一步吐出(yield
)一个元素并计算和聚合后,进入下一次迭代,直到终点。
from math import ceil
def divide_iter(lst, n):
if n <= 0:
yield lst
return
i, div = 0, ceil(len(lst) / n)
while i < n:
yield lst[i * div: (i + 1) * div]
i += 1
list(divide_iter([1, 2, 3, 4, 5], 0)) # [[1, 2, 3, 4, 5]]
list(divide_iter([1, 2, 3, 4, 5], 2)) # [[1, 2, 3], [4, 5]]
#多层列表展开成单层列表
a=[1,2,[3,4,[5,6],7],8,["python",6],9]
def function(lst):
for i in lst:
if type(i)==list:
yield from function(i)
else:
yield i
print(list(function(a))) # [1, 2, 3, 4, 5, 6, 7, 8, 'python', 6, 9]
#测试函数执行时间的装饰器示例
import time
def timing_func(fn):
def wrapper():
start=time.time()
fn() #执行传入的fn参数
stop=time.time()
return (stop-start)
return wrapper
@timing_func
def test_list_append():
lst=[]
for i in range(0,100000):
lst.append(i)
@timing_func
def test_list_compre():
[i for i in range(0,100000)] #列表生成式
a=test_list_append()
c=test_list_compre()
print("test list append time:",a)
print("test list comprehension time:",c)
print("append/compre:",round(a/c,3))
test list append time: 0.0219423770904541
test list comprehension time: 0.007980823516845703
append/compre: 2.749
写一个装饰器,统计某个异常重复出现指定次数时,经历的时长。
import time
import math
def excepter(f):
i = 0
t1 = time.time()
def wrapper():
try:
f()
except Exception as e:
nonlocal i
i += 1
print(f'{e.args[0]}: {i}')
t2 = time.time()
if i == n:
print(f'spending time:{round(t2-t1,2)}')
return wrapper
关键词nonlocal
常用于函数嵌套中,声明变量i为非局部变量;
如果不声明,i+=1
表明i
为函数wrapper
内的局部变量,因为在i+=1
引用(reference)时,i
未被声明,所以会报unreferenced variable
的错误。
使用创建的装饰函数excepter
, n
是异常出现的次数。
共测试了两类常见的异常:被零除
和数组越界
。
n = 10 # except count
@excepter
def divide_zero_except():
time.sleep(0.1)
j = 1/(40-20*2)
# test zero divived except
for _ in range(n):
divide_zero_except()
@excepter
def outof_range_except():
a = [1,3,5]
time.sleep(0.1)
print(a[3])
# test out of range except
for _ in range(n):
outof_range_except()
打印出来的结果如下:
division by zero: 1
division by zero: 2
division by zero: 3
division by zero: 4
division by zero: 5
division by zero: 6
division by zero: 7
division by zero: 8
division by zero: 9
division by zero: 10
spending time:1.01
list index out of range: 1
list index out of range: 2
list index out of range: 3
list index out of range: 4
list index out of range: 5
list index out of range: 6
list index out of range: 7
list index out of range: 8
list index out of range: 9
list index out of range: 10
spending time:1.01
#测试函数执行时间的装饰器示例
import time
def timing(fn):
def wrapper():
start=time.time()
fn() #执行传入的fn参数
stop=time.time()
return (stop-start)
return wrapper
@timing
def test_list_append():
lst=[]
for i in range(0,100000):
lst.append(i)
@timing
def test_list_compre():
[i for i in range(0,100000)] #列表生成式
a=test_list_append()
c=test_list_compre()
print("test list append time:",a)
print("test list comprehension time:",c)
print("append/compre:",round(a/c,3))
# test list append time: 0.0219
# test list comprehension time: 0.00798
# append/compre: 2.749
再看一个装饰器:
def call_print(f):
def g():
print('you\'re calling %s function'%(f.__name__,))
return g
使用call_print
装饰器:
@call_print
def myfun():
pass
@call_print
def myfun2():
pass
myfun()后返回:
In [27]: myfun()
you're calling myfun function
In [28]: myfun2()
you're calling myfun2 function
使用call_print
你看,@call_print
放置在任何一个新定义的函数上面,都会默认输出一行,你正在调用这个函数的名。
这是为什么呢?注意观察新定义的call_print
函数(加上@后便是装饰器):
def call_print(f):
def g():
print('you\'re calling %s function'%(f.__name__,))
return g
它必须接受一个函数f
,然后返回另外一个函数g
.
装饰器本质
本质上,它与下面的调用方式效果是等效的:
def myfun():
pass
def myfun2():
pass
def call_print(f):
def g():
print('you\'re calling %s function'%(f.__name__,))
return g
下面是最重要的代码:
myfun = call_print(myfun)
myfun2 = call_print(myfun2)
大家看明白吗?也就是call_print(myfun)后不是返回一个函数吗,然后再赋值给myfun.
再次调用myfun, myfun2时,效果是这样的:
In [32]: myfun()
you're calling myfun function
In [33]: myfun2()
you're calling myfun2 function
你看,这与装饰器的实现效果是一模一样的。装饰器的写法可能更加直观些,所以不用显示的这样赋值:myfun = call_print(myfun)
,myfun2 = call_print(myfun2)
,但是装饰器的这种封装,猛一看,有些不好理解。
#编写一个迭代器,通过循环语句,实现对某个正整数的依次递减1,直到0.
class Descend(Iterator):
def __init__(self,N):
self.N=N
self.a=0
def __iter__(self):
return self
def __next__(self):
while self.a<self.N:
self.N-=1
return self.N
raise StopIteration
descend_iter=Descend(10)
print(list(descend_iter))
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
核心要点:
1 __nex__
名字不能变,实现定制的迭代逻辑
2 raise StopIteration
:通过 raise 中断程序,必须这样写
Python常用的绘图工具包括:matplotlib
, seaborn
, plotly
等,以及一些其他专用于绘制某类图如词云图等的包,描绘绘图轨迹的turtle
包等。本章节将会使用一些例子由易到难的阐述绘图的经典小例子,目前共收录27
个。
turtle绘图的函数非常好用,基本看到函数名字,就能知道它的含义,下面使用turtle,仅用15行代码来绘制奥运五环图。
1 导入库
import turtle as p
2 定义画圆函数
def drawCircle(x,y,c='red'):
p.pu()# 抬起画笔
p.goto(x,y) # 绘制圆的起始位置
p.pd()# 放下画笔
p.color(c)# 绘制c色圆环
p.circle(30,360) #绘制圆:半径,角度
3 画笔基本设置
p = turtle
p.pensize(3) # 画笔尺寸设置3
4 绘制五环图
调用画圆函数
drawCircle(0,0,'blue')
drawCircle(60,0,'black')
drawCircle(120,0,'red')
drawCircle(90,-30,'green')
drawCircle(30,-30,'yellow')
p.done()
结果:
导入模块
导入 turtle
库和 python的 random
import turtle as p
import random
绘制雪花
def snow(snow_count):
p.hideturtle()
p.speed(500)
p.pensize(2)
for i in range(snow_count):
r = random.random()
g = random.random()
b = random.random()
p.pencolor(r, g, b)
p.pu()
p.goto(random.randint(-350, 350), random.randint(1, 270))
p.pd()
dens = random.randint(8, 12)
snowsize = random.randint(10, 14)
for _ in range(dens):
p.forward(snowsize) # 向当前画笔方向移动snowsize像素长度
p.backward(snowsize) # 向当前画笔相反方向移动snowsize像素长度
p.right(360 / dens) # 顺时针移动360 / dens度
绘制地面
def ground(ground_line_count):
p.hideturtle()
p.speed(500)
for i in range(ground_line_count):
p.pensize(random.randint(5, 10))
x = random.randint(-400, 350)
y = random.randint(-280, -1)
r = -y / 280
g = -y / 280
b = -y / 280
p.pencolor(r, g, b)
p.penup() # 抬起画笔
p.goto(x, y) # 让画笔移动到此位置
p.pendown() # 放下画笔
p.forward(random.randint(40, 100)) # 眼当前画笔方向向前移动40~100距离
主函数
def main():
p.setup(800, 600, 0, 0)
# p.tracer(False)
p.bgcolor("black")
snow(30)
ground(30)
# p.tracer(True)
p.mainloop()
main()
动态图结果展示:
import hashlib
import pandas as pd
from wordcloud import WordCloud
geo_data=pd.read_excel(r"../data/geo_data.xlsx")
print(geo_data)
# 0 深圳
# 1 深圳
# 2 深圳
# 3 深圳
# 4 深圳
# 5 深圳
# 6 深圳
# 7 广州
# 8 广州
# 9 广州
words = ','.join(x for x in geo_data['city'] if x != []) #筛选出非空列表值
wc = WordCloud(
background_color="green", #背景颜色"green"绿色
max_words=100, #显示最大词数
font_path='./fonts/simhei.ttf', #显示中文
min_font_size=5,
max_font_size=100,
width=500 #图幅宽度
)
x = wc.generate(words)
x.to_file('../data/geo_data.png')
#柱状图+折线图
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=[0, 1, 2, 3, 4, 5],
y=[1.5, 1, 1.3, 0.7, 0.8, 0.9]
))
fig.add_trace(
go.Bar(
x=[0, 1, 2, 3, 4, 5],
y=[2, 0.5, 0.7, -1.2, 0.3, 0.4]
))
fig.show()
# 导入库
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 生成数据集
