Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Eval use precomputed representations #4

Merged
merged 8 commits into from
May 17, 2017
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ test_precision = precision_at_k(model, data['test'], k=5).mean()
1. [Learning to Rank Sketchfab Models with LightFM](http://blog.ethanrosenthal.com/2016/11/07/implicit-mf-part-2/)
2. [Metadata Embeddings for User and Item Cold-start Recommendations](http://building-babylon.net/2016/01/26/metadata-embeddings-for-user-and-item-cold-start-recommendations/)
3. [Recommendation Systems - Learn Python for Data Science](https://www.youtube.com/watch?v=9gBC9R-msAk)
4. [Using LightFM to Recommend Projects to Consultants] (https://medium.com/product-at-catalant-technologies/using-lightfm-to-recommend-projects-to-consultants-44084df7321c#.gu887ky51)
4. [Using LightFM to Recommend Projects to Consultants](https://medium.com/product-at-catalant-technologies/using-lightfm-to-recommend-projects-to-consultants-44084df7321c#.gu887ky51)

## How to cite
Please cite LightFM if it helps your research. You can use the following BibTeX entry:
Expand Down
102 changes: 62 additions & 40 deletions lightfm/_lightfm_fast.pyx.template
Original file line number Diff line number Diff line change
Expand Up @@ -1233,12 +1233,15 @@ def predict_lightfm(CSRMatrix item_features,
int[::1] item_ids,
double[::1] predictions,
FastLightFM lightfm,
int num_threads):
int num_threads,
bint use_precomputed,
flt[:, ::1] user_reprs,
flt[:, ::1] item_reprs):
"""
Generate predictions.
"""

cdef int i, no_examples
cdef int i, no_examples, factor_dim
cdef flt *user_repr
cdef flt *it_repr

Expand All @@ -1250,21 +1253,25 @@ def predict_lightfm(CSRMatrix item_features,
it_repr = <flt *>malloc(sizeof(flt) * (lightfm.no_components + 1))

for i in {range_block}(no_examples):

compute_representation(user_features,
lightfm.user_features,
lightfm.user_biases,
lightfm,
user_ids[i],
lightfm.user_scale,
user_repr)
compute_representation(item_features,
lightfm.item_features,
lightfm.item_biases,
lightfm,
item_ids[i],
lightfm.item_scale,
it_repr)
if use_precomputed:
for factor_dim in {range_block}(lightfm.no_components + 1):
user_repr[factor_dim] = user_reprs[user_ids[i], factor_dim]
it_repr[factor_dim] = item_reprs[item_ids[i], factor_dim]
else:
compute_representation(user_features,
lightfm.user_features,
lightfm.user_biases,
lightfm,
user_ids[i],
lightfm.user_scale,
user_repr)
compute_representation(item_features,
lightfm.item_features,
lightfm.item_biases,
lightfm,
item_ids[i],
lightfm.item_scale,
it_repr)

predictions[i] = compute_prediction_from_repr(user_repr,
it_repr,
Expand All @@ -1280,11 +1287,14 @@ def predict_ranks(CSRMatrix item_features,
CSRMatrix train_interactions,
flt[::1] ranks,
FastLightFM lightfm,
int num_threads):
int num_threads,
bint use_precomputed,
flt[:, ::1] user_reprs,
flt[:, ::1] item_reprs):
"""
"""

cdef int i, j, user_id, item_id, predictions_size, row_start, row_stop
cdef int i, j, user_id, item_id, predictions_size, row_start, row_stop, factor_dim
cdef flt *user_repr
cdef flt *it_repr
cdef flt *predictions
Expand Down Expand Up @@ -1315,27 +1325,35 @@ def predict_ranks(CSRMatrix item_features,
# No test interactions for this user
continue

compute_representation(user_features,
lightfm.user_features,
lightfm.user_biases,
lightfm,
user_id,
lightfm.user_scale,
user_repr)
if use_precomputed:
for factor_dim in {range_block}(lightfm.no_components + 1):
user_repr[factor_dim] = user_reprs[user_id, factor_dim]
else:
compute_representation(user_features,
lightfm.user_features,
lightfm.user_biases,
lightfm,
user_id,
lightfm.user_scale,
user_repr)

# Compute predictions for the items whose
# ranks we want to know
for i in range(row_stop - row_start):

item_id = test_interactions.indices[row_start + i]

compute_representation(item_features,
lightfm.item_features,
lightfm.item_biases,
lightfm,
item_id,
lightfm.item_scale,
it_repr)
if use_precomputed:
for factor_dim in range(lightfm.no_components + 1):
it_repr[factor_dim] = item_reprs[item_id, factor_dim]
else:
compute_representation(item_features,
lightfm.item_features,
lightfm.item_biases,
lightfm,
item_id,
lightfm.item_scale,
it_repr)

item_ids[i] = item_id
predictions[i] = compute_prediction_from_repr(user_repr,
Expand All @@ -1350,13 +1368,17 @@ def predict_ranks(CSRMatrix item_features,
# This depends on how we want to evaluate (so it's not necessary)
continue

compute_representation(item_features,
lightfm.item_features,
lightfm.item_biases,
lightfm,
item_id,
lightfm.item_scale,
it_repr)
if use_precomputed:
for factor_dim in range(lightfm.no_components + 1):
it_repr[factor_dim] = item_reprs[item_id, factor_dim]
else:
compute_representation(item_features,
lightfm.item_features,
lightfm.item_biases,
lightfm,
item_id,
lightfm.item_scale,
it_repr)
prediction = compute_prediction_from_repr(user_repr,
it_repr,
lightfm.no_components)
Expand Down
Loading