data = np.random.random((6,6))
np.fill_diagonal(data,np.ones(6))
features = ["prop1","prop2","prop3","prop4","prop5", "prop6"]
data = pd.DataFrame(data, index = features, columns=features)
print(data)
# 绘制热力图
heatmap_plot = sns.heatmap(data, center=0, cmap='gist_rainbow')
plt.show()
模块名称:example_utils.py,里面包括三个函数,各自功能如下:
import matplotlib.pyplot as plt
# 创建画图fig和axes
def setup_axes():
fig, axes = plt.subplots(ncols=3, figsize=(6.5,3))
for ax in fig.axes:
ax.set(xticks=[], yticks=[])
fig.subplots_adjust(wspace=0, left=0, right=0.93)
return fig, axes
# 图片标题
def title(fig, text, y=0.9):
fig.suptitle(text, size=14, y=y, weight='semibold', x=0.98, ha='right',
bbox=dict(boxstyle='round', fc='floralwhite', ec='#8B7E66',
lw=2))
# 为数据添加文本注释
def label(ax, text, y=0):
ax.annotate(text, xy=(0.5, 0.00), xycoords='axes fraction', ha='center',
style='italic',
bbox=dict(boxstyle='round', facecolor='floralwhite',
ec='#8B7E66'))
import numpy as np
import matplotlib.pyplot as plt
import example_utils
x = np.linspace(0, 10, 100)
fig, axes = example_utils.setup_axes()
for ax in axes:
ax.margins(y=0.10)
# 子图1 默认plot多条线,颜色系统分配
for i in range(1, 6):
axes[0].plot(x, i * x)
# 子图2 展示线的不同linestyle
for i, ls in enumerate(['-', '--', ':', '-.']):
axes[1].plot(x, np.cos(x) + i, linestyle=ls)
# 子图3 展示线的不同linestyle和marker
for i, (ls, mk) in enumerate(zip(['', '-', ':'], ['o', '^', 's'])):
axes[2].plot(x, np.cos(x) + i * x, linestyle=ls, marker=mk, markevery=10)
# 设置标题
# example_utils.title(fig, '"ax.plot(x, y, ...)": Lines and/or markers', y=0.95)
# 保存图片
fig.savefig('plot_example.png', facecolor='none')
# 展示图片
plt.show()
对应代码:
"""
散点图的基本用法
"""
import numpy as np
import matplotlib.pyplot as plt
import example_utils
# 随机生成数据
np.random.seed(1874)
x, y, z = np.random.normal(0, 1, (3, 100))
t = np.arctan2(y, x)
size = 50 * np.cos(2 * t)**2 + 10
fig, axes = example_utils.setup_axes()
# 子图1
axes[0].scatter(x, y, marker='o', color='darkblue', facecolor='white', s=80)
example_utils.label(axes[0], 'scatter(x, y)')
# 子图2
axes[1].scatter(x, y, marker='s', color='darkblue', s=size)
example_utils.label(axes[1], 'scatter(x, y, s)')
# 子图3
axes[2].scatter(x, y, s=size, c=z, cmap='gist_ncar')
example_utils.label(axes[2], 'scatter(x, y, s, c)')
# example_utils.title(fig, '"ax.scatter(...)": Colored/scaled markers',
# y=0.95)
fig.savefig('scatter_example.png', facecolor='none')
plt.show()
对应代码:
import numpy as np
import matplotlib.pyplot as plt
import example_utils
def main():
fig, axes = example_utils.setup_axes()
basic_bar(axes[0])
tornado(axes[1])
general(axes[2])
# example_utils.title(fig, '"ax.bar(...)": Plot rectangles')
fig.savefig('bar_example.png', facecolor='none')
plt.show()
# 子图1
def basic_bar(ax):
y = [1, 3, 4, 5.5, 3, 2]
err = [0.2, 1, 2.5, 1, 1, 0.5]
x = np.arange(len(y))
ax.bar(x, y, yerr=err, color='lightblue', ecolor='black')
ax.margins(0.05)
ax.set_ylim(bottom=0)
example_utils.label(ax, 'bar(x, y, yerr=e)')
# 子图2
def tornado(ax):
y = np.arange(8)
x1 = y + np.random.random(8) + 1
x2 = y + 3 * np.random.random(8) + 1
ax.barh(y, x1, color='lightblue')
ax.barh(y, -x2, color='salmon')
ax.margins(0.15)
example_utils.label(ax, 'barh(x, y)')
# 子图3
def general(ax):
num = 10
left = np.random.randint(0, 10, num)
bottom = np.random.randint(0, 10, num)
width = np.random.random(num) + 0.5
height = np.random.random(num) + 0.5
ax.bar(left, height, width, bottom, color='salmon')
ax.margins(0.15)
example_utils.label(ax, 'bar(l, h, w, b)')
main()
对应代码:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cbook import get_sample_data
import example_utils
z = np.load(get_sample_data('bivariate_normal.npy'))
fig, axes = example_utils.setup_axes()
axes[0].contour(z, cmap='gist_earth')
example_utils.label(axes[0], 'contour')
axes[1].contourf(z, cmap='gist_earth')
example_utils.label(axes[1], 'contourf')
axes[2].contourf(z, cmap='gist_earth')
cont = axes[2].contour(z, colors='black')
axes[2].clabel(cont, fontsize=6)
example_utils.label(axes[2], 'contourf + contour\n + clabel')
# example_utils.title(fig, '"contour, contourf, clabel": Contour/label 2D data',
# y=0.96)
fig.savefig('contour_example.png', facecolor='none')
plt.show()
对应代码:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cbook import get_sample_data
from mpl_toolkits import axes_grid1
import example_utils
def main():
fig, axes = setup_axes()
plot(axes, *load_data())
# example_utils.title(fig, '"ax.imshow(data, ...)": Colormapped or RGB arrays')
fig.savefig('imshow_example.png', facecolor='none')
plt.show()
def plot(axes, img_data, scalar_data, ny):
# 默认线性插值
axes[0].imshow(scalar_data, cmap='gist_earth', extent=[0, ny, ny, 0])
# 最近邻插值
axes[1].imshow(scalar_data, cmap='gist_earth', interpolation='nearest',
extent=[0, ny, ny, 0])
# 展示RGB/RGBA数据
axes[2].imshow(img_data)
def load_data():
img_data = plt.imread(get_sample_data('5.png'))
ny, nx, nbands = img_data.shape
scalar_data = np.load(get_sample_data('bivariate_normal.npy'))
return img_data, scalar_data, ny
def setup_axes():
fig = plt.figure(figsize=(6, 3))
axes = axes_grid1.ImageGrid(fig, [0, 0, .93, 1], (1, 3), axes_pad=0)
for ax in axes:
ax.set(xticks=[], yticks=[])
return fig, axes
main()
使用pip install pyecharts 安装,版本为 v1.6,pyecharts绘制仪表盘,只需要几行代码:
from pyecharts import charts
# 仪表盘
gauge = charts.Gauge()
gauge.add('Python小例子', [('Python机器学习', 30), ('Python基础', 70.),
('Python正则', 90)])
gauge.render(path="./data/仪表盘.html")
print('ok')
仪表盘中共展示三项,每项的比例为30%,70%,90%,如下图默认名称显示第一项:Python机器学习,完成比例为30%
from pyecharts import options as opts
from pyecharts.charts import Funnel, Page
from random import randint
def funnel_base() -> Funnel:
c = (
Funnel()
.add("豪车", [list(z) for z in zip(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'],
[randint(1, 20) for _ in range(7)])])
.set_global_opts(title_opts=opts.TitleOpts(title="豪车漏斗图"))
)
return c
funnel_base().render('./img/car_fnnel.html')
以7种车型及某个属性值绘制的漏斗图,属性值大越靠近漏斗的大端。
import datetime
import random
from pyecharts import options as opts
from pyecharts.charts import Calendar
def calendar_interval_1() -> Calendar:
begin = datetime.date(2019, 1, 1)
end = datetime.date(2019, 12, 27)
data = [
[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
for i in range(0, (end - begin).days + 1, 2) # 隔天统计
]
calendar = (
Calendar(init_opts=opts.InitOpts(width="1200px")).add(
"", data, calendar_opts=opts.CalendarOpts(range_="2019"))
.set_global_opts(
title_opts=opts.TitleOpts(title="Calendar-2019年步数统计"),
visualmap_opts=opts.VisualMapOpts(
max_=25000,
min_=1000,
orient="horizontal",
is_piecewise=True,
pos_top="230px",
pos_left="100px",
),
)
)
return calendar
calendar_interval_1().render('./img/calendar.html')
绘制2019年1月1日到12月27日的步行数,官方给出的图形宽度900px
不够,只能显示到9月份,本例使用opts.InitOpts(width="1200px")
做出微调,并且visualmap
显示所有步数,每隔一天显示一次:
import json
import os
from pyecharts import options as opts
from pyecharts.charts import Graph, Page
def graph_base() -> Graph:
nodes = [
{"name": "cus1", "symbolSize": 10},
{"name": "cus2", "symbolSize": 30},
{"name": "cus3", "symbolSize": 20}
]
links = []
for i in nodes:
if i.get('name') == 'cus1':
continue
for j in nodes:
if j.get('name') == 'cus1':
continue
links.append({"source": i.get("name"), "target": j.get("name")})
c = (
Graph()
.add("", nodes, links, repulsion=8000)
.set_global_opts(title_opts=opts.TitleOpts(title="customer-influence"))
)
return c
构建图,其中客户点1与其他两个客户都没有关系(link
),也就是不存在有效边:
from pyecharts import options as opts
from pyecharts.charts import Liquid, Page
from pyecharts.globals import SymbolType
def liquid() -> Liquid:
c = (
Liquid()
.add("lq", [0.67, 0.30, 0.15])
.set_global_opts(title_opts=opts.TitleOpts(title="Liquid"))
)
return c
liquid().render('./img/liquid.html')
水球图的取值[0.67, 0.30, 0.15]
表示下图中的三个波浪线
,一般代表三个百分比:
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint
def pie_base() -> Pie:
c = (
Pie()
.add("", [list(z) for z in zip(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'],
[randint(1, 20) for _ in range(7)])])
.set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
return c
pie_base().render('./img/pie_pyecharts.html')
import random
from pyecharts import options as opts
from pyecharts.charts import Page, Polar
def polar_scatter0() -> Polar:
data = [(alpha, random.randint(1, 100)) for alpha in range(101)] # r = random.randint(1, 100)
print(data)
c = (
Polar()
.add("", data, type_="bar", label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Polar"))
)
return c
polar_scatter0().render('./img/polar.html')
极坐标表示为(夹角,半径)
,如(6,94)表示夹角为6,半径94的点:
from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
from pyecharts.globals import SymbolType
words = [
("Python", 100),
("C++", 80),
("Java", 95),
("R", 50),
("JavaScript", 79),
("C", 65)
]
def wordcloud() -> WordCloud:
c = (
WordCloud()
# word_size_range: 单词字体大小范围
.add("", words, word_size_range=[20, 100], shape='cardioid')
.set_global_opts(title_opts=opts.TitleOpts(title="WordCloud"))
)
return c
wordcloud().render('./img/wordcloud.html')
("C",65)
表示在本次统计中C语言出现65次
from pyecharts import options as opts
from pyecharts.charts import Bar
from random import randint
def bar_series() -> Bar:
c = (
Bar()
.add_xaxis(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'])
.add_yaxis("销量", [randint(1, 20) for _ in range(7)])
.add_yaxis("产量", [randint(1, 20) for _ in range(7)])
.set_global_opts(title_opts=opts.TitleOpts(title="Bar的主标题", subtitle="Bar的副标题"))
)
return c
bar_series().render('./img/bar_series.html')
import random
from pyecharts import options as opts
from pyecharts.charts import HeatMap
def heatmap_car() -> HeatMap:
x = ['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉']
y = ['中国','日本','南非','澳大利亚','阿根廷','阿尔及利亚','法国','意大利','加拿大']
value = [[i, j, random.randint(0, 100)]
for i in range(len(x)) for j in range(len(y))]
c = (
HeatMap()
.add_xaxis(x)
.add_yaxis("销量", y, value)
.set_global_opts(
title_opts=opts.TitleOpts(title="HeatMap"),
visualmap_opts=opts.VisualMapOpts(),
)
)
return c
heatmap_car().render('./img/heatmap_pyecharts.html')
热力图描述的实际是三维关系,x轴表示车型,y轴表示国家,每个色块的颜色值代表销量,颜色刻度尺显示在左下角,颜色越红表示销量越大。
matplotlib
是python中最经典的绘图包,里面animation
模块能绘制动画。
首先导入小例子使用的模块:
from matplotlib import pyplot as plt
from matplotlib import animation
from random import randint, random
生成数据,frames_count
是帧的个数,data_count
每个帧的柱子个数
class Data:
data_count = 32
frames_count = 2
def __init__(self, value):
self.value = value
self.color = (0.5, random(), random()) #rgb
# 造数据
@classmethod
def create(cls):
return [[Data(randint(1, cls.data_count)) for _ in range(cls.data_count)]
for frame_i in range(cls.frames_count)]
绘制动画:animation.FuncAnimation
函数的回调函数的参数fi
表示第几帧,注意要调用axs.cla()
清除上一帧。
def draw_chart():
fig = plt.figure(1, figsize=(16, 9))
axs = fig.add_subplot(111)
axs.set_xticks([])
axs.set_yticks([])
# 生成数据
frames = Data.create()
def animate(fi):
axs.cla() # clear last frame
axs.set_xticks([])
axs.set_yticks([])
return axs.bar(list(range(Data.data_count)), # X
[d.value for d in frames[fi]], # Y
1, # width
color=[d.color for d in frames[fi]] # color
)
# 动画展示
anim = animation.FuncAnimation(fig, animate, frames=len(frames))
plt.show()
draw_chart()
昨天一位读者朋友问我pyecharts
中,y轴如何显示在右侧。先说下如何设置,同时阐述例子君是如何找到找到此属性的。
这是pyecharts中一般的绘图步骤:
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
def bar_base() -> Bar:
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
)
return c
bar_base().render('./bar.html')
那么,如何设置y轴显示在右侧,添加一行代码:
.set_global_opts(yaxis_opts=opts.AxisOpts(position='right'))
也就是:
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
.set_global_opts(yaxis_opts=opts.AxisOpts(position='right'))
)
如何锁定这个属性,首先应该在set_global_opts函数的参数中找,它一共有以下11
个设置参数,它们位于模块charts.py
:
title_opts: types.Title = opts.TitleOpts(),
legend_opts: types.Legend = opts.LegendOpts(),
tooltip_opts: types.Tooltip = None,
toolbox_opts: types.Toolbox = None,
brush_opts: types.Brush = None,
xaxis_opts: types.Axis = None,
yaxis_opts: types.Axis = None,
visualmap_opts: types.VisualMap = None,
datazoom_opts: types.DataZoom = None,
graphic_opts: types.Graphic = None,
axispointer_opts: types.AxisPointer = None,
因为是设置y轴显示在右侧,自然想到设置参数yaxis_opts
,因为其类型为types.Axis
,所以再进入types.py
,同时定位到Axis
:
Axis = Union[opts.AxisOpts, dict, None]
Union是pyecharts中可容纳多个类型的并集列表,也就是Axis可能为opts.AxisOpt
, dict
, 或None
三种类型。查看第一个opts.AxisOpt
类,它共定义以下25
个参数:
type_: Optional[str] = None,
name: Optional[str] = None,
is_show: bool = True,
is_scale: bool = False,
is_inverse: bool = False,
name_location: str = "end",
name_gap: Numeric = 15,
name_rotate: Optional[Numeric] = None,
interval: Optional[Numeric] = None,
grid_index: Numeric = 0,
position: Optional[str] = None,
offset: Numeric = 0,
split_number: Numeric = 5,
boundary_gap: Union[str, bool, None] = None,
min_: Union[Numeric, str, None] = None,
max_: Union[Numeric, str, None] = None,
min_interval: Numeric = 0,
max_interval: Optional[Numeric] = None,
axisline_opts: Union[AxisLineOpts, dict, None] = None,
axistick_opts: Union[AxisTickOpts, dict, None] = None,
axislabel_opts: Union[LabelOpts, dict, None] = None,
axispointer_opts: Union[AxisPointerOpts, dict, None] = None,
name_textstyle_opts: Union[TextStyleOpts, dict, None] = None,
splitarea_opts: Union[SplitAreaOpts, dict, None] = None,
splitline_opts: Union[SplitLineOpts, dict] = SplitLineOpts(),
观察后尝试参数position
,结合官档:https://pyecharts.org/#/zh-cn/global_options?id=axisopts%ef%bc%9a%e5%9d%90%e6%a0%87%e8%bd%b4%e9%85%8d%e7%bd%ae%e9%a1%b9
,介绍x轴设置position时有bottom, top, 所以y轴设置很可能就是left,right.
OK!
分步讲解如何配置为上图
1)柱状图显示效果动画对应控制代码:
animation_opts=opts.AnimationOpts(
animation_delay=500, animation_easing="cubicOut"
)
2)柱状图显示主题对应控制代码:
theme=ThemeType.MACARONS
3)添加x轴对应的控制代码:
add_xaxis( ["草莓", "芒果", "葡萄", "雪梨", "西瓜", "柠檬", "车厘子"]
4)添加y轴对应的控制代码:
add_yaxis("A", Faker.values(),
5)修改柱间距对应的控制代码:
category_gap="50%"
6)A系列柱子是否显示对应的控制代码:
is_selected=True
7)A系列柱子颜色渐变对应的控制代码:
itemstyle_opts={
"normal": {
"color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""),
"barBorderRadius": [6, 6, 6, 6],
"shadowColor": 'rgb(0, 160, 221)',
}}
8)A系列柱子最大和最小值标记点
对应的控制代码:
markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_="max", name="最大值"),
opts.MarkPointItem(type_="min", name="最小值"),
]
)
9)A系列柱子最大和最小值标记线
对应的控制代码:
markline_opts=opts.MarkLineOpts(
data=[
opts.MarkLineItem(type_="min", name="最小值"),
opts.MarkLineItem(type_="max", name="最大值")
]
)
10)柱状图标题对应的控制代码:
title_opts=opts.TitleOpts(title="Bar-参数使用例子"
11)柱状图非常有用的toolbox显示对应的控制代码:
toolbox_opts=opts.ToolboxOpts()
12)Y轴显示在右侧对应的控制代码:
yaxis_opts=opts.AxisOpts(position="right")
13)Y轴名称对应的控制代码:
yaxis_opts=opts.AxisOpts(,name="Y轴")
14)数据轴区域放大缩小设置对应的控制代码:
datazoom_opts=opts.DataZoomOpts()
完整代码
def bar_border_radius():
c = (
Bar(init_opts=opts.InitOpts(
animation_opts=opts.AnimationOpts(
animation_delay=500, animation_easing="cubicOut"
),
theme=ThemeType.MACARONS))
.add_xaxis( ["草莓", "芒果", "葡萄", "雪梨", "西瓜", "柠檬", "车厘子"])
.add_yaxis("A", Faker.values(),category_gap="50%",markpoint_opts=opts.MarkPointOpts(),is_selected=True)
.set_series_opts(itemstyle_opts={
"normal": {
"color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""),
"barBorderRadius": [6, 6, 6, 6],
"shadowColor": 'rgb(0, 160, 221)',
}}, markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_="max", name="最大值"),
opts.MarkPointItem(type_="min", name="最小值"),
]
),markline_opts=opts.MarkLineOpts(
data=[
opts.MarkLineItem(type_="min", name="最小值"),
opts.MarkLineItem(type_="max", name="最大值")
]
))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-参数使用例子"), toolbox_opts=opts.ToolboxOpts(),yaxis_opts=opts.AxisOpts(position="right",name="Y轴"),datazoom_opts=opts.DataZoomOpts(),)
)
return c
bar_border_radius().render()
最近两天,翻看下pyecharts
的源码,感叹这个框架写的真棒,思路清晰,设计简洁,通俗易懂,推荐读者们有空也阅读下。
bee君是被pyecharts官档介绍-五个特性所吸引:
1)简洁的 API 设计,使用如丝滑般流畅,支持链式调用;
2)囊括了 30+ 种常见图表,应有尽有;
3)支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab;
4)可轻松集成至 Flask,Django 等主流 Web 框架;
5)高度灵活的配置项,可轻松搭配出精美的图表
pyecharts 确实也如上面五个特性介绍那样,使用起来非常方便。那么,有些读者不禁好奇会问,pyecharts 是如何做到的?
我们不妨从pyecharts官档5分钟入门pyecharts
章节开始,由表(最高层函数)及里(底层函数也就是所谓的源码
),一探究竟。
官方第一个例子
不妨从官档给出的第一个例子说起,
from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
# render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
# 也可以传入路径参数,如 bar.render("mycharts.html")
bar.render()
第一行代码:from pyecharts.charts import Bar
,先上一张源码中包的结构图
:
bar.py
模块中定义了类Bar(RectChart)
,如下所示:
class Bar(RectChart):
"""
<<< Bar Chart >>>
Bar chart presents categorical data with rectangular bars
with heights or lengths proportional to the values that they represent.
"""
这里有读者可能会有以下两个问题:
1)为什么根据图1中的包结构,为什么不这么写:from pyecharts.charts.basic_charts import Bar
答:请看图2中__init__.py
模块,文件内容如下,看到导入charts
包,而非charts.basic_charts
from pyecharts import charts, commons, components, datasets, options, render, scaffold
from pyecharts._version import __author__, __version__
2)Bar(RectChart)
是什么意思
答:RectChart是Bar的子类
下面4行代码,很好理解,没有特殊性。
pyecharts主要两个大版本,0.5基版本和1.0基版本,从1.0基版本开始全面支持链式调用
,bee君也很喜爱这种链式调用模式,代码看起来更加紧凑:
from pyecharts.charts import Bar
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
bar.render()
实现链式调用
也没有多难,保证返回类本身self
即可,如果非要有其他返回对象,那么要提到类内以便被全局共享,
add_xaxis函数返回self
def add_xaxis(self, xaxis_data: Sequence):
self.options["xAxis"][0].update(data=xaxis_data)
self._xaxis_data = xaxis_data
return self
add_yaxis函数同样返回self
.
一切皆options
pyecharts用起来很爽的另一个重要原因,参数配置项
封装的非常nice,通过定义一些列基础的配置组件,比如global_options.py
模块中定义的配置对象有以下27
个
AngleAxisItem,
AngleAxisOpts,
AnimationOpts,
Axis3DOpts,
AxisLineOpts,
AxisOpts,
AxisPointerOpts,
AxisTickOpts,
BrushOpts,
CalendarOpts,
DataZoomOpts,
Grid3DOpts,
GridOpts,
InitOpts,
LegendOpts,
ParallelAxisOpts,
ParallelOpts,
PolarOpts,
RadarIndicatorItem,
RadiusAxisItem,
RadiusAxisOpts,
SingleAxisOpts,
TitleOpts,
ToolBoxFeatureOpts,
ToolboxOpts,
TooltipOpts,
VisualMapOpts,
第二个例子
了解上面的配置对象后,再看官档给出的第二个例子,与第一个例子相比,增加了一行代码:set_global_opts
函数
from pyecharts.charts import Bar
from pyecharts import options as opts
# V1 版本开始支持链式调用
# 你所看到的格式其实是 `black` 格式化以后的效果
# 可以执行 `pip install black` 下载使用
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
bar.render()
set_global_opts
函数在pyecharts中被高频使用,它定义在底层基础模块Chart.py
中,它是前面说到的RectChart
的子类,Bar
类的孙子类。
浏览下函数的参数:
def set_global_opts(
self,
title_opts: types.Title = opts.TitleOpts(),
legend_opts: types.Legend = opts.LegendOpts(),
tooltip_opts: types.Tooltip = None,
toolbox_opts: types.Toolbox = None,
brush_opts: types.Brush = None,
xaxis_opts: types.Axis = None,
yaxis_opts: types.Axis = None,
visualmap_opts: types.VisualMap = None,
datazoom_opts: types.DataZoom = None,
graphic_opts: types.Graphic = None,
axispointer_opts: types.AxisPointer = None,
):
以第二个参数title_opts
为例,说明pyecharts
中参数赋值的风格。
首先,title_opts
是默认参数
,默认值为opts.TitleOpts()
,这个对象在上一节中,我们提到过,是global_options.py
模块中定义的27
个配置对象种的一个。
其次,pyecharts中为了增强代码可读性,参数的类型都显示的给出。此处它的类型为:types.Title
. 这是什么类型?它的类型不是TitleOpts
吗?不急,看看Title这个类型的定义:
Title = Union[opts.TitleOpts, dict]
原来Title
可能是opts.TitleOpts
, 也可能是python原生的dict
. 通过Union
实现的就是这种类型效果
。所以这就解释了官档中为什么说也可以使用字典配置参数的问题,如下官档:
# 或者直接使用字典参数
# .set_global_opts(title_opts={"text": "主标题", "subtext": "副标题"})
)
最后,真正的关于图表的标题相关的属性都被封装到TitleOpts类中,比如title
,subtitle
属性,查看源码,TitleOpts对象还有更多属性:
class TitleOpts(BasicOpts):
def __init__(
self,
title: Optional[str] = None,
title_link: Optional[str] = None,
title_target: Optional[str] = None,
subtitle: Optional[str] = None,
subtitle_link: Optional[str] = None,
subtitle_target: Optional[str] = None,
pos_left: Optional[str] = None,
pos_right: Optional[str] = None,
pos_top: Optional[str] = None,
pos_bottom: Optional[str] = None,
padding: Union[Sequence, Numeric] = 5,
item_gap: Numeric = 10,
title_textstyle_opts: Union[TextStyleOpts, dict, None] = None,
subtitle_textstyle_opts: Union[TextStyleOpts, dict, None] = None,
):
OK. 到此跟随5分钟入门的官档,结合两个例子实现的背后源码,探讨了:
1)与包结构组织相关的__init__.py
;
2)类的继承关系:Bar->RectChart->Chart;
3)链式调用;
4)重要的参数配置包options
,以TitleOpts类为例,set_global_opts
将它装载到Bar类中实现属性自定义。
seaborn 绘图库,基于 matplotlib 开发,提供更高层绘图接口。
学习使用 seaborn 绘制 pairplot
图
pairplot
图能直观的反映出两两特征间的关系,帮助我们对数据集建立初步印象,更好的完成分类和聚类任务。
使用 skearn 导入经典的 Iris 数据集,共有 150 条记录,4 个特征,target 有三种不同值。如下所示:
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
.. ... ... ... ... ...
145 6.7 3.0 5.2 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 virginica
149 5.9 3.0 5.1 1.8 virginica
使用 seaborn 绘制 sepal_length
, petal_length
两个特征间的关系矩阵:
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import tree
sns.set(style="ticks")
df02 = df.iloc[:,[0,2,4]] # 选择一对特征
sns.pairplot(df02)
plt.show()
设置颜色多显:
sns.pairplot(df02, hue="species")
plt.show()
绘制所有特征散点矩阵:
sns.pairplot(df, hue="species")
plt.show()
Python中有些函数的参数类型为元组,其内有1个元素,这样创建是错误的:
c = (5) # NO!
它实际创建一个整型元素5,必须要在元素后加一个逗号
:
c = (5,) # YES!
含有默认参数的函数,如果类型为容器,且设置为空:
def f(a,b=[]): # NO!
print(b)
return b
ret = f(1)
ret.append(1)
ret.append(2)
# 当再调用f(1)时,预计打印为 []
f(1)
# 但是却为 [1,2]
这是可变类型的默认参数之坑,请务必设置此类默认参数为None:
def f(a,b=None): # YES!
pass
有时想要多个函数共享一个全局变量,但却在某个函数内试图修改它为局部变量:
i = 1
def f():
i+=1 #NO!
def g():
print(i)
应该在f函数内显示声明i
为global变量:
i = 1
def f():
global i # YES!
i+=1
排序和分组的key函数常使用lambda,表达更加简洁,但是有个坑新手容易掉进去:
a = [lambda x: x+i for i in range(3)] # NO!
for f in a:
print(f(1))
# 你可能期望输出:1,2,3
但是实际却输出: 3,3,3. 定义lambda使用的i
被称为自由参数,它只在调用lambda函数时,值才被真正确定下来,这就犹如下面打印出2,你肯定确信无疑吧。
a = 0
a = 1
a = 2
def f(a):
print(a)
正确做法是转化自由参数
为lambda函数的默认参数
:
a = [lambda x,i=i: x+i for i in range(3)] # YES!
Python强大多变,原因之一在于函数参数类型的多样化。方便的同时,也为使用者带来更多的约束规则。如果不了解这些规则,调用函数时,可能会出现如下一些语法异常:
(1) SyntaxError: positional argument follows keyword argument
(2) TypeError: f() missing 1 required keyword-only argument: 'b'
(3) SyntaxError: keyword argument repeated
(4) TypeError: f() missing 1 required positional argument: 'b'
(5) TypeError: f() got an unexpected keyword argument 'a'
(6) TypeError: f() takes 0 positional arguments but 1 was given
总结主要的参数使用规则
位置参数
位置参数
的定义:函数调用
时根据函数定义的参数位(形参)置来传递参数,是最常见的参数类型。
def f(a):
return a
f(1) # 位置参数
位置参数不能缺少:
def f(a,b):
pass
f(1) # TypeError: f() missing 1 required positional argument: 'b'
规则1:位置参数必须一一对应,缺一不可
关键字参数
在函数调用时,通过‘键--值’方式为函数形参传值,不用按照位置为函数形参传值。
def f(a):
print(f'a:{a}')
这么调用,a
就是关键字参数:
f(a=1)
但是下面调用就不OK:
f(a=1,20.) # SyntaxError: positional argument follows keyword argument
规则2:关键字参数必须在位置参数右边
下面调用也不OK:
f(1,width=20.,width=30.) #SyntaxError: keyword argument repeated
规则3:对同一个形参不能重复传值
默认参数
在定义函数时,可以为形参提供默认值。对于有默认值的形参,调用函数时如果为该参数传值,则使用传入的值,否则使用默认值。如下b
是默认参数:
def f(a,b=1):
print(f'a:{a}, b:{b}')
规则4:无论是函数的定义还是调用,默认参数的定义应该在位置形参右面
只在定义时赋值一次;默认参数通常应该定义成不可变类型
可变位置参数
如下定义的参数a为可变位置参数:
def f(*a):
print(a)
调用方法:
f(1) #打印结果为元组: (1,)
f(1,2,3) #打印结果:(1, 2, 3)
但是,不能这么调用:
f(a=1) # TypeError: f() got an unexpected keyword argument 'a'
可变关键字参数
如下a
是可变关键字参数:
def f(**a):
print(a)
调用方法:
f(a=1) #打印结果为字典:{'a': 1}
f(a=1,b=2,width=3) #打印结果:{'a': 1, 'b': 2, 'width': 3}
但是,不能这么调用:
f(1) TypeError: f() takes 0 positional arguments but 1 was given
接下来,单独推送分析一个小例子,综合以上各种参数类型的函数及调用方法,敬请关注。
删除一个列表中的元素,此元素可能在列表中重复多次:
def del_item(lst,e):
return [lst.remove(i) for i in e if i==e] # NO!
考虑删除这个序列[1,3,3,3,5]中的元素3,结果发现只删除其中两个:
del_item([1,3,3,3,5],3) # 结果:[1,3,5]
正确做法:
def del_item(lst,e):
d = dict(zip(range(len(lst)),lst)) # YES! 构造字典
return [v for k,v in d.items() if v!=e]
在python中*
与列表操作,实现快速元素复制:
a = [1,3,5] * 3 # [1,3,5,1,3,5,1,3,5]
a[0] = 10 # [10, 2, 3, 1, 2, 3, 1, 2, 3]
如果列表元素为列表或字典等复合类型:
a = [[1,3,5],[2,4]] * 3 # [[1, 3, 5], [2, 4], [1, 3, 5], [2, 4], [1, 3, 5], [2, 4]]
a[0][0] = 10 #
结果可能出乎你的意料,其他a[1[0]
等也被修改为10
[[10, 3, 5], [2, 4], [10, 3, 5], [2, 4], [10, 3, 5], [2, 4]]
这是因为*复制的复合对象都是浅引用,也就是说id(a[0])与id(a[2])门牌号是相等的。如果想要实现深复制效果,这么做:
a = [[] for _ in range(3)]
In [1]: a = 'something'
...: b = 'some'+'thing'
...: id(a)==id(b)
Out[1]: True
如果上面例子返回True
,但是下面例子为什么是False
:
In [1]: a = '@zglg.com'
In [2]: b = '@zglg'+'.com'
In [3]: id(a)==id(b)
Out[3]: False
这与Cpython 编译优化相关,行为称为字符串驻留
,但驻留的字符串中只包含字母,数字或下划线。
In [5]: d = {}
...: d[1] = 'java'
...: d[1.0] = 'python'
In [6]: d
Out[6]: {1: 'python'}
### key=1,value=java的键值对神奇消失了
In [7]: d[1]
Out[7]: 'python'
In [8]: d[1.0]
Out[8]: 'python'
这是因为具有相同值的不可变对象在Python中始终具有相同的哈希值
由于存在哈希冲突
,不同值的对象也可能具有相同的哈希值。
创建一个类SE
:
class SE(object):
def __init__(self):
print('init')
def __del__(self):
print('del')
创建两个SE实例,使用is
判断:
In [63]: SE() is SE()
init
init
del
del
Out[63]: False
创建两个SE实例,使用id
判断:
In [64]: id(SE()) == id(SE())
init
del
init
del
Out[64]: True
调用id
函数, Python 创建一个 SE 类的实例,并使用id
函数获得内存地址后,销毁内存丢弃这个对象。
当连续两次进行此操作, Python会将相同的内存地址分配给第二个对象,所以两个对象的id值是相同的.
但是is行为却与之不同,通过打印顺序就可以看到。
In [65]: for i in range(5):
...: print(i)
...: i = 10
0
1
2
3
4
为什么不是执行一次就退出?
按照for在Python中的工作方式, i = 10 并不会影响循环。range(5)生成的下一个元素就被解包,并赋值给目标列表的变量i
.
array = [1, 3, 5]
g = (x for x in array if array.count(x) > 0)
g
为生成器,list(g)后返回[1,3,5]
,因为每个元素肯定至少都出现一次。所以这个结果这不足为奇。但是,请看下例:
array = [1, 3, 5]
g = (x for x in array if array.count(x) > 0)
array = [5, 7, 9]
请问,list(g)等于多少?这不是和上面那个例子结果一样吗,结果也是[1,3,5]
,但是:
In [74]: list(g)
Out[74]: [5]
这有些不可思议~~ 原因在于:
生成器表达式中, in 子句在声明时执行, 而条件子句则是在运行时执行。
所以代码:
array = [1, 3, 5]
g = (x for x in array if array.count(x) > 0)
array = [5, 7, 9]
等价于:
g = (x for x in [1,3,5] if [5,7,9].count(x) > 0)
这是Python的一个集合:{1,3,5}
,它里面没有重复元素,在去重等场景有重要应用。下面这样创建空集合是错误的:
empty = {} #NO!
cpython会解释它为字典
使用内置函数set()
创建空集合:
empty = set() #YES!
echarts使用广泛,echarts+python结合后的包:pyecharts,同样可很好用,但是传入Numpy的数据,像下面这样绘图会失败:
from pyecharts.charts import Bar
import pyecharts.options as opts
import numpy as np
c = (
Bar()
.add_xaxis([1, 2, 3, 4, 5])
# 传入Numpy数据绘图失败!
.add_yaxis("商家A", np.array([0.1, 0.2, 0.3, 0.4, 0.5]))
)
c.render()
由此可见pyecharts对Numpy数据绘图不支持,传入原生Python的list:
from pyecharts.charts import Bar
import pyecharts.options as opts
import numpy as np
c = (
Bar()
.add_xaxis([1, 2, 3, 4, 5])
# 传入Python原生list
.add_yaxis("商家A", np.array([0.1, 0.2, 0.3, 0.4, 0.5]).tolist())
)
c.render()
一行代码优化输出的异常信息
pip install pretty-errors
写一个函数测试:
def divided_zero():
for i in range(10, -1, -1):
print(10/i)
divided_zero()
在没有import这个pretty-errors
前,输出的错误信息有些冗余:
Traceback (most recent call last):
File "c:\Users\HUAWEI\.vscode\extensions\ms-python.python-2019.11.50794\pythonFiles\ptvsd_launcher.py", line 43, in <module>
main(ptvsdArgs)
File "c:\Users\HUAWEI\.vscode\extensions\ms-python.python-2019.11.50794\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py",
line 432, in main
run()
File "c:\Users\HUAWEI\.vscode\extensions\ms-python.python-2019.11.50794\pythonFiles\lib\python\old_ptvsd\ptvsd\__main__.py",
line 316, in run_file
runpy.run_path(target, run_name='__main__')
File "D:\anaconda3\lib\runpy.py", line 263, in run_path
pkg_name=pkg_name, script_name=fname)
File "D:\anaconda3\lib\runpy.py", line 96, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File "D:\anaconda3\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "d:\source\sorting-visualizer-master\sorting\debug_test.py", line 6, in <module>
divided_zero()
File "d:\source\sorting-visualizer-master\sorting\debug_test.py", line 3, in divided_zero
print(10/i)
ZeroDivisionError: division by zero
我们使用刚安装的pretty_errors
,import
下:
import pretty_errors
def divided_zero():
for i in range(10, -1, -1):
print(10/i)
divided_zero()
此时看看输出的错误信息,非常精简只有2行,去那些冗余信息:
ZeroDivisionError:
division by zero
完整的输出信息如下图片所示:
两行代码实现旋转和缩放图像
首先安装pillow:
pip install pillow
旋转图像下面图像45度:
In [1]: from PIL import Image
In [2]: im = Image.open('./img/plotly2.png')
In [4]: im.rotate(45).show()
旋转45度后的效果图
等比例缩放图像:
im.thumbnail((128,72),Image.ANTIALIAS)
缩放后的效果图:
过滤图像后的效果图:
from PIL import ImageFilter
im.filter(ImageFilter.CONTOUR).show()
兴高采烈地,从网页上抓取一段 content
但是,一 print
就不那么兴高采烈了,结果看到一串这个:
b'\xc8\xcb\xc9\xfa\xbf\xe0\xb6\xcc\xa3\xac\xce\xd2\xd3\xc3Python'
这是啥? 又 x 又 c 的!
再一看,哦,原来是十六进制字节串 (bytes
),\x
表示十六进制
接下来,你一定想转化为人类能看懂的语言,想到 decode
:
In [3]: b'\xc8\xcb\xc9\xfa\xbf\xe0\xb6\xcc\xa3\xac\xce\xd2\xd3\xc3Python'.decode()
UnicodeDecodeError Traceback (most recent call last)
<ipython-input-3-7d0ea6148880> in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc8 in position 0: invalid continuation byte
马上,一盆冷水泼头上,抛异常了。。。。。
根据提示,UnicodeDecodeError
,这是 unicode 解码错误。
原来,decode
默认的编码方法:utf-8
所以排除 b'\xc8\xcb\xc9\xfa\xbf\xe0\xb6\xcc\xa3\xac\xce\xd2\xd3\xc3Python' 使用 utf-8
的编码方式
可是,这不是四选一选择题啊,逐个排除不正确的!
编码方式几十种,不可能逐个排除吧。
那就猜吧!!!!!!!!!!!!!
人生苦短,我用Python
Python, 怎忍心让你受累呢~
尽量三行代码解决问题
第一步,安装 chardet 它是 char detect 的缩写。
第二步,pip install chardet
第三步,出结果
In [6]: chardet.detect(b'\xc8\xcb\xc9\xfa\xbf\xe0\xb6\xcc\xa3\xac\xce\xd2\xd3\xc3Python')
Out[6]: {'encoding': 'GB2312', 'confidence': 0.99, 'language': 'Chinese'}
编码方法:gb2312
解密字节串:
In [7]: b'\xc8\xcb\xc9\xfa\xbf\xe0\xb6\xcc\xa3\xac\xce\xd2\xd3\xc3Python'.decode('gb2312')
Out[7]: '人生苦短,我用Python'
目前,chardet
包支持的检测编码几十种,如下所示:
深刻研究排序算法是入门算法较为好的一种方法,现在还记得4年前手动实现常见8种排序算法,通过随机生成一些数据,逐个校验代码实现的排序过程是否与预期的一致,越做越有劲,越有劲越想去研究,公交车上,吃饭的路上。。。那些画面,现在依然记忆犹新。
能力有限,当时并没有生成排序过程的动画,所以这些年想着抽时间一定把排序的过程都制作成动画,然后分享出来,让更多的小伙伴看到,通过排序算法的动态演示动画,找到学习算法的真正乐趣,从而迈向一个新的认知领域。
当时我还是用C++写的,时过境迁,Python迅速崛起,得益于Python的简洁,接口易用,最近终于有人在github中开源了使用Python动画展示排序算法的项目,真是倍感幸运。
动画还是用matplotlib做出来的,这就更完美了,一边学完美的算法,一边还能提升Python熟练度,一边还能学到使用matplotlib制作动画。
快速排序动画展示
归并排序动画展示
堆排序动画展示
这些算法动画使用Matplotlib制作,接下来逐个补充。
学会第一部分如何制作动画后,可将此技术应用于排序算法调整过程的动态展示上。
首先生成测试使用的数据,待排序的数据个数至多20个
,待排序序列为random_wait_sort
,为每个值赋一个颜色值,这个由random_rgb
负责:
data_count = 20 # here, max value of data_count is 20
random_wait_sort = [12, 34, 32, 24, 28, 39, 5,
22, 11, 25, 33, 32, 1, 25, 3, 8, 7, 1, 34, 7]
random_rgb = [(0.5, 0.811565104942967, 0.11211028937187217),
(0.5, 0.5201323831224014, 0.6660999602342474),
(0.5, 0.575976663060455, 0.17788242607567772),
(0.5, 0.6880174797416493, 0.43581701833249353),
(0.5, 0.4443131322001743, 0.6993600264279745),
(0.5, 0.5538835821863523, 0.889276053938713),
(0.5, 0.4851681185146841, 0.7977608586163772),
(0.5, 0.3886717808488436, 0.09319137949618972),
(0.5, 0.8952456581687489, 0.8282376936934484),
(0.5, 0.16360202854998007, 0.4538892160157194),
(0.5, 0.23233400128809478, 0.8544141586189615),
(0.5, 0.5224648797546528, 0.8194014475829123),
(0.5, 0.49396099968405016, 0.47441724394796825),
(0.5, 0.12078104526714728, 0.7715022079860492),
(0.5, 0.19428498518228154, 0.08174917157481443),
(0.5, 0.6058698403873457, 0.6085936584142663),
(0.5, 0.7801178568951216, 0.6414767240649862),
(0.5, 0.4768865661174162, 0.3889866229610085),
(0.5, 0.4301945092238082, 0.961688141676841),
(0.5, 0.40496648895289855, 0.24234095882836093)]
再封装一个简单的数据对象Data
:
class Data:
def __init__(self, value, rgb):
self.value = value
self.color = rgb
# 造数据
@classmethod
def create(cls):
return [Data(val, rgb) for val, rgb in zip(random_wait_sort[:data_count],
random_rgb[:data_count])]
一旦发生调整,我们立即保存到帧列表frames
中,注意此处需要deepcopy
:
# 冒泡排序
def bubble_sort(waiting_sort_data):
frames = [waiting_sort_data]
ds = copy.deepcopy(waiting_sort_data)
for i in range(data_count-1):
for j in range(data_count-i-1):
if ds[j].value > ds[j+1].value:
ds[j], ds[j+1] = ds[j+1], ds[j]
frames.append(copy.deepcopy(ds))
frames.append(ds)
return frames
实验结果图:
完整动画演示:
先上代码,比较经典,值得回味:
def quick_sort(data_set):
frames = [data_set]
ds = copy.deepcopy(data_set)
def qsort(head, tail):
if tail - head > 1:
i = head
j = tail - 1
pivot = ds[j].value
while i < j:
if ds[i].value > pivot or ds[j].value < pivot:
ds[i], ds[j] = ds[j], ds[i]
frames.append(copy.deepcopy(ds))
if ds[i].value == pivot:
j -= 1
else:
i += 1
qsort(head, i)
qsort(i+1, tail)
qsort(0, data_count)
frames.append(ds)
return frames
快速排序算法对输入为随机的序列优势往往较为明显,同样的输入数据,它只需要24
帧调整就能完成排序。
选择排序和堆排序都是选择思维,但是性能却不如堆排序:
def selection_sort(data_set):
frames = [data_set]
ds = copy.deepcopy(data_set)
for i in range(0, data_count-1):
for j in range(i+1, data_count):
if ds[j].value < ds[i].value:
ds[i], ds[j] = ds[j], ds[i]
frames.append(copy.deepcopy(ds))
frames.append(ds)
return frames
动画展示如下,每轮会从未排序的列表中,挑出一个最小值,放到已排序序列后面。
堆排序大大改进了选择排序,逻辑上使用二叉树,先建立一个大根堆,然后根节点与未排序序列的最后一个元素交换,重新对未排序序列建堆。
完整代码如下:
def heap_sort(data_set):
frames = [data_set]
ds = copy.deepcopy(data_set)
def heap_adjust(head, tail):
i = head * 2 + 1 # head的左孩子
while i < tail:
if i + 1 < tail and ds[i].value < ds[i+1].value: # 选择一个更大的孩子
i += 1
if ds[i].value <= ds[head].value:
break
ds[head], ds[i] = ds[i], ds[head]
frames.append(copy.deepcopy(ds))
head = i
i = i * 2 + 1
# 建立一个最大堆,从最后一个父节点开始调整
for i in range(data_count//2-1, -1, -1):
heap_adjust(i, data_count)
for i in range(data_count-1, 0, -1):
ds[i], ds[0] = ds[0], ds[i] # 把最大值放在位置i处
heap_adjust(0, i) # 从0~i-1进行堆调整
frames.append(ds)
return frames
堆排序的性能也比较优秀,完成排序需要51次调整。
依次调用以上常见的4种排序算法,分别保存所有帧和html文件。
waiting_sort_data = Data.create()
for sort_method in [bubble_sort, quick_sort, selection_sort, heap_sort]:
frames = sort_method(waiting_sort_data)
draw_chart(frames, file_name='%s.html' % (sort_method.__name__,))
获取以上完整代码、所有数据文件、结果文件:完整源码下载
机器学习是一个目标函数优化问题,给定目标函数f,约束条件会有一般包括以下三类:
- 仅含等式约束
- 仅含不等式约束
- 等式和不等式约束混合型
当然还有一类没有任何约束条件的最优化问题
关于最优化问题,大都令人比较头疼,首先大多教材讲解通篇都是公式,各种符号表达,各种梯度,叫人看的云里雾里。
有没有结合几何图形阐述以上问题的?很庆幸,还真有这么好的讲解材料,图文并茂,逻辑推导严谨,更容易叫我们理解拉格朗日乘数法
、KKT条件
为什么就能求出极值。
假定目标函数是连续可导函数,问题定义如下:
然后:
通过以上方法求解此类问题,但是为什么它能求出极值呢?
大家时间都有限,只列出最核心的逻辑,找找sense, 如有兴趣可回去下载PPT仔细体会。
此解释中对此类问题的定义:
为了更好的阐述,给定一个具体例子,锁定:
所以,f(x)的一系列取值包括0,1,100,10000等任意实数:
但是,约束条件h(x)
注定会约束f(x)
不会等于100,不会等于10000...
一个可行点:
我们想要寻找一个移动x
的规则,使得移动后f(x+delta_x)
变小,当然必须满足约束h(x+delta_x)=0
使得f(x
)减小最快的方向就是它的梯度反方向,即
因此,要想f(x+delta_x) 变小,通过图形可以看出,只要保持和梯度反方向夹角小于90,也就是保持大概一个方向,f(x+delta_x)
就会变小,转化为公式就是:
如下所示的一个delta_x
就是一个会使得f(x)减小的方向,但是这种移动将会破坏等式约束: h(x)=0
,关于准确的移动方向下面第四小节会讲到
约束面的外法向:
约束面的内法向:
绿圈表示法向的正交
方向
x沿着绿圈内的方向移动,将会使得f(x)减小,同时满足等式约束h(x) = 0
我们不妨大胆假设,如果满足下面的条件:
根据第四小节讲述,delta_x
必须正交于h(x)
,所以:
所以:
至此,我们就找到f(x)
偏导数等于0的点,就是下图所示的两个关键点(它们也是f(x)与h(x)的临界点)。且必须满足以下条件,也就是两个向量必须是平行的:
至此,已经完全解码拉格朗日乘数法,拉格朗日巧妙的构造出下面这个式子:
还有取得极值的的三个条件,都是对以上五个小节中涉及到的条件的编码
关于第三个条件,稍加说明。
对于含有多个变量,比如本例子就含有2个变量x1
, x2
,就是一个多元优化问题,需要求二阶导,二阶导的矩阵就被称为海塞矩阵
(Hessian Matrix)
与求解一元问题一样,仅凭一阶导数等于是无法判断极值的,需要求二阶导,并且二阶导大于0才是极小值,小于0是极大值,等于0依然无法判断是否在此点去的极值。
以上就是机器学习最常用的优化技巧:拉格朗日乘数法的图形讲解,相信大家已经找到一定感觉,接下来几天我们通过例子,详细阐述机器学习的具体概念,常用算法,使用Python实现主要的算法,使用Sklearn,Kaggle数据实战这些算法。
导入本次实验所用的4种常见分布,连续分布的代表:beta
分布、正态
分布,均匀
分布,离散分布的代表:二项
分布。
绘图装饰器带有四个参数分别表示legend
的2类说明文字,y轴label, 保存的png文件名称。
import pretty_errors
import numpy as np
from scipy.stats import beta, norm, uniform, binom
import matplotlib.pyplot as plt
from functools import wraps
# 定义带四个参数的画图装饰器
def my_plot(label0=None, label1=None, ylabel='probability density function', fn=None):
def decorate(f):
@wraps(f)
def myplot():
fig = plt.figure(figsize=(16, 9))
ax = fig.add_subplot(111)
x, y, y1 = f()
ax.plot(x, y, linewidth=2, c='r', label=label0)
ax.plot(x, y1, linewidth=2, c='b', label=label1)
ax.legend()
plt.ylabel(ylabel)
# plt.show()
plt.savefig('./img/%s' % (fn,))
print('%s保存成功' % (fn,))
plt.close()
return myplot
return decorate
# 均匀分布(uniform)
@my_plot(label0='b-a=1.0', label1='b-a=2.0', fn='uniform.png')
def unif():
x = np.arange(-0.01, 2.01, 0.01)
y = uniform.pdf(x, loc=0.0, scale=1.0)
y1 = uniform.pdf(x, loc=0.0, scale=2.0)
return x, y, y1
红色曲线表示发生一次概率为0.3,重复50次的密度函数,二项分布期望值为0.3*50 = 15次。看到这50次实验,很可能出现的次数为10~20.可与蓝色曲线对比分析。
# 二项分布
@my_plot(label0='n=50,p=0.3', label1='n=50,p=0.7', fn='binom.png', ylabel='probability mass function')
def bino():
x = np.arange(50)
n, p, p1 = 50, 0.3, 0.7
y = binom.pmf(x, n=n, p=p)
y1 = binom.pmf(x, n=n, p=p1)
return x, y, y1
红色曲线表示均值为0,标准差为1.0的概率密度函数,蓝色曲线的标准差更大,所以它更矮胖,显示出取值的多样性,和不稳定性。
# 高斯 分布
@my_plot(label0='u=0.,sigma=1.0', label1='u=0.,sigma=2.0', fn='guass.png')
def guass():
x = np.arange(-5, 5, 0.1)
y = norm.pdf(x, loc=0.0, scale=1.0)
y1 = norm.pdf(x, loc=0., scale=2.0)
return x, y, y1
beta分布的期望值如下,可从下面的两条曲线中加以验证:
# beta 分布
@my_plot(label0='a=10., b=30.', label1='a=4., b=4.', fn='beta.png')
def bet():
x = np.arange(-0.01, 1, 0.001)
y = beta.pdf(x, a=10., b=30.)
y1 = beta.pdf(x, a=4., b=4.)
return x, y, y1
区分几个小白容易混淆的概念:pycharm,python解释器,conda安装,pip安装,总结来说:
pycharm
是python开发的集成开发环境(Integrated Development Environment,简称IDE),它本身无法执行Python代码python解释器
才是真正执行代码的工具,pycharm里可设置Python解释器,一般去python官网下载python3.7或python3.8版本;如果安装过anaconda
,它里面必然也包括一个某版本的Python解释器;pycharm配置python解释器选择哪一个都可以。- anaconda是python常用包的合集,并提供给我们使用
conda
命令非常方便的安装各种Python包。 conda安装
:我们安装过anaconda软件后,就能够使用conda命令下载anaconda源里(比如中科大镜像源)的包pip安装
:类似于conda安装的python安装包的方法,更加全面
修改镜像源
在使用安装conda
安装某些包会出现慢或安装失败问题,最有效方法是修改镜像源为国内镜像源。之前都选用清华镜像源,但是2019年后已停止服务。推荐选用中科大镜像源。
先查看已经安装过的镜像源,cmd窗口执行命令:
conda config --show
查看配置项channels
,如果显示带有tsinghua
,则说明已安装过清华镜像。
channels:
- https://mirrors.tuna.tsinghua.edu.cn/tensorflow/linux/cpu/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
下一步,使用conda config --remove channels url地址
删除清华镜像,如下命令删除第一个。然后,依次删除所有镜像源
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/tensorflow/linux/cpu/
添加目前可用的中科大镜像源:
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
并设置搜索时显示通道地址:
conda config --set show_channel_urls yes
确认是否安装镜像源成功,执行conda config --show
,找到channels
值为如下:
channels:
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
- defaults
Done~
1 安装慢到装不上
最近几天,后台几个小伙伴问我,无论pip还是conda安装pytorch
都太慢了,都是安装官方文档去做的,就是超时装不上,无法开展下一步,卡脖子的感觉太不好受。
这些小伙伴按照pytorch官档提示,选择好后,完整复制上面命令conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
到cmd中,系统是windows.
接下来提示,conda需要安装的包,他们操作选择y
,继续安装,但是在安装时,发现进度条几乎一动不动。
反复尝试,就是这样,有些无奈,还感叹怎么深度学习的路一开始就TMD的这么难!
2 这样能正常安装
无论是安装cpu
版还是cuda
版,网上关于这些的参考资料太多了,无非就是cuda硬件和cuda开发包的版本要对应,python版本要对应等,这些bee君觉得都不是事。
就像几位读者朋友遇到的问题,关键还是如何解决慢到无法装
的问题。
最有效方法是添加镜像源,常见的清华或中科大。
先查看是否已经安装相关镜像源,windows系统在cmd
窗口中执行命令:
conda config --show
bee君这里显示:
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
说明已经安装好清华的镜像源。如果没有安装,请参考下面命令安装源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
依次安装上面所有的源。
并设置搜索时显示通道地址,执行下面命令:
conda config --set show_channel_urls yes
3 最关键一步
有的读者问我,他们已经都安装好镜像源,但是为什么安装还是龟速?问他们,是用哪个命令,他们回复:conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
好吧,执行上面命令,因为命令最后是-c pytorch
,所以默认还是从conda源下载,新安装的清华等源没有用上。
正确命令:conda install pytorch torchvision cudatoolkit=10.1
,也就是去掉-c pytorch
并且在安装时,也能看到使用了清华源。并且安装速度直线提升,顺利done
4 测试是否安装成功
结合官档,执行下面代码,torch.cuda.is_available()
返回True
,说明安装cuda成功。
In [1]: import torch
In [2]: torch.cuda
Out[2]: <module 'torch.cuda' from 'D:\\Programs\\anaconda\\lib\\site-packages\\torch\\cuda\\__init__.py'>
In [3]: torch.cuda.is_available()
Out[3]: True
In [4]: from __future__ import print_function
In [5]: x = torch.rand(5,3)
In [6]: print(x)
tensor([[0.0604, 0.1135, 0.2656],
[0.5353, 0.9246, 0.3004],
[0.4872, 0.9592, 0.2215],
[0.2598, 0.5031, 0.6093],
[0.2986, 0.1599, 0.5862]])
这篇文章主要讨论安装pytorch
慢到不能装的问题及方案,希望对读者朋友们有帮助。
Python自动群发邮件
import smtplib
from email import (header)
from email.mime import (text, application, multipart)
import time
def sender_mail():
smt_p = smtplib.SMTP()
smt_p.connect(host='smtp.qq.com', port=25)
sender, password = '[email protected]', "**************"
smt_p.login(sender, password)
receiver_addresses, count_num = [
'[email protected]', '[email protected]'], 1
for email_address in receiver_addresses:
try:
msg = multipart.MIMEMultipart()
msg['From'] = "zhenguo"
msg['To'] = email_address
msg['subject'] = header.Header('这是邮件主题通知', 'utf-8')
msg.attach(text.MIMEText(
'这是一封测试邮件,请勿回复本邮件~', 'plain', 'utf-8'))
smt_p.sendmail(sender, email_address, msg.as_string())
time.sleep(10)
print('第%d次发送给%s' % (count_num, email_address))
count_num = count_num + 1
except Exception as e:
print('第%d次给%s发送邮件异常' % (count_num, email_address))
continue
smt_p.quit()
sender_mail()
注意:
发送邮箱是qq邮箱,所以要在qq邮箱中设置开启SMTP服务,设置完成时会生成一个授权码,将这个授权码赋值给文中的password
变量
二分搜索是程序员必备的算法,无论什么场合,都要非常熟练地写出来。
小例子描述:
在有序数组arr
中,指定区间[left,right]
范围内,查找元素x
如果不存在,返回-1
二分搜索binarySearch
实现的主逻辑
def binarySearch(arr, left, right, x):
while left <= right:
mid = int(left + (right - left) / 2); # 找到中间位置。求中点写成(left+right)/2更容易溢出,所以不建议这样写
# 检查x是否出现在位置mid
if arr[mid] == x:
print('found %d 在索引位置%d 处' %(x,mid))
return mid
# 假如x更大,则不可能出现在左半部分
elif arr[mid] < x:
left = mid + 1 #搜索区间变为[mid+1,right]
print('区间缩小为[%d,%d]' %(mid+1,right))
# 同理,假如x更小,则不可能出现在右半部分
elif x<arr[mid]:
right = mid - 1 #搜索区间变为[left,mid-1]
print('区间缩小为[%d,%d]' %(left,mid-1))
# 假如搜索到这里,表明x未出现在[left,right]中
return -1
在Ipython
交互界面中,调用binarySearch
的小Demo:
In [8]: binarySearch([4,5,6,7,10,20,100],0,6,5)
区间缩小为[0,2]
found 5 at 1
Out[8]: 1
In [9]: binarySearch([4,5,6,7,10,20,100],0,6,4)
区间缩小为[0,2]
区间缩小为[0,0]
found 4 at 0
Out[9]: 0
In [10]: binarySearch([4,5,6,7,10,20,100],0,6,20)
区间缩小为[4,6]
found 20 at 5
Out[10]: 5
In [11]: binarySearch([4,5,6,7,10,20,100],0,6,100)
区间缩小为[4,6]
区间缩小为[6,6]
found 100 at 6
Out[11]: 6
爬取天气数据并解析温度值
素材来自朋友袁绍,感谢!
爬取的html 结构
import requests
from lxml import etree
import pandas as pd
import re
url = 'http://www.weather.com.cn/weather1d/101010100.shtml#input'
with requests.get(url) as res:
content = res.content
html = etree.HTML(content)
通过lxml模块提取值
lxml比beautifulsoup解析在某些场合更高效
location = html.xpath('//*[@id="around"]//a[@target="_blank"]/span/text()')
temperature = html.xpath('//*[@id="around"]/div/ul/li/a/i/text()')
结果:
['香河', '涿州', '唐山', '沧州', '天津', '廊坊', '太原', '石家庄', '涿鹿', '张家口', '保定', '三河', '北京孔庙', '北京国子监', '中国地质博物馆', '月坛公
园', '明城墙遗址公园', '北京市规划展览馆', '什刹海', '南锣鼓巷', '天坛公园', '北海公园', '景山公园', '北京海洋馆']
['11/-5°C', '14/-5°C', '12/-6°C', '12/-5°C', '11/-1°C', '11/-5°C', '8/-7°C', '13/-2°C', '8/-6°C', '5/-9°C', '14/-6°C', '11/-4°C', '13/-3°C'
, '13/-3°C', '12/-3°C', '12/-3°C', '13/-3°C', '12/-2°C', '12/-3°C', '13/-3°C', '12/-2°C', '12/-2°C', '12/-2°C', '12/-3°C']
构造DataFrame对象
df = pd.DataFrame({'location':location, 'temperature':temperature})
print('温度列')
print(df['temperature'])
正则解析温度值
df['high'] = df['temperature'].apply(lambda x: int(re.match('(-?[0-9]*?)/-?[0-9]*?°C', x).group(1) ) )
df['low'] = df['temperature'].apply(lambda x: int(re.match('-?[0-9]*?/(-?[0-9]*?)°C', x).group(1) ) )
print(df)
详细说明子字符创捕获
除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()
表示的就是要提取的分组(group)。比如:^(\d{3})-(\d{3,8})$
分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码
m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345')
print(m.group(0))
print(m.group(1))
print(m.group(2))
# 010-12345
# 010
# 12345
如果正则表达式中定义了组,就可以在Match
对象上用group()
方法提取出子串来。
注意到group(0)
永远是原始字符串,group(1)
、group(2)
……表示第1、2、……个子串。
最终结果
Name: temperature, dtype: object
location temperature high low
0 香河 11/-5°C 11 -5
1 涿州 14/-5°C 14 -5
2 唐山 12/-6°C 12 -6
3 沧州 12/-5°C 12 -5
4 天津 11/-1°C 11 -1
5 廊坊 11/-5°C 11 -5
6 太原 8/-7°C 8 -7
7 石家庄 13/-2°C 13 -2
8 涿鹿 8/-6°C 8 -6
9 张家口 5/-9°C 5 -9
10 保定 14/-6°C 14 -6
11 三河 11/-4°C 11 -4
12 北京孔庙 13/-3°C 13 -3
13 北京国子监 13/-3°C 13 -3
14 中国地质博物馆 12/-3°C 12 -3
15 月坛公园 12/-3°C 12 -3
16 明城墙遗址公园 13/-3°C 13 -3
17 北京市规划展览馆 12/-2°C 12 -2
18 什刹海 12/-3°C 12 -3
19 南锣鼓巷 13/-3°C 13 -3
20 天坛公园 12/-2°C 12 -2
21 北海公园 12/-2°C 12 -2
22 景山公园 12/-2°C 12 -2
23 北京海洋馆 12/-3°C 12 -3